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Abstract

Under noiseless channel conditions and for sources with memory, finite-state vec-
tor quantizers (FSVQs) exhibit improvements over memoryless vector quantizers. It
is shown, however, that in the presence of channel noise, the performance of FSVQ de-
grades significantly. This suggests that for noisy channels, the FSVQ design problem
needs to be reformulated by taking into account the channel noise. Using the devel-
opments in channel-optimized vector quantization, we describe two different noisy-
channel FSVQs. We show by means of simulations on the Gauss-Markov source and
speech LSP parameters and for a binary symmetric channel that both schemes are
fairly robust to channel noise. For the Gauss-Markov source, the proposed noisy
channel FSVQs perform at least as well as or better than channel-optimized vec-
tor quantization, while for speech LSP parameters, they lead to a saving of 1.5-4
bits/frame over channel-optimized vector quantization depending on the level of noise
in the channel.

tThis work was supported in part by National Science Foundation grants NSFD MIP-86-57311 and
NSFD CDR-85-00108 and in part by grants from NTT Corporation and General Electric Company.



1 Introduction

Vector quantization (VQ)! as a means for data compression has been the subject of much
research over the last decade [1]-[6]. The main motivation behind the use of VQ resides
in Shannon’s result stating that VQ can attain a rate-distortion performance close to the
“best possible” in the limit when the vector dimension goes to infinity [7]. In practice,
however, only finite dimensions can be implemented and practical VQ systems fall short of
achieving the best, while still performing much better than scalar quantizers.

One of the main advantages of VQ over scalar quantization is its ability to exploit
the source sample-to-sample correlation. Although the rate-distortion performance of the
vector quantizer improves by increasing its dimension, the resulting complexity places a
practical limit on how large a dimension can be used and therefore how effectively the
source memory can be exploited. An alternative method to improve the performance of
VQ (for a given rate) is to incorporate memory in the VQ structure. One such technique
is finite-state vector quantization (FSVQ) [2], 3], [8], [9], which can be thought of as a
time varying VQ. An FSVQ is a finite-state machine with one VQ associated with each
state; the encoder and the decoder share the same state space and the decoder can track
the encoder state sequence based on the received encoder output sequence. Use of finite-
state machines in general digital transmission systems was investigated in [10] and FSVQ
was first introduced in [8]. Various forms of FSVQ have been suggested for applications
in image coding (3], [11]-[14], speech waveform coding [3], [8], [14] and coding of speech
spectral parameters [9].

An FSVQ can be thought of as a two-stage quantizer. The first stage utilizes the inter-
vector memory by performing a rough quantization based on the current state (obtained
from the previous output and state) and the second stage performs a finer quantization
thus leading to a performance superior to that of a memoryless VQ operating at the same
rate. However, it is only under noiseless channel conditions that the decoder can track
the encoder state sequence. If the channel is noisy, even a single error in the transmitted
encoder output can lead to an incorrect decoder state sequence over a period of time and
therefore a significant degradation in performance. In this paper we study the performance
of FSVQ in the presence of channel noise and devise new FSVQ designs for operation over
a noisy channel.

Previous work on quantizer design for noisy channels includes scalar quantization [15],

[16], full-searched VQ [17], [18] as well as tree-structured VQ (TSVQ) and multi-stage

}Throughout the paper we use the acronym VQ to denote vector quantization or vector quantizer. The
usage will be clear from the context.



VQ (MSVQ) in [19]. Furthermore, necessary conditions of optimality for trellis encoding
systems have been developed in [20] and a design algorithm is described in [21]. An FSVQ
can be looked upon as a trellis encoding system with unit search depth and a general next-
state function (as opposed to a shift-register based next-state function). However, due to
the use of a general next-state function in an FSVQ, the approach of [20] for the trellis
encoding system cannot be used as such. We shall elaborate on this in Section 2.3.

In this work, using some simplifying assumptions on the FSVQ structure we describe two
noisy-channel FSVQ systems. In the first scheme, we assume that a “protected” encoder
state is transmitted periodically to the decoder, while in the second scheme, we modify the
FSVQ structure in such a manner that without too big a loss in performance (as compared
to the FSVQ of [8] used over a noiseless channel), the codewords explicitly contain the
state information. This implies that a correct reception of the codeword is tantamount to a
correct decoder state. In both schemes the state codebooks are designed based on a noisy
channel assumption.

An important application that we will consider in this paper is that of quantizing
speech LSP parameters [22]. Currently, there is a growing interest in encoding speech LSP
parameters [23]-[26], both in vocoders [27] and in hybrid speech coders [28]-[31]. In many
speech communication situations, it is necessary that the speech coder be robust against
transmission errors. An important application is digital cellular networks where large
channel error rates may arise from various sources such as multipath fading and interference
from other channels [32]. We will show that the noisy-channel FSVQ systems proposed
here present an interesting alternative for such situations. The proposed schemes efficiently
utilize the interframe and intraframe correlation of LSP parameters v&ihile providing a fairly
robust performance in the presence of channel noise.

The paper is organized as follows. Section 2 includes a brief description of FSVQ,
a discussion of its sensitivity to channel noise and the formulation of the noisy-channel
FSVQ design problem. In Sections 3 and 4, the description and design algorithms of the
proposed noisy-channel FSVQs are provided. Section 5 includes simulation results for the
Gauss-Markov source and speech LSP parameters followed by a summary and conclusions

in Section 6.



2 Preliminaries

2.1 Definition of FSVQ

An L-dimensional K-state code [8] is specified by a state space S = {0,1,...,K — 1} and
the mappings:

a: Rl x 8§ — N : finite-state encoder,

B: N x S — A: finite-state decoder,

f: N x 8§ — S: next state function,
where A" £ {0,1,..., N — 1} is the channel alphabet of size N and A is the reproduction
space.

Let {X,}%, denote the input vector sequence, where x,, € RE. Similarly, let {u,}32,,
{sn}22, and {%X,}22, denote the channel symbol sequence, state sequence and reproduction
vector sequence, respectively. Given an initial state sq, the input sequence determines the

sequence of channel symbols, reproduction vectors and states according to:

Up = &(Xn,Sn), (1)
Xn = B(un,sn), (2)
Snt1 = flun,8n), n=0,1,.... (3)

The next state depends only on the present state and the output channel symbol; therefore,
given the initial state and correct channel symbol sequence, the decoder can track the
state sequence. Here, C, £ {B(u,s),u € N} is the codebook associated with state s and
A = UKZ!C,. Consider the distortion measure d : R* x A — [0, 00) which assigns a non-
negative cost d(x,X) to reproducing the input vector x as X. As defined in {8}, a finite-state

vector quantizer (FSVQ) is a finite-state code with « given by the minimum distortion rule
a(x, ) = argmip d(x, f(u,s)), s € 5. (4)
u

The average distortion incurred in an FSVQ system is given by 1 E [d(X,X)], where the

2

expectation is taken with respect to the source distribution. The rate is given by R =

log, N, bits/vector.

?We have assumed that the joint source-reproduction process is stationary and ergodic implying that
the expected distortion can be approximated from the long-term sample average distortion. However, even
under milder assumptions (see [8] and references cited therein) on the source, similar conclusions can be
made. Therefore, throughout the paper, in the analysis we use the expected distortion, but for the design
and simulations the sample average distortion based on a long sequence of source vectors will be used.



2.2 Performance of FSVQ in the presence of channel noise

Due to its built-in memory, FSVQ is capable of exploiting inter-vector correlation leading
to improved performance over a memoryless VQ. However, FSVQ is prone to channel error
propagation due to the presence of a feedback structure in its encoder. In the absence
of channel noise, the feedback eliminates the need to transmit the encoder state to the
receiver side. However, the ability of the decoder to track the encoder state sequence
critically depends on the availability of the ezact replica of the transmitted codewords.
Even a single error occurring in the transmitted codeword can lead to an incorrect decoder
state. Once the decoder state is different from the encoder state, the decoder state sequence
can remain “derailed” for a long time. In practice, since there is only a finite, and usually
small number of states, the encoder and decoder states resynchronize after some time.
Nevertheless, the performance degradation is severe because once the decoder loses track
of the encoder state, its state sequence essentially becomes random and the input vectors
get mapped to random reproduction vectors till the two state sequences resynchronize. This
statement will be confirmed by the simulation results provided later. In order to control
the performance of FSVQ under noisy channel conditions, it is essential to minimize the
derailing of the decoder. This can be achieved by either (i) transmitting some “protected
version” of the encoder state sequence periodically or (ii) modifying the FSVQ system so
that it becomes self-tracking (i.e., decoder can retrack soon after derailing). We elaborate
on these issues in Sections 3 and 4. In what follows, we formulate the FSVQ design problem

under noisy channel conditions.

2.3 Problem formulation

Consider the FSVQ block diagram in Fig. 1. The encoder o can be described in terms
of the partition {P,.; s € S,u € N} such that a(x,s) = u, if X € P,,, s€ S,u€N.
The output u of the encoder « is transmitted over a discrete memoryless channel (DMC)

described by a random mapping v : A — N and the transition matrix
Q(vlu) = Pr(v(u) =v), v,v €N, ()

where v is the output of the DMC. The decoder uses the received index v and its state §

to generate the reproduction vector X = (v, 3). The average distortion is given by
1 A
D(a,8, f) = T Eld(X, X, )

where the expectation is taken with respect to the source and channel distributions. The

problem is to minimize D by appropriate design of ¢, 8 and f.

5



Toward designing a noisy-channel FSVQ, we first consider the following theorem which

establishes a formula for simplifying the average distortion D.

Theorem 1: Consider an FSVQ defined according to (1)-(3) and a DMC described by (5).
Define d,(x,u) by
d,(x,u) ZQ(”IU Pr(3]s)d(x, B(v, 3)), (7)

where x, s, 8, u and v denote, respectlvely, the source vector, encoder state, decoder state,
channel input index and channel output index all at the same time instant, say n. Then,

the average distortion D(e, 3, f) can be written as
D(a, 6, f) = zPr ) [, b wlplee)ax (8)

Proof: See Appendix A.

Here d;(x,u) represents the expected distortion (with respect to channel distribution)
when the source vector x is encoded by an index u, given that the encoder is in state s.
This implies that a, or equivalently the partition, can be obtained from a generalization of

equation (4) according to
(x,) = argmip d(x,u), s € S. )

Thus, for a fixed f and S, the encoder « is described by (9).3
Also, it is clear from (7) and (8) that for a fixed « and f, the optimum f3 is given by

'(0,8) = arg mis, S Pr(s)Q(v|u) Pr(3s) /,, d(x,%)p(x)dx, 3€ S,ve N, (10)
% su s

For a fixed a and B, determining the optimum f is not easy but some ad hoc rules can
be used to get good next-state maps, leading to an overall suboptimal system just as in
the noiseless-channel FSVQ of [8].

Notice that determining both the encoder in (9) and optimum decoder in (10) require
the knowledge of Pr(3|s). Unfortunately, for a general next-state function, it is not clear
how s and § are related to each other, thus making the computation of Pr($|s) difficult.
Next, we present two special cases in which certain assumptions about the system are made

which make the computation of Pr(§|s) straightforward.

3Since the encoder given by (9) involves no delay, it is not optimal for the given decoder. However,
if the encoder is allowed to look ahead (i.e., introduce delay) then it will become nearly optimal for the
given decoder and the resulting FSVQ will then become a trellis encoding system with a vector alphabet.
A similar observation is made in [8] for FSVQs without channel noise.



3 Description and Design of NC-FSVQ1

In this section we consider the first special case in which we assume that the encoder state
sequence is known to the decoder (by transmitting the protected state indices). Assuming

that § = s at all times (i.e., Pr(3]s) =1, if § = s and Pr(3|s) = 0, otherwise), we have
d,(x,u) = 3~ Q(vlu)d(x, B(v, 5)), (11)

which, for each state s, is the same as the modified distortion measure used for the design of
a channel-optimized VQ (CO-VQ) in [18]. Therefore, for a fixed 8 and f, the encoder « is
given by (9) with d, given by (11). This exactly corresponds to determining the optimum
partition for CO-VQ in [17], [18] within each state s € S. Similarly for a fixed a and
f, assuming that § = s at all times, the optimum S is obtained using (10) and can be

expressed as
B (v,3) = arg min 3" Q(v]u) / d(x, %)p(x)dx, § € S,v € N. (12)
ieRL u Pi,u

Equation (12) corresponds to determining the optimum reproduction vectors in [17], [18]
(for a fixed partition) within each state s € S. Finally, for a fixed a and 8, f is determined

in an ad hoc fashion as described in the following noisy-channel FSVQ design algorithm.

Algorithm:

1. Design an LBG-VQ [1] with K codevectors for the given training sequence. This is
referred to as the state-label VQ, C = {c(s),s € §}.

2. For each s, use the algorithm of [18] to design a codebook C, = {#(u,s),u € N'} on
the subsequence composed of all successors to vectors for which the state-label VQ

chooses s, i.e., the subsequence {x, : s = arg minges d(Xn-1,¢(k))}.
3. Asin [8], define a next-state function f by*
fu,s) = argrpeigd(ﬂ(u,s),c(k)), SES,uEN. (13)
4. Attempt to improve the state codebooks {C,,s € S} by encoding (as in [18]) the

training sequence using the next-state function obtained in step (3) and updating

each codevector by the generalized centroid of its corresponding cell [17], [18]. Also
update the state-label VQ C.

*It might appear that since we are explicitly transmitting the encoder state to the decoder (i-e., the
system is omniscient in the sense of [8]), it is unnecessary to define the next-state function based on the
reproduction vectors. But as we will see later, this definition of next-state function helps in reducing the
overhead information by transmitting the next-state indices only periodically.
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The difference between the above algorithm and the one in [8] is that here the state
codebooks are channel-optimized codebooks and the encoding is done as described in [18]
within each state. Also, it is assumed that the decoder has perfect knowledge of the
encoder state sequence. This implies that a “protected” encoder state sequence needs to
be transmitted to the receiver. Since transmission of the protected encoder state for each
vector can lead to a large overhead, the encoder state index is transmitted only periodically,
say, every p frames; given the state indices at times k and k+p (s; and si4,) and the received
codewords {v;} at times i = k,...,k+p—1, a maximum a posteriori (MAP) estimate of the
encoder state at times¢ = k+1,...,k+p—1, is obtained at the decoder. Speciﬁcally, upon

wk+p—

denoting a generic vector (u;, ui41, - -, u;) by ul, we try to determine u*{**~" according to

w7 = arg max Pr(upt Vi s si). (14)
u

k

The probability in the right hand side of (14) can be written as

Pr ( k+p llvk+p -1 Sk)Sk+p) -

Pr(sy)
Pr (VIE“’ 3y Sky 31‘:+P)

Therefore, it suffices to maximize the product of the first three terms in (15). Due to the

Pr(vit™  ut? ™ sk, skap) Pr(sieplug ™70, ) Pr(up ™ |si) (15)

fact that the channel is memoryless, we have

k+p-1
Pr(vit " u ™ sk, skyp) = Pr(vit? 7w = 11 Qloifus). (16)

Given sy and uf*?™ s, is known (by successive use of the next-state function) and can

be written as a deterministic function sx4p = h(sg, uft?™'). Thus,
Pr(skaplui ™™, si) = 6(skip, h(se, ™), (17)

where 6(.,.) is the Kronecker delta function. Finally, using the chain rule, we have

k4+p-1 i
Pr(uf™sy) = Pr(uglsy) T Pr(ulsk,ui™). (18)
t=k+1

However, assuming that the FSVQ is a reasonable one in that the state at any time in-
stant captures essentially all the memory conveyed by the transmitted sequence, we can
approximate Pr(u;|s,ut™!) by Pr(u|h(sk,u}™!). Using this approximation and combining
(14)-(18), u*F**! can be obtained by maximizing

k4p—-1

Pr(uklse)Q(uelus) TI Quilw)Pr(uih(sk, ui™))6(skip, h(se, ugt?™)), (19)
t=k+1



which can be achieved by a Viterbi-type [33] algorithm. Having computed u*¥**~", the

state estimates are obtained recursively from s} = f(ul_,,s7_;),i=Fk+1,...;k+p—1,
with s = sx. This procedure introduces a decoding delay of p frames.

In the above procedure, there is a nonzero probability that some states are estimated
incorrectly. However, the noisy-channel FSVQ described so far assumes that the encoder
and decoder are in the same state and only the codeword index can be corrupted by the
channel noise. If the decoder state differs from the encoder state at a certain time instant,
then the resulting error can be very large even if the codeword is received correctly. To
reduce the resulting distortion in such situations, we perform a judicious indexing of the
codevectors among the states. The basic idea is as follows: The codevectors among those
states that are close in the Euclidean sense are assigned binary codewords that are close in
the Hamming sense; the highest priority is given to those states which are most likely to
be confused with each other. The details of the index assignment algorithm can be found
in [34]. This algorithm leads to a more robust performance especially for large values of
p. In the sequel, we refer to this modified FSVQ system (with protected encoder state
transmission, state estimation and codeword reassignment) as noisy-channel FSVQ1 (NC-
FSVQ1). For a noiseless channel, NC-FSVQI reduces to noiseless-channel FSVQ [8], and
will be referred to as FSVQL.

4 Description and Design of NC-FSVQ2

Although NC-FSVQI offers robustness against channel noise (to be discussed in Section 5),
it suffers from a decoding delay that might be objectionable in low-delay systems. The
decoder receives the protected encoder states say at times k£ and k + p and estimates, based
on the received codewords, the states at intermediate times k+1,k+2,... ,k+p—1. Thus
the decoder must wait till time k 4 p to estimate the encoder state at time k + 1, leading
to a maximum delay of p source vectors. Furthermore, there appears to be some waste of
overhead bits in encoding the protected encoder state. After all, the encoder next state is
implicitly contained (at least partially) in the current transmitted codeword and it seems
that protecting the codeword (or part of it) instead of the state (as in NC-FSVQ1) might
lead to improved performance.

Clearly it would be desirable to have a system in which upon observing the received
codeword the next state can be inferred straightforwardly. In such a case, the presence
of channel noise will not have as detrimental an effect simply because upon receiving any

codeword correctly, the state will be corrected instantly and derailing will be avoided. In



what follows, we proceed to design a noisy-channel FSVQ system based on this principle.

To understand the basic idea, consider an FSVQ with K = 2! states and R = log, N
bits/vector (assume K < N) and the following index (codeword) assignment procedure. In
each state s, we group the codevectors based on the index of the next-state to which they
are mapped so that group s’ contains all codevectors in C, that are mapped to the next-
state s’. If the number of transitions to each state is the same, for each state there would
be exactly N/K codevectors in each group. Let the binary codeword b = (b1, s, -, bg)
associated with each codevector in state s be such that the first { bits by = (b1, bs,---, ;)
are the binary representation of the codevector’s group number (or next-state) s’ and the
next R — [ bits by = (b41, bi42,- - -, br) represent the specific codevector within the group.

1 u?) where u! and

With this construction, the channel symbol u can be written as u = (u
u? correspond, respectively, to the decimal representation of b; and b, where u! = s'. If we
repeat the same process for all states, then regardless of the current state the first I bits of
the received codeword uniquely specify the next-state, or simply, f(u,s) = u!, foralls € S.
With such an FSVQ used over a noisy channel, even if the current decoder state is different
from the encoder state, the next decoder state will be correct if the current codeword is
received correctly. Additionally, if the state information (i.e., u!) is to be protected before
transmission, as in NC-FSVQ1, it will also partially protect the transmitted codewords.
While the above idea seems to suggest an approach for assigning codewords to the

! (merely a function of u), it assumes that

FSVQ codevectors guaranteeing that f(u,s) = u
the number of transitions to each state is the same. This assumption, in general, does not
hold and hence the suggested codeword assignment is not possible. In what follows, we
describe how to design an FSVQ system in which the next-state map satisfies a relation
similar to f(u,s) = u'. We will then extend this idea to a noisy-cha;mel FSVQ.

First we construct a K-state FSVQ of rate log, K bits/vector with a next-state function
satisfying f(u!, s) = u'. To do this, using the first three steps of the FSVQ design algorithm
[8], we design an FSVQ with K states and K codevectors in each state codebook and denote
the channel space by N; with V] = § and the state codebooks by C, = {8 (ul, s),u! € M;}.

The next-state function is given by
f(,5) = argmind(Bu(u’, ), (k). s € S, € A, (20)
where {c(k), k € S} describes the state-label VQ.

For each state s € S, we perform the following reindexing of the codevectors in C,.
First, we group all the codevectors in C, that have the same value of f(.,s) (i.e., they lead
to the same next state, say, §). Then in each such group, the codevector with highest

probability of occurrence is reassigned the common index §. The remaining codevectors

10



from each group are finally reassigned, in an arbitrary fashion, a “unique” index in A}
which has not yet been assigned to any codevector. Note that after reassignment® if state
s can transit to state s’ then the next-state function will satisfy f(s',s) = s'.

In each state codebook C,, we retain only those codevectors whose indices satisfy
8(u, f(u',s)) = 1, Vu! € N;. We denote the reduced version of C, by C’ which consists
of Yien, 8(ul, f(ul, s)) codevectors and use f’ to denote the modified next-state function.
The codewords of C; are binary tuples of length | = log, K with some of the I-tuples possibly
not used (corresponding to the codevectors that are not retained and thereafter discarded).
The original K-state FSVQ is modified to a new K-state FSVQ with state codebooks C!,
next-state function f’ and rate log, K bits/vector. Note that if the codeword transmijtted
at time n is u}, then the state at time n + 1, sn41, is f'(ul, s,) = ul, irrespective of s,,.

The complete design algorithm, leading to a scheme called FSVQ2, is provided next.

4.1 Design of FSVQ2 under noiseless conditions

The following describes an algorithm for the design of a K-state, R bits/vector (28 > K)

FSVQ with a next-state function satisfying f(u,s) = u' using a training sequence {x,}.

Algorithm:

1. Using the method described above design a K-state, log, K bits/vector FSVQ with
a next-state function satisfying f’(u',s) = u’; denote the FSVQ by {{C’}scs, '}

2. Attempt to improve the state codebooks {C.,s € S} by encoding the training se-
quence using the next-state function f’ and updating each codevector by replacing it
by the centroid of the associated cell. Also update the state-label VQ C similarly.

3. Repeat steps (1) and (2) for some fixed number of iterations and choose the best case
(in step (1), just update the next-state function f’). The resulting FSVQ clearly has

a next-state function which satisfies f'(u?,s) = ul.

4. The FSVQ system designed so far has a rate log, K bits/vector. To operate at the

desired rate of R bits/vector, we encode the training sequence using the FSVQ system
{{C.}ses, f'} and then design® an LBG-VQ of rate (R — log, K) bits/vector for the

51t should also be noted that under noiseless channel conditions, the reindexing of the codevectors will
not affect the performance of the FSVQ.

SNote that we are designing one LBG-VQ for each pair (s,u!) in FSVQ2 (and its noisy version to be
discussed in a later section) of rate (R — log, K) bits/vector as opposed to just one LBG-VQ of rate R
bits/vector for each state in FSVQ1 (and its noisy version NC-FSVQ1); this is done to ensure that the
memory requirements for FSVQ1 and FSVQ2 (and their noisy versions) are the same.

11



subtraining sequence associated with each pair (s, u!).

The resulting modified FSVQ system can be described by the block diagram of Fig. 2
in which the K-state FSVQ encoder is completely specified by the next-state function f’
and a mapping o, referred to as the primary encoder, which is described in terms of the
partition {P, ,1,s € S,u! € M} according to

ai(x,s) = ul, if x € P, 1. (21)

Recall that N7 = S. The LBG-VQ encoder in Fig. 2 is specified by a mapping a,, referred
to as the secondary encoder, which is described in terms of the partition {’P;‘:‘I ,s €S,ul €
M, u? € N,} according to

as(x,8,u') = u?, if x € P2 (22)

Here the channel space N, is related to A and NV} by N = N; x A, and therefore the
cardinality of MV, is N, = 2R/K. We also have

U'P;‘:,l =P,u, s €S,u' € M. (23)
u?

The FSVQ decoder and the LBG-VQ decoder can be jointly specified by f’ and a
mapping B, described by B, : Ny x Ny x & — A. The decoder B, looks at the received
codewords from the primary and secondary encoders and depending on its current state
maps them into a reconstruction vector.

The modified FSVQ system described above, referred to hereafter as FSVQ2, is the
special case of what we will call NC-FSVQ2 for the noisy channel. Since FSVQ2 is a
restricted version of the FSVQ described in [8], we expect some performance loss under
noiseless channel conditions. As will be seen in the simulation results section, this loss
decreases as the encoding rate increases. On the other hand, when the channel is noisy, the
structure of FSVQ2 allows for the design of a joint source/channel code without the need
for explicit transmission of the protected state information. As a consequence, NC-FSVQ2
does not have any additional delay like NC-FSVQ1. Next we pose the problem of designing

FSVQ2 in the presence of channel noise and provide a design algorithm.

4.2 Noisy-channel FSVQ2 problem statement

The block diagram in Fig. 3 illustrates the operation of FSVQ2 over noisy channels. The
output of the primary encoder, u!, is transmitted over a DMC described by a random

mapping 7; : M7 — N and the transition matrix
Qi(v'|u') = Pr(y(u?) = o), u', 0! € M, (24)

12



where v! is the output of 4;. Similarly, the output of the secondary encoder, u?, is trans-
mitted over another DMC (assumed to be independent of ;) described by the random

mapping 7z : N2 — N, and the transition matrix

Qx(v*[u?) = Pr(my(u’) = v7), v, v € My, (25)

where v?

is the output of 45. For simplicity, we are considering two separate channels.
In practice, the outputs of the primary and secondary encoders can be multiplexed and
transmitted over the same channel.

The decoder 3, depends on both outputs v! and v? and is described by at most K?
different codebooks C, 1 = {B2(u?,u?,s),u? € My}, s € S,u! € N;. We will use C*P =
{Csu1 }sesuien; to denote the collection of all the codebooks.

Our problem is to minimize the average distortion D(ay, s, 82) = %E[d(X,X)] by
appropriate design of a3,z and B, for given values of K and Nj.

The average distortion is given by
D(a, a2, B2) =71 Z Y E [d(X,X)|3,0", 0%, s,ul, u?] Pr(5, v}, v% s,ul,u?),  (26)
s,ul,u? §,01 02
where, s and §, which in general can be different, are, respectively, the primary encoder

state and the decoder state. It is easily shown that
fpu2 d(x’ B2(Ul’ 'U2, §))p(x)dx
| Pr(ul,u?|s)

In this scheme the encoder state at any time is just the codeword at the output of the

E[d(X,X)].§,vl,vz,s,ul,uz] = (27)

primary encoder at the previous time instant and the decoder state is the corresponding
received codeword. Using this fact and assuming that u! (and therefore effectively s) is
transmitted over 4; and u? over 7, and that the two channels are independent of each other,
we can use a sequence of arguments similar to those in Appendix A to write the average
distortion as

Dlew,as,B) =7 £ Pris) [, dilxu’,ullp(x)dx, (25)

sul u.2 sul

where d(x,u!,u?) is a modified distortion measure given by

a’;’(x,ul,zﬁ): Z Ql(vlIul)Ql(QIS)Qz(vz|u2)d(X,ﬂz(l’l,02,5))- (29)

§,01,02
This modified distortion can be interpreted as the expected distortion in encoding x given
that the primary encoder is in state s, and u! and u? are transmitted over DMC’s 7; and

7v2; the average is taken with respect to the channels’ distributions.
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Using the modified distortion measure dY, we can obtain a generalization of (4) which

describes a joint encoder

a(x, s) = arg - EJ{fl;liuI%GNQ d"(x,ul,u?) = (u'7,u?). (30)

Clearly the encoder a defined by (30) involves no delay and therefore is not optimal for
the given decoder; we made a similar statement in footnote 3. For the design of the system
under consideration, to be presented shortly, we actually used a delayed-decision encoding.
For a given encoder « (i.e., for a given partition {'P;‘;l }), for each §,v!,v?, the optimum
decoder 3, is given by
B3(v',0%,3) = arg min Y Pr(s)@:(v'[u!)Q1(3s)Qa(v?[u?) / d(x, %)p(x)dx. (31)
xe s,ul u? s, ul

Before providing the design algorithm, in what follows we present simplifications of the
modified distortion in (29) and the optimum decoder in (31) for the squared-error criterion.

For d(x,y) = ||x — y||?, we have
L) = Y QO )@@k~ el %3 (32)

st 02

Upon defining

ys,u’,u2= Z Ql lu Ql( IS)Q2(v2|u2)ﬂ2(vl,v27‘§)a (33)
and
B 2 T Qe QIR 8, I, (34)

the modified distortion measure can be expressed as [19]

EY

d)(x,u!, u?) = [1x[|* - 2(x, Vsulw2) + Mont w2 (35)

For a given C*"P, the terms y,,:,2 and 7,1 ,2 can be precomputed and stored for all
s€S,ut e Mj,u? e N,.
Also, for the squared-error distortion measure, it can be easily seen that the optimum
decoder B, for a given partition {'P;‘i,} satisfies
Bi(v',v%8) = E[X|3,0',07
Zs,ul,u"’ Ql(éls)Ql(vllul)Q2(02|u2) f'pu"’l Xp(X)dX

= T QERGETNG) e 0d

The above arguments assume that the source distribution is known. In practice, we

use the training sequence approach and replace integrals by appropriate sums. For the
squared-error criterion, a design algorithm for a K-state NC-FSVQ2 of rate R bits/vector

is provided below.
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4.3 Design algorithm for NC-FSVQ2

0. Set m = 0 (iteration index) and D®© = oco. Using the algorithm described in Sec-
tion 4.1 design an FSVQ2, to be used as the initial NC-FSVQ2, with encoder partition
{'P:i(lo) }, codebook C**P(®) and f’ as the next-state function. In the following steps,

keep the next-state function unchanged.
1. Setm=m+1.
2. Compute y, 41 42 and 7, 41 42 as given by (33) and (34) using C**P(m-1),

3.  Consider the trellis corresponding to the current NC-FSVQ2 with the modified dis-
tortion measure of (35) as the branch metric. Encode the training sequence using the
Viterbi algorithm. This will result in a partition {'P;‘j‘, }, where 'P;‘;l is the set of all

training vectors that correspond to the encoder state s and output pair (u!,u?).
4. Compute the optimum codebook C*'P* for the partition in Step (3) and using (36).

5. Compute the average distortion D using C**, {Py,:} and Egs. (28) and (35). Set
D(m) = D, CSUp(m) - Csup*, ,Puz(m) — u?

s,ul sul

6. If m < mpq, (prescribed maximum number of iterations), go to Step (1). Otherwise,

stop with the encoder described by the final codebook and partition.

While in the above design algorithm a delayed-decision encoding in assumed with a
joint selection of (u!,u?), the actual encoder used in our simulations is a simplified version

which selects u! and u? sequentially and introduces no delay. Precisely, we define

ar(x,s) = ul',ifx€P,,, (37)
ax(x,s,u') = u? ifxe 'Ps";l, (38)

where P, 1 = U, ;‘il Associated with the final partition P;,1, we design a channel-
optimized extension of {C.} which is used, as in [18], to characterize P, .1 in the encoding
process. This modification gives us the final NC-FSVQ2 for which we have reported our
simulation results. We must mention that due to the two-stage structure of the encoding
operation, the computational complexity is comparable to that of a two-stage VQ with K

codevectors in the first stage and 27/K codevectors in the second stage.
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5 Simulation Results

In all the experiments we have considered a binary symmetric channel with bit error rates
€ = 0.0,0.005,0.01,0.05,0.1. Performances of NC-FSVQ1 (FSVQ1 when € = 0.0) and NC-
FSVQ2 (FSVQ2 when € = 0.0) are presented in this section for the Gauss-Markov (G-M)
source and the speech LSP parameters. First, we provide the results for the G-M source

and then consider the LSP parameters.

5.1 Gauss-Markov source

We used 200,000 vectors of dimension 4 from the G-M source with p = 0.9 as the training
sequence. The test sequence consisted of 100,000 4-dimensional vectors from the same
source not included in the training sequence. The distortion measure used was squared-

error; the performance results are reported in signal-to-noise ratio (SNR) in dB.

5.1.1 Performance of FSVQ1

For different bit rates (denoted by b bits/vector) an 8-state FSVQ1 was designed. The
performance results are tabulated in Table 1. For comparison, LBG-VQ performance results

are also included. These results, which are in agreement with those of [8], indicate that
FSVQLI outperforms LBG-VQ at all rates by at least 1 dB.

5.1.2 Performance of NC-FSVQ1 over noisy channels

FSVQ1 was simulated in the presence of channel noise and the results are presented in
Table 2. Severe degradation in the performance of FSVQI is observed. For very noisy
channels, larger bit rates often result in lower SNR.

The SNR performances of NC-FSVQ1 and CO-VQ are displayed in Fig. 4. Additional
results on NC-FSVQ2 are also included in Fig. 4 and will be discussed later. When 0.005 <
€ <0.01 (0.05 < €£0.1), arate 1/2 (1/3) convolutional code was used to protect the state
index and p = 6 (p = 3). The bit rates in Fig. 4 include the overhead information associated
with the transmission of the protected encoder state. When an 8-state NC-FSVQ1 is used,
the overhead is given by 3/(pr.), bits/vector, where r. is the rate of the channel code.
These results indicate that NC-FSVQ1 and CO-VQ perform similarly when ¢ < 0.05. At
€ = 0.1, NC-FSVQI outperforms CO-VQ by 0.4-0.9 dB. However, as compared to FSVQ1,
NC-FSVQ1 performs significantly better for all € > 0.0.
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5.1.3 Performance of FSVQ2

For different bit rates, an 8-state FSVQ2 was designed using the algorithm of Section 4.1;
Table 1 includes the performance results. Clearly, FSVQ2 outperforms LBG-VQ by 0.56-
0.85 dB depending on the bit rate. As compared to FSVQ1 (FSVQ (8]), the performance
of FSVQ2 is inferior by about 0.5 dB due the structure imposed on the system. FSVQ2
was also designed with 16 states but the improvement over the 8-state version was only

marginal.

5.1.4 Performance of NC-FSVQ2 over noisy channels

For different values of b and ¢, NC-FSVQ2 was designed using the design algorithm of
Section 4.3. The SNR performance of the 8-state NC-FSVQ2 is included in Fig. 4 which
shows that NC-FSVQ2 outperforms CO-VQ for all values of b and € considered. At e =
0.005, the SNR gain over CO-VQ at the same bit rate is about 0.4-0.8 dB. As € increases,
the gain increases; at ¢ = 0.1, the gain is about 0.7-1.0 dB. NC-FSVQ2 performs equal to
or better than NC-FSVQI in all cases considered. In terms of computational complexity,
NC-FSVQ2 has the complexity of a 2-stage VQ, while NC-FSVQI1 (operating at the same
rate) has the much higher complexity of a full-searched VQ. In addition, there is a decoding
delay involved in NC-FSVQL.

5.2 Speech LSP parameters

The speech database used for training consisted of 120 minutes of speech (from the TIMIT
database [36]) sampled at 8 KHz and uttered by several male and female speakers. A
10th-order LPC analysis based on the standard autocorrelation method was performed
every 22.5 msec with a 30 msec analysis window. Thus we had 320,000 LSP vectors in the
training sequence. The test sequence consisted of 2,261 vectors not in the training sequence
(also used in [37]).

The LSP source exhibits relatively high intra- and inter-frame correlation and is there-
fore a good candidate for FSVQ type systems that can efficiently exploit these correlations.
The performance of the LSP quantization system is expressed in terms of the average

spectral distortion (SD) given by
1 T " A gdw 1
SD = =3[/ (10log Su(w) - 101log Su(w))*5-]7, (dB). (39)
n=1 "7

Here, Sp(w) and S’n(w) are the original and quantized spectra, respectively, associated with
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the n't frame and T is the number of frames. The average spectral distortion is a useful
measure of performance in LSP quantization schemes [22].

Earlier work on memoryless VQ of LSP parameters [25] suggests that for transparent
quantization’ of LSP parameters, an encoding rate in the neighborhood of 24 bits/frame is
required. To achieve this kind of rate, FSVQ state codebooks will need to have 224 code-
vectors which is prohibitively large. To reduce the complexity, we split each 10-dimensional
LSP vector into 3 subvectors (dimensions 3, 3 and 4) and design an FSVQ of rate R/3 for
each subvector (R is the overall rate in bits/frame); the three subvectors are encoded sepa-
rately using different FSVQs®. Performance results of such a system are provided next and
it is shown that noticeable gains are obtained over the case where a memoryless LBG-VQ

is used to encode each subvector (such a system will be called a split-VQ system).

5.2.1 Performance of FSVQ1

An FSVQ1 was designed for each of the three LSP subvectors, resulting in a quantization
system referred to as split-FSVQ1. The squared-error distortion measure was used for
the design but encoding was done using the inverse harmonic mean distortion measure
introduced in [37]. Table 3 summarizes the performance results of split-FSVQ1 (8 states
for each subvector) and split-VQ (using the same 3 subvectors) at various bit rates. The
results indicate that split-FSVQ1 yields a saving of approximately 3 bits/frame over the
split-VQ system and achieves the 1 dB average spectral distortion (SD) at 24 bits/frame; at
this rate the outlier rate (OL) is 0.75%. The performance of split-FSVQ1 can be improved
by increasing the number of states; we found that a 16-state FSVQ1 (for each subvector)

achieves transparent quantization at 23 bits/frame.

5.2.2 Performance of NC-FSVQI1 over noisy channels

The split-FSVQ1 system was simulated in the presence of channel noise and the results
are tabulated in Table 4. As expected, the performance degradation is severe. With 24

bits/frame, under noiseless conditions, split-FSVQ1 achieves a 1 dB average SD but when

"The quantization is said to be transparent if the resulting average spectral distortion is less than 1 dB
and the fraction of frames with spectral distortion over 2 dB (called the outliers) is less than 2% with no
frame having spectral distortion greater than 4 dB.

8In [25], the LSP vectors are split into 2 subvectors and a 1 dB average spectral distortion is reported
with a 12-bit VQ for each subvector. We could not, however, repeat this result with 2 subvectors. We
suspect that use of the modified covariance LPC analysis in [25] (as opposed to the standard autocorrelation
method used here) and the different database used could be two possible reasons for this discrepancy. An
additional reason may be that [25] considers the telephone band (200-3300 Hz) frequencies for computing
SD as opposed to the full-band (0-4000 Hz) used in this paper. Similar findings are reported in [26).
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€ = 0.01, the average SD rises up to 2.97 dB.

The performance results of NC-FSVQ1° (designed for € > 0.0) are provided in Fig. 5
for p = 4 and p = 8. To protect the encoder state information, we found that a rate
1/2 (1/3) convolutional code with constraint length 4 is sufficient when 0.005 < e <
0.01 (0.05 < € < 0.1). The decoder is implemented using the Viterbi algorithm and the
estimated codeword is released at the end of each frame. In Fig. 5 the bit rates for NC-
FSVQ1 include the overhead associated with the transmission of the protected encoder
state sequence. When 3 subvectors and 8-state encoders are used, the overhead is easily
computed to be (3 x 3)/(pr.), bits/frame, where r, is the rate of the channel code used.

For comparison, the results for the split CO-VQ system (each subvector is quantized
using a CO-VQ) are also included in Fig. 5. It can be seen that with p = 4, NC-FSVQ1
performs close to split CO-VQ when ¢ = 0.005 but for larger e it outperforms split CO-VQ
with a saving of about 1.5 bits/frame at € = 0.01 and 4.25 bits/frame at ¢ = 0.1. For p = 8
(larger delay), the gains are even larger. Also comparison with the MSVQ-based scheme of
[19], [37] (see Fig. 5) shows significant gains at larger values of ¢ (> 0.01) and comparable
or better performance at e = 0.005. At e = 0.005, NC-FSVQ1 achieves a 1 dB average SD
with 31.5 bits/frame (p = 4) and 29.25 bits/frame (p = 8).

5.2.3 Performance of FSVQ2

As in split-FSVQ1, an FSVQ2 was designed for each LSP subvector, resulting in an encoder
called split-FSVQ2. Again, squared-error distortion was used for the design, but encoding
was done using the inverse harmonic mean distortion measure. Table 3 includes the results
of the 8-state split-FSVQ2 system. The results show that as compared to the split-VQ
system, split-FSVQ2 achieves a saving of approximately 2 bits/frame (1 bit/frame less
than split-FSVQ1 for higher values of ). Split-FSVQ2 achieves close to 1 dB average SD
at 25 bits/frame with an outlier rate of 1.1%. The performance of split-FSVQ2 improves as
the number of states increases; a 16-state split-FSVQ2 achieves transparent quantization
at 24 bits/frame.

5.2.4 Performance of NC-FSVQ2 over noisy channels

The performance results of NC-FSVQ2'° (for € > 0.0) are illustrated in Fig. 6 for the
8- and 16-state cases. NC-FSVQ2 is designed for each of the three subvectors using the

9As in the noiseless case, we are using a different NC-FSVQ1 for each subvector, but for brevity we use
the terminology NC-FSVQ1 instead of split-NC-FSVQ1.

10Again, as in the noiseless case, we are using a different NC-FSVQ2 for each subvector, but for brevity
we use the terminology NC-FSVQ2 instead of split-NC-FSVQ2.
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design algorithm of Section 4.3. For comparison purposes, the results of split CO-VQ are
also plotted in Fig. 6. It can be seen that 8-state NC-FSVQ2 outperforms split CO-VQ
by over 1 bit/frame when € = 0.005; this gain increases to over 3 bits/frame at € = 0.1.
Comparison of the 8-state and 16-state NC-FSVQ2 shows that unlike in the case of G-M
source, for speech LSP parameters the performance improvement with the increase in the
number of states is noticeable for higher values of e. When ¢ = 0.05, the improvement in
going from 8 to 16 states is about 0.5 bits/frame, while for € = 0.1, the gain can be as high
as 1.5 bits/frame. The gain is insignificant for ¢ < 0.01.

5.2.5 NC-FSVQI1 versus NC-FSVQ2

Comparison of Figs. 5 and 6 shows that at low values of € (< 0.01), NC-FSVQ2 performs
better than NC-FSVQ1 and vice versa for high values of € (> 0.05), with comparable results
for 0.01 < € < 0.05. However, NC-FSVQ2 does not suffer from any delay. In addition,
the decoder for NC-FSVQ2 is simpler and there is no need for a separate channel code
in NC-FSVQ2. The memory requirements are the same for NC-FSVQ1 and NC-FSVQ2

operating at the same bit-rate and with the same number of states.

6 Summary and Conclusions

In this paper, we have considered the quantization of sources with memory using FSVQ
and memoryless VQ encoders under noiseless as well as noisy channel conditions. Two
sources, namely the Gauss-Markov source with p = 0.9 and speech LSP parameters were
considered. Under noiseless channel conditions, comparisons were made between FSVQ1,
FSVQ2 and LBG-VQ systems for both sources. It was concluded that in all cases both
FSVQ systems outperform LBG-VQ with FSVQI performing slightly better than FSVQ2.
For noisy channels, FSVQ1 collapsed for all values of ¢ > 0.0, while FSVQ?2 collapsed for
€ > 0.01 making it necessary to redesign these FSVQ systems by taking the channel noise
into account. Two systems, namely NC-FSVQ1 (noisy version of FSVQ1) and NC-FSVQ2
(noisy version of FSVQ2) were developed. For both sources considered, the noisy-channel
FSVQ systems offered higher robustness than their noiseless channel counterparts. In
particular, when LSP parameters were quantized using NC-FSVQ1, the saving over split
CO-VQ was 5 bits/frame for very noisy channels with a decoding delay of 8 frames; NC-
FSVQ2 achieved a saving of up to 3 bits/frame (for the 8-state case) over split CO-VQ.
Based on our results, it appears that the proposed noisy-channel FSVQs are good

candidates for speech encoding systems such as in mobile communication where channel
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noise is an important factor. If a delay can be tolerated, then NC-FSVQ1 is a better choice
especially for the highly noisy case (e close to 0.1); when delay is objectionable, NC-FSVQ2
is a better candidate for all levels of channel noise.

In the NC-FSVQ1 and NC-FSVQ2 schemes, each of the three subvectors of each frame
are treated independently; we can expect performance improvements if we exploit the
memory present between the three subvectors. Also, if we split the LSP vectors into just
two subvectors, then the overhead needed in NC-FSVQ1 will be reduced; in addition, the
intraframe correlation will be better utilized than in the 3 split case.

We must point out that if delay is not an issue, using a delayed-decision encoding in NC-
FSVQ1 and NC-FSVQ2, as in trellis coding systems, will lead to improved performancé.
Such a delayed-decision FSVQ encoder was considered in [35] for the noiseless channel case

and performance improvements were observed over the ordinary FSVQ.

Appendix A
Proof of Theorem 1

We wish to show that the average distortion is given by
1 . o
D(e, B, f) = 7 S Pris) [ {X QuIwPr(3ls)d(x, Ao, 3)}p(x)dx.  (4.1)

We note that )
D(a, IB’ f) = Z Z ZE[d(X7X)|Sa§)U’U]PT(S’§>u7v)7 (AQ)

Su 3,1.}

and Pr(s,§,u,v) can be written as

-

Pr(s,$,u,v) = Pr(vls,u)Pr(8|s,u,v)Pr(s,u). (A.3)
We know that for a given so, the encoder state at time n, s,, depends only on uj™! =
(40, u1,---,un—1) and the decoder state 3, depends only on v§~' = (vo,v1,...,vn-1). Then

for a memoryless channel we have
Pr(vn|sn, tn) = Pr(vae|us) = Q(va|un). (A.4)

Also,
Pr(3,)80, Un,vn) = Pr(8,]sn). (A.5)

Equation (A.5) follows from the fact that the channel is memoryless and s, and $, do not

depend on u, and v, and are completely determined from uj~! and v§~!, respectively.
Thus A
Pr(s,8,u,v) = Q(v]u)Pr(3|s)Pr(s,u). (A.6)
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Next consider the simplification of E [d(X,X)Is, 3,u,v]. Using the definition of expec-

tation,
Eld(X, X)[s,,u,0] = [L.. p(xls, 5,u,0)d(x, B(v,8))dx,

= f]RL p(xls, u)d(x, B(v, §))dx. (A.T)
In obtaining (A.7), we used p(x|s, $,u,v) = p(x|s,u), which is a direct consequence of the

fact that given s and u, x is independent of § and v. Finally, we note that

_e(x)
p(x|s,u) = { (})J:(“") if X € Py, (A.8)

otherwise,.

Combining (A.2), (A.6), (A.7) and (A.8) yields (A.1).
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[6] LBGVQ | FSvQi | FsvQz |

1 3.57 5.26 -

2 6.53 8.14 -

3 8.24 9.97 9.07
4 10.15 11.31 10.84
) 11.60 12.68 12.36
6 12.98 14.04 13.63
7 14.31 15.34 14.92
8 15.69 - 16.25

Table 1: Performance of LBG-VQ, FSVQ1l and
FSVQ2 under noiseless channel conditions at various
bits rates (bits/vector); Gauss-Markov source with
p=09;L=4;, K=8.

[« =0.000 [ €= 0.005 | e =0.010 | €= 0.050 | ¢ = 0.100 |

1 5.26 4.21 3.30 0.40 -0.87
2 8.14 4.65 2.99 -0.79 -1.84
3 9.97 5.40 3.38 -0.93 -2.07
4 11.31 4.30 1.98 -1.67 -2.53
) 12.68 4.99 2.66 -1.50 -2.48
6 14.04 4.78 2.36 -1.74 -2.62
7 15.34 3.74 1.54 -2.27 -2.94

Table 2: Performance of FSVQ1 for various levels of chan-
nel noise and different bit rates (bits/vector); Gauss-Markov
source with p =0.9; L =4; K = 8.
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Split-vQ || Sphit-FSVQI || Sphit-FSVQ2

b|SD [OL% | SD [ OL% | SD | OL%

211151 9.69 || 1.27| 3.80 |[1.39| 6.28

221143 6.59 || 1.17| 2.60 | 1.30 | 4.80

231133 3.80 || 1.09| 1.60 | 1.20 | 2.73

24 1125 195 | 1.02] 0.75 {1.10 ] 1.78

25| 1.18 | 1.37 || 0.97 | 0.53 | 1.02 | 1.10

26 (1.11 | 0.57 {091 | 0.44 {0.95] 0.70

2711.03| 0.18 || 0.86| 0.35 | 0.89 | 0.51

Table 3: Performance of split-VQ, split-FSVQ1
and split-FSVQ2 under noiseless channel condi-
tions at various bit rates (bits/frame); speech LSP
parameters; K = 8.

e=0005|e=001|e=005]|e=0.1
b SD SD SD SD |
21 2.36 3.23 6.50 7.66
22 2.24 3.08 6.38 7.81
23 2.19 3.13 6.46 7.85
24 1.90 2.97 6.40 7.66
25 1.77 2.86 6.26 7.60
26 1.80 2.87 6.11 7.52
27 1.79 2.70 6.03 7.41

Table 4: Performance of split-FSVQ1 for various
levels of channel noise and bit rates (bits/frame);
speech LSP parameters; K = 8.
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Figure 1: Block diagram of an FSVQ system with transmission over a noisy channel.
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Figure 4: Performance of NC-FSVQ1, NC-FSVQ2 and CO-VQ for various levels of
channel noise and bit rates; p = 6, when ¢ = 0.005 and 0.010, while p = 3, when
€ = 0.050 and 0.100; Gauss-Markov source with p =0.9; L = 4; K = 8.
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Figure 5: Performance of NC-FSVQ1 and split CO-VQ for various levels of channel
noise and bit rates; speech LSP parameters; K = 8; p = 4 and p = 8, MSVQ results
are taken from [37].
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Figure 6: Performance of NC-FSVQ2 and split CO-VQ for various levels of channel
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