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The dynamo action is the process through which a magnetic field is amplified and sustained

by electrically conductive flows. Galaxies, stars and planets, all exhibit magnetic field amplification

by their conductive constituents. For the Earth in particular, the magnetic field is generated due

to flows of conductive material in its outer core. At the University of Maryland, our Three-

meter diameter spherical Couette experiment uses liquid sodium between concentric spheres to

mimic some of these dynamics, giving insight into these natural phenomena. Numerical studies

of Finke and Tilgner (Phys. Rev. E, 86:016310, 2012) suggest a reduction in the threshold for

dynamo action when a rough inner sphere was modeled by increasing the poloidal flows with

respect to the zonal flows and hence increasing helicity. The baffles change the nature of the

boundary layer from a shear dominated to a pressure dominated one, having effects on the angular

momentum injection. We present results on a hydrodynamics model of 40-cm diameter spherical



Couette flow filled with water, where torque and velocimetry measurements were performed to

test the effects of different baffle configurations. The selected design was then installed in the 3-m

experiment. In order to do that, the biggest liquid sodium draining operation in the history of the

lab was executed. Twelve tons of liquid sodium were safely drained in a 2 hours operation. With

the experiment assembled back and fully operational, we performed magnetic field amplification

measurements as a function of the different experimental parameters including Reynolds and

Rossby numbers. Thanks to recent studies in the hydrodynamic scale model, we can bring a

better insight into these results. Torque limitations in the inner motor allowed us to inject only 4

times the available power; however, amplifications of more than 2 times the internal and external

magnetic fields with respect to the no-baffle case was registered. These results, together with

time-dependent analysis, suggest that a dynamo action is closer than before; showing the effect

of the new baffles design in generating more efficient flows for magnetic field amplification. We

are optimistic about new short-term measurement in new locations of the parameter space, and

about the rich variety of unexplored dynamics that this novel experiment has the potential to

reach. These setups constitute the first experimental explorations, in both hydrodynamics and

magnetohydrodynamics, of rough boundary spherical Couette flows as laboratory candidates for

successful Earth-like dynamo action.
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Chapter 1: Introduction

1.1 Motivation

Perhaps one of the most important physical phenomena for the livelihood of humankind on

Earth is the existence of a magnetic �eld surrounding the planet. This magnetic �eld protects life

from the deadly solar radiation, and acts as a shield against the accelerated charged particles

constantly launched from the Sun. It was believed that the origin of the �eld was due to a

permanent magnet inside the Earth; however, the inside of the Earth is at much higher temperatures

than the Curie temperature of the iron core, which is the point where all ferromagnetism is lost.

In 1919, Joseph Larmor hypothesized that the magnetic �eld of the Sun was due to the motion

of conductive liquid �uid inside. This was the �rst time that the notion of conductive �ows

sustaining a magnetic �eld was considered.

The origin of the Earth's magnetic �eld is also a topic that continues to generate discussion

throughout the scienti�c community. Though, there is a consensus about where it is generated:

the outer core - an ocean of an iron-nickel alloy between the solid inner core and the solid mantle.

The liquid composition of the outer core was hypothesized by Danish seismologist Inge Lehman

in 1929, and it has been later corroborated by seismic measurements. It constitutes our current

model of study. However, the inaccessibility of this region on Earth makes us completely reliant

on remote observation and sensing for further and deepening the existent knowledge about the
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core's composition and dynamics, leaving us with relatively limited data.

The theoretical problem of the Earth's magnetic �eld generation is also of high dif�culty

to solve. The Navier-Stokes equation that governs the �uid motion in the outer core is known to

have no analytical solution, particularly for planetary, and even laboratory scales. Additionally,

due to the wide range of spatial scales involved, the numerical approach is one of limited scope.

Although progress has been made, we are still a few orders of magnitude away from resolving

the problem for these scales. The major barrier is the existence of a threshold for the generation

of the magnetic �eld. This threshold is, ironically, in the nonlinearities of the system; meaning

that we need more turbulent �ows (more complex and dif�cult to resolve) in order to generate

a self-sustained magnetic �eld similar to the Earth's. This is the same complexity that makes

numerical resolution dif�cult. Hence, the arrival of the experiments.

The �rst attempts to generate a magnetic �eld in the laboratory due to conductive �ows

started with very limited geometries: twisted pipe �ows were used to generate the topologies

required to sustain a magnetic �eld Benton [15]. More complex, and less restricted geometries

followed up with cylinder-like type of �ows Gailitis et al. [16], Bourgoin et al. [17]. The ultimate

desired geometry for experiments is perhaps a spherical one, that resembles more accurately the

Earth's dynamics. Unfortunately, with less constraints and less controlled �ows, comes greater

experimental dif�culties.

This process of a self-sustained magnetic �eld generation seen in many planets, stars and

galaxies, due to rotating turbulence of their conductive constituents, is formally known as the

dynamo action.It can be thought of as a competition between Faraday induction and dissipation

due to electrical resistance. The former drags, stretches, twists, and ampli�es the magnetic �eld,

while the latter transforms the electric currents into heat at smaller scales. They are determined
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respectively by the momentum diffusivity� (kinematic viscosity) and the magnetic diffusivity�

(inversely proportional to the electrical conductivity). The ratio of these two numbers is known

as the magnetic Prandtl numberP rm = �=�; and is small for all liquid metals.

Despite the numerical dif�culties, dynamos have been simulated before [18, 19, 20, 21, 22].

However, the parameters involved in these simulations are very different from those of the Earth

or even the experiments. For instance, simulations tweak the conductivity of the �ows to ease

dynamo action. This is observed in the magnetic Prandtl numberPm (de�ned in more details

in Section 3.5): simulations run atPm = 1 whilst Earth's Prandtl number is closer to10� 5.

Another dimension that we cannot match, not even in experiments, is the length scale. This

affects signi�cantly the Coriolis forces observed in the system, which are known to be one of the

most important drivers of planetary dynamics. The effect of Coriolis forces is indicated by the

dimensionless Ekman numberEk (the ratio of viscous to Coriolis forces. See section 3.5). This

number in simulations and experiments is as much as nine orders of magnitude greater than that

of the Earth.

All these mismatches of the parameters between the simulation and the real astronomical

bodies, motivate a global attempt to bridge this gap using experiments. In particular, there is an

ongoing global attempt to replicate Earth-like magnetic �eld dynamos in the laboratory [4, 23,

24, 25] with realistic turbulence that cannot be achieved by current simulations.

Spherical Couette �ows are �ows between two concentric spheres that rotate differentially.

They are a useful model to study rotating turbulence, particularly, in the context of planetary

dynamics [26, 27, 28], given the resemblance of the geometry in the cores. The solid inner

sphere mimics the inner core boundary, whilst the outer sphere mimics the mantle-core boundary.

Shear forces at the surfaces, and Coriolis forces due to the global rotation, drive and shape the
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motion of the �uid between the spheres, similarly to the more widely explored cylindrical Taylor-

Couette �ows [27, 29, 30, 31, 32, 33]. However, there is another important mismatch: the Earth's

inner core does not rotate signi�cantly with respect to the outer core. The driven mechanism

for dynamo generation in the core is known to be a combination of the following: convection,

due to thermal gradients; buoyancy, due to constant solidi�cation of the inner core (and a sort of

inverse rain from the outer core towards the mantle) and Coriolis forces due to global rotation

(check for instance Merrill et al. [34]). However, there is a analogy between thermal convection

and shear turbulence which has been studied in the context of Taylor-Couette versus Rayleigh-

Bérnard convection that has been extensively reported in the bibliography [35, 36, 37? ]. See

for instance Prigent et al. [38] for an overall summary. The analogy, in simple words, states

that at high Reynolds numbers (very turbulent �ows) the nature of the turbulence of Taylor-

Couette and Rayleigh-B́ernard �ows is statistically equivalent. This comes in handy for the

experimentalists who now see rotating �ows as a suitable candidate to replace thermal convection

with shear �ows as the dynamo driving force. Spherical Couette dynamos have also been found

extensively in numeric simulations, and the parameter range exploration continues to grow every

day [9, 11, 18, 19, 20, 21, 22, 39, 40].

1.2 Background and Prior Work

Experimental dynamos have been found in the laboratory in restricted geometries such as

the ones of Riga [16] and Karlsuhe [41]. These successes proved theoretical predictions about

a self-excitation in the magnetic �eld due to a well organized �ow, and motivated the search of

dynamos in less con�ned, more Earth-like geometries and turbulence like in spherical Couette
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Figure 1.1: The spherical 30 cm diameter apparatus and characteristic induced magnetic �eld
instability patterns. The device (a) consists of a thin stainless spherical outer vessel, a rotating
inner copper sphere, and liquid sodium in between. The resulting dynamics change character
under the in�uence of an externally applied magnetic �eld coaxial with the rotation are shown in
(b-c). From [2].

�ows. Spherical experiments attempting Earth-like dynamos and exploring magneto-turbulence

include the one in Madison at the University of Wisconsin, USA [23] and the DTS spherical

Couette �ow in Grenoble, France [24, 25]. Other experiments, like the Von Karman sodium

experiment [42] and the DRESDYN experiment in Dresden, Germany [43] use a cylindrical

geometry. The former successfully achieved a dynamo using ferromagnetic impellers as main

driver of the �ow.

At the University of Maryland we have built a series of different spherical Couette Flows

experiments during almost 30 years, with the intention of studying magnetohydrodynamics (MHD)

and eventually generate a dynamo in this Earth-like con�guration. This is why all our experiments

are intended to mimic the aspect ratio of the Earth's core of� = r i =ro = 0:35. We use liquid

sodium as the conductive �ow since it is the liquid metal with the highest conductivity and it

melts at 97 C which is a reasonably achieved temperature for experimental purposes. However,

handling sodium is extremely dangerous due to its reactive, toxic, corrosive and in�ammatory
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properties. Sodium needs to be kept in a neutral atmosphere, for which we used nitrogen as an

inert gas. Sodium oxidizes rapidly, the oxidation can be observed in real time. The reaction

takes the oxygen in the air and leaves behind different types of sodium oxides which are toxic,

corrosive, and irritating to the skin and eyes. The reaction of sodium and water is particularly

dangerous; it leaves behind hydrogen gas in high concentrations, which is volatile, and the

reaction is exothermic. The consequence could be a detonation that sends into the air liquid

sodium and oxide traces. Hence, extreme measures are constantly being taken to guarantee the

optimal performance of the experiment and the safety of the team.

The �rst experiment of this series had 30 cm in diameter [2] and was able to reach a

magnetic Reynolds number ofRm � 25. By that time, that parameter space was relatively

unexplored. This experiment reported the �rst experimental observation of Magnetorotational

Instability (see for instance Chandrasekhar [35]) but did not shield a dynamo.

The second experiment of the series is a 60 cm outer diameter spherical Couette. This

experiment observed inertial modes [44] in a spherical geometry. The setup was also used to

study thermal convection in spherical Couette geometries, but it did not succeed in generating the

necessary velocity scales for dynamo action. However, it showed very interesting results. [45].

Finally we arrive at the 3-meter diameter spherical Couette experiment (3-m) [4, 46, 47].

It is, like its predecessors, intended to mimic the aspect ratio of the Earth's core of� = r i =ro =

0:35, wherer i = 0:51m andro = 1:46m are the inner and outer sphere radii of the experiment.

The boundaries of both spheres were originally smooth with only a characteristic roughness due

to the unpolished stainless steel material from fabrication. The 3-m experiment approximately

matches Earth's magnetic Reynolds numbers ofRm � 900, Re � 109, and works with liquid

sodium, which has aPrm � 10� 5. An external dipolar or quadrupolar magnetic �eld can be
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Figure 1.2: The spherical 60 cm diameter apparatus and characteristic induced inertial modes
spectrograms. From [3].

applied by electromagnets in the axial direction, with an intensity up to 200 Gauss at the center

of the experiment.

This is the biggest rotating liquid sodium experiment in the world to date, which despite

matching many parameters of the Earth's core, has not yielded a magnetic dynamo. However, the

experiment has shown very interesting phenomena for the geophysics community such as inertial

modes [48] and precessional states [47]. Additionally, phenomena of signi�cant interest for the

non-linear and astrophysics community such as the bi-stability states [46] have been reported for

the �rst time in this geometry.

The 3-m experiment experiment has shown an signi�cant ampli�cation of the magnetic

�eld in the azimuthal direction up to 8 times the externally applied magnetic �elds (see Figure

1.3 and work by Zimmerman et al. [4]). It has, additionally, shown ampli�cation of10� 30%in

the internal radial direction [4]. These results, especially the latter, are signi�cant for dynamo in

the laboratory. In order to understand their importance, we need to elaborate on the mechanism

of its generation.
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