
ABSTRACT

Title of dissertation: SPATIO-TEMPORAL REASONING
ABOUT AGENT BEHAVIOR

Paulo Shakarian, Doctor of Philosophy, 2011

Dissertation directed by: Professor V.S. Subrahmanian
Department of Computer Science

There are many applications where we wish to reason about spatio-temporal

aspects of an agent's behavior. This dissertation examinesseveral facets of this type

of reasoning.

First, given a model of past agent behavior, we wish to reason about the proba-

bility that an agent takes a given action at a certain time. Previous work combining

temporal and probabilistic reasoning has made either independence or Markov as-

sumptions. This work introduces Annotated Probabilistic Temporal (APT) logic

which makes neither assumption. Statements in APT logic consist of rules of the

form \Formula G becomes true with a probability [L,U] within T time units after

formula F becomes true" and can be written by experts or extracted automatically

from historical data. In this dissertation, we explore the problem of entailment,

speci�cally what is the probability that an agent performs agiven action at a cer-

tain time based on a set of such rules. We show this problem to be coNP-hard

(in the complexity class coNP under some natural assumptions) and present several

sets of linear constraints for solving this problem exactly. We then develop a sound,

but incomplete �xpoint operator as a heuristic for such queries. This approach was

implemented and tested on 23 di�erent models automaticallygenerated from several

datasets. The operator quickly converged to produce tight probability bounds for

the queries.

Second, agent behavior often results in \observations" at geospatial locations

that imply the existence of other, unobserved, locations wewish to �nd (\part-

ners"). In this dissertation, we formalize this notion with \geospatial abduction

problems" (GAPs). GAPs try to infer a set of partner locations for a set of observa-

tions and a model representing the relationship between observations and partners

for a given agent. This dissertation presents exact and approximate algorithms for

solving GAPs as well as an implemented software package for addressing these prob-

lems called SCARE (the Spatio-Cultural Abductive Reasoning Engine). We tested

SCARE on counter-insurgency data from Iraq, attempting to locate enemy weapons

caches (partners) based on attacks (observations). On average, SCARE was able

to locate weapons caches within 690 meters of actual sites. Additionally, we have

considered a variant of the problem where the agent wishes toabduce regions that

contain partner points. This problem is also NP-hard. To address this issue, we

develop and implement a greedy approximation algorithm that�nds small regions

which contain partner points - on average containing 4 timesas many partners as

the overall area.

We then provide an adversarial extension to GAPs as follows: given a �xed set

of observations, if an adversary has probabilistic knowledge of how an agent were to

�nd a corresponding set of partners, he would place the partners in locations that

minimize the expected number of partners found by the agent. In a complementary

problem, the agent has probabilistic knowledge of how an adversary locates his part-

ners and wishes to maximize the expected number partners found. We show that

both of these problems are NP-hard and design schemes to �nd approximate solu-

tions - often with theoretical guarantees. With our implementation, we demonstrate

that these algorithms often obtain excellent solutions.

We also introduce a class of problems called geospatial optimization problems

(GOPs). Here the agent has a set of actions that modify attributes of a geospa-

tial region and he wishes to select a limited number of such actions (with respect

to some budget) in a manner that either causes some goal to be true (goal-based

GOPs) and/or maximizes a bene�t function (bene�t-maximizing GOPs). Addition-

ally, there are certain combinations of actions that cannotbe combined. We show

NP-hardness (membership in NP under reasonable assumptions)as well as provide

limits of approximation for these problems. We then develop sets of integer con-

straints that provide an exact solution and provide an approximation algorithm with

a guarantee.

While we look to optimize certain geospatial properties in GOPs, we note

that for some real-world applications, such as epidemiology, there is an underlying

di�usion process that also a�ect geospatial proprieties. Assuming the structure of

a social network - a directed graph with weighted and labeledvertices and edges

- we study optimization with respect to such di�usion processes in social network

optimization problems (SNOPs). We show that many well-known social network

di�usion process can be embedded into generalized annotated programs [86]. Hence,

a SNOP query seeks to �nd a set of vertices, that if given some initial property,

optimize an aggregate with respect to such a di�usion process. We show this class

of problems is also NP-hard (NP-complete under certain assumptions). We develop

a greedy heuristic that obtains an approximation guaranteefor a large class of such

queries. We implemented this algorithm and evaluated it on areal-world data-set

consisting of a graph of 103,000 edges.

SPATIO-TERMPORAL REASONING
ABOUT AGENT BEHAVIOR

by

Paulo Shakarian

Dissertation submitted to the Faculty of the Graduate Schoolof the
University of Maryland, College Park in partial ful�llment

of the requirements for the degree of
Doctor of Philosophy

2011

Advisory Committee:
Professor V.S. Subrahmanian, Chair/Advisor
Professor Stuart S. Antman, Dean's Representative
Professor Samir Khuller
Professor Dana Nau
Professor James A. Reggia

Dedication

To my son, Carter.

ii

Acknowledgments

Above all, I would like to thank my wife, Jana, for her love and understanding

throughout my graduate experience. I do not think I could have done this without

her constant support.

I would like to thank my advisor, Prof. V.S. Subrahmanian, who since 2007,

has mentored and guided me throughout this entire process.

I would also like to thank my committee, Prof. Dana Nau, Prof. Samir Khuller,

Prof. James Reggia, and Prof. Stuart Antman who have also been supportive.

Additionally, I would like to thank the following people who have all con-

tributed to my success in graduate school (in no particular order): Gerardo Simari,

Dan LaRocque, Austin Parker, Patrick Roos, John Dickerson, Geo� Stoker, Prof.

Maria Luisa Sapino, and Matthias Broecheler.

Finally, I would like to thank the U.S. Army Advanced Civil Schooling (ACS)

program and the U.S. Military Academy (USMA/West Point) instructor's program

(Department of Electrical Engineering and Computer Science - EECS) for funding

my Ph.D. studies at the University of Maryland. In particular, COL Eugene Ressler,

who made it possible for me to earn the degree.

iii

Contents

List of Abbreviations xix

1 Introduction 1
1.1 Temporal Reasoning about an Agent's Actions 1
1.2 Inferring Geospatial Aspects of an Agents Behavior 2
1.3 Geospatial Abduction under Adversarial Conditions 4
1.4 Optimal Selection of Agent Actions 4
1.5 Applications . 6
1.6 Summary of Major Contributions . 8
1.7 Related Work . 11

2 Annotated Probabilistic Temporal Logic: Sound and Complete Al-
gorithms for Reasoning 15
2.1 Chapter Introduction . 16
2.2 APT-Logic Programs . 26

2.2.1 Syntax . 26
2.2.2 Semantics ofAPT-logic programs 29
2.2.3 Frequency Functions . 32
2.2.4 Satisfaction of Rules and Programs 38

2.3 Consistency . 42
2.3.1 Complexity of Consistency Checking 42
2.3.2 Linear Constraints for Consistency Checking 47
2.3.3 World Equivalence . 51
2.3.4 Frequency Equivalence . 59
2.3.5 Combining World and Frequency Equivalence67

2.4 Entailment by APT-logic programs 70
2.4.1 Linear Constraints for Entailment 72

2.5 Applications of APT Logic . 74
2.6 Chapter 2 Related Work . 77

2.6.1 Markov Decision Processes . 79
2.6.2 Comparison with Probabilistic Computation Tree Logic (PCTL) 89

2.7 Chapter Summary . 91

iv

3 Annotated Probabilistic Temporal Logic: Approximate Algorithms 9 4
3.1 Chapter Introduction . 95
3.2 Technical Background . 101

3.2.1 Syntax . 101
3.2.2 Semantics . 104

3.3 Complexity . 109
3.4 A Sound but Incomplete Fixpoint-Computation Algorithm: The Ground

Case . 112
3.4.1 Bounding Frequency Function Values 113
3.4.2 Theorems for Syntactic Manipulation116
3.4.3 The Fixpoint-Based Heuristic 120
3.4.4 Using ! for Consistency Checking 127

3.5 Consistency and Entailment Algorithms for Non-Ground Programs . 130
3.5.1 Consistency Checking for Non-Ground Programs131
3.5.2 Entailment for the Non-Ground Case 136

3.6 Experimental Results . 139
3.6.1 Experimental Setup . 140
3.6.2 Run Time Evaluation . 142

3.7 Chapter 3 Related Work . 149
3.7.1 Work in Veri�cation and PRISM 150

3.8 Chapter Summary . 153

4 Geospatial Abduction 156
4.1 Chapter Introduction . 156

4.1.1 Geospatial Abduction Problem (GAP) De�nition 159
4.2 Complexity of GAPProblems . 166
4.3 Exact Algorithm for GAPProblems 169

4.3.1 Naive Exact Algorithm . 169
4.3.2 An Exact Set-Cover Based Approach 171
4.3.3 An Exact Dominating Set Based Approach 174
4.3.4 An Exact Integer Linear Programming based Approach177

4.4 Greedy Heuristics forGAPProblems 182
4.4.1 A Linear Time Greedy Approximation Scheme 182
4.4.2 Greedy Observation Selection 186

4.5 Implementation and Experiments .191
4.5.1 A Simple Heuristic to Improve Accuracy 197

4.6 Chapter 4 Related Work . 200
4.7 Chapter Summary . 207

5 Abducing Regions 210
5.1 Chapter Introduction . 210
5.2 Technical Preliminaries .211
5.3 Complexity . 221
5.4 Algorithms . 223

5.4.1 Exact and Approximate Solutions by Reduction224

v

5.4.2 Approximation for a Special Case 230
5.4.3 Practical Considerations for Implementation 234

5.5 Experimental Results . 237
5.5.1 Experimental Set-Up . 239
5.5.2 Running Time . 242
5.5.3 Area of Returned Regions . 244
5.5.4 Regions that Contain Caches 246
5.5.5 Partner Density . 251

5.6 Chapter 5 Related Work . 255
5.7 Chapter Summary . 256

6 Adversarial Geospatial Abduction 257
6.1 Chapter Introduction . 257
6.2 Overview of GAPs . 260
6.3 Geospatial Abduction as a Two-Player Game262

6.3.1 Incorporating Mixed Strategies 267
6.4 Selecting a Strategy for the Adversary 269

6.4.1 The Complexity of Finding an Optimal Adversarial Strategy . 271
6.4.2 Pre-Processing and Naive Approach 273
6.4.3 Mixed Integer Linear Programs for OAS underwrf ; crf ; frf . 275
6.4.4 Correctly Reducing the Number of Variables forcrf 279

6.5 Finding a Counter-Adversary Strategy288
6.5.1 The Complexity of Finding a Maximal Counter-Adversary

Strategy . 290
6.5.2 MCA in the General Case: Exact and Approximate Algorithms292
6.5.3 Finding a Maximal Counter-Adversary Strategy, the Mono-

tonic Case . 295
6.6 Implementation and Experiments .299

6.6.1 OAS Implementation . 300
6.6.2 MCA Implementation . 305

6.7 Chapter 6 Related Work . 311
6.8 Chapter Summary . 312

7 Geospatial Optimization 315
7.1 Chapter Introduction . 315
7.2 GOPs Formalized . 317
7.3 Complexity Results . 322
7.4 Integer Programs for Solving GOPs 325
7.5 Correct Variable Reduction for GBGOP-IP 328
7.6 The BMGOP-ComputeAlgorithm . 330
7.7 Chapter 7 Related Work . 335
7.8 Chapter Summary . 336

vi

8 Social Network Optimization Problems 337
8.1 Chapter Introduction . 338
8.2 Technical Preliminaries .341

8.2.1 Social Networks Formalized 342
8.2.2 Generalized Annotated Programs: A Recap 344

8.3 Social Network Optimization (SNOP) Queries 348
8.3.1 Basic SNOP Queries . 348
8.3.2 Special Cases of SNOP Queries 351
8.3.3 Properties of SNOPs . 356
8.3.4 The Complexity of SNOP Queries 361
8.3.5 Counting Complexity of SNOP-Queries 363
8.3.6 The SNOP-ALL Problem . 364

8.4 Applying SNOPs to Real Di�usion Problems 366
8.4.1 Tipping Di�usion Models . 367
8.4.2 Cascading Di�usion Models 371
8.4.3 Homophilic Di�usion Models 377

8.5 Algorithms . 379
8.5.1 Naive Algorithm . 380
8.5.2 A Non-Ground Algorithm in the Monotonic Case 380
8.5.3 Approximation Algorithms: GREEDY-SNOP 386

8.6 Scaling GREEDY-SNOP . 391
8.7 Implementation and Experiments .409

8.7.1 Experimental Setting . 409
8.7.2 Experimental Results . 412

8.8 Chapter 8 Related Work . 415
8.8.1 Related Work in Logic Programming 415
8.8.2 Work in Social Networks . 417

8.9 Chapter Summary . 418

9 Future Work 421

10 Conclusion 425

A Appendix for Chapter 2 429
A.1 Additional Results . 429

A.1.1 Frequency Equivalence under the PCD Restriction 429
A.1.2 The ALC-ENTAlgorithm for Entailment 434
A.1.3 An Example Comparing PCTL to APT-rules 436

A.2 Proofs . 440
A.2.1 Proof of Lemmas 2.12 and 2.14 440
A.2.2 Proof ofpfr Property 5 . 441
A.2.3 Proof of Proposition 2.15 . 441
A.2.4 Proof of Proposition 2.17 . 444
A.2.5 Proof of Lemma 2.19 . 445
A.2.6 Proof of Theorem 2.20 . 445

vii

A.2.7 Proof of Lemma 3.1 . 446
A.2.8 Proof of Theorem 3.2 . 447
A.2.9 Proof of Lemma 3.3 . 449
A.2.10 Proof of Theorem 3.4 . 450
A.2.11 Proof of Lemma 3.6 . 451
A.2.12 Proof of Theorem 3.7 . 452
A.2.13 Proof of Proposition 3.9 . 454
A.2.14 Proof of Lemma 3.13 . 454
A.2.15 Proof of Proposition 3.15 . 455
A.2.16 Proof of Theorem 3.17 . 456
A.2.17 Proof of Proposition 3.19 . 456
A.2.18 Proof of Theorem 3.21 . 457
A.2.19 Proof of Proposition 3.23 . 458
A.2.20 Proof of Theorem 58 . 459
A.2.21 Proof of Corollary 15 . 459
A.2.22 Proof of Corollary 16 . 461
A.2.23 Proof of Proposition 3.25 . 463
A.2.24 Proof of Theorem 4.2 . 464
A.2.25 Proof of Proposition 4.3 . 465
A.2.26 Proof of Proposition 81 . 466
A.2.27 Proof of Theorem 6.5 . 467
A.2.28 Proof of Corollary 6.6 . 467

B Appendix for Chapter 3 470
B.1 Complexity Proofs (Section 3.3) .. 470

B.1.1 Small-Model Lemma forAPT-Logic 470
B.1.2 Proof of Theorem 10 . 471
B.1.3 Proof of Theorem 11 . 472
B.1.4 Proof of Theorem 12 . 472

B.2 Supplementary Information for Section 3.4 476
B.2.1 Proof of Proposition 3.4.1 . 476
B.2.2 Proof of Proposition 14 . 476
B.2.3 Proof of Theorem 8 . 476
B.2.4 Proof of Theorem 13 . 477
B.2.5 Proof of Corollary 2 . 480
B.2.6 Proof of Theorem 14 . 480
B.2.7 Proof of Proposition 15 . 482
B.2.8 Proof of Proposition 16 . 483
B.2.9 Proof of Proposition 17 . 483
B.2.10 Proof of Proposition 18 . 484
B.2.11 Proof of Lemma 9 . 484
B.2.12 Proof of Lemma 10 . 485
B.2.13 Proof of Lemma 11 . 486
B.2.14 Proof of Theorem 15 . 486
B.2.15 Proof of Lemma 12 . 486

viii

B.2.16 Proof of Theorem 4 . 487
B.2.17 Proof of Proposition 19 . 487
B.2.18 Proof of Proposition 20 . 488
B.2.19 Proof of Propositon 21 . 489
B.2.20 Proof of Proposition 22 . 489

B.3 Proofs for Section 3.5 . 489
B.3.1 Proof of Lemma 13 . 489
B.3.2 Proof of Theorem 16 . 490
B.3.3 Proof of Corollary 5 . 492
B.3.4 Proof of Proposition 23 . 492
B.3.5 Proof of Proposition 24 . 492
B.3.6 Proof of Lemma 14 . 493
B.3.7 Proof of Lemma 15 . 493
B.3.8 Proof of Theorem 17 . 493
B.3.9 Proof of Lemma 16 . 494
B.3.10 Proof of Theorem 18 . 494

B.4 Supplemental Information for Section 3.6 497
B.4.1 Proof of Proposition 25 . 497
B.4.2 Proof of Proposition 26 . 497
B.4.3 Proof of Proposition 27 . 498
B.4.4 Proof of Proposition 28 . 498

C Appendix for Chapter 4 499
C.1 Proofs . 499

C.1.1 Proof of Theorem 19 . 499
C.1.2 Proof of Corollary 6 . 502
C.1.3 Proof of Corollary 7 . 503
C.1.4 Proof of Theroem 20 . 503
C.1.5 Proof of Proposition 29 . 505
C.1.6 Proof of Proposition 30 . 506
C.1.7 Proof of Theorem 21 . 507
C.1.8 Proof of Proposition 31 . 508
C.1.9 Proof of Proposition 32 . 508
C.1.10 Proof of Proposition 33 . 509
C.1.11 Proof of Theorem 22 . 509
C.1.12 Proof of Proposition 34 . 510
C.1.13 Proof of Proposition 35 . 511
C.1.14 Proof of Proposition 36 . 512
C.1.15 Proof of Proposition 37 . 512
C.1.16 Proof of Proposition 38 . 513
C.1.17 Proof of Proposition 39 . 513
C.1.18 Proof of Proposition 40 . 516
C.1.19 Proof of Theorem 23 . 516
C.1.20 Proof of Proposition 41 . 518

ix

D Appendix for Chapter 5 519
D.1 Proofs . 519

D.1.1 Proof of Lemma 17 . 519
D.1.2 Proof of Theorem 24 . 520
D.1.3 Proof of Theorem 25 . 521
D.1.4 Proof of Corollary 8 . 522
D.1.5 Proof of Corollary 9 . 523
D.1.6 Proof of Theorem 26 . 523
D.1.7 Proof of Proposition 42 . 524
D.1.8 Proof of Proposition 43 . 524
D.1.9 Proof of Proposition 44 . 525
D.1.10 Proof of Proposition 45 . 525
D.1.11 Proof of Proposition 10 . 528
D.1.12 Proof of Proposition 46 . 528
D.1.13 Proof of Proposition 11 . 529
D.1.14 Proof of Proposition 48 . 529

E Appendix for Chapter 6 530
E.1 MCA where the Solution is an Explanation 530
E.2 Proofs . 534

E.2.1 Proof of Lemma 19 . 534
E.2.2 Proof of Theorem 27 . 536
E.2.3 Proof of Proposition 49 . 536
E.2.4 Proof of Proposition 50 . 537
E.2.5 Proof of Proposition 51 . 537
E.2.6 Proof of Proposition 52 . 538
E.2.7 Proof of Proposition 53 . 540
E.2.8 Proof of Theorem 28 . 541
E.2.9 Proof of Theorem 29 . 543
E.2.10 Proof of Theorem 30 . 543
E.2.11 Proof of Proposition 55 . 544
E.2.12 Proof of Proposition 56 . 544
E.2.13 Proof of Proposition 54 . 544
E.2.14 Proof of Proposition 57 . 545
E.2.15 Proof of Proposition 58 . 546
E.2.16 Proof of Porposition 59 . 546
E.2.17 Proof of Theorem 31 . 547
E.2.18 Proof of Theorem 32 . 548
E.2.19 Proof of Lemma 20 . 549
E.2.20 Proof of Lemma 21 . 549
E.2.21 Proof of Proposition 60 . 550
E.2.22 Proof of Proposition 61 . 551
E.2.23 Proof of Theorem 33 . 551
E.2.24 Alternate Proof of Theorem 33 553
E.2.25 Proof of Theorem 34 . 555

x

E.2.26 Proof of Theorem 35 . 556
E.2.27 Proof of Theoerm 36 . 556
E.2.28 Proof of Proposition 62 . 557
E.2.29 Proof of Proposition 63 . 557
E.2.30 Proof of Corollary 12 . 557
E.2.31 Proof of Proposition 64 . 558
E.2.32 Proof of Corollary 13 . 558
E.2.33 Proof of Theoerem 37 . 559
E.2.34 Proof of Corollary 18 . 562
E.2.35 Proof of Theorem 60 . 562

F Appendix for Chapter 7 565
F.1 Proofs . 565

F.1.1 Proof of Theorem 38 . 565
F.1.2 Proof of Theorem 39 . 567
F.1.3 Proof of Theorem 40 . 569
F.1.4 Proof of Theorem 41 . 569
F.1.5 Proof of Theorem 42 . 570
F.1.6 Proof of Theorem 43 . 570
F.1.7 Proof of Theorem 44 . 571
F.1.8 Proof of Theorem 45 . 573
F.1.9 Proof of Lemma 22 . 573
F.1.10 Proof of Proposition 66 . 574

G Appendix for Chapter 8 575
G.1 Proofs for Section 8.3 . 575

G.1.1 Proof of Proposition 70 . 575
G.1.2 Proof of Proposition 71 . 575
G.1.3 Proof of Lemma 23 . 576
G.1.4 Proof of Lemma 24 . 576
G.1.5 Proof of Theorem 47 . 577
G.1.6 Proof of Theorem 48 . 582
G.1.7 Proof of Theorem 49 . 586
G.1.8 Proof of Theorem 50 . 589
G.1.9 Proof of Theorem 51 . 589
G.1.10 Proof of Theorem 52 . 595
G.1.11 Proof of Theorem 53 . 596

G.2 Proofs for Section 8.5 . 598
G.2.1 Proof of Proposition 72 . 598
G.2.2 Proof of Theorem 54 . 599
G.2.3 Proof of Proposition 73 . 600
G.2.4 Proof of Theorem 55 . 600
G.2.5 Proof of Proposition 74 . 601
G.2.6 Proof of Lemma 25 . 603
G.2.7 Proof of Lemma 26 . 603

xi

G.2.8 Proof of Proposition 75 . 604
G.2.9 Proof of Proposition 76 . 604
G.2.10 Proof of Corollary 14 . 604
G.2.11 Proof of Proposition 77 . 605
G.2.12 Proof of Theorem 57 . 605
G.2.13 Proof of Proposition 78 . 606
G.2.14 Proof of Proposition 79 . 606
G.2.15 Algorithm for Finding Disjoint Node Sets 609
G.2.16 Proof of Proposition 80 . 609

xii

List of Tables

2.1 Summary of APT Complexity Results 20
2.2 Comparison of Linear Constraints for APT Consistency Checking . . 25
2.3 Comparison of Linear Constraints for APT Entailment Checking . . . 25

3.1 APT-logic programs used in the run time evaluations. ProgramsK1
K13 are based on the ISW data-set. 144

3.2 APT-logic programs used in the run time evaluations. The programs
in this table are based on the MAROB data-set. 145

4.1 key values and related observations for observations in the sun bear
scenario introduced in Example 4.1.3.189

4.2 k-SEP Algorithm Results - Solution Size 194
4.3 k-SEP Algorithm Results - Distances to Actual Cache Sites 195
4.4 k-SEP Algorithm Performance Results 197
4.5 The Tie-Breaker heuristic onGREEDY-KSEP-OPT2- Solution Size . . 199
4.6 The Tie-Breaker heuristic onGREEDY-KSEP-OPT2- Distances to

Actual Cache Sites . 199

5.1 Locations and dimensions of areas considered 241

6.1 The setL partitioned by consti and supported observations. 285

8.1 Special cases of SNOP queries . 352
8.2 Properties that can be proven given certain assumptions. 357
8.3 How the various properties are leveraged in the Algorithms 357
8.4 Comparison between straightforward and linear Jackson-Yariv Models 372
8.5 First iteration of the greedy algorithm. 389
8.6 Incremental Increases for Both Iterations ofGREEDY-SNOP. 390
8.7 Calculating inc(up)

2 (v5). 396

C.1 Quantities for the Greedy-Approach in theDomSet reduction. . . . 511

xiii

List of Figures

2.1 Kstock , a toy APT-Logic Program modeling the behavior to reactions
of stock-related news feeds. As all of these rules are constrained, this
is a constrained program. The English translation of each rule is also
provided. 21

2.2 A real-world set of rules extracted by APT-Extract from the Hezbol-
lah dataset. The atoms in the rules are represented as a variable and
its value. A plain English explanation of each rule is also provided. . 22

2.3 K train a toy APT-Logic Program modeling rail transit. Items 1-3
are APT-Rules while items 4-5 are annotated formulas. The English
translation of each rule is also provided. 23

2.4 Kpower a toy APT-Logic Program modeling a power grid. Items 1-4
are APT-Rules, while item 5 is an annotated formula. The English
translation of each rule is also provided. 24

2.5 Example thread for the train scenario from Figure 2.3, where only
one train is present. 31

2.6 Example thread,Th with worlds Th(1); : : : ;Th(8). This �gure shows
each world that satis�es formulaF or formula G. 33

2.7 For a set of atoms consisting ofscandal, and tmax of 3 time points, the
above chart shows thepfr for all possible threads based on a program

consisting only of rulescandal
pfr
,! : scandal: [1; 0:89; 0:93; 0:8; 1:0]

from Figure 2.1. Figure 2.8 groups these threads in frequency equiv-
alence classes based onpfr . 60

2.8 For a program consisting only of rulescandal
pfr
,! : scandal: [1; 0:89; 0:93; 0:8; 1:0]

from Figure 2.1, we have frequency equivalence classesE1 and E2

based on thepfr for all possible threads seen in Figure 2.7. 61
2.9 Left: Unrolled MDP in an attempt to create an MDP that satis�es in-

terpretation I in the text. Notice how the sequencehfag; fg ; f ag; f agi
must be assigned a non-zero probability. Right: A standard repre-
sentation of the MDP on the left. Notice that the MDP must allow
for non-zero probability of threads that are given a zero probability
in interpretation I . 88

3.1 Kstock , a toy APT-Logic Program about stocks. 98
3.2 K ISW a real-world APT-Logic Program extracted from counterinsur-

gency data. 99

xiv

3.3 KMAROB a real-world APT-Logic Program extracted from Minorities
at Risk Organizational Behavior data. 100

3.4 K train , a toy APT-Logic Program modeling rail transit. Items 1-2
are non-groundAPT-Rules, the formulas in 3 are probabilistic tem-
poral formulas, and items 4-5 are annotated formulas. The English
translation of each rule is also provided. 105

3.5 Number of ground rules vs. run time (Left: ISW, Right: MAROB).
Note these run-times include the full computation of the �xedpoint
of the ! operator. 143

3.6 Number of ground rules vs. run time for entailment checking (Left:
ISW, Right: MAROB). 146

3.7 Attributes of ptf's entailed by the di�erent logic programs (ISW
dataset) . 147

4.1 A space. Red dots denote observations. Yellow squares denote infea-
sible locations. Green stars show one (0,3) explanation, while pink
triangles show another (0,3) explanation. 160

4.2 Left: Points f o1; o2; o3g indicate locations of evidence of the Malayan
sun bear (we shall refer to these as setO). Points f p1; p2; : : : ; p8g in-
dicate feasible dwellings for the bear. The concentric rings around
each element ofO indicate the distance� = 1:7km and � = 3:7km.
Right: Points f p1; p2; p3g are feasible for crime-scenesf o1; o2g. f p1; p2g
are safe-houses within a distance of [1; 2] km. from crime sceneo1 and
f p2; p3g are safe-houses within a distance of [1; 2] km. from crime
sceneo2. 164

4.3 Results ofKSEP-TO-DOMSETbased on data seen in Figure 4.2 (right).
Note that f p1; p2; p0

1; p0
2g form a complete graph andf p2; p3; p00

2; p0
3g

also form a complete graph. Note thatf p2g is a dominating set of
size 1. Hence,f p2g is a 1-sized simple (�; �) explanation for O, as
depicted in Figure 4.2 (right). 176

4.4 Left: GREEDY-KSEP-OPT1accesses the list pointed to byM [p1]
thus considering all observations available top1. Right: GREEDY-
KSEP-OPT1accesses the list pointed to byM [p2] and �nds it has
more active observations than it found in the list pointed toby M [p1]. 184

4.5 GREEDY-KSEP-OPT1considers the observations available top7. The
X's on o1 and o2 signify that OBS[o1] and OBS[o2] are set toFALSE. . 185

4.6 Left: GREEDY-KESP-OPT2considers all observations that can be
partnered with p2. Notice that in this �gure by each observation we
show a box that represents the key of the observation in the Fibonacci
heap. Right: GREEDY-KSEP-OPT2removeso1 from the heap, and
iterates through the elements inREL OBS[o1], causing it to decrease
the key of o2. 190

5.1 Locations of illegal drug sales and suspected support zonesf ra; rb; r c; rd; re; r f ; rgg.
The � distance for each observation is shown with a dashed circle.. . 214

xv

5.2 SpaceS and the regions in setRO . 218
5.3 A set of regions inS created based on the distance� = 5km as well

as restricted areas (shown in black).221
5.4 Given the instance of I-REP-MCZ for Example 5.4.4 as input for

circle-covering, a circle-covering algorithm returns points p1; p2; p3

(points are denoted with an \x", dashed circles are the area of 3km
from the point). 233

5.5 REGION-GENapplied to the paleontology example (Example 5.4.4).
First, it identi�es observations associated with grid points (top). It
then creates minimally-enclosing rectangles around pointsthat sup-
port the same observations (bottom). 236

5.6 The run-time of GREEDY-MC2in ms compared with the number of
regions considered. 244

5.7 A comparison between analytical (O(1
g2)) and experimental results

for the run-time of REGION-GENcompared with grid spacing (g). . . 245
5.8 Average areas for solutions provided byREGION-GEN/ GREEDY-MC2

for Baghdad and Sadr City. 246
5.9 Results from two runs ofGREEDY-MC2- g = 100m (top), g = 1000m

(bottom). Pinpoint-regions are denoted with plus-signs. Notice that
the average areas of the results are comparable. 247

5.10 Average caches enclosed per region for Baghdad and Sadr City for
various grid-spacing settings. .248

5.11 The output of GREEDY-MC2for Baghdad with g = 100m compared
with the locations of actual cache sites (denoted with a \C"). Notice
that regions A-E do not contain any cache sites while regions G-I all
contain numerous cache sites. 249

5.12 Regions in the output that enclose at least one partner (cache) and
total number of regions returned for Baghdad and Sadr City. 250

5.13 Distance to nearest cache vs. grid spacing. 251
5.14 Cache density of outputs produced byGREEDY-MC2for Baghdad and

Sadr City compared with overall cache density and linear-regression
analysis. 252

5.15 Close-up of region F from Figure 5.11. While region F contains 1
cache, there are 4 other caches< 250m from the boundary of that
region. The area-quadrupling metric helps us account for such scenarios.253

5.16 Area quadrupled cache density of output produced byGREEDY-MC2
with linear-regression analysis. .. 254

6.1 Map of poppy �elds for Example 6.2.1. For each labeled point pi , the
\ p" is omitted for readibility. 261

6.2 Dashed circles encompass all feasible points within 100 meters from
explanation f p40; p45g. 265

6.3 SetL of all possible partners for our drug laboratory location example.274

xvi

6.4 The size of the reduced partner setL � (left) and the time required to
compute this reduction (right). Regardless of parameters chosen, we
see a 99:6% decrease in possible partners|as well as integer variables
in our linear program|in under 3 minutes. 302

6.5 Expected detriment of the optimal adversarial strategy (left, lower
is better) and the runtime of the integer linear program required
to produce this strategy in milliseconds (right). Note the smooth
decrease toward zero detriment ask increases, corresponding with a
near-linear increase in total runtime. 304

6.6 The average size of the strategy recommended byMCA-LSdecreases
as the distance cuto� increases. For these experiments, the minimum
cardinality for a given explanationE considered isexfdwas 14, which
gives us a natural lower bound on the expected size of a strategy.
Note the convergence to this bound at cuto� distances at and above
300 meters. 307

6.7 The runtime of MCA-LSdecreases as the penalizing cuto� distance
is relaxed. Note the relation to Figure 6.6; intuitively, larger recom-
mended strategies tend to take longer to compute. 308

6.8 Expected bene�t of the strategy returned byMCA-GREEDY-MONO
as the budget increases, withjexfdj = 10 (left) and jexfdj = 100
(right). Note the decrease in expected bene�t due to the increase in
jexfdj. Similarly, note the increase in expected bene�t given a larger
cuto� distance. 309

6.9 Runtime ofMCA-GREEDY-MONOas the budget increases, withjexfdj =
10 (left) and jexfdj = 100 (right). Note the increase in runtime due
to the extra determinism of a largerexfd. 311

7.1 Locations in a district - contingency groups and unpopulated areas. . 316
7.2 jIC s0 j vs. approximation ratio. 334

8.1 Example cellular network. 343
8.2 Social Network for the painting company. 356
8.3 Social network corresponding with Example 8.5.1 concerning disease

spread. 360
8.4 Social network of individuals sharing photographs. Shaded vertices

are professional photographers. All edges are directionalshare edges. 370
8.5 Left: Sample network for disease spread. Right: annotated atoms

entailed after each application ofT � SIR (maximum, non-zero anno-
tations only). 375

8.6 Search tree for Example 8.5.2. 384
8.7 E�ect on overall approximation given an incremental approximation

factor. 397
8.8 Left: spread graph after iteration 1. Right: spread graph after itera-

tion 2. 403

xvii

8.9 Top: Social Network for the painting company with vertex spread
shown as shaded ovals. Bottom: Spread graphGS(�)

1 (REM0) for the
painting company example. 407

8.10 Runtimes ofGREEDY-SNOPfor di�erent values of � and k = 5 in
both di�usion models . 412

8.11 Runtimes ofGREEDY-SNOPfor di�erent values of k and � = 0:2 in
both di�usion models . 413

8.12 Time per iteration of GREEDY-SNOPfor � = 0:2 in both di�usion
models . 413

xviii

List of Abbreviations

#P Sharp-P
� alpha
� beta

AI Arti�cial Intelligence
ALC-ENT Entailment using Alternative Linear Constraints
APT Logic Annotated Probabilistic Temporal
ATS Associated Thread Subset
BMGOP Bene�t-Maximizing Geospatial Optimization Problem
BMGOP-IP BMGOP Integer Program
crf Cuto� Reward Function
CoNP Complement of Non-deterministic Polynomial Time
DomSet Dominating Set
efr Existential Frequency Function
exfd Explanation Function Distribution
FLOT Front Line of Trace
FPRAS Fully Polynomial Randomized Approximation Scheme
FPTAS Fully Polynomial Time Approximation Scheme
fr Frequency Function
frf Fall-o� Reward Function
GAP Geospatial Abduction Problem (spatial chapters)

or Generalized Annotated Program (social network chapters)
GBGOP Goal-Based Geospatial Optimization Problem
GBGOP-IP GBGOP Integer Program
GCD Geometric Covering by Discs
GOP Geospatial Optimization Problem
HSD Honest Signi�cant Di�erence
In-#P Membership in the complexity class #P
In-coNP Membership in the complexity class coNP
In-NP Membership in the complexity class NP
IP Integer Program
IPB Intelligence Preparation of the Battle�eld
I-REP Induced Region Explanation Problem
I-REP-MCZ I-REP Minimum Cardinality with a lower distance bound of zero
ISW Institute for the Understanding of War
JY Jackson-Yariv model
KEDS Kansas Event Data System
k-SEP k-sized Spatial Explanation Problem
lfp Least Fixed-Point
LP Logic Program or Linear Program (context-dependent)
MAROB Minorities as Risk Database
MCA Maximal Counter-Adversary Strategy
MCA-Exp Maximal Counter-Adversary Strategy - Explaining
MC Minimal Cardinality

xix

MCA-LS Maximal Counter-Adversary Strategy - Local Search
MDP Markov Decision Process
ME Maximum Explaining
MILP Mixed Integer Linear Program
NAI Named Area of Interest
NP Non-deterministic Polynomial Time
OAS Optimal Adversarial Strategy
PCD Pre-Condition Disjoint
PCTL Probabilistic Computational Tree Logic
pdf Probability Distribution Function
pfr Point Frequency Function
PITF Political Instability Task Force
PRISM Probabilistic Symbolic Model Checker
PTIME Polynomial Time
qfr Query Frequency Function
REP Region Explanation Problem
rf Reward Function
SAT Satis�ability
SC Set-Cover Problem
SCARE Spatio-Cultural Abductive Reasoning Engine
SEC Securities Exchange C omission
SEP Spatial Explanation Problem
SLC Straightforward Linear Constraints
SLC-ENT Entailment Using SLC
SNOP Social Network Optimization Problem
SOMA Stochastic Opponent Modeling Agents
SPM Sequence Probability Measure
st Such That
TD-SEP Total Distance Spatial Explanation Problem
tp Temporal-Probabilistic
wrf Weighted Reward Function
wrt With Respect To
WT-SEP Weighted Spatial Explanation Problem

xx

Chapter 1

Introduction

There are many applications where we wish to reason about spatio-temporal

aspects of an agent's behavior. This dissertation examinesseveral facets of this type

of reasoning.

1.1 Temporal Reasoning about an Agent's Ac-

tions

Given a model of past agent behavior, we wish to reason about the probabil-

ity that an agent takes a given action at a certain time. Previous work combining

temporal and probabilistic reasoning has made either independence or Markov as-

sumptions. This work introduces Annotated Probabilistic Temporal (APT) logic

which makes neither assumption. Statements in APT logic consist of rules of the

form \Formula G becomes true with a probability [L,U] within T time units after

formula F becomes true" and can be written by experts or extracted automatically

1

from historical data. A set of such statements is referred toas an APT logic pro-

gram. In Chapter 2, we introduce this framework and explore two key problems:

consistency and entailment. The consistency problem for APTlogic mirrors the

consistency problem of probabilistic logic introduced in [131]. The complementary

problem of entailment can be used to determine the probabilitythat an agent per-

forms a given action at a certain time based on an APT program. We study the

computational complexity of these two problems and determine that consistency

is NP-hard while entailment is coNP-hard. Under some natural assumptions, we

are also able to show a matching upper bound on the complexityfor both prob-

lems (membership in the class NP for consistency and coNP for entailment). We

then introduce several sets of linear constraints for solving this problem exactly.

In Chapter 3, we develop a sound, but incomplete �xpoint operator as a heuristic

for such queries. This operator runs in polynomial time in the size of the APT

logic program. This approach was implemented and tested on 23 di�erent models

automatically generated from several datasets. The operator quickly converged to

produce tight probability bounds for the queries.

1.2 Inferring Geospatial Aspects of an Agents Be-

havior

Some agent behavior often results in \observations" at geospatial locations

that imply the existence of other, unobserved, locations wewish to �nd (\part-

2

ners"). In Chapter 4, we formalize this notion with \geospatial abduction problems"

(GAPs). GAPs try to infer a set of partner locations for a set of observations and a

model representing the relationship between observationsand partners for a given

agent. We shall refer to a set of partner locations as an \explanation." Given a

set of observations and a model of the agent, �nding an explanation of a certain

size is NP-hard and in-NP under some reasonable assumptions. Weprovide an

enumeration-based algorithm that can �nd an explanation ofsizek - if one exists

- as well as show reductions to several well-known combinatorial problems - specif-

ically set-cover, dominating-set, and integer programming. These reductions allow

us to leverage several known algorithms to �nd explanationsof a cardinality within

a certain factor of the minimum. We then develop a new greedy algorithm that

achieves the same approximation ratio as the classic greedy approach to set-cover

(see [136]) but allows a software designer to use one of a variety of heuristics which

do not a�ect the guarantee. We implement and experimentallyevaluate several of

these heuristics in a software package called SCARE (the Spatio-Cultural Abduc-

tive Reasoning Engine). We tested SCARE on counter-insurgency data from Iraq,

attempting to locate enemy weapons caches (partners) basedon attacks (observa-

tions). On average, SCARE was able to locate weapons caches within 690 meters

of actual sites. We then present a variant of the problem in Chapter 5 where the

agent wishes to abduce regions that contain partner points.This problem is also

NP-hard (NP-complete under some natural assumptions). To address this issue, we

develop and implement a greedy approximation algorithm that�nds small regions

which contain partner points - on average containing 4 timesas many partners as

3

the overall area.

1.3 Geospatial Abduction under Adversarial Con-

ditions

In Chapter 6, we provide an adversarial extension to GAPs as follows: given

a �xed set of observations, if an adversary has probabilistic knowledge of how an

agent were to �nd a corresponding set of partners, he would place the partners in

locations that minimize the expected number of partners found by the agent. In a

complementary problem, the agent has probabilistic knowledge of how an adversary

locates his partners and wishes to maximize the expected number partners found.

We note that the manner in which the explanation of the adversary is compared

to that of the agent can di�er based on domain. As such, we axiomatically de�ne

a \reward function" and prove results for these two problemswith respect to this

generalization. We show that these problems are both NP-hard, and in-NP under

some natural conditions. We also design schemes to �nd approximate solutions -

often with theoretical guarantees. With our implementation, we demonstrate that

these algorithms often obtain excellent solutions.

1.4 Optimal Selection of Agent Actions

In Chapter 7, we introduce a class of problems called geospatial optimization

problems (GOPs). Here the agent has a set of actions that modifyattributes of

4

a geospatial region and he wishes to select a limited number of such actions (with

respect to some budget) in a manner that either causes some goal to be true (goal-

based GOPs) and/or maximizes a bene�t function (bene�t-maximizing GOPs). Ad-

ditionally, there are certain combinations of actions thatcannot be performed to-

gether. We show NP-hardness (membership in NP under reasonable assumptions)

as well as provide limits of approximation for these problems. We then develop sets

of integer constraints that provide an exact solution and provide an approximation

algorithm with a guarantee.

While we look to optimize certain geospatial properties in GOPs, we note that

for some real-world applications, such as some epidemiological phenomena, there

is an underlying di�usion process that also a�ect geospatialproprieties. Assum-

ing the structure of a social network - a directed graph with weighted and labeled

vertices and edges - we study optimization with respect to such di�usion processes

in Chapter 8 where we introduce social network optimizationproblems (SNOPs).

We show that many well-known social network di�usion processcan be embedded

into generalized annotated programs [86]. These di�usion processes were previously

studied in a variety of di�erent contexts including economics [150][73], epidemiol-

ogy [5][67], social media [20][167], and business [177]. Ina SNOP query, we seek to

�nd a set of vertices, that if given some initial property, optimize an aggregate with

respect to such a di�usion process. We show this class of problems is also NP-hard

(NP-complete under certain assumptions). We also leverage the results of [46] to

provide a limit of the ability to approximate an optimal solution to such problems.

For a large class of such queries, we then develop an greedy algorithm that provides

5

the best possible approximation guarantee unless P=NP as well as techniques for

scaling it. We implemented this algorithm and evaluated it on a real-world data-set

consisting of a graph of 103,000 edges.

1.5 Applications

The various frameworks for reasoning about an agent's behavior presented in

this dissertation are su�ciently general to solve di�cult pr oblems from a variety of

domains. Our discussion of APT logic in Chapters 2-3 include examples illustrating

how that framework can be used to reason about power-grids, the stock market,

and transportation services. Likewise, we provide examples of geospatial-abduction

and its adversarial extension of Chapters 4-6 applied to counter-drug, naturalist,

criminology, and paleontology domains. Finally, in Chapters 7 and 8 where we look

to optimally select actions for an agent, we provide examples relating to a political

campaign, disease-spread, and cell-phone usage.

In addition to the aforementioned problem domains, we note that much of this

work can be used to improve military intelligence analysis for counter-insurgency

applications. Traditionally, military intelligence practices in the US Army rely on a

process known as \Intelligence Preparation of the Battle�eld" [170]. In this process,

an intelligence analyst studies terrain and cultural factors along with the capabil-

ities of an adversary in order to predict the actions of an enemy combatant on

the battle�eld. Since the 9/11 attacks, this process has been modi�ed to handle

counter-terrorism and counter-insurgency situations as well [171]. However, unlike

6

traditional military situations, these contemporary environments are often more

complex for a variety of reasons. Consider the following real-world problems:

1. In a counter-insurgency operation, enemy reconnaissance of a target may not

always be indicative of a pending attack on said target (as in atraditional

military conict). Such activity may be designed to elicit a response from

local security forces (for evaluation) or to lull security forces into a sense of

complacency.

2. There is no \front line" or \FLOT" as in a traditional battle �eld. In a conven-

tional conict, a combatant force conducts logistic operations behind the front

line. By contrast, in a counter-insurgency situation, insurgent forces manage

logistics through systems of caches used to store weapons, ammunition, and

supplies to support their operations.

3. In a traditional military environment, the structure of a combatant is usually

well-de�ned and hierarchical - this is the standard military structure seen

throughout the militaries of the world. An insurgent force, by contrast, is

often de-centralized and its structure can resemble a social network which can

have a variety of di�erent topologies. Such networks are often very survivable

- even if the leadership is killed or captured.

The above three aspects of a counter-insurgency can all be addressed with the re-

search presented in this dissertation. For instance, APT logic, introduced in Chap-

ters 2-3 can be used to help determine the probability that a given reconnaissance

event implies a pending attack. Using the abductive reasoningof GAPs introduced

7

in Chapter 4, we have created software that has been shown to be useful in locating

enemy weapons cache sites. With SNOPs, introduced in Chapter 8, we show that

annotated programs can be leveraged to �nd which members of asocial network

cause the spread of a certain phenomenon { this can allow an analyst to select

targets whose neutralization will have the greatest impacton the insurgent forces.

Again, we would also like to point out that these three aspects of counter-insurgency

are not the only problems that can be addressed with this research. There are many

other applications of this work { both civilian and military { that will be discussed

throughout this dissertation.

1.6 Summary of Major Contributions

Chapters 2-3

� Introduced the framework of APT logic.

� Identi�ed the complexity class of consistency and entailment problems for APT

logic as NP-complete.

� Introduced three sound and complete algorithms based on linear programming

for solving consistency and entailment problems for APT logic.

� Introduced a sound, but incomplete �xed-point operator for approximately solving

consistency and entailment problems for ground APT programs.

� Introduced a sound, but incomplete algorithms for approximately solving consis-

tency and entailment problems for non-ground APT programs while avoiding a

8

full grounding of the program.

� Implemented the ground �xed-point operator and evaluated it using a real-world

data set.

Chapters 4-6

� Introduced a framework for studying geospatial abduction problems (GAPs).

� Identi�ed the complexity class of several geospatial abduction problems.

� Developed several exact and approximate approaches to solving GAPsbased on

reductions to known combinatorial problems.

� Implemented a software package for solvingGAPscalled SCARE (Spatio-Cultural

Abductive Reasoning Engine) and evaluated experimentally showing it to be able

to locate weapons cache sites in Baghdad.

� Created a variant of GAPswhere we look to abduce regions, proved this problem

to be NP-complete under some natural assumptions.

� Developed and implemented an approximation algorithm to abduce regions.

� Extended GAPsto the case where partner locations are place adversarily based

on probabilistic knowledge of the agent, as well as the complementary problem.

Proved these problems to be NP-complete under natural assumptions.

� Developed approximation algorithms for the adversarial problems - often with

guarantees. Showed viability of such algorithms with an implementation.

9

Chapters 7-8

� Introduced geospatial optimization problems, GOPs, in which the agent attempts

to optimally select a set of actions to cause some goal to occurand/or maximize

some function of the resulting geospatial properties.

� Proved two variants of GOPs to be NP-complete and establishedtheoretical limits

on approximation.

� Developed integer constraints for GOPs as well as an approximation algorithm

with a guarantee.

� Introduced social network optimization problems, SNOPs, where we attempt to

optimize an agents selection of vertices with respect to an aggregate of the result

of some di�usion process.

� Proved SNOPs to be NP-complete, explored the limits of approximation and other

properties of these problems.

� Illustrated how many known di�usion processes can be embedded into SNOPs.

� Developed exact and approximate approaches to solving SNOPs. For a large class

of SNOPs, our approximation algorithm attains the best guarantee unless P=NP.

� Experimentally evaluated our approach to SNOPs on a real-world data-set.

10

1.7 Related Work

We now provide a brief overview of work related to this dissertation. Addition-

ally, in each chapter, we also provide a related work sectionto give a more in-depth

look at how speci�c contributions relate to other work.

APT logic, introduced in Chapters 2-3, is a logic-programming framework

for reasoning about time and probability together without making independence

assumptions. Perhaps the most well-known method to reason about time and prob-

ability together is the Markov Process [140] - a stochastic process where states are

labeled with atomic propositions with a transition functionthat, given two states

s1; s2, returns the probability that s1 transitions to s2. A Markov Process assumes

what is known as the \Markov Property" which means that each transition prob-

ability only depends on the current state, and no previous state [146]. Hence, the

transition probability from state s1 to s2 is always the same, regardless of which

states precededs1. The Markov Property yields independence among transitions.

For example, given functionp which returns a transition probability for any two

states, we know thatp(s1; s2) is independent ofp(s2; s3). Hence, with a Markov

Process starting in states1, we can calculate the probability of sequences1; s2; s3

as p(s1; s2) � p(s2; s3). However, in many real-world scenarios, this may not be the

case. With APT logic, we can reason about the probability of events that may

depend on previous or future events - as there are no independence assumptions

among di�erent time points. Further, for a Markov Process where each state has

a unique atomic label, we demonstrate that it is possible to create an equivalent

11

APT program, while proving that the relationship in the opposite direction is not

possible.1

Geospatial abduction, described in Chapters 4-6 uses a model of an agent, as

well as observed geospatial phenomenon, to infer unobserved\partner" locations {

a set of which is termed an explanation. Facility location [161] is a related problem

where an agent searches for a subset of \supply points" in a plane to service a set

of \demand points" in such a manner that optimizes a certain objective function.

Most facility location problems reduce to an instance of convex geometric covering

- i.e. �nd a small set of convex shapes centered on supply points that cover all

demand points. Geospatial abduction problems, by contrast, reduces to a geometric

problem where the shapes are irregular - i.e. they have non-uniform holes.2 The

irregular shape of the covers in geospatial abduction adds another layer of complexity

not inherent in a facility location problem. We note that this holds true for the

geospatial optimization problems introduced in Chapter 7 as well. To illustrate the

di�culty of non-convex covering, [115] shows that for the simple problem of covering

by uniformly non-convex shapes in just one dimension is NP-complete and does not

admit a fully-polynomial time approximation scheme (FPTAS).

Another problem that resembles geospatial abduction is thek-means clustering

problem [116]. In this problem, sets of points on a plane are grouped into k disjoint

1We explore these relationships in detail in Chapter 2, Section 2.6.1 on page 79.
2Note that this still holds true even for the case of region-based geospatial abduction (Chapter 5)

as the covers in such a problem are not the regions, but rather the set ofpoints associated with

the region, based on the agent model.

12

sets such that the mean distance between any two points in a given disjoint set is

minimized. Additionally, there is a constrained variant described in [176]. However,

this work merely groups points together, and does not make any inference with

regard to unobserved phenomenon based on an agent model. Fora very simple,

restricted agent model, one can naively apply a clustering algorithm as a heuristic

for a geospatial abduction problem by returning a central point in each cluster as

a partner. However, this heuristic provides no approximation guarantee and in our

tests, was outperformed by the algorithms introduced in thisdissertation.

Finally, our work on social network optimization problems (SNOPs) intro-

duced in Chapter 8 seeks to �nd a set of vertices in a social network that optimize

an aggregate function with respect to a di�usion process. Some simple approaches

to this type of problem use a degree-maximizing or centrality measure to �nd the

set of vertices. It is important to note that these measures do not consider any type

of di�usion process - therefore cannot normally provide a guarantee with respect to

optimality. For example, the work of [6] describes two di�usions processes and prove

that their optimality criteria is proportional to vertex de gree in the �rst di�usion

process, while inversely proportional to vertex degree in the second. Further, with

these approaches, it is unclear how they apply to graphs with multiple vertex and

edge labels as the ones considered in SNOPs.

The classic work of [81] is perhaps the best-known generalized framework for

�nding the most \inuential vertices" in a social network giv en some di�usion pro-

cess. However, there are some key di�erences. With SNOPs, the social network

can have weights and labels on the vertices and edges, whereas this is not part of

13

the framework of [81]. Further, [81] does not allow complex aggregate functions

as SNOPs does. Finally, the approximation guarantees of [81] are dependent on

an approximation guarantee associated with their encoding ofthe di�usion process.

This encoding was shown to be #P-hard in [23] by a reduction from the counting

version of S-T connectivity, which has no known approximation algorithm. SNOPs,

by contrast, determines the result of a di�usion process by the calculation of the

�xed-point operator of [86] - which can be accomplished in polynomial time - which

make our conditions for approximation guarantees reasonable.

14

Chapter 2

Annotated Probabilistic Temporal Logic:

Sound and Complete Algorithms for

Reasoning

Chapters 2-3 investigate reasoning about an agent's behavior in time. The

main contribution of these chapters is Annotated Probabilistic Temporal (APT)

logic, a logic-based framework for this type of reasoning that does not make inde-

pendence or Markovian assumptions. In this chapter, we introduce the framework,

present a suite of complexity and algorithmic results for consistency and entailment

problems, and perform a detailed comparison with other frameworks for reasoning

about time and probability together.1

1This chapter is based on [155] which was completed in cooperation with Gerardo Simari, Austin

Parker, and V.S. Subrahmanian.

15

2.1 Chapter Introduction

There are numerous applications where we need to make statements of the

form \Formula G becomes true with 50 60% probability 5 time units after formula

F became true." We now give four examples of how such statementsmight be

applied.

Stock Market Prediction There is ample evidence [53] that reports in newspa-

pers and blogs [33] have an impact on stock market prices. For instance, major

investment banks invest a lot of time, e�ort and money attempting to learn

predictors of future stock prices by analyzing a variety of indicators together

with historical data about the values of these indicators. Aswe will show later

in Figure 2.1, we may wish to write rules such as \The probability that the

stock of company C will drop by 10% at time (T + 2) is over 70% if at time

T, there is a news report of a rumor of an SEC investigation of thecompany

and (at time T) there is a projected earnings increase of 10%." It is clear that

such rules can be learned from historical data using standard machine learning

algorithms. Financial companies have the means to derive large sets of such

rules and make predictions based on them.

Reasoning about Terror Groups The Laboratory for Computational Cultural

Dynamics at the University of Maryland has extensively dealtwith historical

data on over 40 terrorist groups from the Minorities at Risk project [181] and

has published detailed analyses of some of these groups' behaviors (Hezbol-

lah [118] and Hamas [119]). The SOMA Terror Organization Portal [120]

16

has registered users from over 12 US government agencies and contains thou-

sands of (automatically) extracted rules about the behaviors of these groups.

For such groups, we might want to say: \Hezbollah targets domestic govern-

ment security institutions/lives with a probability of 87 t o 97% within 3 years

(time periods) of years when their major organizational goals were focused

on eliminating ethnic discrimination and when representingtheir interests to

government o�cials was a minor part of their strategy." Figure 2.2 provides

a list of such rules associated with Hezbollah. Clearly, analysts all over the

world engaged in counter-terrorism e�orts need to be able toreason with such

rules and make appropriate forecasts; in separate work, we have also done

extensive work on making such forecasts [121, 122].

Reasoning about Trains All of us want to reason about train schedules and plane

schedules. More importantly, railroad companies, airlines, and shipping com-

panies have an even more urgent need to do such reasoning as itdirectly

impacts their planning process. In such settings, a railroad company may

learn rules of the form \If train 1 is at station A at time T, then it will be

at station B at time (T + 4) with over 85% probability." Once such rules are

learned from historical data, various types of reasoning need to be performed

in order for the railroad company to make its plans. Figure 2.3 shows a small

toy example of rules associated with trains.

Reasoning about a Power Grid Utility companies need to reason constantly

about power grids. Decisions about which lines and transformers should be

17

repaired next are based not only on the costs of these repairs, but also when

these components are likely to fail, and many other factors.Thus, for exam-

ple, a power company may derive rules of the form \if the transformer tr and

power lineln are functioning at time T, then there is a probability of over 95%

that they will continue to be functioning at time (T + 3). Figure 2.4 shows a

small toy example of rules associated with power grids.

The examples above illustrate the syntax of anAPT-logic program; we will

give the formal details as we develop the technical materialin this chapter. While it

is possible for designers to write such programs manually, we expect that machine

learning programs can be used to automatically learn such programs from historical

data using standard machine learning algorithms, as done inprevious work on ap-

programs [83]. Though this is not claimed as a contribution of this dissertation,

in order to show that it is possible to automatically learnAPT-programs, we have

developed a simple algorithm calledAPT-Extract and used it to learn models of

certain behaviors exhibited by several terror groups.

This chapter proceeds as follows. In Section 2.2 we introduce the syntax and

semantics ofAPT-logic programs, including a quick treatment of our notion of a

frequency function, a structure unique to APT-logic. In Section 2.3 we introduce

several methods to check consistency ofAPT-logic programs, along with appropri-

ate complexity analysis. We introduce several algorithms for consistency checking:

one that straightforwardly applies the semantics, one thatexploits the relationships

between formulas in the heads and bodies ofAPT-rules, and one that works only on

18

speci�c sorts of APT-rules but often o�ers substantial speedup when it is possible.

These techniques can also be applied to the problem of entailment, which is covered

in Section 2.4. In Section 2.5, we explore some applicationsof APT-logic programs

and �nally, we spend a great deal of e�ort in Section 2.6 distinguishing this work

from other frameworks for reasoning about time and probability together. In partic-

ular, we examine the relationship betweenAPT-logic programs and Markov Decision

Processes (MDPs for short) [140], showing that one can create APT-logic programs

\equivalent" to a given MDP and policy, but under natural assumptions, there is no

MDP \equivalent" to certain APT-logic programs. We further address the relation-

ship betweenAPT-logic and a well known logic called Probabilistic Computation

Tree Logic (PCTL for short) [64] and provide examples demonstrating that PCTL

cannot express various things expressible inAPT-logic programs.

The entire set of complexity results forAPT-logic programs derived in this

chapter is summarized in Table 2.1. Consistency ofAPT-logic programs is deter-

mined by solving certain linear programs. In this chapter, we develop successively

more sophisticated linear programs that try to use di�erenttypes of \equivalence

classes" to collapse multiple variables in the linear program into one variable; Ta-

ble 2.2 summarizes the main results related to linear program size reduction for

consistency checking. Table 2.2 also provides an analogoussummary related to

reduction of size of the linear program when considering entailment by APT-logic

programs.

19

APT Complexity Results

Problem Complexity Reference

Consistency of Single Unconstrained Rule NP-complete Thm 2

Consistency of Single Constrained Rule NP-complete Thm 3

Consistency of a mixed PCD Program with Guaranteed Thm 4

additional restrictions on lower probability bounds consistent

Entailment of an annotated formula by an program coNP-hard Thm 7

Table 2.1: Summary of APT Complexity Results

20

1. scandal
pfr
,! : scandal: [1; 0:89; 0:93; 0:8; 1:0]

For a given sequence of events, if there is a scandal in the headlines,

this will be followed by there not being a scandal in 1 time unit

with probability [0 :89; 0:93].

2. secrumor ^ earn incr(10%)
pfr
,! stock decr(10%) :

[2; 0:65; 0:97; 0:7; 1:0]

For a given sequence of events, if there is a rumor of an SEC

investigation and an earnings increase of 10%, then the stock

price will decrease by 10% in exactly 2 time units frequency range

[0:7; 1:0] and probability [0:65; 0:97].

3. secrumor ^ earn incr(10%)
pfr
,! stock decr(10%) ^ cfo resigns :

[2; 0:68; 0:95; 0:7; 0:8]

For a given sequence of events, if there is a rumor of an SEC inves-

tigation and an earnings increase of 10%, this will be followed by

a stock price decrease of 10% and the CFO resigning in exactly 2

time units with a frequency range [0:7; 0:8] and probability bounds

[0:68; 0:95].

Figure 2.1: Kstock , a toy APT-Logic Program modeling the behavior to reactions of

stock-related news feeds. As all of these rules are constrained, this is a constrained

program. The English translation of each rule is also provided.

21

1. (INTERORGCON= 1)
efr
; (ARMATTACK = 1) : [2 ; 0:85; 0:95]

Armed attacks are carried out within two years of inter-organizational

conicts arising, with probability between 0 :85 and 0:95.

2. (DIASUP= 0) ^ (MILITIAFORM = 2)
efr
; (KIDNAP = 1) : [3 ; 0:68; 0:78]

Kidnappings are carried out within three years when no support from

diaspora is received, and Hezbollah has a standing military wing, with

probability between 0:68 and 0:78.

3. (ORGST2 = 1) ^ (ORGDOMGOALS = 1)
efr
; (DSECGOV = 1) :

[3; 0:87; 0:97]

Domestic government/state lives and security are targets of terrorism

within three years if Hezbollah represents interests to o�cials as aminor

strategy, and its major organizational goals are focused on eliminating

discrimination, with probability between 0 :87 and 0:97.

4. (ORGST4= 1) ^ (INTERORGCON= 1) ^ (MILITIAFORM = 1)

efr
; (BOMB = 0) : [1 ; 0:56; 0:66]

Hezbollah doesnot carry out bombings within the following year if it so-

licits external support as a minor strategy, there are inter-organizational

conicts, and its military wing is being created, with probability between

0:56 and 0:66.

Figure 2.2: A real-world set of rules extracted by APT-Extractfrom the Hezbollah

dataset. The atoms in the rules are represented as a variableand its value. A plain

English explanation of each rule is also provided.

22

1. at station(train1; stnA)
efr
; at station(train1; stnB) : [4; 0:85; 1]

If train 1 is at station A, train 1 will be at station B within 4 time

units with a probability bounded by [0 :85; 1:00]

2. at station(train1; stnB)
pfr
; at station(train1; stnC) : [2; 0:75; 0:9]

If train 1 is at station B, train 1 will be at station C in exactly 2

time units with a probability bounded by [0 :75; 0:90]

3. at station(train1; stnA)
pfr
; at station(train2; stnB) : [1; 0:95; 1]

If train 1 is at station A, train 2 will be at station B in exactly 1

time units with a probability bounded by [0 :95; 1:00]

4. at station(train1; stnA) : [1; 0:5; 0:5]

For a given sequence of events, train 1 will be at station A at time

period 1 with a probability of 0 :50.

5. at station(train2; stnA) : [2; 0:48; 0:52]

For a given sequence of events, train 2 will be at station A at time

period 2 with a probability bounded by [0:48; 0:52].

Figure 2.3: K train a toy APT-Logic Program modeling rail transit. Items 1-3 are

APT-Rules while items 4-5 are annotated formulas. The English translation of each

rule is also provided.

23

1. func(ln)
pfr
; : func(ln) : [1; 0:05; 0:1]

If the power line is functional, in exactly 1 time unit it will be

non-functional with a probability bounded by [0 :05; 0:10]

2. : func(ln)
efr
; func(ln) : [2; 0:99; 1]

If the power line is not functional, within 2 time units it will

functional with a probability bounded by [0 :99; 1:00]

3. func(tr) ^ func(ln)
pfr
; : (func(tr) ^ func(ln)) : [1; 0:025; 0:03]

If the transformer is functional and the line is functional, then in

exactly 1 time unit, at least one of them is not functional with a

probability bounded by [0:025; 0:030]

4. : (func(tr) ^ func(ln))
efr
; func(tr) ^ func(ln) : [3; 0:95; 1]

If the transformer and/or the line is not functional, then within 3

time units, they both are functional with a probability bounded

by [0:95; 1:00]

5. func(tr) ^ func(ln) : [1; 0:8; 0:95]

For a given sequence of events, the transformer and the power line

are functional at the �rst time point with a probability bounded

by [0:80; 0:95].

Figure 2.4: Kpower a toy APT-Logic Program modeling a power grid. Items 1-4 are

APT-Rules, while item 5 is an annotated formula. The English translation of each

rule is also provided.

24

Type of Linear Number of Number of Cost of Identifying Equivalence Classes

Constraints Constraints Variables

SLC (Straightforward 2jKj + 1 2j B L j t max (equivalence classes not used)

Linear Constraints)

WELC (World Equiv. 2jKj + 1 22jKj t max O
!
22jKj + B L

�

Linear Constraints)

FELC using BFECA 2jKj + 1 2jKj O
!
2j B L j t max � F (tmax) � jKj

�

to identify classes

(Frequency Equiv.

Linear Constraints,

created via brute-force)

FELC using WEFE 2jKj + 1 2jKj O
!
22jKj� t max � tmax � jKj

�
+

to identify classes O
!
22jKj + B L

�

(Frequency Equiv.

Linear Constraints,

created via world euqiv.)

FELC w. 2jKj + 1 2jKj (equivalence classes guaranteed)

PCD restrictions on K

(Pre-Condition Disjoint)

Table 2.2: Comparison of Linear Constraints for APT Consistency Checking

Algorithm Intuition Reference

SLC-ENT Determining both the minimization and maximization Section 2.4

of a constraint wrt SLC

ALC-ENT Determining both the minimization and maximization Appendix A.1.2

of a constraint wrt FELC or WELC

Table 2.3: Comparison of Linear Constraints for APT Entailment Checking

25

2.2 APT -Logic Programs

In this section, we �rst de�ne the syntax of APT-logic programs, and then

de�ne the formal semantics.

2.2.1 Syntax

We assume the existence of a �rst order logical languageL , with a �nite set

L cons of constant symbols, a �nite setL pred of predicate symbols, and an in�nite set

L var of variable symbols. Each predicate symbolp 2 L pred has anarity (denoted

arity(p)). A (ground) term is any member ofL cons [L var (resp. L cons); if t1; : : : ; tn

are (ground) terms, andp 2 L pred , then p(t1; : : : ; tn) is a (resp. ground) atom. A

formula is de�ned recursively as follows.

De�nition 1. A (ground) atom is a (ground) formula. If f 1 and f 2 are (ground)

formulas, thenf 1 ^ f 2, f 1 _ f 2, and : f 1 are (ground) formulas.

We useBL to denote the Herbrand base (set of all ground atoms) ofL . It is

easy to see thatBL is �nite.

We assume that all applications reason about an arbitrarilylarge, but �xed

size window of time, and that� = f 1; : : : ; tmax g denotes the entire set of time points

we are interested in.tmax can be as large as an application user wants, and the user

may choose his granularity of time according to his needs. For instance, in the stock

market and power grid examples, the unit of time used might bedays, andtmax may

be arbitrarily set to (say) 1,095 denoting interest in stockmarket and power grid

movements for about 3 years. In the case of the train example, however, the unit

26

of time might be seconds, and the application developer mightset tmax to 93,600,

reecting that we are only interested in reasoning about oneday at a time, but at a

temporal resolution of one second. In the case of the terrorism application, on the

other hand, our temporal resolution might be one month, andtmax might be 360

reecting an interest in events over a 30-year time span.

De�nition 2 (Annotated Formula). If F is a formula, t 2 � is a time point, and

[`; u] is a probability interval, thenF : [t; `; u] is an annotated formula.

Intuitively, F : [t; `; u] saysF will be true at time t with probability in [`; u].2

Example 2.2.1. Let us reconsider the programK train from Figure 2.3. The anno-

tated formula at station(train1; stnB) : [4; 0:85; 1] says that the probability thattrain1

will be at station stnB at time point 4 is between 85 and 100%.

Throughout this chapter, we assume the existence of a �nite set F of symbols

called frequency function symbols. Each of these symbols will denote a speci�c

\frequency function" to be de�ned later when we de�ne our formal APT semantics.

We are now ready to de�ne the syntax of Annotated Probabilistic Temporal (APT

for short) rules and logic programs which will form the main topic of study for this

chapter.

De�nition 3 (APT Rule). Let F , G be two formulas,� t be a time interval,`; u be

a probability interval, fr 2 F be a frequency function symbol and�; � 2 [0; 1].

2Assumption: Throughout the chapter we assume, for both annotated formulas andAPT-

rules, that the numbers `; u can be represented as rationalsa=bwhere a and b are relatively prime

and the length of the binary representations ofa and b is �xed.

27

1. F fr; G : [� t; `; u] is called anunconstrainedAPT rule.

2. F
fr

,! G : [� t; `; u; �; �] is called aconstrainedAPT rule.

An APT logic programis a �nite set of APT rules and annotated formulas.

Note that we use the symbol `fr; ' for unconstrainedAPT rules with frequency

function symbol fr, while the symbol `
fr

,! ' is used for constrained rules with fre-

quency function fr. The formal semantics of these rules is quite complex and will

be explained shortly. But informally speaking, both types of rules try to check the

probability that a formula F is true � t units before a formulaG becomes true.

Figures 2.1, 2.2, 2.3, and 2.4 respectively show theAPT-logic programs associ-

ated with our stock market, counter-terrorism, trains, andpower grid applications.

We now de�ne three types ofAPT-logic programs.

De�nition 4 (Types of APT-Logic Programs).

� An unconstrainedAPT-Logic Program consists only of unconstrainedAPT-rules.

� A constrained APT-Logic Program consists only of constrainedAPT-rules.

� A mixed APT-Logic Program consists both of constrained and unconstrainedAPT-

rules.

Consider theAPTprograms from the introduction of this chapter, we see that

Kstock is a constrainedAPT-logic program,K trains , Kpower , and K terror are uncon-

strained APT-logic programs.3

3Notably absent from the types of APT-Logic Programs described above are annotated formulas.

28

2.2.2 Semantics of APT -logic programs

In this section, we will provide a formal declarative semantics for APT-logic

programs. As the syntax of these programs is quite complex, wewill do this one

step at a time. We start with the well known de�nition of a world.

De�nition 5. A world is any set of ground atoms.

The power set ofBL (denoted 2B L) is the set of all possible worlds. Intuitively,

a world describes a possible state of the (real) world or realworld phenomenon being

modeled by anAPT-logic program. The following are examples of worlds:

Example 2.2.2. Consider the atoms present in the programKtrain from Fig-

ure 2.3. A few possible worlds are:f at station(train1; stnA); at station(train2; stnB)g,

f at station(train1; stnB)g, and fg .

As worlds are just ordinary Herbrand interpretations [106], we usew j= F to

denote the standard de�nition of satisfaction of a ground formula F by world w as

expressed in [106].

De�nition 6 (Satisfaction of a formula by a world). Let f be a ground formula and

w be a world. We say thatw satis�es f (denotedw j= f) i�:

� If f = a for some ground atoma, then a 2 w.

� If f = : f 0 for some ground formulaf 0 then w does not satisfyf 0.

We will show later in Theorem 1 that APT-rules can be used to express annotated formulas and

hence there is no loss of expressive power.

29

� If f = f 1 ^ f 2 for formulas f 1 and f 2, then w satis�es f 1 and w satis�es f .

� If f = f 1 _ f 2 for formulas f 1 and f 2, then w satis�es f 1 or w satis�es f 2.

We say a formulaf is a tautology if for all w 2 2B L , w j= f . We say f is a

contradiction if for all w 2 2B L , w j= : f .

A thread, de�ned below, is nothing but a standard temporal interpretation [42,

96] in temporal logic.

De�nition 7 (Thread). A thread is a mapping Th: f 1; : : : ; tmax g ! 2B L .

Th(i) implicitly says that according to the threadTh, the world at time i will

be Th(i). We will use T to denote the set of all possible threads, andTh ; to denote

the \null" thread, i.e., the thread which assigns; to all time points.

Example 2.2.3. Consider the train scenario shown in Figure 2.3 and the worlds

described in Example 2.2.2. Let� = f 0; : : : ; 9g represent one-hour time periods in

a day from 9:00am to 6:00pm,i.e., 0 represents 9-10am, 1 represents 10-11am, and

so forth. Figure 2.5 shows a sample thread for this setting, where only one train is

present. According to this thread, the train is at station A at 9 o'clock; at 10 o'clock

the thread has an empty world, since the train is still between stations, reaching

station B at 12. The thread shows how the train moves throughout the rest of the

day.

A thread represents a possible way the domain being modeled (e.g., where the

train is) will evolve over all time points. A temporal probabilistic (tp) interpretation

gives us a probability distribution over all possible threads.

30

Th(1) = f at station(train1; stnA)g, Th (2) = fg ,

Th (3) = fg , Th (4) = f at station(train1; stnB)g,

Th (5) = fg , Th (6) = f at station(train1; stnC)g,

Th (7) = fg , Th (8) = f at station(train1; stnB)g,

Th (9) = fg , Th (10) = f at station(train1; stnA)g

Figure 2.5: Example thread for the train scenario from Figure 2.3, where only one

train is present.

De�nition 8 (Temporal-Probabilistic Interpretation) . A temporal-probabilistic (tp)

interpretation I is a probability distribution over the set of all possible threads,i.e.,

P
th 2T I (th) = 1 .

Thus, a tp-interpretation I assigns a probability to each thread. This reects

the probability that the world will in fact evolve over time in accordance with what

the thread says about the state of the world at various pointsin time.

Example 2.2.4. Consider once again the setting of Figure 2.3. A very simple ex-

ample of a tp-interpretation is the probability distribution that assigns probability 1

to the thread from Figure 2.5 and 0 to every other possible thread. Another example

would be a distribution that assigns probability 0.7 to the thread from Figure 2.5

and 0.3 to the thread Th0 de�ned as follows: hTh0(1) = f at station(train1; stnA)g,

Th0(2) = fg , Th 0(3) = fg , Th 0(4) = fg , Th 0(5) = f at station(train1; stnB)g, Th 0(6) =

f at station(train1; stnC)g, Th 0(7) = fg , Th 0(8) = f at station(train1; stnB)g, Th 0(9) =

fg , Th 0(10) = f at station(train1; stnA)gi ; this thread speci�es that the train's trip

from station A to station B takes one time unit longer than speci�ed by the previous

31

thread (Th).

We now de�ne what it means for a tp-interpretation to satisfyan annotated

formula.

De�nition 9 (Satisfaction of an Annotated Formula). Let F : [t; `; u] be an an-

notated formula, andI be a tp-interpretation. We say thatI satis�es F : [t; `; u],

written I j= F : [t; `; u], i� ` �
P

Th 2T ;Th (t)j= F I (Th) � u.

Thus, to check if I satis�es F : [t; `; u], we merely sum up the probabilities

assigned to those threadsTh 2 T which makeF true at time t. If this sum is in

[`; u] then I satis�es F : [t; `; u].

2.2.3 Frequency Functions

When de�ning the syntax of APT-logic programs, we de�ned frequency func-

tion symbols. Each frequency function symbol denotes a frequency function. The

basic idea behind a frequency function is to represent temporal relationshipswithin

a thread. For instance, we are interested in the frequency with which G will be true

� t units after F is true. When we study this w.r.t. a speci�c threadTh, we need

to identify when F was true in threadTh, and whetherG really was true � t units

after that. For instance, consider the thread shown in Figure2.6. Here,F is true

at times 1, 3, 6, and 8.G is true at times 2, 4, 5, and 7.F and G should be true

at the times indicated above.

� The probability (within the thread of Figure 2.6) that G follows F in exactly two

units of time is 0.33if we ignore the occurrence ofF at time 8. If, on the other

32

F G F G G F G F

Th(1) Th(2) Th(3) Th(4) Th(5) Th(6) Th(7) Th(8)

Figure 2.6: Example thread,Th with worlds Th(1); : : : ;Th(8). This �gure shows

each world that satis�es formulaF or formula G.

hand, we do count that occurrence ofF at time 8 (even though no times beyond

that are possible), then the probability that G follows F in exactly two units of

time is 0.25.

� The probability that G follows F in at most 2 units of time is 100% if we ignore

the occurrence ofF at time 8; otherwise it is 0.75.

Each of these intuitions leads to di�erent ways to measure the frequency (within

a thread) with which G follows F . As we will show shortly, many other possibil-

ities exist as well. To the best of our knowledge, no past work on reasoning with

time and uncertainty deals with frequencies within threads; as a consequence, past

works are not able to aggregate frequencies across multiple threads inT or w.r.t.

tp-interpretations. This capability, we will show, is key for the types of applications

described in the Introduction of this chapter.

We see above that there are many di�erent ways to de�ne this frequency from

a given body of historical data. Rather than make a commitment to one particular

way and in order to allow applications and users to select thefrequency function

that best meets their application needs, we now de�neaxioms that any frequency

33

function must satisfy. Later, we will de�ne some speci�c frequency functions.4

De�nition 10 (Frequency Function). Let Th be a thread,F and G be formulas,

and � t > 0 be an integer. Afrequency functionfr is one that maps quadruples of

the form (Th; F; G; � t) to [0; 1] such that it satis�es the following axioms:

(FF1) If G is a tautology, thenfr(Th; F; G; � t) = 1 .

(FF2) If F is a tautology andG is a contradiction, then fr(Th; F; G; � t) = 0 .

(FF3) If F is a contradiction, fr(Th; F; G; � t) = 1 .

(FF4) Under the following conditions, there exist threads Th1; Th2 2 T such that

fr(Th1; F; G; � t) = 0 and fr(Th2; F; G; � t) = 1 :

� F is not a contradiction

� G is not a tautology

� F or : G is not a tautology

Axiom FF1 says that if G is a tautology, thenfr(Th; F; G; � t) must behave like

material implication and assign 1 to the result. Likewise, if F is a tautology andG

is a contradiction, then FF2 says thatfr(Th; F; G; � t) must behave like implication

and have a value of 0 (A ! B is false whenA is a tautology andB is a contradiction).

Axiom FF3 requiresfr(Th; F; G; � t) to be 1 whenF is a contradiction, also mirroring

implication. Axiom FF4 ensures that in all cases not covered above, the frequency

4Note: Throughout this chapter, we will assume that frequency function for a given thread

can be computed in polynomial time (i.e. O(jBL j � tmax)). Additionally, we shall assume that a

frequency function will return number that can be represented asa rational number a=bwhere a

and b are relatively prime and the length of the binary represenations ofa and b is �xed.

34

function will be non-trivial by allowing at least one threadthat perfectly satis�es

(probability 1) and perfectly contradicts (probability 0) t he conditional. Note that

any function not satisfying Axiom FF4 can be made to do so as long as it returns

distinct values: simply map the lowest value returned to 0 andthe highest value

returned to 1. We now give examples of two frequency functions.

De�nition 11 (Point Frequency Function). Let Th be a thread,F and G be formu-

las, and� t � 0 be an integer. APoint Frequency Function, denoted pfr(Th; F; G; � t),

is de�ned as:

pfr (Th; F; G; � t) =
jf t : Th(t) j= F ^ Th(t + � t) j= Ggj
jf t : (t � tmax � t) ^ Th(t) j= F gj

If there is no t 2 [0; tmax � t] such that Th(t) j= F then we de�ne pfr to be1.

The point frequency function expresses a simple concept: itspeci�es how

frequently G follows F in � t time points. Mathematically, this is done by �nding

all time points from [1; tmax � t] at which F is true and of all such time points

t, then �nding those for which G is true at time t + � t. The ratio of the latter

to the former is the value ofpfr . The following lemma says that this is a valid

frequency function. Note that the denominator of the point frequency function does

not include times where the thread satis�esF after tmax � t because the \end of

time" of our �nite time model comes before � t units elapse afterF becomes true.

Lemma 1. pfr satis�es Axioms FF1-FF4.

Example 2.2.5 (Point Frequency Function). Consider thread Th from Figure 2.5.

Suppose we want to calculate pfr(Th; at station(train1; stnB); at station(train1; stnC); 2).

35

In English, this is the ratio of time at station(train1; stnB) is followed by

at station(train1; stnC) in two units of time in thread Th.

We can see thatat station(train1; stnB) is satis�ed by two worlds: Th(4) and Th(8).

We also notice that Th(6) j= at station(train1; stnC) and Th(10) 6j= at station(train1; stnC).

Hence, the pfr is simply0:5.

Our second type of frequency function, called anexistentialfrequency function,

does not forceG to occur exactly � t units of time after F is true. It can occur at

or before � t units of time elapse afterF becomes true.

De�nition 12 (Existential Frequency Function). Let Th be a thread,F and G be

formulas, and � t � 0 be an integer. AnExistential Frequency Function, denoted

efr(Th; F; G; � t), is de�ned as follows:5

efr (Th ; F; G; � t) =
efn(Th ; F; G; � t; 0; tmax)

jf t : (t � tmax � t) ^ Th (t) j= F gj + efn(Th ; F; G; � t; t max � t; t max)

If the denominator is zero (if there is not 2 [0; tmax � t] such that Th(t) j= F

and efn(Th; F; G; � t; t max � t; t max) = 0) then we de�ne efr to be1.

Note that in the denominator of efr , after time tmax � t, we only count

satisfaction ofF if it is followed by satisfaction ofG within [tmax � t; t max].

Lemma 2. efr satis�es Axioms FF1-FF4.

The point frequency function expresses what is desired in situations where

there is a precise temporal relationship between events (i.e., if one drops an object
5Where efn (Th ; F; G; � t; t 1; t2) = jf t : (t1 � t � t2) and Th(t) j= F and there exists t0 2

[t + 1 ; min(t2; t + � t)] such that Th (t0) j= Ggj.

36

from a height of 9:8 meters in a vacuum, it will hit the ground in exactly
p

2 seconds).

However, it can be very brittle. Consider mail delivery where one knows a package

will arrive in at most 5 business days 95% of the time. The existential frequency

function efr allows for the implied condition to fall within some speci�ed period of

time rather than after exactly
p

2 seconds as before.

Example 2.2.6 (Existential Frequency Function). Consider thread Th0 from Ex-

ample 2.2.4. Suppose we want to calculate

efr(Th0; at station(train1; stnB); : at station(train1; stnC); 2):

In English, this is the ratio of times thatat station(train1; stnB) is followed by

: at station(train1; stnC) in two units of time in thread Th0.

We can see that formulaat station(train1; stnB) is satis�ed by two worlds: Th0(5) and

Th0(8). Consider world Th0(6), which occurs one time unit after world Th0(5). We

can easily see that Th0(6) 6j= : at station(train1; stnC). However, Th0(7), two units

later, does satisfy: at station(train1; stnC). As Th0(9) also satis�es: at station(train1; stnC),

we have a world within two time units after every world that satis�esat station(train1; stnB).

Hence, the efr is1 in this case.

Properties of pfr : Because of the requirement forF2 to be satis�ed after a spe-

ci�c � t, pfr has several properties (all formulasF1; F2 below are assumed to be

satis�able).

1. pfr (Th; F1; F2 _ F3; � t) � max(pfr (Th; F1; F2; � t); pfr (Th; F1; F3; � t)) (valid

for efr as well)

37

2. pfr (Th; F1; F2 ^ : F3; � t) = pfr (Th; F1; F2 ^ F3; � t) pfr (Th; F1; F3; � t)

3. pfr (Th; F1; F2; � t) � pfr (Th; F1 ^ F3; F2; � t)) pfr (Th; F1 ^ : F3; F2; � t) �

pfr (Th; F1; F2; � t)

4. pfr (Th; F1; F2 ^ F3; � t) � min (pfr (Th; F1; F2; � t); pfr (Th; F1; F3; � t))

5. If pfr (Th; F1; F2; � t) = a and pfr (Th; F1; F3; � t) = b then

pfr (Th; F1; F2 ^ F3; � t) � a + b 1.

Properties of efr : efr satis�es all the properties that pfr has above. In addition,

efr has the property that:

efr (Th; F1; F2; � t) � efr (Th; F1; F2; � t 1)

The following result provides some links betweenpfr and efr .

Proposition 1. Let Th be a thread,F and G be formulas,

1. Let � t1 and � t2 be two positive integers. If� t1 � � t2, then:

pfr (Th; F; G; � t1) � efr (Th; F; G; � t2):

2. Let � t be a temporal interval. The following inequality always holds:

efr (Th; F; G; � t) �
� tX

i =1

pfr (Th; F; G; i)

2.2.4 Satisfaction of Rules and Programs

We are now ready to de�ne satisfaction of an Annotated Probabilistic Tem-

poral (APT) rule.

38

De�nition 13 (Satisfaction of APT rules). Let r be an APT rule with frequency

function fr and I be a tp-interpretation.

1. For r = F fr; G : [� t; `; u], we say thatI satis�es r (denotedI j= r) i�

` �
X

Th 2T

I (Th) � fr(Th; F; G; � t) � u:

2. For r = F
fr

,! G : [� t; `; u; �; �], we say thatI satis�es r (denotedI j= r), i�

` �
X

Th 2T ;
� � fr(Th ;F;G; � t)� �

I (Th) � u:

Intuitively, the unconstrained APT rule F fr; G : [� t; `; u] evaluates the prob-

ability that F leads toG in � t time units as follows: for each thread, it �nds the

probability of the thread according to I and then multiplies that by the frequency

(in terms of fraction of times) with which F is followed byG in � t time units ac-

cording to frequency functionfr. This product is a little bit like an expected value

computation in statistics where a value (frequency) is multiplied by a probability

(of the thread). It then sums up these products across all threads in much the same

way as an expected value computation.

On the other hand, in the case of constrained rules, the probability is computed

by �rst �nding all threads such that the frequency of F leading toG in � t time units

is in the [�; �] interval, and then summing up the probabilities of all such threads.

This probability is the sum of probabilities assigned to threads where the frequency

with which F leads to G in � t time units is in [�; �]. To satisfy the constrained

APT rule F
fr

,! G : [� t; `; u; �; �], this probability must be within the probability

interval [`; u].

39

Example 2.2.7. Coming back to the train scenario from Figure 2.3, the following

is an example of an unconstrained rule (r1) and a constrained rule (r2):

r1 : at station(train1,stnC)
efr
; at station(train1,stnB): [2; 0:85; 1]

r2 : at station(train1,stnB)
efr
,! at station(train1,stnC): [2; 0:9; 1; 0:5; 1]

Consider the second tp-interpretation from Example 2.2.4, which we will callI . By

analyzing the two threads considered possible byI , it is clear that I j= r1, since both

threads have the property that after being at station C the train reaches station B

within two time units, and thus the probability of this event is 1. A similar analysis

leads us to con�rm thatI j= r2, but we must now verify that the constraints placed by

the rule on the threads hold; these constraints require that at least half of the times

in which the train is at station B, station C be reached within 2 time units. This is

indeed the case, since the train stops twice at station B, once going towards C and

once going towards A on its way back. As before, the sum of probabilities of reaching

the station within 2 time units is 1. Finally, consider the rule:

r3 : at station(train1,stnA)
efr
; at station(train1,stnC): [2; 0:5; 0:6]

Clearly, I 6j= r3, since neither of the threads considered possible by the tp-interpretation

satisfy the condition that the train reaches station C within two time units of being

at station A.

The following proposition says that any tp-interpretationthat satis�es certain

kinds of constrained or unconstrainedAPT-logic programs also satis�es a certain

APT rule that can be easily constructed from theAPT-rules in the original APT-

logic program.

40

Proposition 2. Let I be a temporal interpretation,F and G be formulas, and� t

be a temporal interval.

1. If I j=
S � t

i =1

n
F

pfr
; G : [i; ` i ; ui]

o
then I j= F

efr
; G :

h
� t; max(` i); min

� P � t
i =1 ui ; 1

�i
.

2. If I j= F
fr

,! G : [� t; ` p; up; a; b] then 8a` ; b̀ ; au; bu such that a` � a � au

and b̀ � b � bu we haveI j= F
fr

,! G : [� t; ` p; 1; a` ; bu] and I j= F
fr

,! G :

[� t; 0; up; au; b̀]:

Note that in unconstrained APT-rules, the `; u probability bounds account

for the frequency function as well. In the case of constrainedAPT-rules, the `; u

probability bounds do not account for the frequency function. We now show that

using a special frequency function called aquery frequency function, we can use

constrained and unconstrained rules to express annotated formulas.

De�nition 14 (Query Frequency Function). Let Th be a thread,F and G be formu-

las, and� t � 0 be an integer. A query frequency function, denoted qfr(Th; F; G; � t)

is de�ned as follows:

1. If G is a tautology then qfr(Th; F; G; � t) = 1

2. If F is a tautology and G is a contradiction, then qfr(Th; F; G; � t) = 0

3. If F is a contradiction then qfr(Th; F; G; � t) = 1

4. If Th (1) j= F and Th(� t) j= G then qfr(Th; F; G; � t) = 1

5. Else, qfr(Th; F; G; � t) = 0

The following result shows thatqfr is a valid frequency function.

41

Lemma 3. qfr satis�es Axioms FF1-FF4.

qfr allows us to construct constrained and unconstrained rulesthat are equiv-

alent to arbitrary annotated formulas.

Theorem 1. Let q = Q : [t; `; u] be an annotated formula, andI be an interpreta-

tion.

1. For constrained ruler = TRUE
qfr
,! Q : [t; `; u; 1; 1], I j= q i� I j= r .

2. For unconstrained ruler = TRUE
qfr
; Q : [t; `; u], I j= q i� I j= r .

The following is an example of how an annotated formula can beexpressed as

a rule usingqfr .

Example 2.2.8. Consider the train setting from Figure 2.3. One of the anno-

tated formulas given in this example wasat station(train1; stnA) : [1; 0:5; 0:5]. By

applying Theorem 1, this formula is equivalent to the constrained ruler1 and the

unconstrained ruler2:

r1 : TRUE
qfr
,! at station(train1; stnA) : [1; 0:5; 0:5; 1; 1]

r2 : TRUE
qfr
; at station(train1; stnA) : [1; 0:5; 0:5]

2.3 Consistency

2.3.1 Complexity of Consistency Checking

We are now ready to study the complexity of the problem of checking consis-

tency of APT-logic programs. We say that anAPT-logic programK is consistent i�

42

there is a tp-interpretation I such that I j= K. Before stating complexity results,

we give results that hold for any frequency function and anyAPT-rule. The �rst

result follows from axioms FF1-FF4 on frequency functions.

Lemma 4. Consider theAPT-Program f r = F fr; G : [� t; `; u]g.

1. If G is a tautology, thenf rg is consistent i� u = 1.

2. If F is a tautology andG is a contradiction, then f rg is consistent i� ` = 0.

3. If F is a contradiction, then f rg is consistent i� u = 1.

4. If F is not a contradiction, G is not a tautology, and eitherF is not a tautology

or G is not a contradiction then f rg is consistent.

Using this lemma, we can show that for any unconstrainedAPT-rule, the

problem of determining if anAPT-logic program consisting of just thatAPT-rule is

consistentusing any frequency functionis NP-complete.

Theorem 2. Deciding the consistency of anAPT-logic program containing a single

unconstrainedAPT-rule is NP-complete in the size ofBL .

The proof of hardness above is by reduction from the SAT problem, while

membership in NP relies on manipulating Lemma 4.

In deciding the consistency of a single constrained rule, wetake a slightly dif-

ferent approach. The intuition is that if the lower probability bound is not zero,

we must have a thread whose frequency function value falls within [�; �]. Other-

wise, there is no thread available that would ensure a non-zero probability mass

43

as per the de�nition of satisfaction. The idea of classifying threads in this manner

for constrained rules comes into play later when we present consistency-checking

algorithms in Section 2.3.4.

Lemma 5. Let K = f r = F
fr

,! G : [� t; `; u; �; �]g be a constrainedAPT-logic

program consisting of a single rule.K is consistent i� at least one of the following

conditions hold.

� u = 1 and there exists a thread Thin such that� � fr(Th in ; F; G; � t) � � .

� ` = 0 and there exists a thread Thout such that either� > fr(Thout ; F; G; � t) or

� < fr(Thout ; F; G; � t).

� There exists a thread Thin such that � � fr(Th in ; F; G; � t) � � and a thread

Thout such that either� > fr(Thout ; F; G; � t) or � < fr(Thout ; F; G; � t).

Lemma 5, used in conjunction with the frequency function axioms, allow us to

prove that deciding the consistency of a single constrainedrule is also NP-complete.

Theorem 3. Deciding the consistency of anAPT-logic program containing a single

constrainedAPT-rule is NP-complete in the size ofBL .

The NP-hardness of consistency checking forAPT programs (whether con-

strained, unconstrained, or mixed) with more than one rule follows trivially from

Theorems 2 and 3. In the next chapter, we show that the consistency-checking

problem is in the complexity class NP for generalAPTprograms (under some natu-

ral assumptions).

44

However, if we assume that certain conditions hold, we can show that consis-

tency for an APT-logic program containing multipleAPT-rules can be guaranteed.

These restrictions are termed Pre-Condition Disjoint, or PCD; intuitively, they refer

to an APT-Program such that there exists a unique world that satis�esexactly one

of the rule pre-conditions (theF formulas). Hence, we say that the pre-conditions

are \disjoint" from each other. Perhaps such conditions could be speci�ed by a a

tool used to learn the rules from the data-set.

De�nition 15 (Pre-Condition Disjoint (PCD) APT-Logic Program). Let K be an

APT-Logic Program such thatK = f r1; : : : ; rng, where r i = Fi
fr; Gi : [� t i ; ` i ; ui]

or r i = Fi
fr

,! Gi : [� t i ; ` i ; ui ; � i ; � i]. K is Pre-Condition Disjoint (PCD) if the

following conditions hold true.

1. 8i , if r i is constrained, then� i = 1.

2. 8i , � t i � 1.

3. 8i there exists a worldwi such thatwi j= Fi and 8j wherej 6= i; w i 6j= Fj .

4. 8i , fri is equal to either pfr , or efr .

5. tmax � jKj � max(� t i) (where tmax is the length of each thread).

6. 9 world w; such that8i w ; 6j= Fi and w; 6j= Gi .

7. 8r i 2 K , ui = 1.

While somewhat limiting, this restriction still allows APT-Logic Programs that

are useful. Consider the following example.

45

Example 2.3.1. Consider the set of rules shown in Figure 2.3. These rules do not

constitute a PCD program for various reasons. For instance, the upper bound on the

probability of the second rule is not 1. Likewise, condition 3 is not satis�ed since the

�rst and third rule have the same antecedent. However, the following set of rules

satis�es all of the conditions for being a PCD program:

at stn(trn1; stnA) ^ : at stn(trn1; stnB) ^ : at stn(trn1; stnC)
efr
;

at stn(trn1; stnB) : [4; 0:85; 1]

at stn(trn1; stnB) ^ : at stn(trn1; stnA) ^ : at stn(trn1; stnC)
pfr
;

at stn(trn1; stnC) : [2; 0:75; 1]

at stn(trn1; stnC) ^ : at stn(trn1; stnA) ^ : at stn(trn1; stnB)
efr
;

at stn(trn1; stnB) : [3; 0:9; 1]

Conditions 1, 2, 4, and 7 are trivially satis�ed, andtmax can be easily chosen to

satisfy condition 5. Condition 3 can be seen to hold by noting that no two antecedents

of rules can be satis�ed at once. Finally, condition 6 holds since the empty world

does not satisfy any of the formulas involved in the rules.

The useful feature in a PCD program is that (based on the axioms) we are

guaranteed threads with certain frequency function valuesfor each rule. Consider

Lemma 6 below, where for any subset of a givenAPT-program, we are guaranteed

the existence of a thread whose frequency is 1 according to therules in the subset

and is 0 according to the other rules.

Lemma 6. Consider APT-Program K = f r1; : : : ; r i ; : : : ; rng where r i = Fi
fr i
,!

Gi [� t i ; ` i ; ui ; � i ; � i] or r i = Fi
fr i; Gi : [� t i ; ` i ; ui], depending on whetherr i is

46

a constrained or unconstrained rule. IfK is PCD, then for any disjoint parti-

tion of rules, K1, K2, there exists a thread Th such that for all rulesr i 2 K 1,

fri (Th; Fi ; Gi ; � t i) = 1 and for all rules r i 2 K 2, fri (Th; Fi ; Gi ; � t i) = 0 .

The PCD conditions add a \one-tailed" requirement (the �rst requirement of

De�nition 15) to the constrained rules so that � is always one. This allows us to

be guaranteed the existence of threads in the [�; �] bounds. As it turns out, if the

lower bounds on the probabilities are less than a certain amount, we can create an

interpretation to guarantee the consistency of the PCD program.

Theorem 4. For a mixed PCD APT-Program K = f r1; : : : ; r i ; : : : ; rng, if for all r i ,

` i �
jKj 1

jKj
then K is consistent.

In the appendix, we show how PCD assumptions can be leveragedfor a sig-

ni�cant reduction in complexity for constrained APT-programs.

2.3.2 Linear Constraints for Consistency Checking

A straightforward algorithm to �nd a satisfying interpretation given an APT-

logic programK is a brute-force approach that considers each thread. Givenk atoms

and tmax timepoints, there are 2k possible worlds at each timepoint, and 2k�tmax

possible threads. For ease of notation, we shall refer to thenumber of threads asn.

Hence, note that a function that is linear in the number of threads is exponential in

the number of atoms.

Let T = f Th1; : : : ;Th i ; : : : ;Thng be the set of threads. In our linear program,

we will use the variablesV = f v1; : : : ; vj ; : : : ; vng. Each vi represents the (as yet

47

unknown) probability of thread Th i . We will design the linear program so that solu-

tions of the linear program are in a one to one correspondence with interpretations

that satisfy the APT-logic program. Thus, if � is a solution of the linear program,

we want to be sure that the tp-interpretation I � such that I � (Th i) = � (vi) is an

interpretation that satis�es K.

Hence, given anAPT-logic programK, we will construct a set of \straightfor-

ward" linear constraints SLC(K) over variablesV = f v1; : : : ; vj ; : : : ; vng, such that

the interpretation I � associated as above with any solution� satis�es K. The set of

constraints are as follows:

De�nition 16 (Straightforward Linear Constraints (SLC)). Let K be anAPT-logic

program; the set ofstraightforward linear constraintscontains exactly the following:

1.
P n

j =1 vj = 1

2. For each unconstrained ruleFi
fr i; Gi : [� t i ; ` i ; ui] 2 K

(a) ` i �
P n

j =1 fri (Th j ; Fi ; Gi ; � t i) � vj

(b) ui �
P n

j =1 fri (Th j ; Fi ; Gi ; � t i) � vj

3. For each constrained ruleFi
fr i,! Gi : [� t i ; ` i ; ui ; � i ; � i] 2 K

(a) ` i �
P

Th j 2T � i � fr i (Th j ;F i ;G i ;� t i)� � i
vj

(b) ui �
P

Th j 2T � i � fr i (Th j ;F i ;G i ;� t i)� � i
vj

We refer to this set asSLC(K).

48

The �rst constraint above says that the threads are exhaustive. The second

constraint is derived from the formula for satisfaction of an unconstrained rule, while

the third constraint is derived from the formula for satisfaction of a constrained rule.

Note that the coe�cient of vj in constraints (2) and (3) above are both constants

(after the calculations are performed), so these constraints are all linear.

Example 2.3.2. Recall the programKpower from Figure 2.4. In this simple example,

we supposed the power plant delivers power to a transformer (namedtr), which is in

turn connected via a power line (namedln) to a home. Hence, the atomsfunc(tr) and

func(ln) denote that the various components are functioning, and the home receives

power only if both tr and ln are func. Therefore, we have four possible worlds:

w0 = f func(tr); func(ln)g, w1 = f func(tr)g, w2 = f func(ln)g, and w3 = ; . If we set

the time limit to 4 days, then there are44 = 256 possible threads (each world may

occur at each time point). We name these threads Th0; :::;Th255 so that the world

at time point t of thread Thi is ((i=4t) mod 4) (i.e. Th 25 is hw1; w2; w1; w0i) and

associate the variablevi with I (Th i). We now show the constraints inSLC(Kpower):

1.
P i< 256

i =0 vi = 1

2. 0:025�
P i< 256

i =0 pfr (Th i ; func(tr) ^ func(ln); : (func(tr) ^ func(ln)) ; 1) � vi � 0:03

3. 0:95 �
P i< 256

i =0 efr (Th i ; : (func(tr) ^ func(ln)) ; func(tr) ^ func(ln); 3) � vi � 1

4. 0:05 �
P i< 256

i =0 pfr (Th i ; func(ln); : func(ln); 1) � vi � 0:1

5. 0:99 �
P i< 256

i =0 efr (Th i ; : func(ln); func(ln); 2) � vi � 1

Given a solution� of these constraints, we can see immediately thatI � satis�es K.

49

Algorithm 1 Compute consistency ofK using SLC.
SLC-CONSISTENT(APT-Program K)

1. Construct SLC(K).

2. Attempt to solve SLC(K).

3. If solvable, returnconsistent, otherwise,inconsistent.

We provide the following proposition about correctness of the above procedure

for mixed programs.

Proposition 3. For mixed APT-Logic Program K, K is consistent i� SLC(K) has

a solution.

The size of the linear program forSLCfollows immediately from the de�nition.

As each rule requires two linear constraints, and one linear constraint is required to

ensure the variables sum to 1, we have 2jKj +1 constraints. The number of variables

is equal to the number of threads.

Remark 1. SLCcontains 2jKj + 1 constraints and2jB L j� tmax variables.

Using SLCwe can create Algorithm 1, which is guaranteed to give a correct

answer to the question of consistency for anyAPT-Logic Program. However, the

linear program's size is exponential in terms ofjBL j � tmax , making it a very expensive

operation in many situations. There are several obvious ways to reduce this cost.

One such way would be to consider the set of atoms to beonly the atoms present

in the rules. An obvious method to reduce the other factor in the exponent,tmax ,

would be to adjust the granularity of time used. For example,convert all time to

50

hours instead of minutes. However, this would only provide a correct result in terms

of the new granularity. This is an issue we intend to explore infuture research.

It turns out that for arbitrary sets of rules and annotated formulas, one need

not use one variable for each of the 2jB L j� tmax threads. Some threads are equivalent,

and may in fact be considered together. We provide two such methods that consider

equivalent threads. One that reduces the number of worlds based on world equiva-

lence and one that reduces the number of threads based onfrequency equivalence.

2.3.3 World Equivalence

World equivalence uses the following intuition: when two worlds satisfy ex-

actly the same formulas from theAPT-program, they are identical from theAPT-

program's point of view. By partitioning the set of worlds intoclasses of identical

worlds, and working with the classes instead of the individual worlds, we can create

smaller linear programs by associating just one variable with each equivalence class

(rather than one variable with each world as is the case ofSLC).

Consider the ruleF
fr

,! G : [� t; `; u; �; �]. The four world-based equivalence

classes resulting from this rule would be the sets of worlds that satisfy F ^ G, F ^: G,

: F ^ G, and : F ^ : G. We apply this concept toAPT-Logic Programs and divide

the set of worlds accordingly. We can treat these resulting equivalence classes as

worlds and create world-based thread equivalence classes, and use them instead of

threads. This reduces the number of linear constraints for an algorithm similar to

SLC. One must note, however, that the equivalence classes must becomputed �rst,

51

which we will show to be NP-complete.

As world equivalence forAPT-Logic is based on the formulas found inAPT-

Rules and annotated formulas, we will formalize the set of formulas associated with

a program. We introduce the notationformula(K) to denote the set of all formulas

present in an APT-logic program:

formula(K) = f F; G j F
fr

,! G : [� t; `; u; �; �] 2 Kg [

f F; G j F fr; G : [� t; `; u] 2 Kg

Example 2.3.3. Recall the programKpower from Figure 2.4. The set formula(Kpower)

is then

f func(ln); : func(ln); func(tr) ^ func(ln); : (func(tr) ^ func(ln))g;

since these are the only formula appearing inKpower .

The cardinality of formula(K) for a given APT-Logic Program is bounded by

2jKj sinceAPT-Rules have two formulas,F and G. We notice that for each world

w in 2B L there is a subset offormula(K) that w satis�es and a disjoint subset of

formula(K) that w does not satisfy. Hence, with respect to a given set of formulas,

certain worlds are indistinguishable: that is, they satisfyexactly the same formulas

from the set. We call such worldsK-equivalent.

De�nition 17 (World Equivalence). For APT-logic program K, a world w is K-

equivalent to a worldw0 (denotedw � K w0) i� for all F 2 formula(K), w j= F i�

w0 j= F .

52

Example 2.3.4. Continuing with Kpower from Figure 2.4, recall the 4 worlds:w0 =

f func(tr); func(ln)g, w1 = f func(tr)g, w2 = f func(ln)g, and w3 = ; and the formula

from Kpower :

formula(Kpower) = f func(ln); : func(ln); func(tr) ^ func(ln); : (func(tr) ^ func(ln))g:

Here w1 is Kpower -equivalent tow3, since bothw1 and w3 do not satisfy the �rst

formula, do satisfy the second formula, do not satisfy the third formula, and do

satisfy the fourth formula. However,w1 is not Kpower -equivalent to w2 since w1

satis�es : func(ln) (the second formula), whilew2 does not.

The relation � K can be extended to threads in the obvious way.

De�nition 18 (Thread Equivalence). For APT-logic program K, a thread Th1 is

K-equivalent to a thread Th2 (denoted Th1 � K Th2) i� for all time points t, the

world Th1(t) is K-equivalent to world Th2(t).

Example 2.3.5. In Example 2.3.4, we saw thatw1 is Kpower -equivalent tow3. As-

suming four time points, then the thread Th= hw3; w1; w1; w0i will be equivalent

to Th0 = hw1; w3; w3; w0i , since at every time pointt, Th (t) is a world that is K-

equivalent to world Th0(t).

The relation � K is an equivalence relation (i.e., it is transitive, reexive, and

symmetric) both for threads and for worlds; therefore, it can be used to construct a

partitioning of threads into equivalence classes. LetT [� K] = f P1; � � � ; Pmg be that

partitioning. All threads in each Pi are K-equivalent. The following result states

that these partitions have the useful property that all threads in any partition Pi

have the same value forpfr , efr , or qfr for formulas in formula(K):

53

Lemma 7. For APT-logic program K, partitioning P1; : : : ; Pm of T induced by� K ,

for all threads Th; Th0 2 Pi , all F; G 2 formula(K), and all � t;

1. pfr (Th; F; G; � t) = pfr (Th0; F; G; � t)

2. efr(Th; F; G; � t) = efr(Th0; F; G; � t)

3. qfr(Th; F; G; � t) = qfr(Th0; F; G; � t)

Lemma 7 tells us that each partition Pi has a unique value forpfr , efr ,

and qfr (for each F , G, and � t). We introduce the notation pfr (Pi ; F; G; � t),

efr (Pi ; F; G; � t), and qfr(Pi ; F; G; � t) to denote these values. For technical reasons,

we associate alabelwith each threadTh such that all threads in the same partition

Pi have the same label. To de�ne the label, we �rst order the setformula(K) =

f F1; � � � ; Fng. Then, for a thread Th, we assignlabel(Th) to be a length tmax � n

bitstring where bit t0 � i (1 � t0 � tmax and 1 � i � n) is 1 if Th(t0) j= Fi and 0 if

Th(t0) 6j= Fi .

Clearly, all Th; Th0 in the same partition Pi have the same label. Also, all

partitions Pi have a unique label equivalent to the labels of the containedthreads

and denotedlabel(Pi). There are at most as many partitions as there are length

tmax � n bitstrings, and determining if there is a partition associated with a given

bitstring b can be done by checking if there is thread whose label isb.

Example 2.3.6. Using Kpower from Figure 2.4, we number formula(Kpower) as fol-

lows:

f F1 = func(ln); F2 = : func(ln); F3 = func(tr) ^ func(ln); F4 = : (func(tr) ^ func(ln))g.

54

Here, the label for Th= hw3; w1; w1; w0i (worlds wi de�ned in Example 2.3.4) is

0101| {z }
w3

0101| {z }
w1

0101| {z }
w1

1010| {z }
w0

:

To see this, consider the �rst four digits0101 for world w3. World w3 does not

satisfy F1, hence the �rst 0. It does, however, satisfyF2 and F4 causing the second

and fourth digits to be 1.

The thread Th0 = hw1; w3; w1; w0i has the same label:0101010101011010; any

two threads which areKpower -equivalent will have the same labels.

We immediately notice that the number of thread partitions is potentially

smaller than the number of threads. While there are 2B L �tmax threads, there are

only 2jformula (K)j� tmax � 22jKj� tmax partitions. Therefore, using these partitions, rather

than threads, is preferable in designing linear constraints. We can use Lemma 7

to construct smaller sets of linear constraints thanSLC. For these constraints,

we introduce the variablev̂lbl , where lbl is a length tmax � j formula(K)j bitstring

(lbl 2 f 0; 1gjformula (K)jtmax) representing the probability mass assigned to the set of

threads in the partition labeled lbl (v̂lbl =
P

Th 2 Pi ;label(Pi)= lbl I (Th)). We can now

de�ne the world-equivalence linear constraints.

De�nition 19 (World Equivalence Linear Constraints (WELC)). Let K be an APT-

logic program that uses only the frequency functions pfr and efr ; the set ofWorld

Equivalence Linear Constraints, WELC(K), contains exactly the following:

1.
P

i v̂i = 1.

2. For F
fr

,! G : [� t; `; u; �; �]

55

(a)
P

lbl2f l j� � f r (Pi ;F;G; � t)� � ^ l= label(Pi)g
v̂lbl � `

(b)
P

lbl2f l j� � f r (Pi ;F;G; � t)� � ^ l= label(Pi)g
v̂lbl � u

3. For F fr; G : [� t; `; u]

(a)
P

Pi
f r (Pi ; F; G; � t)v̂label(Pi) � `

(b)
P

Pi
f r (Pi ; F; G; � t)v̂label(Pi) � u

4. For all lbl 2 f 0; 1gjformula (K)j� tmax for which there is no Pi such that lbl =

label(Pi), v̂lbl = 0.

Example 2.3.7. WELC(Kpower) (based on programKpower from Figure 2.4) is con-

structed using variableŝvlbl for each of the24�4 = 65; 536 possible labels. Due to

constraint 4, at most 256 of these variables will be non-zero, since there are256

worlds to populate these65; 536 possible equivalence classes. We will therefore be

able to eliminate all but at most256 of the variables from the representation al-

together, since they will be known to be zero in every possible solution. As such,

we only need to use the variables not eliminated via constraint 4 when constructing

WELC(Kpower), and we will do so in this example. The only labels that will have

associated threads are those that are combinations of the labels for the worldsw0,

w1, w2, and w3 (de�ned in Example 2.3.2). With formula(Kpower) being:

f F1 = func(ln); F2 = : func(ln); F3 = func(tr) ^ func(ln); F4 = : (func(tr) ^ func(ln))g

these labels arelbl(w0) = 1010, lbl(w1) = 0101, lbl(w2) = 1001 and lbl(w3) = 0101.

So, for any labellbl, each four digit sequence must be1010, 0101, or 1001. Otherwise

there cannot possibly be a thread Th such that label(Th) = lbl. In fact, since there

56

are only 3 labels for the worlds (w1 and w2, being Kpower -equivalent, share a label),

we know that when there are four time points, there are only34 = 81 variables that

can be non-zero in our linear program (one label at each time point). So, leaving out

the zeroing constraints and supposing each sum
P

lbl sums over those 81 variables

not known to be zero via the zeroing constraints, the set of linear constraints is:

WELC(Kpower) =

1.
P

lbl v̂lbl = 1

2. 0:025�
P

lbl pfr (Th i ; func(tr) ^ func(ln); : (func(tr) ^ func(ln)) ; 1) � v̂lbl � 0:03

3. 0:95 �
P

lbl efr (Th i ; : (func(tr) ^ func(ln)) ; func(tr) ^ func(ln); 3) � v̂lbl � 1

4. 0:05 �
P

lbl pfr (Th i ; func(ln); : func(ln); 1) � v̂lbl � 0:1

5. 0:99 �
P

lbl efr (Th i ; : func(ln); func(ln); 2) � v̂lbl � 1

Note that this set of linear constraints is substantially smaller thanSLC(Kpower),

which used 256 variables whereWELC(Kpower) uses only 81 variables and exactly the

same number of constraints (after removal of trivial zeroing constraints).

Proposition 4. For any APT-program K, WELC(K) is solvable i� K is consistent.

This approach can provide a substantial speedup. As we noted earlier, the

number of partitions is bounded by 22jKj� tmax which will often be much smaller than

the number of threads, 2jB L j� tmax . Further, the number of partitions is bound by the

number of threads, regardless of the size ofK.

Proposition 5. WELCrequires2jKj + 1 constraints and at most22jKj tmax variables.

57

Algorithm 2 Compute consistency ofK using WELC.
WELC-CONSISTENT(APT-Program K)

1. Construct WELC(K).

2. Attempt to solve WELC(K).

3. If solvable, returnconsistent, otherwise,inconsistent.

This suggests Algorithm 2 for checking consistency ofK. The complexity of Al-

gorithm 2 comes from both creating and solvingWELC. Proposition 5 gives the num-

ber of constraints required of a linear program to implementWELC-CONSISTENT.

Building WELCis also di�cult: we have constraint 4, which requires the inclusion

of the constraint v̂lbl = 0 if there is no non-empty partition in T [� K] with label lbl.

Unfortunately, this is an NP-complete operation.

Theorem 5. For APT-Logic Program, K, and labellbl, determining if there is non-

empty Pi 2 T [� K] such that label(Pi) = lbl is NP-complete.

To properly constructWELC, we must solve SAT for every subset offormula(K).

As formula(K) � 2jKj , this amounts to O(22jKj) calls to a SAT solver. Assum-

ing O(2jB L j) operations per SAT solution procedure, this operation willtake time

O(22jKj + jB L j). However, as for most linear program implementations, the running

time for WELC-CONSISTENTwill be exponential in terms of 7jKj tmax [79], the gen-

eration of world equivalence classes will be dominated byWELC itself. Therefore,

in most cases, Algorithm 2 will have a better big-O run time thansolving the set of

straightforward linear constraints.

58

2.3.4 Frequency Equivalence

For constrained rules it is possible to develop a di�erent set of linear con-

straints. Rather than considering equivalent worlds, we develop a partition of the

set of threads based on the value of the frequency function with respect to each rule

in the program. We will then create a new set of linear constraints based on this

equivalence, as withWELC, in order to improve performance.

Therefore, the partitions will depend on the thread's relationship to the prob-

ability interval [�; �], which we shall refer to as thefrequency boundsfor a given

rule. Due to the requirement of considering the frequency bounds, this type of

thread equivalence will be referred to asfrequency equivalenceand apply only to

constrained rules, though there are manipulations one can apply to include anno-

tated formulas; we �rst de�ne an equivalence relation over threads.

De�nition 20 (Frequency Equivalence). For threads Th1 and Th2, and constrained

rule r = F
fr

,! G : [� t; `; u; �; �], we say Th1 is r -frequency-equivalent to Th2

(denoted Th1� r Th2) i� (� � fr(Th1; F; G; � t) � � , � � fr(Th2; F; G; � t) � �).

For APT-Logic Program K containing only constrained conditionals, we say Th1

is K-frequency-equivalent to Th2 (denoted Th1 � K Th2) i� for all rules r 2 K ,

Th1 � r Th2.

Example 2.3.8. Consider rule scandal
pfr
,! : scandal: [1; 0:89; 0:93; 0:8; 1:0] from

Figure 2.1, where we usedAPT-Rules to represent the behavior of stock price based

on news reports. LetK fr-ex be anAPT-program containing exactly this rule. We will

consider the set of atoms to consist only ofscandaland tmax to be 3. In Figure 2.7

59

Thread pfr (Th; scandal;

: scandal; 1)

hscandal; scandal; scandali 0

hscandal; scandal; : scandali 1/2

hscandal; : scandal; scandali 1

hscandal; : scandal; : scandali 1

h: scandal; scandal; scandali 0

h: scandal; scandal; : scandali 1

h: scandal; : scandal; scandali 1

h: scandal; : scandal; : scandali 1

Figure 2.7: For a set of atoms consisting ofscandal, and tmax of 3 time points, the

above chart shows thepfr for all possible threads based on a program consisting

only of rule scandal
pfr
,! : scandal: [1; 0:89; 0:93; 0:8; 1:0] from Figure 2.1. Figure 2.8

groups these threads in frequency equivalence classes basedon pfr .

60

K fr-ex = f scandal
pfr
,! : scandal: [1; 0:89; 0:93; 0:8; 1:0]g

T [� K fr-ex] =
8
>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>:

E1 =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

hscandal; : scandal; scandali ;

hscandal; : scandal; : scandali ;

h: scandal; scandal; : scandali ;

h: scandal; : scandal; scandali ;

h: scandal; : scandal; : scandali

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

;

E2 =

8
>>>>>><

>>>>>>:

hscandal; scandal; scandali ;

hscandal; scandal; : scandali ;

h: scandal; scandal; scandali

9
>>>>>>=

>>>>>>;

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>;

Figure 2.8: For a program consisting only of rulescandal
pfr
,! : scandal :

[1; 0:89; 0:93; 0:8; 1:0] from Figure 2.1, we have frequency equivalence classesE1 and

E2 based on thepfr for all possible threads seen in Figure 2.7.

61

we compute the pfr based on this single rule for all possible threads. In Figure 2.8 we

can then group these threads into two equivalence classes, those whose pfr is within

[0:8; 1] and those whose frequency is outside this range.

For instance, threadshscandal; scandal; scandali and hscandal; scandal; : scandali

both have a pfr less than0:8. Therefore, we have thathscandal; scandal; scandali � K fr-ex

h: scandal; scandal; scandali .

The relation � K satis�es several common properties of relations.

Proposition 6. For any constrained APT-logic program K, � K is reexive, sym-

metric, and transitive.

Therefore � K is an equivalence relation, and we can partitionT (the set

of all possible threads) into equivalence classes according to a given � K . We let

T [� K] be this partitioning, where each setE 2 T [� K] contains only K-frequency-

equivalent threads. We then assign each setE a binary string str (E) of length m

(the number of constrained formulas inK) where digit i is 1 if for all Th 2 E,

� i � fr(Th; Fi ; Gi ; � t i) � � i , and 0 otherwise.

Example 2.3.9. In Figure 2.8 we see a partitioning of the threadsT [� K fr-ex] with

two partitions: E1 and E2. The associated binary strings are:str (E1) = 1 and

str (E2) = 0 . Notice that we only have two frequency equivalence classes of threads,

which is only25% of the 8 threads we had originally.

In the following linear program, we introduce variables �vb for each binary string

b of length jKj .

62

De�nition 21 (Frequency-Equivalence Linear Constraints). For constrained APT-

Logic Program K, the set of Frequency-Equivalence Linear ConstraintsFELC(K)

contains only the following:

1.
P

E 2T [� K] �vstr (E) = 1 (where str (E) is the binary number that labels frequency

equivalence classE)

2. For all lengthjKj binary stringsb if there is noE 2 T [� K] such thatstr (E) = b

then �vb = 0

3. For all Fi
fr

,! Gi : [� t i ; ` i ; ui ; � i ; � i] 2 K , ` i �
P

s2 [0;1]m ;si =1 �vs � ui

Theorem 6. For constrained APT-Logic Program K, K is consistent i� there is a

solution to FELC(K).

As FELCprovides a correct result for consistency, we can use it to develop the

consistency-checking algorithmFELC-CONSISTENTshown below.

Algorithm 3 Compute consistency ofK using FELC.
FELC-CONSISTENT(APT-Program K)

1. Construct FELC(K).

2. Attempt to solve FELC(K).

3. If solvable, returnconsistent, otherwise,inconsistent.

If the frequency equivalence classes of threads for a given program are known,

FELCalso o�ers an improvement in complexity overSLC.

Proposition 7. FELCrequires2jKj + 1 constraints and2jKj variables.

63

Example 2.3.10. Consider theAPT-Program Kstock from Figure 2.1. Let BL be

the set of atoms seen in that program (hencejBL j = 5). We consider a tmax of 4.

From Proposition 1, we know that usingSLCto determine the consistency ofKstock

would require7 constraints and220 = 1; 048; 576 variables. We show below a set of

linear constraints based onFELCbelow that requires7 constraints and only23 = 8

variables. For the programKstock , we have the following linear constraints:

� For rule scandal
pfr
,! : scandal: [1; 0:89; 0:93; 0:8; 1:0]

0:89 � �v001 + �v011 + �v101 + �v111 � 0:93

� For rule secrumor^ earnincr(10%)
pfr
,! stock decr(10%): [2; 0:65; 0:97; 0:7; 1:0]

0:65 � �v010 + �v011 + �v110 + �v111 � 0:97

� For rule

secrumor^ earnincr(10%)
pfr
,! stock decr(10%)̂ cfo resigns: [2; 0:68; 0:95; 0:7; 0:8]

0:68 � �v100 + �v101 + �v110 + �v111 � 0:95

� �v000 + �v001 + �v010 + �v011 + �v100 + �v101 + �v110 + �v111 = 1

The running time of consistency checking viaFELCis independentof the num-

ber of atoms or time points or number of worlds. Thus, even though it runs in time

exponential in jKj , it will in many cases run faster thanSLC, which runs in time

linear in jKj and exponential in the number of worlds or the number of time points.

Further, since the size ofK, the number of worlds, and the number of time points

are all known in advance, one can tell which approach will be faster dynamically,

and dispatch the smaller, faster linear program.

64

However, as withWELC, signi�cant computation cost is required to construct

the linear constraints, speci�cally in identifying the frequency equivalence classes

that are empty. We refer to the obvious, exhaustive, and exactmethod for identify-

ing empty frequency equivalence classes as the Brute Force Frequency Equivalence

Class Algorithm or BFECA.

Algorithm 4 Find Frequency Equivalence Classes of Constrained ProgramK
BFECA(APT-Program K)

1. Generate all possible threads.

2. For each thread,Th, for all i , compute fri (Th; Fi ; Gi ; � t i).

3. Determine for each thread,Th, for each rule,r i , if the associated frequency

function, fri for Th falls within the range [� i ; � i].

4. Based on the result of step 3, determine which frequency equivalence classTh

belongs to.

5. After all threads are generated, return EMPTY if there are no threads found

for a given frequency equivalence class is empty and OK otherwise.

As BFECA exhaustively considers all threads, we have the following trivial

proposition concerning correctness.

Proposition 8. For each frequency equivalence classC, if C is empty BFECAre-

turns EMPTY; otherwise, if C contains at least one thread,BFECAreturns OK.

For each thread,BFECAcalculates the frequency function with regard to each

65

rule. Hence, for each of the 2jB L jtmax threads, it calculatesjKj frequency functions.

This leads us to the complexity result below.

Proposition 9. The complexity ofBFECAis:

O

2jB L jtmax � F (tmax) � jKj

�

whereF (tmax) is de�ned as follows. Supposetime i is the time required to compute

fri (Th; Fi ; Gi ; � t i). Then F (tmax) equalsmaxi (time i).

Note that if F (tmax) is linear, then the complexity of �nding the frequency

equivalence classes and then performingFELCis still better than SLC. The domi-

nating term in the complexity of FELChas an exponent ofjBL j � tmax when BFECA

is used. SLC, on the other hand, will have an exponent of 3:5 � jBL j � tmax for most

linear program solvers [79]. The following example shows how BFECAworks.

Example 2.3.11. Consider theFELCconstraints set up forKstock in Example 2.3.10.

Look at rulessecrumor^ earnincr(10%)
pfr
,! stock decr(10%): [2; 0:65; 0:97; 0:7; 1:0]

andsecrumor̂ earnincr(10%)
pfr
,! stock decr(10%)̂ cfo resigns: [2; 0:68; 0:95; 0:7; 0:8].

For a given thread, Th, consider the pfr 's associated with those rules. Letp1 =

pfr (Th; secrumor̂ earnincr(10%); stock decr(10%); 2) and p2 = pfr (Th; secrumor̂

earnincr(10%); stock decr(10%) ^ cfo resigns; 2).

We note that p2 must be less than or equal top1 as theG formula for both rules

di�ers only by one conjuncted atom. Therefore, there is no possible Th such that

p2 > p 1. Hence, variables�v100 and �v101 from the FELCconstraints in Example 2.3.10

must be set to zero.

66

To �nd such variables,BFECAcalculates the frequency function for all possible

threads. However, withSLC-CONSISTENT, the dominating term in this example

requires 270 operations, whereBFECA requires only 220 operations. Note that the

complexity ofBFECAoften will dominate the complexity ofFELC-CONSISTENT.

As suggested earlier,FELCcan be used on programs that consist of both con-

strained rules and annotated formulas. We can include annotated formulas in our

constrained program by writing rules that are essentially equivalent to annotated

formulas, as described earlier through use of the Query Frequency Function in Def-

inition 14.

Note that if the PCD conditions are met (Page 46), we can often be guaranteed

that all FELCequivalence classes will be non-empty, making theBFECAalgorithm

unnecessary. See the Appendix for a complete discussion of this special case.

2.3.5 Combining World and Frequency Equivalence

We have introduced two improved methods for computing consistency: FELC-

CONSISTENT/BFECAand WELC-CONSISTENT. We now introduce a hybrid ap-

proach that uses the world-equivalence classes ofWELC to ease the computation

necessary to compute the frequency-equivalence classes needed in FELC. World-

equivalence can be used to determine if a frequency equivalence class is empty or

not. The intuition is simple: we follow the approach ofBFECA, generating the set

of threads and �nding the frequency function for each one. However, rather than

generating the set of threads, we generate the set of world-based thread partitions

67

and �nd their frequency functions. As shown in the discussionof WELC, the num-

ber of world-based thread partitions can be considerably less than the number of

threads. Hence, we present world equivalence for �nding frequency equivalence, or

WEFE.

Algorithm 5 World Equivalence for �nding Frequency Equivalence Classes of Con-

strained ProgramK
WEFE(APT-Program K)

1. Find the world equivalence classes based onformula(K).

2. Generate all world-equivalence based thread partitionsfor K.

3. For each world-equivalence thread partition, P, for all i , compute

fri (P; Fi ; Gi ; � t i).

4. For each rule, r i let IN i be the set of thread partitions such that � i �

fri (P; Fi ; Gi ; � t i) � � i . For each rule, letOUTi be all partitions not in IN i .

5. For string s 2 [0; 1]jKj let the set PCLASSs be de�ned as
� T

si =1 IN i
	

\

� T
si =0 OUTi

	
.

6. For each classcls return EMPTY if PCLASSs � ; and OK otherwise.

As WEFEexhaustively considers all world equivalence based threadpartitions,

and each thread belongs to exactly one partition,WEFEprovides a correct answer.

Proposition 10. If a given frequency equivalence class is empty,WEFE returns

EMPTY. If there is a thread in a given frequency equivalence class,WEFEreturns

68

OK.

The computational complexity of this algorithm is dependent upon the num-

ber of thread-partitions resulting from world-equivalence. As stated before, this is

22jKj� tmax . Further, the cost of calculating the frequency function foreach thread is

only O(tmax) as checking the satis�ability of the F and G formulas in a rule by a

world equivalence class is a trivial operation, since the satisfaction is pre-determined

when the world-equivalence classes are generated.

Proposition 11. The complexity ofWEFEis

O

22jKj� tmax � tmax � jKj

�

when the set of world-equivalence classes forK is known.

WEFE/FELC-CONSISTENTis generally preferable for checking the consistency

of constrained programs: because it considers threads on a world-equivalence basis

rather than individually, it should generally have a shorter run time than BFECA

even taking into account the costs of constructing world-equivalence classes. We

illustrate this in the following example:

Example 2.3.12. Suppose we want to buildFELCconstraints for Kstock as we did

in Example 2.3.10 wheretmax = 4. We note that formula(Kstock) consists of the

following:

1. scandal

2. : scandal

69

3. secrumor^ earnincr(10%)

4. stock decr(10%)

5. stock decr(10%) ^ cfo resigns

Although the number of world equivalence classes, based on formula(Kstock) would

be25, which is also the number of worlds due to there only being5 atoms referenced

in the program, we note that many of the world equivalence classes are empty. For

example, we know that there can be no world that satis�es both of the �rst two formu-

las, which immediately reduces our number of world equivalence classes by a factor

of two. Further, there can be no world that does not satisfystock decr(10%) but sat-

is�es stock decr(10%) ^ cfo resigns. Hence, the number of world equivalence classes

is 12 in this case, a signi�cant reduction from the32 worlds originally considered.

Therefore, WEFE only considers124 = 20; 736 world-equivalent threads, as

opposed toBFECA, which considers324 = 1; 048; 576 threads. Note that if the

world equivalence classes are known, this cost ofWEFE may still dominate FELC-

CONSISTENT. This is a vast improvement over the270 operations required bySLC-

CONSISTENT.

2.4 Entailment by APT -logic programs

Now that we have dealt with consistency, we can explore the issue of entail-

ment, which is de�ned in the usual way.

De�nition 22 (Entailment) . Let K be anAPT-logic program,r be a rule, andaf be

70

an annotated formula. We say thatK entails af i� for all models I of K, I j= af ,

and that K entails r i� for all models I of K, I j= r .

Example 2.4.1 (Entailment) . Recall that in Example 2.3.8 we presented the fol-

lowing APT-Program:

K fr-ex = f scandal
pfr
,! : scandal: [1; 0:89; 0:93; 0:8; 1:0]g

Suppose we form the following rule as a hypothesis.

rhyp = scandal
pfr
,! : scandal: [1; 0:88; 0:94; 0:8; 1:0]

DoesK fr-ex entail rhyp? A quick examination of the only rule in the program and the

hypothesis tells us that except for the probability bounds, they are the same. Notice

that the rule in K fr-ex has probability bounds[0:89; 0:93] and the probability bounds

of rhyp are a superset,[0:88; 0:94]. Therefore, we know that any interpretation in

which the sums of the probabilities of threads with a frequency ratio between[0:8; 1:0]

sum to a quantity in [0:89; 0:93], are also in [0:88; 0:94]. So, by the de�nitions of

satisfaction and entailment, we can say thatK fr-ex entails rhyp .

The following result shows that checking entailment of an annotated formula by an

APT-logic program is coNP-hard.

Theorem 7. Given anAPT-logic programK and an annotated formula,af , deciding

if K entails af is coNP-hard in jBL j (the number of atoms).

In the next chapter, we prove a matching upper bound for the complexity of

this problem.

71

2.4.1 Linear Constraints for Entailment

We shall now provide algorithms for computing entailment based on the linear con-

straints SLC, WELC, and FELC. In all cases, the method is straightforward: we

determine the minimal and maximal probability for the annotated formula in in-

terpretations satisfying the original knowledgebase by minimizing and maximizing

the appropriate sum subject to some set of linear constraints. Due to the fact that

any annotated formula can be viewed as a constrained rule, wewill not describe the

entailment of annotated formulas in this section.

Algorithm 6 Entailment of Rule r by Program K with SLC
SLC-ENT(APT-Program K)

1. If r is unconstrained, (r = F fr; G : [� t; `; u]), create rule r 0 = F fr; G :

[� t; ` 0; u0] where`0; u0 are variables.

2. If r is constrained, (r = F
fr

,! G : [� t; `; u; �; �]) create rule r 0 = F
fr

,! G :

[� t; ` 0; u0; �; �] where`0; u0 are variables.

3. Create set of linear constraintsSLC(K [f r 0g).

4. Let �̀0 be the minimization of `0 subject to SLC(K [f r 0g).

5. Let �u0 be the maximization ofu0 subject to SLC(K [f r 0g).

6. If [�̀0; �u0] � [`; u] return ENTAILS otherwise return NOT ENTAILS.

We can show Algorithm 6 to be correct and to take time exponential in jB ` j

(as expected due to Theorem 7).

72

Proposition 12 (Checking Entailment using SLC). For unconstrained rule r =

F fr; G : [� t; `; u] or constrained rule r = F
fr

,! G : [� t; `; u; �; �] and programK,

SLC-ENTreturns ENTAILS i� K entails r and returns NOT ENTAILS i� K does

not entail r

Proposition 13. SLC-ENT requires solving at most two linear programs. Each

linear program has2jKj + 1 constraints and2jB L �j tmax variables.

We now give an example of how Algorithm 6 will run in practice.

Example 2.4.2. ConsiderAPT-Program Kstock introduced in Figure 2.1 withtmax =

4. Suppose we want to see ifKstock entails the annotated formulaquery = earndecr(10%) :

[3; 0:50; 0:80].

First, we re-write the query as a rule usingqfr . Hence, queryrule = TRUE
qfr
,!

earndecr(10%) : [3; 0:50; 0:80; 1; 1]. From this rule, we create query0rule = TRUE
qfr
,!

earndecr(10%) : [3; `0; u0; 1; 1].

We now consider all possible threads givenKstock [f query0
rule g and tmax = 4. As

there are6 atoms in the union of the program and query, we have224 = 16; 777; 216

possible threads (jT j = 224). Hence, we set up the following linear constraints:

� For rule scandal
pfr
,! : scandal: [1; 0:89; 0:93; 0:8; 1:0]

0:89 �
P

Th j 2T 0:8� pf r (Th j ;scandal;: scandal;1)� 1:0
vj

0:93 �
P

Th j 2T 0:8� pf r (Th j ;scandal;: scandal;1)� 1:0
vj

� For rule secrumor^ earnincr(10%)
pfr
,! stock decr(10%): [2; 0:65; 0:97; 0:7; 1:0]

0:65 �
P

Th j 2T 0:7� pf r (Th j ;sec rumor^ earn incr(10%);stock decr(10%);2)� 1:0
vj

0:97 �
P

Th j 2T 0:7� pf r (Th j ;sec rumor^ earn incr(10%);stock decr(10%);2)� 1:0
vj

73

� For rule

secrumor^ earnincr(10%)
pfr
,! stock decr(10%)̂ cfo resigns: [2; 0:68; 0:95; 0:7; 0:8]

0:68 �
P

Th j 2T 0:7� pf r (Th j ;sec rumor^ earn incr(10%);stock decr(10%)^ cfo resigns;2)� 0:8
vj

0:95 �
P

Th j 2T 0:7� pf r (Th j ;sec rumor^ earn incr(10%);stock decr(10%)^ cfo resigns;2)� 0:8
vj

� For rule query0
rule = TRUE

qfr
,! earndecr(10%) : [3; `0; u0; 1; 1]

`0 �
P

Th j 2T 1� qf r (Th j ;TRUE;earn decr(10%);3)� 1:0
vj

u0 �
P

Th j 2T 1� qf r (Th j ;TRUE;earn decr(10%);3)� 1:0
vj

�
P j< 224

j =0 vj = 1:

As it turns out, the minimization of `0 is 0 and the maximization ofu0 is 1. Since

[0; 1] 6� [0:5; 0:8], we can say thatKstock doesnot entail query.

SLC-ENTuses the SLC set of linear constraints. However, one could easily

substitute WELCor FELCfor SLC in SLC-ENT. We present an algorithm for alter-

nate linear constraints,ALC-ENT, that mirrors SLC-ENTand leverages these other

constraints in the appendix.

There is a further improvement that can be made in practice: ifwe solve the

linear program once, and �nd that the minimization of `0 is less than`, we have

determined that the rule is not entailed by the program, and solving the linear

program again is not necessary to decide entailment.

2.5 Applications of APT Logic

APT-logic programs have many possible applications; in this section we will

74

Algorithm 7 The APT-Extract Algorithm.
APT-Extract (T , ActCond , MaxBody , �, SuppLB , � ,STAT-Test)

1. Rules := ; ;

2. for each combination (environment variable ; value) choose 1; : : : ; MaxBody f

3. let Body be the current combination; supportBody := 0; supportBoth := 0;

4. for t = 1 to maxTime (T) f

5. bodyHappened:= false;

6. if Body is true at time t then

7. bodyHappened:= true; actHappened := false;

8. for d = 1 to � f

9. if ActCond is true at time t + d then actHappened := true;

10. break for;

11. g

12. if bodyHappened then supportBody := supportBody + 1;

13. if bodyHappened and actHappened then supportBoth := supportBoth + 1;

14. g

15. if supportBody <> 0 then con�dence := supportBoth / supportBody ;

16. else con�dence := 0;

17. if (supportBoth > suppLB) ^ STAT TEST (Body; ActCond) then

18. add Body
pfr
; ActCond : [� ; con�dence �; con�dence + �] to Rules;

19. g

20. return Rules ;

75

briey describe an e�ort to learn conditions under which various terror groups took

various actions, in the form ofAPT-programs. We assume that the data is given

in the form of a table that contains two kinds of attributes: action and environ-

ment, and that each tuple represents the values of each of these attributes for a

certain time point. A good example of this kind of data is the \Minorities at Risk

Organizational Behavior" (MAROB) data set [181]. This data set has identi�ed

around 150 parameters to monitor for about 300 groups aroundthe world that are

either involved in terrorism or are at risk of becoming full-edged terrorist organi-

zations. The 150 attributes describe aspects of these groups, such as whether or not

the group engaged in violent attacks, if �nancial or military support was received

from foreign governments, and the type of leadership the group has. It was a sim-

ple task to divide the attributes into actions that could be taken by the group (i.e.,

bombings, kidnappings, armed attacks, etc.) and environmental conditions (i.e., the

type of leadership, the kind and amount of foreign support, whether the group has a

military wing, etc.). Values for these 150 parameters are available for up to 24 years

per group, though it is less for some groups (e.g., groups that have been around

for a shorter duration). For each group, MAROB provides a table whose columns

correspond to the 150 parameters and the rows correspond to the years. There are

many social science data sets that use such data. These include the KEDS data set

from the University of Kansas that tracks country stability data (rather than terror

group data) [151] and the Political Instability Task Force (PITF) data [57].

The APT-Extract algorithm provides a basic approach to extractingAPT-

76

rules 6. The inputs are: a table of historic data, a condition on an action variable

(variable name and value), a maximum size for the body, a valuefor �, a lower

bound for the support of the rule, and a real number� 2 [0; 1] that will determine

the width of the probability annotations for the extracted rules, and an arbitrary

statistical test (e.g., a t-test or something based on p-values in statistics) selected by

the user that measures the correlation between the values ofthe body of a possible

rule and the head. We use the standard measurements of support and con�dence

from the literature on association rules: given tableT, the support of a condition

C in T is the number of tuples for whichC is true; given conditionsC1 and C2,

the con�dence in the fact that C1 is accompanied byC2 is the ratio of the support

of C1 ^ C2 to the support of C1. As an example of the kind of rules that can be

extracted by this algorithm, some of the rules extracted from the data for Hezbollah

are given in Figure 2.2.

2.6 Chapter 2 Related Work

In addition to past work on probabilistic logic programming[130, 129], proba-

bilistic logic programs were studied in [84], [86], and [93,94, 95], who showed how to

introduce various probabilistic dependencies into probabilistic LPs. [111, 112] made

major contributions to bottom up computations of probabilistic LPs.

[98] and [66] were among the �rst to provide a logic to integrate time and prob-

6Note that this algorithm is not a novel one, and simply performs calculations to capture

interesting relationships present in the data in order to build rules. More complex algorithms for

rule extraction are outside the scope of this dissertation.

77

ability. [78] also studied the integration of time and probability in order to facilitate

e�cient planning. He was primarily interested in how the probability of facts and

events change over time. [62] developed a logic for reasoning about actions, prob-

ability and time using an interval time model. [30] developed methods to extend

possibilistic logic to handle temporal information. This logic associates, with each

formula of possibilistic logic, a set of time points describing when the formula has a

possibilistic truth value. [63] studied the semantics of reasoning about distributed

systems where uncertainty is present using a logic where a process has knowledge

about the probability of events for decision making by the process. [44, 43] devel-

oped logics of time and belief to model the behavior of distributed systems, while

[169] developed a framework that integrates beliefs, time, commitment, desires, and

multiple agents. [13] developed a language to reason about actions in a probabilistic

setting; their models use static and dynamic causal laws together with background

(unknown) variables whose values are determined by factors not in the model. Build-

ing on top of past work by [34], [36] introduce heterogeneoustemporal probabilistic

agents to model agent behavior and develop a model theory and �xpoint semantics

focusing on agents built using legacy code.

Though there has been extensive work on temporal reasoning,the key di�er-

ence betweenAPT logic programs and past works in veri�cation [96, 42, 173, 25, 56,

97] is the use of frequency functions in our work to de�ne the frequency with which

a given formulaG holds (some given time) after a given formulaF holds. We show

that such a de�nition can be given in many di�erent ways and, rather than commit-

ting to one such de�nition, we provide axioms that any frequency function should

78

satisfy. A result of our introduction of the frequency function is that the probability

an event occurs at timet is dependent on the events that occur in interval [1; t] and

interval [t; t max].

APT-Logic distinguishes itself from other temporal logics in the following ways:

1. It provides for reasoning about probability of events within a sequence of

eventsand probabilistic comparison between sequences of events.

2. Future worlds can depend on more than just the current world.

3. It provides bounds on probabilities rather than just a point probability.

4. It does not make any independence assumptions.

2.6.1 Markov Decision Processes

Many temporal logics, whether probabilistic or not, make use of some sort of

state transition system as an underlying structure. A state-transition system is said

to conform to theMarkov Property if each transition probability only depends on the

current state [146]. We demonstrate that whileAPT-Logic Programs maintain much

of the expressiveness of most state-transition systems, they also have the ability of

expressing non-Markovian sequences of events. Speci�cally, the semantic structures

used in APT-Logic (worlds, threads, interpretations) can be represented by state

transition systems when the following restrictions are applied:

1. As APT-Logic only deals with �nite temporal sequences, only the �rst tmax

states generated by an MDP will be considered.

79

2. By de�nition, each world represents a unique set of atoms.Therefore, a cor-

responding state transition system must have the restriction that each state

is uniquely labeled;i.e., each state in the MDP represents exactly one world.

3. Each transition in the MDP takes one unit of time.

Our notation for an MDP most resembles thereactive probabilistic labeled

transition system (RPLTS) [25, 56, 97]. Below, we will formally de�ne an MDP

with respect to a set of actionsAct , and a set of atomic propositions,BL . When

comparing MDPs to APT-Programs, we will assume that theAPT-Program uses

the same set of ground atoms, and that each state in an MDP has aunique atomic

label. In this manner, we can equate MDP states with worlds intp-interpretations.

Hence, an MDP is de�ned as follows:

De�nition 23 (MDP) . A Markov Decision Process (MDP) consists of a 4-tuple

L = (S; �; P; lbl; s1) where:

� S is a �nite set of states

� � � S � Act � S is the transition relation

� P : � ! [0; 1] is the transition probability distribution, which satis�es:

� 8 s 2 S;8a 2 Act
P

s0:(s;a;s0)2 � P(s; a; s0) 2 [0; 1]

� 8 s 2 S;8a 2 Act (9s0(s; a; s0) 2 �))
P

s0:(s;a;s0)2 � P(s; a; s0) = 1

� lbl : S ! 2B L is the labeling of each state that speci�es the set of propositions that

are true in a state. Each state has a unique set of propositions.

80

� s1 2 S is the initial state.

When an MDP is employed with policy� , it means that in state si , action

� (si) is taken. An MDP that uses only a single policy is often referred to as a

Stochastic Process, or Markov Process. With the de�nition of an MDP and notion

of a policy, we can now state what it means for a tp-interpretation to satisfy an

MDP.

De�nition 24. Let L be an MDP, � be a policy,I be a tp-interpretation, andtmax

be the maximum value of time. We say thatI satis�es the pair (L; �) i�: for all

sequences ofn = tmax states,seq� s1 ! : : : ! si ! : : : ! sn , there exists a thread

Th such that:

� For every si in seq, a 2 lbl(si) i� a 2 Th(i)

�
Q n 1

i =1 P(si ; � (si); si +1) = I (Th)

Further, we say that an interpretation I satis�es an MDP L and set of policies

POL i� there exists a policy � 2 POL such that I j= (L; �).

We can extend the notion ofentailment described earlier to MDP's and de-

scribe entailment relationships between MDP's andAPT-Programs. Based on this

idea, we now can de�ne a notion ofequivalencebetween an MDP and anAPT-

Program as follows.

De�nition 25 (Equivalence/Entailment). An MDP L and set of policies POL is

equivalent to APT-Program K when tp-interpretation I j= (L; POL) i� I j= K.

(L; POL) is said to entail K if for all tp-interpretations I , if I j= (L; POL) then

81

I j= K. Finally, K is said to entail (L; POL) if for all tp-interpretations I , if I j= K

then I j= (L; POL).

With this notion, given an MDP and policy, we can now create anAPT-Logic

Program such that the set of satisfying interpretations forthe MDP and policy is

the same as the set of satisfying interpretations for theAPT-Logic Program. We

use these notions of entailment and equivalence to specify the semantic relationship

betweenAPT-Logic: if for any APT-Program there is an equivalent MDP and a set

of policies, then we will considerAPT-Logic to be no more expressive than MDPs.

Soon we will see this is not the case, and thatAPT-Logic is in fact more expressive

than MDPs.

First however, we provide the following formula notation.F is a mapping of

states to formulas such thatF (s) � (
V

a2 lbl(s) a) ^ (
V

b=2 lbl(s) : b). Second, we provide

the following probability measurement of at-length sequence starting with states1

and ending with statest . We use the notations ! t s0 to denote the set of sequences

of t transitions from s to s0.

De�nition 26 (Sequence Probability Measure). Let L be an MDP, � be a policy,

s1; st be states, andt be a positive integer. Thesequence probability measure, SPM

is de�ned as follows:

SPML;� (st ; t) =
X

s1 ! t ! 1st

!
t 1Y

i =1

P(si ; � (si); si +1)

#

So, the SPM totals the probabilities of all sequences from the initial state to

st in t 1 transitions.

82

Next, we will present Algorithm 8 that, given an MDP and set of policies

(L; POL), creates anAPT-Program K such that (L; POL) entails K. This construc-

tion is guaranteed to be correct by the following theorem.

Algorithm 8 GenerateAPT-Program that is entailed by a given MDP and set of

policies.
MAKE-APT(MDP L; PolicySet POL)

1. Create annotated formulaF (s1) : [1; 1; 1].

2. For each states, and each time pointt, there arejPOLj SPM's, one for each

policy. Let min (SPML;� (s; t)) be the minimum such SPM.

3. For each states, and each time pointt, let max(SPML;� (s; t)) be the maxi-

mum SPM.

4. For each time pointt 2 [1; tmax], and each statesi , create the following anno-

tated formula: F (si) : [t; min (SPML;� (si ; t)) ; max(SPML;� (si ; t))].

Theorem 8. If an interpretation I satis�es MDP L with set of policiesL, then it

satis�es APT-Program K generated fromMAKE-APT.

Clearly, if we restrict the MDP to a single policy, then we cancreate anAPT-

Program usingMAKE-APT that is equivalent to the MDP and single policy.

Corollary 1. An interpretation I satis�es MDP L with policy � , i� it satis�es

APT-Program K generated fromMAKE-APT.

83

It is interesting to note, however, that although we can create an APT-Logic

Program that is entailed by a given MDP and set of policies, wecannot always create

an APT-Logic Program that entails an MDP and a set of policies. The intuition is

that, in certain circumstances we are guaranteed that anAPT-Logic Program has

an in�nite number of satisfying interpretations. If an MDP and set of policies are

created such that these circumstances hold, then creating an APT-Program that

entails the given MDP and set of policies is impossible. Hence, we �rst make the

claim of the special circumstance that guarantees an in�nite number of satisfying

interpretations. The claim is that for APT-Program K, if there exists satisfying

tp-interpretations for K, I 1, I 2, such that for threadsTh1, Th2, I 1(Th1) = 1 and

I 2(Th2) = 1, then there is an in�nite number of satisfying interpretations for K. We

describe why this is true in the following paragraph.

Let c 2 (0; 1) and b2 (c;1). Let I 3 represent an in�nite number of interpreta-

tions such that I 3(Th1) = b and I 3(Th2) = (1 b). K is then satis�ed by an in�nite

number of interpretations if all possibleI 3 interpretations satisfy K. Suppose by

way of contradiction that someI 3 does not satisfyK. We have two cases:

Case 1: There exists an unconstrained rule,r such that I 3 6j= r .

Let r = F fr; G : [� t; `; u]. Let a1 = fr(Th1; F; G; � t) and a2 = fr(Th2; F; G; � t).

Let a1 � a2. By the de�nition of satisfaction, we know that [a1; a2] � [`; u]. By

the de�nition of satisfaction, we know that
P

Th 2T I 3(Th)fr(Th; F; G; � t) < `

or
P

Th 2T I 3(Th)fr(Th; F; G; � t) > u asI 3 6j= r . Therefore,b�a1+(1 b)�a2 < `

or b� a1 + (1 b) � a2 > u . However, clearly,b� a1 + (1 b) � a2 � (a1; a2) which

84

implies b� a1 + (1 b) � a2 � [`; u]. Hence, we have a contradiction.

Case 2: There exists a constrained rule,r such that I 3 6j= r .

Let r i = F
fr

,! G : [� t; `; u; �; �]. We have three cases:

Case 2.1: Th1; Th2 2 ATSi

Then, ` � 1 � u and the probabilities of both threads summed together

must fall in this probability bounds. As I 3(Th1) + I 3(Th2) = 1, I 3 then

must satisfy r i , so we have a contradiction.

Case 2.2:Either Th1 2 ATSi or Th2 2 ATSi

If ` 6= 1, then there existsc 2 (0; 1) such that there is an in�nite number

of interpretations as per the de�nition of I 3 such that I 3 j= r i . If ` = 1,

then either I 1 or I 2 does not satisfyr i . Hence, we have a contradiction.

Case 2.3: Th1; Th2 =2 ATSi

In this case, any interpretation that assigns probabilities only to Th1 and

Th2 satis�es r i . Therefore,I 3 must satisfy r i .

Now we consider a very simple MDP with only two policies. We seethat this MDP

causes the above mentioned circumstances to occur. Hence, wecannot construct an

APT-Program that entails the MDP and set of policies.

Let L be an MDP, the set of atoms,BL , be f ag, S = f s1; s2g be such that

lbl(s1) � f ag and lbl(s2) � ; , Act = f x; yg, P(s1; x; s1) = 1 and P(s1; x; s2) = 0,

P(s1; y; s1) = 0, and P(s1; y; s2) = 1. We de�ne the set of policies,POL = f � 1; � 2g

85

such that � 1(s1) = x and � 2(s1) = y. Let tmax = 2. We claim that it is impossible

to construct an APT-Program that entails (L; POL).

So, we can see why there does not exist anAPT-Program that entails the

MDP described above. Assume by way of contradiction that we can create anAPT-

Logic ProgramK such that all interpretations that satisfy (L; � 1) or (L; � 2) satisfy

K. As each MDP-policy tuple is satis�ed by exactly one interpretation, we have

the following threads and interpretations based on the set ofworlds W = f w1; w2g

wherew1 � lbl(s1) and w2 � lbl(s2).

� Thread Th1 � h w1; w2i . Let I 1 be an interpretation such that I 1(Th1) = 1 and

sets the probability of all other threads to zero.

� Thread Th2 � h w1; w1i . Let I 2 be an interpretation such that I 2(Th2) = 1 and

sets the probability of all other threads to zero.

Hence,APT-Logic ProgramK must be satis�ed by exactly I 1 and I 2. However, by

the claim above, any program satis�ed by these two interpretations is also satis�ed

by an in�nite number of interpretations, so we have a contradiction.

So, based on the earlier de�nition ofequivalence, while we can construct an

equivalent APT-Program for an MDP and a single policy, we cannot do so for an

MDP and set of policies. However, is the opposite true? It is: it would be trivial to

construct an MDP that entails anAPT-Program, since the null MDP can accomplish

this. This highlights a di�erence between MDPs andAPT-Logic Programs: we

cannot have rules that saythis relationship holds with probabilityp1 or probability

p2. However, we can express ranges of probabilities.

86

While we cannot create anAPT-Program that entails a given MDP and set

of policies,APT-Programs can be satis�ed by tp-interpretations that cannotsatisfy

any MDP. In other words, there are APT-programs and tp-interpretations that

satisfy thoseAPT-programs where there is no MDP that is satis�ed by that tp-

interpretation. Consider the set of ground atomsBL = f ag and tmax = 4 and the

below APT-Logic Program,K:

� a : [1; 1; 1]

� a
pfr
; : a : [1; 0:5; 0:5] (or a

pfr
,! : a : [1; 0:5; 0:5; 1; 1])

We included an alternate second rule to illustrate that thistype of expressiveness

result is true about both constrained and unconstrained programs. Consider worlds

w1 � f ag and w2 � ; . Let I be an interpretation that assigns probabilities to the

threads below:

� Th1 � h w1; w2; w1; w2; i , I (Th1) = 0 :5

� Th2 � h w1; w1; w1; w1; i , I (Th2) = 0 :5

It is trivial to show that I j= K. We claim that it is impossible to build an MDP L

with set of policiesPOL such that tp-interpretation I j= (L; POL).

Let S = f s1; s2g such that lbl(s1) � w1 and lbl(s2) � w2. Suppose by way of

contradiction that I j= (L; POL). Therefore, there exists a policy,� 2 POL such

that I satis�es (L; �). Hence, the following must be true:

� P(s1; � (s1); s2) � P(s2; � (s2); s1) � (s1; � (s1); s2) = I 1(th1) = 0 :5

87

{a}

{} {a}

{a}

{} {a}

1-p

1-p

 p

p

r
{a}

{}

1-p

p r

Figure 2.9: Left: Unrolled MDP in an attempt to create an MDP that satis�es

interpretation I in the text. Notice how the sequencehfag; fg ; f ag; f agi must be

assigned a non-zero probability. Right: A standard representation of the MDP on

the left. Notice that the MDP must allow for non-zero probability of threads that

are given a zero probability in interpretationI .

� P(s1; � (s1); s1) � P(s1; � (s1); s1) � (s1; � (s1); s1) = I 1(th2) = 0 :5

Refer to the left side of Figure 2.9 for a graphical representation of what follows. Let

P(s1; � (s1); s2) = p. Then, by the de�nition of an MDP, P(s1; � (s1); s1) = 1 p. By

the above equalities, 1 p > 0. Let P(s2; � (s2); s1) = r . Therefore,p2 � r = 0:5. Now

consider the sequenceseq� s1 ! s2 ! s1 ! s1. The probability of this sequence

must be set to zero, by the de�nition of I . Then, P(seq) = p � r � (1 p) = 0.

However, we know thatp � r cannot be zero and we know that 1 p > 0. Hence, we

have a contradiction.

The above discussion illustrates the di�erences between MDPsand APT-Logic.

One could argue that the use of policies is overly restrictive for an MDP, i.e., that

perhaps the action should be decided based on time, or a combination of time and

the current state. However, we can easily modify the above claim based on time or

88

actions based on time and current state and obtain the same result. We suspect that

it is not possible to have an MDP that replicates anAPT-Logic Program without

breaking the Markov Property, or causing a massive increasein the number of states,

which also would change the assumption about the relationship between worlds and

states.

2.6.2 Comparison with Probabilistic Computation Tree Logic

(PCTL)

In this section, we show thatAPT-Logic rules di�er signi�cantly in mean-

ing from similar structures presented in PCTL [12, 64], a well-known probabilistic

temporal logic.

A derived operator in LTL with an intuition similar to that of our APT-Rules

was introduced by Susan Owicki and Leslie Lamport in [132]. The operator, known

as leads-to and an equivalent LTL formula are shown below (p and q are state

formulas).

(p y q) � G(p) F(q))

This formula intuitively says that if p is true in a state, thenq must be true in the

same (or future) state. As Owicki and Lamport's operator is based on LTL, it does

not describe the correlation betweenp and q with probabilities or with reference

to a speci�c time interval; q merely must happen sometime after (or with)p. A

probabilistic version of CTL, known as PCTL [12, 64] introduces another operator

based on a similar intuition; the authors refer to this operator as \leads-to" as well.

89

This derived operator, and the equivalent PCTL formula, areshown below (f 1 and

f 2 are state formulas).

f 1y � t
� pf 2 �

�
G

�
(f 1) F� t

� pf 2)
��

> 1

Intuitively, this operator reads as \f 2 follows f 1 within t periods of time with a

probability of p or greater". As PCTL formulas are satis�ed by a Markov Process(an

MDP with a single policy), satisfaction is determined by the transition probabilities.

So, to determine if a Markov Process satis�es the above leads-to formula, we must

compute the minimum probability of all sequences that startin a state satisfying

f 1 and satisfy f 2 in t units of time or less. Note that this is determined by the

transition probabilities of the Markov Process; hence, whether a Markov Process

satis�es the lead-to operator depends on the interval between f 1 and f 2, but not

on the total length of the sequence of states. So, if we limit the number of states

being considered, using an operator such asG� tmax
� 1 which PCTL provides to limit

consideration to only the �rst tmax states, the Markov Process will satisfy the formula

regardlessof the value oftmax . Note that G� tmax
� 1 placed at the head of the PCTL has

no e�ect on the satisfaction of the formula as there is already a G path-quanti�er

included at the beginning of the leads-to operator.

As previously described, the frequency function is often highly sensitive totmax .

Our two primary examples of frequency functions,pfr and efr , are based on ratios

of numbers of worlds in a given thread. For example, if we create a thread Th on a

single atoma, we can see that for threadhfag; f ag; fgi , the value ofpfr (Th; a; : a;1)

is much greater than ifTh werehfag; f ag; fg ; f ag; f ag; f ag; f agi . The fact that the

90

length of the thread has an e�ect on the frequency function further illustrates how

APT-Logic allows for reasoning beyond the restrictions of the Markov Property.

The limited thread length forces us to consider worlds before and after a time-

point we wish to reason about. If our probabilities were �xed, based on transition

probabilities, they would not, and we would conform to the Markov Property.

Even though there are syntactic similarities, in the Appendix we provide a

short example illustrating semantic di�erences betweenAPT-rules and PCTL.

2.7 Chapter Summary

Statements of the form \Formula G is/was/will be true with a probability

in the range [̀ ; u] in/within � t units of time after formula F became true" are

common. In this chapter, we have provided examples from four domains (stock

markets, counter-terrorism, reasoning about trains, and power grids), but many

more examples exist. Further, the counter-terrorism logicprogram (described in

further detail in the next chapter) are more than mere examples { they are created

using an extraction algorithm and a real-world data-set. They could be used, for

instance, to describe when the health or environmental e�ects of industrial pollution

may arise after a polluting event occurred, to the time takenfor a medication to

produce (with some probability) some e�ects. In the same way,they can be used in

domains as widely divergent as industrial control systems to e�ects of educational

investment on improved grades or graduation rates.

In this chapter, we have provided the concept of Annotated Probabilistic Tem-

91

poral (APT) logic programs within which such statements can be expressed. APT-

logic programs consist of two kinds of rules:unconstrained and constrained rules

with an expected value style semantics and a more ordinary semantics. Both types

of rules are parameterized by the novel concept of afrequency function. Frequency

functions capture the probability that G followsF in exactly (or within) T time units

within a thread (temporal interpretation). We show that this notion of \fol lows"

can intuitively mean many di�erent things, each leading to adi�erent meaning.

We propose anaxiomatic de�nition of frequency functions which is rich enough to

capture these di�ering intuitions and then provide a formalsemantics forAPT-logic

programs.

We then study the problems of consistency and entailment forAPT-logic pro-

grams. We show that the consistency problem is computationally intractable and

is naturally solved via linear programming. We develop three successively more

sophisticated linear programs for consistency checking andshow that they lead to

smaller linear programs (though not always). We also developa suite of complexity

results characterizing the entailment problem and provide algorithms to solve the

entailment problem.

A natural question that arises in any probabilistic logic framework is \Where

do the probabilities come from?" In order to answer this question, we develop

the (straightforward) APT-Extract algorithm that shows how APT-logic programs

can be derived from certain types of databases. We have applied APT-Extract to

extract APT-rules about several terror groups (further details on these programs are

provided in the next chapter).

92

Last, but not least, we have developed a detailed comparisonbetween ourAPT-

framework and two well known frameworks: Markov decision processes [140] and

probabilistic computation tree logic [64]. We show the former can be captured within

APT-logic program framework (but not vice versa). The latter has a more complex

relationship with APT-logic programs, but cannot express intra-thread properties of

the type expressed viaAPT-logic programs.

We note that the algorithms of this chapter all rely on the solution to a lin-

ear program with an exponential number of variables, which is not practical for a

real-world implementation. Additionally, our complexity results of NP and coNP

hardness for consistency and entailment checking suggest that this is an intractable

problem under the assumption that P6=NP. In the next chapter, we take a more

practical approach, resorting to approximation algorithms that provide sound, but

incomplete solutions to consistency and entailment problems for APT-logic.

93

Chapter 3

Annotated Probabilistic Temporal Logic:

Approximate Algorithms

In the previous chapter, we explored reasoning about an agent's behavior with

respect to time by introducingAPT logic. This framework allows us to reason about

the probability that an agent takes a certain action at a given time based on a model

consisting of probabilistic rules. In that chapter, we showed that the consistency

and entailment in APT logic are NP and coNP hard respectively. In that chapter, we

provided several sound and complete algorithms for these problems, but due to the

complexity of the problem, these approaches are not viable for a real-world system.

In this chapter, we take a more practical approach, creatingsound, but incomplete

algorithms for the consistency and entailment problems.1

1This chapter is based on [156] which was completed in cooperation with Gerardo Simari and

V.S. Subrahmanian.

94

3.1 Chapter Introduction

In the previous chapter, we have shown that there are numerousapplications

where we need to make statements of the form \FormulaG becomes true with

50 60% probability 5 time units after formulaF became true." Statements of this

kind arise in a wide variety of application domains.

This chapter takes a more practical approach to the problemsassociated with

Annotated Probabilistic Temporal (APT) logic already present in this dissertation.

Although the previous chapter presented algorithms for consistency and entailment

problems that are sound and complete, they are not practicalfor general problems.

This chapter takes a more practical approach. We develop a �xpoint operator for

APT-logic that we prove to be sound. We can use this operator to correctly identify

many inconsistentAPT-programs { although we cannot guarantee a program to be

consistent by this means. Additionally, this operator can infer probability ranges

for queries, but we cannot guarantee that they are the tightest possible bounds.

Most importantly, �nding the �xpoint of this operator is e�ci ent to compute. We

also show that some of the techniques can also be adopted in a sound algorithm for

non-groundAPT-programs, where we only require a partial grounding.

We also implement an algorithm for the ground case and perform experi-

ments on two data sets | the well known Minorities at Risk Organization Behavior

(MAROB) data set [10] that tracks behaviors of numerous terror groups, and an-

other real-world data counter-insurgency data from the Institute for the Study of

War [72] (ISW). We used the algorithmAPT-EXTRACTfrom the previous chapter

95

to automatically learn 23 APT-logic programs | no bias exists in theseAPT-logic

programs as no one manually wrote them. We then conducted experiments using

those APT-logic programs and entailment problems were solved on an average in

under 0:1 seconds per ground rule, while in the other, it took up to 1.3 seconds per

ground rule. Consistency was also checked in a reasonable amount of time. To the

best of our knowledge, ours is the �rst implementation of a system for reasoning

simultaneously about logic, time, and probabilities without making independence or

Markovian assumptions.

The chapter is organized as follows. Section 3.2 extends thesyntax and se-

mantics of APT LPs from the last chapter to add integrity constraints (ICs) as well

as probabilistic time formulas (ptf's) { a generalization of the \annotated formulas"

from the previous chapter (also seen in [34]). Section 3.3 shows that consistency

and entailment in APT-logic are in-NP and in-coNP, respectively, matching the

hardness results from the previous chapter (identifying these respective problems as

NP-complete and coNP-complete). Section 3.4 describes our approximate �xpoint

algorithm which is based on a sound (but not complete) �xpoint operator. The

operator works by syntactically manipulating the rules in the APT-program to it-

eratively tighten the probability bounds of the formula whose entailment is being

checked. We adapt the techniques for a consistency-checking and entailment algo-

rithms for non-ground APT-programs in Section 3.5 (note that these algorithms do

not require a full grounding of a program). In Section 3.6 we present our implemen-

tation of the �xpoint approach to solving consistency and entailment problems for

ground programs. Finally, in Section 3.7, we provide an overview of related work.

96

Before continuing, we note that applications such as those above use auto-

mated rule learning (e.g. using theAPT-Extract algorithm of the previous chap-

ter) to automatically learn relationships and correlations between atoms. In partic-

ular, the existence of speci�c such relationships make independence and Markovian

assumptions invalid for these types of applications.

97

1. secrumor^ earn incr(10%)
pfr
,! stock decr(10%): [2; 0:65; 0:97; 0:7; 1:0]

An SEC rumor and a rumor of an earnings increase leads to a stock price decrease

of 10% in 2 days with probability [0:65; 0:97].

2. secrumor^ earn incr(10%)
pfr
,! stock decr(10%)̂ cfo resigns: [2; 0:68; 0:95; 0:7; 0:8]

An SEC rumor and a rumor of an earnings increase of 10% leads to the CFO

resigning in exactly 1 days with a probability [0:5; 0:95].

3. OCC(cfo resigns) : [0; 1]

The CFO resigns between 0 and 1 times (i.e., [lo; up] = [0 ; 1]).

4. BLK(secrumor) :< 4

An SEC rumor cannot be reported more than 3 days in a row (i.e., blk = 4).

5. (: secrumor^ : rum incr(10%)^ : stock decr(10%)^ : cfo resigns) : 1^

(secrumor^ rum incr(10%)^ : stock decr(10%)^ : cfo resigns) : 2^

(secrumor^ : rum incr(10%)^ stock decr(10%)^ : cfo resigns) : 3^

(secrumor^ rum incr(10%)^ : stock decr(10%)^ cfo resigns) : 4 : [1; 1]

Based on events that have already occured, we can state things such as \at day

1 there was no SEC rumor, there is no rumor of a stock increase, the stock price

did not decrease, and the CFO did not resign."

Figure 3.1: Kstock , a toy APT-Logic Program about stocks.

98

1. detainmentdistr(2) ^ detainmentrelig(1)
efr
; attack relig(1):[2, 0.0906, 0.1906]

A detainment in district 2 and detainment in an area where religion 1 dominates

is followed by an attack in an area where religion 1 dominates within 2 days with

a probablilty [0 :0906; 0:1906].

2. attack neigh(28)^ attack relig(1)
efr
; cacherelig(1):[7, 0.6833, 0.7833]

An attack in neighborhood 28 and an attack in an area where religion 1 dominates

is followed by a cache being found in an area where religion 1 dominates within

7 days with a probablilty [0:6833; 0:7833].

3. cachedistr(2)
efr
; detainmentrelig(2):[10, 0.6559, 0.7558]

Cache being found in district 2 is followed by a a detainment in an area where

religion 2 dominates within 10 days with a probablilty [0:6559; 0:7558].

4. detainmentdistr(2)
efr
; attack distr(7):[10, 0.1346, 0.2346]

A detainment in district 2 is followed by a an attack in district 7 wi thin 10 days

with a probablilty [0 :1346; 0:2346].

5. attack neigh(28)
efr
; detainmentdistr(2):[9, 0.5410, 0.6500]

An attack in neighborhood 28 is followed by a detainment in district 2 within 9

days with a probablilty [0 :5410; 0:6500].

6. cachedistr(5)
efr
; strike relig(1):[8, 0.2833, 0.3833]

A cache found in disrict 5 is followed by a precision strike conudcted in an area

domnated by religion 1 within 8 days with a probablilty [0 :2833; 0:3833].

Figure 3.2: K ISW a real-world APT-Logic Program extracted from counterinsur-

gency data.

99

1. orgst1(1)̂ orgst11(2)̂ domorgviolence(2)
efr
; armattack(1):[2, 0.95, 1]

Whenever education and propaganda are used as a minor strategy, coalition

building is used as a major strategy, and the group is using domestic violence

regularly by targeting security personnel (but not government non-security per-

sonnel or civilians), the group carries out armed attacks within two time periods

with probability at least 0 :95.

2. orgst1(1)̂ orgst11(2)̂ domorgviolence(2)
efr
; dsecgov(1):[3, 0.95, 1]

This rule has the same antecedent as the previous one, but the consequent stands

for the group targeting people working for the government in security,or in non-

state armed militias.

3. violrhetrans(0)̂ orgst5(0)̂ drug(0)
efr
; armattack(1):[2, 0.58, 0.68]

Whenever the group does not justify targeting transnational entities in pub-

lic statements, uses non-coercive methods to collect local support (as a minor

strategy), and does not engage in drug production/tra�cking, armed attacks are

carried out within two time periods with probability between 0 :58 and 0:68.

4. orgst1(1)̂ orgst11(2)̂ orgst8(2)
efr
; dsecgov(1):[3, 0.9500, 1]

Whenever education and propaganda are used as a minor strategy, coalition

building is used as a major strategy, and insurgencies are used as a major strategy,

the group targets people working for the government in security, or in non-state

armed militias, within 3 time periods with probability at least 0 :95.

Figure 3.3: KMAROB a real-world APT-Logic Program extracted from Minorities at

Risk Organizational Behavior data.

100

3.2 Technical Background

This section extends the syntax and semantics of APT LPs from the previous

chapter to include integrity constraints, probabilistic time formulas, and non-ground

semantics for all previously introduced constructs.

3.2.1 Syntax

We assume the existence of a logical languageL as speci�ed in the previous

chapter (see page 26). We also assume the existence of a �niteset F whose mem-

bers are calledfrequency functionsymbols (see the previous chapter, page 32). A

(ground) term, atom, and formula are de�ned as per the previous chapter.

Also as in the last chapter, we assume that all applications are interested

in reasoning about an arbitrarily large, but �xed size window of time, and that

� = f 1; : : : ; tmax g denotes the entire set of time points we are interested in.tmax can

be as large as an application user wants, and the user may choose his granularity of

time according to his needs.

We now extend the syntax with the de�nition of a \time formula."

De�nition 27 (Time Formula). A time formula is de�ned as follows:

� If F is a (ground) formula andt 2 [1; tmax] then F : t is an (ground) elementary

time formula.

� If �; � are (ground) time formulas, then: � , � ^ � , and � _ � are (resp. ground)

time formulas.

101

Example 3.2.1. Consider the ground atoms in theAPT-program from Figure 3.1.

The expression(: secrumor^ : rum incr(10%)̂ : stock decr(10%)̂ : cfo resigns) : 1

is an elementary time formula.

Throughout, we will use Greek letters�; � for time formulas and capital letters

F; G for regular formulas. We now extend a time formula to includea probability

annotation.

De�nition 28. If � is a (ground) time formula and[`; u] � [0; 1], then � : [`; u] is

a (resp. ground)probabilistic time formula , or ptf for short.

Note that when considering ptf 's of the formF : t : [`; u], we will sometimes

abuse notation and writeF : [t; `; u].

Example 3.2.2. Item 5 in the APT-program from Figure 3.1 is a ptf.

Intuitively, � : [`; u] says time formula� is true with a probability in [`; u].2

Our next extension to the syntax of the previous chapter areintegrity constraints.

De�nition 29 (Integrity constraint) . SupposeA i 2 BL and [loi ; upi] � [0; tmax].

Then OCC(A i) : [loi ; upi] is called an occurrence IC. If blki 2 [2; tmax + 1] is an

integer, then BLK(A i) :< blki is called a block-size IC. IfA i is ground then the

occurrence (resp. block-size) IC is ground { otherwise it is non-ground.

An occurrence ICOCC(A i) : [loi ; upi] says that A must be true at least loi

times and at most upi times. Likewise, the block-size IC says thatA cannot be
2Assumption: Throughout the chapter we assume, for both ptf's andAPT-rules, that the

numbers `; u can be represented as rationalsa=bwhere a and b are relatively prime integers and

the length of the binary representations ofa and b is �xed.

102

consecutively true forblki or more time points. Figure 3.1 also contains an example

occurrence IC and an example block-size IC.

Example 3.2.3 (Integrity Constraints) . Consider the ground atoms in theAPT-

program from Figure 3.1 andtmax = 6. Suppose historical data indicates that for a

sequence of6 days, there is never more than1 day where the CFO resigns. Hence,

we should add the constraintOCC(cfo resigns) : [0; 1] to the program. There are

other types of integrity constraints that could be useful in this domain. For example,

a drastic stock price decrease may never occur more than a few times a quarter.

To see why block-size constraints are natural, consider the ground atomsecrumor.

Suppose there is never more than3 days historically where an SEC rumor is reported.

This would make the constraintBLK(secrumor) :< 4 appropriate. Other examples

of such constraints in this domain would be reports of pro�ts, which only occur once

per quarter (i.e., we would haveblk = 2 for such a case).

We have automatically extractedAPT-programs from the ISW and MAROB

data sets mentioned earlier. In the case of the ISW data set, occurrence and block-

size constraints are needed because militant groups have constrained resources,i.e.,

a limited amount of personnel and munitions to carry out an attack. Hence, an

occurrence integrity constraint can limit the amount of attacks we believe they are

capable of in a given time period. Likewise, such groups often limit the amount of

consecutive attacks, as police and military often respond with heightened security.

Block-size constraints allow us to easily encode this into our formalism.

We now extend the de�nition of APT rules and programs from the previous

103

chapter to include non-ground versions of these syntactic elements.

De�nition 30 (APT Rules and Programs). (i) SupposeF , G are (ground) formulas,

� t is a time interval, [`; u] is a probability interval, andfr 2 F is a frequency function

symbol. ThenF fr; G : [� t; `; u] is an (ground) APT rule.

(ii) An (ground) APT logic programis a �nite set of (ground) APT rules, ptf 's, and

integrity constraints.

(iii) Given a non-ground APT-logic programK (ng) , the set of ground instances of all

rules, ptf 's, and IC's in K (ng) is called the grounding ofK (ng) .

Note: Unless speci�ed otherwise, throughout this chapter,APT-logic programs,

rules, IC's, and ptf's are ground.

Example 3.2.4. Figure 3.1 shows a smallAPT LP dealing with the stock market,

together with an intuitive explanation of each rule.

3.2.2 Semantics

We now extend the semantics ofAPT LPs from the previous chapter to account

for the extended syntax and the non-ground case. The structures of worlds and

threads are de�ned exactly as in the previous chapter (see page 29). However, here

we de�ne a notion of a thread satisfying a time formula or integrity constraint as

follows:

De�nition 31. (i) Given thread Th and ground time formula� , we say Thsatis-

�es � (written Th j= �) i�:

104

1. at station(T; S1) ^ adjEast(S1; S2)
efr
; at station(T; S2) : [4; 0:85; 1]

If train T is at station S1 and the station adjacent to it to the East is S2, T will

be at station S2 within 4 time units with a probability bounded by [0 :85; 1].

2. at station(T; S1) ^ adjWest(S1; S2)
efr
; at station(T; S2) : [2; 0:6; 0:7]

If train T is at station S1 and the station adjacent to it to the West is S2, T will

be at station S2 within 2 time units with a probability in the interval [0 :6; 7].

3.
V tmax

t=1 adjEast(stnA, stnB) : t : [1; 1],
V tmax

t=1 adjEast(stnB, stnC) : t : [1; 1],

V tmax
t=1 adjWest(stnB, stnA): t : [1; 1],

V tmax
t=1 adjWest(stnC, stnB): t : [1; 1]

Probabilistic time formulas specifying that Station B is (always) adjacent to the

East of A, and C is adjacent to the East of B .

4. at station(train1; stnA) : 1 : [0:5; 0:5]

For a given sequence of events, train 1 will be at station A at time period 1 with

a probability of 0:50.

5. at station(train2; stnA) : 2 : [0:48; 0:52]

For a given sequence of events, train 2 will be at station A at time period 2 with

a probability bounded by [0:48; 0:52].

Figure 3.4: K train , a toy APT-Logic Program modeling rail transit. Items 1-2 are

non-groundAPT-Rules, the formulas in 3 are probabilistic temporal formulas, and

items 4-5 are annotated formulas. The English translation of each rule is also pro-

vided.

105

� � � F : t: Th j= � i� Th (t) j= F

� � � : � : Th j= � i� Th 6j= �

� � � � ^ � 0: Th j= � i� Th j= � and Th j= � 0

� � � � _ � 0: Th j= � i� Th j= � or Th j= � 0

(ii) Given thread Th and ground occurrence ICOCC(A i) : [loi ; upi], we say Thsat-

is�es OCC(A i) : [loi ; upi] i� jf i j Th(i) j= A i gj 2 [loi ; upi].

(iii) Given thread Th and block-size IC BLK(A i) :< blki , we say Th satis�es

BLK(A i) :< blki i� there does not exist an interval [i; i + blki 1] such that for

all j 2 [i; i + blki 1], Th (j) j= A i .

(iv) Th satis�es a non-ground formula or IC i� it satis�es all ground instances of

it.

Given a setT of threads and a setIC of integrity constraints, we useT (IC)

to refer to the set f Th 2 T jTh j= IC g.

We use the symbol `j=' to denote entailment between two time formulas.

De�nition 32. Given time formulas�; � , we say: � j= � i� 8Th 2 T s.t. Th j= � ,

it is the case that Thj= � .

If we view time formulas as sets of threads, we can think of� j= � , as equivalent

to � � � .

As in the previous chapter, atemporal probabilistic (tp) interpretation gives

us a probability distribution over all possible threads. Thus, a tp-interpretation I

assigns a probability to each thread. This reects the probability that the world will

106

in fact evolve over time in accordance with what the thread says. We now de�ne

what it means for a tp-interpretation to satisfy a ptf or integrity constraint.

De�nition 33. (i) Given interpretation I and ptf � : [`; u], we sayI satis�es

� : [`; u] (written I j= � : [`; u]) i�:

` �
X

Th 2T
Th j= �

I (Th) � u

(ii) Given interpretation I and occurrence ICOCC(A i) : [loi ; upi], we sayI satis�es

OCC(A i) : [loi ; upi] (written I j= OCC(A i) : [loi ; upi]) i� 8Th 2 T s.t. Th 6j=

OCC(A i) : [loi ; upi], it is the case thatI (Th) = 0 .

(iii) Given interpretation I and block-size ICBLK(A i) :< blki , we sayI satis�es

BLK(A i) :< blki (written I j= BLK(A i) :< blki) i� 8Th 2 T s.t. Th 6j= BLK(A i) :<

blki , it is the case thatI (Th) = 0 .

(iv) Interpretation I satis�es a non-ground formula or IC i� it satis�es all ground

instances of it.

With the above de�nition, we now de�ne a special type of ptf that can be used

to specify a set of threads that start with the same worlds { the intuition is based

on the idea of apre�x in [25].

De�nition 34. For n � tmax , let F1; : : : ; Fi ; : : : ; Fn be formulas s.t. eachFi is

satis�ed by exactly one world. Then, the following ptf:

F1 : 1 ^ � � � ^ Fi : i ^ : : : ^ Fn : n : [1; 1]

is called apre�x .

107

Example 3.2.5. Item 5 in the APT-program from Figure 3.1 is a pre�x.

Intuitively, including a pre�x in an APT-program forces the �rst n worlds of

every thread assigned a non-zero probability to satisfy certain formulas. Further,

we can use a pre�x to force the �rst n worlds of every thread with a non-zero

probability to be the same. For example, if we want thei 'th world of thread Th to

be set to world w, we would simply use the following formula asFi in the pre�x:

 V
a2 w a

�
^

 V
a=2 w : a

�
.

The de�nition of a frequency function is also exactly the sameas in the previous

chapter. For the sake of simplicity, in this chapter we only use the existential

frequency function (also de�ned in the previous chapter). Most techniques in this

chapter can be easily extended for use with other frequency functions. Now we

extend the de�nition of satisifaction of APT rules to account for the non-ground

case.

De�nition 35 (Satisfaction of APT rules). Let r = F fr; G : [� t; `; u] be anAPT

rule and I be a tp-interpretation.

(i) If r is a ground rule , interpretation I satis�es r (denotedI j= r) i�

` �
X

Th 2T

I (Th) � fr(Th ; F; G; � t) � u:

(ii) Interpretation I satis�es a non-ground ruler i� I satis�es all ground instances

of r .

Interpretation I satis�es an APT-program i� it satis�es all rules, ptf's, and

IC's in that program. Given an APT-program K, we will often refer to the set of

integrity constraints in K as simply IC .

108

Intuitively, the APT rule F fr; G : [� t; `; u] evaluates the probability that

F leads to G in � t time units as follows: for each thread, it �nds the probability

of the thread according toI and then multiplies it by the frequency (in terms of

fraction of times) with which F is followed by G in � t time units according to

frequency functionfr. This product is like an expected value in statistics where a

value (frequency) is multiplied by a probability (of the thread). It then sums up

these products across all threads.

3.3 Complexity

In the previous chapter, we showed that consistency and entailment in APT-

logic are NP-hard (consistency) and coNP-hard (entailment).In this section, we

prove that consistency is in the complexity class NP and entailment is in the com-

plexity class coNP. The result is somewhat surprising, because the exact algorithms

presented in the previous chapter relied on the solution to linear programs with an

exponential number of variables. For example, consider thefollowing linear program.

De�nition 36 (CONS). Given an APT-logic program, K, where IC � K is the

set of integrity constraints in K, we can create the linear constraintsCONS(K) as

follows:

109

For each Thj 2 T (IC), variable vj denotes the probability of thread Thj .

(1)
P jT (IC)j

j =1 vj = 1

(2) 8Fi
fr i; Gi : [� t i ; ` i ; ui] 2 K (a) ` i �

P jT (IC)j
j =1 fri (Th j ; Fi ; Gi ; � t i) � vj

(b) ui �
P jT (IC)j

j =1 fri (Th j ; Fi ; Gi ; � t i) � vj

(3) 8� i : [` i ; ui] 2 K (a) ` i �
P

Th j 2T (IC) Th j j= � i
vj

(b) ui �
P

Th j 2T (IC) Th j j= � i
vj

We proved in the previous chapter that there is a solution toCONS(K) i� K

is consistent and that, given ptf� : [`; u], let L be the minimization andU be the

maximization of
P

Th j 2T (IC) Th j j= �
vj subject to CONS(K). Then � : [`; u] is entailed

by K i� [L; U] � [`; u]. See Proposoiton 3 (page 50) and Proposition 12 (page 73)

respectiely.

However, it turns out that we can be guaranteed a solution to the linear

program where only a polynomial number of the variables are set to a value other

than 0. Consider the following theorem from [24] and later used in [44] to show that

deciding the validity of a formula in the logic of [44] is NP-Complete.

Theorem 9 ([24, 44]). If a system ofm linear equalities and/or inequalities has

a nonnegative solution, then it has a nonnegative solution with at mostm positive

variables.

We can leverage the previous two results to guarantee the existence of an

interpretation that assigns a zero probability to all but a polynomial number of

threads, thus giving us a \small model" theorem.

110

Theorem 10. Deciding if APT-program K is consistent is NP-complete ifjKj is a

polynomial in terms of jBL j.

Theorem 11. Deciding if APT-rule r is entailed by APT-program K is coNP-

complete if jKj is a polynomial in terms ofjBL j.

One may wonder if APT-programs can be made more tractable if weassume

a single probability distribution over threads, that is a single tp-interpretation. Un-

fortunately, even if we assume a uniform probability distribution, this special case

is still not tractable.

Theorem 12. Given APT-program K, interpretation I , and ptf � , determining the

maximum ` and minimum u such that � : [`; u] is entailed byK and is satis�ed by

I is # P-hard. Furthermore, for constant� > 0, approximating either the maximum

` and/or minimum u within 2jB L j1! �
is NP-Hard.

The above theorem is proved using an interpretation that assigns a uniform

probability across all threads. The negative approximationresult follows from a

result of [145].

Although it remains an open question if theAPT-entailment problem (without

the single-interpretation requirement) can be approximated within a reasonable fac-

tor, the above result is not encouraging.3 Further, De�nition 36 illustrates several

challenges relating the intractability of this problem.(i) First, we need to compute

T (IC), which is a challenge becauseT contains 2tmax �card(B L) possible threads and

3As an aside, as the construction in the proof of Theorem 12 does not depend onmultiple

time-points, this result holds for the probabilistic logic of [131] as well.

111

each must be examined to see if it satis�esIC ; (ii) Second, the constraints in items

(1-2) may contain up toO

2tmax �card(B L)

�
variables (this bound can be tightened), so

even though linear programming is polynomial [79], the inputis exponential in the

size oftmax and BL . In practice, even if we considertmax = 10 and BL to consist of

just 100 ground atoms, we are looking at the possibility of examining 21;000 threads

to �nd T (IC) and writing constraints containing exponentially large numbers of

variables. In practice, we will not be able to even write theseconstraints. With

these intractability results in mind, we proceed to developheuristics in the next two

sections.

3.4 A Sound but Incomplete Fixpoint-Computation

Algorithm: The Ground Case

This section presents a heuristic algorithm based on a �xpoint operator !

which mapsAPT-programs toAPT-programs and iteratively tightens the probability

bounds on rules and ptf's in the program. To �nd probability bounds on some time

formula � , we simply add the ptf � : [0; 1] to the program, iteratively apply ! until

a �xed point is reached, and then examine the bounds on the ptf formed with � in

the resulting program. Our approach is sound { so, if the interval [`; u] is assigned

to � , then K entails � : [`; u] (provided, of course, thatK is consistent). However,

there may exist some [̀0; u0] � [`; u] such that � : [`0; u0] is also entailed.

Our algorithm requires that K contain at least oneAPT-rule of the form

112

F : [`; u]. This is not really a restriction in most applications wherea pre�x would

exist (cf. De�nition 34, Page 107). The rest of the section isorganized as follows.

Section 3.4.1 describes how to �nd bounds on a frequency function given ptf 's.

Section 3.4.2 describes how to use frequency bounds to syntactically manipulate

rules and ptf's in APT-programs { which in turn allow us to tighten the probability

bounds. Section 3.4.3 performs various syntactic manipulations in the ! operator

and shows that the operator has a least �xed point. Finally, Section 3.4.4 demon-

strates how ! can also be used to check the consistency of anAPT logic program.

Again, such a consistency check is sound but not complete { ! correctly identi�es

inconsistent programs but does not guarantee consistency.

3.4.1 Bounding Frequency Function Values

In this chapter, we only use theefr frequency function. However, our tech-

niques can be easily adapted to other frequency functions such aspfr from the pre-

vious chapter. Our �rst de�nition is a function, EFR, which returns tight bounds

on efr given F; G, and � t.

De�nition 37. SupposeF; G are formulas, � t is a time point, and � is a time

formula. We de�ne EFR(F; G; � t; �) = [� tight ; � tight] where

� tight = inf f ef r (Th; F; G; � t) j Th 2 T ^ Th j= � g:

� tight = supf ef r (Th; F; G; � t) j Th 2 T ^ Th j= � g:

The intuition in the above de�nition is that � tight is the least value ofef r

(w.r.t. formulas F; G and time interval � t) for all threads satisfying � . Likewise,

113

� tight is the greatest value ofef r (w.r.t. formulas F; G and time interval � t) for all

threads satisfying� . We can easily approximate [� tight ; � tight] when we make certain

assumptions on� . Consider the following special case of a ptf:

De�nition 38. SupposeETF � f F1 : t1; : : : ; Fn : tng is a set of elementary time

formulas, wheren � tmax and for any two such formulas,Fi : t i ; Fj : t j 2 ETF ,

t i 6= t j . Then F1 : t1 ^ : : : ^ Fn : tn is a time conjunction .

Example 3.4.1. Item 5 in the APT-program from Figure 2.1 is a time-conjunction.

We shall refer to this time-conjunction as� stock in later examples.

We notice right away that a pre�x (De�nition 34, Page 107) is simply a special

case of time conjunction annotated with probability [1; 1]. One useful property of

time conjunctions that we leverage in our operator is the following.

Observation 3.4.1. If F1 : t1 ^ : : : ^ Fn : tn ^ Fn+1 : t0
1 ^ : : : ^ Fn+ m : t0

m and

G1 : t1 ^ : : : ^ Gn : tn ^ Gn+1 : t00
1 ^ : : : ^ Gn+ k : t00

k are time conjunctions, then

(F1^ G1) : t1^ : : :^ (Fn ^ Gn) : tn ^ Fn+1 : t0
1^ : : :^ Fn+ m : t0

m ^ Gn+1 : t00
1^ : : :^ Gn+ k : t00

k

is also a time conjunction.

We leverage the above property in the following way: if we know a bound for

EFR(F; G; � t; �) and EFR(F; G; � t; � ^ �), we may be able to use this information

to �nd probability bounds on � . We will describe this further when we discuss

syntactic manipulation. Next, with a time conjunction in mind, we will show how

to �nd a tight bound on EFR. In this case, we introduce the following notation

and obtain a bound onEFR in Proposition 14.

114

De�nition 39. For formulas F; G, time � t, and time conjunction � , we de�ne the

following:

� cnt(�; F; G; � t) = jf t 2 [1; tmax � t]j9t0 2 (t; t + � t] s.t. (� j= F : t ^ G : t0)gj

� end(�; F; G; � t) = jf t 2 (tmax � t; t max)j9t0 2 (t; t max] s.t. (� j= F : t ^ G : t0)gj

� denom(�; F; � t) = jf t 2 [1; tmax � t]j9Th s.t. (Th j= �) ^ (Th j= F : t)gj

� poss(�; F; G; � t) = jf t 2 [1; tmax � t]j9t0 2 (t; t + � t] s.t. 9Th s.t. (Th j=

�) ^ (Th j= F : t ^ G : t0)gj

� endposs(�; F; G; � t) = jf t 2 (tmax � t; t max)j9t0 2 (t; t max] s.t. 9Th s.t. (Th j=

�) ^ (Th j= F : t ^ G : t0)gj

The intuitions behind the components of De�nition 39 are as follows. For a

given F; G; � t, cnt is simply the number of times in the �rst tmax � t timesteps (of

all threads satisfying some ptf�) where a world satisfyingF is followed by a world

satisfying G within � t time units. Likewise, end performs this count for the last

� t time units. Similarly, possand endpossperform similar calculations, but rather

than considering all threads that satisfy� , there must only exist a thread satisfying

� where a world satisfyingF is followed by a world satisfyingG in � t time units.

The de�nition of denomcaptures the total number of timesF is satis�ed in the �rst

tmax � t worlds (for all threads satisfying�). Due to the boundary condition of

ef r (refer to Section 3.2 for details), we useend and endpossto perform this count

in the last tmax � t worlds of the threads. Hence, in the below proposition, we are

115

able to show that EFR(F; G; � t; �) is a subset of two fractions created from the

components we de�ned.

Proposition 14. For formulas F; G, time � t, and time conjunction � ,

EFR(F; G; � t; �) �

�
cnt(�; F; G; � t) + end(�; F; G; � t)
denom(�; F; � t) + end(�; F; G; � t)

;
poss(�; F; G; � t) + endposs(�; F; G; � t)
denom(�; F; � t) + endposs(�; F; G; � t)

�

Example 3.4.2. Consider the APT-program from Figure 2.1 that includes time

conjunction � stock (see Example 3.4.1). Consider the pre and post conditions of

rules 1-2; we shall refer to them as follows (in this and later examples):

F1 � secrumor^ rum incr(10%)

G1 � stock decr(10%)

F2 � secrumor^ rum incr(10%)

G2 � stock decr(10%)̂ cfo resigns

Using De�nition 39, we can determine that:

EFR(� stock ; F1; G1; 2) � [0:5; 1:0]

and

EFR(� stock ; F2; G2; 1) � [0:0; 0:667]

3.4.2 Theorems for Syntactic Manipulation

In the last section, we bounded the values thatef r can have for a thread

given some time formula� . This section leverages that information to obtain tighter

116

bounds on ptf's andAPT-rules. First, we introduce a simple result that allows for

syntactic manipulation of ptf's without these bounds.

Lemma 8. Let � : [`0; u0] be a ptf andI be an interpretation; then:

1. If I j= � : [`; u], then I j= � ^ � : [max(0; ` + `0 1); min(u; u0)]

2. If I j= � : [`; u], then I j= � _ � : [max(`; ` 0); min(1; u + u0)]

3. If I j= � : [`; u] and � j= � then I j= � : [`; 1]

4. If I j= � : [`; u] and � j= � then I j= � : [0; u]

5. If I j= � : [`; u] then I j= : � : [1 u; 1 `]

Example 3.4.3. Suppose programKstock entails ptf secrumor: 6 : [0:3; 0:6]. Then,

it also entails : secrumor: 6 : [0:4; 0:7].

We notice right away that syntactic manipulation sometimes identi�es incon-

sistent APT-programs. For example, if� : [0:7; 0:6] is entailed via Lemma 8, then

we know that K is not consistent. We explore this issue further in Section 3.4.4.

Next, we use the bounds onEFR to syntactically manipulate APT-rules, yielding

rules with tighter probability bounds { perhaps uncoveringan inconsistent program.

Theorem 13 tightens the bound when theAPT-program includes a ptf that happens

with probability 1. Its corollary tightens the lower bound given any ptf .

Theorem 13. SupposeI is an interpretation and � is a time formula such that

I j= � : [1; 1] and EFR(F; G; � t; �) � [�; �]. Then I j= F
efr
; G : [� t; �; �].

117

Corollary 2. SupposeI is an interpretation and � is a time formula such that

I j= � : [`; u] and EFR(F; G; � t; �) � [�; �]. Then I j= F
efr
; G : [� t; � � `; 1].

The above theorem and corollary are proved by showing that the lower prob-

ability bound of an APT-rule has to be at least as much as the lower bound on the

associatedEFR for all threads.

Example 3.4.4. Consider the scenario from Example 3.4.2. By the result of that

example and Corollary 2, we know thatKstock must entail:

secrumor^ rum incr(10%)
efr
; stock decr(10%): [2; 0:5; 1:0] and

secrumor^ rum incr(10%)
efr
; stock decr(10%)̂ cfo resigns: [1; 0:0; 0:667]

Note that we can now �nd a tighter bound on rule 2, obtaining a probability bound

of [0:5; 0:667], that is substantially tighter than[0:5; 1] from the original rule using

just one syntactic manipulation.

We can useAPT-rules, EFR, and Theorem 8 to further tighten the bounds

on ptf's with the following theorem.

Theorem 14. SupposeF; G are formulas, �; � are time formulas, I is an interpre-

tation, and [� 1; � 1]; [� 2; � 2] are intervals such thatEFR(F; G; � t; �) � [� 1; � 1] and

EFR(F; G; � t; � ^ �) � [� 2; � 2], I j= � : [1; 1] (see note4) and I j= F
efr
; G : [� t; `; u].

Then:

1. If � 2 < � 1, then I j= � :
h
0; min

�
` � 1

� 2 � 1
; 1

�i

4Note that Theorem 13 requires` � � 1 and � 1 � u

118

2. If � 2 > � 1, then I j= � :
h
0; min

�
u � 1

� 2 � 1
; 1

�i

From the above theorem, we can easily obtain the following corollary that can

be used with just one time formula (i.e., only �). Simply consider the case where�

is TRUE: tmax and [� 1; � 1] = [0; 1].

Corollary 3. SupposeF; G are formulas,� is a time formula, I is an interpretation,

and [�; �] is an interval such thatEFR(F; G; � t; �) � [�; �] and I j= F
efr
; G :

[� t; `; u]. Then:

1. If � < 1 then I j= � : [0; min(` 1
� 1 ; 1)]

2. If � > 0 then I j= � : [0; min(u
� ; 1)]

Example 3.4.5. Following from Example 3.4.4, consider the time-formulastock decr(10%):

5. Using De�nition 39, we �nd that EFR (� stock ^ stock decr(10%): 5; F1; G1; 2) �

[1; 1]. Previously, we saw that EFR(� stock ; F1; G1; 2) � [0:5; 1]. As the lower bound

on frequency increases (by conjuncting the new time formula), that is1 > 0:5, we

apply part 2 of Theorem 14 (and/or Corollary 3) to obtain an upper probability

bound onstock decr(10%): 5. Hence, this formula is no more probable than0:94.

Finally, we show that we can also use integrity constraints to aid in syntactic

manipulation. For certain ptf's with probability 1, a given IC may cause another ptf

(or multiple ptf's) to be entailed with a probability of 0, which can also contribute

to bounding EFR.

Proposition 15. For atom A i and programK whereBLK(A i) :< blki 2 K , if there

exists a ptf� : [1; 1] 2 K such that� j= A i : t blki +1 ^ A i : t blki +2 ^ : : :^ A i : t 1,

119

then K entails A i : t : [0; 0].

Proposition 16. For atom A i and program K where OCC(A i) : [loi ; upi] 2 K , if

there exists a ptf� : [1; 1] 2 K such that there are numberst1; : : : ; tupi
2 f 1; : : : ; tmax g

where� j= A i : t1^ : : :^ A i : tupi
then for anyt =2 f t1; : : : ; tupi

g K entails A i : t : [0; 0].

Example 3.4.6. Consider Kstock from the previous examples. As this program in-

cludesOCC(cfo resigns) : [0; 1] and entails cfo resigns: 4 : [1; 1] (by the included

pre�x), we can conclude thatcfo resigns: 5 : [0; 0] and cfo resigns: 6 : [0; 0] are

entailed by this program.

3.4.3 The Fixpoint-Based Heuristic

We are now ready to use the results of the last section to createthe ! operator.

First, we present some preliminary de�nitions to tighten probability bounds for ptf's

and rules. Note that the correctness of these bounds follows directly from the results

of the previous section. First we show how, given anAPT-program, we can tighten

the lower and upper bound of a ptf.

De�nition 40. SupposeK is an APT-program and� is a time formula. We de�ne:

l bnd(�; K) = sup (f 0g [f ` j � : [`; u] 2 K ^ (� j= �) g) :

120

u bnd(�; K) is the inf of the set:

f 1 g [

f u j � : [`; u] 2 K ^ (� j= �) g [

f min(` � 1
� 2 � 1

; 1) j (F
efr
; G : [� t; `; u]; � : [1; 1] 2 K [f true : tmax : [1; 1]g) ^

(EFR(F; G; � t; �) � [� 1; � 1]) ^

(EFR(F; G; � t; � ^ �) � [� 2; � 2]) ^ (� 2 < � 1) g [

f min(u � 1
� 2 � 1

; 1) j (F
efr
; G : [� t; `; u]; � : [1; 1] 2 K [f true : tmax : [1; 1]g) ^

(EFR(F; G; � t; �) � [� 1; � 1]) ^

(EFR(F; G; � t; � ^ �) � [� 2; � 2]^ (� 2 > � 1) g

This bound on a time formula is derived from its relationshipwith other time

formulas (by Lemma 8) or it relationship with rules (by Theorem 14 and/or Corol-

lary 3). Below we show an example.

Example 3.4.7. Following from Example 3.4.5, consider, once again, the time-

formula stock decr(10%): 5. For program Kstock , we know thatl bnd(stock decr(10%):

5; Kstock) = 0 :0. This is due to the simple fact that there is no lower probability bound

assigned to the time formulastock decr(10%): 5 by Kstock that is greater than0:0.

Examining the upper bound, we consider theinf of set f 1; 0:94g as 1 is the trivial

upper bound, there are no other upper probability bounds forstock decr(10%): 5 seen

directly in Kstock and we have already used Example 3.4.5 to derive the upper bound

of 0:94 based on syntatic manipulation of rules inKstock (which reects the last two

121

parts of theu bnd de�nition). Hence, u bnd(stock decr(10%): 5; Kstock) = 0 :94.

Note that for ptf's we do not include any manipulation that relies on the

bounds of the negated time formula in the above de�nitions. Wehandle this type

of manipulation in the de�nition of the operator. The following are versions of

l bnd; u bnd for rules.

De�nition 41. SupposeK is an APT-program, F; G are formulas, and� t > 0 is

an integer.

� The quantity l bnd(F; G; � t; K) is the sup of the following set:

f 0 g [

f ` j F
efr
; G : [� t; `; u] 2 K g [

f � � ` j (� : [`; u]; � : [1; 1] 2 K [f true : tmax : [1; 1]g) ^

(EFR(F; G; � t; � ^ �) � [�; �]) g [

f � � (1 u) j (� : [`; u]; � : [1; 1] 2 K [f true : tmax : [1; 1]g) ^

(EFR(F; G; � t; � ^ : �) � [�; �]) g

� The quantity u bnd(F; G; � t; K) is the inf of the following set:

f 1 g [

f u j F
efr
; G : [� t; `; u] 2 K g [

f � j (� : [1; 1] 2 K) ^ (EFR(F; G; � t; �) � [�; �]) g

122

Hence, the new probability bound assigned to a rule is based onhow the

bounds on the frequency function are tightened given the ptf's present in the pro-

gram. Given a ptf, we use a bound onEFR, which allows us to leverage Theorem 13

and Corollary 2 to obtain a tighter bound on the rule. Tighterbounds on rules are

useful for two reasons: (1) subsequent applications of the �xpoint operator will in

turn use these new bounds to tighten bounds on ptf's and (2) they can be used to

identify inconsistent program (as we discuss in Section 3.4.4).

We now de�ne setformula(K) which intuitively means \all time formulas that

appear in K". These are the formulas upon which De�nition 40 will act, and also

through syntactic manipulation, a�ect other ptf's in K. As stated earlier, we can

�nd bounds for any time formula � by adding � : [0; 1] to the initial APT program.

De�nition 42. Given programK consisting of ptf 's and constrained rules, formula(K)

is the following set:

f � j � : [`; u] 2 K g [

f F : t j (t 2 [1; tmax]) ^ (F
efr
; G : [� t; `; u] 2 K) g [

f G : t j (t 2 [1; tmax]) ^ (F
efr
; G : [� t; `; u] 2 K) g

We now have all the pieces we need to de�ne our operator !.

123

De�nition 43. Given programK, !(K) is de�ned as the following set:

f F
efr
; G : [� t; l bnd(F; G; � t; K);

u bnd(F; G; � t; K)] j F
efr
; G : [� t; `; u] 2 K g [

f � : [l bnd(�; K); u bnd(�; K)]\

[1 u bnd(: �; K); 1 l bnd(: �; K)] j � 2 formula(K) g [

f A i : t : [0; 0] j (BLK(A i) :< blki 2 K) ^ (� : [1; 1] 2 K) ^

(� j= A i : t blki + 1 ^ : : : ^ A i : t 1)g [

f A i : t : [0; 0] j (OCC(A i) : [loi ; upi] 2 K) ^ (� : [1; 1] 2 K) ^

(9t1; : : : ; tupi
2 f 1; : : : ; tmax g) ^

(� j= A i : t1 ^ : : : ^ A i : tupi
) ^

(t =2 f t1; : : : ; tupi
g)g [

f BLK(A i) :< blki j BLK(A i) :< blki 2 Kg [

f OCC(A i) : [loi ; upi] j OCC(A i) : [loi ; upi] 2 Kg

Intuitively, ! tightens the probability bounds on rules by l everaging proba-

bilistic time formulas using the results we proved in Theorem 13 and Corollary 2. It

tightens the probability bounds on time formulas based other time formulas, rules,

and integrity constraints. This uses the results proved in Lemma 8, Theorem 14

(and/or Corollary 3), and Propositions 15-16 respectively.

Example 3.4.8. Consider the programKstock from the previous examples. By Def-

inition 42, we know that a ptf time-formulastock decr(10%): 5 will be included in

!(Kstock). We saw in Example 3.4.7 thatl bnd(stock decr(10%): 5; Kstock) = 0 :0

124

and u bnd(stock decr(10%): 5; Kstock) = 0 :94. In the same manner, we can com-

pute that l bnd(: stock decr(10%): 5; Kstock) = 0 :0 and u bnd(: stock decr(10%):

5; Kstock) = 0 :667 (this follows from the fact that EFR(� stock ^ : stock decr(10%):

5; F1; G1; 2) � [0:5; 0:667]). Hence, we know that the ptfstock decr(10%) : 5 :

[0:333; 0:94] is included in !(Kstock).

Note that ! returns an APT-program that is satis�ed by the exact same set of

interpretations as the original program; this follows directly from the results in the

previous section.

Proposition 17. SupposeI is an interpretation and K is an APT-program. Then:

I j= K i� I j= !(K).

We can also make the following statement about the complexityof the opera-

tor.

Proposition 18. One iteration of ! can be performed in time complexityO(jKj 2 �

CHK) whereCHK is the bound on the time it takes to check (for arbitrary time

formulas �; �) if � j= � is true.

One source of complexity is comparing ptf's with other ptf's. If a ptf is formed

with an elementary time formula, then it only needs to be compared to other ptf's

that share the same time point { this could reduce complexity. As is usual in logic

programming, ! can be iteratively applied as follows.

De�nition 44. We de�ne multiple applications of! as follows.

� !(K) " 0 = K

125

� !(K) " (i + 1) = !(!(K) " i)

Now, we will show that ! has a least �xed point. First, we de�ne a partial

ordering of APT-programs.

De�nition 45 (Preorder overAPT-Programs). Given K1; K2, we sayK1 v pre K2 if

and only if:

� 8 � : [`; u] 2 K 1, 9� : [`0; u0] 2 K 2 s.t. [`0; u0] � [`; u]

� 8 F
efr
; G : [� t; `; u] 2 K 1, 9F

efr
; G : [� t; ` 0; u0] 2 K 2 s.t. [`0; u0] � [`; u]

� If BLK(A i) :< blki 2 K 1, then BLK(A i) :< blki 2 K 2

� If OCC(A i) : [loi ; upi] 2 K 1, then OCC(A i) : [loi ; upi] 2 K 2

The intuition behind the above de�nition is that program K1 is belowK2 if it

has less rules or ptf's { or rules/ptf's with tighter probability bounds. Note that if

K2 is aboveK1, then K1 has at least as many satisfying interpretations, and possibly

more, than K2. Let PROGB L ;t max be the set of allAPT-programs given Herbrand

baseBL and time tmax . It is easy to see thathPROGB L ;t max ; v pre i is a reexive and

transitive, and therefore a preorder. In the following, we will say that K1 � K 2,

read \K1 is equivalent to K2" if and only if K1 v pre K2 and K2 v pre K1. The \ � "

relation is clearly an equivalence relation; we will use [K] to denote the equivalence

class corresponding toK w.r.t. this relation.

De�nition 46 (Partial Ordering of APT-Programs). Given two equivalence classes

[K1]; [K2] w.r.t. relation � , we say[K1] v [K2] if and only if K1 v pre K2.

126

The \ v " relation is clearly reexive, antisymmetric, and transitive, and there-

fore a partial order over sets ofAPT-programs. Note that when we use the symbol

v , we will often write K1 v K 2 as shorthand for [K1] v [K2]. We will also overload

the symbol PROGB L ;t max to mean \all equivalence classes ofAPT-programs" (for

a given tmax and BL) where appropriate. Therefore, we can now de�ne a complete

lattice, where the top element is a set containing all inconsistent programs, and the

bottom element is set containing the empty program.

Lemma 9. Given ? = f;g and > = fK j K is inconsistentg, then the partial order

hPROGB L ;t max ; vi de�nes a complete lattice.

What remains to be shown is that ! is monotonic; if this holds, we can state

it has a least �xed point.

Lemma 10. K v !(K).

Lemma 11. ! is monotonic.

By the Tarski-Knaster theorem, ! has a least �xed point.

Theorem 15. ! has a least �xed point.

3.4.4 Using ! for Consistency Checking

As noted earlier, the ! operator can be used to �nd \loose" entailment bounds

by simply adding an entailment time formula (�) with probability bounds [0; 1] to

the logic program, and then examining the tightened bounds after one or more

applications of the operator. In this section, we examine how to use ! for consistency

checking. First, we have a straightforward lemma on consistency.

127

Lemma 12. Let K be anAPT-logic program that entails ruleF
efr
; G : [� t; `; u] or

� : [`; u] such that one of the following is true:

� ` > u

� ` < 0 or ` > 1

� u < 0 or u > 1.

Under this circumstance,K is inconsistent , i.e., there is no interpretation I such

that I j= K.

The following result follows immediately.

Corollary 4. Let K be anAPT-logic program whetre there exists natural numberi

such that !(K) " i entails rule F
efr
; G : [� t; `; u] or � : [`; u] such that one of the

following is true:

� ` > u

� ` < 0 or ` > 1

� u < 0 or u > 1.

Under this circumstance,K is inconsistent .

We note that the ! adds time formulas whose probaiblity bounds is determined

by an intersection operation. We observe that an empty intersection of the prob-

ability bounds is equivalent to the case wherè > u , which allows us to apply the

above corollary to correctly state that the program is not consistent. We illustrate

this in the below example.

128

Example 3.4.9. ConsiderKstock from the previous examples. By the de�nition of! ,

the ptf stock decr(10%)̂ cfo resigns: 5 : [0:499; 1] is in !(Kstock). By Example 3.4.6,

we know thatcfo resigns: 5 : [0; 0] is also in !(Kstock). However, another application

of ! entails cfo resigns: 5 : [0:499; 0] (equivalently,cfo resigns: 5 : ;). As 0:499> 0,

we know thatKstock is not consistent.

In addition to checking consistency with the ! operator, we can check for

inconsistencies based on the block and occurence ICs via thefollowing result.

Proposition 19. If there does not exist at least one thread that satis�es all integrity

constraints in an APT-logic program, then that program is inconsistent.

The Thread Existence Problem (ThEX) problem is that of checking ex-

istence of a thread that satis�es all block and integrity constraints. Here we show

that ThEX can be solved in constant time { this can allow us to quickly identify

certain inconsistencies in anAPT-program. First, we de�ne a partial thread.

De�nition 47. A partial thread PTh is a thread such that for all1 � i � tmax ,

PTh(i) is a singleton set.

For any ground atom A i with a single associated block-size and occurrence

constraint5 if more than
l

(blki 1)�tmax

blki

m
worlds must satisfyA i in each partial thread,

then all partial threads will have a block of sizeblki . This allows us to derive the

following results.
5There is no loss of generality looking at just one block-size IC per ground atom as multiple

such ICs can be coalesced into one by taking the minimum; likewise,there is no loss of generality

in considering just one occurrence per ground atom as they can be mergedinto one by intersecting

the [lo; up] intervals for that atom.

129

Proposition 20. If loi >
l

(blki 1)�tmax

blki

m
then there does not exist a partial thread for

ground atomA i such that the single block-size and occurrence IC associated withA i

hold.

Proposition 21. For ground atomA i (with associated ICs), ifupi >
l

(blki 1)�tmax

blki

m

we know that the number of worlds satisfyingA i cannot be in the range
hl

(blki 1)�tmax

blki

m
; upi

i
.

The reason for this is simple: it would force the partial thread to have a

sequence ofblki consecutive worlds satisfyingA i . We also notice that these checks

can be performed based solely on the values ofloi ; upi ; blki ; and tmax . Hence, we

have the following proposition.

Proposition 22. ThEX can be solved in constant time.

In the next section we extend these results for non-groundAPT-programs.

3.5 Consistency and Entailment Algorithms for

Non-Ground Programs

The �xpoint procedure described via the ! operator works in the ground case.

In this section, we study how we may avoid grounding. We start(Section 3.5.1)

with a sampling based approach for consistency checking of non-ground programs.

Section 3.5.2 de�nes a non-ground �xpoint operator for entailment queries. This

operator avoids grounding the entire program, but guaranteed to provide entailment

bounds for a query that are as tight as our ground operator. Weremind the reader

130

that both our consistency-checking algorithm and our �xpoint operator presented

in this section are sound, but not complete.

3.5.1 Consistency Checking for Non-Ground Programs

In this section, we present a sound algorithm for consistency checking of non-

ground programs. We avoid complete grounding of the rules, while still maintaining

soundness of the algorithm through random sampling of ground instances of rules.

The larger the sample, the more potential inconsistencies can be found.

For a non-ground time formula, � ng , we shall use the notationgnd(� ng) to

refer to the ground formula
V

f � j is a ground instance of� ngg. We are now ready

to describe a non-ground analog to the boundsEFR described in the previous

section.

De�nition 48. For non-ground formulasFng ; Gng , time � t, and non-ground time

formula � ng , we de�ne

1.

EFR SET(Fng ; Gng ; � t; � ng) = f EFR(F; G; � t; gnd(� ng)) j

F; G are ground instances ofFng ; Gngg

2.

EFR IN (Fng ; Gng ; � t; � ng) = (� in ; � in)

Where9[� in ; � 0]; [� 0; � in] 2 EFR SET(Fng ; Gng ; � t; � ng), and 6 9[� � ; � 00]; [� 00; � �] 2

EFR SET(Fng ; Gng ; � t; � ng) s.t. � � > � in and � � < � in

131

3.

EFR OUT(Fng ; Gng ; � t; � ng) = [� out ; � out]

Where9[� out ; � 0]; [� 0; � out] 2 EFR SET(Fng ; Gng ; � t; � ng), and 6 9[� � ; � 00]; [� 00; � �] 2

EFR SET(Fng ; Gng ; � t; � ng) s.t. [� � ; � �] � [� out ; � out]

The intuition behind De�nition 48 is as follows. EFR SET is the set of all

frequency bounds for the di�erent ground instances ofFng ; Gng . EFR IN is a pair

consisting of the greatest lower bound ofef r (� in) and the least upper bound of

ef r (� in) of all the elements ofEFR SET. (� in ; � in) is a tuple, not a bound. It is

possible for� in > � in . EFR OUT represents the tight bound ofef r for any ground

instance ofFng ; Gng . We now prove these bounds to be tight.

Lemma 13. SupposeFng ; Gng are non-ground formulas, time� t > 0 is an integer,

and � ng is a non-ground time formula. Let(� in ; � in) = EFR IN (Fng ; Gng ; � t; � ng)

and [� out ; � out] = EFR OUT(Fng ; Gng ; � t; � ng). If Th j= � ng , then:

1. for all ground instancesF; G of Fng ; Gng we have efr(F; G; � t; Th) 2 [� out ; � out]

2. there exist ground instancesF; G of Fng ; Gng , and we have efr(F; G; � t; Th) �

� in

3. there exist ground instancesF; G of Fng ; Gng , and we have efr(F; G; � t; Th) �

� in

Note that if we were to use the techniques of Section 3.4 for entailment, we

would most likely need to �nd tight bounds on the elements in the tuple returned by

EFR OUT(Fng ; Gng ; � t; � ng) (speci�cally a tight lower bound on EFR { as we can

132

be sure that for all ground instancesF; G of Fng ; Gng that EFR(F; G; � t; gnd(� ng))

will fall within these bounds). However, there are a few di�culties with this. First,

we conjecture that to �nd a good bound onEFR OUT, we would most likely have

to examine all combinations of ground instances ofFng ; Gng { which is most likely

equivalent to grounding out the logic program and using !. Second, even if we could

e�ciently �nd tight bounds on EFR OUT, they would most likely be trivial - i.e.

[0; 1].

Conversely, consider the tuple (� in ; � in) = EFR IN (Fng ; Gng ; � t; � ng). We

know that for all ground instancesF; G of Fng ; Gng such that for

[�; �] = EFR(F; G; � t; gnd(� ng))

we have� in � � and � in � � 0. We also know that �nding a lower bound on� in and

an upper bound on� in can be done by simply considering any subset of combinations

of ground instances ofFng and Gng .

Example 3.5.1. Consider K train from Figure 2.3 with tmax = 4. Suppose we add

the following ptf (called�) to the program.

at station(train1; stnA) : 1 ^ adjEast(stnA; stnB) : 1^

: (at station(train1; stnA) : 2) ^ at station(train1; stnA) : 3 : [1; 1]

Clearly, as

EFR(at station(train1; stnA)^ adjEast(stnA; stnB); at station(train1; stnA); 2; �) = [1 ; 1]

we know for

(� in ; � in) = EFR IN (at station(T; S1) ^ adjWest(S1; S2); at station(T; S2); 2; �)

133

that � in = 1 and � in � 1.

Algorithm 9 Finds bounds onEFR IN
FIND-EFR-IN(Fsam ; Gsam subsets of ground instances of non-ground

formulas Fng ; Gng ; � t natural number ; � ng non-ground time formula),

returns natural numbers�
in ; � +

in

1. Computegnd(� ng)

2. Set �
in = 0 and � +

in = 1

3. For eachF 2 Fsam

(a) For eachG 2 Gsam

i. Let (�; �) = EFR(F; G; � t; gnd(� ng))

ii. �
in = max(�; �

in)

iii. � +
in = min(�; � +

in)

Algorithm 9 leverages this technique { if� ng is already ground, algorithm

FIND-EFR-INruns in time quadratic in the size of the sample of ground instances of

Fng ; Gng . Clearly, this simple algorithm is guaranteed to return a lower bound on

� in and an upper bound on� in .

This information can be leveraged in order to perform consistency checks sim-

ilar to those described in Section 3.4.4 without resorting to fully grounding out

Fng ; Gng and considering all combinations of those ground instances. The intuition

is simple { if there is just one ground instance of a non-ground rule where` > u , then

134

the program is inconsistent. The theorem and corollary below mirror Theorem 13

and Corollary 2 (Page 118) that we described in Section 3.4.2 for the ground case.

Theorem 16. Let K (ng) be a non-groundAPT-program that contains the following:

Non-ground rule: Fng
efr
; Gng : [� t; `; u]

Non-ground ptf: � ng : [1; 1]

and (� in ; � in) = EFR IN (Fng ; Gng ; � t; � ng). If we are given�
in � � in and � +

in �

� in , then, K (ng) is not consistent if either�
in > u or � +

in < ` .

Corollary 5. Let K (ng) be a non-groundAPT-program that contains the following:

Non-ground rule: Fng
efr
; Gng : [� t; `; u]

Non-ground ptf: � ng : [`0; u0]

and (� in ; � in) = EFR IN (Fng ; Gng ; � t; � ng). If we are given�
in � � in and � +

in �

� in , then, K (ng) is not consistent if �
in � `0 > u .

Algorithm 10 is a sound (but not complete) method to quickly check for in-

consistency in the non-ground case.

Proposition 23. If the list returned byNG-INCONSIST-CHKcontains any elements,

then K (ng) is not consistent.

Note that the algorithm performs only a quadratic number of comparisons.

Proposition 24. NG-INCONSIST-CHKperforms O(jK (ng) j2) comparisons.6

6Note: each comparison requires generating samples of ground instances of two formulas in a

rule and running FIND-EFR-IN.

135

Algorithm 10 Checks for inconsistencies in a non-ground program
NG-INCONSIST-CHK(K (ng) non-ground program)

returns list of rules that cause inconsistencies

1. Let L be a list of rules initialized to ;

2. For each ptf � ng : [`0; u0] 2 K (ng) whereu0 = 1, do the following.

(a) For each ruleFng
efr
; Gng : [� t; `; u] 2 K (ng) , do the following.

i. Generate sample setsFsam ; Gsam of ground instances ofFng ; Gng .

ii. Let (�
in ; � +

in) = FIND-EFR-IN(Fsam ; Gsam ; � t; � ng)

iii. If �
in � `0 > u , then add Fng

efr
; Gng : [� t; `; u] 2 K (ng) to L

iv. Elseif `0 = 1 and � +
in < ` , then add Fng

efr
; Gng : [� t; `; u] 2 K (ng) to

L

3. Return list L

3.5.2 Entailment for the Non-Ground Case

In this section, we introduce a non-ground operator, �K (ng) , that maps ground

programs to ground programs. Using the same lattice ofAPT-programs we used in

Section 3.4.3, we show that �K (ng) also has a least �xed point. Our intuition is as

follows. Suppose we want to �nd the tightest entailment boundson some ptf� ; if

we computelfp (� K (ng) (� : [0; 1])), the result will be an APT-program (let us call

this program K �) s.t. lfp (!(K �)) will provide the same entailment bounds on� as

if we had computed the least �xed point of ! on the grounding ofK (ng) . However,

136

in most cases,K � will be much smaller than the grounding ofK (ng) .

De�nition 49. For non-ground programK (ng) and ground programK (note that

formula (K) is a set of ground formulas, as de�ned in De�nition 42),� K (ng) maps

ground programs to ground programs and is de�ned as follows.� K (ng) (K) =

K [

f F
efr
; G : [� t; `; u]j F

efr
; G : [� t; `; u] is a ground instance of a rule inK (ng) s.t.

9� 2 formula (K) where� is ground and

9t 2 [1; tmax] s.t. � j= F : t or � j= G : t

or � j= : F : t or � j= : G : tg [

f � : [`; u]j � : [`; u] is a ground instance of a ptf inK (ng) s.t.

9� 2 formula (K) where� is ground and� j= �

or � j= : � g [

f BLK(A) :< blkj BLK(A) :< blk is a ground instance of a constraint inK (ng)s.t.

9� 2 formula (K) where� is ground and

9t 2 [1; tmax] s.t. � j= A : t or � j= : A : tg [

f OCC(A) : [lo; up]j OCC(A) : [lo; up] is a ground instance of a constraint inK (ng)s.t.

9� 2 formula (K) where� is ground andg

9t 2 [1; tmax] s.t. � j= A : t or � j= : A : tg

We will now present an example for this operator.

Example 3.5.2. Recall K train from Figure 2.3 with tmax = 4. The following rules

137

comprise the set� K train (f at station(train1; stnB) : 4g):

at station(train1; stnB) : 4

at station(train1; stnA) ^ adjEast(stnA; stnB)
efr
; at station(train1; stnB) : [4; 0:85; 1:0]

at station(train1; stnB) ^ adjEast(stnB; stnB)
efr
; at station(train1; stnB) : [4; 0:85; 1:0]

at station(train1; stnC) ^ adjEast(stnC; stnB)
efr
; at station(train1; stnB) : [2; 0:85; 1:0]

at station(train1; stnA) ^ adjWest(stnA; stnB)
efr
; at station(train1; stnB) : [2; 0:6; 0:7]

at station(train1; stnB) ^ adjWest(stnB; stnB)
efr
; at station(train1; stnB) : [2; 0:6; 0:7]

at station(train1; stnC) ^ adjWest(stnC; stnB)
efr
; at station(train1; stnB) : [2; 0:6; 0:7]

We use the same partial ordering and lattice from Section 3.4.3, and show the

monotonicity of � K (ng) as follows.

Lemma 14. K v � K (ng) (K) wrt hPROGB L ;t max ; vi

Lemma 15. � K (ng) is monotonic.

Now, we show that � K (ng) has a least �xed point.

De�nition 50. We de�ne multiple applications of� as follows.

� � K (ng) (K) " 0 = K

� � K (ng) (K) " (i + 1) = � K (ng) (� K (ng) (K) " i)

Theorem 17. � K (ng) has a least �xed point.

138

The next two results demonstrate the soundness of �. Given non-ground

program K (ng) , let ground(K (ng)) be the grounding of this program. The lemma

below follows directly from the de�nition of the operator. It states that the least

�xed point of the operator is a subset of the grounding ofK (ng) .

Lemma 16. Given non-ground programK (ng) , and ground programK, lfp (� K (ng) (K)) �

ground(K (ng)) [K .

Additionally, the following result states that, for a given entailment query, we

obtain the same result whether we use �K (ng) or simply ground out K (ng) .

Theorem 18. Given non-ground programK (ng)

� : [`; u] 2 lfp (!(lfp (� K (ng) (f � : [0; 1]g))))

i�

� : [`; u] 2 lfp (!(ground(K (ng)) [f � : [0; 1]g))

3.6 Experimental Results

This section reports on experiments carried out in the groundcase with our

�xpoint algorithm. We demonstrate the ! operator on 23 di�er ent ground APT-

programs automatically extracted from two di�erent data sets using a slight im-

provement of the APT-EXTRACT algorithm from the previous chapter. We were

able to compute �xpoints of APT-programs consisting of over 1,000 ground rules in

about 20 minutes (see the left-hand side of Figure 3.5). Note that this is the time to

139

compute the �xpoint, not to perform a deduction (i.e., via the � operator), which

can be done for speci�c entailment queries, and would be faster.

This section is organized as follows. Section 3.6.1 describes our experimental

setup, data set, and how we extracted rules, integrity constraints, and ptf's while

Section 3.6.2 examines the runtime of the �xpoint operator.

3.6.1 Experimental Setup

All experiments were run on multiple multi-core Intel Xeon E5345 proces-

sors at 2.33GHz, 8GB of memory, running the Scienti�c Linux distribution of the

GNU/Linux OS, kernel version 2.6.9-55.0.2.ELsmp.7 Our implementation consists

of approximately 4,000 lines of Java code (JDK 1.6.0).

Iraq Special Groups (ISW) This data-set contains daily counterinsurgency events

from Baghdad in 2007-2008. The event data was provided by theInstitute for the

Study of War (ISW) and augmented with neighborhood data from the International

Medical Corps. The historical data was represented with 187ground atoms over

567 days { which is the time granularity we used. Using theAPT-Extract algorithm

(presented in the previous chapter), we extracted 3,563 ground rules using theefr

frequency function.

We considered 13 logic programs from this dataset; each smaller program is a

subset of any of the larger ones, so we haveK1 � K 2 � : : : � K 12 � K 13. In each

program, we included a pre�x consisting of 50 worlds (for moreon pre�xes, refer to

7We note that this implementation makes use of only one processor and one core for a single

run, though di�erent runs were distributed across the cluster.

140

De�nition 34 on Page 107). The same pre�x was used for each ISWprogram. We set

tmax = 60 for all ISW programs. Additionally, for all ground atoms appearing in a

given program, we added the appropriate block and occurrence integrity constraints.

Later we will present our extraction algorithms for these constraints.

Minorities at Risk Organizational Behavior (MAROB) This data set con-

tains yearly attributes for a variety of political and violent groups over a period of 25

years [181]. Overall, we have extracted over 21:4 million APT-rules from this data

set. These rules were also extracted usingAPT-EXTRACT with the efr frequency

function.

We considered 10APT-logic programs from this dataset, each corresponding

to a di�erent group. As each of these logic programs is associated with actions

for a speci�c group, all 10 of the MAROB programs are pairwise disjoint. In each

MAROB program, we included a unique pre�x of 10 worlds speci�cto the group

in the program. We set tmax = 13 for each MAROB program. Block-size and

occurrence constraints were also included in each program.Tables 3.1-3.2 provides

some information on theseAPT-programs.

While integrity constraints (as with rules) could come from an expert, we

decided to extract our ICs from the data. We have included thestraightforward

algorithms OC-EXTRACTand BLOCK-EXTRACTto show how we extracted occur-

rence and block-size IC's (respectively) for each of the 187 atoms in the data set.

Proposition 25. OC-EXTRACTruns in time O((n tmax) � tmax).

Proposition 26. There are no historical threads such that atomai is satis�ed by

141

Algorithm 11 Extracts occurrence constraints
OC-EXTRACT(ai ground atom; W1; : : : ; Wn historical worlds; tmax maximum time),

returns natural numbersloi ; upi

1. Setupi = 0 and loi = tmax

2. For i = 1, i � n tmax + 1, loop

(a) Set cur = 0

(b) For j = i , j < i + tmax loop

i. If Wj j= ai , then cur = cur + 1

(c) If cur < loi then set loi = cur

(d) If cur > upi then set upi = cur

3. Return loi ; upi

less thanloi or more than upi worlds whenloi ; upi are produced byOC-EXTRACT.

Proposition 27. BLOCK-EXTRACTruns in time O(n).

Proposition 28. Given blki as returned byBLOCK-EXTRACT, there is no sequence

of blki or more consecutive historical worlds that satisfy atomai .

3.6.2 Run Time Evaluation

To evaluate performance, for each logic program, we clocked10 trials until !

reached a �xpoint. In all our trials, a �xpoint was reached after only two or three

applications (see Tables 3.1-3.2). We also note that the experimental relationship

142

0

10

20

30

40

50

60

0 200 400 600
0

200

400

600

800

1000

1200

1400

0 500 1000

R
un

tim
e

(s
ec

on
ds

)

Number of Ground Rules

R
un

tim
e

(s
ec

on
ds

)

Number of Ground Rules

ISW MAROB

Figure 3.5: Number of ground rules vs. run time (Left: ISW, Right:MAROB). Note

these run-times include the full computation of the �xed point of the ! operator.

between run time and the number of rules was linear { we conducted a statistical

R2-test for this and came up with anR2 value of 0:97 for ISW programs and 0:77

for MAROB programs (refer to Figure 3.5). We must point out that the disjoint

relationship among MAROB programs may account for why the runtime relation-

ship is not as linear as that for the ISW programs. This graceful degradation in

performance is most likely due to the fact that the number of rules/ptfs that can

tighten the bound of a given rule or ptf is much smaller than the set of entire rules,

which makes the running time of the inner loop very small. Hence, for practical

purposes, theO(jKj 2) is a loose bound; this worst case is likely to occur only in very

rare circumstances.

We checked entailment by looking at the probability bounds offormulas in

formula(K) (see De�nition 42), which is obtained by �nding the �xpoint for the

! operator on a consistent APT-program. After our initial runs of ! on the 23

logic programs, we found that 21 of them were inconsistent. Asinconsistencies are

143

Program Gr. Rules Post. Gr. Atoms Range of � t tmax Time Points ! App.

K1 92 76 [2,10] 60 567 2

K2 102 76 [2,10] 60 567 3

K3 126 76 [2,10] 60 567 3

K4 144 76 [2,10] 60 567 2

K5 169 76 [2,10] 60 567 2

K6 214 76 [2,10] 60 567 3

K7 241 76 [2,10] 60 567 3

K8 278 76 [2,10] 60 567 3

K9 360 79 [2,10] 60 567 3

K10 503 80 [2,10] 60 567 3

K11 644 80 [2,10] 60 567 3

K12 816 80 [2,10] 60 567 3

K13 1081 84 [2,10] 60 567 3

Table 3.1: APT-logic programs used in the run time evaluations. ProgramsK1 K 13

are based on the ISW data-set.

144

Program Gr. Rules Post. Gr. Atoms Range of � t tmax Time Points ! App.

KH 586 189 [2,3] 13 23 3

KJ 679 192 [3,3] 13 25 2

KA 661 162 [2,3] 13 25 2

KB 163 175 [3,3] 13 24 2

KD 539 176 [3,3] 13 25 2

KF T 482 188 [2,3] 13 22 3

KF R 310 177 [3,3] 13 25 2

KHA 458 168 [3,3] 13 13 2

KHI 330 182 [2,3] 13 25 2

KK 94 181 [1,3] 13 25 3

Table 3.2: APT-logic programs used in the run time evaluations. The programs in

this table are based on the MAROB data-set.

145

R
un

tim
e

(s
ec

on
ds

)

Number of Ground Rules

R
un

tim
e

(s
ec

on
ds

)

Number of Ground Rules

ISW MAROB

0

200

400

600

800

1000

0 200 400 600
0

10

20

30

40

50

60

0 200 400 600

Figure 3.6: Number of ground rules vs. run time for entailment checking (Left: ISW,

Right: MAROB).

found in a constructive way (refer to Section 3.4.4 on Page 127), we could eliminate

rules that caused inconsistencies (we designate the \consistent" subset of a program

with a tick mark, i.e., K0
2 is K2 with inconsistency-causing rules removed). Using

these \consistent" APT-programs, we �rst looked to revalue the performance of

the ! operator for entailment. Unsurprisingly, as with the run time evaluation we

performed for consistency checking, we found that the run time was related linearly

to the number of ground rules considered. We obtainedR2 values of 0:95 for ISW

programs and 0:94 for MAROB programs. See Figure 3.6 for details; run times are

based on the average of 10 trials for each logic program.

As a consequence of De�nition 42 (Page 123), the logic programreturned by

multiple applications of ! includes several ptf's not in theoriginal program. These

ptf's were either based on formulas seen in the rules, or atoms seen in the rules where

an integrity constraint forces the associated atomic ptf tobe assigned probability

0. Many of these ptf's have probability bounds tighter than [0; 1] { some extremely

146

0

50

100

150

200

250

300

350

400

450

500

K1' K2' K3' K4' K5' K6' K7' K8' K9' K10' K11' K12' K13'

Decision ptf's

u-l < 0.1

Figure 3.7: Attributes of ptf's entailed by the di�erent logic programs (ISW dataset)

tight. We note, as shown in Figure 3.7, that all of our ISW logicprogram produce

over 300 ptfs where the di�erence betweeǹ and u is less than 0:1 (the number

steadily increases with larger ISW programs8). We also looked at \decision ptf's";

these are ptf's where either̀ � 0:5 or u � 0:5 { the intuition is that the probability

mass is either above or below 0:5, allowing a user to make a decision. The ! operator

also was successful in producing many ptf's of this type, producing well over 400 in

over half of the logic programs we considered from the ISW dataset.

8It is important to point out that all numbers of ptf 's with tight bounds ar e associated with a

world outside the range of the pre�x.

147

Algorithm 12 Extracts block-size constraints
BLOCK-EXTRACT(ai ground atom; W1; : : : ; Wn historical worlds),

returns natural number blki

1. Setcur = 0

2. Setbest= 0

3. For i = 1, i � n, loop

(a) If Wi j= ai

i. cur = cur + 1

(b) Else

i. If cur > best then set best= cur

ii. Set cur = 0

4. If cur > best set best= cur

5. Setblki = best+ 1

6. Return blki

148

3.7 Chapter 3 Related Work

In the previous chapter, we showed thatAPT-Logic distinguishes itself from

other temporal logics in the following ways:(i) It supports reasoning about probabil-

ity of events over time,(ii) Future worlds can depend on more than just the current

world (i.e., it does not assume the Markov property).(iii) It provides probability

bounds instead of a point probability.(iv) No independence assumptions are made.

[34] was the �rst e�ort to provide a declarative semantics for temporal prob-

abilistic LPs. We compared this work withAPT-Logic in the previous chapter. No

implementation was proposed and thus no experimental results were studied.

[124] introduce an extension to the Situation Calculus for handling actions

with uncertain e�ects. The semantics of their logical language is given in terms of

a \Randomly Reactive Automaton", which allows for probabilistic e�ects of actions

but has no notion of the current time apart from that implied by the sequence of

actions. They examine next move determination where the results of a move are

dependent on the move chosen as well as on draws from single orfrom multiple

distributions.

Santos and Young [148] propose the Probabilistic Temporal Network model

(PTNs), which allows to represent temporal (and atemporal) information in com-

bination with probabilistic semantics. PTNs are suitable for representing causality

constrained by time, conditions for the occurrence of events (and at what time they

occur), and periodic and recurrent processes. This model is based on Bayesian

networks (for the probabilistic aspect) and on work by Allen [3] on temporal in-

149

terval algebra for the temporal aspect. Even though this work's goals overlap to

some extent with those of our own, the fundamental di�erence lies in the initial

assumptions made. In order to build a PTN, one must have available information

regarding dependencies, prior probabilities for all random variables, temporal causal

relationships between random variables in temporal aggregates, etc. The focus of

our work is to reason about events making no independence assumptions, and only

based on limited information relating small subsets of events. The PTN framework

is, however, very useful for scenarios in which the required information is avail-

able, as is the case in probabilistic reasoning with traditional Bayesian Networks.

The key aspect that separatesAPT-logic from PTN's, is the fact that APT -logic

makes no assumptions about independence. For example, consider item 1 of

Theorem 8, one of the key building blocks of our �xpoint heuristic. In this case,

if I j= � : [p; p] and � : [p0; p0], then I j= � ^ � : [max(0; p + p0 1); min(p; p0)]. If

we had assumed independence, thenI j= � _ � : [p2; p2] { clearly a di�erent an-

swer and not appropriate for domains where we do not wish to make assumptions

about dependence/independence (i.e., the counter-insurgency data that we used for

our experiments). This also is our motivation for the use of probability intervals {

rather than point probabilities.

3.7.1 Work in Veri�cation and PRISM

Logics merging time and probabilities have been studied quite a bit in the area

of veri�cation. [173] was one of the pioneers in this, followed by many including

150

probabilistic CTL [65], and others [25]. Building on this work, Kwiatkowska et.al.

developed a tool known as PRISM [91, 92] to perform this type of model checking.

PRISM has the following characteristics:

1. The user speci�es amodel - a discrete-time Markov chain (DTMC), continuous-

time Markov chain (CTMC) or Markov decision processes (MDP)

2. The user also speci�es aproperty - which is normally a CTL formula

3. PRISM returns avalue (normally a probability or expected value) associated

with the property

One can view our implementation in the same light - taking anAPT-program

as a model, time formula as a property, and returning entailment bounds as the

value. However, PRISM operates under some very di�erent assumptions than APT-

logic which are appropriate for some applications but not for all.

1. Themodel speci�ed by the user in PRISM is a stochastic process that assumes

the Markov property - that is the probability of being in the next state only

depends on the current state and action. Conversely, anAPT-program does

not assume the Markov property . Further, we demonstrated translations

from stochastic processes toAPT-programs in Chapter 2. Also, in that chapter,

we showed how it is easy to construct a very simpleAPT-program where there

is no analogous MDP (using a natural construction).

2. Based on themodel speci�ed by the user, PRISM also makes an independence

assumption. Suppose we are in initial stateS1 and consider the following

151

sequence of states, actions, and probabilities in an MDP:S1
a! p1 S2

b! p2 S3

which states that \state 1 transitions to state 2 on actiona with probability p1

and state 2 transitions to state on actionbwith probability p2." PRISM would

calculate the probability of such a sequence -p1 � p2 - hence it has assumed

independence between the two transitions. Likewise, consider the formulas

F (S1); F (S2); F (S3) { formulas satis�ed exactly by states S1; S2; S3. Using

the natural translation described in Chapter 2, we can createan analogous

APT-program as follows:

� (F (S1) ^ a ^ : b) : 1 ^ F (S2) : 2 : [p1; p1]

� (F (S2) ^ b^ : a) : 2 ^ F (S3) : 3 : [p2; p2]

By item 1 of Theorem 8, the following ptf is tightly entailed:

(F (S1) ^ a ^ : b) : 1 ^ (F (S2) ^ b^ : a) : 2 ^ F (S3) : 3 : [max(0; p1 + p2

1); min(p1; p2)]

With APT-logic, we allow for uncertainty -all we can say about the sequence

is it has a probability in [max(0; p1 + p2 1); min(p1; p2)] { which is clearly

di�erent than p1 � p2.

3. The property speci�ed by the user in PRISM is based on PCTL [12, 65].

Although there are constructs in PCTL that appear similar to the syntax of

APT-logic, as our semantics di�er substantially, the statements have di�erent

meanings. Even if an MDP is encoded in anAPT-program, a \leads-to" PCTL

operator (which has a strikingly similar intuition to an APT-rule) has a very

152

di�erent meaning. We explored the speci�cs of these di�erences in the previous

chapter.

Basically, PRISM is best suited for situations where the underlying model can

be represented as a stochastic process. Popular applications have included software

veri�cation and certain biology problems that can be easilyrepresented as stochastic

processes.APT-logic is best suited for situations where there are no independence

or Markov assumptions made about the model - which is often the case when we are

working with extracted rules. We have shownAPT-logic to be viable for studying the

actions of militia groups in a counter-insurgency environment. Other applications

whereAPT-logic is well suited include policy analysis and stock pricemovement.

3.8 Chapter Summary

Logical reasoning with time and probabilities is essentialin any application

where the occurrence of certain conditions at timet may cause or imply that other

phenomena may occur� units in the future. There are numerous such applications

including ones relating to how stock markets will move in thefuture based on current

or past conditions, medicine where the condition of a patient in the future depends

on various things true now, behavior modeling where the behavior of an individual

or group in the future may depend on his current/past situation. In addition,

most applications where we reason about the future are fraught with uncertainty.

Annotated Probabilistic Temporal Logic (APT-logic for short) was introduced in the

previous chapter as a paradigm for reasoning about sentences of the form \If formula

153

F is true at time t, then formula G will be true at time � t with a probability in the

range [L; U]." More importantly, APT-logic programs were introduced in a manner

that did not require independence or Markovian assumptions, many of which are

inapplicable for several applications.

To date, no implementation of probabilistic temporal logicexists that does

not make use of Markovian or independence assumptions. To ourknowledge, this

chapter represnt the �rst attempt at any implementation of such logics. However,

due to the high complexity of such reasoning (which may also explain why imple-

mentations may not exist), practical temporal probabilistic reasoning systems may

not always be complete.

In this chapter, we developed, implemented, and evaluated a �xpoint-based

heuristic for consistency and entailment problems inAPT-logic programs. This

chapter makes the following contributions:

1. We show NP-completeness of theAPT-logic consistency problem, and coNP-

completeness of theAPT-logic entailment problem, extending hardness results

of the previous chapter.

2. We developed a�xpoint based heuristic from the following observations:

� The presence of ptf's with the probability of 1 in anAPT-program allows

us to tightly bound values for frequency functions.

� The bound on frequency functions, in turn, allows us to tighten the bounds

of elements in anAPT-program

154

� The above two characteristics can be employed in an operatorthat maps

APT-programs toAPT-programs and has a least �xed point

3. We developed consistency and entailment algorithms for the non-ground case.

4. We implemented our �xpoint heuristic and applied it to 23real world APT-

logic programs derivedautomatically from two di�erent real world data sets.

This suite of test programs was not written by us. Our experiments show that

our �xpoint based heuristical can calculate �xpoints in time roughly linear

w.r.t. the number of ground rules

5. We also show that using our implementation, we can solve the \tight entail-

ment problem" where the goal is to �nd the tightest interval [̀ ; u] such that

F : [t; `; u] is entailed by anAPT-logic program for a given timet and formula

F .

155

Chapter 4

Geospatial Abduction

In the previous two chapter, we explored temporal aspects ofan agent's be-

havior with APT logic. The next three chapters deal with spatial aspects of an

agent's behavior. These chapters are primarily concerned with variants of geospa-

tial abduction problems - inferring unobserved geospatial locations associated with

agent behavior. In this chapter, we formalize the idea of geopspatial abduction and

study some natural problems associated with this framework.1

4.1 Chapter Introduction

There are numerous applications where we wish to draw geospatial inferences

from observations. For example, criminologists [144, 15] have found that there

are spatial relationships between a serial killer's house (the geospatial inference we

wish to make), and locations where the crimes were committed(the observations).

1This chapter is based on [157] and [158] which were completed in cooperation with Maria Luisa

Sapino and V.S. Subrahmanian.

156

A marine archaeologist who �nds parts of a wrecked ship or itscargo at various

locations (the observations) is interested in determiningwhere the main portion of

the wreck lies (the geospatial inference). Wildlife expertsmight �nd droppings of an

endangered species such as the Malayan sun bear (observations) and might want to

determine where the bear's den is (the geospatial inferenceto be made). In all these

cases, we are trying to �nd a single location that best explains the observations (or

the k locations that best explain the observations). There are two common elements

in such applications.

First, there is a set O of observationsof the phenomena under study. For

the sake of simplicity, we assume that these observations are points where the phe-

nomenon being studied was known to have been present. Second,there is some

domain knowledgeD specifying known relationships between the geospatial loca-

tion we are trying to �nd and the observations. For instance, in the serial killer

application, the domain knowledge might tell us that serialkillers usually select

locations for their crimes that are at least 1.2 km from theirhomes and at most

3 km from their homes. In the case of the sun bear, the domain knowledge might

state that the sun bear usually prefers to have a den in a cave, while in the case of

the wreck, it might be usually within a radius of 10 miles of the artifacts that have

been found.

The geospatial abduction problem(GAPfor short) is the problem of �nding the

most likely set of locationsthat is compatible with the domain knowledgeD and

that best \explains" the observations inO. To see why we look for aset of loca-

tions, we note that the serial killer might be using both his home and his o�ce as

157

launching pads for his attacks. In this case, no single location may best account for

the observations. In this chapter, we show that many natural problems associated

with geospatial abduction are NP-Complete, which cause us to resort to approxima-

tion techniques. We then show that certain geospatial abduction problems reduce

to several well-studied combinatorial problems that have viable approximation algo-

rithms. We implement some of the more viable approaches withheuristics suitable

for geospatial abduction, and test them on a real-world data-set. The organization

and main contributions of this chapter are as follows.

� Section 4.1.1 formally de�nes geospatial abduction problems (GAPsfor short) and

Section 4.2 analyzes their complexity.

� Section 4.3 develops a \naive" algorithm for a basic geospatial abduction problem

called k-SEP and shows reductions to set-covering, dominating set, and linear-

integer programming that allow well-known algorithms for these problems to be

applied to GAPs.

� Section 4.4 describes two greedy algorithms fork-SEP and compares them to a

reduction to the set-covering problem.

� Section 4.5 describes our implementation and shows that ourgreedy algorithms

outperform the set-covering reduction in a real-world application on identifying

weapons caches associated with Improvised Explosive Device(IED) attacks on

US troops in Iraq. We show that even if we simplifyk-SEP to only cases where

k-means classi�cation algorithms work, our algorithms outperform those. We

also note that k-means can only be applied to geospatial abduction in certain,

158

restricted cases as a heuristic with no approximation guarantee. Such cases are

quite limited as the sociol-culutral variables encoded is a feasibility overlay cannot

be incorporated into the input of ak-means algorithm.

� Section 4.6 compares our approach with related work.

4.1.1 Geospatial Abduction Problem (GAP) De�nition

Throughout this chapter, we assume the existence of a �nite, 2-dimensional

M � N spaceS2 for some integersM; N � 1 called the geospatial universe (or

just universe). Each point p 2 S is of the form (x; y) where x; y are integers and

0 � x � M and 0� y � N . We assume that all observations we make occur within

spaceS. We use the space shown in Figure 4.1 throughout this chapter to illustrate

the concepts we introduce. We assume thatS has an associated distance function

d which assigns a non-negative distance to any two points and satis�es the usual

distance axioms.3

De�nition 51 (observation). An observationO is any �nite subset ofS.

Consider the geospatial universe shown in Figure 4.1. In the serial killer ap-

plication, the red dots would indicate the locations of the murders, while in the

ship-wreck example, they would indicate the locations where artifacts were found.

We wish to identify the killer's location (or the sunken shipor the sun bear's den).

2We use integer coordinates as most real world geospatial information systems (GIS) systems

use discrete spatial representations.
3d(x; x) = 0; d(x; y) = d(y; x); d(x; y) + d(y; z) � d(x; z).

159

 0 4 8 12 16

 12

 8

 4

Figure 4.1: A space. Red dots denote observations. Yellow squares denote infeasible

locations. Green stars show one (0,3) explanation, while pink triangles show another

(0,3) explanation.

As mentioned earlier, there are many constraints that governwhere such lo-

cations might be. For instance, it is unlikely that the sun-bear's den (or the killer's

house or o�ce) is in the water, while the sunken ship is unlikely to be on land.

De�nition 52 (feasibility predicate). A feasibility predicatefeasis a function from

S to f TRUE; FALSEg.

Thus, feas(p) = TRUE means that point p is feasible and must be considered

in the search. Figure 4.1, denotes infeasible places via a yellow square. Throughout

this chapter, we assume thatfeasis an arbitrary, but �xed predicate.4 Further, as

feasis de�ned as a function overf TRUE; FALSEg, it can allow for user input based

4We also assume throughout the chapter thatfeas is computable in constant time. This is a

realistic assumption, as for most applications, we assumefeasto be user-de�ned. Hence, we can

leverage a data-structure indexed with the coordinates ofS to allow for constant-time computation.

160

on analytical processes currently in place. For instance, in the military, analysts

often create \MCOO" overlays where \restricted terrain" isdeemed infeasible [170].

We can also easily express feasibility predicates in a Prolog-style language { we

can easily state (in the serial killer example) that pointp is considered feasible if

p is within R units of distance from some observation andp is not in the water.

Likewise, in the case of the sun bear example, the same language might state that p

is considered feasible ifp is within R1 units of distance from marks on trees, within

R2 units of scat, and if p has some landcover that would allow the bear to hide.

A Prolog-style language that can express such notions of feasibility is the hybrid

knowledge base paradigm [108] in which Prolog style rules can directly invoke a GIS

system.

De�nition 53 ((�; �) explanation). SupposeO is a �nite set of observations,E is

a �nite set of points in S, and � � 0, � > 0 are some real numbers.E is said to be

an (�; �) explanation of O i�:

� p 2 E implies that feas(p) = TRUE, i.e. all points in E are feasible and

� (8o 2 O)(9p 2 E) � � d(p; o) � � , i.e. every observation is neither too close nor

too far from some point inE.

Thus, an (�; �) explanation is a set of points (e.g. denoting the possible

locations of the home/o�ce of the serial killer or the possible locations of the bear's

den). Each point must be feasible and every observation must have an analogous

point in the explanation which is neither too close nor too far.

161

Given an (�; �) explanation E, there may be an observationo 2 O such that

there are two (or more) pointsp1; p2 2 E satisfying the conditions of the second

bullet above. If E is an explanation forO, a partnering function } E is a function

from O to E such that for all o 2 O , � � d(} E(o); o) � � . } E(o) is said to beo's

partner according to the partnering function} E. We now present a simple example

of (�; �) explanations.

Example 4.1.1. Consider the observations in Figure 4.1 and suppose� = 0; � = 3.

Then the two green stars denote an(�; �) explanation, i.e. the setf (6; 6); (12; 8)g is

a (0; 3) explanation. So is the set of three pink triangles, i.e. the setf (5; 6); (10; 6);

(13; 9)g is also an(0; 3) explanation.

The basic problem that we wish to solve in this chapter is the following.

The Simple (�; �) Explanation Problem (SEP).

INPUT: SpaceS, a setO of observations, a feasibility predicatefeas, and numbers

� � 0, � > 0.

OUTPUT: \Yes" if there exists an (�; �) explanation for O | \no" otherwise.

A variant of this problem is the k-SEP problem which requires, in addition,

that E contains k elements or less, fork < jOj . Yet another variant of the problem

tries to �nd an explanation E that is \best" according to some cost function.

De�nition 54 (cost function �). A cost function � is a mapping from explanations

to non-negative reals.

162

We will assume that cost functions are designed so that the smaller the value

they return, the more desirable an explanation is. Some example cost functions are

given below. The simple one below merely looks at the mean distances between

observations and their partners.

Example 4.1.2 (Mean-distance). SupposeS; O; feas; �; � are all given and suppose

E is an (�; �) explanation forO and } E is a partnering function. We could initially

set the cost of an explanationE (with respect to this partnering function) to be:

� } E (E) =
� o2O d(o; } E(o))

jOj
:

Supposeptn(E) is the set of all partner functions forE in the above setting. Then

we can set the cost ofE as:

� mean (E) = inff � } E (E) j } E 2 ptn(E)g:

The above de�nition removes reliance on a single partnering function as there

may be several partnering functions associated with a singleexplanation. We illus-

trate this de�nition using our sun bear example.

Example 4.1.3. Wildlife experts have found droppings and other evidence of the

Malayan sun bear in a given space,S, depicted in Figure 4.2. Pointsf o1; o2; o3g

indicate locations of evidence of the Malayan sun bear (we shall refer to these as set

O). Points f p1; p2; : : : ; p8g indicate feasible dwellings for the bear. The concentric

rings around each element ofO indicate the distance� = 1:7km and � = 3:7km.

The setf p3; p6g is a valid (1:7; 3:7) explanation for the set of evidence,O. However,

we note that observationo2 can be partnered with either point. If we are looking to

163

Figure 4.2: Left: Points f o1; o2; o3g indicate locations of evidence of the Malayan

sun bear (we shall refer to these as setO). Points f p1; p2; : : : ; p8g indicate feasible

dwellings for the bear. The concentric rings around each element of O indicate the

distance � = 1:7km and � = 3:7km. Right: Points f p1; p2; p3g are feasible for

crime-scenesf o1; o2g. f p1; p2g are safe-houses within a distance of [1; 2] km. from

crime sceneo1 and f p2; p3g are safe-houses within a distance of [1; 2] km. from crime

sceneo2.

minimize distance, we notice thatd(o2; p3) = 3 km and d(o2; p6) = 3 :6km, hencep3

is the partner for o2 such that the distance is minimized.

We now de�ne an \optimal" explanation as one that minimizes cost.

De�nition 55. SupposeO is a �nite set of observations,E is a �nite set of points

in S, � � 0, � > 0 are some real numbers, and� is a cost function. E is said to be

an optimal (�; �) explanation i� E is an (�; �) explanation for O and there is no

other (�; �) explanationE0 for O such that� (E0) < � (E).

164

We present an example of optimal (�; �) explanations below.

Example 4.1.4. Consider the sun bear from Example 4.1.3 whose behavior is de-

picted in Figure 4.2 (left). While f p3; p6g is a valid solution for thek-SEP problem

(k = 2), it does not optimize mean distance. In this case the mean distance would

be3km. However, the solutionf p3; p7g provides a mean-distance of2:8km.

Suppose we are tracking a serial killer who has struck at locationsO = f o1; o2g.

The points f p1; p2; p3g are feasible locations as safe-houses for the killer (partners).

This is depicted in Figure 4.2 (right). Based on historical data, we know that serial

killers strikes are at least1km away from a safe-house and at most2km from the

safe house (� = 1, � = 2). Thus, for k = 2, any valid explanation of size2 provides

an optimal solution wrt mean-distance as every feasible location for a safe-house is

within 2km of a crime scene.

We are now ready to de�ne the cost-based explanation problem.

The Cost-based (�; �) Explanation Problem.

INPUT: SpaceS, a setO of observations, a feasibility predicatefeas, numbers� � 0,

� > 0, a cost function� and a real numberv > 0.

OUTPUT: \Yes" if there exists an (�; �) explanation E for O such that � (E) � v

| \no" otherwise.

It is easy to see that standard classi�cation problems likek-means5 can be

captured within our framework by simply assuming that� = 0, � > max (M; N)2

5See [4] for a survey on classi�cation work.

165

and that all points are feasible. In contrast, standard classi�cation algorithms cannot

take feasibility into account - and this is essential for theabove types of applications.

4.2 Complexity of GAP Problems

SEP can be easily solved in PTIME. Given a setO of observations, for each

o 2 O , let Po = f p 2 S j feas(p) = TRUE ^ � � d(p; o) � � g. If Po 6= ; for each

o, we return \yes". We call this algorithm STRAIGHTFORWARD-SEP. Another

algorithm would merely �nd the set F of all feasible points and return \yes" i� for

every observationo, there is at least one pointp 2 F such that � � d(p; o) � � . In

this case,F is the explanation produced - but it is a very poor explanation. In the

serial killer example,F merely tells the police to search all feasible locations without

trying to do anything intelligent. k-SEPallows the user to constrain the size of the

explanation so that \short and sweet" explanations that are truly meaningful are

produced. The following result states thatk-SEP is NP-Complete - the proof is a

reduction from Geometric Covering by Discs(GCD) [76].

Theorem 19. k-SEP is NP-Complete.

In the associated optimization problem withk-SEP, we wish to produce an

explanation of minimum cardinality. Note that minimum cardinality is a common

criterion for parsimony in abduction problems [141]. We shall refer to this problem

as MINSEP. This problem is obviously NP-hard by Theorem 19. We can adjust

STRAIGHTFORWARD-SEPto �nd a solution to MINSEPby �nding the minimum

hitting set of the Po's.

166

Example 4.2.1. Consider the serial killer scenario in Example 4.1.4 and Figure 4.2

(right). Crime scene (observation)o1 can be partnered with two possible safe-houses

f p1; p2g and crime sceneo2 can be partnered withf p2; p3g. We immediately see that

the potential safe house located atp2 is in both sets. Therefore,p2 is an explanation

for both crime scenes. As this is the only such point, we conclude thatf p2g is the

minimum-sized solution for theSEP problem. However, while it is possible for

STRAIGHTFORWARD-SEPto return this set, there are no assurances it does. As

we saw in Example 4.1.4,E = f p1; p2g is a solution to SEP , although a solution

with lower cardinality (f p2g) exists. This is why we introduce theMINSEPproblem.

With the complexity of k-SEP, the following corollary tells us the complexity

class of the Cost-based Explanation problem. We show this reduction by simply

setting the cost function� (E) = jEj.

Corollary 6. Cost-based Explanation is NP-Complete.

As described earlier,MINSEPhas the feel of a set-covering problem. Although

the generalized cost-based explanation cannot be directlyviewed with a similar in-

tuition (as the cost maps explanations to reals { not elements of S), there is an

important variant of the Cost-based problem that does. We introduce weighted

SEP, or WT-SEP below.

Weighted Spatial Explanation. (WT-SEP)

INPUT: A space S, a set O of observations, a feasibility predicatefeas, numbers

� � 0, � > 0, a weight functionc : S ! < , and a real numberv > 0.

167

OUTPUT: \Yes" if there exists an (�; �) explanation E for O such that
P

p2E c(p) �

v | \no" otherwise.

In this case, we can easily show NP-Completeness by reductionfrom k-SEP,

we simply set the weight for each element ofS to be one, causing
P

p2E c(p) to equal

the cardinality of E.

Corollary 7. WT-SEP is NP-Complete.

Cost-based explanation problems presented in this section are very general.

While the complexity results hold for an arbitrary function in a general case, we

also consider speci�c functions as well. Below we present the total-distance min-

imization explanation problem (TD-SEP). This is a problem where we seek to

minimize the sum of distances between observations and theirclosest partners while

imposing a restriction on cardinality.

Total Distance Minimization Explanation Problem. (TD-SEP)

For spaceS, let d : S � S ! < be the Euclidean distance between two points inS.

INPUT: A space S, a set O of observations, a feasibility predicatefeas, numbers

� � 0, � > 0, positive integerk < jOj , and real numberv > 0.

OUTPUT: \Yes" if there exists an (�; �) explanation E for O such that jEj = k and

P
oi 2O minpj 2E d(oi ; pj) � v | \no" otherwise.

Theorem 20. TD-SEP is NP-Complete.

The NP-hardness of theTD-SEP is based on a reduction from thek-Median

168

Problem [134]. This particular reduction (details in the appendix) also illustrates

how the k-median problem is a special case ofGAPs, but k-median problems cannot

handle arbitrary feasibility predicates of the kind that occur in real-life geospatial

reasoning. The same argument applies tok-means classi�ers as well.

4.3 Exact Algorithm for GAP Problems

This section presents four exact approaches to solvek-SEP and WT-SEP .

First, we provide an enumerative approach that exhaustivelysearches for an expla-

nation. Then, we show that the problem reduces to set-cover,dominating set, and

linear-integer programming. Existing algorithms for these problems can hence be

used directly. Throughout this section, we shall use the symbols � to represent the

bound on the number of partners that can be associated with a single observation

and f to represent the bound on the number of observations supported by a single

partner. Note that both values are bounded by� (� 2 � 2), however they can be

much less in practice { speci�callyf is normally much smaller than �.

4.3.1 Naive Exact Algorithm

We now show correctness ofNAIVE-KSEP-EXACT. This algorithm provides

an exact solution tok-SEP but takes exponential time (ink). The algorithm �rst

identi�es a set L of all elements ofS that could be possible partners forO. Then, it

considers all subsets ofL of size less than or equal tok. It does this until it identi�es

one such subset as an explanation.

169

Algorithm 13 (NAIVE-KSEP-EXACT)
INPUT: Space S, a set O of observations, a feasibility predicate feas, real numbers � � 0, � > 0, and natural

number k > 0

OUTPUT: Set E � S of size k (or less) that explains O

1. Let M be a matrix array of pointers to binary string f 0; 1gjOj . M is of the same dimensions as S. Each

element in M is initialized to NULL. For a given p 2 S , M [p] is the place in the array.

2. Let L be a list of pointers to binary strings. L is initialized as null.

3. For each oi 2 O do the following

(a) Determine all points p 2 S such that � � d(o; p) � � such that feas(p) = TRUE.

(b) For each of these points, p, if M [p] = NULL then initialize a new array where only bit i is set to 1.

Then add a pointer to M [p] in L .

(c) Otherwise, set bit i of the existing array to 1.

4. For any k elements of L (actually the k elements pointed to by elements of L), we shall designate

`1 ; : : : ; ` j ; : : : ` k as the elements. We will refer to the i th bit of element ` j as ` j (i).

5. Exhaustively generate all possible combinations of k elements of L until one such combination is found

where 8i 2 [1; jOj],
P k

j =1 (` j (i)) > 0

6. If no such combination is found, return NO. Otherwise, ret urn the �rst combination that was found.

170

Proposition 29. If there is a k-sized simple(�; �) explanation forO, then NAIVE-

KSEP-EXACTreturns an explanation. Otherwise, it returns NO.

Finally, we have the complexity of the algorithm.

Proposition 30. The complexity ofNAIVE-KSEP-EXACTis O(1
(k 1)! (� (� 2 � 2)jOj)(k+1)).

An exact algorithm for the cost-based explanation problems follows trivially

from the NAIVE-KSEP-EXACTalgorithm by adding the step of computing the value

for � for each combination. Provided this computation takes constant time, this

does not a�ect the O(1
(k 1)! (� (� 2 � 2)jOj)(k+1)) run time of that algorithm.

4.3.2 An Exact Set-Cover Based Approach

We now show thatk-SEP polynomially reduces to an instance of the popular

set-covering problem [80] which allows us to directly applythe well-known greedy

algorithm reviewed in [136].SET COVERis de�ned as follows.

The Set-Cover Problem. (SET COVER)

INPUT: Set of elements,E and a family of subsets ofE, F � f S1; : : : ; Smax g, and

positive integerk.

OUTPUT: \Yes" if there exists a k-sized subset ofF , Fk , such that
S k

i =1 f Si 2

Fkg � E.

Through a simple modi�cation of NAIVE-KSEP-EXACT, we can take an in-

stance ofk-SEP and produce an instance ofSET COVER. We run the �rst four

171

steps, which only takesO(� � jOj) time by the proof of Proposition 30.

Theorem 21. k-SEP polynomially reduces toSET COVER.

Example 4.3.1. Consider the serial killer scenario in Example 4.1.4 and Figure 4.2

(right). Suppose we want to solve this problem as an instance ofk-SEP by a reduc-

tion to set-cover. We consider the set of crime-scene locations,O � f o1; o2g as the

set we wish to cover. We obtain our covers from the �rst four steps ofNAIVE-KSEP-

EXACT. Let us call the result listL . Hence, we can view the values of the elements

in L as the following setsS1 � f o1g; S2 � f o1; o2g; S3 � f o2g. These correspond

with points p1; p2; p3 respectively. AsS2 coversO, p2 is an explanation.

The traditional approach for approximation of set-cover has a time complexity

of O(jE j � j F j � size), where size is the cardinality of the largest set in the family

F (i.e. size = max i �j F j jSi j). This approach obtains an approximation ratio of 1 +

ln(size) [136]. Asf is the quantity of the largest number of observations supported

by a single partner, the approximation ratio fork-SEP using a greedy-scheme after a

reduction from set-cover is 1+ln(f). The NAIVE-KSEP-SCalgorithm below leverages

the above reduction to solve thek-SEPproblem.

Proposition 31. NAIVE-KSEP-SChas a complexity ofO(� � f � jOj 2) and an ap-

proximation ratio of 1 + ln(f).

Proposition 32. A solution E to NAIVE-KSEP-SCprovides a partner to every ob-

servation in O if a partner exists { otherwise, it returns IMPOSSIBLE.

The algorithm NAIVE-KSEP-SCis a naive, straight-forward application of the

O(jE j�j F j�size) greedy approach for set-cover as presented in [136]. We note that it is

172

Algorithm 14 (NAIVE-KSEP-SC)
INPUT: Space S, a set O of observations, a feasibility predicate feas, and real numbers � � 0, � > 0

OUTPUT: Set E � S that explains O

1. Initialize list E to null. Let M be a matrix array of the same dimensions as S of lists of pointers initialized

to null. For a given p 2 S , M [p] is the place in the array. Let L be a list of pointers to lists in M , L is

initialized to null.

2. Let O0 be an array of Booleans of length jOj . 8i 2 [1; jOj], initialize O0[i] = TRUE. For some element o 2 O ,

O0[o] is the corresponding space in the array. Let numObs = jOj

3. For each element o 2 O , do the following.

(a) Determine all elements p 2 S such that feas(p) = TRUE and d(o; p) 2 [�; �]

(b) If there does not exist a p 2 S meeting the above criteria, then terminate the program and r eturn

IMPOSSIBLE.

(c) If M [p] = null then add a pointer to M [p] to L

(d) Add a pointer to o to the list M [p].

4. While numObs > 0 loop

(a) Initialize pointer cur ptr to null, integer cur size to 0

(b) For each ptr 2 L , do the following:

i. Initialize integer this size to 0, let M [p] be the element of M pointed to by ptr

ii. For each obs ptr in the list M [p], do the following

A. Let i be the corresponding location in array O0 to obs ptr

B. If O0[i] = TRUE, increment this size by 1

iii. If this size > cur size, set cur size = this size and have cur ptr point to M [p]

(c) Add p to E

(d) For every obs ptr in the list pointed to by cur ptr , do the following:

i. Let i be the corresponding location in array O0 to obs ptr

ii. If O0[i], then set it to FALSE and decrement numObs by 1

(e) Add the location in space S pointed to by cur ptr to E

5. Return E

173

possible to implement a heap to reduce the time-complexity to O(� �f �jOj� lg(� �jOj))

- avoiding the cost of iterating through all possible partners in the inner-loop.

In addition to the straightforward greedy algorithm for set-covering, there

are several other algorithms that provide di�erent time complexity/approximation

ratio combinations. However, with a reduction to the set-covering problem we must

consider the result of [113] which states that set-cover cannot be approximated

within a ratio c � log(n) for any c < 0:25 (wheren is the number of subsets in the

family F) unlessNP � DT IME [npoly log n].

A reduction to set-covering has the advantage of being straightforward. It

also allows us to leverage the wealth of approaches developed for this well-known

problem. In the next section, we show thatk-SEP reduces to the dominating set

problem as well. We then explore alternate approximation techniques based on this

reduction.

4.3.3 An Exact Dominating Set Based Approach

We show below thatk-SEP also reduces to the well known dominating set

problem (DomSet) [54] allowing us to potentially leverage fast algorithms such as

the randomized-distributed approximation scheme in [75].DomSet is de�ned as

follows.

Dominating Set. (DomSet)

INPUT: Graph G = (V; E) and positive integerK � j V j.

174

OUTPUT: \Yes" if there is a subset V 0 � V such that jV 0j � K and such that every

vertex v 2 V V 0 is joined to at least one member ofV 0 by an edge inE.

As the dominating set problem relies on �nding a certain set ofnodes in a

graph, then, unsurprisingly, our reduction algorithm, Algorithm 15, takes spaceS,

an observation setO, feasibility predicatefeas, and numbers�; � and returns graph

GO based on these arguments.

We now present an example to illustrate the relationship between a dominating

set of sizek in GO and a k-sized simple (�; �) explanation for O. The following

example illustrates the relationship between ak-SEP problem andDomSet .

Example 4.3.2. Consider the serial killer scenario in Example 4.1.4, pictured in

Figure 4.2 (right). Suppose we want to solve this problem as an instance ofk-SEP

by a reduction toDomSet . We want to �nd a 1-sized simple(�; �) explanation

(safe-house) forO (the set of crime scenes,f o1; o2g). Suppose that after running

an algorithm such asSTRAIGHFORWARD-SEP, we �nd that f p1; p2; p3g are elements

of S that are feasible.f p1; p2g are all within a distance of�; � from o1 and f p2; p3g

are all within a distance of�; � from o2. We run KSEP-TO-DOMSETwhich creates

graph, GO . Refer to Figure 4.3 for the graph. We can see thatf p2g is a 1-sized

dominating sets forGO , hence a1-sized explanation forO.

We notice that the inner loop of KSEP-TO-DOMSETis bounded byO(�)

operations and the outer loop will iteratejOj times. Thus, the complexity ofKSEP-

TO-DOMSETis O(� � jOj).

175

Figure 4.3: Results ofKSEP-TO-DOMSETbased on data seen in Figure 4.2 (right).

Note that f p1; p2; p0
1; p0

2g form a complete graph andf p2; p3; p00
2; p0

3g also form a com-

plete graph. Note that f p2g is a dominating set of size 1. Hence,f p2g is a 1-sized

simple (�; �) explanation for O, as depicted in Figure 4.2 (right).

Proposition 33. The complexity ofKSEP-TO-DOMSETis O(� � jOj).

Example 4.3.2 should give us some intuition into why the reduction to Dom-

Set works. We provide the formal proof in the Appendix.

Theorem 22. k-SEP is polynomially reducible toDomSet .

The straightforward approximation scheme forDomSet is to view the prob-

lem as an instance ofSET COVERand apply a greedy algorithm. The reduction

would view the set of vertices inGO as the elements, and the family of sets as each

vertex and its neighbors. This results in both a greater complexity and a worse

approximation ratio when compared with the reduction directly to SET COVER.

Proposition 34. Solving k-SEP by a reduction to DomSet using a straight-

forward greedy approach has time-complexityO(� 3 � f � jOj 2) and an approximation

ratio bounded byO(1 + ln(2 � f � �)) .

There are other algorithms to approximateDomSet [75, 89]. By leveraging

[75], we can obtain an improved complexity while retaining the same approximation

176

ratio as the greedy approach.

Proposition 35. Solvingk-SEP by a reduction toDomSet using the distributed,

randomized algorithm presented in [75] has a time complexityO(� � jOj + ln(2 � � �

jOj) � ln(2 � � � f)) with high probability and approximation ratio ofO(1+ln(2 � f � �)) .

Hence, although a reduction to dominating set generally gives us a worse

approximation guarantee, we can (theoretically) outperform set-cover with the ran-

domized algorithm for dominating set in terms of complexity.

4.3.4 An Exact Integer Linear Programming based Approach

Given an instance ofk-SEP, we show how to create a set of integer constraints

that if solved, will yield a solution to the problem.

De�nition 56 (OPT-KSEP-IPC). The k-SEP integer programming constraints (OPT-

KSEP-IPC) require the following information, obtained inO(jOj � � (� 2 � 2) time:

� Let L be the set of all possible partners generated in the �rst four steps ofNAIVE-

KSEP-EXACT.

� For each p 2 L, let str (p) be the string ofjOj bits, where bitstr (p) i is 1 if p is

a partner of the i th observation (this is also generated in the �rst four steps of

NAIVE-KSEP-EXACT).

For eachpj 2 L, let x j 2 f 0; 1g. x j = 1 i� pj is in E.

Then KSEP-IPCconsists of the following:

Minimize
P

pj 2 L x j subject to

177

1. 8oi 2 O ,
P

pj 2 L x j � str (pj) i � 1

2. 8pj 2 L, x j 2 f 0; 1g (for the relaxed linear program:x j � 1)

Proposition 36. OPT-KSEP-IPCconsists ofO(jOj � (� 2 � 2)) variables andO(jOj�

� (� 2 � 2)) constraints.

Proposition 37. For a given instance of the optimization versionk-SEP , if OPT-

KSEP-IPCis solved, then
S

pj 2 L x j =1
pj is an optimal solution tok-SEP .

Example 4.3.3. Consider the serial killer scenario in Example 4.1.4, pictured in

Figure 4.2 (right). Suppose we want to solve this problem as an instance ofMINSEP.

We would set up the constraints as follows:

Minimize x1+ x2+ x3 subject to 1�x1+1 �x2+0 �x3 � 1 and 0�x1+1 �x2+1 �x3 � 1,

wherex1; x2; x3 2 f 0; 1g

Obviously, settingx1 = 0; x2 = 1; x3 = 0 provides an optimal solution. Hence, asx2

is the only non-zero variable,p2 is the explanation for the crime-scenes.

A solution to the constraints OPT-KSEP-IPCcan be approximated using the

well-known \rounding" technique [68, 174] that relaxes constraints. We present an

OPT-KSEP-IPCusing rounding.

Proposition 38. NAIVE-KSEP-ROUNDreturns an explanation forO that is within

a factor � from optimal, where � is the maximum number of possible partners

associated with any observation.

There are several things to note about this approach. First, it can be easily

adapted to many of the weighted variants - such asWT-SEP . Second, we note

178

that the rounding algorithm is not a randomized rounding algorithm { which often

produces a solution that satis�es all of the constraints in the linear-integer program.

The above algorithm guarantees that all of the observationswill be covered (if an

explanation exists). Finally, this approach allows us to leverage numerous software

packages for solving linear and linear-integer programs.

179

Algorithm 15 (KSEP-TO-DOMSET)
INPUT: Space S, a set O of observations, a feasibility predicatefeas, and real

numbers� � 0, � > 0

OUTPUT: Graph GO for use in an instance of aDomSet problem

1. Let GO = (VO ; EO) be a graph. SetVO = S and EO = ; .

2. Let S be a mapping de�ned asS : S ! VO . In words, S takes elements of the

space and returns nodes fromGO as de�ned in the �rst step. This mapping does

not change during the course of the algorithm.

3. For eachoi 2 O do the following

(a) Determine all points p 2 S that are such that � � d(o; p) � � . Call this set Pi

(b) For all p 2 Pi calculate feas(p). If feas(p) = FALSE, removep from Pi .

(c) Let Vi = f v 2 VO j9p 2 Pi such that S(p) = vg.

(d) Add jPi j new nodes toVO . Add these nodes toVi as well.

(e) For every pair of nodesv1; v2 2 Vi , add edge (v1; v2) to EO .

4. Remove allv 2 VO where there does not exist anv0 such that (v; v0) 2 EO

5. If any Pi � ; return IMPOSSIBLE. Otherwise return GO .

180

Algorithm 16 (NAIVE-KSEP-ROUND)
INPUT: Space S, a set O of observations, a feasibility predicatefeas, and real

numbers� � 0, � > 0

OUTPUT: Set E � S that explains O

1. Run the �rst four steps of NAIVE-KSEP-EXACT

2. Solve the relaxation ofOPT-KSEP-IPC

3. For the o 2 O with the most possible partners, let � be the number of possible

partners associated witho. This can be done in line 1

4. Return all pj 2 L wherex j � 1
�

181

4.4 Greedy Heuristics for GAP Problems

4.4.1 A Linear Time Greedy Approximation Scheme

In this section, we introduce a greedy approximation scheme for the optimiza-

tion version of k-SEP that has a lower time-complexity thanNAIVE-KSEP-SCbut

still maintains the same approximation ratio. OurGREEDY-KSEP-OPT1algorithm

runs in linear time w.r.t. O. The key intuition is that NAIVE-KSEP-SCiterates

through O(� � jOj) possible partners in line 4. Our algorithm �rst randomly picks

an observation and then greedily selects a partner for it. This results in the greedy

step iterating through only O(�) partners.

Example 4.4.1. Consider the sun bear from Example 4.1.3 and Figure 4.2. After

initializing the necessary data structures in lines 1-3,GREEDY-KSEP-OPT1iterates

through the observations inO where the associated position inO0 is TRUE. Suppose

the algorithm pickso1 �rst. It now accesses the list pointed to fromOBS[o1]. This

gives us a set of pointers to the following elements ofS: f p1; p2; p3; p4g. Following

the greedy selection outlined in line 4 ofNAIVE-KSEP-SC, the algorithm iterates

through these points, visiting the list of observations associated with each one in the

matrix array M .

First, the algorithm accesses the list pointed to byM [p1]. Figure 4.4 (left)

shows the observations considered whenp1 is selected. As there is only one observa-

tion in list M [p1] whose associated Boolean inO0 is TRUE, the variablecur size is

set to 1 (see line 4(b)iii of NAIVE-KSEP-SC). cur ptr is then set toM [p1].

182

Algorithm 17 (GREEDY-KSEP-OPT1)
INPUT: Space S, a set O of observations, a feasibility predicatefeas, and real

numbers� � 0, � > 0

OUTPUT: Set E � S that explains O

1. Run lines 1-2 ofNAIVE-KSEP-SC

2. Let OBS be an array, sizejOj of lists to pointers in M . For some observationo, let

OBS[o] be the corresponding list in the array.

3. Run the loop in line 3 of NAIVE-KSEP-SCbut when partner p of observation o

is considered, add a pointer toM [p] in the list OBS[o]. The list L need not be

maintained.

4. While numObs> 0 loop

(a) Randomly select an elemento 2 O such that O0[o] = TRUE

(b) Run the greedy-selection loop of line 4 ofNAIVE-KSEP-SC, but consider the

list OBS[o] instead of L

5. Return E

183

Figure 4.4: Left: GREEDY-KSEP-OPT1accesses the list pointed to byM [p1] thus

considering all observations available top1. Right: GREEDY-KSEP-OPT1accesses

the list pointed to by M [p2] and �nds it has more active observations than it found

in the list pointed to by M [p1].

Now we consider the next element,p2. Figure 4.4 (right) shows the list pointed

to by M [p2]. As M [p2] points to more observations whose associatedO0 Boolean is

TRUE, we updatecur size to 2 and cur ptr to M [p2].

The algorithm then iterates throughp3 and p4, but �nds they do not o�er more

observations thanp2. Hence, p2 is added to the solution set (E). The algorithm

updates the array of Booleans,O0 and setsO0[o1] and O0[o2] to FALSE(depicted by

X's over those observations in subsequent �gures).numObsis decremented by2.

Now, we enter the second iteration of line 4. The only element for the algo-

rithm to pick at this point is o3, as only O0[o3] is TRUE. The list OBS[o3] points

to the positions f p6; p7; p8g. In Figure 4.5 we look at what happens as the algo-

rithm considers thep7. As OBS[o2] = FALSE, it only considers o3 when computing

this size.

When the algorithm �nishes its consideration of all the elements pointed to

184

Figure 4.5: GREEDY-KSEP-OPT1considers the observations available top7. The

X's on o1 and o2 signify that OBS[o1] and OBS[o2] are set toFALSE.

by OBS[o3], it will return the �rst element of that set (p6) as neither p7 nor p8

were partners to more available observations thanp6 (in our implementation of this

algorithm, we use a coin-ip to break ties among partners with the same number of

observations). GREEDY-KSEP-OPT1then addsp6 to E and terminates. The �nal

solution returned, f p2; p6g, is a valid (and in this case, optimal) explanation.

Proposition 39 (Complexity of GREEDY-KSEP-OPT1). GREEDY-KSEP-OPT1has

a complexity ofO(� � f � jOj) and an approximation ratio of1 + ln(f).

Proposition 40. GREEDY-KSEP-OPT1returns a jEj-sized (�; �) explanation for

O.

GREEDY-KSEP-OPT1returns IMPOSSIBLE if there is no explanation forO.

We can bound the approximation ratio forGREEDY-KSEP-OPT1by O(1 +

ln(f)), as it is still essentially a greedy algorithm for a covering problem. The

main di�erence betweenGREEDY-KSEP-OPT1is the way it greedily chooses covers

(partners). This algorithm randomly picks an uncovered observation in each loop

185

and then greedily chooses a cover that covers that observation. Improving the

accuracy of this algorithm (in practice) is tied directly tothe selection criteria used

to pick observations, which is random inGREEDY-KSEP-OPT1. In Section 4.4.2

we develop an algorithm that \smartly" picks observations with a dynamic ranking

scheme while maintaining a time complexity lower than the standard set-covering

approach.

4.4.2 Greedy Observation Selection

GREEDY-KSEP-OPT1randomly selects observations although subsequent part-

ner selection was greedy. It is easy to implement ana-priori ranking of observations

based on something like the maximum number of other observations which share

a partner with it. Such a ranking could be implemented at the start of GREEDY-

KSEP-OPT1with no e�ect on complexity, but the ranking would be static and may

lose its meaning after several iterations of the algorithm.We could also implement

a dynamic ranking. We present a version ofGREEDY-KSEP-OPT1that we call

GREEDY-KSEP-OPT2that picks the observations based on dynamic ranking, runs

in time O(� � f 2 � jOj + jOj � ln(jOj)), and maintains the usual approximation ratio of

1 + ln(f) for greedy algorithms. Our key intuition was to use a Fibonacci heap [49].

With such a data structure, we can update the rankings of observations at constant

amortized cost per observation being updated. The most expensive operation is to

remove an observation from the heap - which costs an amortized O(ln(jOj)), however

as we can never remove more thanjOj items from the heap, this cost is most likely

186

dominated by the cost of the rest of the algorithm, which is moreexpensive than

GREEDY-KSEP-OPT1by a factor of f . Recall that f is the bound on the number

of observations supported by a single partner - and is often very small in practice.

In order to leverage the Fibonacci heap, there are some restrictions on how

the ranking can be implemented. First, the heap puts an element with the minimal

key on top, and can only decrease the key of elements - an element in the heap can

never have its key increased. Additionally, there is a need for some auxiliary data

structures as searching for an element in the heap is very expensive. Fortunately,

the k-SEP problem is amenable to these type of data structures.

We based the key (ranking) on a simple heuristic for each observation. The

key for a given observationo is the number of unique observations that share a

partner with o. As we are extracting the minimum-keyed observation, we are taking

the observation that has the \least in common" with the other observations. The

intuition of choosing an observation with \less in common" with other observations

ensures that outliers get covered with larger covers. Meanwhile, elements with a

higher rank in this scheme are covered last, which may lead toa more e�cient

cover. In Section 4.5 we show experimentally that this heuristic was viable for the

data-set we considered - providing more accurate results than the reduction from

set-covering.

Example 4.4.2. The basic intuition behind GREEDY-KSEP-OPT2is similar to

GREEDY-KSEP-OPT1in that it iterates through the observations and greedily chooses

a partner. The main di�erence is that it ranks the observations instead of just ran-

187

Algorithm 18 GREEDY-KSEP-OPT2
INPUT: Space S, a set O of observations, a feasibility predicate feas, and real numbers � � 0, � > 0

OUTPUT: Set E � S that explains O

1. Run lines 1-3 of GREEDY-KSEP-OPT1.

2. Let key1 ; : : : key jOj be natural numbers associated with each observation. Initi ally, they are set to 0. For

some o 2 O let keyo be the associated number.

3. Let REL OBS be an array of lists of pointers to elements of O. The size of the array is O. For element

o 2 O , let REL OBS[o] be the corresponding space in the array.

4. For each o 2 O , do the following:

(a) For each element p 2 OBS[o], do the following.

i. For each element obs ptr of the list pointed to by M [p], do the following

A. If obs ptr points to an element of O not pointed to in the list REL OBS[o], then add

obs ptr to REL OBS[o] and increment keyo by 1.

5. Let OBS HEAP be a Fibonacci heap. Let QUICK LOOK be an array (size O) of pointers to elements of

the heap. For each o 2 O , add the tuple ho; keyo i to the heap, along with a pointer to the tuple to

QUICK LOOK[o]. Note we are using keyo as the key for each element in the heap.

6. While OBS HEAP is not empty, loop

(a) Take the minimum element of OBS HEAP, let o be the associated observation with this element.

(b) Greedily select an element of OBS[o] as done in the loop at line 4 of GREEDY-KSEP-OPT1. We shall

call this element p.

(c) For every o0 2 O pointed to by a pointer in M [p], such that O0[o0] = TRUE, do the following.

i. Set O0[o0] = FALSE

ii. Remove the element pointed to by QUICK LOOK[o0] from OBS HEAP

iii. For every element o002 O pointed to by an element of REL OBS[o0] where O0[o00] = TRUE do

the following.

A. Decrease the keyo00 by 1.

7. Return E

188

Observation keyi REL OBS[oi]

o1 2 f o1; o2g

o2 2 f o1; o2g

o3 2 f o2; o3g

Table 4.1: key values and related observations for observations in the sunbear

scenario introduced in Example 4.1.3.

domly selecting them. Consider the sun bear from Example 4.1.3 whose behavior is

depicted in Figure 4.2. In Example 4.4.1, we usedGREEDY-KSEP-OPT1to solve

the associatedk-SEP problem for this situation. We shall discuss howGREEDY-

KSEP-OPT2di�ers.

The �rst main di�erence is that the algorithm assigns a rank to each observationoi ,

called keyi , which is also the key used in the Fibonacci heap. This is done in the

loop at line 4. It not only calculateskeyi for each observation, but it also records

the elements \related" to it in the arrayREL OBS. Note that a \related" observation

needs only to share a partner with a given observation. Not all related observations

need to have the same partner. For the sun bear scenario, we show the keys and

related observations in Table 4.1.

As thekey values are the same for all elements ofO, let's assume the algorithm

�rst considers o1 as in Example 4.4.1. As written, we would take the minimum ele-

ment in the Fibonacci heap (a constant time operation). We would then consider the

partners for o1 which would result in the greedy selection ofp2, (just as in GREEDY-

189

Figure 4.6: Left: GREEDY-KESP-OPT2considers all observations that can be part-

nered with p2. Notice that in this �gure by each observation we show a box that

represents the key of the observation in the Fibonacci heap.Right: GREEDY-KSEP-

OPT2 removeso1 from the heap, and iterates through the elements inREL OBS[o1],

causing it to decrease the key ofo2.

KSEP-OPT1and NAIVE-KSEP-SC. Also notice we retain the array of Booleans,O0

as well as the array of lists,M to help us with these operations.).

Now the issue arises that we must update the keys for the remaining obser-

vations, as well as remove observations covered byp2. As we maintain REL OBS

and O0, the procedure quickly iterates through the elements covered byp2: o1 and o2.

Figure 4.6 shows the status of the observations at this point.

We removeo1 from the heap, and setO0[o1] to FALSE. This prevents us from

considering it in the future. We now iterate through eacho00 in the list pointed to

by REL OBS[o1] whereO0[o00] is TRUE and decrease the key of each by one. As per

table 4.1,REL OBS[o1] = f o1; o2g. As O0[o1] = FALSEwe do nothing. AsO0[o2] =

TRUE, we decrease the key of the associated node in the Fibonacci heap. The array

190

QUICK LOOK ensures we can access that element in constant time. Figure 4.6 (left)

graphically depicts this action.

Next, we consider the other element covered by partnerp2: o2. After removing

this element from the heap and settingO0[o2] to FALSE, we can easily see that there

does not exist anyo002 REL OBS[o2] whereO0[o00] = TRUE. Hence, we can proceed to

pick a new minimum observation from the heap - which iso3 in this case. The greedy

selection proceeds (resulting in the choice ofp6), followed by the update procedure

(which simply removes the node associated witho3 from the heap and setsO0[o3] =

FALSE). As there are no more elements in the heap,GREEDY-KSEP-OPT2returns

the solution f p2; p6g.

Theorem 23 (Complexity of GREEDY-KSEP-OPT2). GREEDY-KSEP-OPT2has a

complexity ofO(� � f 2 � jOj + jOj � ln(jOj)) and an approximation ratio of1 + ln(f).

Proposition 41. GREEDY-KSEP-OPT2returns a jEj-sized (�; �) explanation for

O.

GREEDY-KSEP-OPT2returns IMPOSSIBLE if there is no explanation forO.

4.5 Implementation and Experiments

In this section, we show that our geospatial abduction framework and algo-

rithms are viable in solving real-world geospatial abduction problems. Using a real-

world data set consisting of counter-insurgency information from Iraq, we were able

to accurately locate insurgent weapons cache sites (partners) given previous attacks

(observations) and some additional data (used forfeasand �; �). This validates our

191

primary research goal for the experiments - to show that geospatial abduction can

be used to solve problems in the real-world.

We considered the naive set-covering approach along withGREEDY-KSEP-

OPT1 and GREEDY-KSEP-OPT2, which according to our analytical results, had the

best approximation ratios and time-complexities. We implemented these algorithms

in 4000 lines of Java code, running on a Lenovo T400 ThinkPad laptop running

Vista with an Intel Core 2 Duo T9400 2.53 GHz processor and 4.0 GBof RAM.

Our SCARE (Social-Cultural Abductive Reasoning Engine) system [157] enabled us

to carry out tests on real-world data. This data includes 21 months of Improvised

Explosive Device or IED attacks in Baghdad6 (a 25x27 km region) { these constitute

our observations. It also included information on locations of caches associated with

those attacks discovered by US forces. The locations of the caches constitute the

(�; �) explanation we want to learn. We used data from the International Medical

Corps to de�ne feasibility predicates which took the following factors into account:

(i) the ethnic makeup of neighborhoods in Baghdad - speci�cally, Sunni locations

were deemed infeasible for cache locations, (ii) the locations of US bases in Baghdad

were also considered infeasible and (iii) bodies of water were also deemed infeasible.

We also separately ran tests on that part of the above data focused on Sadr City

(a 7x7 km district in Baghdad) alone. On both these regions, weoverlaid a grid

whose cells were 100m x 100m each | about the size of a standardUS city block.

All timings were averaged over 100 runs.

We split the data into 2 parts | the �rst 7 months of data was used as a

6Attack and cache location data was provided by the Institute for the Study of War

192

Algorithm 19 (FIND-BOUNDS)
INPUT: Historical, time-stamped observationsOh, historical, time-stamped part-

ners,Eh, real number (distance threshold)� max

OUTPUT: Real numbers �; �

1. Set � = 0 and � = � max

2. Set Boolean variablef lag to TRUE

3. For eacho 2 O h , do the following:

(a) For each p 2 Eh that occurs after o, do the following.

i. Let d be the Euclidean distance function.

ii. If f lag , and d(o; p) � � max then set � = d(o; p) and � = d(o; p)

iii. If not f lag , then do the following:

A. If d(o; p) < � then set � = d(o; p)

B. If d(o; p) > � and d(o; p) � � max then set � = d(o; p)

4. Return reals �; �

\training" set and the next 14 months of data was used for experimental evaluation.

We used the following simple algorithm,FIND-BOUNDS, to determine the�; � val-

ues. We set� max to 2.5 km. We leave more advanced procedures for learning these

parameters to future work. Such parameters could also come from an expert.

Accuracy. Our primary goal in the experiments was to determine if the geospatial

abduction framework and algorithms could provide viable results in a real-world

setting. \Accuracy" in this section refers to two aspects - size of the solution, and

193

Area Algorithm Sample Mean Sample Mean

Solution Size Number of Partners

� 0:5 km

to actual cache

Baghdad

NAIVE-KSEP-SC 14:53 8:13

GREEDY-KSEP-OPT1 15:02 7:89

GREEDY-KSEP-OPT2 14:00 7:49

Sadr City

NAIVE-KSEP-SC 8:00 3:00

GREEDY-KSEP-OPT1 6:61 4:44

GREEDY-KSEP-OPT2 6:00 5:28

Table 4.2: k-SEP Algorithm Results - Solution Size

the distance to the nearest actual cache site. The distance to nearest cache site was

measured by taking the straight-line Euclidean distance tothe nearest cache site

that was found after the �rst attack supported by the projected cache site. We used

the raw coordinate for the actual cache in the data set - not the position closest to

the nearest point in the 100 m resolution grid that we overlaid on the areas. The

accuracy results are summarized in Tables 4.2-4.3.

Overall, GREEDY-KSEP-OPT2consistently found the smallest solution - of

cardinality 14 for Baghdad and 6 for Sadr City - on all 100 trials. For Baghdad, the

other two algorithms both found a solution of size 14, but both averaged a higher

solution. For Sadr City, GREEDY-KSEP-OPT1often did �nd a solution of 6 caches

while NAIVE-KSEP-SConly found solutions of size 8. Additionally, in both tests, the

solution sizes forGREEDY-KSEP-OPT1varied more than the other two algorithms.

194

Area Algorithm Sample Mean Sample Std Dev Sample Mean

Avg Dist to of Avg Dist to Std Dev of Dist to

actual cache actual cache actual cache

Baghdad

NAIVE-KSEP-SC 0:79 km 0:02 0:64

GREEDY-KSEP-OPT1 0:76 km 0:07 0:60

GREEDY-KSEP-OPT2 0:72 km 0:03 0:63

Sadr City

NAIVE-KSEP-SC 0:72 km 0:03 0:46

GREEDY-KSEP-OPT1 0:45 km 0:03 0:46

GREEDY-KSEP-OPT2 0:35 km 0:03 0:47

Table 4.3: k-SEP Algorithm Results - Distances to Actual Cache Sites

Moreover, the HSD for both Baghdad and Sadr City indicated signi�cant di�erence

between all pairs of algorithmswrt solution size.

Of the partners in a given solution, we also recorded the number of partners less

than 0:5 km away from an actual cache. For Baghdad,NAIVE-KSEP-SCperformed

best in this regard - averaging 8:13 partners less than 0:5 km from an actual cache

site. Although this result for Baghdad is signi�cant based onan analysis of variance

(ANOVA) and honest signi�cant di�erences (HSD) (p-value of 2:3 � 10 9), we also

note that the greatest di�erence among averages was still less than one partner.

This same result for Sadr City, however, tells a di�erent story. For this test, NAIVE-

KSEP-SCperformed poorly with regard to the other two algorithms - only �nding

3 partners meeting these criteria for each of the 100 trials.GREEDY-KSEP-OPT2

performed very well in this aspect (for Sadr City). It averaged over 5 partners less

195

than 0:5 km from an actual cache. Further, for Sadr City,all partners found by

GREEDY-KSEP-OPT2were within 600 m of an actual cache site. The ANOVA (p-

value of 2:2 � 10 16) and HSD of partners less than 0:5 km from an actual cache for

the Sadr City trials indicate that these results are signi�cant.

Our primary metric of accuracy was average distance to actual cache. In this

regard, GREEDY-KSEP-OPT2performed the best. It obtained an average distance

of 0:72 km for Baghdad and 0:35 km for Sadr City. This number was 40 m less for

Baghdad and 100 m less for Sadr City when compared toGREEDY-KSEP-OPT1,

whose average distance varied widely among the trials. With regard to this metric,

NAIVE-KSEP-SCperformed the worst - particularly in Sadr City, where it predicted

caches over twice as far from actual caches asGREEDY-KSEP-OPT2(on average).

For both Baghdad and Sadr City, the simple ANOVA yielded ap-value of 2:2�10 16,

which suggests with a 99% probability that there is a di�erence among the algo-

rithms. Also, for both areas, Tukey's HSD indicates signi�cant di�erence between

each pair-wise comparison of algorithms.

Algorithm run times. Table 4.4 shows the run-times of our algorithms. In

order to validate the �ndings suggested by Table 4.4 statistically, we ran analysis of

variance (ANOVA) and Tukey's Honest Signi�cant Di�erence test (HSD) for pair-

wise comparisons [50]. An ANOVA for the Baghdad run-times gave ap-value of

2:2�10 16, which suggests with well over 99% probability thatGREEDY-KSEP-OPT1

is statistically faster than GREEDY-KSEP-OPT2. The HSD for Baghdad indicates

that, with regard to run-times, all pair-wise-comparison ofthe three algorithms are

signi�cantly di�erent. For Sadr City, the ANOVA gave a p-value of 4:9� 10 3, which

196

Area Algorithm Sample Mean Run-Time Sample Run-Time

Standard Deviation

Baghdad

NAIVE-KSEP-SC 354:75 ms 12:86

GREEDY-KSEP-OPT1 162:08 ms 40:83

GREEDY-KSEP-OPT2 201:40 ms 36:44

Sadr City

NAIVE-KSEP-SC 28:85 ms 10:52

GREEDY-KSEP-OPT1 25:44 ms 9:33

GREEDY-KSEP-OPT2 24:64 ms 8:95

Table 4.4: k-SEP Algorithm Performance Results

suggests with a 99% probability that the algorithms di�er inrun-times. However, the

HSD indicates, with an 82% probability, that there is no di�erence amongGREEDY-

KSEP-OPT1and GREEDY-KSEP-OPT2, while both di�er signi�cantly from NAIVE-

KSEP-SC.

4.5.1 A Simple Heuristic to Improve Accuracy

In our implementation of all three algorithms, \ties" in greedy selection of

partners were determined by a \coin toss." Speci�cally, we are considering the case

where this size = cur size in line 4(b)iii of NAIVE-KSEP-SCin Section 4.3.2. Let

us re-phrase the situation as follows. LetO be the entire set of observations and

O0 � O be the set of observations currently not assigned a partner.Let p be the

current partner that best meets the criteria for greedy selection and p0be the partner

197

we are considering. We de�neP and P0 as subsets ofO that are the observations

associated withp and p0 respectively. Hence, ifjP0 \ O 0j > jP \ O 0j, we pick p0.

As implemented, if jP0 \ O 0j = jP \ O 0j, we ip a coin. We add a simple heuristic

that simply states that \partners that cover more observations are preferred." We

change the criteria as follows:

� If jP0 \ O 0j = jP \ O 0j, then do the following:

� If jP0j > jPj, pick p0

� If jPj > jP0j, pick p

� If jPj = jP0j, ip a coin

We shall refer to this as the \tie-breaker" heuristic. The result is that the solution

set of partners covers more observations and hence providesa more \dense" solution.

We added this heuristic to our existing code for all three algorithms and ran

each one 100 times for both the Baghdad and Sadr City areas. Unsurprisingly, as

this is a constant-time operation, run-times were not a�ected. However, accuracy

improved in all cases. AsGREEDY-KSEP-OPT2still provided the most accurate

results, the following exposition shall focus on how the heuristics a�ected the solution

size and accuracy for this algorithm.

Because the tie-breaker heuristic only adjusts how two partners are chosen -

both of which can be paired with the same uncovered observations - the size of the

solution was una�ected in both the Baghdad and Sadr City trials. However, the

number of predicted cache sites less than 500 m from an actualsite increased for

both the Baghdad and Sadr City tests. For Baghdad, more trialsreturned solutions

198

Area Tie-Breaker Sample Mean Sample Mean

Heuristic Solution Size Number of Partners

� 0:5 km

to actual cache

Baghdad
No 14:00 7:49

Yes 14:00 7:87

Sadr City
No 6:00 5:28

Yes 6:00 6:00

Table 4.5: The Tie-Breaker heuristic onGREEDY-KSEP-OPT2- Solution Size

Area Tie-Breaker Sample Mean Sample Std Dev Sample Mean

Heuristic Avg Dist to of Avg Dist to Std Dev of Dist to

actual cache actual cache actual cache

Baghdad
No 0:72 km 0:03 0:63

Yes 0:69 km 0:02 0:64

Sadr City
No 0:35 km 0:03 0:47

Yes 0:28 km 0:02 0:11

Table 4.6: The Tie-Breaker heuristic onGREEDY-KSEP-OPT2- Distances to Actual

Cache Sites

199

with 8 predictions less than 500 m from an actual site than returned 7 - the opposite

being the case without the tie-breaker heuristic. For Sadr City, all elements of every

solution set returned was less than 500 m from an actual cachesite. Using the well

known T-Test [50], we showed that these results are statistically signi�cant as this

test returned a p-value of 6:2 � 10 8 for Baghdad and 2:2 � 10 16 for Sadr City.

Summary. The above experiments demonstrate statistically thatGREEDY-KSEP-

OPT2 provides a viable solution - consistently producing the smaller solution sets

which were closer to actual cache sites faster than the basic set-covering approach,

at times approaching the faster, although less-accurateGREEDY-KSEP-OPT1. The

proximity of the elements of the solution set to actual cachesites is encouraging for

real-world use. The results are strong enough that two US Army units used SCARE

to aide in locating IED caches.

4.6 Chapter 4 Related Work

In this section we present related work of three di�erent varieties. We com-

pare GAPs to other forms of abduction, facility location,k-meansclustering, and

constrained clustering. As an aside, readers interested in adiscussion of the SCARE

software from the perspective of military analysis or social science can refer to [157]

where the software package was introduced. However, that work does not include

any formal technical details on the framework of geospatial abduction, complexity

results, or algorithm analysis.

GAPs and other forms of Abduction. Abduction [137] has been extensively

200

studied in medicine [141, 138], fault diagnosis [26], beliefrevision [133], database

updates [77, 27] and AI planning [37]. Two major existing theories of abduction

include logic-based abduction [41] and set-covering abduction [19]. Though none

of the above papers deals with spatial inference, [160] presents a logical formalism

dealing with objects' spatial occupancy, while [149] describe the construction of a

qualitative spatial reasoning system based on sensor data from a mobile robot. In

[149], sensor data are explained by hypothesizing the existence of physical objects

along with the dynamic relationships that hold between them,all with respect to a

(possibly moving) viewpoint. This approach combines both space and time. [90] de-

scribes theSpatial Semantic Hierarchywhich formalizes, the spatial context in which

a robot moves. In the hierarchy, the topological level de�nes a map which describes

the environment as a collection of places, paths, and regions, linked by topologi-

cal relations such as connectivity, order, containment, boundary, and abstraction.

Places (i.e., zero-dimensional points), paths (i.e., one dimensional subspaces, denot-

ing for example a street in a city, possibly represented as anordering relation on the

places they contain), and boundary regions (i.e., two-dimensional subspaces of the

robot environment) are created from experience represented as a sequence of views

and actions. They are created by abduction, positing the minimal additional set of

places, paths, and regions required to explain the sequenceof observed views and

actions.

Set-covering abduction [19] assumes the existence of a function determining

the observable e�ects of a set of hypotheses, and is based on inverting such function.

Given a set of hypothesesH and a set of observationsO, the domain knowledge

201

is represented by a functione that takes as an argument a set of hypotheses and

gives as a result the corresponding set of observations. Thus, for every subset of the

hypothesesH 0 � H , their e�ects are known to bee(H 0). In this case, abduction

�nds a set H 0 � H such that O � e(H 0), that is, it �nds a set of hypothesesH 0

whose e�ectse(H 0) include all observations inO. A common assumption is that the

e�ects of the hypotheses are independent, that is, for everyH 0 � H , it holds that

e(H 0) =
S

h2 H 0 e(f hg). If this condition is met, abduction can be seen as a form of

set-covering. No spatial reasoning is done here.

Comparison with facility location. There are several important ways in which

GAPsdi�er from facility location problems.

� Although it is possible to specify a distance-based cost function, in a GAP prob-

lem, the distances between observations and partners are constraints (� and � in

this chapter) whereas facility location problems usually attempt to minimize the

distance between producers and consumers.

� In this chapter, GAPproblems have a minimum distance between observations and

partners that must be exceeded. In many respects, this requirement makesGAP

problems more di�cult than facility location and other computational geometry

problems as the set of possible partners that cover a given observation is a non-

convex ring. Further, the feasibility function (feas) adds non-uniform holes to

such a ring. [115] addresses the complexity of non-convex covering and highlights

issues with problems such as this.

202

� The feasibility predicate,feasis not part of a facility location problem. This gives

us the ability to restrict certain locations that can be partners.

� In general, the relation between observations and partnerscan be viewed to be a

set of constraints. In this chapter, we only used�; �; and feas. However, in the

future, we could add additional constraints. Further, as our formalism represents

space as a set of discrete points (also not typically done with facility location),

we can easily specify certain properties of these points to apply such constraints

(such asfeas).

Comparsion with k -means clustering. A well-known and studied problem in

clustering location is thek-meansproblem [116]. This problem can be expressed as

follows:

k-means :

INPUT: Coordinates on a planeC and natural number k

OUTPUT: k disjoint sets ofC, C0
1; : : : ; C0

k such that for eachCi , all the mean Eu-

clidean distance among allc 2 Ci is minimized.

Clustering problems group points into clusters, associating each cluster with a

center. At �rst glance, one may think that the points are equivalent to observations

and the \centers are equivalent to partners. However, this is not so. Most versions of

the clustering problem seek only to arrange points in groups{ with \centers" being

a side-e�ect of the algorithm. Geospatial abduction problem seeks to �nd partners

that support observations and places constraints on the location of the partners -

203

this is a key di�erence from \centers" in clustering problems.Clustering algorithms

cannot handle the generality of our feasibility predicate orthe (�; �) constraints.

In addition to these obvious di�erences, we experimentally compared an imple-

mentation of k-meanswith GREEDY-KSEP-OPT2on the Sadr City data. Even when

we ignore the obvious value of�; � and the feasibility predicate,GREEDY-KSEP-

OPT2 outperforms the SimpleKMeanssolver in WEKA version 3.7.0 [180]. Note

that the exclusion of these parameters makesGREEDY-KSEP-OPT2perform worse

than it performs with these parameters { yet, it performed better than k-means in

terms of accuracy. Our experiment was set-up as follows:

� We used the same area for the Sadr City tests, as the� value was 0 in these

tests and there were virtually no non-feasible points near the observations. This

allowed us to use WEKA's k-means implementation \out-of-the-box" as we did

not have to implement any extra infrastructure to deal with feasibility and � = 0.

� We set k = 6, the number of partners consistently found byGREEDY-KSEP-

OPT2. Normally, we would rather have the algorithm determine this size. Note

that supplying the algorithm with a size already determinedby GREEDY-KSEP-

OPT2 (and, also the smallest size of any explanation for Sadr City we found in

our trials) gives an advantage tok-means. Hence, we did not compare solution

sizes.

� We clustered the observations withk-meansand considered the \center" of each

cluster the cache location for the cluster.

� We did not compare timing results, as we ran WEKA in its GUI environment.

204

We ran 500 iterations of theSimpleKMeansand worked with the average cen-

ters for the clusters as reported by WEKA. Multiple runs of the 500 iterations

yielded the same centers.

Average DistanceUsing WEKA, we obtained an average accuracy of 0:38 km, which

is worse thanGREEDY-KSEP-OPT2(average over 100 trials, 0:28 km).

Worst-Case DistanceWEKA's SimpleKMeansreturned 2 of the 6 points with a dis-

tance of greater than 600 meters from a cache site. Without the \tie-breaking"

heuristic, GREEDY-KSEP-OPT2never reported a prediction over 600 meters from

a cache site (all reported partners over 100 trials). With theheuristic, GREEDY-

KSEP-OPT2never reported a prediction over 500 meters from a cache site.

Best-Case DistanceThe closest partners ever returned byGREEDY-KSEP-OPT2(ei-

ther with our without the heuristic) were 200 m away from an actual cache site (on

average, the closest partner per explanation was 220 m away). WEKA's SimpleK-

Meansdid return two partners less than 200 m - each only 100 m away from an

actual cache site.

These results suggest thatk-meansmay not be the optimal method for GAP

problems. Further, it does not support feasibility and� . The results do hold some

promise for some variants of cost-based spatial explanation problems that require a

k input from one of our greedy-approaches. However, even in this case, there would

205

be modi�cation required of thek-meansalgorithm to support feasibility and � .

Comparison with Constrained clustering. Constrained clustering[176] stud-

ies clustering where, in addition to the points to be clustered, there are constraints

that either force two points in the same cluster (must-link)or force two points to

be in di�erent clusters (cannot-link). Later work on constrained clustering has fo-

cused on distance constraints between elements ofC or distance constraints between

clusters [32]. Much of the work in this area is summarized in [14].

At �rst glance, it may appear that spatial abduction can be expressed as a

cannot-link constrained clustering problem as follows: For eacho; o0 2 O if 6 9p 2 S

s.t. d(o; p) 2 [�; �], d(o0; p) 2 [�; �], and feas(p), then create a cannot-link constraint

for o; o0.

However, such a mapping cannot be guaranteed to provide a correct result.

For example, takeo1; o2; o3 and p12; p23; p13. Supposeo1 and o2 share just partner

p12, o2 and o3 share just partnerp23 and o1; o3 share just partnerp13. This is entirely

possible given the generality offeas. In such a case, all three observations could be

incorrectly grouped into a single cluster - although it is obvious there is no single

partner that supports all of them. Hence, such a mapping would not be trivial.

Further, most clustering algorithms are not seeking to constructively �nd centers

that are constrained. We leave the study of constrained clustering to solve GAP

problems (i.e. an adaption of the k-means algorithm) to future work. However,

it is also worth noting that solving constrained clusteringproblems given cannot-

link constraints is NP-complete, so the application of clustering techniques to this

206

problem does not imply a more tractable version of geospatial abduction, but rather

an alternative heuristic.

4.7 Chapter Summary

There are a wide variety of problems where we can make geo-located observa-

tions \on the ground" and where we want to infer a partner location. In this chapter,

we have presented four examples of such problems | one dealing with serial killers,

another dealing with wildlife studies, and a third (perhapsmore fun) application

dealing with �nding sunken ships. A fourth real world application we have looked

at is that of �nding weapons caches associated with Improvised Explosive Device

(IED) attacks in Iraq where we were able to use real world, open source data. It is

clear that many other applications exist as well. For example, a bizarre (but real

world) combination of two of our examples involves frequent attacks by man-eating

leopards on children in certain parts of greater Bombay in India. This situation is

analogous to the serial killer scenario where the leopard is the serial killer. We want

to �nd the leopard's favorite \hang outs", capture it, and solve the problem.

In this chapter, we have made an attempt to formally de�ne a class ofgeospatial

abduction problems(GAPsfor short). We speci�cally made the following contribu-

tions.

� We developed formal mathematical de�nitions of geospatialabduction problems,

including several variants of the above problems. We conducted a detailed analysis

of the complexity of these problems.

207

� We developed exact algorithms for many of the problems, including a straight-

forward enumeration approach (NAIVE-KSEP-EXACT), by showing and leveraging

reductions to both the set-covering and dominating set problems, and by articu-

lating these geospatial abduction problems via integer linear programs.

� As the complexity of most of the problems we have studied is NP-hard, we de-

veloped two greedy approximation schemes for thek-SEP problem (other than

set-covering) and illustrated a scheme to quickly �nd a solution using randomized

approaches to the dominating set problem.

� We have implemented these algorithms and conducted experimental comparisons

of the reduction to set-covering and two other greedy approaches - GREEDY-

KSEP-OPT1and GREEDY-KSEP-OPT2. Both of these algorithms outperformed

the set-covering reduction in an experiment on theUnderstanding War Special

Groups data set. We also implemented a \tie-breaker" heuristic thatfurther

improved the accuracy of the algorithms.

� We have also developed approximation schemes using relaxations of the linear-

integer program fork-SEP and the cost-based variantWT-SEP .

There are many interesting directions for future work. For example, spatial

abduction in dimensions greater than two might be explored.A probabilistic vari-

ant might replace the feasibility predicate with a probability distribution function,

or express the relationship between observations and partners as a PDF based on

distance rather than rely on�; � . Also, the use of randomization in the approxima-

208

tion algorithms may improve results for both the greedy and linear programming

approaches presented in this chapter.

One aspect to explore in future work is the relationship between observations

and partners. k-SEP and its cost based variants only rely on�; � . However, many

applications may have other constraints. Perhaps there is adirection associated with

each observation (as in identifying where an artillery round originated from), which

would limit the locations of the partner. Another possibility is to add geographic

constraints. Perhaps the observation cannot have a partneracross a body of water,

or beyond the edge of a cli�.

Another important question is: where do we look for partners if they are

placed they are placed by an adversary? We can think of scenarios, such as in

counterinsurgency, where an enemy obtains a copy of our software and wants to

plan his cache sites in a place where an agent would be unlikelyto search for them.

We study this particular problem in Chapter 6. Another natural question is: what

if we want to abduce regions rather than point locations for partners? There are

many real-world applications where a user may wish to �nd an area to search rather

than a point - in �elds varying from paleontology to intelligence. We describe this

extension to the geospatial abduction framework in chapter 5.

209

Chapter 5

Abducing Regions

In the previous chapter, we studied a variety of geospatial problems where

the space is represented as a plane that used discrete integer coordinates. In this

chapter, we modify the framework to use a continuous space instead. Additionally,

rather than abducing points, we assume the space is divided into a set of regions,

and we wish to abduce a set of regions that explains the agent's behavior.1

5.1 Chapter Introduction

In this chapter, we introduce a variant GAPs calledregion-based geospatial

abduction problems(RGAPs). In RGAPs, we are given a map, a setO of observations,

and a set of subregions of the map (this could include all subregions of the map in

the worst case or can be de�ned by some logical condition). Wewant to �nd a set

of regions that best \explain" the observations and includes, for each observation,

at least one partner.

1This chapter is based on [153] which was completed in cooperation with V.S.Subrahmanian.

210

In this chapter, we make several contributions. In Section 5.2 we introduce

multiple possible formal de�nitions of RGAPs- including cases where the regions are

determined by a given radius from each observation, regionsare non-convex, and

when regions are of irregular shape due to terrain restrictions. We then perform

a detailed complexity analysis in Section 5.3, proving that most of these problems

are NP-complete. This leads us to use approximation techniques in Section 5.4.

We also describe some practical implementation issues. Section 5.5 describes our

implementation and includes an experimental evaluation on areal-world data-set

consisting of IED attacks in Baghdad, Iraq and related weapons cache sites. In

our evaluation, regions outputted by the algorithm contained, on average, 1:7 cache

sites, with an average cache density of over8 caches per square kilometer { signi�-

cantly higher than the city-wide average of0:4. Further, the algorithm ran quickly,

performing computation in just over 2 seconds on commodity desktop hardware.

Finally, we survey related work in Section 5.6.

5.2 Technical Preliminaries

To address the problem of region-based geospatial abduction, we introduce a

framework that resembles that of Chapter 4 - but di�ers in several important aspects.

These include the use of a continuous space and multiple types of explanations. In

Chapter 6, we return to the original framework of Chapter 4.

We assume the existence of a real-valuedM � N spaceS whose elements are

pairs of real numbers from the set [0; M] � [0; N]. An observation is any member

211

of S. We useO to denote an arbitrary, but �xed, �nite set of observations. We

assume there are real numbers� � � such that for each observationo , there exists

a partner po (to be found) whose distance fromo is in the interval [�; �].2 Without

loss of generality, we also assume that all elements ofO are over � distance away

from the edge ofS. Example 5.2.1 presents a neighborhood as a space and locations

of illegal drug sales as observations.

Example 5.2.1 (Illegal Drug Sales). A criminal gang is selling illegal drugs. Con-

sider the spaceS depicted in Figure 5.1. Drug dealers were arrested by police at

points O � f o1; : : : ; o13g. Historical data suggests that safe houses are located within

5km of such transactions (i.e. � = 0 and � = 5km). Note that in Figure 5.1, cir-

cles of radius5km are drawn around the observation points. Police are interested

in locating such safe-houses.

Throughout this chapter, we assume the notion of adistance function d on S

satisfying the usual properties of such distance functions.3 We now de�ne a region

and how they relate to the set of observations. Our intuitionis simple - a region

explainsan observation if that region contains a partner point for that observation.

De�nition 57 (Region / Super-Explanation / Sub-Explanation). A region r is a

subset ofS such that for any two points(x; y); (x0; y0) 2 r , there is sequence a of

line segments from(x; y) to (x0; y0) s.t. no line segment lies outsider .

2Chapter 4 describes methods to learn�; � automatically from historical data.
3d(x; x) = 0; d(x; y) = d(y; x); d(x; y) + d(y; z) � d(x; z).

212

1. A region r super-explains point o in S i� there exists a point p 2 r such

that d(o; p) 2 [�; �].

2. A region r sub-explains some pointo in S i� (8p 2 r) d(o; p) 2 [�; �].

First, note that regions can have any shape and may overlap. Throughout this

chapter, we assume that checking if some pointo is sub-(super-) explained by region

r can be performed in constant (i.e.O(1)) time. This is a reasonable assumption for

most regular shaped regions like circles, ellipses and polygons. The following result

follows immediately from De�nition 57.

Observation 5.2.1. If region r 6= ; sub-explains pointo, then r super-explains

point o.

We would like to explain observations by �nding regions containing a partner.

In some applications, the user may be able to easily search theentire region { hence

a super-explaining region would su�ce. In other applications, we may want to be

sure that any point within the region can be a partner as not towaste resources -

so only a sub-explanation would make sense in such a case. Often, these situations

may depend on the size of the regions. We shall discuss the issue of restricting

region size later in this section. For now, we shall considerregions any shape or

size. Example 5.2.2 shows regions that super- or sub-explain various observations.

Example 5.2.2. Consider the scenario from Example 5.2.1 and the regions

R = f ra; rb; r c; rd; re; r f ; rgg shown in Figure 5.1. Suppose these regions correspond

with \support zones" for the drug sales { i.e. places that may contain a safe-house.

213

o1

o2

o3

o4 o5

o6

o7
o8

o13

o10

o11

o12

o9

ra

rb

rc

rd

re

rf

rg

Figure 5.1: Locations of illegal drug sales and suspected support zones

f ra; rb; r c; rd; re; r f ; rgg. The � distance for each observation is shown with a dashed

circle.

214

Consider regionra. As it totally lies within the �; � distance ofo1, it sub- and super-

explains this observation. Conversely, regionrd super-explains botho6 and o7 but

sub-explains neither.

This chapter studies following decision problems.

Sub-(Super-)Region Explanation Problem (Sub/Sup-REP)

INPUT: Given a spaceS, distance interval [�; �], set O of observations, setR of

regions, and natural numberk 2 [1; jOj].

OUTPUT: Set R0 � R, wherejR0j � k and for eacho 2 O , there is anr 2 R s.t. r

sub-(super-) explainso.

The fact that a set R of regions is part of the input is not an assumption, but

a feature. A user might setR to be all the regions associated withS; alternatively,

he might use a logical condition to de�ne regions, taking into account, the terrain

and/or known aspects of the population living in the area of interest. For instance,

when trying to identify regions containing IED caches in Baghdad used for attacks

by Shi'ite groups, regions were de�ned to be places that werenot predominantly

Sunni and that did not contain US bases or bodies of water. Otherkinds of logical

conditions may be used when dealing with burglaries or drug tra�cking. Thus, the

set R of regions allows an analyst to specify any knowledge he has, and allows the

system to bene�t from that knowledge. If no such knowledge isavailable, R can be

taken to be the set of all regions associated withS. R can also be used to restrict

215

the size of the region (e.g. only considering regions whose area is less than 5 sq.

km.).

There are two di�erent associated optimization problems associated with both

Sub-REP and Sup-REP. The �rst deals with �nding a subset of regions of minimal

cardinality that explains all observations.

Sub-(Super-)Region Explanation Problem-Minimum Cardinality (Sub/Sup-

REP-MC)

INPUT: Given a space,S, distance interval [�; �], set of observationsO, and set of

regionsR.

OUTPUT: Set R0 � R of minimum cardinality, where for eacho 2 O , there is an

r 2 R s.t. r sub-(super-) explainso.

Our second optimization problem �xes the number of regions returned in the

solution, but maximizes the number of observations that areexplained.

Sub-(Super-)Region Explanation Problem-Maximum Explaining (Sub/Sup-

REP-ME)

INPUT: Given a spaceS, distance interval [�; �], set O of observations, setR of

regions, and natural numberk 2 [1; jOj].

OUTPUT: Set R0 � R, where jR0j � k s.t. the number ofo 2 O where there is an

r 2 R s.t. r sub-(super-) explainso is maximized.

216

Consider the following Example.

Example 5.2.3. Consider the scenario from Example 5.2.2. Consider an instance

of Sup-REP withk = 7. The setf ra; rb; r c; rd; re; r f ; rgg is a solution to this problem.

Now consider Sup-REP-MC withk = 6, the setf ra; r c; rd; re; r f ; rgg is a solution to

this problem. Finally, consider Sup-REP-ME withk = 2. The set f r c; rdg is a

solution to this problem.

We now consider a special case of these problems that arises when the setR

of regions is created by a partition of the space based on the set of observations (O)

and concentric circles of radii� and � drawn around eacho 2 O . We can associate

regions in such a case with subsets ofO. For a given subsetO0, we say that there

is an associated set ofinduced regions(denotedRO0), de�ned as follows:

RO0 = ff xj 8o 2 O 0; d(x; o) 2 [�; �]^

8o0 =2 O 0; d(x; o0) =2 [�; �]g g

We note that for a given subset of observations, it is possible to have a set of

induce regions,RO0 that has more than one element. For example, consider set

R; = f r1; r12g in Figure 5.2. For a given set of observationsO, we will use the

notation RO do denote the set of all induce regions. Formally:

RO =
[

O02 2O

RO 06�;

RO0

We illustrate the idea of induce regions in the following example.

217

r31 r33

r20

r21

r22
r23

r24 r25 r26

r27

r1 r2

r3 r4
r5

r6

r7

r8

r9

r10

r11

r12
r13 r14

r15 r16

r17

r18
r19

r28
r29

r30 r32

o1

o2

o3

o4 o5

o6

o7
o8

o13

o10 o11
o12

o9

r1 r1

Figure 5.2: SpaceS and the regions in setRO .

Example 5.2.4. In order to identify locations of drug safe-houses, police create33

induced regions in S by drawing 5km radius circles around all observations (see

Figure 5.2), the set of which is denotedRO = f r1; : : : ; r33g.

For the special case whereRO is the set of regions, we have the following result.

Lemma 17. SupposeO is a set of observation andRO is the induced region. A

region r 2 RO sub-explains an observationo 2 O i� it super-explains o.

By this result, for the special case of induced regions, we only need one deci-

sion problem.

Induced Region Explanation Problem (I-REP)

INPUT: Given a space,S, distance interval [�; �], setO of observations, and natural

218

number k 2 [1; jOj].

OUTPUT: Set R0 � RO , where jR0j � k and for eacho 2 O , there is anr 2 R s.t.

r sub-explainso.

As mentioned earlier, the sizes of regions can be regulated byour choice ofR.

However, we may also explicitly require that all regions must be less than a certain

area. Consider the following variant of Sup-REP.

Area-Constrained Super-Region Explanation Problem (AC-Sup-REP)

INPUT: Given a space,S, distance interval [�; �], set O of observations, setR of

regions, areaA, and natural numberk 2 [1; jOj].

OUTPUT: Set R0 � R, where jR0j � k and eachr 2 R0 has an area� A and for

eacho 2 O , there is anr 2 R s.t. r super-explainso.

The following proposition tells us that AC-Sup-REP is at least as hard as

I-REP, yet no harder than Sup-REP (an analogous result can easily be shown for

an area-constrained version of Sub-REP). We note that essentially, we eliminate the

regions whose area is above areaA, which gives us an instance of Sup-REP. To go

the other direction, we directly encode I-REP into an instance of AC-Sup-REP and

have A be larger than the area of any region.

Theorem 24. I-REP is polynomially reducible to AC-Sup-REP.

AC-Sup-REP is polynomially reducible to Sup-REP.

219

In our �nal observation of this section, we note that the setRO can be used as

a \starting point" in determining regions. For instance, supplemental information

on area that may be restricted from being partnered with an observation may also

be considered and reduce the area of (or eliminate altogether) some regions in the

set. Consider the following example.

Example 5.2.5. Consider the scenario from Example 5.2.4. The police may elim-

inate a river running through the area and certain other ares from their search.

These \restricted areas" are depicted in Figure 5.3. Note that several regions from

Figure 5.2 are either eliminated or have decreased in size. However, by eliminating

these areas, the police have also pruned some possibilities from their search. For

example, regionsr9; r13 were totally eliminated from consideration.

220

r33

r20

r21

r22
r23 r24 r25 r26

r27

r1 r2

r3
r4

r5

r6

r7

r8

r9

r10

r11
r12 r13
1212
r14

r15
r16

r17

r18
r19

r28
r29

r30

r31

r32

o1

o2

o3

o4 o5

o6

o7
o8

o13

o10
o11

o12

o9

r1 r1

Figure 5.3: A set of regions inS created based on the distance� = 5km as well as

restricted areas (shown in black).

5.3 Complexity

In this section, we show that Sub-REP, Sup-REP, and I-REP areNP-Complete

and that the associated optimization problems are NP-Hard. Wealso show that

the optimization problems Sub-REP-MC, Sup-REP-MC, and I-REP-MC cannot be

approximated by a fully polynomial-time approximation scheme (FPTAS) unless

P = NP . We also note that the complexity of the area-constrained versions of

these problems follows directly from the results of this section by the reduction of

Theorem 24 (page 219).

We �rst prove that I-REP is NP-complete, which then allows us tocorrectly

identify the complexity classes of the other problems by leveraging Lemma 17. First,

221

we introduce the problem \circle covering" (CC) that was proven to be NP-complete

in [125].

Circle Covering (CC)

INPUT: A space S0, set P of points, real number� 0, natural number k0.

OUTPUT: \Yes" if there is a set of points, Q in S0 such that all points in P are

covered by discs centered on points inQ of radius� 0wherejQj � k0{ \no" otherwise.

The theorem below establishes that I-REP is NP-complete.

Theorem 25. I-REP is NP-Complete.

Proof Sketch. Clearly, a solution to I-REP can be veri�ed in PTIME. To show

NP-hardness, we show that CC� p I-REP by the following transformation: S = S0,

O = P, � = � 0, � = 0, and k = k0. (() Given a solution to the instance of I-REP,

we can simply pick a point in each returned region, and center a circle on it of radius

� 0 - which will be a solution to CC. Likewise, ()) given a solution to CC, we can

be assured that each point in the solution is enclosed by exactly one region from the

set RO , which would ensure a solution to I-REP. �

Further, as the optimization version of circle covering is known to have no

FPTAS unlessP = NP [70], by the nature of the construction in Theorem 25, we

can be assured of the same result for I-REP-MC.

Corollary 8. I-REP-MC cannot be approximated by a fully polynomial-time ap-

222

proximation scheme (FPTAS) unlessP = NP .

So, from the above Theorem and Corollary and Lemma 17, we get the following

results:

Corollary 9. 1. Sub-REP and Sup-REP are NP-Complete.

2. Sub-REP-MC, Sup-REP-MC, I-REP-MC, Sub-REP-ME, Sup-REP-ME, and

I-REP-ME are NP-Hard.

3. Sub-REP-MC, Sup-REP-MC cannot be approximated by a FPTAS unlessP =

NP .

5.4 Algorithms

In this section we devise algorithms to address the optimization problems

associated with Sup-REP, Sub-REP, and I-REP. First, we show that these opti-

mization problems reduce to either instances of set-cover (for Sub/Sup-REP-MC)

or max-k-cover (for Sub/Sup-REP-ME). These problems are well-studied and there

are algorithms that provide exact and approximate solutions. We then provide a

new greedy-algorithm for Sub/Sup-REP-MC that also providesan approximation

guarantee. This is followed by a discussion of approximationfor I-REP-ME for the

case where� = 0. Finally, we discuss some practical issues dealing with implemen-

tation.

223

5.4.1 Exact and Approximate Solutions by Reduction

In this section we show that the -MC problems can reduce to set-cover and

that the -ME problem can reduce to max-k-cover. First, we introduce the two prob-

lems in question. First, we present set-cover [136].

Set-Cover

INPUT: Set of elementsS, family of subsets ofS, H = H1; : : : ; Hm .

OUTPUT: Subset H 0 � H of minimum cardinality s.t.
S

H i 2H 0 H i � S.

Next, we present max-k-cover [46], which is often regarded as the dual of

set-cover:

Max- k-Cover

INPUT: Set of elementsS, family of subsets ofS, H = H1; : : : ; Hm , natural number

k � j Sj.

OUTPUT: Subset H 0 � H s.t. jH 0j � k wherej
S

H i 2H 0 H i \ Sj is maximized.

The key to showing that Sub/Sup-REP optimization problems can reduce to

one of these problems is to determine the family of subsets. We accomplish this as

follows: for each regionr 2 R, we �nd the subset ofO that can be partnered with

r . We shall refer to this set asOr . This gives us the following algorithm for the

optimization problems (we simply omit thek parameter for the -MC problems that

reduce to Set-Cover):

224

REDUCE-TO-COVERING(O set of observations,R set of regions,k natural number)

returns instance of covering problemhS;H ; ki

1. For eachr 2 R, �nd Or (i.e. o is in Or i� r sub/super-explains o)

2. Return hO;
S

r 2 R fO r g; ki

Proposition 42. REDUCE-TO-COVERINGrequiresO(jOj � j Rj) time.

The following theorem shows thatREDUCE-TO-COVERINGcorrectly reduces

a Sub/Sup-REP optimization problem to set-cover or max-k-cover as appropriate.

Theorem 26. Sub/Sup-REP-MC polynomially reduces to Set-Cover and Sub/Sup-

REP-ME polynomially reduces to Max-k-Cover.

This result allows us to leverage any exact approach to the above optimization

problems to obtain a solution to an optimization problem associated with Sub/Sup-

REP. A straightforward algorithm for any of the optimization problems would run

in time exponential in jOj or k and consider everyjOj or k sized subset of
S

r 2 R fO r g.

Clearly this is not practical for real-world applications.Fortunately, there are several

well-known approximation techniques for both these problems. First, we address the

Sub/Sup-REP-ME problems, which reduce to Max-k-Cover. As the Max-k-Cover

problem reduces to the maximization of a submodular function over a uniform ma-

troid, we can leverage the greedy approximation algorithm of[127] to our problem.

We do so below.

Suppose f̀ ' denotes the maximum number of observations that can be part-

nered with a given region.

225

GREEDY-REP-ME(O set of observations,R set of regions,k natural number)

returns R0 � R

1. Let O =
S

r 2 R fO r g (obtained by REDUCE-TO-COVERING)

2. Let O0 = O, set R0 = ;

3. While k 6= 0 loop

(a) Let the element Or be the member ofO s.t. jO r \ O 0j is maximized.

R0 = R0[r

O0 = O0 (Or \ O 0)

k

4. Return R0

Proposition 43. GREEDY-REP-MEruns in O(k�jRj� f) time and returns a solution

such that the number of observations inO that have a partner region inR0 is within

a factor

e
e 1

�
of optimal.

Example 5.4.1. Consider Example 5.2.2 (page 213), where the set of regions is

R = f ra; rb; r c; rd; re; r f ; rgg. Suppose the police want to runGREEDY-REP-MEto

solve an instance of Sup-REP-ME associated with this situation withk = 3. Initially

set O0 = f o1; : : : ; o13g. On the �rst iteration of the outer loop, it identi�es set Or c =

f o2; o3; o4; o9g where the cardinality ofOr c \ O 0 is maximum. Hence, it picks region

r c. The set O0 = f o1; o5; : : : ; o8; o10; : : : o13g. On the second iteration, it identi�es

Or e = f o5; o13g, which intersected withO0 provides a maximum cardinality, causing

re to be picked. SetO0 is now f o1; o6; : : : ; o8; o10; : : : ; o12g. On the last iteration,

226

it identi�es Or g = f o11; o12g, again the maximum cardinality when intersected with

O0. The element is picked and the solution isr c; re; rg, and the observations super-

explained aref o2; o3; o4; o5; o9; o11; o12; o13g.

Likewise, we can leverage the greedy algorithm for set-cover [136] applied to

Sub/Sup-REP-MC.

GREEDY-REP-MC(O set of observations,R set of regions,) returns R0 � R

1. Let O =
S

r 2 R fO r g (obtained by REDUCE-TO-COVERING)

2. Let O0 = O, set R0 = ;

3. While not O0 � ; loop

(a) Let the element Or be the member ofO s.t. jO r \ O 0j is maximized.

R0 = R0[r

O0 = O0 (Or \ O 0)

4. Return R0

Proposition 44. GREEDY-REP-MCruns in O(jOj � j Rj � f) time and returns a

solution whose cardinality is within a factor of1 + ln(f) of optimal.

Example 5.4.2. Consider the scenario from Example 5.4.1. To explain all points,

the police can create an instance of Sup-REP-MC and useGREEDY-REP-MC. The

algorithm proceeds just asGREEDY-REP-MEin the �rst three steps (as in Ex-

ample 5.4.1, but will continue on until all observations are super-explained. So,

GREEDY-REP-MCproceeds for three more iterations, selectingr f (Or f = f o8; o10g),

227

rd (Or d = f o6; o7g), and �nally ra (Or a = f o1g). The solution returned is:

f r c; re; rg; r f ; rd; rag

We now focus on speeding up the set-cover reduction via theGREEDY-REP-

MC2 algorithm below.

In the rest of this section, we use `�' to denote the maximum number of

di�erent regions that can be partnered with a given observation.

Proposition 45. GREEDY-REP-MC2runs in O(� � f 2 � jOj + jOj � ln(jOj) time and

returns a solution whose cardinality is within a factor of1 + ln(f) of optimal.

Although GREEDY-REP-MC2considers regions in a di�erent order thanGREEDY-

REP-MC, it maintains the same approximation ratio. This is because the region (in

set GRPo) that is partnered with the greatest number of uncovered observations

is selected at each iteration, allowing us to maintain the approximation guarantee.

There are two selections at each step: the selection of the observation (in which

we use a minimal key value based on related observations) anda greedy selection

in the inner loop. Any selection of observations can be used at each step and the

approximation guarantee is still maintained. This allows for a variety of di�erent

heuristics. Further, the use of a data structure such as a Fibonacci Heap allows us

to actually obtain a better time complexity than GREEDY-REP-MC.

Example 5.4.3. Consider the situation in Example 5.2.4 where the police are con-

sidering regionsRO = f r1; : : : ; r33g that are induced by the set of observations and

wish to solve I-REP-MC using GREEDY-REP-MC. On the �rst iteration of the loop

228

GREEDY-REP-MC2(O set of observations,R set of regions,) returns R0 � R

1. Let O =
S

r 2 R fO r g (obtained by REDUCE-TO-COVERING)

2. For each observationo 2 O , let GRPo = fO r 2 Ojo 2 O r g

3. For each observationo 2 O , let REL o = f o0 2 Oj o0 2
S

Or 2 GRP o
Or g and let

keyo = jREL oj

4. Let O0 = O, set R0 = ;

5. While not O0 � ; loop

(a) Let o be the element ofO where keyo is minimal.

(b) Let the element Or be the member ofGRPo s.t. jO r \ O 0j is maximized.

(c) If there are more than one setOr that meet the criteria of line 5b, pick the set

w. the greatest cardinality.

(d) R0 = R0[r

(e) For each o0 2 O r \ O 0, do the following:

i. O0 = O0 o0

ii. For each o002 O 0\ REL o0, keyo00

6. Return R0

229

at line 5, the algorithm pickso8, as keyo8 = 1. The only possible region to pick is

r19, which can only be partnered witho8. There are no observations related too8

other than itself, so it proceeds to the next iteration. It then selectso6 as keyo6 = 2

becauseREL o6 = f o6; o7g. It then greedily picksr17 which sub-explains botho6; o7.

As all observations related too6 are now sub-explained, the algorithm proceeds with

the next iteration. The observation with the lowest key value iso5 as keyo5 = 3 and

REL o5 = f o4; o5; o13g. It then greedily picks regionr21 which sub-explainso5; o13.

The algorithm then reduces the key value associated witho4 from 4 to 3 and decre-

ments the keys associated witho10; o11; o12 (the un-explained observations related to

o13) also from 4 to 3. In the next iteration, the algorithm pickso9 as keyo9 = 3.

It greedily picksr12 which sub-explainso9; o2. It then decreaseskeyo4 to 2 and also

decreases the keys associated witho1 and o3. At the next iteration, it picks o1 as

keyo1 = 2. It greedily selectsr4, which sub-explainso1; o3 and decreases thekeyo4 to

1 which causeso4 to be selected next, followed by a greedy selection ofr11 { no keys

are updated at this iteration. In the �nal iteration, it selects o10 as keyo10 = 3. It

greedily selectsr25, which sub-explains all un-explained observations. The algorithm

terminates and returnsf r11; r12; r17; r19; r21; r25g.

5.4.2 Approximation for a Special Case

In Section 5.3, we showed that circle covering is polynomially reducible to I-

REP-MC. Let us consider a special (but natural) case of I-REP-MC where� = 0, i.e.

there is no minimum distance between an observation and a parter point that caused

230

it. We shall call this special case I-REP-MCZ. There is a great similarity between

this problem and circle-covering. It is trivial to modify our earlier complexity proof

to obtain the following result.

Corollary 10. I-REP-MCZ is polynomially reducible to CC.

Further, we can adopt any algorithm that provides a constructive result for CC

to provide a result for I-REP-MCZ in polynomial time with the following algorithm.

Given some pointp, it identi�es the set Or associated with the region that encloses

that point.

FIND-REGION(S space; O observation set; � real ; p point) returns set Or

1. SetOr = ;

2. For eacho 2 O , if d(p; o) � � then Or = Or [f og

3. Return Or .

Proposition 46. The algorithm, FIND-REGIONruns O(jOj) time, and region r

(associated with the returned setOr) contains p.

By pre-processing the regions, we can computeOr a-priori and simply pick a

region r associated with the output forFIND-REGION. While there may be more

than one such region, any one can be selected as, by de�nition, they would support

the same observations.

Example 5.4.4. Paleontologists working in a30� 26km area represented by space

S have located scattered fossils of prehistoric vegetation atO = f o1; o2; o3; o4g. Pre-

231

vious experience has led the paleontologists to believe that a fossil site will be within

3km of the scattered fossils. In Figure 5.4, the observations are labeled and circles

with radius of 3 km are drawn (shown with solid lines). Induced regionsr1; : : : ; r6 are

also labeled. As the paleontologists have no additional information, and� = 0, they

can model their problem as an instance of I-REP-MCZ withk = 3. They can solve

this problem by reducing it to an instance of circle-covering. The circle-covering al-

gorithm returns three points -p1; p2; p3 (marked with an `x' in Figure 5.4). Note that

each point in the solution to circle-covering falls in exactly one region (when using

induced regions). The algorithmFIND-REGIONreturns the setf o1; o2g for point p1,

which corresponds with regionr2. It returns set f o3g for p2, corresponding withr6

and returns set f o4g for p3, corresponding withr5. Hence, the algorithm returns

regions r2; r6; r5, which explains all observations.

Any algorithm that provides a constructive result for CC can provide a con-

structive result for I-REP-MCZ. Because of this one-to-onemapping between the

problems, we can also be assured that we maintain an approximation ratio of any

approximation technique.

Corollary 11. An a approximation algorithm for CC is ana-approximation for I-

REP-MCZ.

This is useful as we can now use approximation algorithms forCC on I-REP-

MCZ. Perhaps the most popular approximation algorithms forCC are based on the

\shifting strategy" [70]. To leverage this strategy, we would divide the space,S,

into strips of width 2 � � . The algorithm considers groups of̀ consecutive strips {`

232

o1

o2

o3

o4

x

x

x

r1

r2

r3
r4

r5

r6

Figure 5.4: Given the instance of I-REP-MCZ for Example 5.4.4as input for circle-

covering, a circle-covering algorithm returns pointsp1; p2; p3 (points are denoted

with an \x", dashed circles are the area of 3km from the point).

is called the \shifting parameter." A local algorithm A is applied to each group of

strips. The union of all solutions is a feasible solution to theproblem. The algorithm

then shifts all strips by 2� � and repeats the process, saving the feasible solution.

This can be done a total of̀ 1 times, and the algorithm simply picks the feasible

solution with minimal cardinality. In [70], the following lemma is proved (we state

it in terms of I-REP-MCZ { which is done by an application of Corollary 11):

Lemma 18 (Shifting Lemma [70]). Let aS(A) be the approximation factor of the

shifting strategy applied with local algorithmA and aA be the approximation factor

for the local algorithm. Then:

aS(A) = aA �
�

1 +
1
`

�
:

Further, the shifting strategy can actually be applied twice, solving the local

233

algorithm in squares of size 2� � � ` � 2 � � � `. This gives the following result:

a S(S(A)) = a A �
�

1 +
1
`

� 2

:

A good survey of results based on the shifting strategy can be found in [48],

which also provides a linear-time algorithm (this result is later generalized by [52]

for multiple dimensions). The following result leverages this for I-REP-MCZ by

Corollary 11 (and is proved in [52]).

Proposition 47. I-REP-MCZ can be solved with an approximation ratio ofx �

1 + 1

`

� 2
in O(K `;� � jOj) time. Where p is the maximum number of points in a �nite

lattice over a square of side length2 � � � ` s.t. each observation in such a square

lies directly on a point in the lattice andx 2 f 3; 4; 5; 6g (and is determined by� , see

[48] for details) andK `;� is de�ned as follows.

K `;� = `2 �
d̀ �

p
2e2 1X

i =1

�
p
i

�
� i

An alternative to the shifting strategy leverages techniques used for the re-

lated problem of geometric dominating set. In [104], the authors present a 1 +�

approximation that runs in O(jOj O(1
� 2 �lg2 (1

�))) time.

5.4.3 Practical Considerations for Implementation

We now describe some practical implementation issues. Our primary aim is

to �nd a set of regions that resembles the set of induced regions, RO . There are

several reasons for doing this. One reason is to implement a fast heuristic to deal

with I-REP optimization problems, speci�cally when � 6= 0. Another, is that such

234

a set of induced regions in the space may be a starting point for creating a set of

regions that may include other data, such as that shown in Example 5.2.5.

As most GIS systems view space as a set of discrete points, we discretized the

space using theREGION-GENalgorithm below. The parameterg is the spacing of

a square grid that overlays the space.

Proposition 48. REGION-GENhas a time complexity�(jOj � � �� 2

g2).

Example 5.4.5. Consider the scenario from Example 5.4.4. Suppose the paleon-

tologists now want to generate regions usingREGION-GENinstead of using induced

regions. The algorithmREGION-GENoverlays a grid on the space in consideration.

Using an array representing the space, it records the observations that can be ex-

plained by each grid point (Figure 5.5, top). As it does this, any grid point that can

explain an observation is stored in listL . The algorithm then iterates through listL ,

creating entries in a hash table for each subset of observations, enclosing all points

that explain the same observation with a minimally-enclosing rectangle. Figure 5.5

(bottom) shows the resulting regionsr1; : : : ; r6.

One advantage to usingREGION-GENis that we already have the observations

that a region super-explains stored { simply consider the bit-string used to index the

region in the hash table. Another thing that can be done, for use in an algorithm

such asGREEDY-MC2, where the regions are organized by what observation they

support, can also be easily done during the running of this algorithm at an additional

cost of f (the number of observations that can be partnered with a given region) -

by updating an auxiliary data structure at line 6a.

235

o1

o2

o3

o4

 3

 1 3 3 3 3 3

 1 1 1 1 1 3 3 3 3 3
 1 1 1 1 1 3 3 3 3

 1 1 1 1 1 3 3 3 3 3
 1 1 1 1 1 3 3 3 3 3

 1 1 12 1 1 4 3

 2 12 12 12 24 4 4 4 4

 2 2 2 2 24 4 4 4 4

 2 2 2 24 24 4 4

 2 2 2 2 24 4 4 4 4

 2 2 2 2 24 4 4 4 4

 2 4

o1

o2

o3

o4

r1

r2

r3

r4

r5

r6

Figure 5.5: REGION-GENapplied to the paleontology example (Example 5.4.4).

First, it identi�es observations associated with grid points (top). It then creates

minimally-enclosing rectangles around points that support the same observations

(bottom).

236

REGION-GEN(S space; O observation set; �; �; g reals returns setR

1. Overlay a grid of spacingg on spaceS. With each grid point, p, associate set

Op = ; . This can easily be represented with an array.

2. Initialize list L of pointers to grid-points.

3. For eacho 2 O , identity all grid points within distance [�; �]. For each point

p meeting this criteria, if Op = ; , add p to L. Also, setOp = Op [f og

4. For some subsetO0 � O , let str (O0) be a bit string of length jOj where every

position corresponding to an element ofO0 is 1 and all other positions are 0.

5. Let T be a hash table of sizedjOj� � �� 2

g2 e regions indexed by bit-strings of length

jOj

6. For eachp 2 L, do the following:

(a) If T[str (Op)] = null then initialize this entry to be a rectangle that en-

closes pointp.

(b) Else, expand the region at locationT[str (Op)] to be the minimum-

enclosing rectangle that enclosesp and regionT[str (Op)].

7. Return all entries in T that are not null.

5.5 Experimental Results

We implementedREGION-GENand GREEDY-MC2in approximately 3000 lines

of Java code and conducted several experiments on a Windows-based computer with

237

an Intel x86 processor. Our goal was to show that solving the optimization problem

Sup-REP-MC would provide useful results in a real-world scenario. We looked

at counter-insurgency data from [72] that included data on improvised-explosive

device attacks in Baghdad and cache sites where insurgents stored weapons. Under

the assumption that the attacks required support of a cache site a certain distance

away, could we use attack data to locate cache sites using an instance of Sup-

REP-MC solved with GREEDY-MC2using regions created withREGION-GEN? In

our framework, the observations were attacks associated with a cache (which was

a partner). The goal was to �nd relatively small regions thatcontained partners

(caches). We evaluated our approach based on the following criteria:

1. Do the algorithms run in a reasonable amount of time?

2. DoesGREEDY-MC2return regions of a relatively small size?

3. Do the regions returned byGREEDY-MC2usually contain a partner (cache)?

4. Is the partner (cache) density within regions returned byGREEDY-MC2sig-

ni�cantly greater than the partner density of the space?

5. How does the spacing between grid points a�ect the runtime and accuracy of

the algorithms?

Overall, the experiments indicate thatREGION-GENand GREEDY-MC2sat-

isfactorily meet the requirements above. For example, for our trials considering

locating regions with weapons cache sites (partners) in Baghdad given recent IED

238

attacks (observations), with a grid spacingg = 100m, the combined (mean) run-

time on a Windows-based laptop was just over 2 seconds. The algorithm produced

(mean) 15:54 regions with an average area of 1:838km2. Each region, on average,

enclosed 1:739 cache sites. If it did not contain a cache site, it was (on average) 275m

away from one. The density of caches within returned regions was 8:09caches=km2

- signi�cantly higher than the overall density for Baghdad of 0:488caches=km2.

The rest of this section is organized as follows. Section 5.5.1 describes the

data set we used for our tests and experimental set-up. Issue1 is addressed in Sec-

tion 5.5.2. We shall discuss the area (issue 2) of the regionsreturned in Section 5.5.3

and follow this with a discussion of issue 3 in Section 5.5.4. We shall discuss issue 4

in Section 5.5.5. Throughout all the sections, we shall describe results for a variety

of di�erent grid-spacings, hence addressing issue 5.

5.5.1 Experimental Set-Up

We used theMap of Special Groups Activity in Iraqavailable from the Institute

for the Study of War [72]. The map plots over 1000 insurgent activities attributed

to what are termed as \Special Groups" - groups with access tocertain advanced

weaponry. This data set contains events for 21 months between February 2007 and

November 2008. The activity types include the following categories.

1. Attacks with probable links to Special Groups

2. Discoveries of caches containing weapons associated with Special Groups

3. Detainments of suspected Special Groups criminals

239

4. Precision strikes against Special Groups personnel

We use this data for two geographic areas: the Baghdad urban area and the Sadr

City district. In our experiment, we will view the attacks by the special groups (item

1) as observations and attempt to determine the minimum set ofcache sites (item

2), which we shall view as partners. Hence, a region returnedby GREEDY-MC2

encloses a partner i� a cache falls within the region.

For distance constraints, we used a simple algorithm to learnthe parameter

� (� was set to zero). This was done using the �rst 7 months of attackdata (1
3 of

the available months) and 14 months of cache data. We used thefollowing simple

algorithm, FIND-BETA, to determine these values. Note we set� max to 2.5 km.

We ran the experiments on a Lenovo T400 ThinkPad laptop with a2.53 GHz

Intel Core 2 Duo T9400 processor and 4GB of RAM. The computer was running

Windows Vista 64-bit Business edition with Service Pack 1 installed.

As the relationship between attacks and cache sites may di�ervaried on ter-

rain, we ran tests with two di�erent geographic areas. First,we considered the

entire Baghdad urban area. Then, we considered just the SadrCity district. We

ran FIND-BETAwith a � max of 2:5 km on both areas prior to testing the algorithms.

There were 73 observations (attacks) for Baghdad and 40 for Sadr City. Table 5.1

shows the exact locations and dimensions of the areas considered.

We conducted two types of tests: tests focusing onGREEDY-MC2and tests

focusing onREGION-GEN.

240

Algorithm 20 Determines� value from historical data
FIND-BETA(Oh historical, time-stamped observations;

Eh historical, time-stamped partners; � max real)

1. Set � = � max

2. Set Boolean variablef lag to TRUE

3. For eacho 2 O h, do the following:

(a) For eachp 2 Eh that occurs after o, do the following.

i. Let d be the Euclidean distance function.

ii. If f lag , and d(o; p) � � max then set � = d(o; p)

iii. If not f lag , then do the following:

A. If d(o; p) > � and d(o; p) � � max then set � = d(o; p)

4. Return real �

Area Lower-Left Lower-Left E-W N-S

Latitude Longitude Distance Distance

Baghdad 33:200� N 44:250� E 27 km 25 km

Sadr City 33:345� N 44:423� E 7 km 7 km

Table 5.1: Locations and dimensions of areas considered

241

For the tests of GREEDY-MC2, we used multiple setting for the grid spacing.

We tested grid grid spacings at every 10 meter interval in therange of [70; 1000]

meters - giving a total of 93 di�erent values forg. Due to the fact that REGION-GEN

produces a deterministic result, we ran that algorithm onlyonce per grid setting.

However, we ran 100 trials ofGREEDY-MC2per each parameterg. This was done

for both Baghdad and Sadr City - giving a total of 18; 600 experiments.

To study the e�ects of grid-spacing on the run-time ofREGION-GEN, we also

ran 25 trials for each grid spacing setting for both geographicareas - giving a total of

4; 650 experiments. To compare the algorithms running with di�erent settings for g

in a statistically valid manner, we used ANOVA [50] to determine if the di�erences

among grid spacings are statistically signi�cant. For sometest results, we conducted

linear regression analysis.

5.5.2 Running Time

Overall, the run-times provided by the algorithms were quite reasonable. For

example, for the Baghdad trials, 73 attacks were consideredfor an area of 675m2.

With a grid spacing g = 100m, REGION-GENran in 2340ms and GREEDY-MC2

took less than 30ms.

For GREEDY-MC2, we found that run-time generally decreased asg increased.

For Baghdad, the average run times ranged over [1:39; 34:47]ms. For Sadr City, these

times ranged over [0:15; 4:97]ms. ANOVAs for both Baghdad and Sadr City run-

242

times gave p-values of 2:2�10 16, which suggests with well over 99% probability that

the algorithm run with di�erent grid settings will result in di�erent run-times. We

also recorded the number of regions considered in each experiment (resulting from

the output of REGION-GEN). Like run-times, we found that the number of regions

considered also decreased as the grid spacing increased. For Baghdad, the number

of considered regions ranged over [88; 1011]. For Sadr City, this number ranged over

[25; 356]. ANOVAs for both Baghdad and Sadr City number of consideredregions

gave p-values of 2:2 � 10 16, which suggests with well over 99% probability that the

algorithm run with di�erent grid settings will result in di� erent numbers of consid-

ered regions. Note that this is unsurprising asREGION-GENrun deterministically.

We noticed that, generally, only grid spacings that were near the same value would

lead to the same number of considered regions.

The most striking aspect of the run-time/number of regions considered results

for GREEDY-MC2is that these two quantities seem closely related (see Figure5.6).

This most likely results from the fact that the number of regions that can be as-

sociated with a given observation (�) increases as the numberof regions increases.

This coincides with our analysis ofGREEDY-MC2(see Proposition 45).

We also studied the average run-times forREGION-GENfor the various di�er-

ent settings forg. For Baghdad, the average run times ranged over [16:84; 9184:72]ms.

For Sadr City, these times ranged over [0:64; 308:92]ms. ANOVAs for both Baghdad

and Sadr City run-times gave p-values of 2:2 � 10 16, which suggests with well over

99% probability that the algorithm run with di�erent grid se ttings will result in

243

SADR CITY BAGHDAD

Grid Spacing (m)
T

im
e

in
 m

s
/ 1

00
s

of
 R

eg
io

ns

0

1

2

3

4

5

6

70 14
0

21
0

28
0

35
0

42
0

49
0

56
0

63
0

70
0

77
0

84
0

91
0

98
0

Solid Line = Runtime
Dotted Line = Number of Regions

0

5

10

15

20

25

30

35

40

70 14
0

21
0

28
0

35
0

42
0

49
0

56
0

63
0

70
0

77
0

84
0

91
0

98
0

Figure 5.6: The run-time of GREEDY-MC2in ms compared with the number of

regions considered.

di�erent run-times. Our analysis of REGION-GEN(See Proposition 48) states that

the algorithm runs in time O(1
g2). We found striking similarities with this analysis

and the experimental results (see Figure 5.7).

5.5.3 Area of Returned Regions

In this section, we examine how well theREGION-GEN/ GREEDY-MC2suite of

algorithms address the issue of returning regions that are generally small. Although

not inherently part of the algorithm, our intuition is that t he Sup-REP-MC opti-

mization problem will generally return small regions basedon the setR produced

by REGION-GEN. The reason for this is that we would expect that smaller regions

generally support more observations (note that this is not always true, even for in-

duced regions, but our conjecture is that it is often the casefor induced regions or

the output of REGION-GEN).

244

SADR CITY BAGHDAD

Grid Spacing (m)
T

im
e

in
 m

s
Solid Line = Runtime

Dotted Line = Analytical Results

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

70 15
0

23
0

31
0

39
0

47
0

55
0

63
0

71
0

79
0

87
0

95
0

0

50

100

150

200

250

300

350

70 15
0

23
0

31
0

39
0

47
0

55
0

63
0

71
0

79
0

87
0

95
0

Figure 5.7: A comparison between analytical (O(1
g2)) and experimental results for

the run-time of REGION-GENcompared with grid spacing (g).

To de�ne \small" we look at the area of a circle of radius� as a basis for

comparison. As di�erent grid settings led to di�erent valuesfor � , we looked at

the smallest areas. For a given trial, we looked at the average area of the returned

regions.

For Baghdad, the average areas ranged over [0:611; 2:985]km2. For Sadr City,

these times ranged over (0:01; 0:576]km2. ANOVAs for both Baghdad and Sadr City

run-times gave p-values of 2:2 � 10 16, which suggests with a 99% probability that

the algorithm run with di�erent grid settings will result in di�erent average areas.

Plotting the areas compared with the established \minimum area" described earlier

in this section clearly shows thatREGION-GEN/ GREEDY-MC2produce solutions

with an average area that is about half of this value - refer to Figure 5.8.

Overall, there seemed to be little relation between grid spacing and average

area of the returned set of regions - based on grid spacings in[70; 1000]m. As

245

0

1

2

3

4

5

6

70 14
0

21
0

28
0

35
0

42
0

49
0

56
0

63
0

70
0

77
0

84
0

91
0

98
0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

70 15
0

23
0

31
0

39
0

47
0

55
0

63
0

71
0

79
0

87
0

95
0

SADR CITY BAGHDAD

Grid Spacing (m)
A

vg
 A

re
a

pe
r

R
eg

io
n

(k
m2)

maximum maximum

Figure 5.8: Average areas for solutions provided byREGION-GEN/ GREEDY-MC2

for Baghdad and Sadr City.

an example, we provided screen-shots ofGREEDY-MC2for g = 100 and g = 1000

(Figure 5.9). Anecdotally, we noticed that larger grid spacing led to more \pinpoint"

regions - regions encompassing only one point in the grid (and viewed as having an

area of 0). This is most likely due to the fact that overlaps inthe circles around

observations points would overlap on fewer grid points for larger values ofg. Another

factor is that di�erent settings for g led to some variation of the value� - which

also a�ects accuracy (note for our analysis we considered only the smallest values

of � as an upper bound for the area - see Figure 5.8.

5.5.4 Regions that Contain Caches

In this section we discuss the issue of ensuring that most of the returned regions

enclose at least one partner (cache in the case of our experiments). One measure

of this aspect is to look at the average number of caches enclosed per region in a

given result. We found, that for Baghdad, we generally enclosed more than 1 cache

246

+
+
+

+ +

+

+
+

+
+

g= 100 m

g= 1000 m

Figure 5.9: Results from two runs ofGREEDY-MC2- g = 100m (top), g = 1000m

(bottom). Pinpoint-regions are denoted with plus-signs. Notice that the average

areas of the results are comparable.

247

SADR CITY BAGHDAD

Grid Spacing (m)
A

vg
 C

ac
he

s
E

nc
lo

se
d

 P
er

 R
eg

io
n

0

0.5

1

1.5

2

2.5

3

3.5

70 15
0

23
0

31
0

39
0

47
0

55
0

63
0

71
0

79
0

87
0

95
0

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

70 15
0

23
0

31
0

39
0

47
0

55
0

63
0

71
0

79
0

87
0

95
0

Figure 5.10: Average caches enclosed per region for Baghdad andSadr City for

various grid-spacing settings.

per region in a given result - this number was in the range [0:764; 3:25]. The results

for Sadr City were considerably lower - in the range [0; 0:322]. ANOVAs for both

Baghdad and Sadr City gave p-values of 2:2 � 10 16, which suggests with a 99%

probability that the algorithm run with di�erent grid setti ngs will result in di�erent

average number of enclosed caches. However, we did not observe an obvious trend

in the data (see Figure 5.10).

As an alternative metric - we look at the number of regions in provided by

GREEDY-MC2that contain at least one region. Figure 5.12 shows the number of

regions returned in the output. For Baghdad, generally lessthan half the regions

in the output will enclose a cache - the number of enclosing regions was in [1; 8],

while the total number of regions was in [10:49; 22]. This result, along with the

average number of caches enclosed by a region - may indicate that while sometimes

GREEDY-MC2may �nd regions that enclose many caches, there are often regions

248

C C
C C

C

C C C C

C
C C

C C C
C

C C C
C

C
C C
C C

C C C
C

C
C
C

C

C

C C
C C

C
C C C

C

C C
C
C C

C
C

C
C C

C

C
C

C C
C C

C
C

C C
C

C
C

C C
C

C C
C
C C C

C
C C

C C
C C

C C
C C
C

C

C
C
C

C
C

C C
C C

C

C
C

C C C C C
C

C C

C
C

C C C

C
C
C
C

C
C

C C C
C

C
C C

C
C

C
C
C C

C
C
C C
C

C
C
C

C C

C
C

C

C
C C

C
C C C

C C
C C

C
C C C

C C C
C
C

C
C

C
C

C
C

C
C C C

+

C
C

C C

C

C

C
CCCC

CC

CC

C

C C
C
CC

CCC
C

C C
C
C

C
C

+
+

A

B

C

D

E

F

G

H

I

J

Figure 5.11: The output of GREEDY-MC2for Baghdad with g = 100m compared

with the locations of actual cache sites (denoted with a \C"). Notice that regions

A-E do not contain any cache sites while regions G-I all contain numerous cache

sites.

that enclose no caches as well. This may indicate that for Baghdad, some attacks-

cache relationships conform to our model and others do not - perhaps there is another

discriminating attribute about the attacks not present in the data that may account

for this phenomenon. For example, perhaps some attacks werepreformed by some

group that had a capability to store weapons in a cache located further outside the

city, or perhaps some groups had the capability to conduct attacks using cache sites

that were never found. We illustrate this phenomenon with anexample output in

Figure 5.11. Note that in the �gure, regions A-E do not contain any cache sites

while regions G-I all contain numerous cache sites.

For Sadr City, the number of caches that contain one region was signi�cantly

249

SADR CITY BAGHDAD

Grid Spacing (m)
N

um
be

r
of

 R
eg

io
ns

Solid Line = Avg. number of regions enclosing at least one cache

Dotted Line = Average total regions

0

2

4

6

8

10

12

70 15
0

23
0

31
0

39
0

47
0

55
0

63
0

71
0

79
0

87
0

95
0

0

5

10

15

20

25

70 14
0

21
0

28
0

35
0

42
0

49
0

56
0

63
0

70
0

77
0

84
0

91
0

98
0

Figure 5.12: Regions in the output that enclose at least one partner (cache) and

total number of regions returned for Baghdad and Sadr City.

lower - in the range [0; 2], while the total number of returned regions was in [3; 9:8].

ANOVAs for both Baghdad and Sadr City gave p-values of 2:2�10 16, which suggests

with well over 99% probability that the algorithm run with di �erent grid settings

will result in di�erent number of caches that enclose a region.

We believe that the low numbers for caches enclosed by regions for Sadr City

were directly related to the smaller areas of regions. However, the mean of the aver-

age area of a returned set of regions was 0 for 49 of the 94 di�erent grid settings (for

Sadr City). This means that for the majority of grid settings, the solution consisted

only of \pinpoint" regions (see Section 5.5.3 for a description of \pinpoint" regions).

Obviously, it is unlikely for a pinpoint region to contain a cache site merely due

to its in�nitesimally small area. To better account for this issue - we develop another

metric - distance to nearest cache. If a region contains a cache, the value for this met-

ric is 0. Otherwise, it is the distance to the closest cache outside of the region. For

250

SADR CITY BAGHDAD

Grid Spacing (m) D
is

ta
nc

e
to

 N
ea

re
st

 C
ac

he
 O

ut
si

de
 R

eg
io

n
Solid Line = Avg. Distance

Dotted Line = Linear Regression

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

70 14
0

21
0

28
0

35
0

42
0

49
0

56
0

63
0

70
0

77
0

84
0

91
0

98
0

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

70 15
0

23
0

31
0

39
0

47
0

55
0

63
0

71
0

79
0

87
0

95
0

Figure 5.13: Distance to nearest cache vs. grid spacing.

Baghdad, we obtained distances in [0:246; 0:712]km, for Sadr City, [0:080; 0:712]km.

ANOVAs for both Baghdad and Sadr City gave p-values of 2:2�10 16, which suggests

with well over 99% probability that the algorithm run with di �erent grid settings

will result in di�erent distances to the nearest cache. Usinglinear regression, we

observed that this distance increases as grid spacing increases. For Baghdad, we ob-

tained R2 = 0:2396 andR2 = 0:2688 for Sadr City. See Figure 5.13 for experimental

results and the results of the liner regression analysis.

5.5.5 Partner Density

T consider the density of partners in the regions, we comparethe number of en-

closed partners to the overall partner density of the area inquestion. For Baghdad,

there were 303 caches in an area 27� 24km - giving a density of 0:488caches=km2.

For Sadr City, there were 64 caches in an area 7� 7km - giving a density of

1:306caches=km2. In our experiments, we looked at the cache density for each out-

put. For Baghdad, the density was signi�cantly higher - in [0:831; 34:9]cache=km2.

251

SADR CITY BAGHDAD

Grid Spacing (m)
C

ac
he

s
pe

r
km

2

Dotted line = Linear regression
Dashed Line = Overall cache density

Solid Line = Cache density in returned regions

0

5

10

15

20

25

30

35

40

70 14
0

21
0

28
0

35
0

42
0

49
0

56
0

63
0

70
0

77
0

84
0

91
0

98
0

0

5

10

15

20

25

30

35

70 15
0

23
0

31
0

39
0

47
0

55
0

63
0

71
0

79
0

87
0

95
0

Figure 5.14: Cache density of outputs produced byGREEDY-MC2for Baghdad and

Sadr City compared with overall cache density and linear-regression analysis.

If we considerg 2 [70; 200], the density is in [7:19; 32:9]cache=km2. For g = 100,

the density was 8:09caches=km2. Most likely due to the issue of \pinpoint" regions

described in Section 5.5.3, the results for Sadr City, were often lower than the overall

density (in [0; 31:3]cache=km2). For g = 100, the density was 2:08caches=km2. We

illustrate these results compared with overall cache density in Figure 5.14.

ANOVAs for both Baghdad and Sadr City gave p-values of 2:2 � 10 16, which

suggests with well over 99% probability that the algorithm run with di�erent grid

settings will result in di�erent cache densities. Using linear regression, we observed

that this cache density decreases as grid spacing increases. For Baghdad, we ob-

tained R2 = 0:1614 andR2 = 0:1395 for Sadr City. See Figure 5.14 for experimental

results and the results of the liner regression analysis.

Although partner density is a useful metric, it does not tell us anything about

partners that lie close to a region - although still outside.For example, consider

Figure 5.11. Although region A does not enclose any caches, there is a cache just

252

C

C

C
C

C

C

C

C

C
C C

C

C

F

Figure 5.15: Close-up of region F from Figure 5.11. While regionF contains 1

cache, there are 4 other caches< 250m from the boundary of that region. The

area-quadrupling metric helps us account for such scenarios.

outside - region B is similar. Also consider the cluster of caches south of region E

and north of region J - in this situation it appears as thoughGREEDY-MC2mis-

positioned a region. We include a close-up of region F in Figure 5.15, which encloses

a cache, but there are also 4 other caches at a distance of 250m or less.

In order to account for such phenomena, we created an area-quadrupling metric

- that is we uniformly double the sides of each region in the output. Then, we

calculated the density of the output with area-quadrupled regions. For Baghdad,

this density was in [0:842; 30:3]caches=km2. For Sadr City, this density was in

[0; 12:3]caches=km2. These results are depicted in Figure 5.16.

As the regions for Sadr City were often smaller than those in Baghdad, we

found that the cache density for area-quadrupled regions was often higher for Sadr

City (i.e. a region in Sadr City would have nearby cache sites). An example is

253

SADR CITY BAGHDAD

Grid Spacing (m)
C

ac
he

s
pe

r
km

2

Solid Line = Cache density in quadruple-size regions
Dotted Line = Linear regression

0

5

10

15

20

25

30

35

70 14
0

21
0

28
0

35
0

42
0

49
0

56
0

63
0

70
0

77
0

84
0

91
0

98
0

0

2

4

6

8

10

70 14
0

21
0

28
0

35
0

42
0

49
0

56
0

63
0

70
0

77
0

84
0

91
0

98
0

Figure 5.16: Area quadrupled cache density of output produced by GREEDY-MC2

with linear-regression analysis.

shown in Figure 5.15.

ANOVAs for both Baghdad and Sadr City gave p-values of 2:2 � 10 16, which

suggests with well over 99% probability that the algorithm run with di�erent grid

settings will result in di�erent cache densities for area-quadrupled regions. We also

conducted linear regression analysis, and like the normal partner density, we found

that cache density decreases as grid spacing increases. However, this liner analysis

was more closely correlated with the data than the analysis for non-area quadrupled

density. For Baghdad, we obtainedR2 = 0:3171 (for non-area quadrupled, we

obtained R2 = 0:1614) andR2 = 0:3983 (for non-area quadrupled, we obtained

R2 = 0:1395) for Sadr City. See Figure 5.16 for experimental resultsand the results

of the liner regression analysis.

254

5.6 Chapter 5 Related Work

Facility location [164] may also appear similar to this work. However, facility

location problems normally seek to locate a facility at an in�nitesimal point with

respect to some minimality criteria - not identify a region.Further, in a facility lo-

cation problem, distance is often sought to be minimized - soa \closer" facility may

be more optimal. In our formulation, we restrict distance with �; � , but a more op-

timal region is not necessarily closer to its associated observation. Rather, a region

is often more optimal provided if it supports multiple partners. This may, in fact,

make regions further from their observations. Another problem, which inuences

some facility location work, is thek-means problem [116]. This type of \cluster-

ing" technique looks to group points together and possibly locate a \center." While

there is an implicit grouping of observations by the algorithms of this paper, we

are attempting to �nd regions that explain them rather than simply group them.

Moreover, Chapter 4 shows experimentally that the methods for solving GAPssig-

ni�cantly outperform simply applying k-means algorithms. This fact illustrates that

the problem of this paper (and other work in geospatial abduction) is fundamentally

di�erent from work in clustering. Perhaps some of the closest work to our problem

is in the study of the circle-covering problem [125, 70, 58, 16]. The problem of

this paper is more general than circle-covering although special case of the region-

explanation problem does reduce to circle-covering, as described in Section 5.4.2

(page 230).

255

5.7 Chapter Summary

In this chapter we explored a variant of \geospatial abduction" (which was in-

troduced in chapter 4) calledregion-based geospatial abduction problemswhere the

user wishes to identify a set of regions that best explain a given set of observations.

This has several important applications including criminology [144], marketing [55],

natural science [143], and the military [170]. We explored properties and the com-

plexity of several variants of this problem, including variants where the space is

induced by a distance from the observations, as well as when the regions are ir-

regular shapes (including non-convex). As most of the problems were NP-hard, we

illustrated a variety of approximation techniques, often with guarantees, to address

these problems. We also implemented some of our algorithms and evaluated with

a real-world counterinsurgency [72] data-set to �nd weapons cache sites based on

attack data in Baghdad, Iraq and produced regions that had an average density of

over 8 caches per square kilometer, signi�cantly higher than the city wide density

of 0:4.

There are many interesting open questions relating to this type of abduction

problem. Future work may include studies of the counting version of the problem,

where we may consider all possible solutions to a given region explanation problem

according to a probability distribution and determine the \most probable" regions.

Another aspect to consider would be time { perhaps in some applications the loca-

tions of the partners are in a certain region only at a certaintime.

256

Chapter 6

Adversarial Geospatial Abduction

Given an instance of a geospatial abduction problem from Chapter 4, where

do we look for partners if an adversary is aware of the algorithms we are using? We

study this situation, along with a complementary problem inthis chapter.1

6.1 Chapter Introduction

Geospatial abduction problems (GAPs) were introduced in Chapter 4 to �nd

a set of locations that \best explain" a given set of locations of observations. We

call these inferred sets of locations \explanations". There we described many such

applications of GAPs.

Chapter 4 de�ned geospatial abduction problems(GAPs) and studied a ver-

sion of the problem where the adversary (the \bad guy" or the entity that wishes

to evade detection) does not reason about the agent (the \good guy" or the entity

1This chapter is based on [154] completed in cooperation with John Dickerson and V.S. Sub-

rahmanian.

257

that wants to detect the adversary). Despite this signi�cant omission, they were

able to accurately predict the locations of weapons caches in real-world data about

IED attacks in Baghdad. In this chapter, we introduceadversarial geospatial ab-

duction problems where both the agent and the adversary reason about each other.

Speci�cally, we:

1. Axiomatically de�ne reward functions to be any functions that satisfy certain

basic axioms about the similarity between an explanation chosen by the ad-

versary (e.g. where the serial killer lives and works or where the insurgents put

their IED caches) and de�ne notions of expected detriment (tothe adversary)

and expected bene�t (to the agent).

2. Formally de�ne the optimal adversary strategy(OAS) that minimizes chances

of detection of the adversary's chosen explanation and themaximal counter-

adversary strategy(MCA) that maximizes the probability that the agent will

detect the adversary's chosen explanation.

3. Provide a detailed set of results on the computational complexity of these

problems, the counting complexity of these problems, and the possibility of

approximation algorithms with approximation guarantees for both OAS and

MCA.

4. Develop mixed integer linear programming algorithms (MILPs) for OAS and

two algorithms, MCA-LSand MCA-GREEDY-MONO, to solve MCA with cer-

tain approximation guarantees. MCA-LS has no assumptions, whileMCA-

GREEDY-MONOassumes monotonicity.

258

5. Develop a prototype of our MILP algorithms to solve the OAS problem, using

our techniques for variable reduction on top of a integer linear program solver.

We demonstrate the ability to achieve near-optimal solutions as well as a

correct reduction of variables by 99:6% using a real-world data set.

6. Develop a prototype implementation that shows that bothMCA-LSand MCA-

GREEDY-MONOare highly accurate and have very reasonable time frames.

Though MCA-GREEDY-MONOis slightly faster than MCA-LS, we found that

on every single run,MCA-LSfound the exact optimal bene�t even though its

theoretical lower bound approximation ratio is only 1=3. As MCA-LSdoes not

require any additional assumptions and as its running time is only slightly

slower than that of MCA-GREEDY-MONO, we believe this algorithms has a

slight advantage.

The main contributions of the chapter are as follows. Section6.2 �rst reviews

the GAP framework of Chapter 4. Section 6.3 extends GAPs to the adversarial case

using axiomatically de�ned reward function (Section 6.2). Section 6.4 complexity

results and several exact algorithms using MILPs for the OAS problem. Section 6.5

provides complexity results and develops exact and approximate methods MCA

|including an approximation technique that provides the best possible guarantee

unless P=NP. We then briey describe our prototype implementation and describe

a detailed experimental analysis of our algorithms. Finally,related work is then

described in Section 6.7.

259

6.2 Overview of GAPs

We utilize the same de�nitions of a space, observations, feasibility, partners,

and explanations as we did in Chapter 4. We note in that chapter we often sought

to �nd an explanation of minimal cardinality, a common parsimony requirement.

Alternatively, another requirement that can be imposed on an explanation is irre-

dundancy.

De�nition 58. An explanation E is irredundant i� no strict subset of E is an

explanation.

Intuitively, if we can remove any element from an explanation { and this action

causes it to cease to be a valid explanation { we say the explanation is irredundant.

Example 6.2.1. Figure 6.1 shows a map of a drug plantation depicted in a18 �

14 grid. The distance between grid squares is100 meters. Observation setO =

f o1; o2; o3; o4; o5g represents the center of mass of the poppy �elds. Based on an

informant or from historical data, drug enforcement o�cials know that there is a

drug laboratory located150 320meters from the center mass of each �eld (i.e. in a

geospatial abduction problem, we can set[�; �] = [150; 320]). Further, based on the

terrain, the drug enforcement o�cials are able to discount certain areas (shown in

black on Figure 6.1, a feasibility predicate can easily be set up accordingly). Based on

Figure 6.1, the setf p40; p46g is an irredundant explanation. The setsf p42; p45; p48g

and f p40; p45g are also irredundant explanations.

In Chapter 4, we showed the problem of �nding an explanation of size k

to be NP-Complete based on a reduction from the known NP-Complete problem

260

o1

o2

o3

o4

o5

 33 34 35

44 45 46 47 48 49 50

52 56

 37 38 40 41 42 43

 57

Figure 6.1: Map of poppy �elds for Example 6.2.1. For each labeled point pi , the

\ p" is omitted for readibility.

Geometric Covering by Discs(GCD) seen in [76]. As with most decision problems,

we de�ne the associated counting problem, #GCD, as the number of \yes" answers to

the GCD decision problem. The result below, which is new, shows that # GCDis #P-

complete and, moreover, that there is no fully-polynomial random approximation

scheme for #GCDunlessNP equals the complexity classRP.2

Lemma 19. # GCDis # P-complete and has no FPRAS unless NP=RP.

We can leverage the above result to derive a complexity result for the counting

version ofk-SEP.
2RP is the class of decision problems for which there is a randomized polynomial algorithm

that, for any instance of the problem, returns \false" with probability 1 when the correct answer

to the problem instance is false, and returns \true" with probabilit y (1 �) for a small � > 0 when

the correct answer to the problem instance is \true."

261

Theorem 27. The counting version ofk-SEP is # P-Complete and has no FPRAS

unless NP=RP.

6.3 Geospatial Abduction as a Two-Player Game

Throughout this chapter, we view geospatial abduction as a two-player game

where anagent attempts to �nd an \explanation" for a set of observations caused

by the adversary who wants to hide the explanation from the agent.

Each agent chooses astrategywhich is merely a subset ofS. Though \strategy"

and \observation" are de�ned identically, we use separate terms to indicate our

intended use. In the IED example, the adversary's strategy is a set of points where

to place his cache, while the agent's strategy is a set of points that he thinks hold

the weapons caches. Throughout this chapter, we useEgt (resp. C) to denote the

strategy of the adversary (resp. agent).

Given a pair (Egt; C) of adversary-agent strategies, a reward function measures

how similar the two sets are. The more similar, the better it is for the agent. As

reward functions can be de�ned in many ways, we choose an axiomatic approach so

that our framework applies to many di�erent reward functions including ones that

people may invent in the future.

De�nition 59 (Reward Function). A reward function is any function rf : 2S � 2S !

[0; 1] that for any k-explanationEgt 6� ; and setC � S , the function satis�es:

1. If C = Egt, then rf (Egt; C) = 1

262

2. For C; C0 then

rf (Egt; C [C0) � rf (Egt; C) + rf (Egt; C0) rf (Egt; C \ C0).

We now de�ne the payo�s for the agent and adversary.

Observation 6.3.1. Given adversary strategyEgt, agent strategyC, and reward

function rf , the payo� for the agent isrf (Egt; C) and the payo� for the adversary is

 rf (Egt; C).

It is easy to see that for any reward function and pair (Egt; C), the correspond-

ing game is azero-sum game[102]. Our complexity analysis assumes all reward

functions are polynomially computable. All the speci�c reward functions we pro-

pose in this chapter satisfy this condition.

The basic intuition behind the reward function is that the more the strategy

of the agent resembles that of the adversary, the closer the reward is to 1. Axiom 1

says that if the agent's strategy is the same set as adversary's, then the reward is

1. Axiom 2 says that adding a point toC cannot increase the reward to the agent

if that point is already in C, i.e. double-counting of rewards is forbidden.

The following theorem tells us that every reward function issubmodular, i.e.

the marginal bene�t of adding additional points to the agent's strategy decreases as

the cardinality of the strategy increases.

Proposition 49 (Submodularity of Reward Functions). Every reward function is

submodular, i.e. If C � C 0, and point p 2 S s.t. p =2 C and p =2 C0, then rf (Egt; C [

f pg) rf (Egt; C) � rf (Egt; C0 [f pg) rf (Egt; C0).

263

Some readers may wonder whyrf (Egt; ;) = 0 is not an axiom. While this is

true of many reward functions, there are reward functions where we may wish to

penalize the agent for \bad" predictions. Consider the following reward function.

De�nition 60 (Penalizing Reward Function). Given a distancedist , we de�ne the

penalizing reward function , prf (dist)(Egt; C), as follows:

1
2

+
jf p 2 Egt j9p0 2 C s.t. d(p; p0) � distgj

2 � jEgt j

jf p 2 Cj 6 9p0 2 Egt s.t. d(p; p0) � distgj
2 � jSj

Proposition 50. prf is a valid reward function.

Example 6.3.1. Consider Example 6.2.1 and the explanationEgt � f p40; p46g (re-

sembling actual locations of the drug labs), the setC � f p38; p41; p44; p56g (repre-

senting areas that the drug enforcement o�cials wish to search), distancedist =

100 meters.There is only one point inEgt that is within 100 meters of a point

in C (point p40) and 3 points in C more than 100 meters from any point in Egt

(points p38; p44; p56). These relationships are shown visually in Figure 6.2. Hence,

prf (dist)(Egt; C) = 0 :5 + 0:25 0:011 = 0:739.

prf penalizes the agent if he poorly selects points inS. The agent starts with

a reward of 0:5. The reward increases if he �nds points close to elements ofEgt |

otherwise it decreases.

A reward function is zero-starting if rf (Egt; ;) = 0, i.e. the agent gets no

reward if he infers nothing.

De�nition 61. A reward function, rf , is monotonic if (i) it is zero-starting and

(ii) if C � C 0 then rf (Egt; C) � rf (Egt; C0).

264

o1

o2

o3

o4

o5

 33 34 35

44 45 46 47 48 49 50

52 56

 37 38 40 41 42 43

 57

45 46 47

52

 48 49
 40 41 37 38 40 41 42 43

Figure 6.2: Dashed circles encompass all feasible points within 100 meters from

explanation f p40; p45g.

We now de�ne several example monotonic reward functions.

The intuition behind the cuto� reward function crf is simple: for a given

distancedist (the \cut-o�" distance), if for every p 2 Egt, there existsp0 2 C such

that d(p; p0) � dist , then p0 is considered \close to"p.

De�nition 62 (Cuto� Reward Function) . Reward function based on a cut-o� dis-

tance, dist .

crf (dist)(Egt; C) :=
card(f p 2 Egt j9p0 2 C s.t. d(p; p0) � distg)

card(Egt)

The following proposition shows that the cuto� reward function is a valid,

monotonic reward function.

Proposition 51. crf is a valid, monotonic reward function.

265

Example 6.3.2. Consider Example 6.3.1. Here,crf (dist)(Egt; C) returns 0:5 as one

element ofEgt is within 100 meters of an element inC.

By allowing a more general notion of \closeness" between points p 2 Egt and

p0 2 E, we are able to de�ne another reward function, thefallo� reward function ,

frf . This function provides the most reward ifp = p0 but, unlike the somewhat

binary crf , gently lowers this reward to a minimal zero as distancesd(p; p0) grow.

De�nition 63 (Fallo� Reward Function) . Reward function with value based on

minimal distances between points.

frf (Egt; C) :=

8
>><

>>:

0 if C = ;

P
p2Egt

1
jEgt j+min p02C (d(p;p0)2) otherwise

with d(p; p0) :=
q

(px p0
x)2 + (py p0

y)2. In this case, the agent's reward is in-

versely proportional to the square of the distance between points, as the search area

required grows proportionally to the square of this distance.

Proposition 52. frf is a valid, monotonic reward function.

In practice, an agent may assign di�erent weights to points in S based on

the perceived importance of their partner observations inO. The \weighted reward

function" wrf gives greater reward for being \closer" to points inEgt that have high

weight than those with lower weights.

De�nition 64 (Weighted Reward Function). Given weight functionW : S ! R+ ,

and a cut-o� distance dist we de�ne the weighted reward function to be:

wrf (W;dist)(Egt; C) :=

P
f p2Egt j9p02C s.t. d(p;p0)� dist g W(p)

P
p02Egt

W(p0)

266

Proposition 53. wrf is a valid, monotonic reward function.

It is easy to see that the weighted reward function is a generalization of the

cuto� reward function where all weights are 1.

6.3.1 Incorporating Mixed Strategies

In this section, we introduce pdfs over strategies (or \mixed strategies" [102])

and introduce the notion of \expected reward." We �rst present explanation/strategy

functions which return an explanation (resp. strategy) of a certain size for a given

set of observations.

De�nition 65 (Explanation/Strategy Function) . An explanation (resp. strategy)

function is any function ex fcn : 2S � N ! 2S (resp. sf : 2S � N ! 2S) that, given

a setO � S and k 2 N, returns a setE � S such thatE is a k-sized explanation of

O (resp. E is a k-sized subset ofS). Let EF be the set of all explanation functions.

Example 6.3.3. Following from Example 6.2.1, we shall de�ne two functionsex fcn1; ex fcn2,

which for setO (de�ned in Example 6.2.1 andk � 3, give the following sets:

ex fcn1(O; 3) = f p42; p45; p48g

ex fcn2(O; 3) = f p40; p46g

These sets may correspond to explanations from various sources. Perhaps they cor-

respond to the answer of an algorithm that drug-enforcement o�cials use to solve

GAPs. Conversely, they could also be the result of a planning session by the drug

cartel to determine optimal locations for the drug labs.

267

In theory, the set of all explanation functions can be in�nitely large; however,

it makes no sense to look for explanations containing more points than S | so we

assume explanation functions are only invoked withk � (M + 1) � (N + 1).

A strategy function is appropriate for an agent who wants to select points re-

sembling what the adversary selected, but is not required to produce an explanation.

Our results typically do not depend on whether an explanationor strategy function

is used (when they do, we point it out). Therefore, for simplicity, we use \explana-

tion function" throughout the chapter. In our complexity results, we assume that

explanation/strategy functions are computable in constanttime.

Both the agent and the adversary do not know the explanation function (where

is the adversary going to put his weapons caches? where will USforces search for

them?) in advance. Thus, they use a pdf over explanation functions to estimate

their opponent's behavior, yielding a \mixed" strategy.

De�nition 66 (Explanation Function Distribution) . Given a spaceS, real numbers

�; � , feasibility predicatefeas, and an associated set of explanation functionsEF, an

explanation function distribution is a �nitary 3 probability distribution exfd: EF !

[0; 1] with
P

ex fcn2 EF exfd(ex fcn) = 1 . Let EFD be a set of explanation function

distributions.

We usejexfdj to denote the cardinality of the setEF associated withexfd.

Example 6.3.4. Following from Example 6.3.3, we shall de�ne the explanation

function distribution exfddrug that assigns a uniform probability to explanation func-

3That is, exfd assigns non-zero probabilities to only �nitely many explanation functions.

268

tions in the setex fcn1; ex fcn2 (i.e. exfddrug (ex fcn1) = 0 :5).

We now de�ne an \expected reward" that takes into account these mixed

strategies speci�ed by explanation function distributions.

De�nition 67 (Expected Reward). Given a reward functionrf , and explanation

function distributions exfdadv; exfdag, the expected rewardis the function EXR(rf) :

EFD � EFD ! [0; 1]. For some explanations function distributionsexfdadv; exfdag,

we de�ne EXR(rf)(exfdadv; exfdag) as follows:

X

ex fcnadv 2 EFadv

0

@exfdadv(ex fcnadv) �
X

ex fcnag 2 EFag

exfdag(ex fcnag) � rf (ex fcnadv; ex fcnag)

1

A

However, in this chapter, we will generally not deal with expected reward

directly, but two special cases - expected adversarial detriment and expected agent

bene�t - in which the adversary's and agent's strategies arenot mixed respectively.

We explore these two special cases in the next two sections.

6.4 Selecting a Strategy for the Adversary

In this section, we look at how an adversary would select points (set Egt) in the

space he would use to cause observationsO. For instance, in the IED example, the

adversary needs to selectEgt and O so that Egt is an explanation forO. We assume

the adversary has a probabilistic model of the agent's behavior (an explanation

function distribution) and that he wants to eventually �nd an explanation (e.g. to

put his weapons caches at). Hence, though he can use expected reward to measure

how close the agent will be to his explanation, only the agent's strategy is mixed.

269

His actions are concrete. Hence, we introduce a special case ofexpected reward {

expected adversarial detriment.

De�nition 68 (Expected Adversarial Detriment). Given any reward functionrf ,

and explanation function distributionexfd, the expected adversarial detrimentis the

function EXR(rf) : EFD � 2S ! [0; 1] de�ned as follows:

EXR(rf)(exfd; Egt) =
X

ex fcn2 EF

rf (Egt; ex fcn(O; k)) � exfd(ex fcn)

Intuitively, the expected adversarial detriment is the fraction of partner loca-

tions the agent may uncover. Consider the following example.

Example 6.4.1. Following from the previous examples, suppose the drug cartel

is planning three drug labs. Suppose they have information that drug-enforcement

agents will look for drug labs usingexfddrug (Example 6.3.4). One suggestion the

adversary may consider is to put the labs at locationsp41; p52 (see Figure 6.1). Note

that this explanation is optimal wrt cardinality. With dist = 100 meters, they wish

to computeEXR(crf)(exfddrug ; f p41; p52g). We �rst need to �nd the reward associated

with each explanation function (see Example 6.3.3):

crf (dist)(f p41; p52g; ex fcn1(O; 3)) = 1

crf (dist)(f p41; p52g; ex fcn2(O; 3)) = 0 :5

Thus, EXR(crf)(exfddrug ; f p41; p52g) = 0 :5� 1 + 0:5� 0:5 = 0:75. Hence, this is probably

not the best location for the cartel to position the labs wrtcrf and exfd{ the expected

adversarial detriment of the drug-enforcement agents is large.

270

The expected adversarial detriment is a quantity that the adversary would

seek to minimize | this now de�ned as an optimal adversarial strategybelow.

De�nition 69 (Optimal Adversarial Strategy). Given a set of observationsO,

natural number k, reward function rf , and explanation function distributionexfd,

an optimal adversarial strategy is a k-sized explanationEgt for O such that

EXR(rf)(exfd; Egt) is minimized.

6.4.1 The Complexity of Finding an Optimal Adversarial

Strategy

In this section, we formally de�ne the optimal adversary strategy (OAS) prob-

lem and study its complexity.

OAS Problem

INPUT: SpaceS, feasibility predicate, feas, real numbers�; � , set of observations,

O, natural number k, reward function rf , and explanation function distribution

exfd.

OUTPUT: The optimal adversarial strategy,Egt.

We show that the known NP-hard problemGeometric Covering by Discs(see

Section 6.2) is polynomially reducible to OAS - this establishes NP-hardness.

Theorem 28. OAS is NP-hard.

The proof of the above theorem yields two insights. First, OASis NP-hard

271

even if the reward function is monotonic (or anti-monotonic). Second, OAS remains

NP-hard even if the cardinality ofEF is small - in the construction we only have one

explanation function. Thus, we cannot simply pick an \optimal" function from EF.

To show an upper bound, we de�ne OAS-DEC to be the decision problem associated

with OAS. If the reward function is computable in polynomial time, OAS-DEC is

in NP.

OAS-DEC

INPUT: SpaceS, feasibility predicate, feas, real numbers�; � , set of observations,

O, natural number k, reward function rf , explanation function distribution exfd,

and numberR 2 [0; 1].

OUTPUT: \Yes" if there exists an adversarial strategy,Egt such thatEXR(rf)(exfd; Egt) �

R { \no" otherwise.

Theorem 29. If the reward function is computable in PTIME, then OAS-DEC is

NP-complete.

Suppose we have an NP oracle that can return an optimal adversarial strategy

- lets call it Egt. Quite obviously, this is thebest response of the adversary to the

mixed strategy of the agent. Now, how does the agent respond tosuch a strategy?

If we were to assume that such a solution were unique, then theagent would simply

have to �nd an strategy Csuch that rf (Egt; C) is maximized. This would be a special

case of the problem we discuss in Section 6.5. However, this isnot necessarily the

case. A natural way to address this problem is to create a uniform probability

272

distribution over all optimal adversarial strategies and optimize the expected reward

{ again a special case of what is to be discussed in Section 6.5. However, obtaining

the set of explanations is not an easy task. Even if we had an easy way to exactly

compute an optimal adversarial strategy, �ndingall such strategies is an even more

challenging problem. In fact, it is at least as hard as the counting version of GCD

{ which we already have shown to be #P-hard and di�cult to approximate. Let us

consider the following theorem.

Theorem 30. Finding the set of all adversarial optimal strategies that provide a

\yes" answer to OAS-DEC is# P-hard.

6.4.2 Pre-Processing and Naive Approach

In this section, we present several algorithms to solve OAS. We �rst present a

simple routine for pre-processing followed by a naive enumeration-based algorithm.

We use � to denote the maximum number of partners per observation and f

to denote the maximum number of observations supported by a single partner. In

general, � is bounded by � (� 2 � 2), but may be lower depending on the feasible

points in S. Likewise, f is bounded by min(jOj ; �) but may be much smaller de-

pending on the sparseness of the observations.

Pre-Processing Procedure. Given a spaceS, a feasibility predicate feas, real

numbers�; � 2 [0; 1], and a setO of observations, we create two lists (similar to a

standard invertex index) as follows.

273

 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21

1 2 3

22 23 24 25 26 27 28 29

37 38 39 40 41 42 43
44 45 46 47 48 49 50 51

52 53 54 55 56

 57 58 59 60

 61 62 63
 64 65 66

 67

o1

o2

o3

o4

o5

30 31 32 33 34 35 36

Figure 6.3: SetL of all possible partners for our drug laboratory location example.

� Matrix M . M is an array of sizeS. For each point p 2 S, M [p] is a list of

pointers to observations. M [p] contains pointers to each observationo such that

feas(p) is true and such that d(o; p) 2 [�; �].

� List L . List L contains a pointer to positionM [p] in the array M i� there exists

an observationo 2 O such that feas(p) is true and such that d(o; p) 2 [�; �]..

It is easy to see that we can computeM and L in O(jOj � �) time. The example

below shows howM; L apply to our running drug example.

Example 6.4.2. Consider our running example concerning the location of drug

laboratories that started with Example 6.2.1. The setL consists of f p1; : : : ; p67g.

The matrix M returns lists of observations that can be associated with each point.

For example,M (p40) = f o3; o4; o5g and M (p46) = f o1; o2g.

Naive Approach. After pre-processing, a straight-forward exact solution toOAS

274

would be to enumerate all subsets ofL that have a cardinality less than or equal to

k. Let us call this setL � . Next, we eliminate all elements ofL � . that are not valid

explanations. Finally, for each element ofL � , we compute the expected adversarial

detriment - and return the element ofL � for which this value is the least. Clearly,

this approach is impractical as the cardinality ofL � can be very large. Further, this

approach does not take advantage of the speci�c reward functions. We now present

mixed integer linear programs (MILPs) forwrf and frf and later look at ways to

reduce the complexity of solving these MILPs.

6.4.3 Mixed Integer Linear Programs for OAS under wrf ; crf ; frf

We present mixed integer linear programs (MILPs) to solve OASexactly for

some speci�c reward functions. First, we consider the rewardfunction wrf . Later,

in Section 6.4.4, we show how to improve e�ciency by correctly reducing the number

of variables in such MILPs. Note that these constraints can also be used forcrf as

wrf generalizescrf .

De�nition 70 (wrf MILP) . We associate an integer-valued variableX i with each

pi 2 L.

Minimize:

X

ex fcnj 2 EF

!

exfd(ex fcnj) �
X

pi 2 L

!

X i � (
wi � ci;jP

pi 2 L wi � X i
)

##

subject to:

1. X i 2 f 0; 1g

2. Constraint
P

pi 2 L X i � k

275

3. For eachoj 2 O , add constraint

P
pi 2 L d(oj ;pi)2 [�;�]

X i � 1

4. For eachpi 2 L and ex fcnj 2 EF, let constant ci;j = 1 i� 9p0 2 ex fcn(O; k)

s.t. d(p0; pi) � dist and 0 otherwise.

Example 6.4.3. Continuing from Examples 6.4.1 (page 270) and 6.4.2, suppose

the drug cartel wishes to produce an adversarial strategyEgt using wrf . Consider

the case where we usecrf , k � 3, and dist = 100 meters as before (see Exam-

ple 6.4.1). Clearly, there are67 variables in these constraints, as this is the cardi-

nality of set L (as per Example 6.4.2). The constantsci; 1 are 1 for elements in the

set f p35; p40; p41; p42; p43; p44; p45; p46; p49; p49; p50; p52; p56g (and 0 for all others). The

constantsci; 2 are 1 for elements in the setf p33; p37; p40; p41; p45; p46; p47; p48g (and 0

for all others).

We can create a MILP forfrf as follows.

De�nition 71 (frf MILP) . Minimize:

X

ex fcnj 2 EF

!

exfd(ex fcnj) �
X

pi 2 L

!

X i � (
1

ci;j +
P

pi 2 L X i
)

##

subject to:

1. X i 2 f 0; 1g

2. Constraint
P

pi 2 L X i � k

3. For eachoj 2 O , add constraint

P
pi 2 L d(oj ;pi)2 [�;�]

X i � 1

276

4. For eachpi 2 L and ex fcnj 2 EF, let constantci;j = min p02 ex fcn(O;k)(d(pi ; p0)2).

The following theorem tells us that solving the above MILPs correctly yields

a solution for the OAS problem under bothwrf or frf .

Proposition 54. SupposeS is a space,O is an observation set,[�; �] � [0; 1] and

suppose thewrf and frf MILPs are de�ned as above.

1. SupposeEgt � f p1; : : : ; png is a solution to OAS withwrf (resp. frf). Consider

the assignment that assigns1 to eachX 1; : : : ; Xn corresponding to thepi 's and

0 otherwise. This assignment is an optimal solution to the MILP.

2. Given the solution to the constraints, if for everyX i = 1, we add pointpi to

set Egt, then Egt is a solution to OAS withwrf (resp. frf).

Setting up either set of constraints can be performed in polynomial time {

where computing theci;j constants is the dominant operation.

Proposition 55. Setting up thewrf / frf Constraints can be accomplished inO(jEFj�

k � jOj � �) time (provided the weight functionW can be computed in constant time).

The number of variables for either set of constraints is related to the size ofL

- which depends on the number of observations, spacing ofS, and �; � .

Proposition 56. The wrf / frf Constraints haveO(jOj � �) variables and1 + jOj

constraints.

The MILPs for wrf and frf appear non-linear as the objective function is frac-

tional. However, as the denominator is non-zero and strictlypositive, the Charnes-

277

Cooper transformation [22] allows us to quickly (in the order of number of con-

straints multiplied by the number of variables) transform the constraints into a

purely integer-linear form. Many linear and integer-linear program solvers include

this transformation in their implementation.

Proposition 57. The wrf / frf constraints can be transformed into a purely linear-

integer form in O(jOj 2 � �) time.

We note that a linear relaxation of any of the above three constraints can yield

a lower bound on the objective function inO(jL j3:5) time.

Proposition 58. Given the constraints of De�nition 70 or De�nition 71, if we

consider the linear program formed by setting allX i variables to be in[0; 1], then the

value returned by the objective function will be a lower bound on the value returned

by the objective function for the mixed integer-linear constraints, and this value can

be obtained inO(jOj 3:5 � � 3:5) time.

Likewise, if we solve the mixed integer linear program with areduced number

of variables, we are guaranteed that the solution will causethe objective function

to be an upper bound for the original set of constraints.

Proposition 59. Consider the MILPs in De�nition 70 and De�nition 71. Suppose

L0 � L and every variableX i associated with somepi 2 L0 is set to0. The resulting

solution is an upper bound on the objective function for the constraints solved on the

full set of variables.

278

6.4.4 Correctly Reducing the Number of Variables for crf

As the complexity of solving MILPs is closely related to the number of variables

in the MILP, the goal of this section is to reduce the number ofvariables in the MILP

associated above with thecrf reward function. In this section, we show that if we

can �nd a certain type of explanation called a� -core optimal explanation, then we

can \build-up" an optimal adversarial strategy in polynomial time.It also turns out

that �nding these special explanations can be accomplished using a MILP which

will often have signi�cantly less variables than the MILP'sof the last section. First,

we consider thewrf constraints applied tocrf which is a special case ofwrf . The

objective function for this caseis:

X

ex fcnj 2 EF

!

exfd(ex fcnj) �
X

pi 2 L

!

X i � (
ci;jP

pi 2 L X i
)

##

where for eachpi 2 L and ex fcnj 2 EF, ci;j = 1 i� 9p0 2 ex fcn(O; k) s.t. d(p0; pi) �

dist and 0 otherwise. If we re-arrange the objective function, wesee that with each

X i - variable associated with pointpi 2 L, there is an associated constant -consti :

consti =
X

ex fcnj 2 EF

exfd(ex fcnj) � ci;j :

This lets us re-write the objective function as:

P
pi 2 L X i � consti

P
pi 2 L X i

:

Example 6.4.4. Continuing from Example 6.4.3,consti = 0:5 for the following ele-

ments: f p33; p35; p37; p42; p43; p44; p47; p49; p50; p52; p56g; consti = 1 for these elements:

f p40; p41; p45; p46; p48g, and 0 for all others.

279

In many covering problem where we wish to �nd a cover of minimal cardinality,

we could reduce the number of variables in the integer program by considering

equivalent covers as duplicate variables. However, for OAS, this technique can not

be easily applied. The reason for this is because an optimal adversarial explanation

is not necessarily irredundant (see De�nition 58, page 260). Consider the following.

Suppose, we wish to �nd an optimal adversarial strategy of size k. Let P be a

irredundant cover of sizek 1. Suppose there is some elementp0 2 P that covers

only one observation -o0. Hence, there is nop 2 P f p0g that covers o0 by the

de�nition of an irredundant cover. Suppose there is also some p00 =2 P that also

coverso0. Now, let m =
P

pi 2 P p0 consti . Let the const0 be the value associated

with both p0 and p00. Consider the scenario whereconst0 < m
k 2 . Suppose by way

of contradiction, that the optimal irredundant cover is also the optimal adversarial

strategy. Then, by the de�nition of an optimal adversarial strategy we know that

the setP is more optimal thanP [f p00g. This would mean that m+ const0

k 1 < m+2 �const0

k .

This leads us to infer thatm < const0�(k 2), which clearly contradictsconst0 < m
k 2 .

It is clear that a solution to OAS need not be irredundant.

However, we do leverage the idea of an irredundant cover in a di�erent exact

approach in this section which may provide a speedup over theexact algorithms

of the previous section. The main intuition is that each OAS solution contains an

irredundant cover, and if we �nd such a cover, we can build an optimal adversarial

strategy in polynomial time. First, we de�ne acore explanation.

De�nition 72 (Core Explanation). Given an observation setO and setL of possible

280

partners, an explanationEcore is a core explanation i�:

1. There are no two elementsp; p0 2 Ecore such that8o 2 O s.t. o; p are partners,

then o; p0 are also partners.

2. For any pi 2 Ecore, there does not existpj 2 L such that:

� 8 o 2 O s.t. o; pi are partners, theno; pj are also partners.

� constj < const i

We now show that any optimal adversarial strategy contains asubset that is

a core explanation.

Theorem 31. If Egt is an optimal adversarial strategy, there exists a core explana-

tion Ecore � E gt.

Example 6.4.5. Continuing from Example 6.4.4, consider the setEgt � f p34; p38; p57g

(which would correspond to drug lab locations as planned by the cartel). Later, we

show that this is an optimal adversarial strategy (the expected adversarial detriment

associated withEgt is 0). Consider the subsetp34; p38. As p34 explains observations

o3; o4; o5 and p38 explains observationso1; o2, this set is also an explanation. Obvi-

ously, it is of minimal cardinality. Hence, the setf p34; p38g is a core explanation

of Egt.

Suppose we have an oracle that, for a givenk, O, and exfd returns a core

explanationEcore that is guaranteed to be a subset of the optimal adversarial strategy

associated withk, O, and exfd. The following theorem says we can �nd the optimal

281

Algorithm 21 BUILD-STRAT
INPUT: Partner list L , core explanationEcore, natural number k

OUTPUT: Optimal adversarial strategy Egt

1. If jEcorej = k, return Ecore

2. SetEgt = Ecore. Let k0 = jEcorej

3. Sort the setL E core by consti . Let L0 = f p1; : : : ; pk k0g be thek k0 elements

of this set with the lowest values forcosnti

4. For eachpi 2 L0 let Pi be the setf p1; : : : ; pi g

5. For eachPi let Si =
P

j � i constj

6. Let ans = min pi 2 L 0(f k0�EXR(rf) (exfd;Ecore)+ Si
k0+ i g)

7. Let Pans be the Pi associated withans

8. If const1 � EXR(rf)(exfd; Ecore), return Ecore, else returnEcore [Pans

adversarial strategy in polynomial time. The key intuition is that we need not

concern ourselves with covering the observations asEcore is an explanation. The

algorithm BUILD-STRATfollows from this theorem.

Theorem 32. If there is an oracle that for any givenk, O, and exfdreturns a core

explanationEcore that is guaranteed to be a subset of the optimal adversarial strategy

associated withk, O, and exfd, then we can �nd an optimal adversarial strategy in

O(� � jOj � log(� � jOj) + (k jE corej)2) time.

282

We now introduce the notion of� -core optimal. Intuitively, this is a core ex-

planation of cardinality exactly � that is optimal wrt expected adversarial detriment

compared to all other core explanations of that cardinality.

De�nition 73. Given exfd, a core explanation,Ecore, is � -core optimal i�:

� jE corej = �

� There does not exist another core explanation,E0
core of cardinality exactly � , such

that EXR(rew(O ;�))(exfd; E0
core) < EXR(rew(O ;�))(exfd; Ecore)

From this, we obtain the following lemma that tells us that anOAS must

contain a core explanation that is� -core optimal.

Lemma 20. Given an optimal adversarial strategy,Egt, if core explanationEcore, of

size � , is a subset ofEgt, then Ecore is � -core optimal.

We now present a set of linear constraints to �nd a� -core optimal explana-

tion. Of course we can easily adopt the constraints of the previous section, but this

would o�er us no improvement in performance. We therefore create an MILP that

should have a signi�cantly smaller number of variables in most cases. First, given a

set of possible partnersL, we de�ne setL � - the reduced partner set - which often

will have a cardinality much smaller thanL. Later, we use this set in a new set of

constraints to �nd a � -core optimal explanation. We de�neL � below.

De�nition 74 (Reduced Partner Set). Given observationsO, and set of possible

283

partners L, we de�ne reduced partner setL �� as follows:

L �� � f pi 2 Lj 6 9pj 2 L s.t. (constj < const i) ^ (8o 2 O s.t. o; pi are partners,

o; pj are also partners)g

We de�ne L � as follows:

L � � f pi 2 L �� j 6 9pj 2 L �� s.t. (constj = consti) ^ (8o 2 O s.t. o; pi are partners,

o; pj are also partners)g

Lemma 21. 1. If explanation E is � -core optimal, thenE � L �� .

2. If for some natural number� , there exists an explation of size� , then there

exists a� -core optimal explanationE s.t. E � L � .

Example 6.4.6. Let us continue from Example 6.4.5. Based on pre-processing and

the computation ofconsti , we can easily produce the data of Table 6.1 in polynomial

time. Based on this, we obtain areduced partner set L � � f p34; p38; p57g.

We now present the� -core constraints. Notice that the cardinality requirement

in these constraints is \=" and not \ � ". This is because Lemma 20 ensures us

of a core-explanation that is� -core optimal, meaning that the core explanation

must have cardinality exactly � . This also allows us to eliminate variables from the

denominator of the objective function, as the denominator must equal � as well.

De�nition 75 (� -core MILP). Given parameter� , and reduced partner setL � , we

de�ne the � -core constraints by �rst associating a variableX i with each pi 2 L � .

Then: Minimize:

1
�

X

pi 2 L �

X i � consti

284

Supported Observations consti = 0 consti = 0 :5 consti = 1

o1 p4 p6; p12 p16; p22 p23; p30 p31 p44

o1; o2 p38 p37; p52 p45; p46

o2 p64; p67 p47

o2; o3 p57

o3 p17 p19; p24 p26; p32; p39; p58 p59

o3; o4 p27 p28 p33

o4 p1 p3; p7 p11; p20 p21; p29; p51 p50

o3; o4; o5 p34; p53 p54 p49 p40 p41

o5 p36; p60 p66 p35

o4; o5 p42 p43

o3; o5 p55 p56 p48

Table 6.1: The setL partitioned by consti and supported observations.

285

subject to:

1. X i 2 f 0; 1g

2. Constraint
P

pi 2 L X i = �

3. For eachoj 2 O , add constraint

P
pi 2 L � d(oj ;pi)2 [�;�]

X i � 1

Example 6.4.7. Using setL � from Example 6.4.6, we can create� -core constraints

as follows:

Minimize

1
�

(X 34 � const34 + X 38 � const38 + X 57 � const57)

subject to:

1. X 34; X 38; X 57 2 f 0; 1g

2. X 34 + X 38 + X 57 = �

3. X 38 � 1 (for observationo1)

4. X 38 + X 57 � 1 (for observationo2)

5. X 34 + X 57 � 1 (for observationo3)

6. X 34 � 1 (for observationso4; o5)

In the worst case, the setL � � L . Hence, we can assert that:

Proposition 60. The � -core constraints requireO(� � jOj) variables and1 + jOj

constraints.

286

Proposition 61. Given � -core constraints:

1. Given set� -core optimal explanationEcore � f p1; : : : ; png, if variables

X 1; : : : ; Xn - corresponding with elements inEgt are set to 1 - and the rest

of the variables are set to0, the objective function of the constraints will be

minimized.

2. Given the solution to the constraints, if for everyX i = 1, we add pointpi to

set Ecore, then Ecore is a � -core optimal solution.

We now have all the pieces required to leverage core-explanation and reduced

partner sets to �nd an optimal adversarial strategy. By Theorem 6.4.5, we know

that any optimal adversarial strategy must have a core explanation. Further, by

Lemma 20, such a core explanation is� -core optimal. Using a (usually) much

smaller mixed-integer-linear program, we can �nd such an explanation. We can

then �nd the optimal adversarial strategy in polynomial time using BUILD STRAT.

Though we do not know what� is, we know it must be in the range [1; k]. Further,

using a relaxation of theOPT-KSEP-IPCconstraints for solving geospatial abduction

problems (as presented in [158], we can easily obtain a lowerbound tighter than 1 on

� . Hence, if we solvek such (most likely, small) mixed-integer-linear programs, we

are guaranteed that at least one of them must be a core explanation for an optimal

adversarial strategy. We note that thesek MILP's can be solved in parallel (and the

following k instances ofBUILD-STRATcan also be run in parallel as well). An easy

comparison of the results of the parallel processes would beaccomplished at the

end. AsL � is likely to be signi�cantly smaller than L, this could yield a signi�cant

287

reduction in complexity. Further, various relaxations of this technique can be used

- i.e. only using one value of� .

Example 6.4.8. Continuing from Example 6.4.7 where the cartel members are at-

tempting to �nd an OAS to best position drug laboratories, suppose they used the

relaxation of OPT-KSEP-IPC(from [158]) to obtain a lower bound on the cardinality

of an explanation and found it to be2. With k = 3, they would solve two MILP's

of the form of Example 6.4.7 - one with� = 2 and one with� = 3. The solution to

the �rst MILP would set X 34 and X 38 both to 1 while the second MILP would set

X 34; X 38; and X 57 all to 1. As the expected adversarial detriment for both solutions

is 0, they are both optimal and runningBUILD-STRAT is not necessary. Either

f p34; p38g or f p34; p38; p57g can be returned as an OAS.

6.5 Finding a Counter-Adversary Strategy

Now that we have examined ways in which the adversary can create a strategy

based on probabilistic knowledge of the agent, we consider how the agent can devise

an \optimal" strategy to counter the adversary. As before, weuse a special case of

expected reward (De�nition 6.3.1 from Section 67.

De�nition 76 (Expected Agent Bene�t). Given a reward function rf , and ex-

planation function distribution exfd, the expected agent bene�t is the function

EXB(rf) : 2S � EFD ! [0; 1] de�ned as follows:

EXB(rf)(C; exfd) =
X

ex fcn2 EF

rf (ex fcn(O; k); C) � exfd(ex fcn)

288

Example 6.5.1. Following from Examples 6.2.1 and 6.3.4, suppose drug-enforcement

agents have information that the cartel is placing drug labs according toexfddrug .

(such information could come from multiple runs of theGREEDY-KSEP-OPT2algo-

rithm of [158]). The drug-enforcement agents wish to consider the setC � f p41; p52g.

First, they must calculate the reward associated with each explanation function (note

that k = 3; dist = 100 and rf = crf).

crf (dist)(ex fcn1(O; 3); f p41; p52g) = 0 :67

crf (dist)(ex fcn2(O; 3); f p41; p52g) = 0 :5

(as an aside, we would like to point out the asymmetry incrf - compare these com-

putations with the results of Example 6.4.1). Hence,EXB(crf)(f p41; p52g; exfddrug) =

0:634.

We now de�ne a maximal counter-adversary strategy. This is the agent'sbest

response to the mixed strategy of an adversary.

De�nition 77 (Maximal Counter-Adversary Strategy (MCA)). Given a reward

function rf and explanation function distributionexfd, a maximal counter-adversary

strategy , C, is a subset ofS such thatEXB(rf)(C; exfd) is maximized.

Note that MCA does not include a cardinality constraint. Thisis because we

do not require reward functions to be monotonic. In the monotonic case, we can

trivially return all feasible points in S and be assured of a solution that maximizes

the expected agent bene�t. Therefore, for the monotonic case, we include an extra

parameterB 2 f 1; : : : ; jSjg (for \budget") which will serve as a cardinality require-

ment for C. This cardinality requirement for C is necessarily the same as forEgt

289

as the agent and adversary may have di�erent sets of resources. Also, we do not

require that C be an explanation. We discuss the special case where the solution to

the MCA problem is required to be an explanation in the appendix.

6.5.1 The Complexity of Finding a Maximal Counter-Adversary

Strategy

We now formally de�ne the problem of �nding a maximal counter-adversary

strategy.

MCA Problem

INPUT: SpaceS, feasibility predicate, feas, real numbers�; � , set of observations,

O, natural numbersk; B , reward function rf , and explanation function distribution

exfd.

OUTPUT: The maximal counter-adversary strategy,C.

MCA is NP-hard via a reduction of theGCDproblem.

Theorem 33. MCA is NP-hard.

The proof of the above result shows that MCA is NP-hard even if the reward

function is monotonic. Later, in Section 6.5.3, we also show that MCA can encode

the NP-hard MAX-K-COVER problem [46] as well (which provides an alternate

proof for NP-hardness of MCA). We now present the decision problem associated

with MCA and show that it is NP-complete under reasonable conditions.

290

MCA-DEC

INPUT: SpaceS, feasibility predicate, feas, real numbers�; � , set of observations,

O, natural numbersk; B , reward function rf , explanation function distribution exfd,

and numberR 2 [0; 1].

OUTPUT: The counter-adversary strategy,C such that EXB(rf)(C; exfd) � R.

Theorem 34. MCA-DEC is NP-complete, provided the reward function can be

evaluated in PTIME.

Not only is MCA-DEC NP-hard, under the same assumptions as above,

the counting version of the problem is #P-complete and moreover, it has no fully

polynomial random approximation scheme.

Theorem 35. Counting the number of strategies that provide a \yes" answer to

MCA-DEC is # P-complete and has no FPRAS unless NP==RP.

Theorem 35 tells us that MCA may not have a unique solution. Therefore,

setting up a mixed-strategy of all MCA's to determine the \best response" to the

MCA of an agent by an adversary would be an intractable problem. This mirrors

our result of the previous section (Theorem 30, page 273).

291

6.5.2 MCA in the General Case: Exact and Approximate

Algorithms

We now describe exact and approximate algorithms for �ndinga maximal

counter-adversary strategy in the general case. Note that throughout this section

(as well as in Section 6.5.3), we assume that the same pre-processing forOAS is

used (cf. Section 6.4.2). We will use the symbolL to refer to the set of all possible

partners.

An Exact Algorithm For MCA. A naive, exact, and straightforward approach

to the MCA problem would simply consider all subsets ofL and pick the one which

maximizes the expected agent bene�t. Obviously, this approach has a complexity

O(
P jSj

i =0

 jL j
i

�
) and is not practical. This is unsurprising as we showed thisto be an

NP-complete problem.

Approximation in the General Case. Despite the impractical time complexity

associated with an exact approach, it is possible to approximate MCA with guaran-

tees { even in the general case. This is due to the fact that whenexfd is �xed, the

expected agent bene�t is submodular.

Theorem 36. For a �xed O; kexfd, the expected agent bene�t,EXB(rf)(C; exfd) has

the following properties:

1. EXB(rf)(C; exfd) 2 [0; 1]

292

2. For C � C 0 and some pointp 2 S wherep =2 C0, the following is true:

EXB(rf)(C[f pg; exfd) EXB(rf)(C; exfd) � EXB(rf)(C0[f pg; exfd) EXB(rf)(C0; exfd)

(i.e. expected agent bene�t is sub-modular for MCA)

It follows immediately that MCA reduces to the maximizationof a submodular

function. We now present theMCA-LSalgorithm that leverages this submodularity.

The following two propositions leverage Theorem 36 and Theorem 3.4 of [47].

Proposition 62. MCA-LShas time complexity ofO(1
� � jL j3 � F (exfd) � lg(jL j) where

F (exfd) is the time complexity to computeEXB(rf)(C; exfd) for some setC � L.

Proposition 63. MCA-LSis an (1
3 �

jL j)-approximation algorithm for MCA.

Example 6.5.2. Let us consider our running example where drug-enforcement

agents are attempting to locate illegal drug laboratories in the area depicted in Fig-

ure 6.1. The agents have information that there arek or less drug laboratories that

support the poppy �elds (set of observationsO) and that they are positioned accord-

ing to exfddrug (see Example 6.3.4, page 268). The agents wish to �nd a maximal

counter-adversarial strategy using theprf reward function (see page 60). They de-

cide to useMCA-LS to �nd such a strategy with � = 0:1. Initially (at line 3), the

algorithm selects pointp48 (renumbering asp1, note that in this example we shall use

pi and inc i numbering based on Example 6.2.1 rather than what the algorithm uses).

Hence,inc40 = 0:208and cur val = 0:708. As the elements are sorted, the next point

to be considered in the loop at line 4 isp40 which has an incremental increase of0, so

it is not picked. It then proceeds to pointp41 - which gives an incremental increase

293

Algorithm 22 (MCA-LS)
INPUT: Reward function rf , set O of observations, explanation function distribution exfd, possible partner set L ,

real number � > 0

OUTPUT: Set C � S

1. Set C� = L , for each pi 2 C� let inc i = EXB(rf) (f pg; exfd) EXB(rf) (; ; exfd).

2. Sort the pi 's in C� from greatest to least by inc i (i.e. p1 is the element with the greatest inc i).

3. C = f p1g, C� = C� f p1g, cur val = inc 1 + EXB(rf) (; ; exfd), f lag 1 = true, i = 2

4. While f lag 1

(a) new val = cur val + inc i

(b) If new val > (1 + �
j L j 2) � cur val then

i. If EXB(rf) (C [f pi g; exfd) > (1 + �
j L j 2) � EXB(rf) (C; exfd) then:

C = C [f pi g, C� = C� f pi g, cur val = EXB(rf) (C [f pi g; exfd)

(c) If new val � (1 + �
j L j 2) � cur val or if pi is the last element then

i. j = 1, f lag 2 = true, number each pj 2 C

ii. While f lag 2

A. If EXB(rf) (C f pj g; exfd) > (1 + �
j L j 2) � EXB(rf) (C; exfd) then:

C = C f pj g, cur val = EXB(rf) (C f pj g; exfd)

For each pi 2 C� let inc i = EXB(rf) (C [f pi g; exfd) EXB(rf) (C; exfd).

Sort the pi 's in C� from greatest to least by inc i

i = 0, f lag 2 = false

B. Else,

If pj was the last element of C then set f lag 1; f lag 2 = false

Otherwise, j + +

(d) i + +

5. If EXB(rf) (L C ; exfd) > EXB(rf) (C; exfd) then set C = L C

6. Return C

294

of 0:084 and is added toC so cur val = 0:792. Point p45 is considered next, which

gives an incremental increase of0:208 and is picked, so nowcur val = 1:0. The

algorithm then considers pointp46, which does not a�ord any incremental increase.

After considering points p33; p35; p37; p42; p43; p44; p47; p49; p50; p52; p56 - and �nds the

all give a negative incremental increase (and thus, are not picked), the algorithm

�nds that the old incremental increase of the next element,p1, would cause the \if "

statement at line 4c to be true, thus proceeding to the inner loop inside that \if "

statement (line 4(c)iiA). This loop considers if the removal of any picked elements

- p48; p41; p45 causes the expected agent bene�t to increase. However, in this example,

if any of the elements are removed, the expected agent bene�t decreases. Hence, the

booleanf lag 1 is set to false and the algorithm exits the outer loop. The algorithm

then returns the setC � f p48; p41; p45g which is optimal.

6.5.3 Finding a Maximal Counter-Adversary Strategy, the

Monotonic Case

In the previous section we showed that a13 approximate solution to MCA

can be found in polynomial timeeven without any monotonicity restriction. In this

section, we show that under the additional assumptions of monotonicity of reward

functions, we can obtain a better 63% approximation ratio with a faster algorithm.

Here, we also have the additional cardinality requirement ofB for the set C (as

described in Section 6.5). We �rst show that expected agent bene�t is monotonic

when the reward function is.

295

Corollary 12. For a �xed O; kexfd, if the reward function is monotonic, then the

expected agent bene�t,EXB(rf)(C; exfd) is also monotonic.

Thus, when we have a monotonic reward function, the MCA problem reduces

to the maximization of a monotonic, normalized4 submodular function w.r.t. a

uniform matroid5 { this is a direct consequence of Theorem 36 and Corollary 12.

Therefore, we can leverage the result of [127], to develop the MCA-GREEDY-MONO

algorithm below. We improve performance by including \lazyevaluation" using the

intuition is that the incremental increase caused by some point p at iteration i of

the algorithm is greater than or equal to the increase causedby that point at a

later iteration. As with MCA-LS, we also sort elements by the incremental increase,

which may allow the algorithm to exit the inner-loop earlier. In most non-trivial

instances of MCA, this additional sorting operation will not a�ect the complexity

of the algorithm (i.e. under the assumption that the time to compute EXB(rf) is

greater than lg(jL j), we make this same assumption inMCA-LSas well).

Proposition 64. The complexity ofMCA-GREEDY-MONOis O(B � jL j � F (exfd))

whereF (exfd) is the time complexity to computeEXB(rf)(C; exfd) for some setC � L

of sizeB. In the �rst iteration of the algorithm,

Corollary 13. MCA-GREEDY-MONOis an (e
e 1)-approximation algorithm for MCA

(when the reward function is monotonic).

In addition to the fact that MCA-GREEDY-MONOis an (e
e 1)-approximation

4As we include zero-starting in our de�nition of monotonic.
5In our case, the uniform matroid consists of all subsets ofL of sizeB or less.

296

Algorithm 23 (MCA-GREEDY-MONO)
INPUT: Monotonic reward function rf , set O of observations, real numberB > 0,

explanation function distribution exfd, possible partner setL, real number� > 0

OUTPUT: Set C � S

1. Initialize C = ; and C� = L

2. For eachpi 2 C� , set inc i = 0

3. Set last val = EXB(rf) (C; exfd)

4. While jCj � B

(a) pbest = null, cur inc = 0

(b) For each pi 2 C� , do the following

i. If inc i < cur inc, break loop and goto line 4c.

ii. Let inc i = EXB(rf) (C [f pg; exfd) last val

iii. If inc i � cur inc then cur inc = inc i and pbest = p

(c) C = C [f pbestg, C� = C� f pbestg

(d) Sort C� in descending order byinc i .

(e) Set last val = EXB(rf) (C; exfd)

5. Return C

297

algorithm for MCA, it also provides the best possible approximation ratio unless

P = NP . This is done by a reduction of MAX-K-COVER [46].

Theorem 37. MCA-GREEDY-MONOprovides the best approximation ratio for MCA

(when the reward function is monotonic) unlessP = NP .

The following example illustrates howMCA-GREEDY-MONOworks.

Example 6.5.3. Consider the situation from Example 6.5.2, where the drug-enforcement

agents are attempting to locate illegal drug labs. Suppose they want to locate the labs,

but use thecrf reward function, which is monotonic and zero-starting. They use

the cardinality requirementB = 3 in MCA-GREEDY-MONO. After the �rst iteration

of the loop at line 4, the algorithm selects pointp48 as it a�ords an incremental

increase of 0:417. On the second iteration, it selects pointp46, as it also a�ords

an incremental increase of0:417, so last val = 0:834. Once p46 is considered, the

next point considered isp33, which had a previous incremental increase (calculated

in the �rst iteration) of 0:25, so the algorithm can correctly exit the loop to select

the �nal element. On the last iteration of the outer loop, the algorithm selects point

p35, which gives an incremental increase of0:166. Now the algorithm has a set of

cardinality 3, so it exits the outer loop and returns the setC = f p48; p46; p35g, which

provides an expected agent bene�t of1, which is optimal. Note that this would not be

an optimal solution for the scenario in Example 6.5.2 which usesprf as p35 would

incur a penalty (which it does not when usingcrf as in this example).

298

6.6 Implementation and Experiments

In this section, we describe prototype implementations andexperiments for

solving the OAS and MCA problems. For OAS, we create a MILP for the crf case

and reduce the number of variables with the techniques we presented in Section 6.4.

For MCA, we implement both the MCA-LSand MCA-GREEDY-MONO.

We carried out all experiments for MCA on an Intel Core2 Q6600processor

running at 2.4GHz with 8GB of memory available, using code written in Java 1.6; all

runs were performed in Windows 7 Ultimate 64-bit using a 64-bit JVM, and made

use of a single core. We also used functionality from the previously-implemented

SCARE software from Chapter 4 to calculate, for example, the set of all possible

partners L.

Our experiments are based on 21 months of real-world Improvised Explosive

Device (IED) attacks in Baghdad6, see Chapter 4. The IED attacks in this 25� 27

km region constitute our observations. The data also includes locations of caches

associated with those attacks discovered by US forces. Theseconstitute partner

locations. We used data from the International Medical Corps to de�ne feasibility

predicates based on ethnic makeup, location of US bases, and geographic features.

We overlaid a grid of 100m� 100m cells|about the size of a standard US city

block. We split the data into two parts; the �rst 7 months of data were used as a

\training" set to learn the [�; �] parameters and the next 14 months of data were

used for the observations. We created an explanation function distribution based

6Attack and cache location data provided by the Institute for the Study of War.

299

on multiple runs of GREEDY-KSEP-OPT2algorithm described in Chapter 4.

We also made use of classes and methods from our previously-implemented

SCARE software from Chapter 4 to provide features such as pre-processing (see the

discussion in Section 6.4.2, page 273). We carried out all experiments for OAS on

an Intel Core2 Q6600 processor running at 2.4GHz with 8GB of memory available,

using Java 1.6; all runs were performed in Windows 7 Ultimate 64-bit using a 64-bit

JVM, and made use of a single core.

6.6.1 OAS Implementation

We now present experimental results for the version of OAS, with the crf

reward function, based on the constraints in De�nition 70 andvariable-reduction

techniques of Section 6.4.4. First, we discuss promising real-world results for the

calculation of the reduced partner setL � , described in De�nition 72. Then, we

show that an optimal adversarial strategy can be computed quite tractably using

the methods discussed in Section 6.4.4. Our implementation was written on top of

the QSopt7 MILP solver and used 900 lines of Java code.

Reduced Partner Set. As discussed in Section 6.4.2, producing an optimal adver-

sarial strategy for any reward function relies heavily on e�ciently solving a (provably

worst-case intractable) integer linear program. The number of integer variables in

these programs is based solely on the size of the partner setL; as such, theability

to experimentally solve OASrelies heavily on the size of this set.

7http://www2.isye.gatech.edu/ wcook/qsopt/index.html

300

Our real-world data created a partner setL with cardinality 22,692. We then

applied the method from De�nition 72 to reduce this originalset L to a smaller

subset of possible partnersL � , while retaining the optimality of the �nal solution.

This simple procedure, while dependent on the explanation function distribution

exfdas well as the cuto� distance forcrf , always returned a reduced partner setL �

with cardinality between 64 and 81. This represents around a99:6% decrease in the

number of variables required in the subsequent integer linear programs$

Figure 6.4 provides more detailed accuracy and timing results for this reduc-

tion. Most importantly, regardless of parameters chosen, our real-world data is

reduced by orders of magnitude across the board. We see a slight increase in the

size of the reduced setL � as the size of the explanation function distributionexfd

increases. This can be traced back to the strict inequality in De�nition 74. As

we increase the number of nontrivial explanation functionsin exfd, the number of

nonzero constantsconsti increases. This results in a higher number of candidates

for the intermediary set L �� . We see a similar result as we increase the penalizing

cuto� distance. Again, this is a factor of the strict inequality in De�nition 74 in

conjunction with a higher fraction of nonzeroconsti constants.

Interestingly, Figure 6.4 shows a slightdecreasein the runtime of the reduction

as we increase the penalizing cuto� distance. Initially, this seems counterintuitive;

with more nontrivial constants consti , the construction of the intermediary setL ��

requires more work. However, this extra work pays o� during the computation of

the �nal reduced setL � . In our experiments, the reduction fromL to L �� took less

time than the �nal reduction from L �� to L � . This is due to frequent short circuiting

301

0

10

20

30

40

50

60

70

80

90

100 200 300 400 500

|L
*|

Cutoff Distance

OAS Partner Set Reduction: Size vs. Distance
|efd| = {10,15,20,...,200}

10

15

20

25

50

100

200

0

20

40

60

80

100

120

140

160

180

100 200 300 400 500

C
om

pu
ta

tio
n

T
im

e
(s

)

Cutoff Distance

OAS Partner Set Reduction: Time vs. Distance
|efd| = {10,15,20,...,200}

10

15

20

25

50

100

200

Figure 6.4: The size of the reduced partner setL � (left) and the time required to

compute this reduction (right). Regardless of parameters chosen, we see a 99:6%

decrease in possible partners|as well as integer variables in our linear program|in

under 3 minutes.

in the computation of the right-hand side of the conjunction during L �� creation. As

we increase the penalizing cuto� distance, the size ofL �� actually decreases, resulted

in a decrease in the longer computation ofL � . As seen above, this decrease inL ��

did not correspond to a decrease in the size ofL � .

302

Optimal Adversarial Strategy. Using the setL � , we now present results to �nd

an optimal adversarial strategy using� -core optimal explanations. This is done

by minimizing the MILP of Section 6.4.4, then feeding this solution into BUILD-

STRAT. Since we do not know the value of� in advance, we must perform this

combined operation multiple times, choosing the best|lowest expected detriment|

adversarial strategy as optimal.

A note on the lower bound for� : as shown by Chapter 4, �nding aminimum-

cardinality explanation is NP-hard. Because of this, it is computationally di�cult to

�nd a tight lower bound for � . However, this lower bound can be estimated empiri-

cally. For instance, for our set of real-world data from Baghdad, an explanation of

cardinality below 14 has never been returned|even across tens of thousands of runs

of GREEDY-KSEP-OPT2. Building on this strong empirical evidence, the minimum

� used in our experiments is 14.

Figure 6.5 shows both timing and expected detriment results as the size of the

explanation function jexfdj and maximum strategy cardinality k are varied. Note

that a lower expected detriment is better for the adversary,with zero representing no

probability of partner discovery by the reasoning agent. As the adversary is allowed

larger and larger strategies, its expected detriment smoothly decreases toward zero.

Intuitively, as the number of nontrivially-weighted explanation functions in exfd

increases, the expected detriment increases as well. This is a side e�ect of a larger

jexfdj allowing the reasoning agent to cover a larger swath of partner locations.

Recall that, as the maximumk increases, we must solve linear programs for

303

0

0.005

0.01

0.015

0.02

0.025

14 20 26 32 38 44 50

E
xp

ec
te

d
D

et
rim

en
t

Maximum Size k

OAS: Expected Detriment vs. Size k
|efd| = {10,20,50,100,200}

10

20

50

100

200

0

100

200

300

400

500

600

700

14 20 26 32 38 44 50

C
om

pu
ta

tio
n

T
im

e
(m

s)

Maximum Size k

OAS: Time vs. Size k
|efd| = {10,20,50,100,200}

10

20

50

100

200

Figure 6.5: Expected detriment of the optimal adversarial strategy (left, lower is

better) and the runtime of the integer linear program required to produce this

strategy in milliseconds (right). Note the smooth decrease toward zero detriment as

k increases, corresponding with a near-linear increase in total runtime.

each� 2 f klow ; kg. This is mirrored in the timing results in Figure 6.5, which assumes

klow = 14. As k increases, we see a near linear increase in the total runtimeof the set

of integer programs. Due to the reduced setL � , we are able to solve dozens of integer

programs in less than 800ms; were we to use the unreduced partner setL, this would

304

be intractable. Note that the runtime graph includes that ofBUILD-STRATwhich

always ran in under sixteen milliseconds.

6.6.2 MCA Implementation

First, we briey discuss an implementation of the naive MCA algorithm dis-

cussed in section 6.5.2. Next, we provide promising results for the MCA-LSalgorithm

using theprf reward function. Finally, we give results for theMCA-GREEDY-MONO

using the monotoniccrf reward function, and qualitatively compare and constrast

the results from both algorithms.

MCA-Naive. The naive, exact solution to MCA|considering all subsets of L

with cardinality kC or more and picking the one which maximizes the expected

agent bene�t|is inherently intractable. This approach has a complexity O(
 jL j

kC

�
),

and is made worse by the large magnitude of the setL. In our experimental setup,

we typically saw jL j > 20; 000; as such, for even the trivially smallkC = 3, we

must enumerate and rank over a trillion subsets. For any realistic value ofkC, this

approach is simply unusable. Luckily, we will see that bothMCA-LS and MCA-

GREEDY-MONOprovide highly tractable and accurate alternatives.

MCA-LS. In sharp contrast to the naive algorithm described above, the MCA-LS

algorithm provides (lower-)bounded approximate results ina tractable manner. In-

terestingly, even thoughMCA-LSis an approximation algorithm, in our experiments

on real-world data from Baghdad using theprf reward function, the algorithm re-

305

turned strategies with an expected bene�t of 1.0 on every run.Put simply, on

our practical test data, MCA-LS always completely maximizedthe expected ben-

e�t. This signi�cantly outperforms the lower-bound approximation ratio of 1=3.

We would also like to point out that this is the �rst implementation (to the best

of our knowledge) of the non-monotonic submodular maximization approximation

algorithm of [47].

Since the expected bene�t was maximal for every strategyC returned, we

move to analyzing the particular structure of these strategies. Figure 6.6 shows a

relationship between the sizejCj, the cuto� distance dist, and the cardinality of the

expectation function distribution jexfdj. Recall that prf penalizes any strategy that

does not completely cover its input set of observations; as such, intuitively, we see

that MCA-LSreturns larger strategies as the penalizing cuto� distancedecreases. If

the algorithm can cover all possible partners across all expectation functions, it will

not receive any penalty. Still, even whendist is 100m, the algorithm returnsC only

roughly twice the size as minimum-sized explanation found byGREEDY-KSEP-OPT2

(which, based on the analysis of Chapter 4, is very close to the minimum possible

explanation). As the cuto� dist increases, the algorithm returns strategies with

sizes converging, generally, to a baseline|the smallest-sized explanation found by

the algorithm of Chapter 4, jEj. This is an intuitive soft lower bound; given enough

leeway from a large distancedist, a single point will cover all expected partners.

This is not a strict lower bound in that, given two extremely close observations with

similar expected partners, a single point may su�ciently cover both.

In Figure 6.7, we see results comparing overall computation time to both the

306

0

5

10

15

20

25

30

35

100 150 200 250 300 350 400 450 500

S
tr

at
eg

y
S

iz
e

Distance (Penalty Cutoff)

MCA-LS: Strategy Size vs. Distance
min|e| = 14, |efd| = {5,10,...,40}

5

10

15

20

25

30

35

40

|e|

0

5

10

15

20

25

30

100 150 200 250 300 350 400 450 500

S
tr

at
eg

y
S

iz
e

Distance (Penalty Cutoff)

MCA-LS: Average Strategy Size vs. Distance
min|e| = 14, |efd| averaged across {5,10,...,40}

Figure 6.6: The average size of the strategy recommended byMCA-LSdecreases as

the distance cuto� increases. For these experiments, the minimum cardinality for a

given explanationE considered isexfdwas 14, which gives us a natural lower bound

on the expected size of a strategy. Note the convergence to this bound at cuto�

distances at and above 300 meters.

distance dist and the cardinality of exfd. For more strict (i.e., smaller) values of

dist, the algorithm|which, under prf , is penalized for all uncovered observations

acrossexfd|must spend more time forming a strategy C that minimizes penaliza-

307

0

20000

40000

60000

80000

100000

120000

140000

100 150 200 250 300 350 400 450 500

T
im

e
(m

s)

Distance (Penalty Cutoff)

MCA-LS: Time vs. Distance
min|e| = 14, |efd| = {5,10,...,40}

5

10

15

20

25

30

35

40

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 T
im

e
(m

s)

Distance (Penalty Cutoff)

MCA-LS: Average Time vs. Distance
min|e|= 14, |efd| averaged across {5,10,...,40}

Figure 6.7: The runtime of MCA-LSdecreases as the penalizing cuto� distance is

relaxed. Note the relation to Figure 6.6; intuitively, largerrecommended strategies

tend to take longer to compute.

tion. Similarly, as the distance constraint is loosened, the algorithm completes more

quickly. Finally, an increase injexfdj results in higher computational cost; as ex-

plained in Proposition 62, this is due to an increase inF (exfd), the time complexity

of computing EXB(rf)(C; exfd). Comparing these results to Figure 6.6, we see that

the runtime of MCA-LSis correlated to the size of the returned strategyC.

308

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

E
xp

ec
te

d
B

en
ef

it

Budget

MCA-Greedy-Mono: EXB vs. Budget
|efd| = 10, Distances = {50, 100, ..., 500}

50

100

150

200

250

300

350

400

450

500

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

E
xp

ec
te

d
B

en
ef

it

Budget

MCA-Greedy-Mono: EXB vs. Budget
|efd| = 100, Distances = {50, 100, ..., 500}

50

100

150

200

250

300

350

400

450

500

Figure 6.8: Expected bene�t of the strategy returned byMCA-GREEDY-MONO

as the budget increases, withjexfdj = 10 (left) and jexfdj = 100 (right). Note the

decrease in expected bene�t due to the increase injexfdj. Similarly, note the increase

in expected bene�t given a larger cuto� distance.

MCA-GREEDY-MONO. As discussed in Section 6.5.3,MCA-GREEDY-MONO

provides tighter approximation bounds thanMCA-LSat the cost of a more restrictive

(monotonic) reward function. For these experiments, we used the monotonic rf =

309

crf . Recall that a trivial solution to MCA given a monotonic reward function is

C = L; as such,MCA-GREEDY-MONOuses a budgetB to limit the maximum size

jCj � j L j. We varied this parameterB 2 f 1; : : : ; 28g.

Figure 6.8 shows the expected bene�tEXB(rf)(C; exfd) increase as the maximum

allowed jCj increases. In general, the expected bene�t ofC increases as the distance

constraint dist is relaxed. However, note the points withB 2 f 3; : : : ; 9g; we see

that dist � 100 performs better thandist > 100. We believe this is an artifact of

our real-world data. Finally, asjexfdj increases, the expected bene�t ofC converges

more slowly to 1:0. This is intuitive, as a wider spread of possible partner positions

will, in general, require a largerjCj to provide coverage.

Figure 6.9 shows that the runtime ofMCA-GREEDY-MONOincreases as pre-

dicted by Proposition 62. In detail, as we linearly increasebudgetB , we also linearly

increase the runtime of ourF (exfd) = EXB(rf)(C; exfd). In turn, the overall runtime

O(B � jL j � F (exfd)) increases quadratically inB , for our speci�c reward function.

Finally, note the increase in runtime as we increasejexfdj = 10 to jexfdj = 100. The-

oretically, this increasesF (exfd) linearly; in fact, we see almost exactly a ten-fold

increase in runtime given a ten-fold increase injexfdj.

310

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

T
im

e
(m

s)

Budget

MCA-Greedy-Mono: Time vs. Budget
|efd| = 10, Distances = {50, 100, ..., 500}

50

100

150

200

250

300

350

400

450

500

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

T
im

e
(m

s)

Budget

MCA-Greedy-Mono: Time vs. Budget
|efd| = 100, Distances = {50, 100, ..., 500}

50

100

150

200

250

300

350

400

450

500

Figure 6.9: Runtime ofMCA-GREEDY-MONOas the budget increases, withjexfdj =

10 (left) and jexfdj = 100 (right). Note the increase in runtime due to the extra

determinism of a largerexfd.

6.7 Chapter 6 Related Work

A similar motivation to this chapter exists in the �eld of (multi-)agent security,

where the central idea is to protect a set of targets from adversaries. These games

are typically modeled on top of graphs, with agents and adversaries competing

to protect or penetrate a set of targets. [135] represents the adversary's behavior

311

through a probability distribution over states, indicating the probability of that

state being targeted; no real graph structure is considered, much less a geospatial

model. [1] and [2] consider an environment with more hidden information, and

attempt to detect adversarial penetrations across the routes (represented as paths

on a graph) of patrolling agents. [139] solves Stackelberg (leader-follower) games

under the assumption of bounded reasoning rationality, again on a graph network.

[35] explores protecting dynamic targets from rational adversaries on real-world road

networks.

6.8 Chapter Summary

Geospatial abductionwas introduced in Chapter 4 and used to infer a set of

partner locations from a set of observations, given a feasibility predicate and an

interval [�; �] � [0; 1]. Chapter 4 developed exact and approximate algorithms for

GAPs. In particular, no adversary was assumed to exist there.In this chapter, we

study the case of geospatial abduction where there is an explicit adversary who is

interested in ensuring that the agent does not detect the partner locations. This

is the case with real world serial killers and insurgents wholaunch IED attacks.We

develop a game-theoretic framework for reasoning about thebest strategy that an

adversary might adopt (based on the minimizing the adversary's detriment) and the

best strategy that the agent could adopt to counter the adversary's strategy.

We consider the adversarial geospatial abduction problem tobe a two player

game|an agent (\good" guy) and an adversary (\bad" guy). The adversary is

312

attempting to cause certain observable events to occur (e.g. murders or IED attacks)

but make it hard to detect the associated set of partner locations (e.g. location of

the serial killers home/o�ce, or the locations of weapons caches supporting the

IED attacks). We use an axiomatically-de�ned \reward function" to determine how

similar two explanations are to each other. We study the problems of �nding the

best response for an agent and adversary to a mixed strategy (based on a probability

distribution over explanations) of the opponent. We formalize these problems as

the \optimal adversarial strategy" (OAS) and maximal counter-adversary strategy

(MCA) problem. We show both OAS and MCA to be NP-hard and provide exact

and approximate methods for solving them. When reasoning about the best possible

strategy for the adversary, we present a mixed integer programming based algorithm

and show that the MILP in question can be greatly reduced through the elimination

of many variables using the concept of a� -core explanation. Our experiments are

carried out on real world data about IED attacks over a periodof 21 months in

Baghdad.

When reasoning about the best possible strategy for the adversary, we present

two algorithms. The MCA-LS algorithm is very general and leverages submodu-

larity of reward functions. The MCA-GREEDY-MONOalgorithm assumes the re-

ward function is monotonic. Both MCA-LS and MCA-GREEDY-MONOare highly

accurate and have very reasonable time frames. ThoughMCA-GREEDY-MONOis

slightly faster than MCA-LS, we found that on every single run,MCA-LSfound the

exact optimal bene�t even though its theoretical lower bound approximation ratio

is only 1=3|a truly remarkable performance. As MCA-LS does not require any

313

additional assumptions and as its running time is only slightly slower than that of

MCA-GREEDY-MONO, we believe this algorithms has a slight advantage.

314

Chapter 7

Geospatial Optimization

The next two chapters deal with optimal selection of agent actions. Here the

agent has the as set of actions that modify attributes of a geospatial region and

he wishes to select a limited number of such actions (with respect to some budget)

in a manner that either achieves some goal (goal-based geospatial optimization)

and/or maximizes a bene�t function (bene�t-maximizing geospatial optimization).

Additionally, there are certain combinations of actions that cannot be performed

together. In this chapter, we study the complexity of geospatial optimization prob-

lems and present algorithm for solving such problems - either exactly or within a

certain factor of optimal.1

7.1 Chapter Introduction

There are numerous applications which require the ability totake certain ac-

tions (e.g. distribute money, medicines, people etc.) over ageographic region. For

1This chapter is based research that was completed in cooperation with V.S. Subrahmanian.

315

 0 2 4 6 8 10 12 14 16
 0

 2

 4

 6

 8

 1

0

 1
2

 1
4

2

1

2
High-cost area (hi_cost) Group 1 (grp1) Influential center for group 1 (hq1)
Non-populated area (non_pop) Group 2 (grp2) Influential center for group 2 (hq2)

1

Figure 7.1: Locations in a district - contingency groups and unpopulated areas.

instance, a disaster relief organization must allocate people and supplies in a region

after a disaster. A public health organization needs to allocate limited vaccine stocks

to people across the region. A government needs to allocate funds for education or

unemployment training across a region.

Figure 7.1 shows a 2-dimensional map of a region. A political candidate can

only make so many campaign stops and public appeals. We assumethat a map M

is discrete (this is a common assumption in most GIS systems)and has coordinates

drawn from [0; : : : ; M] � [0; : : : N] where the bottom left corner of the map is the

point (0; 0). The candidate wants to identify the best places to campaign or make

public appeals to maximize his exposure. Additionally, the map shows un-populated

areas, areas where campaigning costs are high, and areas dominated by one of two

316

constituent groups. All of these factors may a�ect the set of locations the candidate

selects to optimize his exposure.

In this chapter, we introducegeographic optimization problemsor GOPs that

capture and solve problems such as those mentioned above. The organization and

contribution of the chapter is as follows. Section 7.2 formally de�nes GOPs - speci�-

cally we introduce goal-based and bene�t-maximizing GOPs (GBGOP and BMGOP

respectively). Section 7.3 shows that both GBGOP and BMGOP are NP-hard (with

the associated decision problems in the complexity class NP). Additionally, we prove

non-trivial theoretical limits on approximation: if GBGOP were to be approximated

within the logarithm of the input then NP would have a slightly super-polynomial

oracle. BMGOP cannot be approximated within a guaranteed factor greater than

0.63 unless P=NP. Section 7.4 presents integer programs to solve both GBGOP and

BMGOP using an IP solver like CPLEX. In Section 7.5, we show howto correctly

reduce the number of variables in the integer constraints forGBGOP. We then de-

velop the BMGOP-Computealgorithm in Section 7.6 that can quickly approximate

a BMGOP in polynomial time and provides an approximation guarantee.

7.2 GOPs Formalized

Throughout this chapter, we assume thatM = [0; : : : ; M] � [0; : : : ; N] is an

arbitrary, but �xed \map". We de�ne a logical language L whose constant symbols

are members ofM and that has an in�nite set L var of variable symbols disjoint from

M . L has a setG = f g1; : : : ; gng of unary predicate symbols. As usual, a term is

317

either a constant symbol or variable symbol. Ift is a term, thengi (t) is an atom. If

t is a constant, thengi (t) is ground. Intuitively, if p 2 M , then gi (p) says that point

p has property gi . We useBL to denote the set of all ground atoms. Well-formed

formulas (w�s) are de�ned in the usual way. (i) Every atom is aw�. (ii) If F; G are

w�s, then so are F ^ G; F _ G; : F are all w�s.

Example 7.2.1. Consider the mapM cpgn in Figure 7.1 with the predicates ofG

including the following:

f hi cost; non pop; grp1; grp2; hq1; hq2g

The predicate exposure not depicted in the �gure corresponds to a candidate re-

ceiving exposure in a certain area.hi cost((1; 9)); hq1((4; 3)); non pop((8; 1)); and

grp2((5; 8)) are all examples of ground atoms.

A state is any subset ofBL . We useS to denote the set of all states. Satis-

faction of formulas is de�ned in the obvious way. States satis�es a ground atomA,

denoteds j= A, i� A 2 s. s j= F _ G i� s j= F or s j= G. s j= F ^ G i� s j= F

and s j= G. s j= : F i� s does not satisfyF .

Example 7.2.2. The shading shown in Figure 7.1 de�nes a state. For example,

hi cost((1; 9)) 2 scpgn while exposure((1; 9)) =2 scpgn.

An action maps points to sets of ground atoms.

De�nition 78 (Action) . An action is a mapping a : M ! 2B L . We use A to

denote the set of actions. An action-point pair is any member ofA � M .

318

An action-point pair (a; p) is executed if actiona takes place at pointp. Thus,

one can think of (a; p) as saying that action a occurs at point p. The result of

executing a setSOL of action-point pairs in state s0 is denotedappl(SOL; s0) and

is the set(s0 [f a(p) j (a; p) 2 SOLg).

Example 7.2.3. Continuing with example 7.2.2, our candidate has actionsA cpgn =

f nor; appeal1; appeal2g wherenor refers to a normal campaign stop andappeal1; appeal2

refer to public appeals to constituent groups 1 and 2 respectively. The actions map

to ground atoms as follows.

nor (p) = f exposure(p0)j : non pop(p0) ^ d(p; p0) � 1g

appeali (p) = f exposure(p0)j hqi (p) ^ grpi (p0)g

The �rst action says that when a normal campign stop is made at pointp and

p0 is a populated place one distance unit or less fromp, then the candidate has

exposure at placep0 as well. The second action says that if the candidate makes an

appeal (action) at pointp and p is the headquarters of interest groupgrpi , then the

candidate has obtained exposure in all places associated with interest groupgrpi .

De�nition 79 (Cost Function). A cost function , C : A � M ! [0; 1].

Throughout this chapter, we assume the cost function is arbitrary but �xed and

can be computed in constant time. We also assume that ifA�M = f (a1; p1); : : : ; (am ; pm)g,

then ci is used to denoteC(ai ; pi).

Example 7.2.4. The cost function for our example isC(s)
cpgn and is de�ned (based

on some states) as follows: C(s)
cpgn(a; p) = 1 if hi cost(p) 2 s and 0:5 otherwise.

319

We also assume the existence of a set of integrity constraintsIC that specify

that certain actions cannot be jointly taken if some conditions hold w.r.t. the state

| such constraints were de�ned before by [40].

De�nition 80 (Integrity Constraint) . If � is a set of action-point pairs and� is a

w�, then � $ - � is an integrity constraint .

When � $ - � is ground (this is where� is ground), this says that if � is true,

then only one action-point pair in � may be executed. Formally, supposes is a

state and � 0 is a set of action-point pairs and � $ - � is ground. (s; � 0) j= � $ - �

i� either s 6j= � or s j= � and j� \ � 0j � 1. (s; � 0) satis�es an integrity constraint

i� it satis�es all ground instances of it. (s; � 0) j= IC where IC is a set of integrity

constraints i� (s; � 0) satis�es every constraint in that set. Given a states and set

IC of integrity constraints, we useIC s to denote the set of all ground instances of

integrity constraints in IC where the associated w�� is satis�ed by s2.

Example 7.2.5. Continuing Example 7.2.4, letIC cpgn be:

ff appeal1((4; 3)); appeal2((10; 7))g $ - TRUEg

This constraint says that an appeal can be made to either group 1 or group 2 at

their center of inuence, but not both | for instance, these two groups may have

opposing views.

We now introduce thegoal-based geospatial optimization problem(GBGOP).

This problem takes as input a mapM , initial state s0, set of actionsA , cost function

2Formally, IC s = f (� $ - �) 2 IC js j= � g

320

C, integrity constraints IC , positive real numberc, and disjoint sets � in ; � out � BL .

Intuitively, c restricts the total cost and � in (resp. � out) is a set of atoms that must

be true (resp. false) after the actions are applied. Our optimality criteria for a

GBGOP is to minimize the cardinality of the action-point pairs. A GBGOP can be

viewed as an abductive inference problem (i.e. �nd a set of actions that lead to the

current state) - where minimal cardinality is a common parsimony requirement.

De�nition 81 (GBGOP Solution, Optimal Solution). A solution to a GBGOP

(M ; s0; A ; C; IC; c; � in ; � out) is a setSOL � A�M such that: (i) � (ai ;pi)2 SOL ci � c,

(ii) (s0; SOL) j= IC , and (iii) appl(s0; SOL) j=
V

A i 2 � in
A i ^

V
A j 2 � out

: A j .

A solution SOL is optimal i� there is no other solution SOL0 such that

jSOL0j � j SOLj.

Our next type of problem is abene�t-maximizing geospatial optimization prob-

lem (BMGOP) that also considers a bene�t function, de�ned as follows.

De�nition 82 (Bene�t Function) . The bene�t function , B : BL ! < + maps

atoms to positive real numbers.

Example 7.2.6. In our running example, we use the bene�t functionBcpgn where

Bcpgn(A) = 1 if A has the formexposure() and 0 otherwise.

As with cost, we assume the bene�t function to be arbitrary but�xed and

computable in constant time. We also assume that ifBL = f A1; : : : ; Ang, then

B(A i) is denotedbi . A BMGOP takes as input, M , s0, A , C, IC , and c - all de�ned

the same as for a GBGOP. Additionally it takes bene�t functionB and natural

321

number k. Here k is a bound on the number of actions the agent can take as we

attempt to maximize bene�t as an optimality criteria.

De�nition 83 (BMGOP Solution, Optimal Solution). A solution to a BMGOP

(M ; s0; B; A ; C; IC; k; c) is a set SOL � A � M such that: (i) jSOLj � k and (ii)

� (ai ;pi)2 SOL ci � c, and (iii) (s0; SOL) j= IC .

A solution SOL is optimal i� there is no other solution SOL0 such that:

X

A i 2 appl(SOL;s 0)

bi <
X

A i 2 appl(SOL 0;s0)

bi

7.3 Complexity Results

Here, we provide complexity results for GBGOPs and BMGOPs. First, we

establish both as being at least NP-hard.

Theorem 38. Given GBGOP (M ; s0; A ; C; IC; c; � in ;

� out), �nding an optimal solution SOL � A � M is NP-hard. This result holds

even if for eacha 2 A ; p 2 M , it is the case that8g0(p0) 2 a(p), p0 = p - i.e. each

action only a�ects the point is is applied to.

Proof Sketch. We embed the known NP-hard problem of SET-COVER [46] which

takes as input a set ofn elements, S and a family of m subsets ofS, H �

f H1; : : : ; Hmg, and outputs H 0 � H s.t. the union of the subsets covers all elements

in S and H 0 is of minimal cardinality. We encode this problem into a GBGOP as

follows: we setG = f g1; : : : ; gng - each predicate inG corresponds to an element

in S, the map, M consists of a single point,p, the actions A = f a1; : : : ; amg s..t

322

each actionai A corresponds to an element inH and each is de�ned as follows:

ai (p) =
S

x j 2 H i
f gj (p)g. The cost function C returns 1 for each action-point pair,

� in =
S

gi 2G f gi (p)g, � out = ; , and �nally, we set s0 = ; , IC = ; , c = n. 2

Theorem 39. Given BMGOP (M ; s0; B; A ; C; IC; k; c), �nding an optimal solution

SOL � A is NP-hard. This result holds even if for eacha 2 A ; p 2 M , it is the

case that8g0(p0) 2 a(p), p0 = p - i.e. each action only a�ects the point is is applied

to).

Proof Sketch. The problem MAX-K-COVER [46] is considered the dual of SET-

COVER and accepts the same input as that problem, with an additional natural K .

It outputs K subsets that covers a maximal amount of elements inS. The encoding

reects that of Theorem 38 except now we assign a bene�t of 1 for each ground

atom and setk = K . 2

One may think that one can solve GOPs e�ciently in practice byusing fully

polynomial time approximation schemes (FPTAS). However, by the nature of our

constructions used in the NP-hardness results, this is not possible for either type of

GOP under accepted theoretical assumptions.

Theorem 40. If for some � > 0, there is a PTIME algorithm to approximate

GBGOP within (1 �) � ln(jA � Mj), then NP � T IME (jA � Mj O(lg lg jA�Mj)) (NP

has a slightly super-polynomial algorithm).

Proof Sketch.Follows from Theorem 38 and [46, Theorem 4.4]. 2

Theorem 41. Finding an optimal solution to BMGOP cannot be approximated in

323

PTIME within a ratio of e 1
e + � (approx. 0:63) for some � > 0 (where e is the

inverse of the natural log) unlessP=NP , even whenIC = ; .

Proof Sketch.Follows from Theorem 39 and [46, Theorem 5.3]. 2

Next, under some reasonable assumptions, the decision problems for GB-

GOP/BMGOP are in-NP.

Theorem 42. Given GBGOP (M ; s0; A ; C; IC; c; � in ;

� out), if the cost function and all actionsa 2 A can be polynomially computed, then

determining if there is a solutionSOL for the instance of the GBGOP s.t. for some

real numberk, jSOLj � k is in-NP.

Theorem 43. Given BMGOP (M ; s0; B; A ; C; IC; k; c), if the cost function, bene�t

function, and all actionsa 2 A can be polynomially computed, then determining if

there is a solutionSOL for the instance of the BMGOP s.t. for some real number

val,
P

A i 2 appl(SOL;s 0) bi � val is in-NP.

As stated earlier, a GBGOP may also be viewed as an abductive inference

problem. Even though �nding a solution (not necessarily optimal) to a GBGOP

can trivially be conducted in PTIME3, counting the number of solutions is #P-

complete. This counting problem is di�cult to approximate.

Theorem 44. Counting the number of solutions to a GBGOP (under the assump-

tions of Theorem 42) is# P-complete.

Proof Sketch. The MONSAT problem takes a setC of n clauses ofK disjuncted

literals (no negation) over setL of atoms (sizem) and outputs \yes" i� there is a
3Return the set f (ai ; pi) 2 A � Mj ai (pi) \ � out = ;g

324

subset ofL that satis�es all clauses inC. This problem has an obvious resemblance

to SET-COVER (with no cardinality criteria) and we embed it into a GBGOP

in a way similar to the construction of Theorem 38. The key here is to have the

predicates correspond to clauses and actions correspond to lierals - eachai is de�ned

as follows:ai (p) = f gj (p)jf ` i g j= � j g, where` i is the corresponding literal andgj is

the predicate that corresponds to clause� j . The reduction is parsimonious, and as

#MONSAT is #P-hard, the hardness result follows. The membership in #P follows

from Theorem 42. 2

Theorem 45. For � > 0, approximating the number of solutions to a GBGOP

within a factor of 2jA�Mj 1! e
is NP-hard.

Proof Sketch.Follows from Theorem 44 and Theorem 3.2 of [145]. 2

7.4 Integer Programs for Solving GOPs

In this section, we present an integer programming (IP) algorithms for both

GBGOP and BMGOP which provide exact solutions. Given a GBGOP, the IP

associates an integer-valued variableX i with each action-point pair (ai ; pi) 2 A�M

whereai (pi) \ � out = ; . Intuitively, X i = 1 denotes that action ai is performed at

point pi .

De�nition 84 (GBGOP-IP) . Let set R = f (ai ; pi) 2 A � Mj ai (pi) \ � out = ;g .

325

For each action-point pair (ai ; pi) 2 R, create variableX i 2 f 0; 1g.

min
jRjX

i =1

X i (7.1)

s.t.
X

aj (pj)jA i 2 aj (pj)

X j � 1 8A i 2 � in s0 (7.2)

X

(ai ;pi)2 R

ci � X i � c (7.3)

X

(ai ;pi)2 �

X i � 1 8(� $ - �) 2 IC s0 (7.4)

The objective function minimizes the total number of action-point pairs. Con-

straint (7.2) ensures that every ground atom in �in (that does not appear in the

initial state) is caused by at least one of the selected action-point pairs. Con-

straint (7.3) enforces the constraint on cost. Constraint (7.4) ensures that the

integrity constraints are satis�ed. Next we present our integer constraints for a

BMGOP where the IP associates an integer-valued variableX i with each action-

point pair (ai ; pi) 2 A � M , and an integer-valued variableYj with each ground

atom A j 2 BL s0. The intuition for the X i variables is the same as in GBGOP-IP.

De�nition 85 (BMGOP-IP) . For each action-point pair (ai ; pi) 2 A � M , create

variable X i 2 f 0; 1g. For each A i 2 BL s0 create variableYi 2 f 0; 1g.

max
X

A i 2 s0

bi +
jB L j j s0 jX

i =1

bi � Yi (7.5)

s.t.
X

aj (pj)jA i 2 aj (pj)

X j � Yi 8A i 2 BL s0 (7.6)

X

(ai ;pi)2A�M

X i � k (7.7)

X

(ai ;pi)2A�M

ci � X i � c (7.8)

X

(ai ;pi)2 �

X i � 1 8(� $ - �) 2 IC so (7.9)

326

In the above IP, the objective function looks at each ground atom and sums

the associated bene�t if the associatedYi variable is 1 - meaning that atomA i is

true after the actions are applied. Constraint (7.6) e�ectively sets aYi variable

to 1 if an action that causesA i to be true occurs. Constraint (7.7) enforces the

cardinality requirement. Constraints 7.8-7.9 mirror constraints 7.3-7.4 of GBGOP-

IP. The result below shows that a solution� to the above IPs4, when restricted to

the X i variables, provides an immediate solution to the GOP.

Proposition 65. Suppose! is a GBGOP (resp. BMGOP) andIP (!) is its corre-

sponding integer program (GBGOP-IP, resp. BMGOP-IP). Then:

1. If SOL is a solution to ! , then there is a solution� of IP (!) such that

� � f X i = 1 j (ai ; pi) 2 SOLg.

2. If � is a solution to IP (!) , then there is a solutionSOL to ! such that

f X i = 1 j (ai ; pi) 2 SOLg � � .

We note that for GBGOP-IP, the number of variables is fairly large { O(jf (ai ; pi) 2

A � Mj ai (pi) \ � out = ;gj) variables and O(j� in s0j + jIC s0 j + 1) constraints.

BMGOP-IP has even more variables - (though not exponential) -O(jMj� (jAj + jGj))

variables andO(jMj � jGj + jIC s0 j + 2) constraints.

4A solution to GBGOP-IP or BMGOP-IP is an assignment of values to variables that optimizes

the objective function. Thus, a solution can be described as a set of equations assigning values to

the variables X i ; Yj .

327

7.5 Correct Variable Reduction for GBGOP-IP

The set of integer constraints for GBGOP hasO(jRj) variables whereR �

A � M . We show how to correctly reduce the number of variables by considering

only a subset ofR - thereby providing a smaller integer program. Our intuition

is that an optimal solution SOL is an irredundant cover of � in meaning there is

no subsetSOL0 � SOL that is also a solution. Hence, we can discard certain

elements ofR that cannot possibly be in an optimal solution. First, for a given

GBGOP ! = (M ; s0; A ; C; IC; c; � in ; � out), we introduce Q"
(a;p) = f � j(� $ - �) 2

IC s0 ^ (a; p) 2 � g and the set of ground atoms each action-point pair a�ectsA� "
(a;p) =

ai (pi) \ (� in (� in \ s0)). We can now de�ne areduced action-point set.

De�nition 86 (Reduced Action-Point Set). Given GBGOP

! = (M ; s0; A ; C; IC; c; � in ; � out)

and setR = f (ai ; pi) 2 A �Mj ai (pi) \ � out = ;g , we de�ne reduced action-point

set R� = f (ai ; pi) 2 Rj 6 9(aj ; pj) 2 R s.t.

(cj � ci) ^ (Q"
(aj ;pj) � Q"

(ai ;pi)
) ^ (A� "

(ai ;pi) � A� "
(aj ;pj))g

Example 7.5.1. Consider the campaign scenario last discussed in Example 7.2.5.

Suppose the candidate wants to optimize the following GBGOP:

! = (M cpgn; scpgn; A cpgn; C(scpgn)
cpgn ; IC cpgn; 4; � cpgn

in ; ;)

where eachA 2 � cpgn
in has the formexposure(p) where p is a point in one of the

two dashed rectangles in Figure 7.1. Note that as mapM cpgn contains 187 points,

328

jAj = 3, and � out = ; , the cardinality of R is 561. By contrast, the setR� consists

of only 7 elements,1:2% of the size ofR. Here we have

R� = f (nor; (5; 4)); (nor; (5; 3)); (nor; (5; 2)); (nor; (10; 8));

(nor; (10; 7)); (nor; (10:6)); (appeal1; (4; 3))g

Intuitively, all elements in R� are preferable for membership in an optimal

solution overR R� as they cost less, result in the same changes to the state, and

occur in the same or fewer integrity constraints. SetR� can be found in quadratic

time with a naive algorithm - an operation that is likely dominated by solving or

approximating GBGOP-IP. The next lemma says thatR� must contain an optimal

solution.any optimal solution to a GBGOP. This can then be used to correctly

reduce the number of variables in GBGOP-IP.

Lemma 22. Given GBGOP ! = (M ; s0; A ; C; IC; c; � in ; � out), for any optimal

solution SOL � R, there is an optimal solutionSOL0 � R� .

Proof Sketch.We show this by proving that for any setW = SOL \ (R R�), there

is some setW 0 � R� (R� \ SOL) s.t. (SOL W) [W 0 is also a solution.

Proposition 66. Suppose! is a GBGOP and IP (!) is its corresponding integer

program. We can create such a program with a variable for every element ofR�

(instead of R) and Proposition 65 still holds true.

329

7.6 The BMGOP-Compute Algorithm

While BMGOP-IP can solve a BMGOP exactly, doing so is computationally

intractable. We now present an approximation algorithm that runs in PTIME but

provides a lower approximation ratio than proved in Theorem41. First, we show

that a BMGOP reduces to an instance of submodular maximization problem5 with

respect to packing constraints. We then leverage some knownmethods [11] to solve

such problems and develop a fast, deterministic algorithm toapproximate BMGOP

with an approximation bounds. Given BMGOP ! = (M ; s0; B; A ; C; IC; k; c), con-

sider the objective function in BMGOP-IP. We can write that function as a mapping

from action-point pairs to reals. We denote this function (speci�c for BMGOP !)

as f " : 2A�M ! < + , wheref " (S) =
P

A i 2 appl(S;s0) bi , which has certain properties.

Proposition 67. For BMGOP ! , function f " is: (i) submodular,(ii) monotonic,

i.e. Z1 � Z2 ! f " (Z1) � f " (Z2) and (iii) under the condition8A i 2 BL , bi = 0, we

havef " (;) = 0 .6

Proof Sketch. ConsiderS � S0 � A � M and (a; p) =2 S0. We must showf " (S [

f (a; p)g) f " (S) � f " (S0 [f (a; p)g) f " (S0). Suppose, BWOCf " (S [f (a; p)g)

f " (S) < f " (S0 [f (a; p)g) f " (S0). Then we have
P

A i 2 appl(S[f (a;p)g;s0) appl(S;s0) bi <

P
A i 2 appl(S0[f (a;p)g;s0) appl(S0;s0) bi . However, by the de�nition of appl, we haveappl(S[

5SupposeZ is a set. A function f : 2Z ! R is said to besubmodular i� for all Z1; Z2 such that

Z1 � Z2 and all z =2 Z2, it is the case that f (Z1 [f zg) f (Z1) � f (Z2 [f zg) f (Z2), i.e. the

incremental value of addingz to the smaller set Z1 exceeds the incremental value of adding it to

the larger set Z2. Here, R denotes the reals.
6Henceforth, we will assume this condition to be true.

330

f (a; p)g; s0) appl(S; s0) � appl(S0[f (a; p)g; s0) appl(S0; s0), which is a contradiction.2

As our objective function is submodular, and constraints 7.7-7.9 are linear

packing constraints, any instance of a BMGOP can be viewed asmaximization of

a submodular function wrt linear packing constraints and hence, methods to solve

such problems can be used here. TheBMGOP-Computealgorithm leverages this

idea and illustrated in Example 7.6.1.

Example 7.6.1. Following Example 7.2.5. Suppose the candidate wants to optimize

BMGOP: (M cpgn; scpgn; Bcpgn; A cpgn; C(scpgn)
cpgn ; IC cpgn; 3; 2). In this case, we will set

� = 0:001. He wishes to �nd a set of3 action-point pairs to optimize his exposure.

BMGOP-Computesets � = 22:14, w0 = 0:33, w00= 0:50, and w1 = 0:50 in lines 1

and 2. In the �rst iteration of the loop at line 3, it �nds the action-point pair that

minimizes the quantity at line 3 is(appeal1; (4; 3)) - which has the associated value

0:073. Note, other action-point pairs with low values are(appeal2; (10; 7)) with 0:083

and (nor; (15; 6)) also with 0:083. It then adds(appeal1; (4; 3)) to SOL and updates

w0 = 0:93, w00= 1:09, and w1 = 2:35. On the next iteration, theBMGOP-Compute

picks (nor; (15; 6)), which now has a value of0:164. During this iteration, the value

of (appeal2; (10; 7)) has increased substantially - to0:294, so it is not selected. At

the end of the iteration, w0 is updated to2:611 and w00 is updated to2:364. As

(nor; (15; 6)) does not impact the lone integrity constraint, the valuew1 remains

at 2:354. In the third iteration, BMGOP-Computeselects(nor; (15; 9)) which has a

value of0:421. Again, the value of(appeal2; (10; 7)) has increased - but this time only

331

BMGOP-Compute

INPUT: BMGOP (M ; s0; B; A ; C; IC; k; c)

OUTPUT: SOL � A � M

1. Set SOL = ; , � to be an in�nitesimal,

and set � = e2 � � (2 + jIC s0 j).

2. Set w0 = 1=k and w00= 1=c. For each (� i $ - � i) 2 IC s0 , set wi = 1=(2 �).

3. While k � w0+ c � w00+ (2 �) �
P

i wi � � and SOL 6= A � M

(a) Let (aj ; pj) 2 A � M SOL have minimal

w0+ w00�cj +
P

i j (a j ;p j) 2 � i
wi

(
P

A i 2 appl (SOL [f (a j ;p j) g;s 0) bi) (
P

A i 2 appl (SOL;s 0) bi)

(b) SOL = SOL [f (aj ; pj)g

(c) Set w0 = w0 � � 1=k, w00 = w00� � cj =c and for each integrity constraint i s.t.

(aj ; pj) 2 � i , set

wi = wi � � 1=(2 �)

4. If SOL is not a valid solution then

(a) If
P

A i 2 appl(SOL f (aj ;pj)g;s0) bi �

P
A i 2 appl(f (aj ;pj)g;s0) bi ,

then SOL = SOL f (aj ; pj)g

(b) Else SOL = f (aj ; pj)g

5. Return SOL

332

to 0:472. BMGOP-Computere-calculatesw0 = 7:331, w00= 5:128and w1 remains at

2:354. On the last iteration, BMGOP-Computepicks (appeal2; (10; 7)) as it has the

lowest value {0:942. After this fourth iteration, it updates w0 = 20:589, w00= 11:124,

and w1 = 11:0861 - which now total to 42:799 { exceeding � (22:14) { causing

BMGOP-Computeto exit the outer loop. NowSOL has 4 elements, exceeding the

cardinality constraint (as well as the integrity constraint). The checks done in line 4

remove(appeal2; (10; 7)) from SOL - making the result feasible.BMGOP-Compute

returns f (appeal1; (4; 3)); (nor; (15; 6);(nor; (15; 9))g which causes the bene�t to be

45.

Proposition 68. Suppose! is a BMGOP andSOL is the set returned byBMGOP-

Compute. Then SOL is a solution to ! .7

Proposition 69. BMGOP-Computeruns in O(k � jMj � jAj � j IC s0 j) time. Proof

Sketch. Clearly, the outer loop can iterate no more thank times. The inner loop

iterates for each element ofA � M - hence requiring timeO(jMj � jAj). The calcu-

lation at line 3a requiresO(jIC s0 j) time. 2

The following important theorem states that BMGOP-Computeprovides an

approximation guarantee. Because of Theorem 41 and asBMGOP-Computeis poly-

nomial, we know that this approximation guarantee cannot beas good ase 1
e + � .

The result leverages Theorem 1.1 of [11] together with the above theorems. By

this result, the approximation factor of BMGOP-Computedepends onjIC s0 j. We

7Here, SOL is not necessarily an optimal solution.

333

0.15

0.35

0.55

0.75

1 4 7 10 13 16 19A
pp

ro
xi

m
at

io
n

F
ac

to
r

Number of Integrity Constraints

BMGOP-Compute

Best unless P=NP

Figure 7.2: jIC s0 j vs. approximation ratio.

illustrate this relationship, in Figure 7.2. For our target applications, we envision

jIC s0 j � 20.

Theorem 46. Under the assumption thatk; c � 2 � , BMGOP-Computeprovides

a solution within a factor of 1
(2+ jIC s0 j)1=(2 ! �) (where � is an in�nitesimal) of optimal.

Proof Sketch.BMGOP-Computefollows from Algorithm 1 of [11] which optimizes a

submodular function subject tom packing constraints within 1
m1=W whereW is the

minimum width of the packing constraints - de�ned as the minimum of the size of

the constraint divided by the cost of an element. For constraint 7.7, the W = k. For

constraint 7.8, theW � c. We can replace constraint 7.9 with:
P

(ai ;pi)2 � j
X i � 2 �

8(� j $ - � j) 2 IC so which maintains correctness as two variables to set to 1 and

exceeds 2 � . The new constraint has width 2 � , which, is the minimum. We then

apply Theorem 1.1 of [11]. 2

334

7.7 Chapter 7 Related Work

Though spatial reasoning has been studied extensively in AI [7, 142, 103],

many of the paradigms that have emerged for such reasoning are qualitative in

nature. Such qualitative spatial reasoning e�orts includethe inuential region con-

nection calculus for qualitative reasoning about space. There has also been work

on quantitative methods for reasoning about space [74] whichcontains articles on

spatial reasoning in the presence of uncertainty using bothlogical and fuzzy meth-

ods. Spatial reasoning with quantitative information has been studied extensively

in image processing [179, 163].

However, unlike this vast body of work, this chapter focuses on a di�erent

problem. Suppose we are dealing with a mapM , a cost function C, a set A of

possible actions, a bound on the costc, and a bound on the number of actions

we can take, what set of actions should be taken so as to optimize a given objec-

tive function. Two versions of this problem are studied in this chapter - GBGOP

and BMGOP which di�er in what they optimize. Both problems are proved to

be NP-hard (NP-complete under realistic assumptions) and we further prove that

the number of solutions to GBGOP is #P-complete. We also �nd limits on ap-

proximating an optimal solution to BMGOP and GBGOP (in PTIME) under ac-

cepted theoretical assumptions. We develop integer programming formulations of

both problems and then present a way of simplifying the IP for GBGOP. We further

present theBMGOP-Computealgorithm for BMGOP and show that it is polynomial

and has a guaranteed approximation ratio (though not high enough to contract the

335

NP-hardness result).

7.8 Chapter Summary

In this chapter, we introduced \geospatial optimization problems" or GOPs

that aide the user in taking certain actions over a geographicregion. We showed

these problems to be NP-hard and provided integer constraints. For the goal-based

variant, we correctly reduce the number of variables. For the bene�t-maximizing

variant, we provide an approximation algorithm. In future work, we look to imple-

ment this framework and explore methods to achieve further scalability. In many

applications, there also exists an underlying di�usion process (i.e. epidemiology).

This is not accounted for with geospatial optimization. In the next chapter, we look

at optimal selection of actions with respect to a di�usion process.

336

Chapter 8

Social Network Optimization Problems

While we look to optimize certain geospatial properties in the previous chap-

ter, we note that for some real-world applications, such as many epidemiological

situations, there is an underlying di�usion process that alsoa�ect geospatial propri-

eties. Given such a di�usion process and a network, we seek to�nd vertices of that

network that optimize an aggregate and satisfy certain logical conditions. Here, we

formalize the study of this type of agent behavior with the study of social network

optimization problems (SNOPs).1 Note that in this chapter, the acronym \GAPs"

does not refer to the geospatial abduction problems of the past three chapters but

rather the generalized annotated programs of [86].

1This chapter is based on [159] and [152], completed in cooperation with Maria Luisa Sapino,

Matthias Broecheler and V.S. Subrahmanian.

337

8.1 Chapter Introduction

There is a rapid proliferation of di�erent types ofgraph datain the world to-

day. These include social network data (FaceBook, Flickr, YouTube, etc.), cell phone

network data [126] collected by virtually all cell phone vendors, email network data

(such as those derived from the Enron corpus2), as well as information on disease

networks [45, 5]. There has been years of work on analyzing how various proper-

ties of nodes in such networks \di�use" through the network -di�erent techniques

have been invented in di�erent academic disciplines including economics [73, 150],

infectious diseases [45], sociology [61] and computer science [81].

Past work on di�usion has several limitations. First, they largely assume that

a social network is nothing but a set of vertices and edges [178, 29, 147]. In contrast,

our notion of SNOPs allows a richer model where edges and vertices can both be

labeled with properties. For instance, a political campaigner hoping to spread a

positive message about a campaign needs to use demographics(e.g. sex, age group,

educational level, group a�liations, etc.) for targeting a political message | a \one

size �ts all" message will not work. Second, past work on di�usion has no notion

of \strength" associated with edges. It may well be the case,in many applications,

that the degree of contact between two vertices (e.g. numberof minutes person A

spends on the cell phone with person B) is a proxy for the strength of the relationship

between A and B, which in turn may have an impact of whether A can inuence B

or not. Third, these past frameworks [73, 150, 45, 61] usually reason about a single

2http://www.cs.cmu.edu/ eenron/

338

di�usion model, rather than develop a framework for reasoning about a whole class

of di�usion models.

In this chapter, we �rst argue that a class of the well-known Generalized Anno-

tated Program (GAP) paradigm [86, 85, 168] and their variants[175, 88, 107, 109,

31] including Linear GAPs (introduced here) form a convenient method to express

many di�usion models. Next, unlike most existing work in social networks which

focus on learning di�usion models, we focus on reasoning withpreviously learned

di�usion models (expressed via GAPs). In particular, we consider the problem of

optimal decision making in social networks which have associated di�usion models

expressible as Linear GAPs, though many of the results in the chapter apply to

arbitrary GAPs as well. Here are two examples.

� (Q1) Cell phone plans. A cell phone company is promoting a new cell phone

plan - as a promotion, it is giving awayk free plans to existing customers.3 Which

set of k people should they pick so as to maximizethe expected numberof plan

adoptees predicted by a cell phone plan adoption di�usion model they have learned

from their past promotions?

� (Q2) Medication distribution plan. A government combating a disease

spread by physical contact has limited stocks of free medication to give away.

Based on a di�usion model of how the disease spreads (e.g. kids might be more

susceptible than adults, those previously inoculated against the disease are safe,
3Our SNOP framework allows us to add additional constraints | for instance, that plans can

only be given to customers satisfying certain conditions, e.g. not be employees of the cell phone

company.

339

etc.), they want to �nd a set of k people who (jointly) maximally spread the

disease (so that they can provide immediate treatment to these k people in an

attempt to halt the disease's spread).4

Both the above problems are instances of a class of queries that we call SNOP

queries. They di�er from queries studied in the past in quantitative (both proba-

bilistic and annotated) logic programming in two fundamental ways: (i) They are

specialized to operate on graph data where the graph's vertices and edges are la-

beled with properties and where the edges can have associated weights, (ii) They

optimize complex objective functions that can be speci�ed by the user. Neither of

these has been studied before by any kind of quantitative logic programming frame-

work, though work on optimizing objective functions in the context of di�erent

types of semantics (minimal model and stable model semantics) has been studied

before [99]. And of course, constraint logic programming [8]has also extensively

studied optimization issues as well in logic programming - however, here, optimiza-

tion and constraint solving is embedded in the constraint logic program, whereas in

our case, they are part of thequery over an annotated logic program.

This chapter is organized as follows. In Section 8.2, we provide an overview

of GAPs (past work), de�ne a social network, and explain how GAPscan repre-

sent some types of di�usion in SNs. Section 8.3 formally de�nes di�erent types of

4Again, our SNOP framework allows us to add additional constraints | for instanc e, that

medication can only be given to people satisfying certain conditions, e.g. be over a certain age,

or be within a certain age range and not have any conditions that are contra-indicators for the

medication in question.

340

social network optimization problems and provides results on their computational

complexity and other properties. Section 8.4 shows how our framework can repre-

sent several existing di�usion models for social networks including economics and

epidemiology. In Section 8.5 we present the exactSNOP-Monalgorithm to answer

SNOP queries under certain assumptions of monotonicity. We then develop a greedy

algorithm GREEDY-SNOPand show that under certain conditions, it is guaranteed

to be an (e
e 1) approximation algorithm for SNOP queries | this is the best possible

approximation guarantee. Last, but not least, we describe our prototype implemen-

tation and experiments in Section 8.7. Speci�cally, we tested our GREEDY-SNOP

algorithm on a real-world social network data set consistingof over 7000 nodes and

over 103,000 edges from Wikipedia logs. We show that we solve social network opti-

mization problems over real data sets in acceptable times. We emphasize that much

additional work is required on further enhancing scalability and that research on

social network optimization problems is at its very infancy. Finally, in Section 8.8,

we review related work.

8.2 Technical Preliminaries

In this section, we �rst formalize social networks, then briey review gener-

alized annotated logic programs (GAPs) [86] and then describe how GAPs can be

used to represent concepts related to di�usion in SNs.

341

8.2.1 Social Networks Formalized

Throughout this chapter, we assume the existence of two arbitrary but �xed

disjoint sets VP; EP of vertex and edge predicate symbolsrespectively. Each vertex

predicate symbol has arity 1 and each edge predicate symbol has arity 2.

De�nition 87. A social network (S) is a 5-tuple (V; E; `vert ; `edge; w) where:

1. V is a set whose elements are called vertices.

2. E � V � V is a multi-set whose elements are called edges.

3. `vert : V ! 2VP is a function, called vertex labeling function.

4. `edge : E ! EP is a function, called edge labeling function. 5

5. w : E � EP ! [0; 1] is a function, called weight function.

We now present a brief example of an SN that will be used throughout this

chapter.

Example 8.2.1. Let us return to the cell phone example (query(Q1)) . Fig-

ure 8.1 shows a toy SN the cell phone company might use. Here, we might have

VP = f male; female; adopters; tempadopter; non adptrg denoting the sex and past

adoption behavior of each vertex;EP might be the setf phone; email; IM g denoting

the types of interactions between vertices.w(v1; v2; ep) denotes the percentage of

communications of typeep 2 EP initiated by v1 that were with v2 (measured either

5Each edgee 2 E is labeled by exactly one predicate symbol fromEP. However, there can be

multiple edges between two vertices labeled with di�erent predicate symbols.

342

Figure 8.1: Example cellular network.

w.r.t. time or bytes). The function `vert is shown in �gure 8.1 by the shape (denoting

past adoption status) and shading (male/female). The type of edges (bold for phone,

dashed for email, dotted for IM) is used to depict̀edge.

It is important to note that our de�nition of social networks is much broader

than that used by several researchers [5, 45, 73, 81] who often do not consider either

`edge or `vert or edge weights through the functionw | it is well-known in marketing

that intrinsic properties of vertices (customers, patients) and the nature and strength

of the relationships (edges) is critical for decision makingin those �elds.

Note. We assume that SNs satisfy various integrity constraints. In Example 8.2.1,

it is clear that `vert (V) should include at most one ofmale; female and at most one

of adopters, temp adopter,non adptr. We assume the existence of some integrity

constraints to ensure this kind of semantic integrity{ they can be written in any

343

reasonable syntax to express ICs { in the rest of this chapter, we assume that social

networks have associated ICs and that they satisfy them. In our example, we will

assume ICs ensuring that a vertex can be marked with at most one ofmale=female

and at most one ofadopters; tempadopter; non adptr.

8.2.2 Generalized Annotated Programs: A Recap

We now recapitulate the de�nition of generalized annotatedlogic programs

from [86]. We assume the existence of a setAVar of variable symbols ranging over

the unit real interval [0; 1] and a setF of function symbols each of which has an

associated arity. We start by de�ning annotations.

De�nition 88 (annotation term). (i) Any member of[0; 1] [AVar is an annotation.

(ii) If f is an n-ary function symbol over[0; 1] and t1; : : : ; tn are annotations, then

f (t1; : : : ; tn) is an annotation.

For instance, 0:5; 1; 3 and X are all annotation terms. If +; � ; = are all binary

function symbols, then (X +1) � 0:5
3 is an annotation term.

We de�ne a separatelogical language whose constants are members ofV and

whose predicate symbols consist ofVP [EP. We also assume the existence of

a set V of variable symbols ranging over the constants (vertices).No function

symbols are present. Terms and atoms are de�ned in the usual way (cf. [106]). If

A = p(t1; : : : ; tn) is an atom andp 2 VP (resp. p 2 EP), then A is called avertex

(resp. edge) atom. We will use A V and A E to denote the sets of all ground vertex

and edge atoms, respectively andA = A V [A E. We note that jA V j = jVPj � jVj and

344

jA Ej = jEPj � jEj.

De�nition 89 (annotated atom/GAP-rule/GAP) . If A is an atom and � is an

annotation, then A : � is an annotated atom. If A0 : � 0; A1 : � 1; : : : ; An : � n are

annotated atoms, then

A0 : � 0 $ A1 : � 1 ^ : : : ^ An : � n

is called aGAP rule. When n = 0, the above GAP-rule is called afact. A GAP-rule

is ground i� there are no occurrences of variables from eitherAVar or V in it. A

generalized annotated program� is a �nite set of GAP rules.

Every social network SN = (V; E; `vert ; `edge; w) can be represented by the

GAP � SN = f q(v) : 1 $ j v 2 V ^ q 2 `vert (v)g [f ep(V1; V2) : w(V1; V2; ep) $

j (V1; V2) 2 E ^ `edge(V1; V2) = epg.

De�nition 90 (embedded social network). A social networkSN is said to beem-

beddedin a GAP � i� � SN � � .

It is clear that all social networks can be represented as GAPs. When we

augment � SN with other rules | such as rules describing how certain properties

di�use through the social network, we get a GAP � � � SN that captures both the

structure of the SN and the di�usion principles. Here is a small example of such a

GAP.

Example 8.2.2. The GAP � cell might consist of � SN using the social network of

Figure 8.1 plus the GAP-rules:

345

1. will adopt(V) : 0:8 � X + 0 :2 $ adopter(V) : 1 ^ male(V) : 1 ^

IM (V; V0) : 0:3 ^ female (V 0) : 1 ^ will adopt(V 0) : X:

2. will adopt(V) : 0:9 � X + 0 :1 $ adopter(V) : 1 ^ male(V) : 1 ^

IM (V; V0) : 0:3 ^ male(V 0) : 1 ^ will adopt(V 0) : X:

3. will adopt(V) : 1 $ temp adopter(V) : 1 ^ male(V) : 1 ^ email (V 0; V) : 1 ^

female (V 0) : 1 ^ will adopt(V 0) : 1:

Rule (1) says that ifV is a male adopter andV 0 is female and the weight of

V 's instant messages toV 0 is 0.3 or more, and we previously thought thatV would

be an adopter with con�denceX , then we can infer thatV will adopt the new plan

with con�dence 0:8 � X + 0:2. The other rules may be similarly read.

SupposeS is a social network and � � � S is a GAP. In this case, we call the

rules in � � S di�usion rules . We useA d hd to refer to the set of ground atoms in

the heads of all di�usion rules of some �xed �. Note that for the models presented

in this chapter, A d hd � A V , meaning edge weights do not change as a result of the

di�usion process. However, for the general case, it is possible for edge weights to

change as a result of the di�usion process.

GAPs have a formal semantics that can be immediately used. An interpreta-

tion I is any mapping from the set of all grounds atoms to [0; 1]. The set I of all

interpretations can be partially ordered via the ordering:I 1 � I 2 i� for all ground

atoms A, I 1(A) � I 2(A). I forms a complete lattice under the� ordering.

De�nition 91 (satisfaction/entailment). An interpretation I satis�es a ground an-

notated atom A : � , denoted I j= A : � , i� I (A) � � . I satis�es the ground

346

GAP-rule AA 0 $ AA 1 ^ : : : ^ AA n (denotedI j= AA 0 $ AA 1 ^ : : : ^ AA n) i�

either (i) I satis�es AA 0 or (ii) there exists an 1 � i � n such that I does not

satisfy AA i . I satis�es a non-ground atom (rule) i� I satis�es all ground instances

of it. GAP � entails AA , denoted� j= AA , i� every interpretation I that satis�es

all rules in � also satis�esAA.

As shown by [86], we can associate a �xpoint operator with any GAP � that

maps interpretations to interpretations.

De�nition 92. Suppose� is any GAP and I an interpretation. The mappingT �

that maps interpretations to interpretations is de�ned asT � (I)(A) = supf � j A :

� $ AA 1 ^ : : : ^ AA n is a ground instance of a rule in� and for all 1 � i � n,

I j= AA i g.

[86] show thatT � is monotonic and has a least �xpointlfp (T �). Moreover,

they show that � entails A : � i� � � lfp (T �)(A) and hencelfp (T �) precisely

captures the ground atomic logical consequences of �. They also de�ne theiteration

of T � as followsT � " 0 is the interpretation that assigns 0 to all ground atoms.

T � " (i + 1) = T � (T � " i). This can be extended in the obvious way to limit

ordinals.

Thus, we see that any social networkS can be represented as a GAP �S.

We will show (in Section 8.4) that many existing di�usion models for a variety

of phenomena can be expressed as a GAP �� � S by adding some GAP-rules

describing the di�usion process to �S.

347

8.3 Social Network Optimization (SNOP) Queries

8.3.1 Basic SNOP Queries

In this section, we develop a formal syntax and semantics foroptimization in

social networks, taking advantage of the above embedding ofSNs into GAPs. In

particular, we formally de�ne SNOP-queries, examples of which have been infor-

mally introduced earlier as(Q1) and (Q2) . We see from queries(Q1),(Q2) that a

SNOP-query looks for a setV0 of vertices and has the following components: (i) an

objective function expressed via an aggregate operator, (ii) an integer k � 0, (iii)

a set of conditions that each vertex inV0 must satisfy, and (iv) a goal atom g(V)

whereg is a vertex predicate andV is a variable.

Aggregates. It is clear that in order to express queries like(Q1),(Q2) , we need

aggregate operators which are mappingsagg : FM([0; 1]) ! R+ (R+ is the set of

non-negative reals) whereFM(X) denotes the set of all �nite multisets that are

subsets ofX . Relational DB aggregates likeSUM,COUNT,AVG,MIN,MAXare all

aggregate operators which can take a �nite multiset of realsas input and return a

single positive real.

Vertex condition. A vertex condition V C is a conjunction of annotated vertex

atoms containing exactly one variable.

Thus, in our example,male(V) : 1 ^ adopter(V) : 1 is a conjunctive vertex

condition, but male(V) : 1 ^ email(V; V0) : 1 is not. We are now ready to de�ne a

SNOP-query.

348

De�nition 93 (SNOP-query). A SNOP-queryis a 4-tuple (agg; V C; k; g(V)) where

agg is an aggregate,V C is a vertex condition, k � 0 is an integer, andg(V) is a

goal atom.

If we return to our cell phone example, we can setagg = SUM, k = 3 (for

example), V C = true and the goal to beadopter(V). Here, the goal is to �nd

a set ANS of vertices v such that ANS's cardinality is 3 or less and such that

SUMf lfp (T �)(adopter(v)) j v 2 ANSg is maximized. Here, theSUM is applied to

a multiset rather than a set. Note that the di�usion model's impact is captured in

this example via thelfp (T�)(adopter(v)) expression which, intuitively, tells us the

con�dence (according to the di�usion model) that vertexv will be an adopter. If we

return to an extended version of our cell phone example and we want to ensure that

the vertices inANS are not employees of the company (let's call this company C),

then we merely can setV C = not employee(V) : 1.6 This query now asks us to �nd

a setANS of three or less vertices | none of which is an employee of the company

C | such that the sum � v2 ANS f lfp (T �)(adopter(v)) j v 2 ANSg is maximized.

Our framework also allows the vertex conditionV C to have annotations other

than 1. So in our cell phone example, the company could explicitly exclude anyone

whose \opinion" toward the company is negative. If opinion is quanti�ed on a contin-

uous [0; 1] scale (such automated systems do exist [166]), then the vertex condition

6In this chapter, we do not consider non-monotonic negation and choose merely to represent

not employeeas a predicate symbol. The extension of GAPs to non-monotonic negation has been

studied [31] | future work can extend non-monotonic negation to the case of the type of social

network optimization problems studied in this chapter.

349

might be restated asV C = not employee(V) : 1 ^ negative opinion(V) C : 0:7

which says that the company wants to exclude anyone whose negativity about the

company exceeds 0.7 according to an opinion scoring engine such as [166].

De�nition 94 (pre-answer/value). Suppose an SNS = (V; E; `vert ; `edge; w) is em-

bedded in a GAP� . A pre-answerto the SNOP queryQ = (agg; V C; k; g(V))

w.r.t. � is any set V0 � V such that: (i) jV0j � k, (ii) for all vertices v0 2 V0,

lfp (T f � [f g(v0):1# j v02 V0g) j= V C[V=v0]. We usepre ans(Q) to denote the set of all

pre-answers to queryQ.

The value, value(V0), of a pre-answerV0 is agg(f lfp (T � [f g(v0):1# j v02 V0g)(g(V)) jV 2

Vg) | here, the aggregate is applied to a multi-set rather than a set. We also note

that we can de�nevalue as a mapping from interpretations to reals based on a SNOP

query. We sayvalue(I) = agg(f I (g(v)) j v 2 Vg).

If we return to our cell phone example,V0 is the set of vertices to which the

company is considering giving free plans. (value(V0)) is computed as follows.

1. Find the least �xpoint of T� 0
cell

where � 0
cell is � cell expanded with annotated

atoms of the formadopter(V 0) : 1 for each vertexV 0 2 V0.

2. For each vertexV 2 V (the entire set of vertices, not justV0 now), we now

�nd the con�dence assigned by the least �xpoint.

3. Summing up these con�dences gives us a measure of the expected number of

plan adoptees.

De�nition 95 (answer). Suppose an SNS = (V; E; `vert ; `edge; w) is embedded in

350

a GAP � and Q = (agg; V C; k; g(V)) is a SNOP-query. A pre-answerV0 is an

answerto the SNOP-queryQ i� the SNOP-query has no other pre-answerV00such

that value(V00) > value(V0).7

The answer set, ans(Q), to the SNOP-queryQ = (agg; V C; k; g(V)) w.r.t. �

is the set of all answers toQ.

Example 8.3.1. Consider the GAP� cell with the social network from Figure 8.1

embedded and the SNOP-queryQcell = (SUM; true; 3; will adopt). The setsV0
1 =

f v15; v19; v6g and V0
2 = f v15; v18; v6g are both pre-answers. In the case ofV0

1, two

applications of theT � operator yields a �xpoint where the vertex atoms formed

with will adopt in set f v15; v19; v6; v12; v18; v7; v10g are annotated with1. For V2,

only one application of T � is required to reach a �xpoint, and the correspond-

ing set of vertices (where the vertex atom formed withwill adopt is annotated

with 1) is f v15; v6; v12; v18; v7; v10g. As these are the only vertex atoms formed with

will adopt that have a non-zero annotation after reaching the �xed point, we know

that value(V0
1) = 7 and value(V0

2) = 6 . As value(V0
1) > value(V0

2), V0
1 is an answer

to this SNOP-query.

8.3.2 Special Cases of SNOP Queries

In this section, we examine several special cases of SNOP queries that still

allow us to represent a wide variety of di�usion models. Table 8.1 illustrates the

special cases discussed in this section while Table 8.2 illustrates the various proper-

7Throughout this chapter, we only treat maximization problems - there is no loss of generality

in this because minimizing an objective functionf is the same as maximizing f .

351

Type Special Case Reference

Special cases of � Linear GAP De�nition 96

Special cases ofagg
Monotonicity De�nition 97

Positive linear De�nition 98

Special cases ofvalue
Zero-starting De�nition 100

A-priori V C De�nition 101

Table 8.1: Special cases of SNOP queries

ties.

Special Cases of the GAP. First, we present a class of GAPs calledlinear GAPs.

Intuitively, a linear GAP is a GAP where the annotations in the rule head are linear

functions and the annotations in the body are variables is theatom is a vertex atom

and constant otherwise. It is important to note that a wide variety of di�usion

models can be represented with GAPs that meet the requirements of this special

case. We de�ne it formally below.

De�nition 96 (Linear GAP). A GAP-rule r of the form

H0 : � 0 $ A1 : � 1 ^ : : : ^ An : � n

is said to belinear i� there exist constants c0; : : : ; ci ; : : : ; cn where8i , ci 2 [0; 1] and

each ground instancer� of r has the form

H0 : c0 + c1 � X 1� + ::: + cn � X n � $ A1 : X 1� ^ : : : ^ An : X n �

352

and � n
i =1 ci 2 [0; 1].

A GAP is linear i� each rule in it is linear.

Note that the linear GAP allows for a wide variety of models to be expressed.

For example, suppose we have a di�usion model in which the edge atoms do not

appear in any rule head (except the facts that embed the SN). Inthis case, edge

weights can be treated as constants. Hence, we can allow ruleswhere the annotation

of a vertex atom is multiplied or divided by an edge weight (asthey behave as

constants) - provided the sum of all constants is in the interval [0; 1]. Section 8.4

will show that several well-known network di�usion models can be embedded into

our framework. Di�usion Models 8.4.2 and 8.4.4 are linear GAPs while Di�usion

Models 8.4.1 and 8.4.3 are not.

Special Aggregates. We de�ne two types of aggregates | monotonic aggregates

and positive linear aggregates.

To de�ne monotonicity, we �rst de�ne a partial ordering v on multi-sets of

numbers as follows.X 1 v X 2 i� there exists an injective mapping � : X 1 ! X 2

such that (8x1 2 X 1)x1 � � (x1).

De�nition 97 (Monotonic Aggregate). The aggregateagg is monotonic (resp.

anti-monotonic) i� whenever X 1 v X 2, it is the case thatagg(X 1) � agg(X 2)

(resp. agg(X 2) � agg(X 1)).

De�nition 98 (Positive-Linear Aggregate). The aggregateagg, applied to the �-

nite multiset FM(X) is positive linear i� it is of the form agg(FM(X)) = c0 +

� x i 2 FM(X)ci x i where (for n = jFM(X)j) c1; : : : ; cn � 0. Note that c0 can be positive,

353

negative, or 0.

Proposition 70. If agg is positive-linear, then it is monotonic.

It is important to note that in our de�nition of positive-lin ear, we only require

that the coe�cients associated with the elements of the multi-set be positive - we al-

low for an additive constant to be negative. One obvious example of a positive-linear

aggregate isSUM. Any positive, weighted sum will also meet these requirements {

an example is the �xed-subset average function given below.

De�nition 99 (Fixed-Subset Average). For set X of reals, given a �xed subset

X subset � X , the �xed-subset average is the quantity:

average(X subset) =
1

card(X subset)

X

x2 X subset

(x)

Special cases of the query. We now describe two special cases of the query. In one

case, we considerzero-starting value functions, while in a second case, we consider

a-priori vertex conditions V C. Intuitively, zero-starting means that value(;) = 0.

However, there are several ways in which this criteria may be met - for example, we

can simply adjust the aggregate by subtracting a constant (which, for positive-linear

aggregates, would still allow an aggregate to meet our de�nition of positive-linear).

An a-priori V C is one wherelfp (T �) satis�es V C i� V C was satis�ed already by

T � " 1. Intuitively, an a-prior V C is like a \fact" in classical logic programming

and where the application of the �xpoint operator makes no change to what was

true originally. We present formal de�nitions below.

De�nition 100 (Zero-starting). A SNOP-query iszero-starting (w.r.t. a given

social networkS and a GAP � � � S) i� value(;) = 0 .

354

Note that the function value() is uniquely de�nedby a social network, a SNOP-

query, and a di�usion model � and hence the above de�nition is well de�ned. The

result below states that as long as we consider positive linear aggregates, we can

always modify a non zero-starting aggregate to one that is.

Proposition 71. If a SNOP-query is not zero-starting w.r.t. a social networkS

and a GAP � � � S, and the aggregate is positive-linear, it can be expressed as

a zero-starting SNOP-query in linear time while still maintaining a positive-linear

aggregate.

De�nition 101 (A-Priori V C). In an a-priori V C SNOP-query, for setV0 � V,

we modify the de�nition of value(V0) (De�nition 94, part ii) as follows:

For all vertices v0 2 V0, g(v0) : 1 ^
V

pred2 `vert (v0) pred(v0) : 1 j= V C[V=v0].

Note that both examples(Q1),(Q2) we gave in the Introduction have a-priori

VCs. If, in the cell phone example, we require that the free cell phones are given

to non-employees, then this is an a-prioriV C because being an employee is not

determined by the di�usion process, but by whether a vertex in the social network

had the associated non-employee property. Likewise, in the case of an a-prioriV C in

the medical example saying that an individual below 5 shouldnot get the medicine,

this boils down to a static labeling of each node's age (below5 or not) which is not

a�ected by the di�usion process.

Example 8.3.2. Consider a painting company attempting to conduct a viral mar-

keting strategy. Consider the simple social network depicted in Figure 8.2. White

vertices represent individuals with whom the paint company has had prior business.

355

20

 1

 2

 3

 4

 5

 6

 7

 8

 9
10

11

12

13

14

15

16
17 18

19

Figure 8.2: Social Network for the painting company.

Suppose the represent this with a predicateprior and vertex atoms formed with some

white vertexv and prior are annotated with1 (i.e. prior (v) : 1) while the rest are

annotated with 0. Based on local telemarketing legislation, the paint company can

only contact individuals with which it had a prior business relationship. As the paint

company intends to market to a set of high-payo� vertices in a short period of time,

it is unreasonable to expect the number vertices where where aprior vertex atom is

annotated with1 to increase. Hence, they create a logic program such that the vertex

condition V C(V) = prior (V) : 1 is a-priori .

8.3.3 Properties of SNOPs

In this section, we will prove several usful properties of SNOP queries that use

various combinations of the assumptions presented in the previous section. Later,

356

Propoerty Assumptions

Monotonicity of value (Lemma 23) Monotonicity

Multiset f V0 � VjV0 is a pre-answerg is a uniform matroid A-priori V C

(Lemma 24)

Submodularity (Theorem 47)

Linear GAP

Positive linear agg

A-priori V C

Table 8.2: Properties that can be proven given certain assumptions

we will leverage some of these properties in our algorithms.Table 8.2 summarizes

the di�erent properties that we prove in this section (as well as what assumptions we

make to prove these properties). Table 8.3 shows how these properties are leveraged

in the algorithms that we will present later in the chapter.

The �rst property we show is that the value function is monotonic. This follows

directly from the monotonicity of the aggregate - hence we present the following easy

Algorithm Property

Exact algorithm with pruning (Section 8.5.2) Monotonicity of value

Approx. Ratio on Greedy Algorithm (Section 8.5.3)
Submodularity

Zero-starting

Table 8.3: How the various properties are leveraged in the Algorithms

357

lemma.

Lemma 23. Given SNOP queryQ = (agg; V C; k; g(V)) (w.r.t. SN S and GAP

� � � S), if agg is monotonic (De�nition 97), then value (de�ned as perQ and �)

is monotonic.

Next, we show that the multiset of pre-answers is a uniform matroid in the

special case of an a-prioriV C.

Lemma 24. Given SNOP queryQ = (agg; V C; k; g(V)) (w.r.t. SN S and GAP

� � � S), if V C is applied a-priori (as per De�nition 101), the set of pre-answers

(to query Q) is a uniform matroid.

An important property in social networks issubmodularity. Intuitively,if X is

a set, then a functionf : 2X ! R is submodulari� whenever X 1 � X 2 and x =2 X 2,

f (X 1 [f xg) f (X 1) � f (X 2 [f xg) f (X 2). The following result states that the

value() function associated with a linear GAP with an a-priori vertex conditionV C

and a positive linear aggregate function is guaranteed to besubmodular.

Theorem 47. Given SNOP queryQ = (agg; V C; k; g(V)) (w.r.t. SN S and GAP

� � � S) if the following criteria are met:

� � is a linear GAP

� V C is applied a-priori

� agg is positive linear,

then value (de�ned as per Q and �) is sub-modular .

In other words, for Vcond � f v0jv0 2 V and (g(v0) : 1 ^
V

pred2 `vert (v0) pred(v0) : 1 j=

358

V C[V=v0])g and setsV1 � V2 � Vcond and v 2 Vcond, v =2 V1 [V2, the following

holds:

value(V1 [f vg) value(V1) � value(V2 [f vg) value(V2)

Proof Sketch: Consider a linear polynomial with a variable for each vertex in the

set of vertices that meet the a-prioriV C, where setting the variable to1 corresponds

to the vertex being picked and setting it to0 indicates otherwise. For any subset of

vertices meeting the a-prioriV C, there is an associated polynomial of this form such

that when the variables corresponding to the vertices are set to1 (and the rest set to

0), the answer is equal to the correspondingvalue for that set. For a setsV1; V2 and

vertex v (as per the statement), we show that submodualirty holds by manipulating

such polynomials.

Example 8.3.3. We now show an example of a SNOP-query that isnot sub-

modular when a non-linear GAP is considered. Figure 8.3 shows a social network.

This social network has one edge predicate, e, and all edges are weighted with1.

Nodes in the network are either susceptible to the disease (circles) or carriers (di-

amonds) - the associated predicates are suc and car respectively. Additionally, we

have the predicates inf; exp denoting vertices that have been infected by or exposed

to the disease.

Let � disease be the embedding of this network plus the following di�usion rules.

exp(V) : 1 $ inf(V) : 1

exp(V) : 1 $ e(V 0; V) : 1 ^ inf(V 0) : 1 ^ suc(V) : 1

359

v1

v2 v3

v4

v5

v7 v6

Figure 8.3: Social network corresponding with Example 8.5.1 concerning disease

spread.

inf(V) : b
P

i I iP
i E i

c $ exp(V) : 1 ^
^

Vi j(Vi ;V)2 E

(edge(Vi ; V) : E i ^ inf (Vi) : I i)

Intuitively, the second rule says that a vertex becomes exposed if that vertex

is susceptible and it has at least one incoming neighbor that is infected. The third

rule states that a vertex becomes infected if it is exposed and all its neighbors are

infected. Suppose, for illustrative purposes, that inf(v5); inf(v7) are annotated with

1.

Consider the functionvalue based on the SNOP query(� disease; SUM; true; 2; inf(V)).

Obviously, as the GAP is not linear, it does not meet the requirements of Theo-

rem 47 to prove submodularity. We can actually show through counterexample, that

this SNOP query is not submodular. Consider the following:

value(f v1; v5g) value(f v1g) = 1

and

value(f v1; v7; v5g) value(f v1; v7g) = 5

This shows a clear violation of submodularity.

360

8.3.4 The Complexity of SNOP Queries

We now study the complexity of answering a SNOP query. First, we show

that SNOP-query answering is NP-hard by a reduction from maxk-cover [46]. We

show that the problem is NP-hard even when many of the special cases hold.

Theorem 48. Finding an answer to SNOP queryQ = (agg; V C; k; g(V)) (w.r.t. SN

S and GAP � � � S) is NP-hard (even if � is a linear GAP, V C = ; , agg= SUM

and value is zero-starting).

Proof Sketch: The known NP-hard problem of MAX-K-COVER [46] is de�ned as

follows.

INPUT: Set of elements,S and a family of subsets ofS, H � f H1; : : : ; Hmax g, and

positive integerK .

OUTPUT: Less than or equal toK subsets fromH such that the union of the subsets

covers a maximal number of elements inS.

We show that MAX-K-COVER can be embedded into a social network and that the

corresponding SNOP-query gives an optimal answer to MAX-K-COVER. The em-

bedding is done by creating a social network resembling a bipartite graph, where ver-

tices represent either the elements or the subsets from the input of MAX-K-COVER.

For every vertex pair representing a set and an element of that set, there is an edge

from the set vertex to the element vertex. A single vertex and edge predicate are

used -vertex and edge. A single non-ground di�usion rule is added to the GAP:

vertex(V) : X $ vertex(V 0) : X ^ edge(V 0; V) : 1. The aggregate is simply the

sum of the annotations associated with the vertex atoms. We show that the picked

361

vertices that maximize the aggregate correspond with picked subsets that maximize

output of the problem. Also, as we do not useV C, the GAP is linear, and the

aggregate is positive-linear, we know that thevalue function is submodular.

Under some reasonable conditions, the problem of answering SNOP-queries is

also in NP.

Theorem 49. Finding an answer to a decision problem associated with SNOP query

Q = (agg; V C; k; g(V)) (w.r.t. SN S and GAP � � � S) whereaggand the functions

in F are polynomially computable is in-NP.

Most common aggregate functions like SUM, AVERAGE, Weighted average,

MIN, MAX, COUNT are all polynomially computable. Moreover, the assumption

that the functions in F are polynomially computable is also reasonable.

Later in this chapter, we shall address the problem of answering a SNOP-query

using an approximation algorithm. We re-state the de�nition of approximation

below (see [54]).

De�nition 102 (Approximation) . For a given instanceI of a maximization problem

with optimal solutionOPT(I), an � -approximation algorithmA is an algorithm such

that for any instanceI

OPT(I) � � � A(I)

Based on the above de�nition, we shall say thatV0 is an 1
� -approximation to a

SNOP query if value(V0
opt) � � � value(V0) (where Vopt is the answer to the SNOP

query). Likewise, the algorithm that producesV0 in this case is an� -approximation

362

algorithm. We note that due to the nature of the reduction from MAX-K-COVER

that we used to prove NP-hardness, we can now show that unlessP = NP , there is

no PTIME-approximation of the SNOP-query answering problem that can guarantee

that the approximate answer is better than 0.63 of the optimal value. This gives us

an idea of the limits of approximation possible for a SNOP-query with a polynomial-

time algorithm. Later, we will develop a greedy algorithm that precisely matches

this approximation ratio.

Theorem 50. Answering a SNOP queryQ = (agg; V C; k; g(V)) (w.r.t. SN S and

GAP � � � S), cannot be approximated in PTIME within a ratio of e 1
e + � for some

� > 0 (where e is the inverse of the natural log) unlessP = NP { even if � is a

linear GAP, V C = ; , agg= SUM and value is zero-starting.

(That is, there is no polynomial-time algorithm that can approximatevalue

within a factor of about0:63 under standard assumptions.)

8.3.5 Counting Complexity of SNOP-Queries

In this section, we ask the question: how many answers are there to a SNOP-

query (agg; V C; k; g(V))? In the case of the cell phone example, this corresponds

to asking \How many setsANS of people are there in the the network such that

ANS hask or fewer people andANS optimizes the aggregate, subject to the vertex

condition V C?" If there are m such setsANS1; : : : ; ANSm , this means the cell

phone company can give the free cell phone plan to eithe all members of ANS1

or to all members ofANS2, and so forth. The \counting complexity" problem of

363

determining m is is #P-complete.

Theorem 51. Counting the number of answers to SNOP queryQ = (agg; V C; k; g(V))

(w.r.t. SN S and GAP � � � S) is # P-complete.

8.3.6 The SNOP-ALL Problem

Though the cell phone company may not want to give free calling plans to

all possible members ofANS1; : : : ; ANSm , in the case of the epidemiology example

where a government wants to check the spread of a disease, thegovernment may

reason as follows. It has onlyk units of medicine to hand out now, and hence it

needs to choose to give those medicines to all members of exactly one of the ANS i 's.

However, the government wants to know how many people are in all of the ANS i 's

so as to determine how to plan for the future (e.g. placing future orders).

Although the counting version of the query is #P-hard, �nding the union

of all answers to a SNOP query is no harder than a SNOP query (w.r.t.PTIME

reductions). We shall refer to this problem asSNOP-ALL - and it reduces both to

and from a regular SNOP query in PTIME.

We �rst prove NP-hardness, showing by showing we can answer a SNOP query

in PTIME with an oracle to SNOP-ALL.

Theorem 52. Given SNOP queryQ = (agg; V C; k; g(V)) (w.r.t. SN S and GAP

� � � S), �nding
S

V 0
ans 2 ans(Q) V 0

ans is NP-hard.

Proof Sketch: We show NP-hardness by the embedding of a SNOP-query in a

SNOP-ALL query via the following informal algorithm (FIND-SET) that takes an

364

instance of SNOP-ALL (Q) and some vertex setV � , jV � j � k.

1. If jV � j = k, return V �

2. Else, solve SNOP-ALL(V �), returning set V 00.

(a) If V 00 V � � ; , return V �

(b) Else, pick v 2 V 00 V � and return FIND-SET(Q; V � [v)

The theorem below shows that SNOP-ALL can be answered in PTIME with

an oracle to a SNOP-query.

Theorem 53. Given SNOP queryQ = (agg; V C; k; g(V)) (w.r.t. SN S and GAP

� � � S), �nding
S

V 0
ans 2 ans(Q) V 0

ans reduces tojV j + 1 SNOP-queries.

Proof Sketch: Using an oracle that correctly answers SNOP-queries, we can an-

swer a SNOP-ALL query by setting upjV j SNOP-queries as follows:

� Let kall be thek value for the SNOP-ALL query and for each SNOP-queryi , let

ki be thek for that query. For each queryi , set ki = kall 1.

� Number each element ofvi 2 V such thatg(vi) and V C(vi) are true. For the i th

SNOP-query, letvi be the corresponding element ofV

� Let � i refer to the GAP associated with thei th SNOP-query and� all be the

program for SNOP-ALL. For each program� i , add fact g(vi) : 1

� For each SNOP-queryi , the remainder of the input is the same as for SNOP-ALL.

After the construction, do the following:

365

1. We shall refer to a SNOP-query that has the same input as SNOP-ALL as the

\primary query." Let V 0
ans

(pri) be an answer to this query andvalue(V 0
ans

(pri))

be the associated value.

2. For each SNOP-queryi , let V 0
ans

(i) be an answer andvalue(V 0
ans

(i)) be the

associated value.

3. Let V 00, the solution to SNOP-ALL be initialized as; .

4. For each SNOP-queryi , if value(V 0
ans

(i)) = value(V 0
ans

(pri)), then add vertexvi

to V 00.

8.4 Applying SNOPs to Real Di�usion Problems

In this section, we show how SNOPs can be applied to real-word di�usion

problems. We look at three categories of di�usion models {tipping models (Sec-

tion 8.4.1), where a given vertex adopts a behavior based on the ratio of how many

of its neighbors previously adopted the behavior,cascading models (Section 8.4.2),

where a property passes from vertex to vertex solely based onthe strength of the

relationship between the vertices, andhomophilic models (Section 8.4.3), where

vertices with similar properties tend to adopt the same behavior { irrespective (or

in addition to) of network relationships. None of these approaches solves SNOP-

queries | they merely specify di�usion models rather than performing the kinds of

optimizations that we perform in SNOP-queries.

366

8.4.1 Tipping Di�usion Models

Tipping models [150, 61] have been studied extensively in economicsand so-

ciology to understand di�usion phenomena. In tipping models, a vertex changes a

property based on the cumulative e�ect of its neighbors. In this section, we present

the tipping model of Jackon-Yariv [73], which generalizes many existing tipping

models.

The Jackson-Yariv Di�usion Model [73]. In this framework, the social network

is just a directed graphG0 = (V0; E0) consisting of a set of agents (e.g. people). Each

agent has a default behavior (A) and a new behavior (B). Supposedi denotes the

degree of a vertexvi . [73] use a function : f 0; : : : ; jVj 1g ! [0; 1] to describe

how the number of neighbors ofv a�ects the bene�ts to v for adopting behavior

B . For instance, (3) speci�es the bene�ts (in adopting behaviorB) that accrue to

an arbitrary vertex v 2 V0 that has three neighbors. Let� i denote the fraction of

neighbors ofvi that have adopted behaviorB . Let constantsbi and � i be the bene�t

and cost respectively for vertexvi to adopt behaviorB , respectively. [73] state that

nodevi switches to behaviorB i� bi
� i

� (di) � � i � 1.

Returning to our cell-phone example, one could potentiallyuse this model to

describe the spread of the new plan. In this case, behaviorA would be adherence to

the current plan the user subscribes to, whileB would be the use of the new plan.

The associated SNOP-query would �nd a set of nodes which, if given a free plan,

would jointly maximize the expected number of adoptees of the plan. Cost and

367

bene�t could be computed from factors such as income, time invested in switching

plans, etc. Below is a straight-forward embedding of this model into our framework.

Di�usion Model 8.4.1 (Jackson-Yariv model). Given a Jackson-Yariv model con-

sisting of G0 = (V0; E0) and g, we can set up an SN(V0; E00; `vert ; `edge; w) as follows.

We de�ne E00= f (x; y); (y; x) j (x; y) 2 E0g. We have a single edge predicate symbol

edgeand `edge assigns1 to all edges inE00. Our associated GAP� JY now consists

of � SN plus the single rule:

B(Vi) : b
bi

� i
� (

X

j

E j) �

P
j X j

P
j E j

c $
^

Vj j(Vj ;Vi)2 E00

(edge(Vj ; Vi) : E j ^ B(Vj) : X j)

It is easy to see that this rule (when applied in conjunction with � SN for

a social networkSN) precisely encodes the Jackson-Yariv semantics. Note that

� disease from Example 8.3.3 on page 359 is a special case of this model.

We notice right away that the above GAP is not linear. However, the good

news is the non-linearity is only due to the oor function. If we eliminate the

oor-function, we can represent a variant of this model wherethe annotation would

represent an \expected likelihood" that an agent adopts behavior B. This new em-

bedding of the Jackson-Yariv models is a linear GAP under the following conditions

(forall Vi).

jf Vj j(Vj ; Vi) 2 E00gj �
bi

� i
� (

X

Vq j(Vq ;Vi)2 E00

w(Vq; Vi ; edge)) �
1

P
Vq j(Vq ;Vi)2 E00w(Vq; Vi ; edge)

� 1

bi

� i
� (

X

Vq j(Vq ;Vi)2 E00

w(Vq; Vi ; edge)) �
1

P
Vq j(Vq ;Vi)2 E00w(Vq; Vi ; edge)

2 [0; 1]

As the Jackson-Yariv model does not cause edge weights to change, they can be

treated as constants upon grounding (hence, annotations ofedge atoms can be

368

multiplied or divided by the annotations of vertex atoms in the heads of the di�usion

rules). This allows us to easily create a linear version of the Jackson-Yariv model

below.

Di�usion Model 8.4.2 (Linear Jackson-Yariv model).

B (Vi) :
bi

� i
� (

X

j

E j) �

P
j X j

P
j E j

$
^

Vj j(Vj ;Vi)2 E00

(edge(Vj ; Vi) : E j ^ B(Vj) : X j)

If we consider the above model in terms of De�nition 96 (LinearGAPs), for

each ground di�usion rule, the annotated atom in the head, formed with B(Vi) is

annotated with a linear expression of the form

c0 + c1 � X 1 + : : : + cjf Vj j(Vj ;Vi)2 E00gj � X jf Vj j(Vj ;Vi)2 E00gj

Here, c0 = 0, and for all j > 0,

cj =
bi

� i
� (

X

Vq j(Vq ;Vi)2 E00

w(Vq; Vi ; edge)) �
1

P
Vq j(Vq ;Vi)2 E00w(Vq; Vi ; edge)

where eachj is an index of an incoming vertex toVi . Note that we can directly

use edge weights from the original social network (as expressed by the function w)

because theE j annotations are for edge atoms and do not change in the di�usion

process (as edge weights do not appear in the heads of any di�usion rules in the

model). Clearly, under our stated assumption, linearity holds.

Example 8.4.1. Figure 8.4 illustrates a social network of individuals who share

photographs. Edges are directional formed with a predicateshare and weighted1.

Vertex predicates includef buys camera; prog. If the vertex is shaded, the vertex

atom formed with pro is annotated with 1. All other vertex atoms are annotated

with zero.

369

v1

v6

v3

v2

v5 v7

v10

v8

v9

v4

Figure 8.4: Social network of individuals sharing photographs. Shaded vertices are

professional photographers. All edges are directionalshare edges.

A vendor wishes to sell a camera and wants to see how the popularity of the

camera will spread in the network. He wants to use a Jackson-Yariv style di�usion

model. Consider the social network embedded into a logic program,� along with

following Jackon-Yariv style tipping di�usion rule:

buys camera(V) : b

P
j X j � E j
P

j E j
c $

^

Vj j(Vj ;V)2 E

(shares(Vj ; V) : E j ^ buys camera(Vj) : X j)

We will call the logic program with the above di�usion rule� sfwfd . Alternatively,

we could have a linear version of it as follows (again, linearity follows by the fact

that we can treat the edge weights as constants upon grounding):

buys camera(V) :

P
j X j � E j
P

j E j
$

^

Vj j(Vj ;V)2 E

(shares(Vj ; V) : E j ^ buys camera(Vj) : X j)

We will call the logic program formed with that di�usion rule (no oor function)

� lin . In this case, the grounded di�usion rules have a head formed with the atom

370

buys camera(V) annotated with the linear expression

co + c1 � X 1 + : : : + cjf Vj j(Vj ;V)2 E00gj � X jf Vj j(Vj ;V)2 Egj

Here, c0 = 0 and for all j > 0 we have,

cj =
w(Vj ; V; shares)

P
Vq j(Vq ;V)2 E w(Vq; V; edge)

where eachj is an index of an incoming vertex toV. Clearly, each cj 2 [0; 1]

and the sum of all these constants is1, which gives us linearity in accordance with

De�nition 96. Table 8.4 shows the least �xed point for the two di�erent GAPs

(original JY model and the linear version) that arise when we assign vertex atom

buys camera(v2) an annotation of 1 | it also shows as well as the sum of the

annotations.

8.4.2 Cascading Di�usion Models

In a cascading model, a vertex obtains a property from one of its neighbors,

typically based on the strength of its relationship with theneighbor. These mod-

els were introduced in the epidemiology literature in the early 20th century, but

gained increased notice with the seminal work of [5]. Recently, cascading di�usion

models have been applied to other domains as well. For example, [20] (di�usion

of photos in Flickr) and [167] (di�usion of bookmarks in FaceBook) both look at

di�usion process in social networks as \social cascades" ofthis type. In this section,

we present an encoding of the popular SIR model of disease spread in our framework.

371

Vertex Atom Annotation Assigned by Annotation Assigned by

lfp (T � sfwd [f buys camera (v2):1#g) lfp (T � lin [f buys camera (v2):1#g)

buys camera(v1) 0:0 0:5

buys camera(v2) 1:0 1:0

buys camera(v3) 1:0 1:0

buys camera(v4) 0:0 0:0

buys camera(v5) 0:0 0:0

buys camera(v6) 0:0 0:0

buys camera(v7) 0:0 0:25

buys camera(v8) 0:0 0:5

buys camera(v9) 0:0 0:5

buys camera(v10) 0:0 0:5

SUM 2 4:25

Table 8.4: Comparison between straightforward and linear Jackson-Yariv Models

372

The SIR Model of Disease Spread. The SIR (susceptible, infectious, removed)

model of disease spread [5] is a classic disease model which labels each vertex in a

graph G = (V; E) (of humans) with susceptibleif it has not had the disease but can

receive it from one of its neighbors,infectious if it has caught the disease andt rec

units of time have not expired, andremovedwhere the vertex can no longer catch

or transmit the disease. The SIR model assumes that a vertexv that is infected can

transmit the disease to any of its neighborsv0 with a probability pv;v0 for t rec units

of time. We would like to \�nd a set of k vertices that would maximize the expected

number of vertices that become infected". These are obviously good candidates to

treat with appropriate medications.

Di�usion Model 8.4.3 (SIR model). Let S = (V; E; `vert ; `edge; w) be an SN where

each edge is labeled with the predicate symbole and w(v; v0; e) = pv;v0 . We use

the predicate inf to designate the initially infected vertices. In order to create a

GAP � SIR capturing the SIR model of disease spread, we �rst de�net rec predicate

symbols rec1; : : : ; rect rec where reci (v) intuitively means that nodev was infectedi

days ago. Hence, rect rec (v) means that v is \removed." We embedS into GAP

� SIR by adding the following di�usion rules. Ift rec > 1, we add a non-ground rule

for each i = f 2; : : : ; trecg - starting with t rec:

reci (V) : R $ reci 1(V) : R

rec1(V) : R $ inf(V) : R

inf(V) : (1 R) � PV 0;V � (PV 0 R0) $ rect rec (V) : R ^ e(V 0; V) : PV 0;V ^

inf(V 0) : PV 0 ^ rect rec (V 0) : R0:

373

The �rst rule says that if a vertex is in its (i 1)'th day of recovery with

certainty R in the j 'th iteration of the T � SIR operator, then the vertex isi days into

recovery (with the same certainty) in thej +1'th iteration of the operator. Likewise,

the second rule intuitively encodes the fact that if a vertexbecame infected with

certainty R in the j 'th iteration of the T � SIR operator, then the vertex is one day

into recovery in the j + 1'th iteration of the operator with the same certainty. The

last rule says that if a vertexV 0 was infected with probability PV 0 and there is an

edge fromV 0 to V in the social network (weighted with probability PV 0;V), and the

vertex V 0 has recovered with certaintyR0, given the probability 1 R that V is not

already recovered, (and hence, cannot be re-infected), thenthe certainty that the

vertex V gets infected is (1 R) � PV 0;V � (PV 0 R0). Here, PV 0 R0 is one way of

measuring the certainty that V 0 has recovered (di�erence of the probability that it

was infected and the probability it has recovered) andPV 0;V is the probability of

infecting the neighbor.

To see how this GAP works, we execute a few iterations of theT � SIR operator

and show the �xpoint that it reaches on the small graph shown in Figure 8.5. In

this graph, the initial infected vertices are those shown asa shaded circle. The

transmission probabilities weight the edges in the graph.

The SNOP-query (SUM; true; k; inf) can be used to compute theexpected

number of infected vertices in the least �xpoint ofT� . This query says \�nd the k

vertices in the social network which, if infected, would cause the maximal number

of vertices to become infected in the future." However, the above set of rules can

be easily used to express other things. For instance, an epidemiologist may not be

374

0.2

0.1 0.05

0.3 0.4 0.3

0.2

0.1 c i

d

h g

b a

f

Shaded vertices are infected.
Edges are bi-directional,
 t rec =2

inf(a):1, inf(c):1, inf(d):1
rec1(a):1, rec1(c):1, rec1(d):1, inf(b):0.2, inf(d):0.3,
inf(f):0.3, inf(g):0.05, inf(i):0.1
rec2(a):1, rec2(c):1, rec2(d):1, rec1(b):0.2,
rec1(d):0.3, rec1(f):0.3, rec1(g):0.05, rec1(i):0.1
inf(g):0.08
rec2(b):0.2, rec2(d):0.3, rec2(f):0.3, rec2(g):0.05,
rec2(i):0.1, rec1(g):0.08
rec2(g):0.08

1
2

3

4

5

Figure 8.5: Left: Sample network for disease spread. Right: annotated atoms

entailed after each application ofT � SIR (maximum, non-zero annotations only).

satis�ed with only one set ofk vertices that can cause the disease to spread to the

maximum extent - as there may be another, disjoint set ofk vertices that could

cause the same e�ect. The epidemiologist may want to �nd all members of the pop-

ulation, that if in a group of sizek could spread the disease to a maximum extent.

This can be answered using aSNOP-ALL query, described in Section 8.3.

The SIS Model of Disease Spread. The SIS (Susceptible-Infectious-Susceptible)

model [67] is a variant of the SIR model. In SIS, an an individual becomes suscep-

tible to disease after recovering (as opposed to SIR, where an individual acquires

permanent immunity). SIS can be easily represented by a modi�cation to the con-

struction given above.

Di�usion Model 8.4.4 (SIS model). Take Di�usion Model 8.4.3 and change the

third rule to

inf(V) : PV 0;V � (PV 0 R0) $ e(V 0; V) : PV 0;V ^ inf(V 0) : PV 0 ^ rect rec (V 0) : R0:

375

Here, we do not consider the probability that vertexV is immune { hence this

probability of recovery does not change the probability of becoming infected.

Di�usion in the Flickr Photo Sharing Network. The Flickr social network is

designed for sharing of digital photographs. Users create a list of \favorite" photos

that can be viewed by other users on the network. In [20], the authors studied how

photographs spread to the favorite lists of di�erent users using a variant of the SIS

model. The key di�erence is that they do not consider a node \recovered" { i.e. once

a photo was placed on a favorite list, it was relatively permanent (the study was

conducted over about 100 days). They also found that photos lower on a favorite

list (as the result of a user marking a large number of photos as\favorite") for a

given user could still spread through the network. Hence, we present a GAP that

captures the intuition of how Flickr photos spread accordingto [20].

Di�usion Model 8.4.5 (Flickr Photo Di�usion) .

photoi (V) : consti � X i $ connectedto(V 0; V) : 1 ^ photoi (V
0) : X i

In Di�usion Model 8.4.5, the annotation of the vertex atomphotoi (V) is the

likelihood that vertex V has marked photoi as one of its favorites. The predicate

connectedto is the sole edge label representing that there is a connection from vertex

V 0 to V (users select other users on this network). Additionally, thevalue consti is

a number in [0; 1] that determines the likelihood that a given photo spreadsin the

network. As the edge weights do not change in this model, upongrounding, we can

eliminate the annotated atomconnectedto(V 0; V) : 1 from the body (as for each

376

vertex V, we would only need to ground out a di�usion rule for each incoming edge

to V). Therefore, asconsti 2 [0; 1], linearity follows. We note that for all of these

models, the annotation functions reect one interpretationof the likelihood that a

vertex is infected or recovered { others are possible in our framework.

8.4.3 Homophilic Di�usion Models

Recently, [9] studied the spread of mobile application use on a global instant-

messaging network of over 27 million vertices. They found that network-based

di�usion could overestimate the spread of a mobile application and, for this scenario,

over 50% of the adopted use of the applications was due tohomophily - vertices

with similar properties adopting similar applications.

This result should not be surprising { the basic idea behind web-search ad-

vertising is that two users with a similar property (search term) will be interested

in the same advertised item. In fact, [20] explicitly pre-processed their Flickr data

set with a heuristic to eliminate properties attained to vertices that could not be

accounted for with a di�usion process. We can easily represent homophilic di�usion

in a GAP with the following type of di�usion rule:

Di�usion Model 8.4.6 (Homophilic Di�usion of a Product) .

buysproduct(V) : 0:5 � X $ property(V) : 1 ^ exposedto product(V) : X

In Di�usion Model 8.4.6, if a vertex is exposed to product (i.e. through mass

advertising) and has a certain property, then the person associated with the vertex

purchases the product with a likelihood of 0:5. For this rule, there are no network

377

e�ects. Note that if the predicate property does not appear in any other rule heads,

then the GAP is linear.

[177], the authors propose a \big seed" marketing approach that combines

both homophilic and network e�ects. They outline a strategyof advertising to a

large group of individuals who are likely to spread the advertisement further through

network e�ects. We now describe a GAP that captures the ideas underlying big seed

marketing. Suppose we have a set of attribute labelsAL � VP. These attributes

may be certain demographic characteristics - anything from education level to race

to level of physical �tness. Suppose we want to advertise tok groups with one

of these attributes to maximize an aggregate with respect toa goal predicateg.

Consider the following construction.

Di�usion Model 8.4.7 (Big Seed Marketing). The GAP includes an embedding of

the social network, as well as the network di�usion model of the user's choice, and

the following additions.

1. Add vertex label attrib toVP.

2. For each attribute label lbl2 AL, add vertexvlbl to V. Set `vert (vlbl) = f attrib g.

3. For each attribute label lbl2 AL, let e� lbl be a constant in[0; 1]. This corre-

sponds to the con�dence that, if advertised to, a vertexv with label lbl obtains

an annotation of 1 on g(v).

4. This construction uses an a-prioriV C = attrib (V) : 1.

5. Subtractk from the aggregate { this discounts the vertices created in part 2.

378

6. For each lbl2 AL, add the following non-ground rule:

g(V) : e� lbl � X $ lbl(V) : 1 ^ g(vlbl) : X

Note that in the above di�usion model, thevlbl vertices correspond to adver-

tisements directed toward di�erent vertex properties. TheV C condition forces the

query to only return vlbl vertices. The di�usion rule, added per label, ensures that

the mass advertisement is received and that the vertex acts accordingly (hence the

ef f lbl constants). Also, it is important to note that this construction is linear if no

vertex atom formed with a predicate inAL appears in the head of a di�usion rule.

We close this section with a note that while all di�usion models mentioned here

have been developed by others and have been shown above to be representable via

GAPs, none of these papers has developed algorithms to solve SNOP-queries. We

emphasize that not only do we give algorithms to answer SNOP-queries in the next

section, our algorithms take any arbitrary di�usion model that can be expressed

as a GAP, and an objective function as input. In addition, our notion of a social

network is much more general than that of many of these extantapproaches.

8.5 Algorithms

In this section we study how to solve SNOP problems algorithmically.

379

8.5.1 Naive Algorithm

The naive algorithm for solving the SNOPS query (agg; V C; k; g(V)) is to �rst

�nd all pre-answers to the query. Then compute the value for each pre-answer and

�nd the best. This is obviously an extremely expensive algorithm that is unlikely

to terminate in a reasonable amount of time.

An execution strategy that �rst �nds all vertices in a social network S that

satisfy the vertex condition and then somehow restricts interest to those vertices in

the above computation (whereS is embedded in a GAP �) would not be correct for

two reasons. First,lfp (T �) assigns a truth value to each ground vertex atomA that

might be di�erent from what is initially assigned within the social network. Second,

when we add a new ground vertex atomA to � (e.g. in our cell phone example,

when we consider the possibility of assigning a free calling plan to a vertex v), it

might be the case that vertices that previously did not satisfy the vertex condition

V C do so after the addition ofA to �.

8.5.2 A Non-Ground Algorithm in the Monotonic Case

There are three major problems with the Naive algorithm. The �rst problem

is that the aggregate function is very general and has no properties that we can

take advantage of. Hence, we can show that the entire search space might need

to be explored if an arbitrary aggregate function is used. The second problem is

that it works on the \ground" instantiation of �. The third prob lem is that the

T � operator maps allground atoms to the [0; 1] interval and there can be a very

380

large number of ground atoms to consider. For instance, if wehave a very small

social network with just 1000 vertices and a rule with 3 variables in it, that rule has

109 possible ground instances - an enormous number. Likewise, if there is a ternary

predicate symbol in the language of �, then there are 109 ground atoms to consider.

All these problems are further aggravated by the fact that �xpoints might have to be

computed several times.

In this section, we provide an algorithm to compute answers toa SNOP-

query under the assumptionthat our aggregate function ismonotonic and under

the assumption8 that all rules in a GAP have the form A : f (X 1; : : : ; Xn) $ B1 :

X 1; ^ � � � ; Bn : X n .

In this case, we de�ne anon-ground interpretation and a non-ground �xpoint

operatorS� . This leverages existing work on non-ground logic programming initially

pioneered by [114] and later adapted to di�erent logic programming extensions by

[59, 39, 165]. We start by de�ning a non-ground interpretation.

De�nition 103. A non-ground interpretation is a partial mappingNG : A ! [0; 1].

Every non-ground interpretationNG representsan interpretation grd(NG) de�ned

as follows:grd(NG)(A) = maxf NG(A0) j A is a ground instance ofA0g. When there

is no atom A0 which hasA as a ground instance and for whichNG(A0) is de�ned,

8This latter assumption does not cause any loss of generality for all practical purposes if we also

make the reasonable assumption that any constant annotations in a rule body can be translated into

constraints. So if B i : 0:5 occurs in the body of a rule, it can be replaced byB i : Vi ^ Vi � 0:5. [86]

show that allowing such constraints involving annotated constraints can be easily accommodated

by a simple extension to the semantics of GAPs.

381

then we setgrd(NG)(A) = 0 .

Thus, in a language with just three constantsa; b; cand one predicate symbol

p, the non-ground interpretation that mapsp(X; a) to 0:5 and everything else to 0

corresponds to the interpretation that assigns 0:5 to p(a; a); p(b; a) and p(c; a) and 0

to every other ground atom. Non-ground interpretations are succinct representations

of ordinary interpretations - they only keep track of assignments to non-ground

atoms (not necessarily all ground atoms) and they do not needto worry about

atoms assigned 0. In the worst case, the number of non-groundatoms that NG

keeps track of is no worse than a ground interpretation. We now de�ne a �xpoint

operator that maps non-ground interpretations to non-ground interpretations.

De�nition 104 (operator S�). The operator S� associated with a GAP� maps

a non-ground interpretation NG to the non-ground interpretationS� (NG) where

S� (NG)(A) = maxf f (X 1; : : : ; Xn) j A : f (� 1; : : : ; � n) $ B1 : � 1 ^ : : : ^ Bn : � n

is a rule in � such that for all 1 � i � n, there exists an atomB 0
i such that

(B1; : : : ; Bn) and (B 0
1; : : : ; B0

n) are simultaneously uni�able via a most general uni�er

� and (i) if � i is a constant, thenNG(B i �) � � i , and (ii) if � i is a variable,

then NG(B i �) = X i g. (In this de�nition, without loss of generality, we assume

the variables occurring in rules in� are mutually standardized apart and are also

di�erent from those in NG).

The �xpoint operator S� delays grounding to the maximal extent possible by

(i) only looking at the rules in � directly rather than ground instances of rules in �

(which is what T � does), and (ii) by trying to assign values to non-ground atoms

382

rather than ground instances - unless there is no other way around it. The following

example shows howS� works.

Example 8.5.1. Some speci�c di�usion models focus on certain features in a graph

that encourage the di�usion process. For example, [105] describes a di�usion pro-

cess that is augmented by the presence of \funnels" in the graph. In this example,

concerning disease spread, we take advantage of such features computationally by

leveraging the operatorS� .

Consider Example 8.3.3 from page 359 where we present a social network and

some di�usion rules for disease spread embedded in program� disease.

Let us apply S� disease till we reach a �xed point. With the �rst application,

we entail annotated atomsf exp(v4) : 1; exp(v5) : 1; exp(v6) : 1; exp(v7) : 1; g. With

the next application, f inf(v4) : 1; inf(v6) : 1g are entailed. Then, with the next

application, the non-ground annotated atom exp(V) : 1 is entailed. With the �nal

application of the operator, the non-ground annotated atom inf(V) : 1 is entailed.

Consider the ordering� de�ned as follows on non-ground interpretations:

NG1 � NG2 i� grd(NG1) � grd(NG2). In this case, it it easy to see that:

Proposition 72. Suppose� is any GAP. Then:

1. S� is monotonic.

2. S� has a least �xpointlfp (S�) and lfp (T �) = grd(lfp (S�)) . That is, lfp (S�)

is a non-ground representation of the (ground) least �xpoint operatorT � .

In short, S� is a version ofT � that tries to work in a non-ground manner as

much as possible. We now present theSNOP-Monalgorithm to compute answers to a

383

Figure 8.6: Search tree for Example 8.5.2.

SNOP-query (agg; V C; k; g(V)) when agg is monotonic. TheSNOP-Monalgorithm

uses the following notation: value(NG) is the same asvalue(grd(NG)) and NG

satis�es a formula i� grd(NG) satis�es it.

The following example shows how theSNOP-Monalgorithm works.

Example 8.5.2. Consider the program� disease from Example 8.5.1. Suppose, we

want to answer a SNOP query(� disease; SUM; true; 2; inf(V)). The search-tree in

Figure 8.6 illustrates howSNOP-Monsearches for an optimal solution to the query.

In the �gure, we labeled each node with the set of vertices and a real number. The ver-

tices correspond to the vertex atoms (annotated with1) formed with inf added toGAP

in step 4(c)i. The real number corresponds to the value resulting from this addition.

Underlined nodes in the search tree represent potential solutions wherebestV aland

bestSOLare updated. Notice, that, for example, the setf v4; v1g is never considered.

This is because inf(v1) is entailed anytime a candidate solution includesv4. The op-

timal solution is found to bef v7; v5g. In this example, the algorithm considers solu-

tions in the following order: fg ; f v4g; f v4; v7g; f v4; v5g; f v4; v6g; f v7g; f v7; v5g; f v7; v1g;

f v7; v2g; f v7; v3g; f v5g; f v5; v6g; f v5; v1g; f v5; v2g; f v5; v3g; f v6g; f v6; v1g; f v6; v2g;

384

SNOP-Mon(� ; agg; V C; k; g(V))

1. The variable Curr is a tuple consisting of a GAP and natural number. We initialize

Curr:P rog = �; Curr:Count = 0.

2. T odo is a set of tuples described in step 1. We initializeT odo� f Curr g

3. Initialize the real number bestV al= 0 and GAP bestSOL = NIL

4. while T odo6� ; do

(a) Cand = �rst member of T odo; T odo= T odo f Candg

(b) if value(lfp (SCand:P rog)) � bestV al ^ lfp (SCand:P rog) j= V C then

i. bestV al= value(lfp (SCand:P rog); bestSOL = Cand

(c) if Cand:Count < k then

i. For each ground atom g(V)� , s.t. 6 9OtherCand 2 T odowhere

OtherCand:P rog � Cand:P rog,

jOtherCand:P rogj � j Cand:P rogj + 1,

and lfp (SOtherCand:P rog) j= g(V)� : 1, do the following:

A. Create new tuple NewCand.

Set NewCand:P rog = Cand:P rog [f g(V)� : 1 $g .

Set New:Count = Cand:Count + 1)

B. Insert NewCand into T odo

ii. Sort the elements of Element 2 T odo in descending order of

value(Element:P rog), where the �rst element, T op 2 T odo, has the

greatest such value (i.e. there does not exist another elementT op0 s.t.

value(T op0:P rog) > value (T op:P rog))

5. if bestSOL 6= NIL then return (bestSOL:P rog �) else return NIL.

385

f v6; v3g; f v1g; f v2g; f v3g.

The following result states that theSNOP-Monalgorithm is correct.

Theorem 54. Given SNOP queryQ = (agg; V C; k; g(V)) (w.r.t. SN S and GAP

� � � S), if agg is monotonic then:

� There is an answer to the SNOP-queryQ w.r.t. the GAP � i� SNOP-

Mon(� ; agg; V C; k; g(V)) does not return NIL.

� If SNOP-Mon(� ; agg; V C; k; g(V)) returns any result other than NIL, then

that result is an answer to the SNOP-queryQ w.r.t. the GAP � .

8.5.3 Approximation Algorithms: GREEDY-SNOP

Even though SNOP-Mono�ers advantages such as pruning of the search tree

and leverages non-ground operations to increase e�ciency over the naive algorithm,

it is still intractable in the worst case. Regretfully, Theorem 48 precludes an exact

solution in PTIME and Theorem 50 precludes a PTIME� -approximation algorithm

where � < e
e 1 . Both of these results hold for the restricted case of linear-GAPs

and positive linear aggregate functions.

The good news is that we were able to show that(i) for linear-GAPs and

positive-linear aggregates, thevalue function is submodular(Theorem 47). (ii) Un-

der these conditions, we can reduce the problem to the maximization of a submod-

ular function over a uniform matroid (the uniformity of the matroid is proved in

Lemma 24 whenV C is applied a-priori). (iii) We can leverage the work of [127] that

admits a greedy e
e 1 approximation algorithm. In this section, we develop a greedy

386

algorithm for SNOP-queries that leverages the above three results.

The GREEDY-SNOPalgorithm shown below assumes a linear GAP, a positive-

linear aggregate, and a zero-startingvalue function. The algorithm provides e
e 1

approximation to the SNOP-query problem. As this matches the upper bound of

Theorem 50, we cannot do better in terms of an approximation guarantee.

GREEDY-SNOP(� ; agg; V C; k; g(V)) returns SOL � V

1. Initialize SOL = ; and REM = f v 2 Vj
�

g(v) : 1 ^
V

pred2 `vert (v) pred(v) : 1
�

j=

V C[V=v]g

2. While jSOLj < k and REM 6= ;

(a) vbest = null, val = value(SOL), inc(alg) = 0

(b) For each v 2 REM, do the following

i. Let inc(alg)
new = value(SOL [f vg) val

ii. If inc(alg)
new � inc(alg) then inc(alg) = inc(alg)

new and vbest = v

(c) SOL = SOL [f vbestg, REM = REM f vbestg

3. Return SOL

We now analyze the time complexity ofGREEDY-SNOP.

Proposition 73. Given SNOP queryQ = (agg; V C; k; g(V)) (w.r.t. SN S and

GAP � � � S), the complexity ofGREEDY-SNOPis O(k � jVj � F (jVj)) whereF (jVj)

is the time complexity to computevalue(V 0) for some setV 0 � V of sizek.

We note that most likely, the most expensive operation is the computation of

387

value at line 2(b)i. One obvious way to address this issue is by usinga non-ground

version of the �xed-point. We address this issue later.

Theorem 55. If SNOP query Q = (agg; V C; k; g(V)) (w.r.t. SN S and GAP

� � � S) meets the following criteria:

� � is a linear GAP

� V C is applied a-priori

� agg is positive linear

� value is zero-starting.

Then GREEDY-SNOPis an (e
e 1)-approximation algorithm for the query.

Example 8.5.3. Consider Example 8.4.1 and program� lin from page 369. Con-

sider the SNOP-query whereagg = SUM, V C(V) = pro(V), k = 2, and g(V) =

buys camera(V). On the �rst iteration of GREEDY-SNOP, the algorithm computes

the value for all vertices in the setREMAINING which arev1; v2; v3; v5; v7; v9; v10.

The resulting annotations of the �xed points and aggregates are shown in Table 8.5.

As value(;) = 0 , the incremental increase a�orded byv2 is 4:25 { and clearly

the greatest of all the vertices considered.GREEDY-SNOPaddsv2 to SOL, removes

it from REM and proceeds to the next iteration. Table 8.6 shows the incremental

increases for the second iteration. Asv5 provides the greatest increase, it is picked,

and the resulting solution isf v2; v5g.

388

Vertex Atom v1 v2 v3 v5 v7 v9 v10

buys camera(v1) 1:0 0:5 0:0 0:5 0:0 0:0 0:0

buys camera(v2) 0:0 1:0 0:0 0:0 0:0 0:0 0:0

buys camera(v3) 0:0 1:0 1:0 0:0 0:0 0:0 0:0

buys camera(v4) 0:0 0:0 0:0 0:0 0:0 0:0 0:0

buys camera(v5) 0:0 0:0 0:0 1:0 0:0 0:0 0:0

buys camera(v6) 0:0 0:0 0:0 0:0 0:0 0:0 0:0

buys camera(v7) 0:0 0:25 0:25 0:0 1:0 0:0 0:0

buys camera(v8) 0:0 0:5 0:5 0:0 0:0 0:0 0:0

buys camera(v9) 0:33 0:5 0:33 0:17 0:0 1:0 0:33

buys camera(v10) 0:0 0:5 0:5 0:0 0:0 0:0 1:0

SUM 1:33 4:25 2:58 1:67 1:0 1:0 1:33

Table 8.5: First iteration of the greedy algorithm.

389

Vertex Incremental Increase Incremental Increase

on First Iteration on Second Iteration

v1 1:33 0:67

v2 4:25 NA

v3 2:58 0:0

v5 1:67 1:67

v7 1:0 0:75

v9 1:0 0:5

v10 1:33 0:67

Table 8.6: Incremental Increases for Both Iterations ofGREEDY-SNOP.

390

8.6 Scaling GREEDY-SNOP

This section is dedicated to providing improvements toGREEDY-SNOPin

order to increase speed and/or enhance scalability. In thissection, we will present

an approach that does not necessarily select the same vertices asGREEDY-SNOP

called GREEDY-SNOP2. We shall use the term \the greedy algorithm" to describe

one of the two algorithms - noting when it makes a di�erence.

Most of the notation in this section will specify an iteration of the greedy

algorithm (i.e. for GREEDY-SNOP, this would refer to an iterations of the outer

loop at line 2). Our �rst piece of notation will be SOLi which speci�es the solution

after i iterations of the greedy algorithm. So, forGREEDY-SNOP, SOL0 � ; and

SOLi refers toSOL after i executions of line 2c. Likewise, we shall de�neREMi as

the set of vertices (satisfying some a-prioriV C) not picked at the end of iteration i .

The next piece of notation is for the GAP itself, �. We de�ne � i as � [

S
v2 SOL i

f g(v) : 1 $g . This allows us to de�ne I (alg)
i = lfp (S� i) which is an in-

terpretation that corresponds to the �xed point at each iteration.9 We will also

specify I i (v) = lfp (S� i ! 1 [f g(v):1#g) which is an interpretation at each iteration if

the greedy algorithm picks some vertexv written. We de�ne I i (v) only for i > 0.

We will also de�ne a special mapping that tells us theincrease in annotation if

vertex v is selected by the greedy algorithm at iterationi . We will often treat

this mapping as an interpretation and de�ne it for each ground atom A. Formally,

9We can substitute the S operator for the T operator if we wished to, but throughout this

section, we shall assume the use of theS operator as it would most likely yield an improvement in

performance.

391

INC i (v)(A) = I i (v)(A) I (alg)
i 1 (A). Unless speci�ed otherwise, we will only be con-

cerned about ground atoms formed with the goal predicate (g(V)). Hence, we can

most likely reduce storage requirements forI i (v) and INC i (v) in practice. For linear

GAPs, we have the following proposition concerning the increase in annotation.

Proposition 74. For all ground atomsA and verticesv, INC i 1(v)(A) � INC i (v)(A).

Now we will show that by savingI i (v) at each iteration, we can potentially

increase the speed at which subsequent �xed points are calculated. First, we consider

the GAP formed from some GAP � at its least �xed point.

De�nition 105. PROG(�) = � [f A : � jA : � is a non-ground annotated atom inlfp (S�)g

From this, we have the following two lemmas.

Lemma 25. For all programs � and any atomA, lfp (SPROG (�))(A) = lfp (S�)(A)

Lemma 26. If � 3 � � 1 [� 2, then for any atomA,

lfp (S� 3)(A) = lfp (SPROG (� 1)[PROG (� 2))(A)

This leads us to the following proposition.

Proposition 75. If � 3 � � 1 [� 2, then for any atomA,

lfp (S� 3)(A) = lfp (SPROG (PROG (� 1)[PROG (� 2)))(A)

So, supposeGREEDY-SNOPis on iteration i 1 and considers some vertexv

which it does not select. As it calculated the �xed-point, we cansaveI i 1(v) and

easily createPROG(� i 2 [f g(v) : 1 $g) using this information. At the end of

392

iteration i 1 we can also havePROG(� i 1) easily stored as well. Now suppose

vertex v is being considered again on iterationi . Rather than computing the �xed

point of S� i ! 1 [f g(v):1#g in the straight-forward manner, we can use Proposition 75

and compute the least �xed point of SPROG (� i ! 1)[PROG (� i ! 2 [f g(v):1#g) , which will

likely converge faster. We will use the notationPROGi (v) to refer to the program

PROG(� i 1 [f g(v) : 1 $g).

Example 8.6.1. Consider Example 8.5.3. Consider what happens whenGREEDY-

SNOPcomputesvalue when considering vertexv3 on the second iteration. A quick

look at Table 8.5 reveals that, as vertex atombuys camera(v3) is annotated with1

after the �rst iteration when v2 was considered. This means that the annotations

assigned whenv3 is added afterv2 will remain the same (hence, there was no in-

cremental increase whenv2 was added in the second iteration). By calculating the

�xed point using SPROG (� 1)[PROG (� 0 [f g(v3):1#g) will causeS to converge after a single

iteration in this case { as the maximum annotations are already assigned by rules

in program PROG(� 1).

With the I (alg)
i de�ned, we can specifyvalue at each iteration:

vali = agg(f I (alg)
i (g(V)) jV 2 Vg)

Next, we specify a notation to refer to how much thevalue has increased afteri

iterations of the greedy algorithm { theincremental increase{ or inc(alg)
i (de�ned for

i > 0). Formally, inc(alg)
i = vali vali 1. Note that we use the superscript (alg) to

signify that this corresponds with the incremental increase based on the vertex (or

vertices) selected by the greedy algorithm at iterationi . The optimal incremental

393

increase{ inc(opt)
i { refers to the incremental increase if the greedy algorithmselects

a single vertex that causes the greatest possible incremental increase tovalue. Note

that GREEDY-SNOPalways picks a vertex at each iteration such thatinc(alg)
i =

inc(opt)
i . Consider the following proposition.

Proposition 76. inc(opt)
i � inc(opt)

i 1 .

We will now de�ne the incremental increaseif the algorithm selects a speci�c

vertex v at iteration i - written inci (v). So, if the greedy algorithm selects vertexv,

then inc(alg)
i = inci (v). Formally, inci (v) = value(SOLi 1 [f vg) vali 1. As with

I i (v), inci (v) is only de�ned for i > 0. Also based on the de�nition of submodularity,

we have the following corollary to Proposition 76.

Corollary 14. inci (v) � inci 1(v).

Corollary 14 allows for a possible speed-up. For example, consider GREEDY-

SNOP on some iteration i . Suppose, while considering vertexv1, it computes

inc(opt)
i (v1). Now, it proceeds to the next vertex,v2. If, on some previous itera-

tion j � i , we savedinc(opt)
j (v2) and this value is less than or equal toinc(opt)

i (v1),

then we need not considerv2 as the incremental increase it can provide cannot pos-

sibly be greater thanv1. Such a technique is also leveraged in [101] on a di�erent

problem that reduces to the maximization of a submodular function over a uniform

matroid. In that work, this type of improvement led to an increase in speed by a

factor of 700.

However, the storage of the last incremental increase for a given vertex may

still need to be re-calculated after several iterations. One way to avoid this is to

394

obtain an upper bound oninci (v). We can do this with the special interpretation

INC i (v) that we already de�ned. Consider the following observation for positive-

linear aggregates.

Fact 1. inci (v) = agg(f INC i (v)(g(v0)) jv0 2 Vg)

Based on Observation 1 and Proposition 74, we can use the following result to

obtain an upper bound forinci (v).

Proposition 77. For j � i , we have:

inci (v) � agg
�

f min
�

1; INC j (v)(g(v0)) + I (alg)
i 1 (g(v0))

�
 I (alg)

i 1 ((g(v0))) jv0 2 Vg
�

We shall refer to the quantity

agg
�

f min
�

1; INC j (v)(g(v0)) + I (alg)
i 1 (g(v0))

�
 I (alg)

i 1 ((g(v0))) jv0 2 Vg
�

where thej is the annotation increase for vertexv was stored, asinc(up)
i (v). Consider

the following example.

Example 8.6.2. Consider Example 8.5.3. Suppose, at the start of the second it-

eration, the algorithm computes an inc(up)
2 (v) for all v 2 REM1. It would simply

use the �xed point computations of the �rst iteration to create INC1(v) for each (see

Table 8.5). In Table 8.7, we show values assigned byI (alg)
1 (interpretation after the

�rst iteration) and INC 1(v5) (incremental increase for each vertex atom fromv5).

Using the information in Table 8.7, we can easily compute inc(up)
2 (v5) to be

1:67. In this case, this is a very tight upper bound, matching the actual incremental

increase as depicted in Table 8.6.

395

Vertex Atom I (alg)
1 INC1(v5)

buys camera(v1) 0:5 0:5

buys camera(v2) 1:0 0:0

buys camera(v3) 1:0 0:0

buys camera(v4) 0:0 0:0

buys camera(v5) 0:0 1:0

buys camera(v6) 0:0 0:0

buys camera(v7) 0:25 0:0

buys camera(v8) 0:5 0:0

buys camera(v9) 0:5 0:17

buys camera(v10) 0:5 0:0

Table 8.7: Calculatinginc(up)
2 (v5).

396

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

O
ve

ra
ll

A
pp

ro
xi

m
at

io
n

Approximation of Increment

Figure 8.7: E�ect on overall approximation given an incremental approximation

factor.

We can also use upper bounds oninci (v) to obtain an upper bound oninc(opt)
i

for a given iteration. We present the following observation.

Fact 2. inc(opt)
i � min

�
inc(opt)

i 1 ; maxv2 REM i ! 1 (inc(up)
i (v))

�

We shall refer to the quantity min
�

inc(opt)
i 1 ; maxv2 REM i ! 1 (inc(up)

i (v))
�

asinc(opt,up) .

We can use this information to select vertices that cause an incremental increase

within � of optimal. Consider the following result of [60] (Theorem 1).

Theorem 56. Consider the greedy algorithm of [127]. If at each step of the greedy

algorithm, the incremental improvement is approximated within a factor of� , then

the greedy algorithm is an e�

e� 1 approximation algorithm (i.e. obtains a solution

within e� 1
e� of optimal).

We plot the relationship between the approximation of the incremental im-

provement vs. overall approximation in Figure 8.7.

397

So, suppose the user speci�es an additional parameter� in the input of the

greedy algorithm that corresponds to the� in Theorem 56. One way to leverage this

approximation is to compute the aggregate after each application of the S operator

and halt computation once the aggregate is within� � inc(opt,up) . We introduce

new notation for each vertexv that takes this partial �xed point computation into

account { PROG(�)
i (v); inc(�)

i (v); and INC (�)
i (v), which correspond with the previously

describedPROGi (v); inci (v); and INC i (v) respectively. The algorithm APPROX-

VALUEcomputes these items for the current iteration.

Theorem 56 can be leveraged in another way that allows for theselection of

multiple vertices in a single iteration of the greedy algorithm. First, we de�ne the

notion of vertex spreadwhich intuitively refers to all other vertices that increase

their annotation when vertex v is added at iteration i . For vertex v at iteration i ,

with parameter � , we de�ne spread(�)
i (v) = f v0 2 VjINC (�)

i (v)(g(v0)) > 0g. Using this

information, for a set of vertices,V0, we can now specify aspread-graph.

De�nition 106 (Spread Graph). For a given iteration, i , set of verticesV0, and

parameter � , we de�ne the spread-graph GS(�)
i (V0) = (Vspread; Espread) as a graph

where:

1. For eachvp 2 V0, there is a corresponding nodev0
p 2 Vspread and no other nodes

in Vspread.

2. There is an undirected edge(v0
p; v0

q) 2 Espread i� for corresponding vertices

vp; vq 2 V0, spread(�)
i (vp) \ spread(�)

i (vq) 6� ;

Returning to the notion of selecting vertices that whereinci (v) or inc(�)
i (v)

398

APPROX-VALUE(v;PROG(�)
j (v); PROG(� i 1); agg;inc(opt,up) ; vali 1; I (alg)

i 1 ; �) (j < i)

returns real numberinc(�)
i (v), function INC (�)

i (v), program PROG(�)
i (v), and Boolean

f lag .

1. inc(�)
i (v) = 0, INC (�)

i (v) and I temp assign all atoms 0, � temp = PROG(�)
j (v) [� i 1,

f lag = false.

2. While inc(�)
i (v) < � � inc(opt,up) and : f lag

(a) I prev = I temp

(b) Let I temp be S� temp applied to I temp .

(c) f lag = (I prev == I temp)

(d) inc(�)
i (v) = agg(f I temp (g(V)) jV 2 Vg) vali 1

3. For all A 2 A , set INC (�)
i (v)(A) = max(0 ; I temp (A) I (alg)

i 1 (A))

4. Set PROG(�)
i (v) = PROG(� i 1) [f A : I temp (A) $ j A 2 Ag

5. Return inc(�)
i (v), INC (�)

i (v), PROG(�)
i (v), f lag .

399

are greater than or equal to� � inc(opt,up) , let us de�ne a set cand(�)
i = f v 2

REMi 1jinc(�)
i (v) � � � inc(opt,up)g. Let cand(�)

i
0

be a subset ofcand(�)
i . We have

the following theorem.

Theorem 57. If the nodes in GS(�)
i (cand(�)

i) corresponding with elements of cand(�)
i
0

are an independent set of GS(�)
i (cand(�)

i), then the greedy algorithm can select all

vertices in cand(�)
i
0

and still obtain a solution within e� 1
e� of optimal.

So, Theorem 57 allows the greedy algorithm to select more thanone vertex

during a given iteration. Further, as the value of� increases, the cardinality of an

independent set ofGS(�)
i (cand(�)

i) should also increase, meaning that the user can

use� as a way to trade accuracy for performance.

Although the problem of �nding a maximal independent set is NP-hard, several

polynomial approximation algorithms have been studied [69]. Wheren is the number

of vertices, a simple greedy approach illustrated in [69] runs in O(n2) time and

ensures �nding an independent set of at leastn� +1 where� is the average degree of the

graph. Note that for our applicationn = jcand(�)
i j, and we expectjcand(�)

i j << jVj.

We present this algorithm,GREEDY-INDEP-SET, below.

There are several modi�cations that can be made toGREEDY-INDEP-SET. For

example, we can leverage the Fibonacci heap of [49] to obtain aO(n lg n) run time.

Another easy modi�cation to GREEDY-INDEP-SETthat may provide better approx-

imations in practice would be to select vertices that not only have a low degree, but

also where the incremental increase is greater. In Example 8.6.3, we describe such

a heuristic. Additionally, in [69], the authors also present amore advanced approx-

400

GREEDY-INDEP-SET(G = (V; E)) returns V 0 � V

1. V 0 = ;

2. While V 6� ; do the following.

(a) Let v be the vertex in V with the smallest degree. Addv to set V 0. Remove

v and all its neighbors (and adjacent edges) fromG

3. Return V 0

imation algorithm that provides an indecent set within 2
� +1 of optimal. However,

it is important to note that we need not solve this problem exactly, and we do not

want this to become a dominating operation in the overall algorithm.

So far, we have illustrated a variety of ways to scaleGREEDY-SNOPand still

provide an approximation guarantee. We combine the techniques we have described

thus far in GREEDY-SNOP2, illustrated in the following example.

Example 8.6.3. Consider Example 8.4.1 and program� lin from page 369. Con-

sider the SNOP-query whereagg = SUM, V C(V) = pro(V), k = 3, and g(V) =

buys camera(V) along with the parameter� = 0:4. On the �rst iteration of GREEDY-

SNOP2, the algorithm computes thevalue for all vertices in the setREMAINING

which are v1; v2; v3; v5; v7; v9; v10. Note that due to step 3 ofGREEDY-SNOP2, the

algorithm computes the complete �xed point, just as it did in Example 8.5.3 when we

usedGREEDY-SNOP. Refer to Table 8.5 on page 389 for the resulting interpretations.

As inc(opt,up) is 4:25 for the �rst iteration, the set cand(�) for this iteration includes

all vertices where the incremental increase is greater than or equal to0:4�4:25 = 1:7.

401

GREEDY-SNOP2(� ; agg; V C; k; g(V); �) returns SOL � V

1. Initialize SOL = ; and REM = f v 2 Vjg(v) : 1 ^
V

pred 2 ` vert (v) pred(v) : 1 j= V C[V=v]g

2. Compute PROG(�) (� 0) and I (alg)
0 .

3. For eachv 2 REM, compute PROG(�)
0 (v), and INC 1(v).

4. While jSOLj � k and REM 6= ;

(a) Set vbest = null, cand(�) = ; , inc(alg) = 0, val = value(SOL)

(b) For each v 2 REM, calculate inc(up) (v) as per Proposition 77 using the last saved

INC j (v) that was calculated

(c) Calculate inc(opt,up) as per Observation 2.

(d) Sort the elements ofREM from greatest to least by inc(up) (v)

(e) For each v 2 REM where inc(up) (v) > min(inc(alg)
best ; � � inc(opt,up)), do the following

i. hinc(�) (v); INC (�) (v); PROG(�) (v); f lag i =

APPROX-VALUE(v; PROG(�) (v); PROG(�) ; agg;inc(opt,up) ; val; I (alg) ; �)

ii. If inc(�) (v) � inc(alg) then inc(alg) = inc(�) (v) and vbest = v

iii. If : f lag then add v to cand(�)

iv. If f lag then set INC(v) = INC (�) (v)

(f) If cand(�) � ; then SOL = SOL [f vbest g, REM = REM f vbest g

(g) Else do the following:

i. Create GS(�) (cand(�))

ii. Let cand(�) 0
be the subset ofREM corresponding with the nodes of an indepen-

dent set in GS(�) (cand(�))

iii. SOL = SOL [cand(�) 0
, REM = REM cand(�) 0

5. Return SOL

402

v1

v3

v2

v5 v7

v10

 I TERATION 1 I TERATION 2

Figure 8.8: Left: spread graph after iteration 1. Right: spread graph after iteration

2.

Hence, cand(�) = f v2; v3g. In Figure 8.8, we show the spread graph created with this

set. As the singletonsv2; v3 are both independent sets, the algorithm can pick either.

Although we do not specify a \tie-breaker" inGREEDY-SNOP2, a reasonable heuris-

tic would be to select the vertex with the greatest incremental increase, which would

bev2, so we addv2 to SOL.

In the second iteration, we calculate the upper bound using the special inter-

pretation INC i (v) for each vertexv. In Example 8.6.2 on page 395, we show how

to do this for vertexv5 and this is found to be1:67. This also happens to be the

greatest upper bound for any vertex in REM. Therefore, after computing the �xed

points, we select all vertices whose incremental increase is greater than or equal to

0:4� 1:67 = 0:67. So, for this iteration cand(�) = f v1; v5; v7; v10g. The spread graph is

also shown in Figure 8.8. Using the heuristic we described for the �rst iteration, the

algorithm would selectf v5; v7g and add them toSOL. Hence the algorithm returns

f v2; v5; v7g. Note that the algorithm was able to totally avoid a third iteration, even

though it was required to (and does) return a set of three vertices.

Proposition 78. The complexity ofGREEDY-SNOP2is O(k � jVj � F (jVj)) where

403

F (jVj) is the time complexity to computevalue(V 0) for some setV 0 � V of sizek.

Proposition 79. Given a SNOP-query meeting the following criteria:

� � is a linear GAP

� V C is applied a-priori

� agg is positive linear

� value is zero-starting

Then GREEDY-SNOP2is an e�

e� 1-approximation algorithm for the query.

Now we will show a way to possibly further improve scalabilitywhile preserving

the approximation guarantee of Proposition 79. Our intuition is to use a spread-

graph on all vertices inREM0 to partition the problem, and then run the greedy

algorithm on each sub-problem. Consider the following de�nition:

De�nition 107 (Disjoint Node Set). Given an un-directed, un-weighted graphG =

(V; E), we say setsV1; V2 � V are disjoint node sets i�

1. There is no edge from any node inV1 to a node inV2

2. (or equivalently) Any set of two nodes where one is picked fromV1 and one is

picked fromV2 is an independent set ofG

We provide a simple algorithm for �nding disjoint node sets in Appendix G.2.15

(page 609). Now we presentGREEDY-SNOP-DIVthat uses disjoint node set to parti-

tion the problem and still maintain the approximation guarantee of Proposition 79.

404

GREEDY-SNOP-DIV(� ; agg; V C; k; g(V); �) returns SOL � V

1. Initialize SOL = ; and REM0 = f v 2 Vjg(v) : 1 ^
V

pred2 `vert (v) pred(v) : 1 j=

V C[V=v]g

2. For eachv 2 REM0, calculate setspread(�)
1 (v)

3. Create graphGS(�)
1 (REM0) = (Vspread; Espread).

4. Let DNS 1; : : : ; DNS n be the disjoint node sets ofVspread

5. Create predicatesset1; : : : ; setn . For all v 2 V set the weight seti (v) to 1 i� the

corresponding node inVspread is in DNS i and 0 otherwise.

6. Create n new SNOP queries where for queryi , the input is � ; agg; V C(V) ^

seti (V); min(k; jDNS i j); g(V); � .

7. Let SOL(1) ; : : : ; SOL(n) be the solutions to each SNOP query as returned by

GREEDY-SNOPor GREEDY-SNOP2. Let SOLall be the union of all these sets.

With each vertex v 2 SOLall , let inc(v) be the incremental increase caused by that

vertex in its SNOP-query.

8. Sort SOLall by inc(v) from greatest to least

9. Return the top k elements ofSOLall .

405

In the below example, we use the disjoint node sets ofGS(�)
0 (REM0) to partition

the problem.

Example 8.6.4. Consider Example 8.3.2 on page 355. Recall, that in this problem,

20 vertices, v1; : : : ; v20 meet an a-priori V C and thus comprise the set REM0 (see

Figure 8.2). Suppose, for eachvi 2 REM0, we �nd the set spread(�)
1 (vi) and the

results are shown by the shaded ovals in Figure 8.6.4.

Using Figure 8.9(top), we can easily see the intersection of two sets of ver-

tices corresponding with vertex spreads. For example, there are4 vertices in the set

spread(�)
1 (v18) \ spread(�)

1 (v20), while there are8 vertices in spread(�)
1 (v1) \ spread(�)

1 (v2).

Based on these intersections, we can obtain the spread graph GS(�)
1 (REM0) { shown

in Figure 8.9(bottom).

Based on the spread graph of Figure 8.9(bottom), there are5 disjoint node sets

- this is howGREEDY-SNOP-DIVwill partition the problem:

DNS1 = f v1; v2; v3; v4; v5 g

DNS2 = f v6; v7; v8; v9; v10 g

DNS3 = f v11; v12; v13; v14; v15 g

DNS4 = f v16; v17 g

DNS5 = f v18; v19; v20 g

So, GREEDY-SNOP-DIVwould then create predicatesset1; set2; set3; set4; set5

for each of the disjoint node sets above. The vertex atoms formed with these pred-

icates are assigned1 i� the vertex is in the corresponding disjoint node set. For

406

20

 1

 2

 3

 4

 5

 6

 7

 8

 9
10

11

12

13

14

15

16
17 18

19

1

2

3

4

5

1111

1414

1212

1313

1515

6

10

7

1010

8

9

1616

1919 2020

18181717
16

20

 1

 2

 3

 4

 5

 6

 7

 8

 9
10

11

12

13

14

15

16
17 18

19

20

 1

 2

 3

 4

 5

 6

 7

 8

 9
10

11

12

13

14

15
16 17

18

19

Figure 8.9: Top: Social Network for the painting company with vertex spread shown

as shaded ovals. Bottom: Spread graphGS(�)
1 (REM0) for the painting company

example.

407

example,set1(v1) and set4(v16) are annotated with1 while set4(v1) and set1(v16) are

annotated with0.

Recall that the originalV C wasprior (V) (see Example 8.3.2). We now create

5 new SNOP queries with the following a-priori vertex conditions (i.e.V Ci is the

vertex condition for queryi).

Query 1: V C1 = prior (V) : 1 ^ set1(V) : 1

Query 2: V C2 = prior (V) : 1 ^ set2(V) : 1

Query 3: V C3 = prior (V) : 1 ^ set3(V) : 1

Query 4: V C4 = prior (V) : 1 ^ set4(V) : 1

Query 5: V C5 = prior (V) : 1 ^ set5(V) : 1

The algorithm would then take the results of the5 queries obtained from runs

of GREEDY-SNOP2and order the union of all solutions by the incremental increase.

GREEDY-SNOP-DIVwould then return the topk vertices.

Proposition 80. Given a SNOP-query meeting the following criteria:

� � is a linear GAP

� V C is applied a-priori

� agg is positive linear

� value is zero-starting

Then GREEDY-SNOP-DIVis an e�

e� 1-approximation algorithm for the query.

408

We notice that GREEDY-SNOP-DIVallows us to partiiton the problem in way

where for each of then disjoint node sets can be handled by an instance ofGREEDY-

SNOP2on a di�erent machine. Further, we can maintain a \master process" where

each of then instances ofGREEDY-SNOP2can report their latest vertices added

to the solution and the corresponding incremental increase. This can allow the

master process to terminate the instances ofGREEDY-SNOP2early (i.e. once the

incremental increase of a vertex picked by an instance ofGREEDY-SNOP2is to low

to be added to the �nal solution).

8.7 Implementation and Experiments

We have implemented the GREEDY-SNOP algorithm in 660 lines of Java code

by re-using and extending the di�usion modeling Java libraryof [17] (approx 35K

lines of code). Our implementation uses multiple threads inthe inner loop of the

GREEDY-SNOP algorithm to increase e�ciency. All experiments were executed

on the same machine with a dedicated 4-core 2.4GHz processor and 22GB of main

memory. Times were measured to millisecond precision and are reported in seconds.

8.7.1 Experimental Setting

Data set. In order to evaluate GREEDY-SNOP, we used a real world dataset based

on a social network of Wikipedia administrators and authors.Wikipedia is an online

encyclopedia collaboratively edited by many contributorsfrom all over the world.

Selected contributors are given privileged administrative access rights to help main-

409

tain and control the collection of articles with additionaltechnical features. A vote

by existing administrators and ordinary authors determines whether an individual is

granted administrative privileges. These votes are publicly recorded. [100] crawled

2794 elections from the inception of Wikipedia until January 2008. The votes casted

in these elections give rise to a social network among Wikipedia administrators and

authors by representing a vote of useri for user j as a directed edge from nodei to

j . In total, the dataset contains 103; 663 votes (edges) connecting more than 7000

Wikipedia users (vertices). Hence, the network is large and densely connected.

SNOP-Query. In our experiments, we consider the hypothetical problem of�nding

the most inuential administrators in the Wikipedia social network described above.

We treat votes as a proxy for the inverse of inuence. In other words, if user i

voted for userj , we assume userj (intentionally through lobbying or unintentionally

through the force of his contributions to Wikipedia) inuenced useri to vote for

him. All edges are assigned a weight of 1. Our SNOP-queries are designed as per

the following de�nition.

De�nition 108 (Wikipedia SNOP-Query). Given some natural numberk > 1, a

Wikipedia SNOP query,WQ(k) is speci�ed as follows:

� agg = SUM { the intuition is that the aggregate provides us an expected number

of vertices that are inuenced.

� V C = true { we do not use a vertex condition in our experiments

� k as speci�ed by the input

410

� goal(V) = inf luenced(V)

Di�usion Models Used. We represented the di�usion process with two di�erent

models: one tipping and one cascading.

� Cascading di�usion model. We used the Flickr Di�usion Model (Di�usion

Model 8.4.5 on page 376) described in Section 8.4.2. In this model, a constant

parameter� represents the \strength" or \likelihood" of inuence. The larger the

parameter � the higher the inuence of a user on those who voted for her.

� Tipping di�usion model. [21] shows that there is a relationship between the

likelihood of a vertex marking a photo as a favorite and the percentage of their

neighbors that also marked that photo as a favorite. This implies a tipping-

model (as in Section 8.4.1). We apply the Jackson-Yariv mode (i.e. Di�usion

Model 8.4.2) with B equated toinf luence . The predicatee corresponds tovote.

For each vertexVj 2 V, we set the bene�t to cost ratio (bj

cj
) to 1. Finally, the

function de�ned in the Jackson Yariv model is the constant-valued function (for

all values ofx):

 (x) = �:

This says that irrespective of the number of neighbors that a vertex has, the

bene�t to adopting strategy B (i.e. inf luence) is � . Therefore, the resulting

di�usion rule for the linear Jackson-Yariv model is:

inf luence (V) : � �

P
j X j

P
j E j

$
^

Vj j(Vj ;V)2 E

(vote(Vj ; V) : E j ^ inf luence (Vj) : X j)

411

!"

#!!!"

$!!!!"

$#!!!"

%!!!!"

%#!!!"

&!!!!"

!'!#" !'$" !'$#" !'%" !'%#" !'&" !'&#" !'(" !'(#" !'#"

!"
#$

%
"&

%
'$

(%

)%*+,-$%

.-&/#$'%012%3"4$2$&5%)%*+,-$'%

)*+,*-./0"1.23+.4/"
5.66./0"1.23+.4/"

Figure 8.10: Runtimes ofGREEDY-SNOPfor di�erent values of � and k = 5 in both

di�usion models

For both models, we derive a unique logic program for each setting of the

parameter� . The parameter� depends on the application and can be learned from

ground truth data. In our experiments, we varied� to avoid introducing bias.

8.7.2 Experimental Results

Run-time of GREEDY-SNOP with varying � and di�erent di�usion mod-

els. Figure 8.10 shows the total runtime ofGREEDY-SNOPin seconds to �nd the

set of k = 5 most inuential users in the Wikipedia voting network for di�erent

values of the strength of inuence parameter� . We varied � from 0:05 (very low

level of inuence) to 0:5 (very high level of inuence) for both the cascading and

tipping di�usion model. We observe that higher values of� lead to higher runtimes

as expected since the scope of inuence of any individual in the network is larger.

Furthermore, we observe that the runtimes for the tipping di�usion model increase

412

!"

#!!!!"

$!!!!"

%!!!!"

&!!!!"

'!!!!"

(!!!!"

)!!!!"

'" #!" #'" $!" $'"

!"
#$

%
"&

%
'$

(%

)*#+$,%-.%(-#/*0$1%"&1"2"1*34'%

!"#$%0-%5&1%6&1"2"1*34'%

*+,-+./01"2/34,/50"
6/77/01"2/34,/50"

Figure 8.11: Runtimes ofGREEDY-SNOPfor di�erent values of k and � = 0:2 in

both di�usion models

!"

#!!"

$!!!"

$#!!"

%!!!"

%#!!"

&!!!"

&#!!"

$" %"&" '" #" (")" *" +"$!"$$"$%"$&"$'" $#"$("$)"$*"$+"%!"%$"%%"%&"%'"%#"

!"
#$

%
"&

%
'$

(%

)&*$+%,-%)&*"."*/01%

!"#$%2$3%)&*"."*/01%

,-./-0123"4156.172"
8199123"4156.172"

Figure 8.12: Time per iteration of GREEDY-SNOPfor � = 0:2 in both di�usion

models

413

more slowly with � compared to the cascading model.

Run-time of GREEDY-SNOP with varying k. For the next set of experiments,

we keep the strength of inuence �xed to� = 0:2 and variedk which governs the

size of the set of inuencers. Figure 8.11 reports the runtimeof GREEDY-SNOPfor

the query WQ(k) with k = 5; 10; 15; 20; 25. For the cascading model, the runtime

is approximately linear in k a curve-�tting analysis using Excel showed a slight su-

perlinear trend (even though the �gure itself looks linear at �rst sight). Figure 8.12

shows the time taken to execute each of the 25 iterations of the outer loop for the

query WQ(25) with � = 0:2. Note that each subsequent iteration is more expensive

than the previous one since the size of the logic programs to consider increases with

the addition of each ground atominf luence (Vi). However, we also implemented the

practical improvement of \lazy evaluation" of the submodularfunction as described

in [101]. This improvement, which maintains correctness of the algorithms, stores

previous improvements in total score and prunes the greedy search for the highest

scoring vertex as discussed. We found that this technique also reduced the runtime

of subsequent iterations.

Our experimental results show that we can answer SNOP querieson large

social networks. For example, computing the set of �ve most inuential Wikipedia

users in the voting network required approximately 2 hours averaged over the dif-

ferent values of� in the tipping di�usion model.

414

8.8 Chapter 8 Related Work

There has been extensive work in reasoning about di�usion insocial networks.

However, to our knowledge, there is no work on the relationship between logic

programming and social networks. Moreover, there is no general framework to

solve social network optimization problems that can take a broad class of di�usion

models as input. We believe this work represents the �rst deterministic framework

for representing generalized di�usion models that allows for di�erent properties and

weights on vertices and edges. Previously, the authors presented the framework of

SNOPs in [159]. However, this brief technical communication did not include either

our exact or approximate algorithms, an implementation, experiments, the SNOP-

ALL problem, many of the complexity results, or many of the constructions seen in

this chapter (such as the homophilic di�usion models and big-seed marketing).

8.8.1 Related Work in Logic Programming

We �rst compare our work with annotated logic programming [86, 85, 168]

and its many extensions and variants [175, 88, 107, 109, 31, 82, 110]. There has

been much work on annotated logic programming and we have built on the syntax

and semantics of annotated LP. However, we are not aware of anywork on solving

optimization queries (queries that seek to optimize an aggregate function) w.r.t.

annotated logic programming.

There are a few papers on solving optimization problems in logic program-

ming. The best of these is constraint logic programming [172]which can embed

415

numerical computations within a logic program. However, CLPdoes not try to �nd

solutions to optimization problems involving semantics structures of the program

itself. Important examples of constraint logic programming include [51, 117] where

annotated LP is used for temporal reasoning, [99] assumes the existence of a cost

function on models. They present an analysis of the complexity and algorithms to

compute an optimal (w.r.t. the cost function) model of a disjunctive logic program

in 3 cases: when all models of the disjunctive logic program are considered, when

only minimal models of the disjunctive logic program is considered, and when stable

models of the disjunctive logic program are considered. In contrast, in this chap-

ter, there are two di�erences. First, we are considering GAPs.Second, we are not

looking for models of a GAP that optimize an objective function - rather, we are

trying to �nd models of a GAP together with some additional information(namely

some vertices in the social network for which a goal atomg(v) : 1 is added to the

GAP) which is constrained (at mostk additional atoms) so that the resulting least

�xpoint has an optimal value w.r.t. an arbitrary value function. In this regard, it

has some connections with abduction in logic programs[41],but there is no work on

abduction in annotated logic programs that we are aware of orwork that optimizes

an arbitrary objective function.

Our chapter builds on many techniques in logic programming.It builds upon

non-ground �xpoint computation algorithms proposed by [114] and later extended

for stable models semantics [59, 39], and extends these non-ground �xpoint algo-

rithms to GAPs and hen applies the result to de�ne the SNOP-Mon algorithm to

�nd answers to SNOP-queries which, to the best of our knowledge, have not been

416

considered before.

8.8.2 Work in Social Networks

[81] is one of the classic works in this area where a generalized di�usion frame-

work for social networks is proposed. This work presents twobasic di�usion models

{ the linear threshold and independent cascade models. Bothmodels utilize random

variables to specify how the di�usion propagates. These models roughly resemble

non-deterministic versions of the tipping and cascading models presented in Sec-

tion 8.4 of this chapter. Neither model allows for a straightforward representation

of multiple vertex or edge labels as this work does. Additionally, unlike this chapter,

where we use a �xed-point operator to calculate how the di�usion process unfolds,

the di�usion models of [81] utilize random variables to de�ne the di�usion process

and compute the expected number of vertices that have a givenproperty. The au-

thors of [81] only approximate this expected value and leavethe exact computation

of it as an open question. Further, they provide no evidence that their approxima-

tion has theoretical guarantees.

The more recent work of [23] showed this computation to be #P-hard by a

reduction from S-T connectivity, which has no known approximation algorithm.

This suggests that a reasonable approximation of the di�usion process of [81] may

not be possible. This contrasts sharply with the �xed-pointoperator of [86], which

can be solved in PTIME under reasonable assumptions (which are present in this

chapter). [81] focus on the problem of �nding the \most inuential nodes" in the

417

graph { which is similar in intuition to a SNOP query. However, this problem only

looks to maximize the the expected number of vertices with a given property, not

a complex aggregate as a SNOP query does. Further, the approximation guarantee

presented for the \most inuential node" problem is contingent on an approximation

of the expected number of vertices with a certain property, which is not shown (and,

as stated earlier, was shown by [23] to be a #P-hard problem).

In short, the frameworks of [23] and [81] cannot handle arbitrary aggregates

nor vertex conditions nor edge and vertex predicates nor edge weights as we do.

Nor can they de�ne an objective function using a mix of the aggregate and theg()

predicate speci�ed in the de�nition of a SNOP-query.

8.9 Chapter Summary

Social networks are proliferating rapidly and have led to a wave of research on

di�usion of phenomena in social networks. In this chapter, we introduce the class

of Social Network Optimization Problems(SNOPs for short) which try to �nd a set

of vertices (where each vertex speci�es some user speci�ed vertex condition) that

have cardinality k or less (for a user-speci�edk > 0) and that optimize an objective

function speci�ed by the user in accordance with a di�usion model represented

via the well-known Generalized Annotated Program (GAP) framework. We have

used speci�c examples of SNOP-queries drawn from product adoption (cell phone

example) and epidemiology.

The major contributions of this chapter include the following:

418

� We showed that the complexity of answering SNOP-queries as NP-Complete and

identi�ed the complexity classes associated with related problems (under various

restrictions). We showed that the complexity of counting the number of solutions

to SNOP-queries is #P-complete.

� We proved important results showing that there is no polynomial-time algorithm

that computes an� -approximation to a SNOP-query when� � e
e 1 .

� We described how various well-known classes of di�usion models (cascading, tip-

ping, homophilic) from economics, product adoption and marketing, and epidemi-

ology can be embedded into GAPs.

� We presented an exact-algorithm for solving SNOP-queries under the assumption

of a monotonic aggregate function.

� We proved that SNOP-queries are guaranteed to be submodular when the GAP

representing the di�usion model is linear and the aggregateis positive-linear. We

were able to leverage this result to develop theGREEDY-SNOPalgorithm that

runs in polynomial-time and that achieves the best possibleapproximation ratio

of e
e 1 for solving SNOPs.

� We develop the �rst implementation for solving SNOP-queriesand showed it

could scale to a social network with over 7000 vertices and over 103,000 edges.

Our experiments also show that SNOP-queries over tipping models can generally

be solved more quickly than SNOP-queries over cascading models.

Much work remains to be done and this chapter merely represents a �rst step

419

towards the solution of SNOP-queries. Clearly, we would like to scale SNOP-queries

further for social networks consisting of millions of vertices and billions of edges.

This will require some major advances and represents a big challenge.

420

Chapter 9

Future Work

There are many interesting questions that remain to be studied regarding

spatio-temporal aspects of an agent's behavior. In this section, we briey outline

some important open questions relating to the work presented in this dissertation.

First, let us discuss extensions to reasoning about time usingAPT logic. Based

on the framework presented in Chapter 2, we devised a �xpointoperator in Chap-

ter 3 that provides sound, but incomplete solutions to consistency and entailment

problems. Given a propositional formulaF at time t (together forming a time for-

mula F : t) and an APT program K, our operator was able to produce a probability

bound [̀ ; u] such that K entails F : t : [`; u]. As our operator is only sound, we

do not guarantee that the bounds [̀; u] are the tightest possible. Further, even if

we could obtain the tightest probability bounds possible, there is no guarantee on

how close` is to u. Hence, if we obtain the probability bounds [0:4; 0:7], what can

we say about the likelihood ofF occurring at time t? The work of [18] considers a

novel approach for dealing with the problem of the action-probabilistic programs of

421

[83]1. Using random walks over the space of solutions to the query, they were able

to produce a histogram of the the semantic structures for the query formula. As it

is easy to compute the probability associated with each semantic structure, the au-

thors of that paper were able to create a histogram of number of semantic structures

with a given probability. Therefore, if a query returned a bounds of [0:4; 0:7], they

may also know that 80% of the semantic structures had a probability in the range

[0:67; 0:7], for example. A key issue encountered in [18] was the dimensionality of

the space, which was exponenetial in the number of ground atoms. With APT logic,

the problem is greatly increased, as the number of dimensions would be exponential

in the product of number of ground atoms and time points. Most likely, heuristic

methods for dimensionality reduction (perhaps by leveraging the FELC or WELC

constraints of Chapter 2) would have to be employed in such work.

As far as the geospatial abduction problems of Chapters 4-6, animportant

direction would be to consider the case where the observations were caused by

more than one agent. For example, in our experiments described in Chapter 4-

5, we considered attacks and caches from Iranian-sponsoredmilitants in Iraq. We

implicitly assumed that these groups conducting attacks would operate in a similar

manner and would share areas used for caches. As the results ofour experiments

were generally encouraging, this was most likely a valid assumption. However,

suppose we have a set of attacks that could come from a varietyof groups, which

may not all operate in a similar manner and may not cooperate with each other.

In such a case, it may not be appropriate to apply the algorithms of those chapters

1Time is not considered in [83] or [18].

422

as-is. There are two approaches to this variant: (1) clusterthe attacks beforehand

and solve an GAP for each cluster or (2) extend GAPs to a probabilistic and/or

multi-agent case. Both raise interesting technical and practical issues.

Our work on optimally selecting agent actions in Chapters 7-8 looked at picking

a set of agenst action with respect to some structure that maximizes an aggregate

function. For the geospatial optimization problems of Chapter 7, although we were

able to devise a polynomial-time approximation algorithm,it still has a runtime

linearly proportional to the size of the map. For a large map,or a map of �ne

granularity, this may not be practical. Therefore, an obvious direction in future

work is to devise a method to scale algorithms for answering geospatial optimization

queries. For queries where we considered a di�usion process(the SNOP queries of

Chapter 8), we did provide some methods to increase scalability. However, there

is another issue with SNOPs. Although we could show embeddings for a wide

variety of di�usion processes, these di�usion processes were monotonic in nature.

For example, the con�dence that vertexv has some property increases with each

application of the �xpoint operator. This monotonic nature is what allowed us to

leverage the generalized annotated programs of [86]. However, there are di�usion

process such as voter models in physics [162] and evolutionary graph theory in

biology [105] that are not monotonic in nature -hence the con�dence vertexv has

some property may increaseor decrease at each time step.Computing the outcome

of such process is di�cult - in [105], the authors show evolutionary graph problems

to be NP-hard. Currently, most work in this area relies on simulation. Hence,

the �rst challenge with non-monotonic di�usion is to develop an e�cient algorithm

423

to determine the outcome of the di�usion process. One way to do this would be

to introduce negation into the logic program. However, in thiscase we will most

likely lose some computational properties that allow us to approximate SNOPs.

Another is to adopt the \competitive" di�usion framework of [17]. However, it is

unclear if voter model and/or evolutionary graph problems can be embedded into

this framework. The second challenge is to answer a SNOP-query with respect

to these problems. This most likely will add an additional layer of complexity.

There are other aspects of SNOPs that can be explored as well. We note that our

framework can be used to solve problems where \homophilic" [9] or non-network

e�ects { even at the same time as network di�usion. Although the algorithms of

this dissertation can be applied to these problems in a straight-forward manner, it

remains an open question to create a tailored, e�cient approach to these type of

problems. Such an approach would aide greatly in \big-seed" marketing [177] that

combines both viral-marketing along with mass-marketing.

Hence, although this paper explored many aspects of spatio-temporal reason-

ing about agent behavior, there are still some interesting open questions that should

be explored.

424

Chapter 10

Conclusion

In this dissertation, we examined several aspects of reasoning regarding spatio-

temporal agent behavior. These included determining the probability that an agent

takes a given action at a certain time, abducing geospatial phenomenon, and opti-

mizing the selection of an agents actions.

To determine the probability of an agent taking a given action at a given time,

we have introduced a new framework for temporal-probabilistic reasoning called

Annotated Probabilistic Temporal (APT) Logic. This logic-programming based ap-

proach allows one to create and/or automatically learn models of agent behavior

based on past actions and determine the probability of some action at a certain time

by performing an entailment query. Notably, unlike other formalisms for reasoning

about time and probability together, APT-logic does not make Markov or indepen-

dence assumptions. Despite not making these assumptions, we have designed and

implemented an approximation technique based on a sound, but incomplete �xpoint

operator (we resort to approximation techniques as we show answering such a query

425

is NP-complete). Although incomplete, in our experiments, the implementation of

this operator was shown to �nd tight bounds on entailment formualae. The calcula-

tion runs in approximately linear time in the size of the model, which is a signi�cant

improvement over exact methods for solving these queries which require solving a

linear program with an exponential number of variables.

To reason about the spatial aspects of an agent's behavior, we looked at ob-

served manifestations of the behavior (called \observations") that must have been

caused by some other, unobserved, geospatial phenomenon (called \partners").

Finding a set of partners corresponding to the observations is an instance of a

problem known as \geospatial abduction." In this dissertation, we have created a

framework for this scenario and explored the problem of �nding a set of partners

given a set of observations and constraints on the relationship between the two. Un-

fortunately, as we show many such problems to be NP-complete,we again resorted

to approximation techniques. In addition to showing reductions from well-known

problems, we created a novel greedy algorithm, that while maintaining an approxi-

mation guarantee, allows for the use of additional heuristics. We implemented this

algorithm in a software package called \SCARE" and showed thatit signi�cantly

out-performed naive techniques for locating weapons caches associated with attack

sites using a counter-insurgency data-set. We then explored a variant of a geospatial

abduction problem that requires the solution to return regions rather than pin-point

locations. Again, as this problem was NP-complete, we had to resort to approxi-

mation techniques. We note that a special case of this problem actually reduces to

circle-covering, for which there are known approximation techniques. We also in-

426

troduced an approximation technique for a more general case, implemented it, and

showed it to provide viable results on real-world data.

As a geospatial abduction problem, like many other abductionproblems, can

have multiple solutions, a natural question is \how does one solve such problems

when the adversary has knowledge of your algorithm?" We explore this situation

where the adversary has a probability distribution of the solutions to a geospatial

abduction problem and can position his partners ahead of time in a manner to avoid

discovery by the agent. This problem, again, is NP-complete.However, we show it

can reduce to a mixed linear-integer program that can be made more tractable by

signi�cantly reducing the number of variables and using parallelization. We show

the viability of this approach by implementing this algorithm using a linear-integer

program solver. A natural complement to this problem that weexplored is how an

agent should select partners given a probability distribution of how the adversary

selected locations. We show that this problem reduces to themaximization of a

submodular function over a uniform matroid and can be solvedusing several well-

known approximation techniques. We also presented an implementation.

We then studied optimal selection of agent actions. The �rst problem of this

type was a \geospatial optimization" problem. Here the agenthas a set of actions

that modify attributes of a geospatial region and he wishes toselect a limited num-

ber of such actions (with respect to some budget) in a manner that either satis�es

some goal (goal-based geospatial optimization) and/or maximizes a bene�t function

(bene�t-maximizing geospatial optimization). Additionally, there are certain com-

binations of actions that cannot be performed together. We proved that both goal-

427

based and bene�t-maximizing geospatial optimization problems are NP-complete

under reasonable assumptions and proved theoretical limits on their approximation.

We then develop algorithms for solving such problems - either exactly or within a

certain factor of optimal.

We also look atoptimally selecting agent actions in the presence of a di�usion

process under the structure of a social network.To address this topic, we presented

an annotated-program based framework for studying social network optimization

problems - that is given a social network (a weighted, directed graph with vertex

and edge labels), and a di�usion process, can we identify thevertices of the network

that cause a given phenomenon to spread to the maximum extentpossible. This

generalized framework allows great exibility is expressing several well-known dif-

fusion models in the areas of marketing, information spread,and disease. We show

queries relating to this problem to be strongly NP-complete asit can encode the

max-k-cover problem. However, we also show that if the annotated program repre-

senting the di�usion process is \linear" then the value oracle associated with this

query is submodular - which allows us to leverage a greedy approach that provides

the best approximation guarantee for such a query unless P=NP. Using a variety

of techniques, we show that this algorithm can be scaled to large networks and we

provide an implementation as well.

428

Appendix A

Appendix for Chapter 2

A.1 Additional Results

A.1.1 Frequency Equivalence under the PCD Restriction

While obtaining a noticeable speedup for constrained programs usingFELC, we

were still required to conduct an operation exponential in the product of atoms and

time points. In this subsubsection we leverage the PCD restrictions from De�nition

3.5 to ensure that there are no empty frequency-equivalenceclasses. First, we present

some notation to describe sets of threads associated with each rule. Then, we

show how the PCD restrictions allow us to leverageFELC without preprocessing.

Finally, as the PCD requirements do not permit annotated formulas, we present

some methods to allow for annotated formulas as well.

Our key intuition is noticing that the result of Lemma 3.6 uses the axioms to

ensure that we can create threads where the frequency function for each rule equals

0 or 1. Then, we use theone-tailed restriction that PCD's provide us in order to

429

ensure that � = 1 (it is not hard to prove a similar theorem where� is set to 0).

With this one-tailed restriction, threads with a frequency function of 0 are outside

of [�; �] and threads with a frequency of 1 will be inside this range.

To help us in our discussion of howFELC can leverage PCD programs, we

present some notation used in describing classes of frequency equivalent threads;

associated thread subsets allow us to formalize the notion ofa frequency-equivalent

class of threads. We provide the de�nition below.

De�nition 109 (Associated Thread Subsets (ATS)). For a given constrained rule,

r i = F
fr

,! G : [� t; `; u; �; �], the Associated Thread Subsets (ATS) are the subsets

of the set of threads considered in the satisfaction ofr i :

� ATSi is the set of threadsf Th 2 T j � � fr(Th; F; G; � t) � � g.

� ATSi is the set of threadsf Th 2 T j Th =2 ATSi g.

Intuitively, a thread is in a rule's associated thread subset(ATS) if its frequency

function with respect to that particular rule falls within t hat rule's [�; �] frequency

function bounds. Threads not meeting this criteria are saidto be in the complement

associated thread subset (ATS) for that rule.

Normally, in this subsubsection, we refer to a given frequency equivalence class

ascls wheres 2 [0; 1]m - wherem is the number of rules in theAPT-program. With

this notation, the ATS of every rule (r i) wheresi = 1 is intersected with the ATS of

every rule wheresi = 0. Formally,

cls =

(
\

si =1

ATSi

)

\

(
\

si =0

ATSi

)

430

One can easily see that a frequency equivalence class is empty if the intersub-

subsection of any two subsets described above are empty. Consider the following

example.

Example A.1.1. Consider the discussion on the two rules fromKstock in Example

3.11.

Let r2 = secrumor^ earnincr(10%)
pfr
,! stock decr(10%): [2; 0:65; 0:97; 0:7; 1:0] and

r3 = secrumor̂ earnincr(10%)
pfr
,! stock decr(10%)̂ cfo resigns: [2; 0:68; 0:95; 0:7; 0:8].

Recall that in Example 3.11 we determined that for any given thread, it was not pos-

sible for thepfr associated withr3 to exceed thepfr associated withr2. Therefore,

as � 2 = 1, we can conclude thatATS2 \ ATS3 � ; .

We can now examine how to utilize the PCD restriction to ensure that all

frequency equivalence classes are non-empty. First, using the one-tailed restriction

described earlier, consider ruler i = Fi
fr i,! Gi : [� t i ; ` i ; ui ; � i ; 1] (where � i > 0).

For thread Th, if fri (Th; Fi ; Gi ; � t i) = 1 then Th 2 ATS. If fri (Th; Fi ; Gi ; � t i) = 0

then Th 2 ATS. However, we then must add most of the other PCD restrictions to

ensure that the thread construction of the 0 and 1 threads canoccur for each rule.

In fact, the only PCD restriction not needed is the sixth restriction that sets u = 1

for all rules.

Two of the PCD restrictions are particularly limiting. One requires that for

each rule pre-condition there exists a unique world that only satis�es that pre-

condition. The second is similar: there exists a unique world that does not satisfy

any rule's pre or post-conditions. It may, however, be possible to specify such

431

restrictions as part of a procedure to obtain such rules. Regardless, once one has

an APT-logic program satisfying the PCD restrictions, one can be guaranteed the

below property, which we will shortly see to be useful.

Theorem 58. SupposeAPT-Logic program, K =
S m

i =1 f r i g where r i = Fi
fr i,! Gi :

[� t i ; ` i ; ui ; � i ; � i] meets PCD restrictions 1-6 of De�nition 3.5. Then, for all binary

numberss 2 [0; 1]m , frequency equivalence classescls = f
T

si =1 ATSi g\f
T

si =0 ATSi g

contains at least one thread.

Before investigating the utility of the above theorem, we notice that restric-

tion 4 creates an issue if we decide to include annotated formulas. Recall that, by

Theorem 2.20, to create a constrained rule that is equivalent to an annotated for-

mula, we must set the pre-condition toTRUE. Additionally, PCD programs do not

allow qfr . Clearly, this causes the above Theorem to be not applicableunder that

circumstance. However, we can provide a similar set of restrictions that will allow

annotated formulas. The intuition for the proof is simple, wesimply extend tmax to

be as long as the maximumt value in any of the annotated formulas in question,

and add some restrictions about the existence of satisfyingworlds which resemble

those of the last theorem extended to annotated formulas.

Corollary 15. For a constrained APT-Logic program, K =
S m

i =1 f r i g where r i =

Fi
fr i,! Gi : [� t i ; ` i ; ui ; � i ; � i] and set of annotated formulas,FACTS =

S k
j =1 af j

whereaf j = Qj : [t0
j ; `0

j ; u0
j] with the following restrictions,

1. K meets PCD restrictions 1-4 of De�nition 3.5

2. tmax � maxj (t0
j) + jKj � maxi (� t i)

432

3. 9 world w; such that8i 2 [0; m] w; 6j= Fi , w; 6j= Gi , and 8j 2 [0; k] w; 6j= Qj

4. 8j 2 [0; k], there exists worldqwj such thatqwj j= Qj and 8i 2 [0; m] qwj 6j=

Fi .

5. No two annotated formulas inFACTS are at the same timepoint.

Then for all s 2 [0; 1]m+ k , frequency equivalence classescls =
� T

si =1 ATSi
	

\

� T
si =0 ATSi

	
contains at least one thread.

Again, we have a potentially problematic restriction in that we do not allow

multiple annotated formulas in the same time point (restriction 5). We can relax this

restriction with the following corollary to determine if a given frequency equivalence

class exists or not. Essentially, the non-emptiness of a frequency equivalence class

that contains intersubsubsections ofATS or ATS sets for annotated formulas is

determined by the existence of worlds satis�ed by the non-annotated portion of the

annotated formulas that share the same time point.

Corollary 16. Assume we have the following:

� ConstrainedAPT-Logic program,K =
S m

i =1 f r i g wherer i = Fi
fr i,! Gi : [� t i ; ` i ; ui ; � i ; � i]

� Set of annotated formulas,FACTS =
S k

j =1 af j whereaf j = Qj : [t j ; ` j ; uj]

� 8 j 2 [1; k], we de�ne ATS(q)
j and ATS

(q)
j to be theATS and ATS for rule r =

TRUE
qfr
,! Qj : [t; ` j ; uj ; 1; 1] created from annotated formulaaf j 2 FACTS using

qfr

� Restrictions 1-5 from Corollary 15

433

Then, for all subsets ofSAMETIME � FACTS, where for allaf 1; af 2 2 SAMETIME ,

t1 = t2; for all strings s2 2 [0; 1]jSAMET IME j all frequency equivalence classes,cl that

intersect f
T

s2i =1 ATS(q)
i g \ f

T
s2i =0 ATS

(q)
i g are non-empty i�:

9 world wp such that for all af i 2 SAMETIME wheres2i = 1, wp j= Qi and for

all af j 2 SAMETIME wheres2j = 0, wp 6j= Qj .

Theorem 58, and Corollaries 15 and 16 provide restrictions that force all

frequency-equivalence classes to be non-empty. This allows us to leverageFELC

without any type of pre-processing algorithm, which we haveshown to be expen-

sive. As stated earlier, PCD restrictions could be speci�ed by a tool used to learn

the rules from a given data-set.

A.1.2 The ALC-ENT Algorithm for Entailment

We present an algorithm for alternate linear constraints,ALC-ENT, that com-

putes entailment using linear constraints other thanSLC.

Proposition 81. If K entails r , then ALC-ENT returns ENTAILS. If K does not

entail r , then ALC-ENTreturns NOT ENTAILS.

In the worst case, to solveALC-ENTrequires constructing the linear constraints

once and solving the linear program twice.

Example A.1.2. Recall that in Example A.1.1 we presented rules

r2 = secrumor^ earnincr(10%)
pfr
,! stock decr(10%): [2; 0:65; 0:97; 0:7; 1:0] and

r3 = secrumor̂ earnincr(10%)
pfr
,! stock decr(10%)̂ cfo resigns: [2; 0:68; 0:95; 0:7; 0:8].

434

Algorithm 24 Alt. Linear Constraints for Entailment of Rule r by Program K
ALC-ENT(APT-Program K)

1. Create the set of alternate linear constraints forWELC(K [r) or FELC(K [r).

2. If r is unconstrained, (r = F fr; G : [� t; `; u]), create rule r 0 = F fr; G :

[� t; ` 0; u0] where `0; u0 are variables. Note that unconstrained entailment can

only be checked if the constraints used areWELCin this algorithm.

3. If r is constrained, (r = F
fr

,! G : [� t; `; u; �; �]) create rule r 0 = F
fr

,! G :

[� t; ` 0; u0; �; �] where`0; u0 are variables.

4. Create set of linear constraintsWELC(K [f r 0g) or FELC(K [f r 0g).

5. Let �̀0 be the minimization of `0 subject to the linear constraints.

6. Let �u0 be the maximization ofu0 subject to the linear constraints.

7. If [�̀0; �u0] � [`; u] return ENTAILS otherwise return NOT ENTAILS.

Let Kent-ex = f r2g. Suppose we want to determine ifKent-ex entails r3 using ALC-

ENT, employing theFELCconstraints. We create ruler 0
3 = secrumor̂ earnincr(10%)

pfr
,!

stock decr(10%) ^ cfo resigns: [2; `0; u0; 0:7; 0:8]. Based on Example A.1.1, we know

there are3 frequency equivalence classes forKent-ex [f r 0
3g asATS2\ ATS3 � ; . Hence,

we have 3 variables,�v00; �v01; �v11. Therefore, we set up the following constraints:

� For rule r2: 0:65 � �v01 + �v11 � 0:97

� For rule r 0
3: `0 � �v11 � u0

435

� �v00 + �v01 + �v11 = 1

As it turns out, the minimization of `0 is 0 and the maximization ofu0 is 0:97. Since

[0; 0:97]6� [0:68; 0:95], we can say thatKent-ex doesnot entail r3.

A.1.3 An Example Comparing PCTL to APT -rules

In this appendix, we provide a small example of a Markov Process which for

sometmax can be expressed as anAPT-program. We then show that there is a \lead-

to" PCTL formula that is satis�ed by the Markov Process and also show anAPT-rule

that is similar, though not entailed by K, to the correspondingAPT-program.

Given ground atomsBL , consider a Markov Process,M de�ned as follows:

� Set of statesS = f S1; S2; S3g, where eachsi has a unique label based on ground

atoms in BL

� Transition probability P de�ned as follows:

P(S1; S2) = 0 :3,

P(S1; S3) = 0 :7,

P(S2; S1) = 0 :2,

P(S2; S3) = 0 :8,

P(S3; S1) = 0 :1,

P(S3; S2) = 0 :9,

and 0 for all other transitions.

� Initial state S3

436

We will de�ne formulas F (S1), F (S2), F (S3) to be propositional formulas

satis�ed by exactly S1; S2; S3 respectively. Fortmax = 5, let APT program K be the

APT-program corresponding toM constructed usingMAKE-APT (Algorithm 7).

Let us consider the following PCTL formula:

G� tmax
� 1 F (S1)y � 2

� 0:75F (S1)

This formula intuitively says: \for all sequences starting at time 1 and ending at

time tmax (i.e., the �rst tmax states), the probability that formula F (S1) is followed

by itself in less than 2 time units is greater than 0:75."

So, let us consider all sequences of states that start inS1 and end in S1 of

length 3 or less (obviously,S1 j= F (S1)).

� hS1; S2; S1i

� hS1; S3; S1i

By the multiplication of transition probabilities, the �rst sequence has a prob-

ability of 0:06 and the second has a probability of 0:07 { hence, as they sum to 0:13,

we see that the PCTL formula isnot satis�ed by M .

M 6j= G� tmax
� 1 F (S1)y � 2

� 0:75F (S1)

So, now let us consider an \analogous"APT-rule:

F (S1)
efr
; F (S1) : [2; 0:75; 1]

By the results of Section 6.1, we know there must be exactly one satisfying interpre-

tation for K { as there is exactly one interpretation associated withM ; lets call this

437

interpretation I . Consider the following list of sequences of states, which correspond

to threads assigned a non-zero probability byI . Below we list the sequences, the

probability, and the frequency { that is for the associated thread, Th, the value

efr(F (S1); F (S1); 2; Th).

438

Sequence Probability Frequency

S3; S1; S2; S1; S2 0:0018 1

S3; S1; S2; S1; S3 0:0042 1

S3; S1; S2; S3; S1 0:0024 0

S3; S1; S2; S3; S2 0:0216 0

S3; S1; S3; S1; S2 0:0021 1

S3; S1; S3; S1; S3 0:0049 1

S3; S1; S3; S2; S1 0:0126 0

S3; S1; S3; S2; S3 0:0504 0

S3; S2; S1; S2; S1 0:0108 1

S3; S2; S1; S2; S3 0:0432 0

S3; S2; S1; S3; S1 0:0126 1

S3; S2; S1; S3; S2 0:1134 0

S3; S2; S3; S1; S2 0:0216 1

S3; S2; S3; S1; S3 0:0504 1

S3; S2; S3; S2; S1 0:1296 1

S3; S2; S3; S2; S3 0:5184 1

We note that the probability mass associated with theAPT-rule sums to

0:7564; hence, theAPT-rule is entailed by the program and satis�ed byI , while

the PCTL formula is not.

439

It is also important to notice other di�erences. As we can createAPT-programs

that do not have corresponding MDP's, there is a corresponding expressiveness in

the APT-rules that cannot be replicated with PCTL. Conversely,APT-logic does not

handle in�nite temporal sequences; problems with this requirement may be better

suited for PCTL.

A.2 Proofs

A.2.1 Proof of Lemmas 2.12 and 2.14

pfr satis�es Axioms FF1-FF4 (2.12).

efr satis�es Axioms FF1-FF4 (2.14).

Proof. .

Axioms FF1,FF2,FF3 follow directly from the de�nitions of pfr and efr .

Axiom FF4: We construct Th0 such that pfr (Th0; F; G; � t) = 0 as follows (one

can verify that the sameTh0 causesefr(Th0; F; G; � t) = 0). Either F ^ : G has

a solution or it does not. Proceeding by cases. WhenF ^ : G has a solution, let

Th0(i) j= F ^ : G for all i . Notice that in this case,pfr (Th0; F; G; � t) = 0. When

F ^ : G has no solution, then letw0 j= F (possible sinceF is not a contradiction)

and w1 j= : G (possible sinceG is not a tautology), and setTh0(0) = w0, Th0(i >

0) = w1. Note that w1 does not satisfyF (otherwiseF ^ : G would have a solution),

and that thereforepfr (Th0; F; G; � t) = 0. In all casespfr (Th0; F; G; � t) = 0.

We now construct Th1 such that pfr (Th1; F; G; � t) = 1 as follows (one can

440

again verify that the sameTh1 causesefr(Th1; F; G; � t) = 1). When F is not a

tautology, there is a worldw that does not satisfyF . Assign Th1(i) = w for all i .

Note that pfr (Th1; F; G; � t) = 1. When F is a tautology then we knowG is not a

contradiction. Thus there isw that satis�es G. Assign Th1(i) = w, and note that

pfr (Th1; F; G; � t) = 1.

A.2.2 Proof of pfr Property 5

Below we provepfr property 5.

Proof. CASE 1: a + b � 1

As pfr (Th; F1; F2 ^ F3; � t) � 0 by the de�nition of pfr , this is trivial.

CASE 2: a + b > 1

Let W1; W2; W3; W2;3 be sets of worlds that satisfyF1; F2; F3; F2 ^ F3 respectively.

As a + b > 1, then we know thatW2 \ W3 6= ; . Let W � be this set.

As all w� 2 W � satisfy F2 and F3, then W � � W2;3.

Let F � be a formula that 8w� 2 W � ; w� j= F � .

Hence,pfr (Th; F1; F � ; � t) � a + b 1.

As W � � W2;3, the statement follows.

A.2.3 Proof of Proposition 2.15

Part (1): Let Th be a thread,F and G be formulas, and � t1 and � t2 be two tem-

poral intervals. If � t1 � � t2, we have thatpfr (Th; F; G; � t1) � efr (Th; F; G; � t2).

Proof. CLAIM 1: pfr (Th; F; G; � t1) � efr (Th; F; G; � t2) for efn (Th; F; G; � t2; tmax

441

� t2; tmax) = 0.

(1) By the de�nition of efn , we have: jf t : Th(t) j= F ^ Th(t + � t1) j= Ggj � jf t :

Th(t) j= F ^ 9 t0 2 [t; t + � t2] s.t. Th(t0) j= Ggj

(2) Hence,jf t : Th(t) j= F ^ Th(t + � t1) j= Ggj � efn (Th; F; G; � t2; 0; tmax). The

claim follows.

CLAIM 2: pfr (Th; F; G; � t1) � efr (Th; F; G; � t2)

(1) Let x = efn (Th; F; G; � t2; tmax � t2; tmax) > 0

(2) Let a
b = pfr (Th; F; G; � t1)

(3) Let c
d = efr(Th; F; G; � t2)

(4) By claim 1, we havea
b � c x

d x .

(5) By the de�nition of pfr and efr , we know that d x = b, thereforeab� bc bx.

(6) By the de�nition of pfr , we know that a � b, therefore a(b + x) � bc which

is equivalent to ad � bc. (7) Hence,ad � bc which gives uspfr (Th; F; G; � t1) �

efr (Th; F; G; � t2).

Part 2: Let Th be a thread,F and G be formulas, and � t be a temporal interval.

The following inequality always holds:

efr (Th; F; G; � t) �
� tX

i =1

pfr (Th; F; G; i)

CLAIM 1: If efr (Th; F; G; � t) efr (Th; F; G; � t 1) = efr(Th; F; G; � t) then

efn (Th; F; G; � t; t max � t; t max) = 0

(Claim 1). Suppose,9efn (Th; F; G; � t; t max � t; t max) 6= 0 then, as there can be

442

no two worlds in Th that satisfy F and G with exactly � t time periods between,

efr(Th; F; G; � t 1) 6= 0 as the two such worlds would satisfyF and G within

� � t 1 time intervals.

Therefore, we have a contradiction asefr(Th; F; G; � t) efr (Th; F; G; � t 1) =

efr(Th; F; G; � t) forcesefr(Th; F; G; � t 1) = 0.

CLAIM 2: efr(Th; F; G; � t) � efr (Th; F; G; � t 1) + pfr (Th; F; G; � t)

Intuition: If we consider anefr with � t and subtract the sameefr with � t 1,

we are essentially only consideringG at exactly � t, hence thepfr for � t. Claim 1

allows us to ignore the e�ect ofefn in for the worlds betweentmax � t; t max .

(Claim 2). By the de�nition of efr , we knowefr(Th; F; G; � t) � efr (Th; F; G; � t

1).

Therefore, 0� efr (Th; F; G; � t) efr (Th; F; G; � t 1) � efr (Th; F; G; � t).

By claim 1, if efr (Th; F; G; � t) efr (Th; F; G; � t 1) is maximized (hence

efr(Th; F; G; � t) efr (Th; F; G; � t 1) = efr(Th; F; G; � t)) then efn (Th; F; G; � t; t max

� t; t max) = 0. Therefore, by the de�nitions of pfr andefr we haveefr(Th; F; G; � t)

efr (Th; F; G; � t 1) � pfr (Th; F; G; � t). Therefore, we know ifefr (Th; F; G; � t)

efr (Th; F; G; � t 1) � pfr (Th; F; G; � t). The claim follows.

(Proposition 2). By induction on � t.

443

BASE CASE: By the de�nition of pfr andefr we haveefr(Th; F; G;1) = pfr (Th; F; G;1).

INDUCTIVE HYPOTHESIS: Assume efr(Th; F; G; � t 1) �
P � t 1

i =1 pfr (Th; F; G; i)

is true.

INDUCTIVE STEP: By the inductive hypothesis. efr (Th; F; G; � t 1) �
P � t 1

i =1 pfr (Th; F; G; i).

We add pfr (Th; F; G; � t) to both sides. efr (Th; F; G; � t 1) + pfr (Th; F; G; � t) �

P � t
i =1 pfr (Th; F; G; i). By claim 2, we haveefr(Th; F; G; � t) �

P � t
i =1 pfr (Th; F; G; i).

We can now apply the inductive hypothesis and are �nished.

A.2.4 Proof of Proposition 2.17

Part (1): Let I be a temporal interpretation, F and G be formulas, and � t

be a temporal interval. If I j=
S � t

i =1 f F
pfr
; G : [i; ` i ; ui]g then I j= F

efr
; G :

[� t; max(` i); min (
P � t

i =1 ui ; 1)]

Proof. By Proposition 2.15, we have the following:max(
P

Th 2T I (Th)�pfr (Th; F; G; i)) �

P
Th 2T I (Th)�efr (Th; F; G; � t). By Proposition 2, we have the following:

P
Th 2T I (Th)�

efr (Th; F; G; � t) �
P

Th 2T I (Th) � min (
P � t

i =1 pfr (Th; F; G; i))

The statement immediately follows.

Part (2): If I j= F
fr

,! G : [� t; ` p; up; a; b] then 8a` ; b̀ ; au; bu such that a` � a � au

and b̀ � b � bu we have I j= F
fr

,! G : [� t; ` p; 1; a` ; bu] and I j= F
fr

,! G :

[� t; 0; up; au; b̀].

Proof. PART 1: I j= F
fr

,! G : [� t; `; u; a; b] then I j= F
fr

,! G : [� t; `; 1; a` ; bu]

We know that f Th : a � fr(Th; F; G; � t) � bg � f Th : a` � fr(Th; F; G; � t) � bug

444

Hence, if `1 �
P

Th 2T ;a` � fr(Th ;F;G; � t)� bu
I (Th) � u1 then ` � `1 and u1 � 1. The

statement follows.

PART 2: I j= F
fr

,! G : [� t; `; u; a; b] then I j= F
fr

,! G : [� t; 0; u; au; b̀]

We know that f Th : au � fr(Th; F; G; � t) � b̀ g � f Th : a � fr(Th; F; G; � t) � bg

Hence, if `2 �
P

Th 2T ;au � fr(Th ;F;G; � t)� b̀
I (Th) � u2 then 0 � `2 and u2 � u. The

statement follows.

A.2.5 Proof of Lemma 2.19

The qfr satis�es Axioms FF1-FF4.

Proof. qfr satis�es axioms FF1-FF3 by de�nition. Axiom FF4 is satis�ed with

the following thread constructions: Create thread,Th1 such that Th1(1) j= F

and Th1(� t) j= G. By the de�nition of qfr , qfr (Th1; F; G; � t) = 1. Create

thread, Th0 such that Th0(1) 6j= F and Th0(� t) 6j= G. By the de�nition of qfr ,

qfr (Th0; F; G; � t) = 0.

A.2.6 Proof of Theorem 2.20

Part (1): Let q = Q : [t; `; u] be an annotated formula,r = TRUE
qfr
,! Q : [t; `; u; 1; 1]

be a constrained rule, andI be a tp-interpretation. Then, I j= q i� I j= r .

Proof. By the de�nition of qfr , 8Th i such that qfr(Th i ; TRUE; Q; t) = 1, Th i (t) j=

445

Q. Hence, the set of threads wherè � qfr (Th i ; TRUE; Q; t) � u equivalent to the

set of threads whereTh i (t) j= Q. By the de�nitions of satisfaction for annotated

formulae and constrained rules, the statement follows.

Part (2): Let q = Q : [t; `; u] be an annotated formula,r = TRUE
qfr
; Q : [t; `; u] be

a unconstrained rule, andI be a tp-interpretation. Then, I j= q i� I j= r .

Proof. By the de�nition of qfr , qfr (Th; TRUE; Q; t) = 0 i� Th(t) 6j= Q

and qfr(Th; TRUE; Q; t) = 1 i� Th(t) j= Q.

Hence, for all interpretations,
P

Th 2T ;Th (t)j= Q I (Th) =
P

Th 2T I (Th)qfr(Th; TRUE; Q; t).

By the de�nitions of satisfaction for annotated formulae and constrained rules, the

statement follows.

A.2.7 Proof of Lemma 3.1

Consider theAPT-Program consisting off r g wherer = F fr; G : [� t; `; u].

1. If G is a tautology, then f rg is consistent i� u = 1.

2. If F is a tautology andG is a contradiction, then f rg is consistent i� ` = 0.

3. If F is a contradiction, then f rg is consistent i� u = 1.

4. If F is not a contradiction,G is not a tautology, and eitherF is not a tautology

or G is not a contradiction then f rg is consistent.

Proof. The items follow directly from Axioms FF1-FF4 respectively.

446

1. SupposeG is a tautology.

By FF1, fr(Th; F; G; � t) is 1 for all Th, � t andF . Thus
P

Th 2T I (Th)fr(Th; F; G; � t) =

P
Th 2T I (Th) = 1. Therefore f rg is consistent i� u = 1.

2. SupposeF is a tautology andG is a contradiction.

By FF2, fr(Th; F; G; � t) is 0 for all Th, and � t. Thus
P

Th 2T I (Th)fr(Th; F; G; � t) =

0. Thereforer is consistent i� ` = 0.

3. SupposeF is a contradiction.

By FF3, fr(Th; F; G; � t) is 1 for all Th, � t andG. Thus
P

Th 2T I (Th)fr(Th; F; G; � t) =

P
Th 2T I (Th) = 1. Therefore f rg is consistent i� u = 1.

4. SupposeF is not a contradiction, G is not a tautology, and eitherF is not a

tautology or G is not a contradiction

By FF4, we haveTh0 andTh1 such that fr(Th0; F; G; � t) = 0 and fr(Th1; F; G; � t) =

1. Let I be the interpretation assigning probability` to Th1 and probability

1 ` to interpretation Th0. I fr-satis�es r , thus f rg is consistent.

A.2.8 Proof of Theorem 3.2

Deciding the consistency of anAPT-logic program containing a single uncon-

strained APT-rule is NP-Complete.

Proof. In NP : Lemma 3.1 covers all possible cases where a single unconstrained

rule r = F fr; G : [� t; `; u] may be consistent. In each case, there is a di�erent

447

witness:

1. If ` = 0 and u = 1 then no witness is needed (such rules are always consistent).

2. If ` = 0 and u < 1 then we need two worldsw0 and w1 as a witness.w0 does

not satisfy G and provesG is not a tautology (keeping part one of Lemma 3.1

from applying). w1 satis�es F and provesF is not a contradiction. (keeping

part three of Lemma 3.1 from applying). Note that either part two or part

four of the lemma apply (depending on ifF is a contradiction and G is a

tautology or not), and in either casef rg is consistent.

3. If ` > 0 and u = 1 we need a world,w, which does not satisfyF or does

satisfy G (keeping part two of Lemma 3.1 from applying). Note that with

these assumptions, exactly one of the other parts of the lemmaapplies and in

all casesf rg is consistent.

4. In all other cases we have that̀ > 0 and u < 1. Here we need three worlds as

the witness,w0 which does not satisfyG, w1 which satis�es F , and w3 which

either does not satisfyF or satis�es G. When such worlds do not exist, one

of the other cases applies and enforces thatf r g is not consistent { thus such

worlds always exist whenf rg is consistent. The worlds allow the application

of part four of Lemma 3.1 to prove consistency.

NP-hard: By reduction from SAT. Take SAT formula F , and create annotated

rule r = F fr; FALSE: [1; 0; 0]. c is consistent i� F has a satisfying assignment.

()) Supposef rg is consistent andF has no satisfying assignment. ThusF is a

448

contradiction and by part three of lemma 3.1,u must be 1 in order forf r g to be

consistent. But u is not 1 (it is 0), so there is a contradiction andF has a satisfying

assignment.

(() SupposeF has a satisfying assignment. Then eitherF is a tautology, which

gives that f r g is consistent by part two of lemma 3.1; or not, in which case part

three of lemma 3.1 impliesf rg is consistent.

A.2.9 Proof of Lemma 3.3

Let K = f r = F
fr

,! G : [� t; `; u; �; �]g be a constrainedAPT-Program con-

sisting of a single rule. K is consistent i� at least one of the following conditions

hold.

� u = 1 and there existsTh in such that � � fr(Th in ; F; G; � t) � � .

� ` = 0 and there existsThout such that � > fr(Thout ; F; G; � t) or � < fr(Thout ; F; G; � t).

� There exists bothTh in and Thout as described above.

Proof. (1) Let Th in be a thread such that� � fr(Th in ; F; G; � t)� . Let Thout be a

thread such that � > fr(Thout ; F; G; � t) or � < fr(Thout ; F; G; � t).

(2) By the axioms FF1-FF4 and the pigeon-hole principle, there must exist at least

one ofth in , Thout .

We have three cases: CASE 1:th in , Thout both exist.

Consider interpretation I such that I (Th in) = 1. By the de�nition of satisfaction,

I j= r . Thereforef rg is consistent.

449

CASE 2: Only th in exists.

Then, for all threads, Th, � � fr(Th; F; G; � t) � � . So, for any satisfying inter-

pretation, the sum of all threadsTh where� � fr(Th; F; G; � t) � � is 1. Hence,u

must equal 1, orI is not a satisfying interpretation.

CASE 3: Only thout exists.

Then, for all threads,Th, � > fr(Th; F; G; � t) or � < fr(Th; F; G; � t). So, for any

satisfying interpretation, the sum of all threadsTh where� � fr(Th; F; G; � t) � �

is 0. Hence,̀ must equal 0, orI is not a satisfying interpretation.

The statement follows directly from the above cases.

A.2.10 Proof of Theorem 3.4

Deciding the consistency of anAPT-logic program containing a single con-

strained APT-rule is NP-Complete.

Proof. In NP: Lemma 3.3 covers all cases where a single constrained ruler = F
fr

,!

G : [� t; `; u; �; �] may be consistent. In each case, there is a di�erent witness:

� There existsTh in such that � � fr(Th in ; F; G; � t)� and u = 1. Here Th in is the

witness.

� There existsThout such that � > fr(Thout ; F; G; � t) or � < fr(Thout ; F; G; � t)

and ` = 1. Here Thout is the witness.

� There exists bothTh in and Thout as described above. Here, the witnesses are

Th in and Thout .

450

NP-hard: By reduction from SAT. Take SAT formula F , and create anno-

tated rule r = F
fr

,! FALSE : [1; 1; 1; 0; 0]. r is consistent i� F has a satisfying

assignment.

()) Supposef rg is consistent andF has no satisfying assignment. ThusF is a

contradiction. Thus, by FF3, for all Th, fr(Th; F; FALSE; � t) = 1. This is outside

of the range [�; �] for the rule. Hence,Th in , as described in Lemma 3.3 cannot

possibly exist. AlthoughThout does exist, as̀ 6= 0, f r g is not consistent by Lemma

3.3. Therefore, we have a contradiction andF must have a satisfying assignment.

(() SupposeF has a satisfying assignment. IfF is not a tautology, then we can

apply FF4 and createTh0 such that fr(Th0; F; FALSE; 1) = 0. If F is a tautology,

then all threads areTh0 as described earlier. As 02 [�; �] and u = 1, then by

Lemma 3.3, we know thatf r g is consistent.

A.2.11 Proof of Lemma 3.6

If an APT-Program, K = f r1; : : : ; r i ; : : : ; rng, is PCD, then for any disjoint

partition of rules, K1, K2, there exists a threadTh such that for all rules r1 2 K 1,

fr1(Th; F1; G1; � t1) = 1 and for all rules r2 2 K 2, fr2(Th; F2; G2; � t2) = 0.

Proof. We will use the worldswi and w; speci�ed in the de�nition of PCD. Let

max(� t) be the maximum � t of any rule in K. For each ruler i in K2, we set world

Th(max(� t i) � (i 1)) = wi . Set all other worlds inTh to w; . Note that by the

axioms, for all rulesr1 2 K 1, fr1(Th; F1; G1; � t1) = 1 and for all rules r2 2 K 2,

fr2(Th; F2; G2; � t2) = 0.

451

A.2.12 Proof of Theorem 3.7

For a mixed PCD APT-Program K = f r1; : : : ; r i ; : : : ; rng, if for all r i , ` i �

jKj 1
jKj

then K is consistent.

Proof. (1) For every rule r i 2 K , let thread Th i such fri (Th i ; Fi ; Gi ; � t i) = 0 and

8j 6= i , frj (Th ;Fj ; Gj ; � t j) = 1. These threads exists by Lemma 3.6.

(2) Let thread Th ; is a thread where every world isw; . This thread exists by Lemma

3.6.

(3) Let max(` i) be the maximum lower probability bound of all rules inK.

(4) We create interpretation I as follows: 8Th i , I (th i) =
1

jKj 1
� max(` i) and

I (Th ;) = 1
P jKj

i =1 I (th i). For any other thread, Th, I (Th) = 0.

CLAIM 1:
P

Th 2T = 1

(5) By (4), the only threads that must have a non-zero probability by I are

Th1; : : : Th i ; : : : ;Th jKj .

(6) By (4),
P jKj

i =1 I (Th) = jKj �
1

jKj 1
� max(` i).

(7) Then, by the requirement on` i in the theorem statement,
P jKj

i =1 I (Th) � jKj �

1
jKj 1

�
jKj 1

jKj
.

(8) Hence,
P jKj

i =1 I (Th) � 1.

(9) By (8) and (4), the claim follows.

CLAIM 2: Interpretation I satis�es all unconstrained rules inK

(10) We will consider r i 2 K . As ui = 1, we have to show only that ` i �

452

P
Th 2T I (Th)fri (Th; F (i) ; G(i) ; � t (i)).

(11) Based on (1-2),
P jKj

j =1 I (th j) I (th i) �
P

Th 2T I (Th)fri (Th; F (i) ; G(i) ; � t (i)).

(12) Hence, by (4), (jKj 1)�(
1

jKj 1
�max(` i)) �

P
Th 2T I (Th)fri (Th; F (i) ; G(i) ; � t (i)).

(13) By (3), for all rules, r i 2 K , ` i �
P

Th 2T I (Th)fri (Th; F (i) ; G(i) ; � t (i))

(14) Therefore, by (13) and the de�nition of satisfaction, all unconstrained rules in

K are satis�ed by I .

CLAIM 3: Interpretation I satis�es all unconstrained rules inK

We have two cases:

CASE 1: � = 0

Then,
P

Th 2T 0� fr(Th ;F;G; � t)� 1 I (Th) = 1 and as u = 1, I satis�es constrained

rule r

CASE 2: � 6= 0

Notice that for all threads, Th that I assigns a non-zero probability to, that

fr(Th; F; G; � t) is either zero or one. Hence, for all rules,
P

Th 2T I (Th)fr(Th; F; G; � t) =

P
Th 2T � � fr(Th ;F;G; � t)� 1 I (Th) = 1. By the �rst claim, we know that for all rules

` i �
P

Th 2T I (Th)fr(Th; F; G; � t), therefore, by the de�nition of satisfaction, and

that fact that � i = 1 for all constrained rules, we know thatI satis�es all constrained

rules.

453

A.2.13 Proof of Proposition 3.9

For mixed APT-Logic ProgramK, K is consistent i� SLC(K) has a solution.

Proof. ()): Let I be an interpretation satisfying K. For each thread, Th j , set

variable vj = I (Th j). Based on the de�nitions of interpretation and satisfac-

tion, we know that for the �rst m lines of the linear program provide a valid so-

lution (i.e. substituting I (Th j) for vj for a given unconstrained rule gives̀ i �

P n
j =1 fr(Th j ; Fi ; Gi ; � t i) � I (Th j) � ui which is the de�nition of satisfaction, substi-

tuting I (Th j) for vj for a given constrained rule gives

` i �
P

Th j 2T � � fr(Th j ;F i ;G i ;� t i)� �
I (Th j) � ui which is also de�nition of satisfaction).

Based on the de�nition of an interpretation, we know that
P n

j =1 I (Th j) = 1, which

is equivalent to the last line of the linear program.

((): Let v1; : : : ; vn be a solution to the linear program. LetI be an interpretation

whereI (Th j) = vj . Based on the de�nitions of satisfaction, interpretation,and the

lines of the linear program,I is a valid interpretation for K.

A.2.14 Proof of Lemma 3.13

For APT-logic program K, and� K -partitioning P1; � � � ; Pm of T , for all threads

Th; Th0 2 Pi , all F; G 2 formula (K), and all � t

� qfr (Th; F; G; � t) = qfr(Th0; F; G; � t)

� efr (Th; F; G; � t) = efr(Th0; F; G; � t)

� qfr (Th; F; G; � t) = qfr(Th0; F; G; � t)

454

Proof. In both pfr and efr, the numerator and denominator depend only on the

worlds in the threads satis�ed byF and G. SinceF and G are in formula (K), we

know that at all time points Th and Th0 either both satisfyF or both do not satisfy

F (and likewise forG). Therefore exactly the same time points will be counted in

the numerator and denominator of pfr and efr for bothTh and Th0, so the values

qfr(Th; F; G; � t) and qfr(Th0; F; G; � t) will be equivalent (and likewise for efr).

For qfr , we notice that other than circumstances where the value ofqfr reects

the axioms, this frequency function returns 1 ifF is satis�ed at Th(1) and G is

satis�ed at Th(� t). As F and G are also in formula (K), we know that worlds

Th(1) and Th(� t) either satisfy or do not satisfyF and G respectively. Therefore,

qfr (Th; F; G; � t) = qfr(Th0; F; G; � t).

A.2.15 Proof of Proposition 3.15

For any APT-program K, WELC(K) is solvable i� K is consistent.

Proof.) SupposeWELC(K) is solvable to show thatK is consistent. De�ne in-

terpretation I as follows: For each partitionPi , pick one Th 2 Pi and set

I (Th) = v̂label(Pi) . For all other Th, set I (Th) = 0. Because of conditions 4

and 5,
P

Th I (Th) = 1. Because of the �rst constraints for constrained rules,

unconstrained rules, and annotated formula,I satis�es K.

(SupposeK is consistent. Let I be a satisfying interpretation. Assign a solu-

tion to WELC(K) as follows: For eachPi and lbl where lbl = label(Pi), v̂lbl =

455

P
Th 2 Pi

I (Th), and for any lbl where there is noPi s.t. label(Pi) = lbl, v̂lbl = 0.

SinceI is consistent, this variable assignment will satisfy conditions relating to

constrained rules, unconstrained rules, and annotated formula. The other con-

straints are clearly met.

A.2.16 Proof of Theorem 3.17

For APT-Logic Program,K, determining the existence of an equivalence class

is NP-Complete.

Proof. NP-Hard : Let F be a sat formula. Create programK consisting of an-

notated formula F : [1; 1; 1] and let tmax = 1. There is equivalence classPi such

that label(Pi) = 1 i� there is a satisfying assignment for F .) : Suppose there is

an equivalence classPi , then for Th 2 Pi , Th(1) j= F and Th(1) is a satisfying

assignment forF . (: Suppose there is a satisfying assignmentw for F , then the

thread Th whereTh(1) has label 1.

In NP : The existence of equivalence classPi such that label(Pi) = lbl can be

guaranteed by a threadTh such that label(Th) = lbl. This thread is the witness.

A.2.17 Proof of Proposition 3.19

For any constrainedAPT-logic program K, � K is reexive, symmetric, and

transitive.

Proof. Straightforward.

456

A.2.18 Proof of Theorem 3.21

For constrainedAPT-Logic ProgramK, K is consistent i� there is a solution

to FELC(K).

Proof. ()): Let I be an interpretation satisfyingK. Create an assignment� where

for each E 2 T [� K fr], assign �vstr (E) � =
P

Th 2 E I (Th). That this assignment �

satis�es constraint 1 follows from the fact that
P

Th 2T I (Th) = 1 by simple algebra:

1 =
X

Th 2T

I (Th) =
X

E 2T [� K fr]

X

Th 2 E

I (Th) =
X

E 2T [� K fr]

�vstr (E)

That this assignment� satis�es constraint 2 follows directly form the de�nition

of � (�vstr (E) � is zero whenE is empty).

That this assignment� satis�es constraint 3 follows from the fact that for all

i ,

` i �
X

Th 2T ;� i � fr(Th ;F i ;G i ;� t i)� � i

I (Th) � ui

. Consider that due to the de�nition of str (E):

X

Th 2T ;� i � fr(Th ;F i ;G i ;� t i)� � i

I (Th) =
X

E 2T [� K fr];str (E) i =1

X

Th 2 E

I (Th) =
X

E 2T [� K fr];str (E) i =1

�vstr (E) �:

By direct substitution, we now have that � satis�es the last, and �nal, constraint.

((): Let � be a solution toFELC(K). Construct an interpretation I where for

eachE 2 T [� K fr], we pick oneTh 2 E and assignI (Th) = �vstr (E) and all other

I (Th) are set to 0 (due to constraint 2, this construction is well-de�ned). That

P
Th 2T I (Th) = 1 follows from constraint 1. That I j= K follows from constraint 3

algebraically similar to the above.

457

A.2.19 Proof of Proposition 3.23

If a given equivalence class is empty,BFECA returns EMPTY. If there is a

thread in a given equivalence class,BFECAreturns OK.

Proof. CLAIM 1: If a given equivalence class is empty,BFECAreturns EMPTY.

Suppose by way of contradiction, that for a class,cls reported EMPTY by BFECA

actually contains threadTh. The classcls is de�ned as follows:

cls =

(
\

si =1

ATSi

)

\

(
\

si =0

ATSi

)

Then, for all ATSi such that si = 1, Th 2 ATSi and all ATSi such that si = 0,

Th 2 ATSi . If such a thread existed, it would have been found in steps 1-3of

BFECA, hence a contradiction.

CLAIM 2: If there is a thread in a given equivalence class,BFECA returns

OK.

Suppose by way of contradiction, that for a class,cls reported OK by BFECAactually

does not contain a thread. The classcls is de�ned as follows:

cls =

(
\

si =1

ATSi

)

\

(
\

si =0

ATSi

)

Hence, there does not exist a thread,Th such that for all ATSi such that si = 1,

Th 2 ATSi and all ATSi such that si = 0, Th 2 ATSi . However, by steps 1-3 of of

BFECA, at least one such thread was identi�ed. Hence a contradiction.

The statement follows directly from claims 1-2.

458

A.2.20 Proof of Theorem 58

SupposeAPT-Logic program,K =
S m

i =1 f r i g wherer i = Fi
fr i,! Gi : [� t i ; ` i ; ui ; � i ; � i]

meets PCD restrictions 1-6 of De�nition 3.5. Then, for all binary numbers s 2

[0; 1]m , frequency equivalence classescls = f
T

si =1 ATSi g \ f
T

si =0 ATSi g contains at

least one thread.

Proof. CLAIM: There exists at least one thread in anycls

Follows directly from lemma 3.6. Note that PCD restriction 7 is not used in this

lemma. By the de�nition of the associated thread subsets, classcls contains at least

one thread.

The statement of the theorem follows from the above claim.

A.2.21 Proof of Corollary 15

For a constrainedAPT-Logic program,K =
S m

i =1 f r i g where r i = Fi
fr i,! Gi :

[� t i ; ` i ; ui ; � i ; � i] and set of annotated formulas,FACTS =
S k

j =1 af j where af j =

Qj : [t j ; ` j ; uj] with the following restrictions,

1. K meets PCD restrictions 1-4 of De�nition 3.5

2. tmax � max(t) + jKj � max(� t i)

3. 9 world w; such that 8i 2 [0; m] and 8j 2 [0; k] w; 6j= Fi , w; 6j= Gi , and

w; 6j= Qj

459

4. 8j 2 [0; k], there exists worldqwj such that qwj j= Qj and 8i 2 [0; m] qwj 6j=

Fi .

5. No two annotated formulas inFACTS are at the same timepoint.

Then for all s 2 [0; 1]m+ k , frequency equivalence classescls = f
T

si =1 ATSi g \

f
T

si =0 ATSi g contains at least one thread.

Proof. 8j 2 [1; k], we de�ne ATS(q)
j and ATS

(q)
j to be the ATS and ATS for rule

r = TRUE
qfr
,! Qj : [t; ` j ; uj ; 1; 1] created from annotated formulaaf j using qfr .

CLAIM: There exists at least one thread in anycls

For the string s 2 [0; 1]m+ k , let the �rst m digits correspond with them constrained

rules and the lastk digits correspond with thek annotated formulae.

Create a thread, Th where for any rule, r i if si = 0, set world Th(max(t j) +

max(� t i) � (i 1)) = wi .

For any formulae,af j wheresj = 1, set the world Th(t) = qwj . Set all other worlds

in Th to w; . Note that by the axioms, 8i , fri (Th; Fi ; Gi ; � t i) = 0 and 8j 6= i ,

frj (Th; Fj ; Gj ; � t j) = 1. Further, for all annotated formulae whereqwj is at time t j ,

there the thread is inATS(q)
j . For all annotated formula qwj wherew; is at Th(t),

the thread is in ATS
(q)
j .

By the de�nition of the associated thread subsets, classcls contains at least one

thread.

460

A.2.22 Proof of Corollary 16

Let:

� ConstrainedAPT-Logic program,K =
S m

i =1 f r i g wherer i = Fi
fr i,! Gi : [� t i ; ` i ; ui ; � i ; � i]

� Set of annotated formulas,FACTS =
S k

j =1 af j whereaf j = Qj : [t j ; ` j ; uj]

� 8 j 2 [1; k], we de�ne ATS(q)
j and ATS

(q)
j to be the ATS and ATS for rule r =

TRUE
qfr
,! Qj : [t; ` j ; uj ; 1; 1] created from annotated formulaaf j using qfr

� Restrictions 1-5 from Corollary 15

Then, for all subsets ofSAMETIME � FACTS, where for allaf 1; af 2 2 SAMETIME ,

t1 = t2; for all strings s2 2 [0; 1]jSAMET IME j all frequency equivalence classes,cl that

intersect f
T

s2i =1 ATS(q)
i g \ f

T
s2i =0 ATS

(q)
i g are non-empty i�:

9 world wp such that for all af i 2 SAMETIME wheres2i = 1, wp j= Qi and for

all af j 2 SAMETIME wheres2j = 0, wp 6j= Qj .

Proof. (() By the de�nition of associated thread subsets, we can create a thread

Th where the world at time t is wp. Hence, for all af i 2 SAMETIME where

s2i = 1, qfr(Th; TRUE; Qi ; t i) = 1 and for all af j 2 SAMETIME where s2j =

0, qfr(Th; TRUE; Qi ; t i) = 0. As per Corollary 15, all other annotated formu-

lae with di�erent values for t and constrained rules, this thread will have the

appropriate value for the corresponding frequency function. Hence, for all sub-

sets of SAMETIME � FACTS, where for all aF; aG 2 SAMETIME , t1 =

t2 for all strings s2 2 [0; 1]jSAMET IME j all equivalence classes,cl that intersect

461

f
T

s2i =1 ATS(q)
i g \ f

T
s2i =0 ATS

(q)
i g are not empty.

()) Suppose by way of contradiction, we can have a thread in the equivalence

classcl that intersects f
T

s2i =1 ATS(q)
i g \ f

T
s2i =0 ATS

(q)
i g and there does not exists

a world wp such that for all af i 2 SAMETIME where s2i = 1, wp j= Qi and for

all af j 2 SAMETIME wheres2j = 0, wp 6j= Qj . Hence, a thread in such a class

must have one of the following characteristics in the below three cases:

CASE 1: There exists world,w0
p where there existsaf i 2 SAMETIME where

s2i = 1, w0
p 6j= Qi and for all af j 2 SAMETIME wheres2j = 0, w0

p 6j= Qj and for

thread Th1, Th1(t i) = w0
p.

Thread Th1 cannot possibly be incl as qfr(Th1; TRUE; Qi ; t i) = 0 - it would have

to be 1 to be incl by the de�nition of associated thread subsets.

CASE 2: There exists world,w0
p such that for all af i 2 SAMETIME where

s2i = 1, w0
p j= Qi and there existsaf j 2 SAMETIME where s2j = 0, w0

p j= Qj

and for thread Th2, Th2(t i) = w0
p.

Thread Th2 cannot possibly be incl as qfr(Th2; TRUE; Qj ; t j) = 1 - it would have

to be 0 to be incl by the de�nition of associated thread subsets.

CASE 3: There exists world,w0
p where there existsaf i 2 SAMETIME where

s2i = 1, w0
p 6j= Qi and there existsaf j 2 SAMETIME where s2j = 0, w0

p j= Qj

462

and for thread Th3, Th3(t i) = w0
p.

Thread Th2 cannot possibly be incl for reasons described in cases 1-2.

Hence, we have a contradiction and there cannot exist a threadin class cl.

The statement follows.

A.2.23 Proof of Proposition 3.25

If a given frequency equivalence class is empty,WEFE returns EMPTY. If

there is a thread in a given frequency equivalence class,WEFEreturns OK.

Proof. CLAIM 1: If a given frequency equivalence class is empty,WEFE returns

EMPTY.

Suppose by way of contradiction, that for a class,cls reported EMPTY by BFECA

actually contains threadTh. The classcls is de�ned as follows:

cls =

(
\

si =1

ATSi

)

\

(
\

si =0

ATSi

)

By Lemma 3.13, a world-equivalence based thread partition has the same fre-

quency function as all threads in that partition. Hence, by the de�nition of the

set PCLASSs in steps 4-5 ofWEFE, there must be a partition in setPCLASSs

corresponding to a thread in classcls. However, that set is empty and we have a

contradiction.

CLAIM 2: If there is a thread in a given frequency equivalence class, WFE

returns OK.

Suppose by way of contradiction, that for a class,cls reported OK by BFECAactually

463

does not contain a thread. The classcls is de�ned as follows:

cls =

(
\

si =1

ATSi

)

\

(
\

si =0

ATSi

)

Hence, there does not exist a thread,Th such that for all ATSi such that si = 1,

Th 2 ATSi and all ATSi such that si = 0, Th 2 ATSi . Therefore, by Lemma 3.13

and steps 4-5 ofWEFE, PCLASSi must be empty. However, by the result ofWEFE

it is not, so we have a contradiction.

The statement follows directly from claims 1-2.

A.2.24 Proof of Theorem 4.2

Given an APT-logic programK and an annotated formula,af , deciding if K

entails af is coNP-Hard.

Proof. Intuition: The proof of the above result is by a reduction from SAT.

Let K ; = ; be anAPT-logic program. Take SAT formulaF and create an annotated

formula af = : F : [1; 1; 1]. We say that K ; entails af i� F is not satis�able.

()) Suppose BWOC,F is not satis�able and K ; does not entailaf . Then, there

exists an interpretation I s.t. I j= K ; and I 6j= af . As F is not satis�able, we

know that for all worlds w 2 2B L , w 6j= F . Hence, for any valid interpretation,

P
Th jTh (1) j= : F I (Th) = 1. By the de�nition of satisfaction, interpretation I j= af {

which is a contradiction.

(() Suppose BWOC,F is satis�able andK ; does entailsaf . By the de�nition of K ; ,

8I ,
P

Th 2T I (th) = 1. Based on the de�nition of entailment, 8I ,
P

Th 2T :th (1) j= : F = 1.

464

Therefore,8th ! th(1) j= : F and 8th ! th(1) 6j= F hence,F is not satis�able - a

contradiction.

A.2.25 Proof of Proposition 4.3

For unconstrained ruler = F fr; G : [� t; `; u] or constrained ruler = F
fr

,!

G : [� t; `; u; �; �] and program K, SLC-ENTreturn ENTAILS i� K entails r and

returns NOT ENTAILS i� K does not entailr

Proof. To show this, we show thatK entails r i� [�̀0; �u0] � [`; u].

CLAIM 1: If K entails r then [�̀0; �u0] � [`; u].

Suppose, BWOC, that [�̀0; �u0] 6� [`; u]. Then either �̀0 or �u0 is not in [`; u]. However,

clearly there is a solution to the linear program that assigns a constraint associated

with r a set of variables that sums to either�̀0 or �u0. Hence, there is an interpretation

that would assign the non-probabilistic portion of the ruler one of those numbers

as a probability. Such an interpretation would not satisfyr , which would be a con-

tradiction.

CLAIM 2: If [�̀0; �u0] � [`; u] then K entails r .

Suppose, BWOC, thatK does not entailr . Then, there must be some interpreta-

tion that satis�es the program but not r . However, by the solution of the linear

program, any probability a satisfying interpretation assigns r would fall in [�̀0; �u0] {

a contradiction.

465

A.2.26 Proof of Proposition 81

If K entails r , then ALC-ENTreturns ENTAILS. If K does not entailr , then

ALC-ENTreturns NOT ENTAILS.

Proof. CLAIM 1: If K entails r , then ALC-ENTreturns ENTAILS.

Suppose, by way of contradiction, that there exists interpretation I that satis�es

program K but does not satisfy ruler . If r is constrained, then
P

Th 2T I (Th) �

fr(Th; F; G; � t) is either less than` or greater than u. If r is constrained, then

P
Th 2T ;� � fr(Th ;F;G; � t)� �

is either less thaǹ or greater thanu. However, by Theorem

3.15 for WELCand Theorem 3.21 forFELC, such an interpretation cannot exist as

[�̀; �u] � [`; u] when ALC-ENTreturns ENTAILS. Therefore, we have a contradiction

and the statement of the claim follows.

CLAIM 2: If K does not entailr , then ALC-ENTreturns NOT ENTAILS.

Suppose, by way of contradiction, that all interpretationsthat satisfy program K

alsor . However, as there is a solution to eitherWELCor FELCsuch that either �̀ < `

or �u > u , then we know by Theorem 3.15 forWELCand Theorem 3.21 forFELC, that

there is an interpretation that assigns the quantity
P

Th 2T I (Th)�fr(Th; F; G; � t) (or

P
Th 2T ;� � fr(Th ;F;G; � t)� �

I (Th) if r is constrained) a value either less thaǹor greater

than u. Therefore, by the de�nition of satisfaction, there existsan interpretation

that satis�es K and does not satisfyr . Hence, we have a contradiction and the

statement of the claim follows.

466

A.2.27 Proof of Theorem 6.5

Theorem 59. If an interpretation I satis�es MDP L with set of policiesL, then it

satis�es APT-Program K generated fromMAKE-APT.

Proof. Suppose, by way of contradiction, that there exists an interpretation I that

satis�es (L; POL) that does not satisfyK. Therefore,I must not satisfy one of the

annotated formulas inK. As s1 is the initial state, obviously all I satisfying the

Markov Process satisfyF (s1) : [1; 1; 1]. Therefore, for some states and time point

t, I 6j= F (si) : [t; min (SPML;� (st ; t)) ; max(SPML;� (st ; t))]. Then, by the de�nition

of satisfaction,
P

Th (t)j= F (si)
I (Th) > min (SPML;� (si ; t)) or

P
Th (t)j= F (si)

I (Th) >

max(SPML;� (si ; t)). However, we notice thats1 ! t 1 si is the set of all pre�xes

for all sequences that include statesi after t 1 time points. Hence, the sum of

probabilities for all sequences ins1 ! t 1 si is equal to the sum of all probabilities of

all sequences that includesi after t 1 time points. Therefore,
P

Th (t)j= F (si)
I (Th)

must fall within the bounds [min (SPML;� (si ; t)) ; max(SPML;� (si ; t))], which is a

contradiction. The claim follows.

A.2.28 Proof of Corollary 6.6

Corollary 17. An interpretation I satis�es MDP L with policy � , i� it satis�es

APT-Program K generated fromMAKE-APT.

Proof. ()): Follows directly from Theorem 6.5.

((): By the de�nition of satisfaction of an MDP and single policy, there exists only

one I such that I j= (L; �). We claim that there is exactly one interpretation for

467

the constructedAPT-Program, K, and then use the pigeon hole principle to show

that it is the same interpretation that satis�es (L; �). We prove this by induction

on tmax .

Base case:If tmax = 1, then the only rule in K is F (s1) : [1; 1; 1] is necessary (all

other annotated formulas have at greater thantmax . As F (s1) is satis�ed by exactly

one world, and the probability bounds are both 1, and there isonly one time-point,

there can be only one possible interpretation.

Inductive hypothesis:Assume thatK has only one interpretation fortmax 1.

Inductive step: As K has only one interpretation fortmax 1, only the annotated

formulas wheret � tmax 1 are included. LetI be the interpretation that satis�es

K for tmax 1. Let T be the set of threads fortmax 1.

We add all possible annotated formulas wheret = tmax . Let us say that there

are n such annotated formulas. We note that the regular formula ineach annotated

formulas is satis�ed by exactly one world, and all of the formulas are satis�ed by a

di�erent world. Let W be this set of worlds. Therefore, the new set of threads can

have one ofn possible worlds at time pointtmax . Let T0 be the new set of threads.

Therefore, for eachTh 2 T, there aren number of threads inT0.

For w 2 W, let p(w) be the probability of w being the world at time tmax . As

all annotated formulas in K have ` = u, then there is only one possible value for

p(w). Note that as the ` value for all annotated formulas wheret = tmax is 1, then

P
w2 W p(w) = 1. Suppose by way of contradiction that there is a threadTh0 2 T0

that can be assigned more than one probability. However, there can be only one

probability for the �rst tmax 1 worlds of Th0. We shall call this initial sequence

468

of worlds thread Th. This is interpretation I (we know this is the only possible

interpretation for the �rst tmax 1 worlds ofTh0 by the inductive hypothesis). We

know the probability of a givenw at time tmax is p(w). Hence, the only probability

for the thread Th0 is I (Th) � p(w). Further, as the sum of the probabilities for all

threads in T equal to 1 (based onI), and as
P

w2 W p(w) = 1, then the sum of the

probabilities for all threads in T0 is 1. So, we have a contradiction, and exactly one

interpretation for K.

Therefore, as bothK and (L; �) have exactly one satisfying interpretation,

then we know by the pigeon-hole principle and Theorem 6.5 that if I j= K then

I j= (L; �).

469

Appendix B

Appendix for Chapter 3

B.1 Complexity Proofs (Section 3.3)

B.1.1 Small-Model Lemma for APT -Logic

The following lemmas are not part of the main text, but are needed to prove

some of the theorems.

Let us de�ne the \size" of a rational number a
b (wherea; bare relatively prime)

as the number of bits it takes to representa and b. As stated earlier, for both the

probaiblity bound of rules, as well as the values returned byfrequency functions,

we assume that this is a �xed quantity. In [44], the authors provide another result

we can leverage to ensure that there is a solution to a linear program where the

solution can be represented with a polynomial number of bits.

Lemma 27. If a system ofr linear inequalities and/or equalities with integer co-

e�cients of length at most l has a nonnegetive solution, then it has a nonnege-

tive solution with at mostr entries positive, and where the size of each solution is

470

O(r � l + r � log(l)) . (Lemma 2.7 in [44]).

Lemma 28. APT-program K is consistent i� it has an interpretation that only

assigns non-zero probabilities to at most2�jKj +1 threads and the probability assigned

to each thread can be represented withO(jKj� size+ jKj� log(size)) bits (wheresize is

the maximum number of bits required to represent the result of a freuqency function

of probability bounds of a rule).

Proof. By Proposition 3.9 of [155], anAPT-program is consistent i� there is a solu-

tion to the SLCconstraints. By Remark 3.10 of [155], there are 2� jKj +1 constraints

in SLC. Hence, by Theorem 9, if there is a solution to theSLCconstraints, then there

exists a solution where only 2� jKj + 1 are given positive values. The second part

of the satement follows directly from Lemma 27. The statement of the theorem

follows.

B.1.2 Proof of Theorem 10

Deciding if APT-programK is consistent is NP-Complete ifjKj is a polynomial

in terms of jBL j.

Proof. NP-Hardness by Theorem 3.4 of [155]. By Lemma 28, every consistent APT-

program must be associated with a setT 0of threads, wherejT 0j � 2�jKj +1 and that

there exists an interpretationI 0 which only assigns non-zero probabilities to threads

in T 0 and satis�es K. Hence, we useT 0 as a witness. We can check the witness

in polynomial time by setting up SLCconstraints using only threads inT 0 rather

than T . By the statement, such a linear program will have a polynomial number of

471

variables. Hence,K is consistent i� there is a solution to this linear program (which

can be checked in PTIME). The statement follows.

B.1.3 Proof of Theorem 11

Deciding if APT-rule r is entailed byAPT-program K is coNP-Complete ifjKj

is a polynomial in terms ofjBL j.

Proof. coNP-hardness by Theorem 4.2 of [155]. Let [`; u] be the probability bounds

associated withr . Let num 2 [0; 1] be a real number that is outside of [`; u]. Create

new rule r 0 that is the same asr except the probability bounds are [num; num].

Create APT-program K0 = K [f r 0g. Note that if K0 is consistent, thenr is not

entailed. Hence, we can check the consistency ofK0 using a witnessT 0 as described

in Theorem 10 as well asnum. Note that this check can still be performed in

PTIME. The statement follows.

B.1.4 Proof of Theorem 12

Given APT-programK, interpretation I , and ptf � , determining the maximum

` and minimum u such that � : [`; u] is entailed by K and is satis�ed by I is # P-

hard. Further, for constant � > 0, approximating either the maximum` and/or

minimum u within 2 jB L j1! �
is NP-Hard.

For ease of readability, we divide the above theorem into three leammas. The

statement of the theorem follows directly from Lemmas 29 and30. Throughout the

proof, we shall de�ne the problemAPT-OPT-ENT as follows:

472

APT-OPT-ENT

INPUT: APT-program K, interpretation I , and ptf �

OUTPUT: maximum ` and minimum u such that � : [`; u] is entailed byK and is

satis�ed by I .

Lemma 29. APT-OPT-ENT is # P-hard.

Proof. Intuition Given an instance of #SAT (known to be #P-complete), we can

an instance ofAPT-ENT-OPT and such that #SAT � p APT-ENT-OPT .

De�nition of #SAT:

INPUT: Set of atoms BL , formula f .

OUTPUT: Number of worlds in 2B L that satisfy f .

CONSTRUCTION:

1. SetF to be f .

2. Set t = 1.

3. For eacha 2 BL , add a : [1; 0:5; 0:5] to K.

4. Set tmax = 1.

5. We will considerBL (the set of atoms from the input of #SAT) as the set of

atoms used for the

6. input of APT-ENT-OPT .

473

7. Set IC � ; .

8. Interpretation I uniform sets each thread inT a probability of 1
jT j

For this construction, we shall denote the set of all threadsformed with

tmax = 1 on set of atomsBL as T .

As step 3 is the only step of the construction that cannot be done in constant time,

but requiresO(jBL j) time, so the construction is polynomial.

CLAIM 1: Interpretation I uniform satis�es K.

Each thread in T consists of only one world. For some atoma 2 BL , half of all

possible worlds satisfya. Hence, asI uniform is a uniform probability distribution

among threads, the sum of probabilities for all threads that satisfy a in the �rst

(and only) time point is 0:5. By the construction ofK in step 3 in the construction,

the claim follows.

CLAIM 2: For any annotated formula F : [t; `; u] that is entailed by K and satis�ed

by I uniform , ` must equalu.

As K is satis�ed by exactly one interpretation,I uniform , the sum of probabilities for

all threads that satisfyF at time t is bounded above and below by the same number.

CLAIM 3: If f is satis�ed by exactly m worlds, then f : [1; m
2j B L j ;

m
2j B L j] is entailed

by K.

Let W1; : : : ; Wm be the worlds that satisfyf . Let Th1; : : : ;Thm be all the threads

474

in T where Th i � Wi (Wi is the i th world that satis�es f). As we have only one

time point, and our threads are created usingBL , we know that the following holds:

mX

i =1

I uniform (Th i) =
m

2jB L j

This is equivalent to the following:

X

Th 2T
Th (1) j= f

I uniform (Th)

Hence, by claims 1-2 and the de�nition of satisfaction, the claim follows.

CLAIM 4: If f : [1; m
2j B L j ;

m
2j B L j] is entailed by K, then f is satis�ed by exactly m

worlds.

By claims 1-3 and the de�nition of satisfaction, there are exactly m threads that

satisfy f in the �rst time point. As there is only one time point per threads, there

are alsom worlds that satisfy f . SinceBL is the set of atoms for both the instance

of #SAT and APT-ENT-OPT , the statement follows.

The proof of the theorem follows directly from claims 3-4.

Lemma 30. For constant � > 0, approximating APT-ENT-OPT (i.e. approxi-

mating outputs` and/or u) within 2jB L j1! �
is NP-Hard.

Proof. Suppose, by way of contradiction, that approximating a solution within

2jB L j1! �
is easier than NP-Hard. Then, using the construction from the proof of

Theorem 29, we could approximate #SAT within 2jB L j1! �
. However, by [145] (The-

orem 3.2), approximating #2MONCNF, a more restricted version of #SAT, within

2jB L j1! �
is NP-hard. The statement follows.

475

B.2 Supplementary Information for Section 3.4

B.2.1 Proof of Proposition 3.4.1

If F1 : t1 ^ : : : ^ Fn : tn ^ Fn+1 : t0
1 ^ : : : ^ Fn+ m : t0

m and G1 : t1 ^ : : : ^ Gn :

tn ^ Gn+1 : t00
1 ^ : : : ^ Gn+ m : t00

m are time conjunctions, then

(F1^ G1) : t1^ : : :^ (Fn ^ Gn) : tn ^ Fn+1 : t0
1^ : : :^ Fn+ m : t0

m ^ Gn+1 : t00
1^ : : :^ Gn+ m : t00

m

is also a time conjunction.

Proof. Straightforward from the de�nitions of satisfaction and time conjunction.

B.2.2 Proof of Proposition 14

For formulas F; G, time � t, and time conjunction � ,

EFR(F; G; � t; �) �

�
cnt(�; F; G; � t) + end(�; F; G; � t)

denom(�; F; G; � t) + end(�; F; G; � t)
;

poss(�; F; G; � t) + endposs(�; F; G; � t)
denom(�; F; G; � t) + endposs(�; F; G; � t)

�

Proof. Straightforward from de�nitions.

B.2.3 Proof of Theorem 8

1. If I j= � : [`; u] and � : [`0; u0], then I j= � ^ � : [max(0; ` + `0 1); min(u; u0)]

2. If I j= � : [`; u] and � : [`0; u0], then I j= � _ � : [max(`; `); min(1; u + u0)]

3. If I j= � : [`; u] and �) � then I j= � : [`; 1]

4. If I j= � : [`; u] and �) � then I j= � : [0; u]

476

5. If I j= � : [`; u] then I j= : � : [1 u; 1 `]

Proof. Adapted from Theorem 1 of [128] and De�nition 32, except case 5:

Suppose, BWOC,I j= � : [`; u] and I 6j= : � : [1 u; 1 `]. By the de�nition of

satisfaction:

` �
X

Th 2T
Th j= �

I (Th) � u

By the de�nitoin of negation, we know that:

X

Th 2T
Th j= : �

I (Th) = 1
X

Th 2T
Th j= �

I (Th)

Hence,

` �
X

Th 2T
Th j= : �

I (Th) � u

Which, by the de�nition of satisfaction, gives a contradiction.

B.2.4 Proof of Theorem 13

If interpretation I j= � : [1; 1] whereEFR(F; G; � t; �) � [�; �], I j= F
efr
; G :

[� t; �; �].

Proof. CLAIM 1: If interpreataion I satis�es � : [`; u] and EFR(F; G; � t; �) �

[�; �], then I j= F
efr
,! G : [� t; `; 1; �; �].

Suppose, BWOC, there exists interpreationI s.t. I j= � : [`; u] and I 6j= F
efr
,! G :

[� t; `; 1; �; �]. By the de�nition of satisfaction, we know that:

` �
X

Th 2T
Th j= �

I (Th) � u

477

As EFR(F; G; � t; �) � [�; �], we know that:

X

Th 2T
Th j= �

I (Th) �
X

Th 2T
efr (Th ;F;G; � t)2 [�;�]

I (Th)

Hence,

` �
X

Th 2T
efr (Th ;F;G; � t)2 [�;�]

I (Th) � 1

So, by the de�nition of satisfaction, I j= F
efr
,! G : [� t; `; 1; �; �] { a contradiction.

CLAIM 1.1: If I j= � [1; 1], then I j= F
efr
,! G : [� t; 1; 1; �; �] (directly from claim

1).

CLAIM 2: If interpretation I satis�es F
efr
,! G : [� t; `; u; �; �], then I j= F

efr
;

G : [� t; � � `; 1]. Suppose, BWOC, there exists interpreationI s.t. I j= F
efr
,! G :

[� t; `; u; �; �] and I 6j= F
efr
; G : [� t; � � `; 1]. By the de�nition of satisfaction,

` �
X

Th 2T
efr (Th ;F;G; � t)2 [�;�]

I (Th) � u

We multiply through by � :

� � ` �
X

Th 2T
efr (Th ;F;G; � t)2 [�;�]

� � I (Th)

It follows that:

� � ` �
X

Th 2T
efr (Th ;F;G; � t)2 [�;�]

� � I (Th) +
X

Th 2T
efr (Th ;F;G; � t) =2 [�;�]

efr (Th; F; G; � t) � I (Th)

and

X

Th 2T
efr (Th ;F;G; � t)2 [�;�]

� � I (Th) �
X

Th 2T
efr (Th ;F;G; � t)2 [�;�]

efr (Th; F; G; � t) � I (Th)

478

Hence, it follows that:

� � ` �
X

Th 2T

efr (Th; F; G; � t) � I (Th) � 1

So, by the de�nition of satisfaction, I j= F
efr
; G : [� t; � � `; 1] { which is a contra-

diction. CLAIM 2.1: If I j= � [1; 1], then I j= F
efr
; G : [� t; �; 1]. (follows directly

from claims 1.1 and 2).

CLAIM 3: If interpretation I satis�es F
efr
,! G : [� t; 1; 1; �; �], then I j= F

efr
; G :

[� t; 0; �]. Suppose, BWOC,I j=
efr
,! G : [� t; 1; 1; �; �] and I 6j= F

efr
; G : [� t; 0; �].

By the de�niton of satisfaction:

X

Th 2T
efr (Th ;F;G; � t)2 [�;�]

I (Th) =
X

Th 2T

I (Th) = 1

Hence,

X

Th 2T

� � I (Th) = �

We know that:

0 �
X

Th 2T

efr (Th; F; G; � t) � I (Th) �
X

Th 2T

� � I (Th)

Which leads to:

0 �
X

Th 2T

efr (Th; F; G; � t) � I (Th) � �

Which, by the de�nition of satisfaction, gives us a contradiction.

PROOF OF THEOREM: Follows directly from claims 2.1 and 3.

479

B.2.5 Proof of Corollary 2

If interpretation I j= � : [`; u] whereEFR(F; G; � t; �) � [�; �], I j= F
efr
; G :

[� t; � � `; 1].

Proof. Follows directly from the �rst two claims of Theorem 13.

B.2.6 Proof of Theorem 14

Given time formulas�; � s.t. EFR(F; G; � t; �) � [� 1; � 1] andEFR(F; G; � t; � ^

�) � [� 2; � 2] and interpretation I that satis�es � : [1; 1] (see note1) and F
efr
; G :

[� t; `; u]:

1. If � 2 < � 1, then I j= � : [0; min(` � 1
� 2 � 1

; 1)]

2. If � 2 > � 1, then I j= � : [0; min(u � 1
� 2 � 1

; 1)]

Proof. CLAIM 1: Given time formulas �; � s.t. EFR(F; G; � t; �) � [� 1; � 1] and

EFR(F; G; � t; � ^ �) � [� 2; � 2] (where � 2 < � 1) and interpretation I that satis�es

� : [1; 1] and F
efr
; G : [� t; `; u] (` � � 1), I j= � : [0; min(` � 1

� 2 � 1
; 1)].

Assume, BWOC,I 6j= � : [0; ` � 1
� 2 � 1

]. By the de�nition of satisfaction, we know

that:

` �
X

Th 2T

efr (Th; F; G; � t) � I (Th)

As I j= � : [1; 1] and EFR(F; G; � t; �) � [� 1; � 1], we have:

` �
X

Th 2T
efr (Th ;F;G; � t)2 [� 1 ;� 1]

efr (Th; F; G; � t) � I (Th)

1Note that Theorem 13 requires` � � 1 and � 1 � u

480

We note that all threads either satisfy� or not. Hence, we have:

X

Th 2T
efr (Th ;F;G; � t)2 [� 1 ;� 1]

Th j= �

I (Th) +
X

Th 2T
efr (Th ;F;G; � t)2 [� 1 ;� 1]

Th 6j= �

I (Th) = 1

Therefore:

` �
X

Th 2T
efr (Th ;F;G; � t)2 [� 1 ;� 1]

Th j= �

� 2 � I (Th) +
X

Th 2T
efr (Th ;F;G; � t)2 [� 1 ;� 1]

Th 6j= �

� 1 � I (Th)

and:

` � � 2 �
X

Th 2T
efr (Th ;F;G; � t)2 [� 1 ;� 1]

Th j= �

I (Th) + � 1 � (1
X

Th 2T
efr (Th ;F;G; � t)2 [� 1 ;� 1]

Th j= �

I (Th))

` � 1 � � 2 �
X

Th 2T
efr (Th ;F;G; � t)2 [� 1 ;� 1]

Th j= �

I (Th) � 1 �
X

Th 2T
efr (Th ;F;G; � t)2 [� 1 ;� 1]

Th j= �

I (Th))

Notice that ` � 1 � 0 as` � � 1 by the statement. Also, we know that� 2 < � 1, the

quantity � 2 � 1 is negative. We have the following:

` � 1

� 2 � 1
�

X

Th 2T
Th j= �

I (Th)

By the de�nition of satisfaction, this gives us a contradiction.

CLAIM 2: Given time formulas�; � s.t. EFR(F; G; � t; �) � [� 1; � 1] and

EFR(F; G; � t; � ^ �) � [� 2; � 2] (� 2 > � 1) and interpretation I that satis�es

� : [1; 1] and F
efr
; G : [� t; `; u] (� 1 � u or inconsistent), I j= � : [0; min(u � 1

� 2 � 1
; 1)].

481

Assume, BWOC,I 6j= � : [0; u � 1
� 2 � 1

]. By the de�nition of satisfaction, we know that:

X

Th 2T

efr (Th; F; G; � t) � I (Th) � u

Hence, as all threads either satisfy� or not, and asI j= � : [1; 1], we know that all

threads must also have a� 1 lower bound for the frequency function, and that the

threads satisfying� must have� 2 as a lower bound. So, we have the following:

X

Th 2T
Th j= �

� 2 � I (Th) +
X

Th 2T
Th 6j= �

� 1 � I (Th) � u

As we know the sum of all theads must be 1, we have the following:

� 2 �
X

Th 2T
Th j= �

I (Th) + � 1 � (1
X

Th 2T
Th j= �

I (Th)) � u

(� 2 � 1) �
X

Th 2T
Th j= �

I (Th) � u � 1

As, by the statement, we know the quantities� 2 � 1 and u � 1 are positive, we

have the following:

X

Th 2T
Th j= �

I (Th) �
u � 1

� 2 � 1

Which, by the de�nition of satisfaction, gives us a contradiction.

Proof of theorem: Follows directly from claims 1-2.

B.2.7 Proof of Proposition 15

If for atoms A i and programK, if BLK(A i) :< blki 2 K and if there exists a

ptf � : [1; 1] 2 K such that �) A i : t blki + 1 ^ A i : t blki + 2 ^ : : : ^ A i : t 1

then K entails A : t : [0; 0].

482

Proof. Suppose, BWOC, there exists interpretationI s.t. I j= K and I 6j= A :

t : [0; 0]. As I j= K, we know I j= BLK(A i) :< blki . Hence, for all therads s.t.

I (Th) 6= 0, there does not exist a series ofblki or more consecutive worlds inTh

satisfying atom A i . We note that as I j= � : [1; 1], then I j= A i : t blki + 1 ^ A i :

t blki + 2 ^ : : : ^ A i : t 1 : [1; 1] by the statement. Hence, there is a sequence

of blki 1 consecutive worlds satisfyingA i in every thread assigned a non-zero

probability by I . So, by the de�nition of satisfaction, we have a contradiction.

B.2.8 Proof of Proposition 16

If for atoms A i and programK, if OCC(A i) : [loi ; upi] 2 K and if there exists

a ptf � : [1; 1] 2 K such that there are numberst1; : : : ; tupi
2 f 1; : : : ; tmax g where

�) A i : t1 ^ : : : ^ A i : tupi
then for any t =2 f t1; : : : ; tupi

g K entails A : t : [0; 0].

Proof. Suppose, BWOC, there exists interpretationI s.t. I j= K and I 6j= A : t :

[0; 0]. As I j= K, we know I j= OCC(A i) : [loi ; upi]. Hence, for all therads s.t.

I (Th) 6= 0, there does not exist more thanupi worlds in Th satisfying atom A i .

We note that as I j= � : [1; 1], then I j= A i : t1 ^ : : : ^ A i : tupi
: [1; 1] by the

statement. Hence, there areupi worlds satisfyingA i in every thread assigned a non-

zero probability by I . So, by the de�nition of satisfaction, we have a contradiction.

B.2.9 Proof of Proposition 17

Given APT-program K, the following are true:

483

� 8 I s.t. I j= K, I j= !(K)

� 8 I s.t. I j= !(K), I j= K

Proof. Follows directly from Theorems 13-14 and Corollary 2.

B.2.10 Proof of Proposition 18

One iteration of ! can be performed in time complexityO(jKj 2 � CHK) where

CHK is the bound on the time it takes to check (for arbitrary time formulas �; � if

� j= � is true.

Proof. To compare a given element ofK with every other element (not conjuncts of

elements) - we obviously needO(jKj � CHK) time. As we do this for every element

in K, the statement follows.

B.2.11 Proof of Lemma 9

Given ? � fg and > � inconsistent, then hPROGB L ;t max ; vi is a complete

lattice.

Proof. We must show that for any subsetPROG0of PROGB L ;t max , that inf (PROG0)

and sup(PROG0) exist in PROGB L ;t max . We show this forPROGB L ;t max as a set

of APT-programs, and the result obviously extends forPROGB L ;t max as a set of

equivalence classes ofAPT-programs.

CLAIM 1: For a set PROG0 of APT-programs, inf (PROG0) exists and is in

PROGB L ;t max .

484

Let PROG0 = fK 1; : : : ;K i ; : : : ;Kng. We createK0 � inf (PROG0) as follows. Con-

sider all � such that � : [` i ; ui] appears in eachK i . Add � : [min(` i); max(ui)] to K0.

Next, consider allF; G; � t s.t. F
efr
; G : [� t; ` i ; ui] appears in allK i . Add F; G; � t

s.t. F
efr
; G : [� t; min(` i); max(ui)] to K0. Clearly, for each element inK0, there

is an element in everyK i with the same or tighter probability bounds. It is also

obvious tha K0 2 PROGB L ;t max . Assume that there is aK00(not equivalent to K0)

that is below eachK i but above K0. Then, for all elements inK0, there must be a

corresponding element (with tighter probability bounds) in K00s.t. the probability

bounds is looser than anyK i . However, by the construction, this is clearly not

possible unlessK0 � K 00, so we have a contradiction.

CLAIM 2: For a set PROG0 of APT-programs, sup(PROG0) exists and is in

PROGB L ;t max .

Let PROG0 = fK 1; : : : ;K i ; : : : ;Kng. Let K0 =
S

i fK i g. Clearly, by the de�ni-

tion of v , this is a least upper bound ofPROG0. We must show that K0 is in

PROGB L ;t max . We have two cases. (1) IfK0 is inconsistent, then it is equivalent to

> and in PROGB L ;t max . (2) If K0 is consistent, then it is also inPROGB L ;t max .

B.2.12 Proof of Lemma 10

K v !(K).

Proof. Follows directly from the de�nition of ! - all rules and ptf's in K are in !(K)

with equivalent or tighter probability bounds. All IC's in K remain in !(K).

485

B.2.13 Proof of Lemma 11

! is monotonic.

Proof. Given K1 v K 2, we must show !(K1) v !(K2). Suppose, BWOC, there

exists � : [`; u] 2 !(K1) (see note2) s.t. there does not exist� : [`0; u0] 2 !(K2)

where [̀ 0; u0] � [`; u]. Therefore, there must exist a set of ptf's and/or rules (call

this set K0
1) in K1 s.t. for each element inK0

1, there does not exist a an element in

K2 s.t. the probability bounds are tighter. However, asK1 v K 2, this cannot be

possible, and we have a contradiction.

B.2.14 Proof of Theorem 15

! has a least �xed point.

Proof. Follows directly from Lemma 10 and Lemma 11.

B.2.15 Proof of Lemma 12

If APT-logic programK entails rule F
efr
; G : [� t; `; u] or � : [`; u] such that

one of the following is true:

� ` > u

� ` < 0 or ` > 1

� u < 0 or u > 1

2Resp. F
efr
; G : [� t; `; u] 2 !(K1), we note that the proof can easily be mirrored for rules, we

only show with ptfs here.

486

Then K is inconsistent - i.e. there exists no interpretationI such that I j= K.

Proof. Following directly from the de�nitions of satisfaciton and entailment, if K

entails such a rule or ptf, there can be no satisfying interpreation.

B.2.16 Proof of Theorem 4

For APT-logic programK, if there exists natural numberi such that !(K) " i

that contains rule F
efr
; G : [� t; `; u] or � : [`; u] such that one of the following is

true:

� ` > u

� ` < 0 or ` > 1

� u < 0 or u > 1

Then K is inconsistent .

Proof. We know by Propositions 17 that any number of applications of! result in

an APT-program entailed by K. Therefore, all of the elemenets of that program

must be entailed byK. By Lemma 12, the statement follows.

B.2.17 Proof of Proposition 19

If there does not exist at least one thread that satis�es all integrity constraints

in an APT-logic program, then that program is inconsistent.

Proof. For an APT-logic program to be consistent, then there must exist a satisfying

interpretation such that the sum of the probabilities assigned to all threads is 1.

487

However, if there is no thread that satis�es all integrity constraints, then the sum of

the probabilities of all threads in a satisfying interpretation is 0 { a contradiction.

B.2.18 Proof of Proposition 20

If loi >
l

(blki 1)�tmax

blki

m
then there does not exist a partial thread for ground

atom A i such that the single block-size and occurrence IC associated with A i hold.

Follows directly from the following Proposition:

Proposition 82. For atom ai , block sizeblki and tmax , if more than
l

(blki 1)�tmax

blki

m

worlds must be true, then all partial threads will have a block of sizeblki .

Proof. CLAIM 1: If we require less than (or equal)
l

(blki 1)�tmax

blki

m
worlds to satisfy

the atom, there exists at least one partial thread that does not contain a block.

Simply considerblki 2 sub-sequences ofblki 1 worlds, and one sub-sequence of

� blki 1 worlds satisfying atomai - each separated by a world that does not satisfy

ai . Obviously, this partial thread does not contain a block.

CLAIM 2: If we require more than
l

(blki 1)�tmax

blki

m
worlds to satisfy the atom, there

can be no sequence of two consecutive worlds that do not satisfy ai , or there exists

a block.

This follows from the pigeon hole principle - if two consecutive worlds satisfy: ai ,

then there must exists a sequence of at leastblki worlds that satisfy ai .

PROOF OF PROPOSITION: Suppose we have a partial thread with
l

(blki 1)�tmax

blki

m

488

worlds satisfying the atom, and require one additional world to satisfy ai . By claim

2, this world must be between two sub-sequences, as there areno more than two

non-satisfying worlds, hence the statement of the proposition follows.

B.2.19 Proof of Propositon 21

For ground atomA i with (with associated ICs), ifupi >
l

(blki 1)�tmax

blki

m
we know

that for numbers of worlds satisfyingA i cannot be in the range
hl

(blki 1)�tmax

blki

m
; upi

i
.

Proof. As, in this case,upi >
l

(blki 1)�tmax

blki

m
, lowering the value ofupi will not cause

an inconsistency unless Proposition 20 applies. We note that by Proposition 82, we

cannot have threads with more than this amount of worlds satisfying ai .

B.2.20 Proof of Proposition 22

ThEX can be solved inO(1).

Proof. As the check in Proposition 20 can be performed inO(1) time, the statement

follows.

B.3 Proofs for Section 3.5

B.3.1 Proof of Lemma 13

Given non-ground formulasFng ; Gng , time � t, and non-ground time formula

� ng . Let (� in ; � in) = EFR IN (Fng ; Gng ; � t; � ng) and

[� out ; � out] = EFR OUT(Fng ; Gng ; � t; � ng). Then the following holds true:

489

1. If Th j= � ng , then for all ground instancesF; G of Fng ; Gng we have

efr(F; G; � t; Th) 2 [� out ; � out]

2. If Th j= � ng , then there exists ground instancesF; G of Fng ; Gng we have

efr(F; G; � t; Th) � � in

3. If Th j= � ng , then there exists ground instancesF; G of Fng ; Gng we have

efr(F; G; � t; Th) � � in

Proof. CLAIM 1: Part 1 is true..

Suppose, BWOC, there is some thread,Th j= � ng s.t. there are ground instances

F; G of Fng ; Gng s.t. efr(F; G; � t; Th) =2 [� out ; � out]. This directly contradicts De�-

nition 48.

CLAIM 2: Part 2 is true.

This directly contradicts De�nition 48.

CLAIM 3: Part 3 is true.

This directly contradicts De�nition 48.

B.3.2 Proof of Theorem 16

Given non-groundAPT-program K (ng) that contains the following:

Non-ground rule: Fng
efr
; Gng : [� t; `; u]

Non-ground ptf: � ng : [1; 1]

Let (� in ; � in) = EFR IN (Fng ; Gng ; � t; � ng). If we are given�
in � � in and � +

in �

� in , then, K (ng) is not consistent if one (or both) of the following is true:

490

1. �
in > u

2. � +
in < `

Proof. CLAIM 1: If �
in > u , then K (ng) is not consistent.

Suppose, BWOC that�
in > u and K (ng) is consistent. Then, by Lemma 13 there

exists ground instancesF; G of Fng ; Gng s.t. EFR(F; G; � t; gnd(� ng)) � [�
in ; 1].

Therefore, by Theorem 13,K (ng) entails F
efr
; G : [� t; �

in ; 1]. However, asK (ng)

includes Fng
efr
; Gng : [� t; `; u], then K (ng) also entails F

efr
; G : [� t; `; u]. As

[�
in ; 1] \ [`; u] = ; , we know that K (ng) cannot be consistent (by Lemma 12) { a

contradiction.

CLAIM 2: If � +
in < ` , then K (ng) is not consistent.

Suppose, BWOC, that� +
in < ` and K (ng) is consistent. Then, by Lemma 13 there

exists ground instancesF; G of Fng ; Gng s.t. EFR(F; G; � t; gnd(� ng)) � [0; � +
in].

Therefore, by Theorem 13,K (ng) entails F
efr
; G : [� t; 0; � +

in]. However, asK (ng)

includes Fng
efr
; Gng : [� t; `; u], then K (ng) also entails F

efr
; G : [� t; `; u]. As

[0; � +
in] \ [`; u] = ; , we know that K (ng) cannot be consistent (by Lemma 12) { a

contradiction.

491

B.3.3 Proof of Corollary 5

Given non-groundAPT-program K (ng) that contains the following:

Non-ground rule: Fng
efr
; Gng : [� t; `; u]

Non-ground ptf: � ng : [`0; u0]

Let (� in ; � in) = EFR IN (Fng ; Gng ; � t; � ng). If we are given�
in � � in and � +

in �

� in , then, K (ng) is not consistent if �
in � `0 > u .

Proof. Suppose, BWOC,�
in � `0 > u and K (ng) is consistent. Then, by Lemma 13

there exists ground instancesF; G of Fng ; Gng s.t. EFR(F; G; � t; gnd(� ng)) �

[�
in ; 1]. Therefore, by Corollary 2,K (ng) entails F

efr
; G : [� t; �

in � `0; 1]. However,

as K (ng) includesFng
efr
; Gng : [� t; `; u], then K (ng) also entailsF

efr
; G : [� t; `; u].

As [�
in � `0; 1] \ [`; u] = ; , we know that K (ng) cannot be consistent (by Lemma 12)

{ a contradiction.

B.3.4 Proof of Proposition 23

If the list returned by NG-INCONSIST-CHKcontains any elements, thenK (ng)

is not consistent.

Proof. Follows directly from Theorem 16 and Corollary 5.

B.3.5 Proof of Proposition 24

NG-INCONSIST-CHKperformsO(jK (ng) j2) comparisons.

492

Proof. The algorithm consists of two nested loops. The outer loop considers all ptf's

in the program { requiring O(jK (ng) j) time, while the inner loop considers all rules

in the program { also requiringO(jK (ng) j) time. The statement follows.

B.3.6 Proof of Lemma 14

K � � K (ng) (K) wrt hPROGB L ;t max ; vi

Proof. Follows directly from De�nition 49.

B.3.7 Proof of Lemma 15

� K (ng) is monotonic.

Proof. Given K1 v K 2 (both ground), we must show �K (ng) (K1) v � K (ng) (K2).

Suppose, BWOC, there is an element (rule, ptf, or IC) of �K (ng) (K1) that either has

a tighter probability bound than a corresponding element in� K (ng) (K2) or not in

� K (ng) (K2). However, this is a contradiction as all elements inK1 are in K2 { or

in K2 with a tighter probability bound. Therefore, such an element would be in

� K (ng) (K2) { a contradiction.

B.3.8 Proof of Theorem 17

� K (ng) has a least �xed point.

Proof. Follows directly from Lemma 14 and Lemma 15.

493

B.3.9 Proof of Lemma 16

Given non-ground programK (ng) , and ground programK, lfp (� K (ng) (K)) �

ground(K (ng)) [K .

Proof. Suppose, BWOC, that lfp (� K (ng) (K)) 6� ground(K (ng)) [K . Then, there

must exist a ground rule, ptf, or IC in element inlfp (� K (ng) (K)) that is not in

ground(K (ng)) [K . However, all elements inlfp (� K (ng) (K)) are either elements of

K or ground instances of elements inK (ng) { hence a contradiction.

B.3.10 Proof of Theorem 18

De�nition 110 (Tightening). For APT-rule F
efr
; G : [� t; `; u] or ptf � : [`; u], for

any [`0; u0] � [`; u],

1. F
efr
; G : [� t; ` 0; u0] is a tightening of F

efr
; G : [� t; `; u]

2. � : [`; u] is a tightening of � : [`0; u0]

De�nition 111 (Update). Given groundAPT-program K, ground rule r = F
efr
;

G : [� t; ` 1; u1], and ground ptfp = � : [`2; u2], any tightening to the bounds ofr or

p causes by an application of the operator! is an update .

De�nition 112 (Update Widget). Given groundAPT-program K, ground rule r =

F
efr
; G : [� t; ` 1; u1], and ground ptf p = � : [`2; u2], ground atomic time formula

A : t, we de�ne the followingupdate widgets .

1. Let the ground rule r 0 = F
efr
; G : [� t; ` 0; u0] be a tightening ofr where

`0 = l bnd(F; G; � t; K) or u0 = u bnd(F; G; � t; K). Then an update widget

494

consists of a graph of a vertexvr 0 for r 0 (called a top vertex) and set V of

vertices - one vertex for each ground rule and ptf inK that led to the tightening

(as per De�nition 41) (called bottom vertices) and directed edges from all

elements inV to vr 0.

2. Let the ground ptfp0 = � : [`0; u0] be a tightening of� : [`2; u2] where `0 2

f l bnd(�; K); 1 u bnd(: �; K)g or u0 2 f u bnd(�; K); 1 l bnd(: �; K)g.

Then an update widget consists of a graph of a vertexvp0 for p0 (called

a top vertex) and setV of vertices - one vertex for each ground rule and ptf

in K that led to the tightening (as per De�nition 41) (calledbottom vertices)

and directed edges from all elements inV to vp0.

3. If K entails A : t : [0; 0] due to the presence of ptf 's and IC's (as per Propo-

sitions 15-16), then Then anupdate widget consists of a graph of a vertex

vA:t :[0;0] for A : t : [0; 0] (called a top vertex) and set V of vertices - one for

each IC and ptf inK that led to the entailment ofA : t : [0; 0] (called bottom

vertices) and directed edges from all elements inV to vr 0.

De�nition 113 (Deduction Tree). A series of update widgets with the top vertices of

all but one widgets are the bottom vertices for another widget is called adeduction

tree . A vertex that is not a bottom vertex for any widget in the tree is aroot and

a vertex that is not top vertex for any widget in the tree is aleaf . For a given

deduction tree, T, let leaf (T) be the set of ptf 's or rules corresponding with leaf

nodes in the tree.

495

De�nition 114 (Corresponding Deduction Tree). Given groundAPT-program K,

for ground ptf p = � : [`2; u2], s.t. p 2 lfp (!(K)), then thecorresponding deduc-

tion tree is a deduction tree, rooted in a node representingp s.t. for each update

performed by! , there is a corresponding update widget in the tree. For programK

and ptf p, let TK ;p be the corresponding deduction tree.

Lemma 31. If � : [`; u] 2 lfp (!(K [f � : [0; 1]g) then there exists� : [`0; u0] 2

lfp (!(leaf (TK ;� :[`;u]) [f � : [0; 1]g) s.t. [`0; u0] � [`; u].

Proof. Suppose, BWOC, that [̀0; u0] 6� [`; u]. Then, there must exist an update

performed by ! that uses some ptf or ruleother 2 K s.t. other =2 leaf (TK ;� :[`;u]).

However, by the De�nition 114 this is not possible asTK ;� :[`;u] accounts for all updates

performed by !.

Theorem 18

Given non-ground programK (ng)

� : [`; u] 2 lfp (!(lfp (� K (ng) (f � : [0; 1]g))))

i�

� : [`; u] 2 lfp (!(ground(K (ng)) [f � : [0; 1]g))

Proof. CLAIM 1: If � : [`; u] 2 lfp (!(lfp (� K (ng) (f � : [0; 1]g)))) then for some

[`0; u0] � [`; u], � : [`0; u0] 2 lfp (!(ground(K (ng)) [f � : [0; 1]g)).

By Lemma 16, we know thatlfp (� K (ng) (f � : [0; 1]g)) � ground(K (ng)) [f � : [0; 1]g,

so the claim follows.

496

CLAIM 2: If � : [`; u] 2 lfp (!(ground(K (ng)) [f � : [0; 1]g)) then for some [̀ 0; u0] �

[`; u], � : [`; u] 2 lfp (!(lfp (� K (ng) (f � : [0; 1]g)))).

By De�nition 49 and De�nition 114, leaf (TK ;� :[`;u]) [f � : [0; 1]g � lfp (� K (ng) (f � :

[0; 1]g)). Hence, we can apply Lemma 31 and the claim follows.

The statement of the theorem follows directly from claims 1-2.

B.4 Supplemental Information for Section 3.6

B.4.1 Proof of Proposition 25

OC-EXTRACTruns in time O((n tmax) � tmax).

Proof. This follows directly from the two for loops in the algorithm - the �rst iter-

ating (n tmax) time and a nested loop iteratingtmax times.

B.4.2 Proof of Proposition 26

There are no historical threads such that atomai is satis�ed by less thanloi

or more than upi worlds whenloi ; upi are produced byOC-EXTRACT.

Proof. Suppose, by way of contradiction, that there exists a historical thread that

does not meet the constraints. As we examine all possible historical threads inOC-

EXTRACTand take the minimum and maximum number of timesai is satis�ed over

all these threads, we have a contradiction.

497

B.4.3 Proof of Proposition 27

BLOCK-EXTRACTruns in time O(n).

Proof. Follows directly from the for loop in the algorithm - which iteratesn times.

B.4.4 Proof of Proposition 28

Given blki as returned byBLOCK-EXTRACT, there is no sequence ofblki or

more consecutive historical worlds that satisfy atomai .

Proof. Suppose there is a sequence of at leastblki or more. However, the algorithm

maintains the variablebestwhich is the greatest number of consecutive time points

in the historical data whereai is true { this is a contradiction.

498

Appendix C

Appendix for Chapter 4

C.1 Proofs

C.1.1 Proof of Theorem 19

k-SEP is NP-Complete.

Proof. Geometric Covering by Discs. (GCD)

INPUT: A set P of integer-coordinate points in a Euclidean plane, positive integers

b > 0 and k < jPj.

OUTPUT: \Yes" if there exist k discs of diameterb centered on points inP such

that there is a disc covering each point inP | \no" otherwise.

CLAIM 1: k-SEP is in the complexity class NP.

Suppose a non-deterministic algorithm can guess a setE that is a k-sized simple

(�; �) explanation for O. We can check the feasibility of every element inE in

O(jEj) time and compare every element ofE to every element ofO in O(jOj 2) time.

Hence,k-SEP is in the complexity class NP as we can check the solution in poly-

499

Algorithm 25 (GCD-TO-KSEP)
INPUT: Instance of GCDhS; P; b; ki

OUTPUT: Instance of k-SEP hS; O; feas; �; �; k 0i

1. SetS to be a set of lattice points in the Euclidean plane that include all points

in P

2. SetO = P

3. Let feas(x) = TRUE i� x 2 P

4. Set � = 0

5. Set � = b=2

6. Setk0 = k

500

nomial time.

CLAIM 2: k-SEP is NP-Hard.

We use the polynomial algorithmGCD-TO-KSEPto take an instance ofGCDand

create an instance ofk-SEP.

CLAIM 2.1: If there is a k0-sized simple (�; �) explanation for O, then there arek

discs, each centered on a point inP of diameter b that cover all points in P.

Let E be the k0-sized simple (�; �) explanation for O. Suppose by way of contra-

diction, that there are not k discs, each centered on a point inP of diameter b

that cover all points in P. As k0 = k, and all elements ofE must be in P by the

de�nition of feas, let us consider thek discs of diameterb centered on each ele-

ment of E. So, for these discs to not cover all elements ofP, there must exist an

element ofP, that is not covered by a disc. AsP � O , then there must exist an

element ofO outside of one of the discs. Note that all elements ofO are within

a distance� of an element ofE by the de�nition of a k0-sized simple (�; �) expla-

nation (as � = 0). As � = b=2, each element ofO falls inside a disc of diameter

bcentered on an element ofE, thus falling within a disc and we have a contradiction.

CLAIM 2.2: If there are k discs, each centered on a point inP of diameter b that

cover all points in P then there is ak0-sized simple (�; �) explanation for O.

Let set E be the set of points that are centers of thek discs. We note thatE � P.

Assume by way of contradiction, that there is nok0-sized simple (�; �) explanation

501

for O. Let us consider ifE is a k0-sized simple (�; �) explanation for O. As k = k0,

� = 0, and all points of E are feasible, there must be someo 2 O such that 8e 2 E,

d(e; o) > � . As O � P, we know that all points in O fall in a disc centered on a

point in E, hence eacho 2 O must be a distance ofb=2 or less from a point inE.

As � = b=2, we have a contradiction.

C.1.2 Proof of Corollary 6

Cost-based Explanation is NP-Complete.

Proof. CLAIM 1: Cost-based Explanation is in the complexity class NP.

This follows directly from Theorem 19, instead of checking the size ofE, we only

need to apply the function� to the E produced by the non-deterministic algorithm

to ensure that � (E) � v.

CLAIM 2: Cost-based Explanation is NP-Hard.

We show k-SEP� p CBE. Given an instance ofk-SEP, we transform it into an

instance ofCBEin polynomial time where� (E) = jEj and v = k.

CLAIM 2.1: If there is a set E such that � (E) � v then jEj � k.

Straightforward.

CLAIM 2.2: If there is a set E of sizek or less then� (E) � v

Straightforward.

502

C.1.3 Proof of Corollary 7

WT-SEPis NP-Complete.

Proof. Membership in the complexity class NP follows directly from Theorem 19,

instead of checking the size ofE, we check if
P

p2E c(p) � v. We also note that

the construction for cost-based explanation in Theorem 19 is also an instance of

WT-SEP, hence NP-hardness follows immediately.

C.1.4 Proof of Theroem 20

TD-SEPis NP-Complete.

Proof. CLAIM 1: TD-SEPis in the complexity class NP.

Given a setE, we can easily determine in polynomial time that it meets the stan-

dards of the output speci�ed in the problem statement.

CLAIM 2: TD-SEPis NP-hard.

Consider Euclideank-Median Problem, as presented and shown to be NP-Complete

in [134], de�ned as follows:

INPUT: A set P of integer-coordinate points in a Euclidean plane, positive integer

k0 < jPj, real numberv0 > 0.

OUTPUT: \Yes" if there is a set of points, S � P such that jSj = k0 and

P
x i 2 X minsj 2 S d(x i ; sj) � v0 | \no" otherwise.

503

Given an instance of the Euclideank-Median Problem, we create an instance

of TD-SEPas follows:

� Set S to be a set of lattice points in the Euclidean plane that include all points

in P

� Set O = P

� Let feas(x) = TRUE i� x 2 P

� Set � = 0

� Set � greater than the diagonal ofS0

� Set k = k0

� Set v = v0

CLAIM 2.1: If there is E, a k-sized explanation forO such that

P
oi 2O minpj 2E d(oi ; pj) � v, then there is a setS � P such that jSj = k0 and

P
x i 2 P minsj 2 S d(x i ; sj) � v0.

Because of how we setfeasand O, E � P. As � and � do not a�ect E, the only real

restrictions on E is that its cardinality is k and that
P

oi 2O minpj 2E d(oi ; pj) � v.

Because of how we setk and v, we can see thatE meets all the conditions to be a

solution to the Euclideank-Median problem, hence the claim follows.

CLAIM 2.2: If there is setS � P such that jSj = k0and
P

x i 2 P minsj 2 S d(x i ; sj) � v0,

then there is setE, a k-sized explanation forO such that
P

oi 2O minpj 2E d(oi ; pj) � v.

504

In the construction, the arguments�; � and feasallow any element of a solution to

the k-Median problem to be a partner for any observation inO. By how we setk

and v, we can easily see thatS is a valid solution to TD-SEP. The claim follows.

The statement of the theorem follows directly from claims 1-2.

C.1.5 Proof of Proposition 29

If there is ak-sized simple (�; �) explanation for O, then NAIVE-KSEP-EXACT

returns an explanation. Otherwise, it returns NO.

Proof. CLAIM 1: If there is a k-sized simple (�; �) explanation for O, then NAIVE-

KSEP-EXACTreturns an explantion.

Suppose, by way of contradiction, that there is ak-sized simple (�; �) explanation

for O and NAIVE-KSEP-EXACTreturns NO. Then there does not existk bit strings

such that for all oi ,
P k

j =1 (` j (i)) � 1. As each bit string is associated with a point

in S, then by the construction of the bit strings, there are notk points in S such

that each point is feasible and falls no closer than� and no further than � distance

away from each point inO. This is a contradiction.

CLAIM 2: If there is no k-sized simple (�; �) explanation for O, then NAIVE-KSEP-

EXACT returns NO.

Suppose, by way of contradiction, that there is nok-sized simple (�; �) explanation

for O and NAIVE-KSEP-EXACTreturns an explanation. Then there must existk

505

bit strings such that
Wk

j =1 (` j (i)) = 1. As each bit string is associated with a point

in S, then by the construction of the bit strings, there must exist k points in S such

that each point is feasible and falls no closer than� and no further than � distance

away from each point inO. This is a contradiction.

C.1.6 Proof of Proposition 30

The complexity of NAIVE-KSEP-EXACTis O(1
(k 1)! (� (� 2 � 2)jOj)(k+1)).

Proof. Note that as all pointers in M are initially null, thus there is no need to

iterate through every element inM - rather lists in M can only be initialized as

needed. Hence, the cost to set-upM in O(1) and not the size of the matrix.

As eacho 2 O has, at most� (� 2 � 2) partners, the total complexity of the inner

loop is � (� 2 � 2)jOj .

As we have, at most,� (� 2 � 2)jOj elements inL (recall that L is the subset of

S that can be partnered with elements inO), then there are
 � (� 2 � 2)jOj

k

�
iterations

taking place in step 5. Each iteration costsk � jOj as we must compare thejOj bits

of eachk bit string. So,
�

� (� 2 � 2)jOj
k

�
� k � jOj

=
(� (� 2 � 2)jOj) � (� (� 2 � 2)jOj 1) � : : : � (� (� 2 � 2)jOj (k 1))

k$
� k � jOj

< O (
1

(k 1)$
(� (� 2 � 2)jOj)(k+1))

As this term dominates the complexity of the inner loop, the statement follows.

506

C.1.7 Proof of Theorem 21

k-SEP� p SET COVER

Proof. We employ the �rst four steps of NAIVE-KSEP-EXACT. We view the bit-

strings in list L as subsets ofO where if the i th bit of the string is 1, oi of O is in

the set.

CLAIM 1: If there are k subsets ofL that cover O, then there is ak-sized simple

(�; �) explanation for O.

Suppose, by way of contradiction, that there arek subsets ofL that cover O and

there is no k-sized simple (�; �) explanation for O. Then, by Proposition 29, for

every combination ofk bit strings, there is some biti such that
Wk

j =1 (` j (i)) = 1

does not hold. Hence, by the reduction, a set cover withk sets fromL would be

impossible. This is a contradiction.

CLAIM 2: If there there is a k-sized simple (�; �) explanation for O, then there are

k subsets ofL that cover O.

Suppose, by way of contradiction, there is ak-sized simple (�; �) explanation for

O and there are notk subsets ofL that cover O. Then, for any combination of

k subsets ofL, there is at least one element ofO not included. Hence, for any

bit-string representation of an element inL, for some bit i ,
Wk

j =1 (` j (i)) = 1 does

not hold. However, by Proposition 29, this must hold or there isno k-sized simple

(�; �) explanation for O. This is a contradiction.

507

C.1.8 Proof of Proposition 31

NAIVE-KSEP-SChas a complexity ofO(� � f � jOj 2) and an approximation

ratio of 1 + ln(f).

Proof. CLAIM 1: NAIVE-KSEP-SChas a complexity ofO(� � f � jOj 2).

The loop at line 3, which reduces the problem to set-covering, takesO(� � jOj) time.

The loop at line 4 iterates, at most,jOj times.

The �rst nested loop at line 4b iterates, at most, � � jOj times.

The second nested loop at line 4(b)ii iterates, at most,f times.

The updating procedure at line 4d, which is still inside the loop at line 4, iterates,

at most, f times.

Hence, by the above statements, the total complexity ofNAIVE-KSEP-SCis O(jOj �

(� � jOj � f + f) + � � jOj), hence the statement follows.

CLAIM 2: NAIVE-KSEP-SChas an approximation ratio of 1 +ln(f).

Viewing list L as a family of subsets, each subset is the set of observationsassociated

with a potential partner, hence the size of the subsets is bounded by f . The ap-

proximation ratio follows directly from the analysis of the set-covering problem.

C.1.9 Proof of Proposition 32

A solution E to NAIVE-KSEP-SCprovides a partner to every observation inO

if a partner exists.

Proof. Follows directly from Theorem 21.

508

C.1.10 Proof of Proposition 33

The complexity of KSEP-TO-DOMSETis O(� � jOj).

Proof. Notice that the number of points in S considered for eacho 2 O examined

in the inner loop is bounded byO(�). As the outer loop is bounded by the size of

O, the complexity of KSEP-TO-DOMSETis O(jOj).

C.1.11 Proof of Theorem 22

k-SEP� p DomSet .

Proof. We can runKSEP-TO-DOMSETthat creates graphGO = (VO ; EO) based on

the set of observations. We show thatGO has a dominating set of sizek i� there is

a k-sized simple (�; �) explanation for O.

CLAIM 1: If GO has a dominating set of sizek or less, then there is ak-sized (or

less) simple (�; �) explanation for O.

Suppose, by way of contradiction, thatGO has a dominating set of sizek and there

is not a k-sized simple (�; �) explanation for O. Then, there has to be at least one

elementoi 2 O such that there is no feasiblep 2 S where� � d(oi ; p) � � . Consider

the nodesVi from the inner loop ofKSEP-TO-DOMSETthat are associated withoi .

Note that these nodes form a complete subgraph. As each node inVi is associated

with oi , no node in Vi can be in the dominating set ofGO (if one were, then we

would have a contradiction). However, note that half of the nodes in Vi only have

edges to other nodes inVi , so there must be an element ofVi in the dominating set.

509

This is a contradiction.

CLAIM 2: If there is a k-sized simple (�; �) explanation for O, then GO has a

dominating set of sizek or less.

Suppose, by way of contradiction, that there is ak-sized simple (�; �) explanation

for O, and GO has does not have a dominating set of sizek or less. LetE be a

k-sized simple (�; �) explanation for O. Let this also be a subset of the nodes in

GO . By the KSEP-TO-DOMSET, in each set of nodesVi , there must be at least

one element ofE. As each set of verticesVi is a complete graph, then we have a

dominating set of sizek. Hence, a contradiction.

C.1.12 Proof of Proposition 34

Solving k-SEP by a reduction to DomSet utilizing a straight-forward greedy

approach has time-complexityO(� 3 � f � jOj 2) and an approximation ratio bounded

by O(1 + ln(2 � f � �)).

Proof. This is done by a well-known reduction of an instance ofDomSet into an

instance ofSET COVER. In the reduction, each node is an element, and the subsets

are formed by each node and its neighbors. The Table C.1 showsthe quantities:

Hence, the total time complexity of the algorithm isO(8 � � 3 � f � jOj 2) and

the complexity part of the statement follows. As the maximum number of elements

per subset, the approximation ratioO(1 + ln(2 � f � �)) follows by the well-known

analysis of the greedy set-covering algorithm.

510

Item Quantity

Number of elements to be covered 2 � � � jOj

(number of nodes inGO)

Number of subsets 2 � � � jOj

(number of nodes inGO)

Number of elements per subset 2 � � � f

(Maximum degree of nodes inGO

determined by the produce of partners per observation

and observations per partner

Table C.1: Quantities for the Greedy-Approach in theDomSet reduction.

C.1.13 Proof of Proposition 35

Solving k-SEP by a reduction to DomSet utilizing the distributed, random-

ized algorithm presented in [75] has a time complexityO(� � jOj + ln(2 � � � jOj) �

ln(2 � � � f)) with high probability and approximation ratio of O(1 + ln(2 � f � �)).

Proof. By Proposition 33, the complexity ofKSEP-TO-DOMSETis O(� � jOj)). The

graph GO hasO(2� � � jOj) nodes, and the maximum degree of each node is bounded

2� � � f as per Proposition 34. As the algorithm in [75] has a complexity of O(lg(n) �

lg(d)) (with high probability) where n is the number of nodes andd is the maximum

degree, the complexity of this approach requiresO(� �jOj + ln(2� � � jOj) � ln(2� � � f))

with high probability (the statement follows).

511

As the approach in [75] is greedy, it maintains theO(1 + ln(2 � f � �)) (Propo-

sition 34) (the approximation ratio in this case being a factor of the optimal in

expectation).

C.1.14 Proof of Proposition 36

OPT-KSEP-IPCconsists ofO(jOj � (� 2 � 2)) variables and 1+jOj constraints.

Proof. Follows directly from De�nition 56.

C.1.15 Proof of Proposition 37

For a given instance of the optimization versionk-SEP, if OPT-KSEP-IPCis

solved, then
S

pj 2 L x j =1
pj is an optimal solution to k-SEP.

Proof. Suppose, by way of contradiction, that
S

pj 2 L x j =1
pj is not an optimal solution

to k-SEP. By the constraint, 8oi 2 O ,
P

pj 2 L x j � str (pj) i � 0, we are ensured that

for each observation, there is a partnerpj such that x j = 1. Further, if we associate

x j with the selected parterpj for any solutionE to k-SEP, then this constraint must

hold. Hence,
S

pj 2 L x j =1
pj is a valid explanation. Therefore, the optimal solution to

the instance ofk-SEP, we shall callEOP T , must be smaller than
S

pj 2 L x j =1
pj . As the

minimization of
P

pj 2 L x j ensures that the cardinality of
S

pj 2 L x j =1
pj is minimized.

Therefore,jEOP T j cannot be smaller thanj
S

pj 2 L x j =1
pj j, as the constraint8oi 2 O ,

P
pj 2 L x j � str (pj) i � 0 holds for any solution tok-SEP. This is a contradiction.

512

C.1.16 Proof of Proposition 38

NAIVE-KSEP-ROUNDreturns an explanation forO that is within a factor f

of optimal, where f is the maximum number of possible partners associated with

any observation.

Proof. [68] shows that the solution to the relaxation of the integerprogram repre-

sentation of set-cover approximates the optimal solution within a factor of f , which

is the greatest number of sets an element can be found in. Fork-SEP, this would

be the greatest number of partners for any given observation, which is bounded by

O(� (� 2 � 2)), but may be much lower in practice. AsOPT-KSEP-IPCemploys this

technique, the statement follows directly.

C.1.17 Proof of Proposition 39

GREEDY-KSEP-OPT1has a complexity ofO(� � f � jOj) and an approximation

ratio of 1 + ln(f).

Proof. CLAIM 1: GREEDY-KSEP-OPT1has a complexity ofO(� � f � jOj).

This follows the same analysis ofNAIVE-KSEP-SCin Proposition 31, except that

line 4 iterates only � times rather than � � jOj times. Hence, the total complexity

is O(jOj � (� � f + f) + � � jOj) and the statement follows.

CLAIM 2: GREEDY-KSEP-OPT1has an approximation ratio of 1 +ln(f).

The proof of this claim resembles the approximation proof of the standard greedy

algorithm for set-cover (i.e. see [28] page 1036).

513

Let p1; : : : ; pi ; : : : ; pn be the elements ofE, the solution to GREEDY-KSEP-

OPT1, numbered by the order in which they were selected. For each iteration, let

set COVi be the subset of observations that are partnered for the �rsttime with

point pi . Note that each element ofO is in exactly oneCOVi . For eachoj 2 O , we

de�ne costj to be 1
jCOVi j

whereoj 2 COVi .

CLAIM 2.1:
P

pi 2E �

P
oj 2O pi ;oj are partners

costj � jEj

By the de�nition of costj , exactly one unit of cost is assigned every time a point is

picked for the solutionE. Hence,

COST(E) = jEj =
X

oj 2O

costj

The statement of the claim follows.

CLAIM 2.2: For some point p 2 L,
P

oj 2O p;oj are partners
costj � 1 + ln(f).

Let P be the subset ofO that can be partners with p. At each iteration i of the

algorithm, let uncovi be the number of elements inP that do not have a partner.

Let last be the smallest number such thatuncovlast = 0. Let EP = f pi 2 Ej(i �

last) ^ (COVi \ P 6� ;)g. From here on, we shall renumber each element inEP

as p1; : : : ; pjEP j by the order they are picked in the algorithm (i.e. if an element is

picked that cannot partner with anything in P, we ignore it and continue numbering

with the next available number, we will use this new numberingfor COVi and the

iterations of the algorithm as well, but do not re-de�ne the set based on the new

514

numbering).

We note that for each iterationi , the number of items inP that are partnered

is equal touncovi 1 uncovi . Hence,

X

oj 2O
p;oj are partners

costj =
lastX

i =1

uncovi 1 uncovi

jCOVi j

At each iteration of the algorithm, let PCOVi be the subset of observations that are

covered for the �rst time if point p is picked instead of pointpi . We note, that for

all iterations in 1; : : : ; last, the point p is considered by the algorithm as one of its

options for greedy selection. Therefore, asp is not chosen, we know thatjCOVi j �

jPCOVi j. Also, by the de�nition of ucovi , we know that jPCOVi j = ucovi 1. This

gives us:

X

oj 2O
p;oj are partners

costj �
lastX

i =1

uncovi 1 uncovi

ucovi 1

Using the algebraic manipulations of [28] (page 1037), we getthe following:

X

oj 2O
p;oj are partners

costj � H jP j

Where H j is the j th harmonic number. By de�nition of the symbol f (maximum

number of observations supported by a single partner), we obtain the statement of

the claim.

(Proof of claim 2): Combining claims 1-2, we getjEj �
P

pi 2E � (1 + ln(f)), which

gives us the claim.

515

C.1.18 Proof of Proposition 40

GREEDY-KSEP-OPT1returns a jEj-sized (�; �) explanation for O.

GREEDY-KSEP-OPT1returns IMPOSSIBLE if there is no explanation forO.

Proof. Suppose by way of contradiction that there exists and element o 2 O such

that there is no in E. We note that set O0 contains all elements ofO and the only

way for an element to be removed fromO0 is if a partner for that element is added

to E. Hence, if the program returns a setE, we are guaranteed that eacho 2 O has

a partner in E.

Suppose by way of contradiction thatGREEDY-KSEP-OPT1returns IMPOS-

SIBLE and there exists a setE that is a valid (�; �) explanation for O. Then, for

every element ofO, there exists a valid partner. However, this contradicts line 3b of

NAIVE-KSEP-SC(called by line 4b ofGREEDY-KSEP-OPT1) which causes the pro-

gram to return IMPOSSIBLE only if an element ofO is found without any possible

partner.

C.1.19 Proof of Theorem 23

GREEDY-KSEP-OPT2has a complexity ofO(� � f 2 � jOj + jOj � ln(jOj)) and

an approximation ratio of 1 + ln(f).

Proof. CLAIM 1: GREEDY-KSEP-OPT2has a complexity ofO(� � f 2 � jOj + jOj �

ln(jOj)).

Line 1 takesO(� � jOj) time.

516

The loop starting at line 4 iteratesjOj times.

The nested loop at line 4a iterates � times.

The second nested loop at line 4(a)i iteratesf times. The inner body of this loop

can be accomplished in constant time.

In line 5, initializing the Fibonacci heap takes constant time, as does inserting ele-

ments, hence this line takes onlyO(jOj) time.

The loop at line 6 iterates, at most,jOj times.

Viewing the minimum of a Fibonacci heap, as in line 6a can be donein constant

time.

As per the analysis ofGREEDY-KSEP-OPT1, line 6b takes � � f iterations. The

updating procedure starts with line 6c which iteratesf times.

The removal of an elements in line 6(c)ii from a Fibonacci heap costs O(ln(jO)

amortized time. However, we perform this operation no more than jOj times, hence

we can addjOj � ln(jOj)) to the complexity.

Note that the size of a list pointed to byREL OBS[o0] is bounded by � � f - f ob-

servations associated with each of � partners - hence line 6(c)iii iterates, at most,

� � f times.

We note that decreasing the key of an item in the Fibonacci heap (in line 6(c)iii)

takes constant time (amortized).

Therefore, by the above statements, the complexity ofGREEDY-KSEP-OPT2is

O(jOj � (� � f + � � f 2)+ jOj � ln(jOj)+ � � f � jOj + � � jOj) and the statement follows.

CLAIM 2: GREEDY-KSEP-OPT2has an approximation ratio of 1 + ln(f).

Follows directly from Proposition 39.

517

C.1.20 Proof of Proposition 41

GREEDY-KSEP-OPT2returns a jEj-sized (�; �) explanation for O.

GREEDY-KSEP-OPT2returns a IMPOSSIBLE if there is no explanation forO.

Proof. Mirrors that of Proposition 40.

518

Appendix D

Appendix for Chapter 5

D.1 Proofs

D.1.1 Proof of Lemma 17

Given observationsO and the set of regionsRO , then a regionr 2 RO sub-

explains an observationo 2 O i� is super-explain o.

Proof. CLAIM 1: Any point in a region r 2 RO is either within distance [�; �] or

outside the distance [�; �] from eacho 2 O .

As RO is created by drawing circles of radii�; � around each observation, the state-

ment follows by the de�nition of RO .

CLAIM 2: (() There is no r 2 RO that super-explains someo 2 O but does not

sub-explain the observation.

Suppose, BWOC, there is somer 2 RO that super-explains someo 2 O but does

not sub-explain it. Then, there must be at least one point inr that can be partnered

519

with O and at least one point inr that cannot be partnered with o. However, by

claim 1, this is not possible, hence a contradiction.

CLAIM 3: ()) There is no r 2 RO that sub-explains someo 2 O but does not

super-explain the observation.

Follows directly from Observation 5.2.1.

D.1.2 Proof of Theorem 24

I-REP � p AC-Sup-REP.

AC-Sup-REP � p Sup-REP.

Proof. CLAIM 1: I-REP � p AC-Sup-REP.

Set up an instance of AC-Sup-REP with the input for I-REP plusthe parameter

A = � � (� 2 � 2). For direction (, note that a solution to this instance of I-REP

is also a solution to AC-Sup-REP, as any region that sub-explain an observation

also super-explains it for the set of regionRO (Lemma 17) and the fact that, by

de�nition, all regions in the set RO must have an area less thanA. For direction) ,

we know that only regions that can be partnered with observations are considered

by the area restriction, and by Lemma 17, the all regions in the solution are also

super-explanations for their corresponding observation.

CLAIM 2: AC-Sup-REP � p Sup-REP.

Consider the setR from AC-Sup-REP and let setR0 = f r 2 Rj the area ofr is less than or equal to

Set up an instance of Sup-REP where the set of regions isR0 and the rest is the

520

input from AC-Sup-REP. or direction (, it is obvious that any solution to AC-Sup-

REP is also a solution to Sup-REP, asR R0 are all regions that cannot possibly

be in the solution to the instance of AC-Sup-REP. Going the other direction ()),

we observe that by the de�nition of R0, all regions in the result of the instance of

Sup-REP meet all the requirements of the AC-Sup-REP problem.

D.1.3 Proof of Theorem 25

I-REP is NP-Complete.

Proof. CLAIM 1: I-REP is in-NP.

Given a set of regions,R0 � RO we can easily check in polynomial time that for each

o 2 O there is anr 2 R that is a partner for o. Simply check if eachr falls within

the distance [�; �] for a given o 2 O . The operation will take time O(jOj � j R0j) -

which is polynomial.

CLAIM 2: I-REP is strongly NP-hard.

We show that for an instance of the known strongly NP-completeproblem, circle

covering (CC), CC � p I REP by the following transformation.

� Set S = S0

� Set O = P

� Set � = � 0

� Set � = 0

521

� Set k = k0

This transformation obviously takes polynomial time. We prove correctness with

the following two sub-claims.

CLAIM 2.1: If there is a k-sized solutionR0 for I-REP, then there is a corresponding

k0-sized solution for CC.

Consider somer 2 R0. Let O0 be the subset ofO (also ofP) such that all points in

O0 are partnered with r . By de�nition, all points enclosed byr are of distance� or

less away from each point inO0. Hence, we can pick some point enclosed byr and

we have the center of a circle that covers all elements inO0. The statement follows.

CLAIM 2.2: If there is a k0-sized solutionQ for CC, then there is a corresponding

k-sized set solution for I-REP.

Consider some pointq 2 Q. Let P0 be the subset ofP (also of O) such that all

points in P0 are of distance� 0 from q. As p is within � of an element ofO, it is in

some region of the setRO . Hence, the region that containsp is a partner region for

all elements ofP0. The statement follows.

D.1.4 Proof of Corollary 8

I-REP-MC cannot be approximated by a fully polynomial-timeapproximation

scheme (FPTAS) unlessP == NP .

Proof. Follows directly from [125] and Theorem 25.

522

D.1.5 Proof of Corollary 9

1. Sub-REP and Sup-REP are NP-Complete.

2. Sub-REP-MC, Sup-REP-MC, I-REP-MC, Sub-REP-ME, Sup-REP-ME, and

I-REP-ME are NP-Hard.

3. Sub-REP-MC, Sup-REP-MC cannot be approximated by a FPTAS unless

P == NP .

Proof. All follow directly from Lemma 17, Theorem 25, and Corollary 8.

D.1.6 Proof of Theorem 26

Sub/Sup-REP-MC � p Set-Cover

Sub/Sup-REP-ME � p Max-k-Cover

Proof. CLAIM 1: Sub/Sup-REP-MC � p Set-Cover

Consider the instance of set-coverhO;
S

r 2 R fO r gi obtained from

REDUCE-TO-COVERING(O; R).

Let H 0 be a solution to this instance of set-cover. (() If R0 is a solution to the

instance of Sub/Sup-REP-MC, then the set
S

r 2 R0fO r g is a solution to set-cover.

Obviously, it must cover all elements ofO and a smaller solution to set-cover would

indicate a smallerR0{ a contradiction. ()) Given setH 0, let R00� f r 2 RjO r 2 H 0g.

Obviously, R00provides a partner for all observations inO. Further, a smaller solu-

tion to Sub/Sup-REP-MC would indicate a smallerH 0 is possible { also a contra-

diction.

523

CLAIM 2: Sub/Sup-REP-ME � p Max-k-Cover

Consider the instance of max-k-coverhO;
S

r 2 R fO r g; ki obtained fromREDUCE-TO-

COVERING(O; R; k). Let H 0 be a solution to this instance of max-k-cover. (() If

R0 is a solution to the instance of Sub/Sup-REP-ME, then the set
S

r 2 R0fO r g is a

solution to max-k-cover. Obviously, both have the same cardinality requirement.

Further, if there is a solution to max-k-cover that covers more elements inO, this

would imply a set of regions that can be partnered with more observations in O

- which would be a contradiction. ()) Given set H 0, let R00 � f r 2 RjO r 2

H 0g. Obviously, R00meets the cardinality requirement ofk. Further, a solution to

Sub/Sup-REP-ME that allows more observations inO to be partnered with a region

would indicate a more optimal solution to max-k-cover { a contradiction.

D.1.7 Proof of Proposition 42

REDUCE-TO-COVERINGrequiresO(jOj � j Rj) time.

Proof. Follows directly from Line 1.

D.1.8 Proof of Proposition 43

GREEDY-REP-MErequires O(k � jRj � f) time and returns a solution whose

where the number of observations inO that have a partner region inR0 is within a

factor

e
e 1

�
of optimal.

Proof. The complexity proof mirrors that of Proposition 44 while the approximation

524

guarantee follows directly from the results of [127].

D.1.9 Proof of Proposition 44

GREEDY-REP-MErequiresO(jOj � j Rj � f) time and returns a solution whose

cardinality is within a factor of 1 + ln(f) of optimal.

Proof. The outer loop of the algorithm iterates no more thanjOj times, while the

inner loop iterates no more thanjRj times. The time to compare the number of

elements in a setOr is O(f).

The approximation factor of 1 + ln(f) follows directly from [136].

D.1.10 Proof of Proposition 45

GREEDY-REP-MC2runs in O(� � f 2 � jOj + jOj � ln(jOj) time and returns a

solution whose cardinality is within a factor of 1 + ln(f) of optimal.

Proof. CLAIM 1: GREEDY-REP-MC2runs in O(� � f 2 � jOj + jOj � ln(jOj) time.

The pre-processing in lines 1-4 can be accomplished inO(� + � � f) as the size of

eachGRPo is bound by � and the size of eachREL o is bound by � � f .

The outer loop of the algorithm iteratesO times. In each loop, the selection

of the minimal element (line 5a) can be accomplished in constant time by use of a

Fibonacci heap [49] (i.e. storing observations inO0 organized by the valuekeyo).

The next lines of the inner loop (lines 5b-5c) can be accomplished in O(�) time.

525

The next line, line 5d requiresO(ln(jOj) time per observation using a Fibonacci

heap, as observations partnered with . However, we can be assured that, during

the entire run of the algorithm, this operation is only performed jOj times (hence,

we add anjOj � ln(jOj)). The �nal loop at line 5e occurs after the inner loop and

iterates, at most f times. At each iteration, it considers, at mostf � � elements.

Hence, the overall complexity is:

O(jOj �

� + f 2 � �

�
+ jOj � ln(jOj))

The statement of the claim follows.

CLAIM 2: GREEDY-REP-MC2returns a solution whose cardinality is within a fac-

tor of 1 + ln(f) of optimal.

The proof of this claim resembles the approximation proof of the standard greedy

algorithm for set-cover (i.e. see [28] page 1036).

Let r1; : : : ; r i ; : : : ; rn be the elements ofR0, the solution to GREEDY-REP-MC2,

numbered by the order in which they were selected. For each iteration (of the outer

loop), let set COVi be the subset of observations that are partnered for the �rst

time with region r i . Note that each element ofO is in exactly oneCOVi . For each

oj 2 O , we de�ne costj to be 1
jCOVi j

whereoj 2 COVi . Let R� be an optimal solution

to the instance of Sub/Sup-REP-MC.

CLAIM 2.1:
P

r i 2 R �

P
oj 2O r i

costj � j Rj

526

By the de�nition of costj , exactly one unit of cost is assigned every time a region is

picked for the solutionR. Hence,

COST(R) = jRj =
X

oj 2O

costj

The statement of the claim follows.

CLAIM 2.2: For some regionr 2 R,
P

oj 2O r
costj � 1 + ln(f).

Let P be the subset ofO that can be partners with p. At each iteration i of the

algorithm, let uncovi be the number elements inP that do not have a partner.

Let last be the smallest number such thatuncovlast = 0. Let RP = f r i 2 Rj(i �

last) ^ (COVi \ P 6� ;)g. From here on, we shall renumber each element inRP

as r1; : : : ; r jRP j by the order they are picked in the algorithm (i.e. if an element is

picked that cannot partner with anything in P, we ignore it and continue numbering

with the next available number, we willCOVi and the iterations of the algorithm

as well, but do not re-de�ne the set based on the new numbering).

We note that for each iteration i , the number of items inP that are partnered is

equal to uncovi 1 uncovi . Hence,

X

oj 2O r

costj =
lastX

i =1

uncovi 1 uncovi

jCOVi j

At each iteration of the algorithm, let PCOVi be the subset of observations that are

covered for the �rst time if region p is picked instead of regionr i . We note, that for

all iterations in 1; : : : ; last, the regionp is considered by the algorithm as one of its

options for greedy selection. Therefore, asp is not chosen, we know thatjCOVi j �

527

jPCOVi j. Also, by the de�nition of ucovi , we know that jPCOVi j = ucovi 1. This

gives us:

X

oj 2O r

costj �
lastX

i =1

uncovi 1 uncovi

ucovi 1

Using the algebraic manipulations of [28] (page 1037), we getthe following:

X

oj 2O r

costj � H jP j

Where H j is the j th harmonic number. By de�nition of the symbol f (maximum

number of observations supported by a single partner), we obtain the statement of

the claim.

(Proof of Claim 2): Combining claims 1-2, we getjRj �
P

r i 2 R � (1 + ln(f)), which

gives us the statement.

D.1.11 Proof of Proposition 10

I-REP-MC-Z � p CC

Proof. Follows directly from Theorem 25.

D.1.12 Proof of Proposition 46

The algorithm, FIND-REGIONruns O(jOj) time, and regionr (associated with

the returned setOr) enclosesp.

528

Proof. PART 1: FIND-REGIONconsists of a single loop that iteratesjOj times.

PART 2: Suppose, the region enclosing pointp has a di�erent label. Then, there is

either a bit in label that is incorrectly set to 1 or 0. As only observations which are

� from � have the associated bit position set to 1, then all 1 bits are correct. As

we exhaustively consider all observations, the 0 bits are correct. Hence, we have a

contradiction.

D.1.13 Proof of Proposition 11

An � -approximation algorithm for CC is an � -approximation for KREP.

Proof. Follows directly from Theorem 25.

D.1.14 Proof of Proposition 48

REGION-GENhas a time complexity �(jOj � f � � �� 2

g2).

Proof. For any given observation, the number of points in the grid that can be in

a partnered region is� �� 2 � 2

g2 . Hence, the �rst loop of the algorithm and the size of

L are both bounded byjOj � � �� 2

g2 . We note that the lookup and insert operations

for the hash tableT do not a�ect the average-case complexity - we assume these

operations take constant time based on [28], hence the statement follows.

529

Appendix E

Appendix for Chapter 6

E.1 MCA where the Solution is an Explanation

In Section 6.5 we study theMCA problem, but do not require the solution

to be an explanation. In fact, it may often not be an explanation. Consider the

following example.

Example E.1.1. Suppose that the drug-enforcement agents from Example 6.5.1

consider the setC � f p45; p48; p50g. Note that p45 can be partnered with observations

o1; o2, p48 can be partnered with observationso3; o5 and p50 can be partnered with

observationo5. Hence, there is no element inC that can be partnered witho4 { which

means it is not an explanation. However, let us compute the expected agent bene�t.

Computing the reward (wrtcrf) for each explanation function from Example 6.3.3,

we get the following:

crf (dist)(ex fcn1(O; 3); f p45; p48; p50g) = 1

crf (dist)(ex fcn2(O; 3); f p45; p48; p50g) = 1

530

Hence, the expected agent bene�t in this case must be1 { which is optimal (expected

agent bene�t must be in the range[0; 1]). Therefore, we have shown that we can

have an optimal solution to MCA that is not an explanation in our example.

We can also construct an instance of the MCA problem where there is no

optimal solution that is also explaining. Stepping away from our running example

for a moment consider the following case of a geospatial abduction problem. Consider

observationso1; o2. Let p1; p2; p3; p4; p5; p6 be the only feasible points, the �rst two

being only partnered witho1 and the rest being only partnered witho2. Consider an

adversary who will pick one of the following explanations as a strategy with uniform

probability:

� f p1; p3g

� f p1; p4g

� f p2; p5g

� f p2; p6g

Let us consider the reward functioncrf with dist = 0 and B = 2. Therefore, the

maximal counter-adversary strategy would be the setf p1; p2g - this would give an

expected agent bene�t of0:5. However, this set is not an explanation - observations

o2 is not covered. If we require the counter-adversary strategy to be an explanation,

the setf p1; p3g would be optimal. However, the expected agent bene�t would only be

0:375 in this case.

531

Hence, we shall also consider a the special case of a maximal counter-adversary

strategy that is also an explanation.

De�nition 115 (Maximal Explaining Counter-Adversary Strategy). Given a set of

observations,O, reward function rf and explanation function distributionexfd (of

explanation forO), a maximal explaining counter-adversary strategy , C, an

explanation for O such thatEXB(rf)(C; exfd) is maximized.

Again, for the case in which the reward function is monotonic, we shall include

an cardinality requirementB for the set C.

We formalize the optimization problem associated with �nding a maximal ex-

plaining counter-adversary strategy.

MCA-Exp

INPUT: SpaceS, feasibility predicate, feas, real numbers�; � , set of observations,

O, natural numbersk; B , reward function rf , and explanation function distribution

exfd.

OUTPUT: The maximal explaining counter-adversary strategy,C.

The below corollary shows us thatMCA-Exp is NP-hard.

Corollary 18. MCA-Exp is NP-hard.

We note that the proof of the above corollary follows directly from the result

of Theorem 33. The associated problem is in the complexity class NP { this follows

532

trivially from the membership results for the problem of �nding an explanation and

the MCA problem.

An Exact Algorithm For MCA-Exp. A naive, exact, and straightforward ap-

proach to the MCA-Exp problem would simply consider all subsets ofL pf car-

dinality � kC and pick the one which maximizes the expected agent bene�t and is

an explanation. This is the same as the naive approach we presented for MCA .

Obviously, this approach has a complexityO(
 jL j

kC

�
) - and is not practical. This is

unsurprising as we showed this to be an NP-complete problem.

The following theorem shows that this problem reduces to themaximization

of a submodular function over a uniform matroid - which can imply a practical

algorithm to address this problem.

Theorem 60. MCA-Exp reduces in polynomial time to the maximization of a

submodular function wrt a uniform matroid.

Proof Sketch. Given an instance ofMCA-Exp as follows:

SpaceS, feasibility predicate,feas, real numbers�; � , set of observations,O, natural

numbersk; kC, reward function rf , and explanation function distribution exfd, we

construct an instance of the maximization of a submodular function as follows (L is

the set of all possible partners).

1. Let M be a uniform matroid consisting of all subsets ofL of cardinality � kC

2. Let function f submod : 2L ! < be de�ned as follows:

f submod(C) = EXB(rf)(C; exfd)+2 �jf o 2 Oj9 p 2 C s.t. (d(o; p) 2 [�; �])^ (feas(p))gj

533

In the remainder of the proof proceeds as follows. First, we show thatf submod(C)

is submodular. Then, we prove that if there is a solution toMCA-Exp then the

submodular maximization problem returns a value greater than or equal to2 � jOj .

Then we show that if the submodular maximization problem returns a value greater

than or equal to2� jOj then there is a solution toMCA-Exp . Finally, we complete

the proof by showing that ifMCA-Exp returns a valueb, then the submodular max-

imization problem returns a valueb+ 2 � jOj and that if the maximization off submod

returns valueb, then MCA-Exp returns a valueb 2 � jOj . �

Although, due to the construction of Theorem 60 an1� approximation of f submod

does not necessarily yield an1� approximation of MCA-Exp , we still can apply the

local search or greedy algorithms as a heuristic by simply replacing calls to the

function EXB(rf) with calls to f submod.

E.2 Proofs

E.2.1 Proof of Lemma 19

GCDis #P-complete and there is no FPRAS for #GCDunless NP == RP.

Proof. CLAIM 1: # GCDis in #P.

Clearly, as the total number of \yes" answers is bounded by 2K , this problem is in

the complexity class #P.

CLAIM 2: # GCDis #P-hard.

534

We have to show a parsimonious or weakly parsimonious reduction from a known

P-complete problem. In [71], the authors show that the counting version of the

dominating set problem (#DOMSET) is #P-complete based on a weakly parsimo-

nious reduciton from the counting version of vertex cover. Itis important to note

that the consruction used in this proof uses a graph with a maximum degree of three.

This shows that the counting version of the dominating set problem on a graph with

a maximum degree of three is also #P-hard as well. In [123], the authors show a

parsimonious reduction from the dominating set problem (with maximum degree of

three) to GCD. Hence, as the reduction is parsimonuous, and the associatedcounting

probelm is #P-hard, then the statement of the claim follows.

CLAIM 3: There is no FPRAS for #GCDunless NP == RP.

By Leamm 19 and [71], conisder the following chain of polynomial-time parsimonious

or weakly parsimonious reductions:

SAT ! #3 CNFSAT ! # P l3CNFSAT

P l3CNFSAT ! # P l1Ex3SAT ! # P l1Ex3MonoSAT

P l1Ex3MonoSAT ! # P lV C ! # P l3DS ! # GCD

Hence, as all of the reductions are PTIME, parsimonious or weakly parsimonious,

and planarity preserving (for planar problems), by the results of [38], the statement

follows.

535

E.2.2 Proof of Theorem 27

The counting version ofk-SEP is #P-Complete and has no FPRAS unless

NP=RP.

Proof. Follows directly from the fact that the number of solutions is bounded by 2k

(memebrship) and hardness follows directly from the parsimonious reduction shown

in [158] and Lemma 19.

E.2.3 Proof of Proposition 49

If a reward function meets axioms 1 and 2, then then the incremental increase

obtained by adding a new element decreases on a superset. Formally:

If C � C 0, and point p 2 S s.t. p =2 C and p =2 C0, then rf (Egt; C [f pg) rf (Egt; C) �

rf (Egt; C0 [f pg) rf (Egt; C0).

Proof. Suppose, BWOC, forC � C 0, and point p 2 S s.t. p =2 C and p =2 C0, then

rf (Egt; C [f pg) rf (Egt; C) < rf (Egt; C0 [f pg) rf (Egt; C0)

We know that C0 [f pg � C 0 [(C [f pg). Hence:

rf (Egt; C [f pg) rf (Egt; C) < rf (Egt; C0 [(C [f pg)) rf (Egt; C0)

Also, we know that C � (C [f pg) \ C 0, so we get:

rf (Egt; C [f pg) rf (Egt; (C [f pg) \ C 0) < rf (Egt; C0 [(C [f pg)) rf (Egt; C0)

Which leads to:

rf (Egt; C0) + rf (Egt; C [f pg) rf (Egt; (C [f pg) \ C 0) < rf (Egt; C0 [(C [f pg))

536

Which is a clear violation of Axiom 2, hence we have a contradiction.

E.2.4 Proof of Proposition 50

prf is a valid reward function.

Proof. In this proof, we de�ne pt1(Egt; C); pt2(Egt; C) as follows:

pt1(Egt; C) =
jf p 2 Egt j9p0 2 C s.t. d(p; p0) � distgj

2 � jEgt j

pt2(Egt; C) =
jf p 2 Cj 6 9p0 2 Egt s.t. d(p; p0) � distgj

2 � jSj

Hence, prf (dist)(Egt; C) = 0 :5 + pt1(Egt; C) pt2(Egt; C). As we know the maxi-

mum value of both pt1(Egt; C); pt2(Egt; C) is 0:5, we know that prf is in [0; 1]. As

pt1(Egt; Egt) = 0 :5 and pt2(Egt; Egt) = 0, then Axiom 1 is also satis�ed. Con-

sider crf (De�nition 62). Later, in Proposition 51, we show that this function

is submodular, meeting Axiom 2. By De�nitions 62, we can easily show that

pt1(Egt; C) = 0 :5 � crf (dist)(Egt; C). As pt1(Egt; C) is a positive linear combination

of submodular functions, it is also submodular. Now considerpt2(Egt; C). Any ele-

ment added to any setC has the same e�ect { it either lowers the value by 1
2�jSj or

does not a�ect it { hence it is trivially submodular. Therefore, it follows that prf

is submodular as it is a positive-linear combination of submodular functions.

E.2.5 Proof of Proposition 51

crf is a valid, monotonic reward function.

537

Proof. CLAIM 1: crf satis�es reward Axiom 1.

Clearly, if C � E gt, then the numerator isjEgt j, which equals the denominator.

CLAIM 2: crf satis�es reward function Axiom 2.

Suppose, BWOC, there exists explanationsC; C0 s.t. C [C0 is an explanation

and crf (dist)(Egt; C [C0) > crf (dist)(Egt; C) + rf (Egt; C0) rf (Egt; C \ C0). Therefore,

card(f p 2 Egt j9p0 2 C [C 0 s.t. d(p; p0) � distg) is greater than card(f p 2 Egt j9p0 2

C s.t. d(p; p0) � distg) + card(f p 2 Egt j9p0 2 C0 s.t. d(p; p0) � distg) card(f p 2

Egt j9p0 2 C \ C 0 s.t. d(p; p0) � distg). We have a contradiction; indeed, by basic set

theory we see that both sides of this strict inequality are actually equal.

CLAIM 3: crf is zero-starting.

Clearly, if C � ; , the numerator must be 0, the statement follows.

CLAIM 4: crf is monotonic.

Suppose, BWOC, there existsC � C 0 s.t. rf (Egt; C) > rf (Egt; C0). Then card(f p 2

Egt j9p0 2 C s.t. d(p; p0) � distg) > card(f p 2 Egt j9p0 2 C0 s.t. d(p; p0) � distg).

Clearly, this is not possible asC � C 0 and we have a contradiction.

E.2.6 Proof of Proposition 52

frf is a valid, monotonic reward function.

Proof. CLAIM 1: frf satis�es all reward function axioms (i.e., is valid).

538

Bounds We must show rf (Egt; C) 2 [0; 1]. For each point p 2 Egt, let lC
p =

minp02C d(p; p0)2. By the de�nition of the distance function d, we know 0� lC
p <

1 . Now let function f (lC
p) = 1

jEgt j+min p02C d(p;p0)2 = 1
jEgt j+ lCp

. Since 0� lC
p < 1 ,

we see 0< f (lC
p) � 1

jEgt j . Clearly, the summation overjEgt j points p 2 Egt yields

an answer in
�

0; jEgt j � 1
jEgt j

i
= (0 ; 1] � [0; 1].

Axiom 1 If C � E gt, for eachp 2 Egt, there existsp0 2 C s.t. d(p; p0) = 0. Hence,

by the de�nition of frf , frf (Egt; C) = 1 in this case.

Axiom 2 We must show that our version of the triangle inequality holds, that is

rf (Egt; C [C0) � rf (Egt; C)+ rf (Egt; C0) rf (Egt; C \C0). From above,rf (Egt; C [

C0) =
P

p2Egt
f (lC[C 0

p). For each point p 2 Egt, let p� = argminp02C[C 0d(p; p0)2.

Without loss of generality, assumep� 2 C, then lC
p = lC[C 0

p thus f (lC
p) = f (lC[C 0

p).

Sincep� 2 C, we havep� 2 C \ C 0 or p� 2 C \ �C0.

If p� 2 C \ C 0: Then f (lC\C 0

p) = f (lC
p). However, sincep� 2 C0 we have, as

above,f (lC0

p) = f (lC
p) = f (lC[C 0

p). Thus

X

p2Egt

h
f (lC

p) + f (lC0

p) f (lC\C 0

p)
i

(E.1)

=
X

p2Egt

h
f (lC[C 0

p) + f (lC[C 0

p) f (lC[C 0

p)
i

(E.2)

=
X

p2Egt

f (lC[C 0

p) (E.3)

So rf (Egt; C [C0) = rf (Egt; C) + rf (Egt; C0) rf (Egt; C \ C0) for this case.

If p� 2 C \ �C0: Then, from above, we are still guaranteed thatf (lC
p) = f (lC[C 0

p),

thus rf (Egt; C [C0) = rf (Egt; C). This reduces our problem to showing

539

rf (Egt; C0) rf (Egt; C \ C0) � 0. However,rf is monotonic (shown below);

sinceC \ C0 � C 0, then rf (Egt; C \ C0) � rf (Egt; C0) and our claim holds.

A similar proof holds for the casep� 2 C0.

CLAIM 2: frf is monotonic and zero-starting. The property of zero-starting follows

directly from the de�nition of frf .

By way of contradiction, assume there is someC � C 0 s.t. rf (Egt; C) >

rf (Egt; C0). Then, as above,
P

p2Egt
f (lC

p) >
P

p2Egt
f (lC0

p). However, sinceC � C 0, we

have lC
p � lC0

p for each p 2 Egt. Similarly, f (lC
p) � f (lC0

p) and thus
P

p2Egt
f (lC

p) �

P
p2Egt

f (lC0

p), which is our contradiction.

E.2.7 Proof of Proposition 53

wrf is a valid, monotonic reward function.

Proof. CLAIM 1: wrf satis�es all reward function axioms (i.e., is valid).

Domain We must showwrf (W;dist)(Egt; C) 2 [0; 1]. As (C \ Egt) � E gt and W only

returns positive values, this function can only return values in [0; 1].

Axiom 1 If C � E gt, then for eachp 2 Egt, there existsp0 2 C s.t. d(p; p0) = 0.

This causes the numerator to equal
P

p2C W(p). As C � E gt, the is equivalent

to the denominator, sowrf (Egt; C) = 1 in this case.

Axiom 2 We must show the inequalitywrf (W;dist)(Egt; C [C0) � wrf (W;dist)(Egt; C)+

wrf (W;dist)(Egt; C0) wrf (W;dist)(Egt; C \ C0). This proof is similar to the proof

of Axiom 2 in Proposition 51.

540

CLAIM 2: wrf is monotonic and zero-starting.

The property of zero-starting if shown by whenC � ; , the numerator must be 0,

hence,wrf (Egt; ;) = 0. By way of contradiction, assume there is someC � C 0 s.t.

wrf (W;dist)(Egt; C) > wrf (W;dist)(Egt; C0). Then

P
f p2Egt j9p02C s.t. d(p;p0)� dist g W(p)

P
p02Egt

W(p0)
>

P
f p2Egt j9p02C0 s.t. d(p;p0)� dist g W(p)

P
p02Egt

W(p0)

SinceC � C 0, we have

P
f p2Egt j9p02C s.t. d(p;p0)� dist g W(p)

P
p02Egt

W(p0)
>

P
f p2Egt j9p02C s.t. d(p;p0)� dist g W(p)

P
p02Egt

W(p0)
+

P
f p2E 0

gt j9p02 (C0\C) s.t. d(p;p0)� dist g W(p)
P

p02Egt
W(p0)

Where E0
gt � f p 2 Egt j 6 9p0 2 C s.t. d(p; p0) � distg. Hence,

0 > wrf (W;dist)(E0
gt; C0 \ C)

Which violates the �rst axiom, which was shown to apply towrf (W;dist) by Claim

1|a contradiction.

E.2.8 Proof of Theorem 28

OAS is NP-hard.

Proof. CONSTRUCTION: Given an input hP; b; Ki of GCD, we create an instance

of OAS in PTIME as follows:

� Set S to be a grid large enough that all points inP are also points inS.

� feas(p) = TRUE i� p 2 P

541

� � = 0, � = b, O � P, k = jPj

� Let rf (E1; E2) = 1 if E1 � E 2, and jE1 j
jSj otherwise.

This satis�es reward axiom 1 asE1 � S , axiom 2 by de�nition, and the satis�action

of axiom 3, along with montoniticity (wrt the second argument) can easily be

shown by the fact that explanations that are not supersets ofE1 (lets callthem

E2; E3) that rf (E1; E2) = rf (E1; E3).

� Let ex fcn(O; num) that returns set O when num = jOj and is otherwise unde-

�ned. Let exfd(ex fcn) = 1 and 0 otherwise.

CLAIM 1: If Egt as returned byOAS has a cardinality of � K , then the answer to

GCDis \yes".

Suppose, BWOC, thatcard(Egt) � K and GCDanswers \no." This is an obvious

contradiction as Egt is a subset ofP (by how feasibility was de�ned) where all ele-

ments ofP are within a radius ofb and Egt also meets the cardinlality requirement

of GCD.

CLAIM 2: If the answer to GCD is \yes" then Egt as returned by OAS has a

cardinality of less than or equal toK .

Suppose, BWOC,GCD returns \yes" but Egt returned by OAS has a cardinaity

greater than K . By the result of GCD, there exists a setP0 of cardinality K s.t.

each point inP (henceO) is of a distance� � from a point in P0. This, along with

the de�nitoin of feasibility, make P0 a valid K -explanation for O. We note that

ex fcn(P; jPj) = P and that exfd assigns this reward function a probability of one.

542

Hence, the expected adversarial detriment for any explanation E0
gt is rf (E0

gt; P). As

P0 is an explanation of cardinality less thanEgt, it follows that rf (P0; P) < rf (Egt; P)

{ which is a contradiction.

E.2.9 Proof of Theorem 29

If the reward function is computable in PTIME, then OAS-DEC is NP-

complete.

Proof. NP-harndness follows from Theorem 28. To show NP-completeness, a witness

simply consists ofEgt. We note that, as the reward function is computable in PTIME,

�nding the expected adversarial detriment forEgt and comparing it to R can also

be accomplished in PTIME.

E.2.10 Proof of Theorem 30

Finding the set of all adversarial optimal strategies that provide a \yes" answer

to OAS-DEC is #P-hard.

Proof. Let us assume that we know one optimal adversarial strategy and can com-

pute the expected adversarial detriment from such a set { letus call this valueD.

Given an instance ofGCD, we can create an instance ofOAS-DEC as in Theo-

rem 28, where we setR = D. Suppose we have an algorithm that produces all

adversarial strategies. If we iterate through all strategies in this set, and count

all strategies with a cardinality � K (the K from the instance ofGCD), we have

543

counted all solutions toGCD{ thereby solving the counting version ofGCD, a #P-

hard problem that is di�cult to approximate by Lemma 19.

E.2.11 Proof of Proposition 55

Setting up the wrf / frf Constraints can be accomplished inO(jEFj � k � jOj � �)

time (provided the weight function W can be computed in constant time).

Proof. First, we must run POSS-PART- which reuqiresO(jOj � �) operations. This

results in a list of sizeO(jOj � �). For each explanation function, ex fcn, we must

compare every element inL with each element ofex fcn(O) - which would require

O(k�jOj� �) time. As there are jEFj explanation functions, the statement follows.

E.2.12 Proof of Proposition 56

The wrf , frf Constraints haveO(jOj � �) variables and 1 + jOj constraints.

Proof. As list L is of sizeO(jOj � �), and there is one variable for every element

of L - there areO(jOj � �) variables. As there is a constraint for each observation,

plus a constraint to ensure the cardinality requirement (k) is met, there are 1 +jOj

constraints.

E.2.13 Proof of Proposition 54

Given wrf or frf Constraints:

1. Given setEgt � f p1; : : : ; png as a solution toOAS with wrf (frf), if variables

X 1; : : : ; Xn - corresponding with elements inEgt are set to 1 - and the rest

544

of the variables are set to 0, the objective function of the constraints will be

minimized.

2. Given the solution to the constraints, if for everyX i = 1, we add point pi to

set Egt, then Egt is a solution to OAS with wrf (frf).

Proof. PART 1: Suppose BWOC, that there is a set of variablesX 0
1; : : : ; X 0

m that

is a solution to the constraints s.t. the value of the objective function is less than

if variables X 1; : : : ; Xn were used. Then, there are pointsp0
1; : : : ; p0

m in set L that

correspond with the X i 's s.t. they cover all observations and that the expected

adversarial detriment is minimized. Clearly, this is a contradiction.

PART 2: Suppose BWOC, that there is a set of pointsE0
gt s.t. the expected adver-

sarial detriment is less thanEgt. Clearly, Egt is a valid explanation that minimizes

the expected adversarial detriment by the de�niton of the constraints - hence a

contradiction.

E.2.14 Proof of Proposition 57

The wrf / frf constraints can be transformed into a purely linear-integer form

in O(jOj 2 � �) time.

Proof. Obviously, in both sets of constraints, the denominator of the objective func-

tion is strictly positive and non-zero. Hence, we can directly apply the Charnes-

Cooper transformation [22] to obtain a purely integer-linear form. This transforma-

tion requiresO(number of variables� number of constraints). Hence, theO(jOj 2 � �)

time complexity of the operation follows immediately from Proposition 56.

545

E.2.15 Proof of Proposition 58

Given the constraints of De�nition 70 or De�nition 71, if we consider the linear

program formed by setting allX i variables to be in [0; 1], then the value returned by

the objective function will be a lower bound on the value returned by the objective

function for the mixed integer-linear constraints, and this value can be obtained in

O(jOj 3:5 � � 3:5) time.

Proof. CLAIM 1: The linear relaxation of De�nition 70 or De�nition 71 provides a

lower bound on the objective function value for the full integer-linear constraints.

As an optimal value returned by the integer-linear constraints would also be a solu-

tion, optimal wrt minimality, for the linear relaxation, th e statement follows.

CLAIM 2: The lower bound can be obtained inO(jL j3:5) time.

As there is a variable for each element ofL, the size ofL is O(jOj � �), and the claim

follows immediately from the result of [79].

E.2.16 Proof of Porposition 59

Solving De�nition 70 or De�nition 71, where for some subsetL0 � L , every

variable X i associated with somepi 2 L0 is set to 0, the resulting solution will be

an upper bound on the objective function for the constraintssolved on the full set

of variables.

Proof. Suppose, BWOC, that the solution for the objective functionon the reduced

MILP would be less than the actual MILP. Let X 1; : : : ; Xn be the variables set to

1 for the reduced MILP in this scenario. We note, that settingthe same variables

546

to the full MILP would also be a solution, and could not possibly be less than a

minimal solution { hence a contradiction.

E.2.17 Proof of Theorem 31

If Egt is an optimal adversarial strategy, there exists a core explanation Ecore �

Egt.

Proof. CLAIM 1: For any explanation E, there is an explanationE0 � E s.t. there

are no two elementsp; p0 2 E0 such that 8o 2 O s.t. o; p are partners, theno; p0 are

also partners.

Consider E. If it does not already have the quality of claim 1, then by a simple

induction, we can remove elements until the resulting set does.

CLAIM 2: If Egt is an optimal adversarial stratgey, there is a nopj 2 L E gt s.t.

there existspi 2 Egt whereconstj < const i and 8o 2 O s.t. o; pi are partners, then

o; pj are also partners.

Suppose, BWOC, there is apj 2 L E gt s.t. there existspi 2 Egt where constj <

consti and 8o 2 O s.t. o; pi are partners, theno; pj are also partners.. Consider the

set (Egt f pi g[pj . This set is still an explanation andEXR(rf)(exfd; (Egt f pi g[pj) <

EXR(rf)(exfd; Egt) { which would be a contradiction asEgt is an optimal adversarial

stratgey.

CLAIM 3: There is an explanationE � E gt s.t. condition 2 of De�nition 72 holds.

Consider the setE � f pi 2 Egt j 6 9pj 2 Egt s.t. (constj < const i) ^

(8o 2 O s.t. o; pi are partners, theno; pj are also partners)g. Note that any obser-

547

vation coverd by a point in Egt E is covered by a point inE { hence E is an

explanation. Further, by the de�nitoin of E and claim 2, this set meets condition 2

of De�nition 72.

CLAIM 4: Set E from claim 3 is a core explanation.

By claim 3, E is a valid explanation and meets condition 2 of De�nition 72. Asit is

a valid explanation, by claim 1, it also meets condition 1 of De�nition 72.

E.2.18 Proof of Theorem 32

If an oracle that for a givenk, O, and exfdreturns a core eplanationEcore that

is guaranteed to be a subset of the optimal adversarial strategy associated withk,

O, and exfd, then we can �nd an optimal adversarial strategy inO(� � jOj � log(� �

jOj) + (k jE corej)2) time.

Proof. CLAIM 1: For explanation E and point pi 2 L E , EXR(rf)(exfd; E) >

EXR(rf)(exfd; E [f pi g) i� consti < EXR(rf)(exfd; E).

If: Supposeconsti < EXR(rf)(exfd; E). Let EXR(rf)(exfd; E) = a
b. Hence,EXR(rf)(exfd; E[

f pi g) = a+ const i
b+1 . Suppose, BWOC,EXR(rf)(exfd; E) � EXR(rf)(exfd; E [f pi g). Then,

a
b � a+ const i

b+1 . This give usa� b+ a � a� b+ consti � b, which give usEXR(rf)(exfd; E) �

consti { a contradiction.

Only-if: SupposeEXR(rf)(exfd; E) > EXR(rf)(exfd; E [f pi g). Let EXR(rf)(exfd; E) = a
b.

Hence, a
b > a+ const i

b+1 - which proves the claim.

CLAIM 2: For explanation E and points pi ; pj 2 L E whereconsti < const j :, then

EXR(rf)(exfd; E [f pi g) > EXR(rf)(exfd; E [f pj g).

548

Straightforward algebera similiar to claim 1.

CLAIM 3: Algorithm BUILD-STRATreturns an optimal adversarial strategy.

We know that Ecore must be in the optimal adversarial strategy. Hence, we suppose

BWOC, that for the remaining elements, that ther eis a betterset of elements - car-

dinality between 0 andk jE corej s.t. the expected adversarial detriment is lower.

However, this contradicts claims 1-2.

CLAIM 4: Algorithm BUILD-STRATruns in time O(� � jOj � log(� � jOj) + (k

jEcorej)2).

Sorting the setL E core can be accomplished inO(� � jOj � log(� � jOj)) time. The

remainder can be accomplished inO((k jE corej)2) time.

E.2.19 Proof of Lemma 20

Given an optimal adversarial strategy,Egt, if core explanationEcore, of size� ,

is a subset ofEgt, then Ecore is � -core optimal.

Proof. Suppose BWOC, thatEcore was not � -core optimal. Then, given a� -core

optimal explanation E0
core, we could conclude thatEXR(rf)(exfd; (Egt E core) [E 0

core) <

EXR(rf)(exfd; (Egt) - which cannot be true asEgt is an optimal adversarial strategy {

hence a contradiction.

E.2.20 Proof of Lemma 21

1. If explanation E is � -core optimal, thenE � L �� .

549

2. If for some natural number� , there exists an explation of size� , then there

exists a� -core optimal explanationE s.t. E � L � .

Proof. Proof of Part 1:

Suppose, BWOC, exists explanationE s.t. for some� , E is � -core optimal and

E 6�L �� . Then, there exists somepi 2 E \ (L L ��). By the de�nition of L �� , there

exists apj 2 L �� s.t. constj < const i and 8o 2 O s.t. o; pi are partners, theno; pj

are also partners. Hence, the set (E f pi g) [f pj g is also an explanation of size�

and has a lower expected detriment. From the de�nition of� -core optimal, this is a

contradiction.

Proof of Part 2:

Suppose, BWOC, for some� s.t. there is an explanation of this size, there does not

exist a � -core optimal explanationE s.t. E � L � . By the proof of part 1, we know

that an � -core optimal explanation must be withinL �� . Further, by the de�nition

of L � , for any point pi 2 L �� L � , there exists pointpj 2 L � s.t. constj = consti

and 8o 2 O s.t. o; pi are partners,o; pj are also partners. Hence, for some� -core

explanation that is not a subset ofL � , any pi 2 E \ (L �� L �) can be replace

with some pj 2 L � - and the resulting set is still an explanation, optimal, andof

cardinality � - a contradiction.

E.2.21 Proof of Proposition 60

The � -core cosntraints requireO(� � jOj) variables and 1 +jOj constraints.

550

Proof. Mirrors propositon 54.

E.2.22 Proof of Proposition 61

Given � -core cosntraints:

1. Given set� -core optimal explanationEcore � f p1; : : : ; png, if variablesX 1; : : : ; Xn

- corresponding with elements inEgt are set to 1 - and the rest of the variables

are set to 0, the objective function of the constraints will be minimized.

2. Given the solution to the constraints, if for everyX i = 1, we add point pi to

set Ecore, then Ecore is a � -core optimal soluton.

Proof. From Lemma 21, we know that for any� s.t. there exists and explanation of

that size, there is a� -core explanationE that is a subset ofL � . Hence, the rest of

the proof mirrors the proof of Proposition 54

E.2.23 Proof of Theorem 33

MCA is NP-hard.

Proof. Consider an instance ofGCD consisting of set of pointsP, integer b, and

integer K . We construct an instance of MCA as follows:

CONSTRUCTION:

� Set S to be a grid large enough that all points inP are also points inS. We will

useM; N to denote the length and width ofS.

� feas(p) = TRUE i� p 2 P

551

� � = 0, and � =
p

M 2 + N 2, O � P, k = K , and B = K

� Let rf (E1; E2) be crf wheredist = b.

� Let functions ex fcn1; : : : ; ex fcnjP j be explanation functions - eachex fcni corre-

sponding to a uniquepi 2 P. Let ex fcni (O; num) = f pi g for all num > 0.

Note that each pi is an explanation for the setP as it is of cardinality � k,

is feasible, and is guarantted to be with [�; �] from all other points in P as

[�; �] = [0;
p

M 2 + N 2]

� Let exfd(ex fcni) = 1
jP j for all i .

CLAIM 1: crf (dist)(f pi g; C) = 1 i� there exists p0 2 C s.t. a disc of radiusb (note

b= dist) centered onp0 coverspi . crf (dist)(f pi g; C) = 0 i� there does not exist p0 2 C

s.t. a disc of radiusb centered onp0 coverspi .

Follows directly from the de�nition of crf .

CLAIM 2: If the expected agent bene�t is 1, then for alli , crf (dist)(f pi g; C) = 1.

Suppose, BWOC, that the expected agent bene�t is 1 and there exists somepi s.t.

crf (dist)(f pi g; C) 6= 1. Then, for a singleton set,crf (dist)(f pi g; C) = 0. Hence, for

the ex fcni associated withpi , crf (dist)(ex fcni (O); C) = 0. So, by the de�nition of

expected agent bene�t, it is not possible for the expected agent bene�t to be 1 { a

contradiction.

CLAIM 3: If MCA returns an optimal counter-adversary strategy with an expected

expected agent bene�t of 1, thenGCDmust also return \yes."

552

Suppose, BWOC, MCA returns a stratgey with an expected agentbene�t of 1 and

the corresponding ofGCDreturns \no." Then there does not exist aK -sized cover

for the points in P. However, the setC is of cardinlaity K and by claims 1-2 covers

all points in P. Hence, a contradiction.

CLAIM 4: If GCDreturn "yes" then MCA must return an optima counter-adversary

strategy with an expected agent bene�t of 1.

Suppose, BWOCGCDreturns \yes" and MCA reutrns returnsa an optimal strategy

with an expected agent bene�t< 1. However, by the answer toGCD, there must

exist P0 � P of cardinality k that is within distance b of all points in P. Hence, for

all i , crf (dist)(f pi g; C) = 1 (as b = dist). So, the expected agent bene�t must also

be 1. Hence, a contradiction.

Proof of theorem: Follows directly from claims 3-4.

E.2.24 Alternate Proof of Theorem 33

MCA is NP-hard (shown in the case where the reward function is not mono-

tonic and the agent has no budget).

Proof. Consider an instance ofGCD consisting of set of pointsP, integer b, and

integer K . We construct an instance of MCA as follows:

CONSTRUCTION: The construction is the same for the �rst proof ofTheorem 33

in Section E.2.23 (the encoding of GCD) except the reward function is krf dist
k (Egt; C)

553

de�ned as follows

1
2

+
jf p 2 Egt j9p0 2 C s.t. d(p; p0) � bgj

2 � jEgt j
if jCj � k

1
2

+
jf p 2 Egt j9p0 2 C s.t. d(p; p0) � bgj

2 � jEgt j

jCj k
2 � jSj

otherwise

CLAIM 1: Given somek � jAj , the function krf is a valid reward function.

Clearly, krf b
k(A ; A) = 1. To show submodularity (the second axiom), we must show

the following for C � C 0 and p =2 C0:

krf b
k(A ; C [f pg) krf b

k(A ; C) � krf b
k(A ; C0 [f pg) krf b

k(A ; C0) (E.4)

There are six possible cases:

1. jC0 [f pgj � k: submodularity follows from the submodularity ofcrf

2. jC0 [f pgj > k; jC0j � k; jC [f pgj � k: in this case, the left-hand side of

inequality E.4 is positive and the right-hand side is negative, submodularity

immediately follows

3. jC0 [f pgj > k; jC0j > k; jC [f pgj � k: in this case, the left-hand side of

inequality E.4 is positive and the right-hand side is negative, submodularity

immediately follows

4. jC0 [f pgj > k; jC0j � k; jC [f pgj > k; jCj � k: this is the case whereC � C 0,

both sides of inequality E.4 are equal

554

5. jC0 [f pgj > k; jC0j > k; jC [f pgj > k; jCj � k: the right-hand side of in-

equality E.4 either increases or decreases by, at most, the amount the left side

decreases by - the left hand side always decreases

6. jC0 [f pgj > k; jC0j � k; jC [f pgj > k; jCj > k : the right-hand side of in-

equality E.4 either increases or decreases by, at most, the amount the left side

decreases by - the left hand side always decreases

PROOF OF THEOREM: Mirrors the proof in Section E.2.23, as thisreward func-

tion is maximized (returns a value of 1) for the mixed adversarial strategy in the

construction i� each point is within distance b of some point in the agent's strategy,

and the agents strategy is of cardinality� k (anything of a greater cardinality would

give a reward less than 1). Therefore, we can follow the remainder of that proof and

obtain the same result.

E.2.25 Proof of Theorem 34

MCA-DEC is NP-complete, provided the reward function can be evaluated

in PTIME.

Proof. CLAIM 1: Membership in NP.

Given an explanation,C, we can evaluate it reward and if it is an explanation in

PTIME.

CLAIM 2: MCA-DEC is NP-hard.

Follows directly from Theorem 33

555

E.2.26 Proof of Theorem 35

Counting the number of strategies that provide a \yes" answer to MCA-DEC

is #P-complete and has no FPRAS unless NP==RP.

Proof. Theorem 33 shows a parsimonious reduction fromGCDto MCA . Hence, we

can simply apply Lemma 19 and the statement follows.

E.2.27 Proof of Theoerm 36

For a �xed O; k; exfd, the expected agent bene�t,EXB(rf)(C; exfd) has the fol-

lowing properties:

1. EXB(rf)(C; exfd) 2 [0; 1]

2. For C � C 0 and some pointp 2 S wherep =2 C [C 0, the following is true:

EXB(rf)(C[f pg; exfd) EXB(rf)(C; exfd) � EXB(rf)(C0[f pg; exfd) EXB(rf)(C0; exfd)

(i.e. expected agent bene�t is sub-modular for MCA)

Proof. Part 1 follow directly from the de�nition of a reward function and expected

agent bene�t.

For part 2, for some setC and �xed exfd, we have:

EXB(rf)(C; exfd) =
X

ex fcn2 EF

rf (C; ex fcn(O; k)) � exfd(ex fcn)

Which is a positive, linear combination of submodular functions { henceEXB(rf)

must also be submodualr.

556

E.2.28 Proof of Proposition 62

MCA-LShas time complexity ofO(1
� � jL j3 � F (exfd) � lg(jL j) where F (exfd) is

the time complexity to computeEXB(rf)(C; exfd) for some setC � L.

Proof. We note that one iteration of the algorithm requiresO(jL j � F (exfd) + jL j �

lg(jL j)) time. We shall assume thatO(jL j � F (exfd) dominates O(jL j � lg(jL j)). By

Theorem 3.4 of [47], the number of iterations of the algorithm is bounded byO(1
� �

jL j2 � lg(jL j) where F (exfd), hence the statement follows.

E.2.29 Proof of Proposition 63

MCA-LSis an (1
3 �

jL j)-approximation algorithm for MCA .

Proof. By Theorem 36, we can be assured that when the \if" statement at line 4c

is TRUE, then there are no further elements inC� that will a�ord an incremental

increase of> (1 + �
jL j2) � EXB(rf)(C; exfd), even if the last element is not yet reached.

Hence, we can apply Theorem 3.4 of [47] and the statement follows.

E.2.30 Proof of Corollary 12

For a �xed O; k; exfd, if the reward function is montonic, then the expected

agent bene�t, EXB(rf)(C; exfd) is also montonic and zero-starting.

Proof. The zero-starting aspect of expected agent bene�t follows directly from the

de�nitions of zero-starting and expected agent bene�t.

557

Consider the de�nition of EXB(rf) :

EXB(rf)(C [f pg; exfd) EXB(rf)(C; exfd) � EXB(rf)(C0[f pg; exfd) EXB(rf)(C0; exfd)

As rf is montonic by the statement, andexfd is �xed, EXB(rf) is a positive linear

combination of montonic functions, so the statement follows.

E.2.31 Proof of Proposition 64

The complexity of MCA-GREEDY-MONOis O(B � jL j � F (exfd)) where F (exfd)

is the time complexity to computeEXB(rf)(C; exfd) for some setC � L of sizeB.

Proof. The outer loop at line 4 iteratesB times, the inner loop at line 4b iterates

O(jL j) times, and at each inner loop, at line 4(b)ii, the functionEXB(rf)(C; exfd)

is computed with costsF (exfd). There is an additional O(jL j � lg(jL j)) sorting

operation after the inner loop which, under most non-trivialcases, is dominated by

the O(jL j � F (exfd)) cost of the loop. The statement follows.

E.2.32 Proof of Corollary 13

MCA-GREEDY-MONOis an (e
e 1)-approximation algorithm for MCA (when

the reward function is montonic).

First, we de�ne incremental increase:

De�nition 116. For a givenpi 2 L at some iterationj of the outer loop ofGREEDY-

MONO (the loop starting at line 4), the incremental increase,inc(j)
i , is de�ned as

follows:

inc(j)
i = EXB(rf)(C(j 1) [f pi g; Egt) EXB(rf)(C(j 1); Egt)

558

Where C(j 1) is the set of points inL selected by the algorithm after iterationj 1.

Proof. CLAIM 1: For any given iteration j of GREEDY-MONOand any pi 2 L,

inc(j)
i � inc(j +1)

i

By De�nition 116, the statement of the proposition is equivalent to the following:

EXB(rf)(C(j 1)[f pi g; Egt) EXB(rf)(C(j 1); Egt) � EXB(rf)(C(j) [f pi g; Egt) EXB(rf)(C(j) ; Egt)

Obviously, asC(j 1) � C (j) , this has to be true by the submodularity ofEXB(rf) , as

proved in Theorem 36.

(Proof of Proposition): By claim 1, we can be assured that anypoint not considered

by the inner loop will not have a greater incremental increasethan some point

already considered in that loop. Hence, our algorithm provides the same result as

the greedy algorithm of [127]. We know that the results of [127] state that a greedy

algorithm for a non-decreasing, submodularity functionF s.t. F (;) = 0 is a e
e 1

approximation algorithm for the associated maximization problem. Theroem 36

and Corollary 12 show that these properties hold for �nding amaximal counter-

adversary startegy when the reward function is montonic. Hence, by [127], the

statement follows.

E.2.33 Proof of Theoerem 37

MCA-GREEDY-MONOprovides the best approximation ratio for MCA (when

the reward function is monotonic) unlessP == NP .

Proof. The MAX-K-COVER [46] is de�ned as follows.

559

INPUT: Set of elements,S and a family of subsets ofS, H � f H1; : : : ; Hmax g, and

positive integerK .

OUTPUT: � K subsets fromH s.t. the union of the subsets covers a maximal

number of elements inS.

In [46], the author proves that for any� < e
e 1 , there is no� -approximation algo-

rithm for MAX-K-COVER unless P == NP . We show that an instance of MAX-

K-COVER can be embedded into an instance of MCA where the rewardfunction

is monotonic and zero-starting in PTIME. By showing this, we can leverage the

result of [46] and Corollary 13 to prove the statement. We shall de�ne the reward

function srf (Egt; C) = 1 i� jEgt \ Cj � 1 and srf (Egt; C) = 0 otherwise. Clearly,

this reward function meets all the axioms, is zero-starting, and monotonic. We cre-

ate a spaceS s.t. the number of points inS is greater than or equal tojHj . For

each subset inH , we create an observation at some point in the space. We shall

call this set OH and say that oH is the element ofOH that corresponds with set

H 2 H . We set feas(p) = true i� p 2 O H . We set � = 0, � to be equal to the

diagonal of the space, andk = jOH j. Hence, any non-empty subset ofOH is a

valid explanation for O. For eachx 2 S, we de�ne explanation functionex fcnx s.t.

ex fcnx (OH ; k) = f oH 2 O H jx 2 H g. We de�ne the explanation function distribu-

tion exfdto be a uniform distribution over all ex fcnx explanation functions. We set

the budget B = K . Clearly, this construction can be accomplished in PTIME. We

note that any solution to this instance of MCA must be subset ofOH , for if it is

not, we can get rid of the extra elements and have no change to the expected agent

bene�t. Hence, eachp 2 C will correspond to an element ofH , so we shall use the

560

notation pH to denote a point in the solution that corresponds with someH 2 H

(as eacho 2 O H corresponds with someH 2 H).

CLAIM 1: Given a solution C to MCA, the set f H 2 Hj pH 2 Cg is a solution to

MAX-K-COVER.

Clearly, this solution meets the cardinality constraint, as there is exactly one ele-

ment in OH for each element ofH and C is a subset ofOH . Suppose, BWOC, there

is some other subset ofH that covers more elements inS. Let H 0 be this solution

to MAX-K-COVER and C0 be the subset ofOH that corresponds with it. We note

that for some x 2 S in C0, srf (ex fcnx (OH ; k); C0) = 1 i� there is some H 2 H 0

s.t. x 2 H and srf (ex fcnx (OH ; k); C0) = 0 otherwise. Hence, the expected agent

bene�t is the fraction of elements inS covered byH 0. If H 0 is the optimal solution

to MAX-K-COVER, then C0 must provide a greater expected agent bene�t thanC,

which is clearly a contradiction.

CLAIM 2: Given a solution H 0 to MAX-K-COVER, the set f oH 2 O H jH 2 H 0g is

a solution to MCA.

Again, that the solution meets the cardinality requirement is trivial (mirrors that

part of claim 1). Suppose, BWOC, there is some setC that provides a greater

maximum bene�t than f oH 2 O H jH 2 H 0g. Let H 00� f H 2 Hj pH 2 Cg. As with

claim 1, the expected agent bene�t forC is equal to the fraction of elements inS

covered byH 00, which is a contradiction asH 0 is an optimal solution to MAX-K-

COVER.

561

E.2.34 Proof of Corollary 18

MCA-Exp is NP-hard.

Proof. Consider the construction in Theorem 33. As any non-empty subset of P -

which are all the feasible points in the space - is an explanation - then solution to

MCA is also a solution to MCA-Exp.

E.2.35 Proof of Theorem 60

MCA-Exp reduces in polynomial time to the maximization of a submodular

function wrt a uniform matroid.

Proof. Given an instance ofMCA-Exp as follows:

SpaceS, feasibility predicate,feas, real numbers�; � , set of observations,O, natural

numbersk; B , reward function rf , and explanation function distribution exfd.

Let L be the set of all possible partners. Consider the following construction.

1. Let M be a uniform matroid consisting of all subsets ofL of cardilnality � B

2. Let function f submod : 2L ! < be de�ned as follows:

f submod(C) = EXB(rf)(C; exfd)+2 �jf o 2 Oj9 p 2 C s.t. (d(o; p) 2 [�; �])^ (feas(p))gj

CLAIM 1: f submod(C) is submodular.

As EXB(rf)(C; exfd), all we will show that 2 � jf o 2 Oj9 p 2 C s.t. (d(o; p) 2 [�; �]) ^

(feas(p))gj is submodular, as a positive linear combination of submoudlar functions

is also submodular. Suppose, BWOC that it is not submodular,hence, for some

562

C � C 0 and p00=2 C0, we have the following:

2 � jf o 2 Oj9 p 2 C [f p00g s.t. (d(o; p) 2 [�; �]) ^ (feas(p))gj

2 � jf o 2 Oj9 p 2 C s.t. (d(o; p) 2 [�; �]) ^ (feas(p))gj <

2 � jf o 2 Oj9 p 2 C0 [f p0g s.t. (d(o; p) 2 [�; �]) ^ (feas(p))gj

2 � jf o 2 Oj9 p 2 C0 s.t. (d(o; p) 2 [�; �]) ^ (feas(p))gj

We can re-write this as follows:

2 � jf o 2 Oj o and p00are partners and 6 9p0002 C that can also be a partner forogj <

2 � jf o 2 Oj o and p00are partners and 6 9p0002 C0 that can also be a partner forogj

Clearly, asC � C 0, this cannot hold - hence we have a contradiction.

CLAIM 2: If there is a solution to MCA-Exp then the submodular maximization

problem returns a value greater than or equal to 2� jOj .

Suppose, BWOC, there is a solution toMCA-Exp , and the submodular max-

imization problem returns a value less than 2� jOj . However, any solution toC to

MCA-Exp , we know the following:

2 � jf o 2 Oj9 p 2 C s.t. (d(o; p) 2 [�; �]) ^ (feas(p))gj = 2 � jOj

hence, a contradiction.

CLAIM 3: If the submodular maximization problem returns a value greater than or

equal to 2� jOj then there is a solution toMCA-Exp .

Suppose, BWOC, claim 3 is false. However, we know that

EXB(rf)(C; exfd) � 1

563

Hence, the only way for the submodular maximization problem returns a value

greater than or equal to 2� jOj is if the vertices chosen to produce such a value is

an explanation { hence a contradiction.

CLAIM 4: If MCA-Exp returns a value b, then the submodular maximization

problem returns a valueb+ 2 � jOj .

By claim 2, we know for solutionC to MCA-Exp , for someC0 set of elements that

maximizesf submod that:

2 � jf o 2 Oj9 p 2 C0 s.t. (d(o; p) 2 [�; �]) ^ (feas(p))gj = 2 � jOj

Hence, any set that maximizesf submod is an explantion that maximizes the quantity

EXB(rf)(C; exfd) - which, by de�nition, is also a set that can be a solution toMCA-

Exp .

CLAIM 5: If the maximization of f submod returns valueb, then MCA-Exp returns

a valueb 2 � jOj .

Consider setC0 that maximizes f submod. By claim 3, this is an explantion that max-

imizes EXB(rf)(C; exfd). Hence, by the de�nition of MCA-Exp , it will also give a

solution to MCA-Exp and by the de�nition of f submod, returns a valueb 2 � jOj .

Proof of theorem: follows directly from claims 2-5.

564

Appendix F

Appendix for Chapter 7

F.1 Proofs

F.1.1 Proof of Theorem 38

Given GBGOP (M ; s0; A ; C; IC; c; � in ; � out), �nding an optimal solution SOL �

A � M is NP-hard. This result holds even if for eacha 2 A ; p 2 M , it is the case

that 8g0(p0) 2 a(p), p0 = p - i.e. each action only a�ects the point is is applied to).

Proof. The known NP-hard problem of SET-COVER [46] is de�ned as follows.

INPUT: Set of n elements,S and a family of m subsets ofS, H � f H1; : : : ; Hmg.

OUTPUT: H 0 � H of minimal cardinality s.t.
S

H 2H 0 H � S.

Given an instance of SET-COVER, we embed it in a GBGOP as follows:

� G = f g1; : : : ; gng - each predicate inG corresponds to an element inS

� M consists of a single point,p

� A = f a1; : : : ; amg - each action inA corresponds to an element inH . Each ai is

565

de�ned as follows:ai (p) =
S

x j 2 H i
f gj (p)g

� C returns 1 for all aciton-point pairs.

� s0 = ; , IC = ; , c = m

� � in =
S

gi 2G f gi (p)g

� � out = ;

Clearly, this construction can be performed in PTIME. The corecetness of the

embeding follows directly from claims 1-2 below.

CLAIM 1: If H 0 � H is an optimal solution to SET-COVER, then
S

H i 2H 0f (ai ; p)g

is an optimal solution to the GBGOP.

First, we show that
S

H i 2H 0f (ai ; p)g is a solution to the GBGOP. Asc is the cardi-

nality of A � M and IC = ; , the �rst two requirement is trivially met. To meet

the third requirement, we observe thatappl(; ;
S

H i 2H 0f (ai ; p)g =
S

H i 2H 0 ai (p) and

by the construction
S

H i 2H 0 ai (p) =
S

gi 2G f gi (p)g = � in . Now we show that the

solution is optimal. Let SOL =
S

H i 2H 0f (ai ; p)g. Suppose, BWOC, there is some

solution SOL0 � A � M s.t. jSOL0j < jSOLj. Hence, there is someH 00where

SOL0 =
S

H i 2H 00f (ai ; p)g. Hence,jH 00j < jH 0j. By the construction, H 00also covers

all elements ofS - which implies H 00is more optimal than H 0 - a contradiction.

CLAIM 2: If SOL is an optimal solution to the BMGOP, then f H i j(ai ; p) 2 SOLg

is an optimal solution to SET-COVER.

Clearly, by the construction, f H i j(ai ; p) 2 SOLg covers all elements inS. Let H 0

566

be this set. Suppose, BWOC, that there is some setH 00� H wherejH 00j < jH 0 and

H 00covers all the elements inS. Then, we can constructSOL0 =
S

H i 2H 00f (ai ; p)g.

By the �rst claim, this must also be a solution to GBGOP. Further, it must have a

smaller cardinality than SOL - a contradiction. 2

F.1.2 Proof of Theorem 39

Given BMGOP (M ; s0; B; A ; C; IC; k; c), �nding an optimal solution SOL �

A is NP-hard.

Proof. The known NP-hard problem of MAX-K-COVER [46] is de�ned as follows.

INPUT: Set of n elements,S and a family of m subsets ofS, H � f H1; : : : ; Hmg,

and positive integerK .

OUTPUT: � K subsets fromH s.t. the union of the subsets covers a maximal

number of elements inS.

Given an instance of MAX-K-COVER, we embed it in a BMGOP as follows:

� G = f g1; : : : ; gng - each predicate inG corresponds to an element inS

� M consists of a single point,p

� B is a jBL j-sized vector of 1's

� A = f a1; : : : ; amg - each action inA corresponds to an element inH . Each ai is

de�ned as follows:ai (p) =
S

x j 2 H i
f gj (p)g

� C is a jA � Mj -sized vector of 1's

� s0 = ; , IC = ; , k = K , c = K

567

Clearly, this construction can be performed in PTIME. The corecetness of the

embeding follows directly from claims 1-2 below.

CLAIM 1: If H 0 � H is an optimal solution to MAX-K-COVER, then
S

H i 2H 0f (ai ; p)g

is an optimal solution to the BMGOP.

Suppose, BWOC, there is some solutionSOL0 � A s.t.
P

A i 2 appl(
S

H i 2H 0f (ai ;p)g;s0) bi <

P
A i 2 appl(SOL 0;s0) bi . As there is only one point inM (point p), then each action-point

pair in SOL0 must have unique action - letA 0 be these actions. By the construction,

each action inA 0 is associated with a subset inH - let H � be this set of subsets.

Clearly, by the cost vector in the construction,jH � j � k, or elseSOL0 is not a solu-

tion to the BMGOP. We also know that appl(SOL0; s0) = (; [f a(p)j(a; p) 2 SOL0g)

- again, as there is only one point inM , appl(SOL0; s0) can be associated with a

subset ofG - let us call this G0. Further, by the construction, G0 is associated with

a subset ofS, which we shall denoteS0. By the construction, S0 is the union of

all subsets inH � . And, by how we de�ned B, jS0j is greater than the number of

elements covered by the optimal solution - which is a contradiction.

CLAIM 2: If SOL is an optimal solution to the BMGOP, then f H i j(ai ; p) 2 SOLg

is an optimal solution to MAX-K-COVER.

Suppose, BWOC, that there setH 0 � H s.t. jH 0j � k and j
S

H j 2H 0 H j j > j
S

H i j(ai ;p)2 SOL H i j.

Let A 0 be the subset of actions associated withH 0 and SOL0 = f (ai ; p)jai 2 A 0g.

By the cost vector, we know thatjSOL0j � k which meansSOL0 is a valid solu-

tion. By the construciton, and the fact there is only one point in M , we know that

appl(SOL0; s0) = j
S

H i 2H 0 H i j, which must be larger thanappl(SOL; s0) - hence a

contradiction. 2

568

F.1.3 Proof of Theorem 40

If for some� > 0, there is a PTIME algorithm to approximate GBGOP within

(1 �) � ln(jA � Mj), then NP � T IME (jA � Mj O(lg lg jA�Mj)) (NP has a slightly

super-polynomial algorithm).

Proof. Suppose, by way of contradiction, that for some� > 0, there is a PTIME algo-

rithm to approximate GBGOP within (1 �) � ln(jA � Mj) and NP 6� T IME (jA �

Mj O(lg lg jA�Mj)). By Theorem 38, the same algorithm could approximate SET-

COVER withihn (1 �) � ln(jHj) and we would haveNP 6� T IME (jHj O(lg lg jHj)).

Howevewr, if we could obtain such an approximation factor forSET-COVER, The-

orem 4.4 of [46] tells us thatNP � T IME (jHj O(lg lg jHj)) - a contradiction. 2

F.1.4 Proof of Theorem 41

Given BMGOP (M ; s0; B; A ; C; IC; k; c), �nding an optimal solution SOL of

action-point pairs cannot be approximated in PTIME within a ratio of e 1
e + � for

some� > 0 (where e is the inverse of the natural log) unlessP=NP , even when

IC = ; . (There is no polynomial-time algorithm that can approximate an optimal

solution within a factor of about 0:63 unless P=NP.)

Proof. Suppose, by way of contradiction, that an algorithm existedfor �nding a

solution to a BMGOP within 1 1=e+ � of optimal for some� > 0. Then we could

569

use the construction of Theorem 39 to obtain an approximate solution to MAX-

K-COVER within a factor of 1 1=e+ � for some� > 0. By Theorem 5.3 of [46],

this would imply P==NP , which contradicts the statement of the theorem. 2

F.1.5 Proof of Theorem 42

Given GBGOP (M ; s0; A ; C; IC; c; � in ;

� out), if the cost function and all actionsa 2 A can be polynomially computed,

then determining if there is a solutionSOL for the instance of the GBGOP s.t. for

some real numberk, jSOLj � k is in-NP.

Proof. As all calculations of actions, and cost can be performed in PTIME, and

checking if a given solution satis�es the integrity constraints can also be performed

in PTIME, the veri�cation of a solution is also achievable inPTIME, which gives

us membership in the complexity class NP. 2

F.1.6 Proof of Theorem 43

Given BMGOP (M ; s0; B; A ; C; IC; k; c), if the cost function, bene�t function,

and all actions a 2 A can be polynomially computed, then determining if there

is a solution SOL for the instance of the BMGOP s.t. for some real numberval,

P
A i 2 appl(SOL;s 0) bi � val is in-NP.

Proof. As all calculations of actions, cost, and bene�t can be performed in PTIME,

and checking if a given solution satis�es the integrity constraints can also be per-

570

formed in PTIME, the veri�cation of a solution is also achievable in PTIME, which

gives us membership in the complexity class NP. 2

F.1.7 Proof of Theorem 44

Counting the number of solutions to a GBGOP (under the assumptions of

Theorem 42) is #P-complete.

Proof. CLAIM 1: There is a 1-1 encoding of MONSAT into a GBGOP.

The MONSAT problem is de�ned as per [145] below. INPUT: Set ofm clauses

C, each with K disjuncted literals, no literals are negations,L is the set of atoms,

jL j = n.

OUTPUT: \Yes" i� there is a subset of L such that if the atoms in the subset are

true, all of the clauses inC are satis�ed.

We use the following encoding.

� G = f g1; : : : ; gmg - each predicate inG corresponds to an clause inC (predicate

gj corresponds with clause� j)

� M consists of a single point,p

� A = f a1; : : : ; ang - each action inA corresponds to an element inL (action ai

corresponds with lieteral̀ i) . Each ai is de�ned as follows:ai (p) = f gj (p)jf ` i g j=

� j

� C returns 1 for all aciton-point pairs.

571

� s0 = ; , IC = ; , c = n

� � in =
S

gi 2G f gi (p)g

� � out = ;

Clearly, the above construction can be accomplished in PTIME.

CLAIM 1.1 If SOL � A � M is a solution to GBGOP, then there existsL0 � L

that is a solution to MONSAT where jSOLj = jL0j.

Consider the set of literalsL0 = f ` i j(ai ; p) 2 SOLg. Clearly, jL0j = jSOLj. Suppose,

BWOC, there is a clause� i 2 C s.t. there is no` 2 L0 wheref `g j= � . Clearly, the

elementgi (p) is in � in , so there must be some action-point-pair (aj ; p) in SOL s.t.

gi (p) 2 aj (p) (otherwise, SOL is not a solution). This implies there is somèj 2 L0

that corresponds withaj and, by the constructionf ` j j= � - a contradiction.

CLAIM 1.2 If L0 � L is a solution to MONSAT then there existsSOL � A � M

that is a solution to GBGOP wherejSOLj = jL0j.

Consider the setSOL = f (ai ; p)j` i 2 L0g. Clearly jL0j = jSOLj. As c = n and

IC = ; , the �rst two requirements of SOL to be a solution are trivially met. The

set appl(; ; f (ai ; p)j` i 2 L0g) =
S

` j 2 L 0 gj (p). Hence, asL0 has a literal that satis�es

each clause, and by the construction, we know the third requirement of being a

solution is met.

CLAIM 2: Counting the solutions to a GBGOP is #P-hard.

Using the construction of claim 1, we can embedd the counting version of MONSAT

(number of solutions) into the counting version of a GBGOP (number of solutions).

As there is a 1-1 correspondance, the reduction is parsimonious. Hence, using the

572

construction of claim 1, if we �nd that there are N solutions to the GBGOP, the

corresponding instance of MONSAT also has exactlyN solutions.

CLAIM 3: Counting the solutions to a GBGOP is in the complexity class #P.

We use the two requirements for membership in-#P.

(i) Witnesses must be veri�able in PTIME (shown in Theorem 42).

(ii) The number of solutions to GBGOPx � - wherex is depends on the input and �

is a constant. We know that the number of solutions is bounded by
P jA�Mj

i =0

 jA�Mj
i

�

which is less than � jA � Mj jA�Mj for some constant . 2

F.1.8 Proof of Theorem 45

For some� > 0, approximating the number of solutions to a GBGOP within

a factor of 2jA�Mj 1! e
is NP-hard.

Proof. Suppose, BWOC, there is some� > 0 s.t. there is a PTIME algorithm

to approximate the number of solutions to a GBGOP with cardinality � k within

a factor of 2jA�Mj 1! e
. Hence, the same algorithm could be used to approximate

counting the solution to MONSAT (using the construction of Theorem 44 within a

factor of 2n1! e
. However, this contradicts Theorem 3.2 of [145]. 2

F.1.9 Proof of Lemma 22

Given GBGOP ! = (M ; s0; A ; C; IC; c; � in ; � out), for any optimnal solution

SOL � R, there is an optimal solutionSOL0 � R� .

573

Proof. We show this by proving that for any setW = SOL \ (R R�), there is

some setW 0 � R� (R� \ SOL) s.t. (SOL W) [W 0 is also a solution. Hence,

j(SOL W) [W 0j = jSOLj. By De�nition 86, for any (ai ; pi) 2 R R� , there

is some (aj ; pj) 2 R� s.t. cj � ci , (aj ; pj) appears in the same or fewer integrity

constraints, andai (pi) (s0 \ ai (pi)) � aj (pj). Hence, for any (ai ; pi) 2 W, there is

a corresponding element inW 0 that we can use to replace (ai ; pi) without increasing

cost, violating any integrity constraints, or not coveringan element of � in . 2

F.1.10 Proof of Proposition 66

Suppose ! = (M ; s0; A ; C; IC; c; � in ; � out) is a GBGOP and IP (!) is its cor-

responding integer program. We can create such a program with a variable for every

element ofR� (instead of R) and the statement of Proposition 65 still holds true.

Proof. Follows directly from Lemma 22 and Proposition 65. 2

574

Appendix G

Appendix for Chapter 8

G.1 Proofs for Section 8.3

G.1.1 Proof of Proposition 70

If agg is positive-linear, then it is montonic.

Proof. Follows directly from De�nitions 97-98.

G.1.2 Proof of Proposition 71

If a SNOP-query is not zero-starting w.r.t. a social networkS and a GAP

� � � S, and the aggregate is positive-linear, it can be expressed as a zero-starting

SNOP-query in linear time while still maintaining a positive-linear aggregate.

Proof. CONSTRUCTION: Let C = value(;).

Create a new SNOP query with aggregateagg0(X) = agg(X) C.

575

We shall use the notationvalue0 to refer to the value function for the above

construction.

CLAIM For any set V0, value(V0) = value(V0) + C.

Follows directly from the construction.

G.1.3 Proof of Lemma 23

Given SNOP queryQ = (agg; V C; k; g(V)) (w.r.t. SN S and GAP � � � S), if

agg is monotonic (De�nition 97), then value (de�ned as perQ and �) is montonic.

Proof. By the de�nition of T , the annotation of any vertex atom montonically

increases as we add more facts of the formg(V) $ to the logic program. Hence, by

the monotonicity of agg, the statement follows.

G.1.4 Proof of Lemma 24

Given SNOP queryQ = (agg; V C; k; g(V)) (w.r.t. SN S and GAP � � � S),

if V C is applied a-priori (as per De�nition 101), the set of pre-answers (to queryQ)

is a uniform matroid.

Proof. Let Vcond be the set of veritces inV s.t. for each v 2 Vcond, g(v) : 1 ^

V
pred2 `vert (v) pred(v) : 1 j= V C[V=v].

CLAIM 1: For an a-priori V C SNOP query, any subset ofVcond of cardinality � k

is a pre-answer.

Suppose, BWOC, some subset ofV0 � Vcond of cardinality � k is not a pre-answer.

576

Obvouisly, all such subsets meet the cardinality requirement. Then, there must exist

somev0 2 V0s.t. g(v0) : 1^
V

pred2 `vert (v0) pred(v0) : 1 6j= V C[V=v0]. By De�nition 101,

this is a contradiction.

CLAIM 2: There is no subsetV0 � V where V0 \ (V Vcond) 6� ; that is a pre-

answer.

Clearly, this would have an element that would not satisfy the a-priori V C, and

hence, not be a pre-answer.

Proof of lemma: Any subset of size� k of Vcond is a uniform matroid by de�nition.

Also, from claims 1-2, we know that this family of sets also corresponds exactly with

the set of pre-answers. Hence, the statement of the lemma follows.

G.1.5 Proof of Theorem 47

Given SNOP queryQ = (agg; V C; k; g(V)) (w.r.t. SN S and GAP � � � S)

if the following criteria are met:

� � is a linear GAP

� V C is applied a-priori

� agg is positive linear,

then value (de�ned as perQ and �) is sub-modular .

In other words, for Vcond � f v0jv0 2 V and (g(v0) : 1 ^
V

pred2 `vert (v0) pred(v0) : 1 j=

577

V C[V=v0])g and setsV1 � V2 � Vcond and v 2 Vcond, v =2 V1 [V2, the following

holds:

value(V1 [f vg) value(V1) � value(V2 [f vg) value(V2)

Proof. CLAIM 1: For some V0, if A i : � i 2 T f � [f g(v0):1# j v02 V0g s.t. there is no

� 0
i > � i where A i : � 0

i 2 T f � [f g(v0):1# j v02 V0g then, there exists a polynomial of the

following form:

f i (X 1; : : : ; X jVj) = � 1 � X 1 + : : : + � jVj � X jVj + � jVj+1

s.t. if eachX i whereVi 2 V0 is set to 1 and eachX i whereVi =2 V0 is set to 0, then

f i (X 1; : : : ; X jVj) = � i .

(Proof of claim 1): Consider all of the rules inf � [f g(v0) : 1 $. If A i : � i 2

T f � [f g(v0):1# j v02 V0g, then there must exist a rule that causes the annotation ofA i

to equal � i . As the annotation in all rules is a linear function, we can easily re-write

it in the above form, based on the presence of annotated atomsin the body formed

with the goal predicate.

CLAIM 2: For some V0, if A i : � i 2 T f � [f g(v0):1# j v02 V0g " j , s.t. there is no� 0
i > � i

where A i : � 0
i 2 T f � [f g(v0) : 1 $ j v0 2 V0g " j then, there exists a polynomial

of the following form:

f i (X 1; : : : ; X jVj) = � 1 � X 1 + : : : + � jVj � X jVj + � jVj+1

s.t. if eachX i whereVi 2 V0 is set to 1 and eachX i whereVi =2 V0 is set to 0, then

f i (X 1; : : : ; X jVj) = � i .

578

(Proof of claim 2): We will show that if the statement of the claim is true for the

j 1 application of T , then it is true for application j . The proof of the claim

relies on this subclaim along with claim 1. If the claim holdsfor application j 1,

then for each annotated atomA0
i : � 0

i , there is an associated polynomial as per the

statement. Consider the rule that �res in the j th application of the operator that

causes ruleA i to be annotated with � i . We can re-write this as a polynomial of the

above form, simply by substituting the polynomial for each annotation associated

with A0
i from the previous iteration. As all of the polynomials are being substituted

into variable positions of a polynomial, the result is still apolynomial, which can

easily be re-arranged to resemble that of the claim.

CLAIM 3: For someV0, if A i : � i 2 lfp (T f � [f g(v0):1# j v02 V0g), s.t. there is no� 0
i > � i

whereA i : � 0
i 2 lfp (T f � [f g(v0) : 1 $ j v0 2 V0g) then, there exists a polynomial

of the following form:

f i (X 1; : : : ; X jVj) = � 1 � X 1 + : : : + � jVj � X jVj + � jVj+1

s.t. if eachX i whereVi 2 V0 is set to 1 and eachX i whereVi =2 V0 is set to 0, then

f i (X 1; : : : ; X jVj) = � i .

(Proof of claim 3): Follows directly from claims 1-2.

CLAIM 4: For some V i � V, there exists a polynomial of the following form:

f i (X 1; : : : ; X jVj) = � 1 � X 1 + : : : + � jVj � X jVj + � jVj+1

s.t. if eachX i whereVi 2 V0 is set to 1 and eachX i whereVi =2 V0 is set to 0, then

579

f i (X 1; : : : ; X jVj) = value(V i).

(Proof of claim 4): Consider all atoms formed with predicategoal in the lfp where

the annotation is maximum. By claim 3, each is associated with a polynomial. A

positive linear combination of all these polynomials is a polynomial of the form in

this claim, and is equivalent tovalue.

CLAIM 5: value(V1 [f vg) value(V1) � value(V2 [f vg) value(V2).

(Proof of claim 5): By the de�nition of value, as V C is applied a-priori, we know

that value is de�ned on all subsets ofVcond.

We de�ne the following polynomial functions, which are associated with valuefor the

various subsets ofV in claim 5 (with some re-arrangement, Greek letters resemble

constants,X variables can be either 0 or 1 - signifying if the associated subscript is

includes in the associated set).

1. f 1(X V1 ; X f vg; X V2 V1) = � 1 � X V1 + � 1 � X f vg + 1 � X V2 V1 + � 1

value(V1 [f vg) = f 1(1; 1; 0) = � 1 + � 1 + � 1

2. f 2(X V1 ; X f vg; X V2 V1) = � 2 � X V1 + � 2 � X f vg + 2 � X V2 V1 + � 2

value(V1) = f 2(1; 0; 0) = � 2 + � 2

3. f 3(X V1 ; X f vg; X V2 V1) = � 3 � X V1 + � 3 � X f vg + 3 � X V2 V1 + � 3

value(V2 [f vg) = f 3(1; 1; 1) = � 3 + � 3 + 3 + � 3

4. f 4(X V1 ; X f vg; X V2 V1) = � 4 � X V1 + � 4 � X f vg + 4 � X V2 V1 + � 4

value(V2) = f 4(1; 0; 1) = � 4 + 4 + � 4

580

CLAIM 5.1: � 4 + 4 + � 4 � � 2 + 3 + � 2

(Proof of claim 5.1): We note that the constants in thef i 's de�ned earlier all cor-

respond directly with constants seen in rules. Hence, asf 4(1; 0; 1) corresponds with

the maximum possible value forvalue(V2), there can be no constants other than

� 4; 4; � 4 that sum to a value greater thanvalue(V2). The statement of claim 5.1

immediately follows.

CLAIM 5.2: � 1 + � 1 + � 1 � � 3 + � 3 + � 3

(Proof of claim 5.2): Mirrors claim 5.1, (in this case,value(V1 [f vg) is the maxi-

mum possible value off 1(1; 1; 0)).

(Completion of claim 5 / theorem): Suppose, BWOC, claim 5 is not true. Then, it

must be the case that

value(V1 [f vg) value(V1) < value(V2 [f vg) value(V2)

This would imply:

� 1 + � 1 + � 1 + � 4 + 4 + � 4 < � 3 + � 3 + 3 + � 3 + � 2 + � 2

By claim 5.2, we have the following:

� 4 + 4 + � 4 < 3 + � 2 + � 2

Which contradicts claim 5.1. The statement of the theorem follows.

581

G.1.6 Proof of Theorem 48

Finding an answer to SNOP queryQ = (agg; V C; k; g(V)) (w.r.t. SN S and

GAP � � � S) is NP-hard (even if � is a linear GAP, V C = ; , agg = SUM and

value is zero-starting).

Proof. The known NP-hard problem of maxk-cover [46] as follows.

MAX K-COVER

INPUT: Set of elements,S and a family of subsets ofS, H � f H1; : : : ; Hmax g, and

positive integerK .

OUTPUT: � K subsets fromH s.t. the union of the subsets covers a maximal

number of elements inS.

We shall make the following assumptions ofMAX-K-COVER

1. jHj > K

2. There is noH 2 H s.t. H � ;

CONSTRUCTION: Given MAX K-COVER input S;H ; K we create a SNOP-

query as follows.

1. Set up social networkS as follows:

(a) EP � f edgeg

(b) VP � f vertexg

(c) For every element ofH , and every element ofS, we create an element ofV .

We shall denote subsets ofV , VS and VH as the vertices corresponding

582

with S and H respectively. For somes 2 S, vs is the corresponding

vertex. For someH 2 H , vH is the corresponding vertex. Note that set

V � VS [VH

(d) For each H 2 H , if s 2 H draw add edge (vH ; vs) to set E

(e) For eachv 2 V, `vert (v) = vertex

(f) For each (v; v0) 2 E, `edge(v; v0) = edge

(g) For each (v; v0) 2 E, w(v; v0) = 1

2. Set up program � as follows:

(a) Embed S into �.

(b) Add di�usion rule vertex(V) : X $ vertex(V 0) : X ^ edge(V 0; V) : 1 to

�

3. Set up SNOP-queryQ as follows:

(a) agg= SUM

(b) V C = true

(c) k = K (the K from SET COVER)

(d) g = vertex

Additionally, we will use the following notation:

1. V 0 is a pre-answer to the constructed query

2. value(V 0) is the value of the constructed query for pre-answerV 0

583

3. V 0
ans is an answer to the constructed query

CLAIM 1: The construction can be performed in PTIME.

Straightforward.

CALIM 2: Program � is a linear GAP.

Follows directly form De�nition 96.

CLAIM 3: An answer V 0
ans to the SNOP query cannot contain a vertex invs 2 VS

and a vertex in vH 2 VH s.t. s 2 H .

BWOC, an optimal solution could have an elementvs as described in the claim. By

assumption 1, there are more thanK elements inVH and all of them have an edge

to some element ofVS by assumption 2. It is obvious thatvs will be annotated with

a 1 in the �xed point, and that no elements ofVH V 0
ans will be annotated with 1

in the �xed point. Hence, we can pick any element ofVH V 0
ans and value will be

at least one greater than the \optimal" solution { hence a contradiction.

CLAIM 4: If an answer V 0
ans \ VS 6� ; , then we can construct an alternative optimal

solution such that V 0
ans \ VS � ; .

As no element inV 0
ans \ VS 6� ; has an outgoing neighbor, and by assumption 1,

we can be assured thatjV 0
ans VH j > jV 0

ans \ VSj, we can replace the elements of

V 0
ans \ VS in V 0

ans with elements fromV 0
ans VH and still be ensured of an optimal

solution.

584

CLAIM 5: Given a set H 0 � H that ensures an optimal solution toMAX-K-

COVER , we can construct an optimalV 0
ans to the SNOP query.

CASE 1 (claim 5): jH 0j = K .

Let OPT be the number of elements ofS covered in the optimal solution ofMAX-

K-COVER . For eachH 2 H 0, we pick the corresponding element ofVH . Obviously,

value(V 0
ans) = OPT + K . Suppose, we could pick a di�erent element ofV and get

a solution with a highervalue. As no element ofS has an outgoing edge, replacing

one of the elements from the constructed set with one of thesewill not ensure a

greater solution. If we could pick an element fromVH V 0
ans , then this would ob-

viously imply a solution to MAX-K-COVER s.t. more than OPT elements ofS

are covered { clearly this is a contradiction asH 0 is an optimal cover.

CASE 2 (claim 5): jH 0j < K .

CreateH 00with all of the elements ofH 0 and K jH 0j elements ofH H 0. Clearly,

this is also an optimal solution toMAX-K-COVER (as cardinality is not opti-

mized, just needs to be belowK). We can now apply case 1 of this claim.

CLAIM 6: Given V 0
ans , we can constructively create a subset ofH that, if picked,

ensures an optimal solution toMAX-K-COVER .

CASE 1 (claim 6): V 0
ans � VH

585

Simply pick eachH associated with eachvH 2 V 0
ans . Let OPT0 = value(V 0

ans) note

that OPT0 = K + SPREAD where SPREAD corresponds with the number of

1-annotated elements ofVS in the �xed point. If there is a di�erent subset of H that

can be picked, (i.e. a more optimal solution toMAX-K-COVER), then we can

create a solution to the SNOP query where someSPREAD 0 > SPREAD elements

of VS become annotated with 1 in the �xed point. Clearly, this would imply a more

optimal solution to the SNOP query { a contradiction.

CASE 2 (claim 6): VS V 0
ans 6� ;

From this solution, we can use claim 4 to create an optimal solution s.t. case 1

applies.

The proof of the theorem follows directly from claims 5-6.

G.1.7 Proof of Theorem 49

Finding an answer to a decision problem associated with SNOP query Q =

(agg; V C; k; g(V)) (w.r.t. SN S and GAP � � � S) where agg and the functions in

F are polynomially computable is in-NP.

Proof. We utilize the following decision problem:

De�nition 117 (SNOP-DEC). An instance of the decision problem related to a

SNOP-query accepts the input for the query plus real numbertarget. The decision

problem returns \yes" i� there exists pre-answerV 0 s.t. value(V 0) � target and

586

\no" otherwise.

CLAIM 1: SNOP-DEC is NP-hard.

We do this by a reduction fromSET COVER.

CONSTRUCTION: Given instanceS;H ; K of SET COVER, we createK instances

of SNOP-DEC, each identi�ed with index i 2 [1; K], that each use the same con-

struction used to show the NP-hardness of a SNOP query with the following two

exceptions:

� Set k in SNOP-DEC to i

� Set target in SNOP-DEC to i + jSj

CLAIM 1.1: The construction can be performed in PTIME.

Straightforward. CLAIM 1.2: If there is a solution to the set cover problem, at least

one of the constructed instances of SNOP-DEC will return \yes."

Suppose, that there is a solution to the set-cover problem, that causes the selection

of m elements ofH (wherem � K). By the construction, there exists an instance of

SNOP-DEC such that target = m + jSj and k = m. We simply pick the k vertices

in VH corresponding with the covers, and by the construction, after running �, all

of the vertices inVS will have an annotation to the vertex atoms formed bymarked

of 1. Hence, the aggregate will bem + jSj - which is greater thantarget, so that

instance of SNOP-DEC returns \yes."

CLAIM 1.3: If there is no solution to the set cover problem, allof the instances of

SNOP-DEC will return \no."

587

Suppose there is no solution toSET COVERand one of the constructed instances

of SNOP-DEC returns \yes." Then, for somei 2 [1; K], there are i vertices that

can be picked to change the annotation of thevertex vertex atoms to ensure that

the aggregate is greater than or equal toi + jSj. As, at most, only i vertex atoms

can be picked, and only atoms inVS can change annotation due to �, all i vertices

associated with the vertex atoms must be inVH to ensure that we have the most

possible vertex atoms formed withvertex that have a non-zero annotation. How-

ever, in order for all of the vertices inVS to have the annotations of the associated

vertex vertex atom increase to 1, there must be at least one incomingedge to each

element ofVS from one of thei atoms fromVH . By how S is constructed, this would

imply a set-cover of sizei , which would be a contradiction.

PROOF OF CLAIM 1: Follows directly from claims 1.1-1.3.

CLAIM 2: SNOP-DEC is in-NP (with the conditions in the statement).

Suppose, we are given a setV 0. We can easily verify this solution in PTIME as

follows: (i) verify V 0 is a valid pre-answer can easily be done in PTIME by checking

that jV 0j � k and that 8v0 2 V 0, V C(v0) is true. (ii) by the assumptions aboutagg

and the functions inF , we can computevalue(V 0) in PTIME as well. the statement

follows.

588

G.1.8 Proof of Theorem 50

Answering a SNOP queryQ = (agg; V C; k; g(V)) (w.r.t. SN S and GAP

� � � S), cannot be approximated in PTIME within a ratio of e 1
e + � for some

� > 0 (wheree is the inverse of the natural log) unlessP==NP { even if � is a

linear GAP, V C = ; , agg= SUM and value is zero-starting.

(That is, there is no polynomial-time algorithm that can approximate value

within a factor of about 0:63 under standard assumptions.)

Proof. Suppose, BWOC, there is an� -approximation algorithm for an SNOP query.

Hence, we can approximatevalue returned by SNOP within a factor of 1 1=e+ �

for some� > 0. Using theMAX-K-COVER reduction in Theorem 48, for SNOP

answerV 0
ans , the cardinality of the covered elements ofS in MAX-K-COVER is

value(V 0
ans) K . Hence, this approximation algorithm would provide a solution to

MAX-K-COVER within a factor of 1 1=e+ � for some� > 0. By Theorem

5.3 of [46], this would imply P==NP , which contradicts the statement of the

theorem.

G.1.9 Proof of Theorem 51

Counting the number of answers to SNOP queryQ = (agg; V C; k; g(V)) (w.r.t.

SN S and GAP � � � S) is #P-complete.

Follows directly from Lemmas 32 and 33.

589

Lemma 32. The counting version of the SNOP query answering problem (we shall

call it # SNOP) is # P-hard.

Proof. We now de�ne the known #P-Complete problem,MONSAT[145] and a vari-

ant of it used in this proof:

Counting K-Monotone CNF Sat. (# MONSAT)

INPUT: Set of clausesC, each with K disjuncted literals, no literals are negations,

L is the set of atoms.

OUTPUT: Number of subsets ofL such that if the atoms in the subset are true, all

of the clauses inC are satis�ed.

Counting K-Monotone CNF Sat. - Exact (# MONSAT-EQ)

INPUT: Set of clausesC, each with K disjuncted literals, no literals are negations,

L is the set of atoms and natural numberm.

OUTPUT: Number of subsets ofL - each with cardinality of exactly m - such that

if the atoms in the subset are true, all of the clauses inC are satis�ed.

We now de�ne the following problem used in the proof:

#SNOP-EQ

INPUT: Same as SNOP-DEC.

OUTPUT: Number of pre-answersV 0 that would causes a \yes" answer to SNOP-

DEC and jV 0j = k.

590

CLAIM 1: # MONSAT� p# MONSAT-EQand # MONSAT-EQis #P-hard Consider

the following construction (CONSTRUCTION 1):

Let L be the set of atoms associated with #MONSAT. Create jL j instances of

MONSAT-EQ- each with a cardinality constraint (m) in [1; jL j], and the remainder

of the input the same as #MONSAT.

(Proof of claim 1): The sum of the solution to thejL j instances of #MONSAT-EQ

is equal to the solution to #MONSAT.

Every possible satisfying assignment counted as a solutionto # MONSAT has a

unique cardinality associated with it, which is in [1; jL j]. The claim follows trivially

from this fact and construction 1 (which can be performed in PTIME).

CLAIM 2: # MONSAT-EQ� p#SNOP-EQ and #SNOP-EQ is #P-hard

Consider the following construction (CONSTRUCTION 2):

Given # MONSAT-EQinput (C; K; L; m), we create an instance of #SNOP-EQ as

follows.

1. Set up social networkS as follows:

(a) EP � f edgeg

(b) VP � f vertexg

(c) For every element ofC, and every element ofL, we create an element ofV .

We shall denote subsets ofV , VC and VL as the vertices corresponding

with C and L respectively. For somea 2 C, va is the corresponding

vertex. For someb2 L, vb is the corresponding vertex.

591

(d) For each a 2 C, if b is in clauseC, add edge (vb; va) to set E

(e) For eachv 2 V, `vert (v) = vertex

(f) For each (v; v0) 2 E, `edge(v; v0) = edge

(g) For each (v; v0) 2 E, w(v; v0) = 1

2. Set up program � as follows:

(a) Embed S into �

(b) For each v 2 V, add fact vertex(v) : 0 to �

(c) Add di�usion rule vertex(v) : 1 $ vertex(v0) : 1 ^ edge(v0; v) : 1 to �

3. Set up SNOP-queryQ as follows:

(a) agg= SUM

(b) V C = ;

(c) k = m (the m from # MONSAT-EQ)

(d) g = vertex

(e) target = jCj + k

CLAIM 2.1: Construction 2 can be performed in PTIME.

Straightforward.

CLAIM 2.2: If there is a solution to given an instance ofMONSAT-EQ, then given

construction 2 as input, SNOP-EQ will return \yes". For eacha 2 L in the solu-

tion to MONSAT-EQ, change the annotation ofvertex(va) to 1 in � facts . There are

592

m = k such vertices. By the construction, this will cause thejCj vertices ofVC to

increase their annotation - resulting in an aggregate ofjCj + k, causing SNOP-EQ

to return \yes".

CLAIM 2.3: If, given construction 2 as input, SNOP-EQ returns \yes", then a so-

lution to given an instance ofMONSAT-EQsuch that k is the cardinality of the

solution.

We note that selecting any vertex inV 0not in VL will result in an value(V 0) < jCj+ k,

as fewer thanjCj nodes will have their annotation increase after running �. The

only way to achieve anvalue(V 0) = jCj + k is if there exists a set ofk vertices in

VL such that there is an outgoing edge from at least one of the picked vertices to

each node inVC . This is only possible if there exists a solution to theMONSAT-EQ

problem.

CLAIM 2.4: There is a 1-1 correspondence between solution toMONSAT-EQand

SNOP-EQ using construction 2.

As each literal in a MONSAT-EQsolution corresponds to exactly one vertex in a

SNOP-EQ, and by claims 2.2-2.3, the claim follows.

PROOF OF CLAIM 2: Follows directly from claims 2.1-2.4.

CLAIM 3: #SNOP-EQ � p#SNOP, #SNOP is #P-hard

Consider the following construction (CONSTRUCTION 3):

593

Let k be the cardinality constraint associated with #SNOP-EQ. Create two in-

stances of #SNOP, one with a cardinality constraint ofk and one with the constraint

of k 1, and the remainder of the input is the same as #SNOP-EQ.

PROOF OF CLAIM 3: First, note that construction 3 can be performed in PTIME.

We show that the solution to #SNOP with cardinality constraint k 1 subtracted

from the solution to #SNOP with cardinality constraint k is the solution to #SNOP-

EQ. As the solution to #SNOP with cardinality constraint k 1 is the number of

all V 0's that are a solution with cardinality of k 1 or less, and the solution to

#SNOP with cardinality constraint k is the number of allV 0's that are a solution

with cardinality of k or less, the di�erence is the number of allV 0's with a cardinality

of exactly k.

PROOF OF LEMMA: Follows directly from claims 3.

Lemma 33. If the aggregate functionagg is polynomially computable and functions

in F are polynomially computable, then# SNOP is in-# P.

Proof. We use the two requirements for membership in-#P as presentedin [87].

(i) Witnesses must be veri�able in PTIME (shown in the NP-Completness of a

SNOP-query).

(ii) The number of solutions to #SNOP is bounded byx0k0
- wherek0 is a constant.

We know that the number of solutions is bounded by
P

i � k

 jV j
i

�
which is less than

c � jV jk for some constantc.

594

G.1.10 Proof of Theorem 52

Given SNOP queryQ = (agg; V C; k; g(V)) (w.r.t. SN S and GAP � � � S),

�nding
S

V 0
ans 2 ans(Q) V 0

ans is NP-hard.

Proof. We shall refer to the problem of �nding
S

V 0
ans 2 ans(Q) V 0

ans as SNOP-ALL. We

show that SNOP-ALL is � p solving a SNOP-query.

Given set an instance of SNOP-ALL and vertex setV � , jV � j � k let SNOP-

ALL(V �) be the modi�cation of of the instance of SNOP-ALL where the value k is

reduced byjV � j and for eachv�
j 2 V � , the fact g(vi) : 1 is added to �.

Consider the following informal algorithm (FIND-SET) that takes an instance

of SNOP-ALL (Q) and some vertex setV � , jV � j � k.

1. If jV � j = k, return V �

2. Else, solve SNOP-ALL(V �), returning set V 00.

(a) If V 00 V � � ; , return V �

(b) Else, pick v 2 V 00 V � and return FIND-SET(Q; V � [v)

Note, that the above algorithm can only iteratek times.

CLAIM 1: The V � returned by FIND-SETis a valid solution to the SNOP-query

(with the same input for Q).

First, we number the elements inV � as v1; : : : ; vsize - wherev1 is picked as the �rst

element in the solution and vertexvi is added at thei th recursive call ofFIND-SET.

We know that size � k

BASE CASE: There is a set of vertices of size� size that is a solution to the

595

SNOP-query s.t. vertexv1 is in that set - follows directly from the de�nition of

SNOP-ALL.

INDUCTIVE HYPOTHESIS: For some k0 � size, we assume that for vertices

v1; : : : ; vk0 1 there is some set of vertices of size� k that is a solution to the SNOP-

query s.t. verticesv1; : : : ; vk0 1 are in that set.

INDUCTIVE STEP: For some k0 � size, consider verticesv1; : : : ; vk0. By the in-

ductive hypothesis, verticesv1; : : : ; vk0 1 are in a � k-sized solution. By the con-

struction, and the de�nition of SNOP-ALL, we know that vertex vk0 must also be

in that set as well.

CLAIM 2: Given someV 0as a solution to the SNOP-query, the algorithmFIND-SET

can be run in such a way to return that set.

Number each vertex inV 0 as v1; : : : ; vsize. By the de�nition of SNOP-ALL, upon

the i 'th call to FIND-SET, we are guaranteed that the verticesvi ; : : : ; vsize will be

in set V 00. Simply pick vertex vi follow the algorithm to the next recursive call, the

claim immediately follows.

PROOF OF PROPOSITION: Note the construction can be accomplishedin PTIME.

The proposition follows directly from claims 1-2.

G.1.11 Proof of Theorem 53

Given SNOP queryQ = (agg; V C; k; g(V)) (w.r.t. SN S and GAP � � � S),

�nding
S

V 0
ans 2 ans(Q) V 0

ans reduces tojV j + 1 SNOP-queries.

596

Proof. We set upjV j SNOP-queries as follows:

� Let kall be thek value for the SNOP-ALL query and and for each SNOP-queryi ,

let ki be the k for that query. For each queryi , set ki = kall 1.

� Number each element ofvi 2 V such that g(vi) and V C(vi) are true. For the i th

SNOP-query, letvi be the corresponding element ofV

� Let � i refer to the GAP associated with thei th SNOP-query and � all be the

program for SNOP-ALL. For each program �i , add fact g(vi) : 1

� For each SNOP-queryi , the remainder of the input is the same as for SNOP-ALL.

After the construction, do the following:

1. We shall refer to a SNOP-query that has the same input as SNOP-ALL as the

\primary query." Let V 0
ans

(pri) be an answer to this query andvalue(V 0
ans

(pri))

be the associated value.

2. For each SNOP-queryi , let V 0
ans

(i) be an answer andvalue(V 0
ans

(i)) be the

associated value.

3. Let V 00, the solution to SNOP-ALL be initialized as; .

4. For each SNOP-queryi , if value(V 0
ans

(i)) = value(V 0
ans

(pri)), then add vertexvi

to V 00.

CLAIM 1: If for the i th SNOP-query, if value(V 0
ans

(i)) = value(V 0
ans

(pri)), then vi

must be in the solution to SNOP-ALL.

597

Suppose, by way of contradiction, that for thei th query, value(V 0
ans

(i)) = value(V 0
ans

(pri)),

but vi is not in the solution to SNOP-ALL. Then, there is noV 0 of size� k s.t.

vi 2 V 0 and V 0 is an answer to a the primary SNOP-query. However, this is a con-

tradiction, as givenvi and the vertices returned by thei th query, we are guaranteed

this to be a valid answer to the primary query.

CLAIM 2: For each vi in a solution to SNOP-ALL, the i th SNOP query returns a

value s.t. value(V 0
ans

(i)) = value(V 0
ans

(pri)).

Suppose, by way of contradiction, that there is somevi in the solution to SNOP-

ALL s.t. the i th query returns a value that is not equal to the value returnedby

the primary. However, by the de�nition of SNOP-ALL, this is not possible, hence a

contradiction.

PROOF OF PROPOSITION: Note the construction can be accomplishedin PTIME.

The proposition follows directly from claims 1-2.

G.2 Proofs for Section 8.5

G.2.1 Proof of Proposition 72

Suppose � is any GAP. Then:

1. S� is monotonic.

2. S� has a least �xpoint lfp (S�) and lfp (T �) = grd(lfp (S�)).

That is, lfp (S�) is a non-ground representation of the (ground) least �xpoint

operator T � .

598

Proof. Part 1 follows directly from the de�nition { for a given atom A and interpre-

tation I , S(I)(A) � I (A).

Part 2 follows directly from the de�nitions of S and T .

G.2.2 Proof of Theorem 54

Given SNOP queryQ = (agg; V C; k; g(V)) (w.r.t. SN S and GAP � � � S),

if agg is monotonic then:

� There is an answer to the SNOP-queryQ w.r.t. the GAP � i� SNOP-

Mon(� ; agg; V C; k; g(V)) does not return NIL.

� If SNOP-Mon(� ; agg; V C; k; g(V)) returns any result other than NIL, then

that result is an answer to the SNOP-queryQ w.r.t. the GAP �.

Proof. Part 1 ((): Suppose there is an answer to the query andSNOP-Monreturns

NIL. Then there is some set of vertices,sol of cardinality � k, s.t. � [
S

v2 sol g(v) :

1 j= V C. However, such a set would obviously have been added as a tupleinto Todo

at step 2 or step 4(c)iB. Hence, a contradiction.

Part 1 ()): Suppose there is no answer to the query andSNOP-Monreturns NIL.

Then, there is no set of vertices,sol of cardinality � k, s.t. � [
S

v2 sol g(v) : 1 j= V C.

SNOP-Monperforms such a check at line 4b. Hence, a contradiction.

Part 2: Suppose, BWOC, there exists a set of vertices that is asolution, sol, of

cardinality � k, s.t.
S

v2 sol g(v) : 1 is not what is returned by SNOP-Monand

value(� [
S

v2 sol g(v) : 1 is greater thanbestV al. We note that SNOP-Monconsiders

599

most sets of vertices of cardinality� k. Further, the monotonicity of agg and

line 4(c)i tell us that the only solutions not considered areones guaranteed to have

a value less thanbestV al{ hence, a contradiction.

G.2.3 Proof of Proposition 73

Given SNOP queryQ = (agg; V C; k; g(V)) (w.r.t. SN S and GAP � � � S),

the complexity of GREEDY-SNOPis O(k � jVj � F (jVj)) where F (jVj) is the time

complexity to computevalue(V 0) for some setV 0 � V of sizek.

Proof. The outer loop at line 2 iteratesk times, the inner loop at line 2b iterates

O(jVj) times, and at each inner loop, at line 2(b)i, the functionvalue is computed

with costs F (jVj). The statement follows.

G.2.4 Proof of Theorem 55

If SNOP query Q = (agg; V C; k; g(V)) (w.r.t. SN S and GAP � � � S) meets

the following criteria:

� � is a linear GAP

� V C is applied a-priori

� agg is positive linear

� value is zero-starting.

Then GREEDY-SNOPis an (e
e 1)-approximation algorithm for the query.

600

Proof. The results of [127] state that a greedy algorithm for a non-decreasing, sub-

modularity function F s.t. F (;) = 0 is a e
e 1 approximation algorithm for the

associated maximization problem. In Section 8.3, we show that a query meeting the

criteria of the statement satis�es the requirements. The statement follows.

G.2.5 Proof of Proposition 74

For all ground atomsA and verticesv, INC i 1(v)(A) � INC i (v)(A).

Proof. Consider the following values:I i 1(v)(A); I (alg)
i 2 (A); I i (v)(A); I (alg)

i 1 (A). These

correspond with the following sets of vertices, respectively: SOLi 2[f vg; SOLi 2; SOLi 2[

f vg[(SOLi 1 SOLi 2); SOLi 2 [(SOLi 1 SOLi 2). Hence, by claim 3 of Theo-

rem 47, we can associate the valuesI i 1(v)(A); I (alg)
i 2 (A); I i (v)(A); I (alg)

i 1 (A) with lin-

ear functions with three variables corresponding to the sets SOLi 2; f vg; (SOLi 1

SOLi 2). If the variables corresponding to the set of vertices are set to 1 and the rest

zero, then the function corresponds to the value assigned toA by that interpretation.

Consider the following four functions:

f 1(X 1; X 2; X 3) = a1 � X 1 + b1 � X 2 + c1 � X 3 + d1

f 2(X 1; X 2; X 3) = a2 � X 1 + b2 � X 2 + c2 � X 3 + d2

f 3(X 1; X 2; X 3) = a3 � X 1 + b3 � X 2 + c3 � X 3 + d3

f 4(X 1; X 2; X 3) = a4 � X 1 + b4 � X 2 + c4 � X 3 + d4

601

Where X 1; X 2; X 3 correspond toSOLi 2; f vg; (SOLi 1 SOLi 2) respectively.

f 1(1; 1; 0) = I i 1(v)(A) = a1 + b1 + d1

f 2(1; 0; 0) = I (alg)
i 2 (A) = a2 + d2

f 3(1; 1; 1) = I i (v)(A) = a3 + b3 + c3 + d3

f 4(1; 0; 1) = I (alg)
i 1 (A) = a4 + c4 + d4

Note 1: We note, using the same techniques as claims as 5.1-5.2 of Theorem 47,

that there is no i 1; i2; i3 not equal to 1 whereai 1 + bi 2 + di 3 > a 1 + b1 + d1 and no

i 1; i2; i3 not equal to 4 whereai 1 + ci 2 + di 3 > a 4 + c4 + d4.

So, suppose, BWOC, the statement of the proposition does nothold. Then,

we have:

a1 + b1 + d1 a2 d2 < a 3 + b3 + c3 + d3 a4 c4 d4

a1 + b1 + d1 + a4 + c4 + d4 < a 3 + b3 + c3 + d3 + a2 + d2

And by Note 1 ,

a1 + b1 + d1 > b3 + a2 + d2

Which, subtracting from both sides, gives us:

a4 + c4 + d4 < a 3 + c3 + d3

Which contradicts Note 1 . The statement of the proposition follows.

602

G.2.6 Proof of Lemma 25

For all programs � and any atom A,

lfp (SP ROG (�))(A) = lfp (S�)(A)

Proof. Follows directly from De�nition 105.

G.2.7 Proof of Lemma 26

If � 3 � � 1 [� 2, then for any atom A,

lfp (S� 3)(A) = lfp (SP ROG (� 1)[P ROG (� 2))(A)

Proof. CLAIM 1: lfp (S� 3)(A) � lfp (SP ROG (� 1)[P ROG (� 2))(A)

By the monotonicity of S, we know that for all A, lfp (S� 3)(A) � lfp (S� 1)(A) and

lfp (S� 3)(A) � lfp (S� 2)(A). Further, as � 1; � 2 � � 3, it follows that

PROG(� 1); PROG(� 2) � PROG(� 3), meaning that PROG(� 1) [PROG(� 2) �

PROG(� 3).

By the monotonicity of S, it follows that for any atom A, lfp (S� 3)(A) � lfp (SP ROG (� 1)[P ROG (� 2))(A

CLAIM 2: lfp (S� 3)(A) � lfp (SP ROG (� 1)[P ROG (� 2))(A)

Going the other direction, by De�nition 105, � 1 � PROG(� 1) and � 2 � PROG(� 2).

Therefore, for all A, lfp (S� 1 [� 2)(A) � lfp (SP ROG (� 1)[P ROG (� 2))(A), which means

that lfp (S� 3)(A) � lfp (SP ROG (� 1)[P ROG (� 2))(A).

The statement of the lemma follows directly from claims 1-2.

603

G.2.8 Proof of Proposition 75

If � 3 � � 1 [� 2, then for any atom A,

lfp (S� 3)(A) = lfp (SP ROG (P ROG (� 1)[P ROG (� 2)))(A)

Proof. By Lemma 25,

lfp (SP ROG (P ROG (� 1)[P ROG (� 2)))(A) = lfp (SP ROG (� 1)[P ROG (� 2))(A)

By Lemma 26, the statement of the proposition follows.

G.2.9 Proof of Proposition 76

inc(opt)
i � inc(opt)

i 1 .

Proof. This proposition is equivalent to the statement for allV0 � V and all v; v0 =2

V0, then

value(V0 [f v; v0g) value(V0 [f v0g) � value(V0 [f vg) value(V0)

Where v is the vertex added by the greedy algorithm at iterationi 1 and v0 is the

vertex added by the greedy algorithm at iterationi . Obviously, asV0 [f vg � V0,

this is a special case of submoduarity, which is proved for this special case of queries

in Theorem 47.

G.2.10 Proof of Corollary 14

inci (v) � inci 1(v).

604

Proof. This proposition is equivalent to the statement for allV0 � V and all v; v0 =2

V0, then

value(V0 [f v; v0g) value(V0 [f v0g) � value(V0 [f vg) value(V0)

Wherev0 is the vertex added at iterationi 1. The statement of the corollary holds

as a result of Proposition 76.

G.2.11 Proof of Proposition 77

For j � i ,

inci (v) � agg
�

f min
�

1; INC j (v)(g(v0)) + I (alg)
i 1 (g(v0))

�
 I (alg)

i 1 ((g(v0))) jv0 2 Vg
�

Proof. Follows directly from Observation 1 and Proposition 74.

G.2.12 Proof of Theorem 57

If the nodes inGS(�)
i (cand(�)

i) corresponding with elements ofcand(�)
i
0

are an

independent set ofGS(�)
i (cand(�)

i), then the greedy algorithm can select all vertices

in cand(�)
i
0

and still obtain a solution within e� 1
e� of optimal.

Proof. By the de�nition of an independent set and vertex spread, forany v; v0 2

cand(�)
i
0
, we know that spread(�)

i (v) \ spread(�)
i (v0) � ; as there is no edge between

them in the spread-graph. Hence, ifv is selected on iterationi , we know we can

selectv0 on iteration i +1 as inc(�)
i +1 (v0) � inc(�)

i (v0) as spread(�)
i (v) \ spread(�)

i (v0) � ; .

We also know, on iterationi + 1, the set cand(�)
i
0
 f v; v0g is an independent set of

the spread graph ofcand(�)
i +1 , so we can select every other element ofcand(�)

i
0

as

well.

605

G.2.13 Proof of Proposition 78

The complexity of GREEDY-SNOP2is O(k � jVj � F (jVj)) where F (jVj) is the

time complexity to computevalue(V 0) for some setV 0 � V of sizek.

Proof. There are two main operations that incur a cost additional toGREEDY-SNOP

(see Proposition 73, however they are both dominated by other operations.

1. At each iteration of the loop at line 4,inc(up)(v) is computed for each vertex,

giving an upper bound of the incremental increase for the iteration. There are

O(jVj) of these operations and each operations costs less than thecomputation

of the �xed point, so they are dominated by line 4e.

2. After the completion of the inner loop at line 4e, the algorithm may create

a spread graph and �nd an independent set. Under the assumptionthat

GREEDY-INDEP-SETor a similar algorithm is used, this operation is also

dominated by the inner loop at line 4e.

G.2.14 Proof of Proposition 79

Given a SNOP-query meeting the following criteria:

� � is a linear GAP

� V C is applied a-priori

� agg is positive linear

606

� value is zero-starting

Then GREEDY-SNOP2is an e�

e� 1-approximation algorithm for the query.

Proof. Below we note the main di�erences betweenGEEDY-SNOPand GREEDY-

SNOP2as show how they still allow the approximation guarantee of the statement:

1. The least �xed point is computed using saved logic programs that capture

previously computed annotations. By Proposition 75, this has no e�ect on the

approximation ratio.

2. Ignoring vertices whose associated upper bound on the incremental increase

is below this quantity for vertices already considered does not a�ect approxi-

mation ratio by Corollary 14. Further, this upper bound on the incremental

increase associated with a vertex is correct as per Proposition 77.

3. Picking a vertex whose associated incremental increase is within � of optimal

give the approximation ratio of the statement by Theorem 56 and the upper

bound used to specify this is correct by Observation 2

4. Selecting multiple vertices that comprise an independentset of the spread

graph of all vertices whose incremental increase is within� of optimal allows

for the approximation guarantee of the statement by Theorem57.

607

RETURN-SET(G = (V; E); V 0 � V; v 2 V) returns V 00� V

1. V 00= V 0[f vg

2. For all v0 2 V s.t. (v; v0) 2 E :

(a) If v0 =2 V 0, do the following:

i. Set V � = RETURN-SET(G; v0; V 00)

ii. V 00= V 00[V �

3. Return V 00

FIND-ALL-DNS-SETS(G = (V; E)) returns V1; : : : ; Vn � V

1. n = 0, Vrem = V

2. While Vrem 6� ;

(a) n + +, Vn = ;

(b) Pick a vertex v 2 Vrem .

(c) Vn = RETURN-SET(G; ; ; v)

(d) Vrem = Vrem Vn

3. Return V1; : : : ; Vn

608

G.2.15 Algorithm for Finding Disjoint Node Sets

G.2.16 Proof of Proposition 80

Given a SNOP-query meeting the following criteria:

� � is a linear GAP

� V C is applied a-priori

� agg is positive linear

� value is zero-starting

Then GREEDY-SNOP-DIVis an e�

e� 1-approximation algorithm for the query.

Proof. We prove the statement by showing that for any instance ofGREEDY-

SNOP-DIV, the solution returned is the same as that returned by an instance of

GREEDY-SNOP2{ thus assuring the approximation guarantee. In this proof we

shall useGREEDY-SNOP2i to refer to an instance ofGREEDY-SNOP2that con-

siders vertices only in someDNS i , as called byGREEDY-SNOP-DIV. We shall use

GREEDY-SNOP2all to refer to an instance ofGREEDY-SNOP2on the same input as

GREEDY-SNOP-DIV.

CLAIM 1: If the �rst vertex (vertex v) picked by GREEDY-SNOP2i is also picked

by GREEDY-SNOP2all , then the incremental increase for that vertex is the same for

both algorithms.

We note that vertex v is independent from any vertexv0 =2 DNS i , so by the proof

609

of Theorem 57, the statement of the claim follows.

CLAIM 2: If vertex vj is picked by GREEDY-SNOP2i at some iteration j , then it

is picked by GREEDY-SNOP2all only if GREEDY-SNOP2all picks all other vertices

selected byGREEDY-SNOP2i before iteration j .

We show this by induction onj .

BASE CASE: j = 2

Considerv1; v2. Note that on the �rst iteration of GREEDY-SNOP2i , the algorithm

found that the incremental increase ofv1 is more \optimal" than v2. Hence, by

claim 1, this vertex would also be picked byGREEDY-SNOP2all .

INDUCTIVE HYPOTHESIS:

If GREEDY-SNOP2all picksvj , it also selects verticesv1; : : : ; vj 2 picked byGREEDY-SNOP2i

on iterations 1; : : : ; j 2.

INDUCTIVE STEP:

If GREEDY-SNOP2all , then by the inductive hypothesis, it selectsv1; : : : ; vj 2. Sup-

pose, BWOC, it picks vertexvj before vj 1. However, asGREEDY-SNOP2i picks

vertex vj 1 �rst, we know it is \more optimal" than vj on GREEDY-SNOP2i . As

the only vertices that pickedGREEDY-SNOP2all which are not independent were the

same ones picked byGREEDY-SNOP2i , we know that GREEDY-SNOP2all will also

�nd vj 1 \more optimal" than vj { hence a contradiction.

CLAIM 3: Any vertex picked by GREEDY-SNOP2all contributes the same incremen-

tal increase as if it were picked byGREEDY-SNOP2i .

610

Follows from the fact that vertices in each instance are independent from each other

as well as claims 1-2.

Proof of Proposition: Follows directly from claims 1-3.

611

Bibliography

[1] N. Agmon, S. Kraus, and G.A. Kaminka. Multi-robot perimeterpatrol in
adversarial settings. InProc. IEEE Int. Conf. on Robotics and Automation
(ICRA-2008), pages 2339{2345, 2008.

[2] N. Agmon, S. Kraus, G.A. Kaminka, and V. Sadov. Adversarial uncertainty
in multi-robot patrol. In Proc. 21st Int. Joint Conf. on Arti�cial Intelligence
(IJCAI-2009) , pages 1811{1817, 2009.

[3] James F. Allen and George Ferguson. Actions and events in interval temporal
logic. J. of Logic and Computation, 4:531{579, 1994.

[4] Ethem Alpaydin. Introduction to Machine Learning. MIT Press, 2 edition,
2010.

[5] Roy M. Anderson and Robert M. May. Population biology of infectious dis-
eases: Part i.Nature, 280(5721):361, 1979.

[6] T. Antal, S. Redner, and V. Sood. Evolutionary dynamics on degree-
heterogeneous graphs.Physical Review Letters, 96(18):188104, 2006.

[7] Shyamanta M. Hazarika Anthony G. Cohn. Qualitative spatial representation
and reasoning: An overview. volume 46, pages 1{29, 2001.

[8] K. Apt. Principles of constraint programming. Cambridge University Press,
2003.

[9] Sinan Aral, Lev Muchnik, and Arun Sundararajan. Distinguishing inuence-
based contagion from homophily-driven di�usion in dynamic networks. Pro-
ceedings of the National Academy of Sciences, 106(51):21544{21549, December
2009.

[10] V Asal, J Carter, and J Wilkenfeld. Ethnopolitical violence and terrorism in
the middle east. In J Hewitt, J Wilkenfeld, and T Gurr, editors, Peace and
Conict 2008. Paradigm, 2008.

[11] Yossi Azar and Iftah Gamzu. E�cient submodular function maximiza-
tion under linear packing constraints. (submitted, preprint avaialbe from
http://www.cs.tau.ac.il/ iftgam/papers/SubmodularPacking.pdf), 2010.

612

[12] Adnan Aziz, Vigyan Singhal, Felice Balarin, Robert K. Brayton, and Al-
berto L. Sangiovanni-vincentelli. It usually works: The temporal logic of
stochastic systems. pages 155{165. Springer, 1995.

[13] C. Baral, N. Tran, and L. Tuan. Reasoning about actions in aprobabilistic
setting. In Proc. AAAI 2002, pages 507{512, 2002.

[14] Sugato Basu, Ian Davidson, and Kiri Wagsta�.Constrained Clustering: Ad-
vances in Algorithms, Theory, and Applications. Chapman & Hall/CRC, 2008.

[15] Paul Brantingham and Patricia Brantingham. Crime Pattern Theory. In
Richard Wortley and Lorraine Mazerolle, editors,Enviromental Criminology
and Crime Analysis, pages 78{93. 2008.

[16] Herv Brnnimann and Michael T. Goodrich. Almost optimal set covers in �nite
vc-dimension.Discrete Comput. Geom, 14:293{302, 1995.

[17] Matthias Broecheler, Paulo Shakarian, and V.S. Subrahmanian. A scalable
framework for modeling competitive di�usion in social networks. Social Com-
puting / IEEE International Conference on Privacy, Security, Risk and Trust,
0:295{302, 2010.

[18] Matthias Broecheler, Gerardo I. Simari, and V. S. Subrahmanian. Using his-
tograms to better answer queries to probabilistic logic programs. In ICLP
'09: Proceedings of the 25th International Conference on Logic Programming,
pages 40{54, Berlin, Heidelberg, 2009. Springer-Verlag.

[19] Tom Bylander, Dean Allemang, Michael C. Tanner, and John R. Josephson.
The Computational Complexity of Abduction, 1991.

[20] Meeyoung Cha, Alan Mislove, Ben Adams, and Krishna P. Gummadi. Char-
acterizing social cascades in ickr. InWOSP '08: Proceedings of the �rst
workshop on Online social networks, pages 13{18, New York, NY, USA, 2008.
ACM.

[21] Meeyoung Cha, Alan Mislove, and Krishna P. Gummadi. A Measurement-
driven Analysis of Information Propagation in the Flickr Social Network.
In In Proceedings of the 18th International World Wide Web Conference
(WWW'09) , Madrid, Spain, April 2009.

[22] A. Charnes and W. Cooper. Programming with linear fractional functionals.
Naval Research Logistics Quarterly, 9(3):163{297, 1962.

[23] Wei Chen, Chi Wang, and Yajun Wang. Scalable inuence maximization for
prevalent viral marketing in large-scale social networks.In Proceedings of
the 16th ACM SIGKDD international conference on Knowledge discovery and
data mining, KDD '10, pages 1029{1038, New York, NY, USA, 2010. ACM.

[24] Vaek Chvatal. Linear Programming. W.H.Freeman, New York, 1983.

613

[25] R. Cleaveland, P. Iyer, and M. Narasimha. ProbabilisticTemporal Logics
via the Modal Mu-Calculus. Theoretical Computer Science, 342(2-3):316{350,
2005.

[26] Luca Console, Luigi Portinale, and Daniele Theseider Dupr�e. Focussing Ab-
ductive Diagnosis.AI Commun., 4(2), 1991.

[27] Luca Console, Maria Luisa Sapino, and Daniele TheseiderDupr�e. The Role
of Abduction in Database View Updating.Journal of Intelligent Information
Systems, 4(3):261, 1995.

[28] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.Introduction to
Algorithms. MIT Press, second edition, 2001.

[29] Robin Cowan and Nicolas Jonard. Network structure and the di�usion of
knowledge. Journal of Economic Dynamics and Control, 28(8):1557 { 1575,
2004.

[30] J. Lang D. Dubois and H. Prade. Timed possibilistic logic.Fundamenta
Informaticae, XV:211{234, 1991.

[31] C. Damasio, L. Pereira, and T. Swift. Coherent well-founded annotated logic
programs. In Proc. Intl. Conf. on Logic Programming and Non-Monotonic
Reasoning, pages 262{276. Springer Lecture Notes in Computer Science Vol.
1730, 1999.

[32] Ian Davidson and S. S. Ravi. Clustering with constraints: Feasibility issues
and the k-means algorithm. InSDM, 2005.

[33] Munmun De Choudhury, Hari Sundaram, Ajita John, and Dor�ee Duncan Selig-
mann. Can blog communication dynamics be correlated with stock market
activity? In HT '08: Proceedings of the nineteenth ACM conference on Hy-
pertext and hypermedia, pages 55{60, New York, NY, USA, 2008. ACM.

[34] Alex Dekhtyar, Michael I. Dekhtyar, and V. S. Subrahmanian. Temporal
probabilistic logic programs. InICLP 1999, pages 109{123, Cambridge, MA,
USA, 1999. The MIT Press.

[35] J.P. Dickerson, G.I. Simari, V.S. Subrahmanian, and Sarit Kraus. A Graph-
Theoretic Approach to Protect Static and Moving Targets from Adversaries.
In Proc. 9th Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS-2010), pages 299{306, 2010.

[36] J•urgen Dix, Sarit Kraus, and V. S. Subrahmanian. Heterogeneous temporal
probabilistic agents. ACM TOCL , 7(1):151{198, 2006.

[37] Silvio do Lago Pereira and Leliane Nunes de Barros. Planning with abduction:
A logical framework to explore extensions to classical planning. In Lecture
Notes in Computer Science Advances in Arti�cial Intelligence SBIA, 2004.

614

[38] Martin Dyer, Leslie A Goldberg, Catherine Greenhill, and Mark Jerrum. On
the relative complexity of approximate counting problems.Technical report,
Coventry, UK, UK, 2000.

[39] T. Eiter, J. Lu, and V.S. Subrahmanian. Computing non-ground representa-
tions of stable models. InProc. Intl. Conf. on Logic Programming and Non-
Monotonic Reasoning, pages 198{217. Springer Lecture Notes in Computer
Science Vol. 1265, 1997.

[40] T Eiter, V.S. Subrahmanian, and G. Pick. Heterogeneous Active Agents, I:
Semantics.Arti�cial Intelligence Journal , 108(1-2):179{255, 1999.

[41] Thomas Eiter and Georg Gottlob. The complexity of logic-based abduction.
J. ACM, 42(1):3{42, 1995.

[42] E. A Emerson and Joseph Y. Halpern. \sometimes" and \not never" revisited:
on branching versus linear time. Technical report, Austin, TX, USA, 1984.

[43] Ronald Fagin and Joseph Y. Halpern. Reasoning about knowledge and prob-
ability. Journal of the ACM, 41:340{367, 1994.

[44] Ronald Fagin, Joseph Y. Halpern, and Nimrod Megiddo. A logicfor reasoning
about probabilities. Information and Computation, 87:78{128, 1990.

[45] H. Cruz F.C. Coelho, C. Codeco. Epigrass: A tool to study disease spread in
complex networks.Source Code for Biology and Medicin, 3(3), 2008.

[46] Uriel Feige. A threshold of ln n for approximating set cover. J. ACM,
45(4):634{652, 1998.

[47] Uriel Feige, Vahab S. Mirrokni, and Jan Vondrak. Maximizing non-monotone
submodular functions. InFOCS '07: Proceedings of the 48th Annual IEEE
Symposium on Foundations of Computer Science, pages 461{471, Washington,
DC, USA, 2007. IEEE Computer Society.

[48] Massimo Franceschetti, Matthew Cook, and Jehoshua Bruck. A geometric
theorem for network design. IEEE Transactions on Computers, 53(4):483{
489, 2004.

[49] Michael L. Fredman and Robert E. Tarjan. Fibonacci heapsand their uses
in improved network optimization algorithms. J. ACM, 34(3):596{615, July
1987.

[50] David Freedman, Roger Purves, and Robert Pisani.Statistics. W.W. Norton
and Co., 4 edition, 2007.

[51] Thom Fr•uhwirth. Annotated constraint logic programming applied to tempo-
ral reasoning. InPLILP: Programming Language Implementation and Logic
Programming, Madrid, 1994. Springer.

615

[52] Bin Fu, Zhixiang Chen, and Mahdi Abdelguer�. An almost linear time 2.8334-
approximation algorithm for the disc covering problem. InAAIM '07: Proceed-
ings of the 3rd international conference on Algorithmic Aspects in Information
and Management, pages 317{326, Berlin, Heidelberg, 2007. Springer-Verlag.

[53] I. Fujiwara, Y. Hirose, and M. Shintani. Can News be a Major Source of
Fluctuation: A Bayesian DGSE Approach, volume Discussion Paper Nr. 2008-
E-16. Institute for Monetary and Economic Studies, Bank of Japan, 2008.

[54] Michael R. Garey and David S. Johnson.Computers and Intractability; A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York,
NY, USA, 1979.

[55] Els Gijsbrechts, Katia Campo, and Tom Goossens. The impact of store yers
on store tra�c and store sales: a geo-marketing approach.Journal of Retailing,
79(1):1 { 16, 2003.

[56] Rob J. Van Glabbeek, Scott A. Smolka, and Bernhard Ste�en. Reactive,
generative, and strati�ed models of probabilistic processes. Information and
Computation, 121:130{141, 1995.

[57] Jack A. Goldstone, Robert Bates, Ted Robert Gurr, MichaelLustik, Monty G.
Marshall, Jay Ulfelder, and Mark Woodward. A global forecasting model of
political instability. In Proc. Annual Meeting of the American Political Science
Association, 2005.

[58] Teo�lo F. Gonzalez. Covering a set of points in multidimensional space.Inf.
Process. Lett., 40(4):181{188, 1991.

[59] Georg Gottlob, Sherry Marcus, Anil Nerode, Gernot Salzer,and V. S. Subrah-
manian. A non-ground realization of the stable and well-founded semantics.
Theor. Comput. Sci., 166(1-2):221{262, 1996.

[60] P.R. Goundan and A.S. Schultz. Revisiting the greedy approach to submod-
ular set function maximization. Technical report, Massachusetts Institute of
Technology, 2007.

[61] Mark Granovetter. Threshold models of collective behavior. The American
Journal of Sociology, 83(6):1420{1443, 1978.

[62] P. Haddawy. Representing plans under uncertainty: A logic of time, chance
and action. PhD Thesis, Univ. of Illinois, 1991.

[63] J. Halpern and M. Tuttle. Knowledge, probability, and adversaries. InIBM
Thomas J. Watson Research Center Tech Report, 1992.

[64] H. Hansson and B. Jonsson. A logic for reasoning about time and probability.
Formal Aspects of Computing, 6:512{535, 1994.

616

[65] Hans Hansson and Bengt Jonsson. A logic for reasoning about time and
reliability. Formal Aspects of Computing, 6:102{111, 1994.

[66] S. Hart and M. Sharir. Probabilistic propositional temporal logic. Information
and Control, 70:97{155, 1986.

[67] Herbert W. Hethcote. Qualitative analyses of communicable disease models.
Mathematical Biosciences, 28(3-4):335 { 356, 1976.

[68] Dorit S. Hochbaum. Approximation Algorithms for the Set Covering and
Vertex Cover Problems.SIAM Journal on Computing, 11(3):555{556, 1982.

[69] Dorit S. Hochbaum. Approximation Algorithms for NP-Complete Problems.
PWS Publishing Co., 1997.

[70] Dorit S. Hochbaum and Wolfgang Maass. Approximation schemes for covering
and packing problems in image processing and vlsi.J. ACM, 32:130{136, 1985.

[71] Harry B. Hunt, III, Madhav V. Marathe, Venkatesh Radhakrishnan, and
Richard E. Stearns. The complexity of planar counting problems. SIAM
J. Comput., 27(4):1142{1167, 1998.

[72] ISW. Map of Special Groups Activity in Iraq, Institute for the Study of War.
2008.

[73] M. Jackson and L. Yariv. Di�usion on social networks. InEconomie Publique,
volume 16, pages 69{82, 2005.

[74] Robert Jeansoulin, Odile Papini, Henri Prade, and StevenSchockaert. In
Robert Jeansoulin, Odile Papini, Henri Prade, and Steven Schockaert, editors,
Methods for Handling Imperfect Spatial Information, volume 256 ofStudies in
Fuzziness and Soft Computing. Springer Berlin / Heidelberg, 2010.

[75] Lujun Jia, Rajmohan Rajaraman, and Torsten Suel. An e�cient distributed
algorithm for constructing small dominating sets.Distrib. Comput., 15(4):193{
205, 2002.

[76] D.S. Johnson. The np-completeness column: An ongoing guide. Journal of
Algorithms, 3(2):182{195, 1982.

[77] A. C. Kakas and P. Mancarella. Database updates through abduction. In
VLDB90, 1990.

[78] K. Kanazawa. A logic and time nets for probabilistic inference. InProc. AAAI
1991, 1991.

[79] N. Karmarkar. A new polynomial-time algorithm for linear programming.
Combinatorica, 4(4):373{395, 1984.

617

[80] Richard Karp. Reducibility Among Combinatorial Problems. In R. E. Miller
and J. W. Thatcher, editors, Complexity of Computer Computations, page
85103. 1972.

[81] David Kempe, Jon Kleinberg, and�Eva Tardos. Maximizing the spread of
inuence through a social network. InKDD '03: Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery and data mining,
pages 137{146, New York, NY, USA, 2003. ACM.

[82] Gabriele Kern-Isberner and Thomas Lukasiewicz. Combining probabilistic
logic programming with the power of maximum entropy.Artif. Intell. , 157(1-
2):139{202, 2004.

[83] Samir Khuller, Maria Vanina Martinez, Dana Nau, Gerardo I.Simari, Amy
Sliva, and Venkatramanan Siva Subrahmanian. Action probabilistic logic pro-
grams. Annals of Mathematics and Arti�cial Intelligence, 51(2{4):295{331,
2007.

[84] W. Kiessling, H. Thone, and U. Guntzer. Database support for problematic
knowledge. InProceedings of EDBT 1992, Springer LNCS Volume 580, pages
421{436, 1992.

[85] Michael Kifer and Eliezer L. Lozinskii. A logic for reasoning with inconsistency.
Journal of Automated Reasoning, 9(2):179{215, 1992.

[86] Michael Kifer and V.S. Subrahmanian. Theory of generalized annotated logic
programming and its applications.J. Log. Program., 12(3&4):335{367, 1992.

[87] Dexter Kozen.The Design and Analysis of Algorithms. Springer-Verlag, New
York, 1991.

[88] Stanislav Krajci, Rastislav Lencses, and Peter Vojts. Acomparison of fuzzy
and annotated logic programming.Fuzzy Sets and Systems, 144(1):173 { 192,
2004.

[89] Fabian Kuhn and Roger Wattenhofer. Constant-time distributed dominating
set approximation. InIn Proc. of the 22 nd ACM Symposium on the Principles
of Distributed Computing (PODC, pages 25{32, 2003.

[90] Benjamin Kuipers. A hierarchy of qualitative representations for space. In
Working papers of the Tenth International Workshop on Qualitative Reasoning
about Physical Systems, 1996.

[91] M. Kwiatkowska, G. Norman, and D. Parker. Verifying randomized dis-
tributed algorithms with PRISM. In Proc. Workshop on Advances in Ver-
i�cation (Wave'2000) , July 2000.

618

[92] Marta Kwiatkowska, Gethin Norman, and David Parker. Prism: probabilis-
tic model checking for performance and reliability analysis.SIGMETRICS
Perform. Eval. Rev., 36(4):40{45, 2009.

[93] Laks V.S. Lakshmanan and F. Sadri. Modeling uncertainty indeductive
databases. InProceedings of DEXA 1994, pages 724{733. Springer LNCS
Vol. 856, 1994.

[94] Laks V.S. Lakshmanan and F. Sadri. Probabilistic deductive databases. In
Proceedings of the Intl. Logic Programming Symposium (ILPS). MIT Press,
1994.

[95] Laks V.S. Lakshmanan and Nematollaah Shiri. A parametric approach to
deductive databases with uncertainty.IEEE Transactions on Knowledge and
Data Engineering, 1997.

[96] Leslie Lamport. \sometime" is sometimes \not never": onthe temporal logic
of programs. InPOPL 1980, pages 174{185, New York, NY, USA, 1980. ACM.

[97] Kim G. Larsen and Arne Skou. Bisimulation through probabilistic testing.
Inf. Comput., 94(1):1{28, 1991.

[98] D. Lehmann and S. Shelah. Reasoning about time and chance. Information
and Control, 53:165{198, 1982.

[99] Nicola Leone, Francesco Scarcello, and V.S. Subrahmanian. Optimal models
of disjunctive logic programs: Semantics, complexity, and computation. IEEE
Transactions on Knowledge and Data Engineering, 16:487{503, 2004.

[100] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Predicting positive
and negative links in online social networks. InProceedings of the 19th in-
ternational conference on World wide web, WWW '10, pages 641{650, New
York, NY, USA, 2010. ACM.

[101] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne
VanBriesen, and Natalie Glance. Cost-e�ective outbreak detection in net-
works. In KDD '07: Proceedings of the 13th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages 420{429, New York,
NY, USA, 2007. ACM.

[102] Kevin Leyton-Brown and Yoav Shoham.Essentials of Game Theory: A Con-
cise, Multidisciplinary Introduction. Morgan and Claypool Publishers, 2008.

[103] S. Li and M. Ying. Region connection calculus: Its models and composition
table. Artif. Intell. , 145:121 { 146, 2003.

[104] Chen Liao and Shiyan Hu. Polynomial time approximationschemes for mini-
mum disk cover problems.Journal of Combinatorial Optimization.

619

[105] Erez Lieberman, Christoph Hauert, and Martin A. Nowak. Evolutionary dy-
namics on graphs.Nature, 433(7023):312{316, 2005.

[106] J. W. Lloyd. Foundations of Logic Programming, Second Edition. Springer-
Verlag, 1987.

[107] J. Lu. Logic programs with signs and annotations.Journal of Logic and
Computation, 6(6):755{778, 1996.

[108] James J. Lu, Anil Nerode, and V.S. Subrahmanian. Hybrid knowledge bases.
IEEE Transactions on Knowledge and Data Engineering, 8(5):773{785, 1996.

[109] J.J. Lu, N.V. Murray, and E. Rosenthal. Signed formulas andannotated
logics. In Multiple-Valued Logic, 1993., Proceedings of The Twenty-Third In-
ternational Symposium on, pages 48{53, May 1993.

[110] Thomas Lukasiewicz. Probabilistic logic programming. In ECAI , pages 388{
392, 1998.

[111] Thomas Lukasiewicz. Many-valued disjunctive logic programs with probabilis-
tic semantics. In In Proceedings of the 5th International Conference on Logic
Programming and Nonmonotonic Reasoning, volume 1730 of LNAI, pages
277{289. Springer, 1999.

[112] Thomas Lukasiewicz, Thomas Lukasiewicz, Gabriele Kern-isberner, and
Gabriele Kern-isberner. Probabilistic logic programmingunder maximum en-
tropy. In In Proc. ECSQARU-99, LNCS 1638, pages 279{292. Springer, 1999.

[113] Carsten Lund and Mihalis Yannakakis. On the hardness of approximating
minimization problems. J. ACM, 41(5):960{981, 1994.

[114] A. Martelli M. Falaschi, G. Levi and C. Palamidessi. A new declarative se-
mantics for logic languages. InProc. 5th Internat. Conf. Symp. on Logic
Programming, page 9931005, 1988.

[115] Wolfgang Maass. On the complexity of nonconvex covering. SIAM J. Comput.,
15(2):453{467, 1986.

[116] J. B. MacQueen. Some methods for classi�cation and analysis of multivariate
observations. In L. M. Le Cam and J. Neyman, editors,Proc. of the �fth
Berkeley Symposium on Mathematical Statistics and Probability, volume 1,
pages 281{297. University of California Press, 1967.

[117] Paolo Mancarella, Alessandra Ra�aet�a, and Franco Turini. Temporal anno-
tated constraint logic programming with multiple theories. In DEXA '99:
Proceedings of the 10th International Workshop on Database & Expert Sys-
tems Applications, 1999.

620

[118] A. Mannes, M. Michaell, A. Pate, A. Sliva, V.S. Subrahmanian, and J. Wilken-
feld. Stochastic Opponent Modelling Agents: A Case Study with Hezbollah.
In Proc. 2008 First Intl. Workshop on Social Computing, Behavioral Modeling
and Prediction. Springer Verlag, April 1-2, 2008.

[119] Aaron Mannes, Amy Sliva, V.S. Subrahmanian, and Jonathan Wilkenfeld.
Stochastic Opponent Modeling Agents: A Case Study with Hamas.In Proc.
2008 Intl. Conf. on Computational Cultural Dynamics, pages 49{54. AAAI
Press, Sep. 2008.

[120] V. Martinez, G.I. Simari, A. Sliva, and Venkatramanan Siva Subrahmanian.
The SOMA Terror Organization Portal (STOP): Social Network and Analytic
Tools for the Real-Time Analysis of Terror Groups. In Huan Liu and John
Salerno, editors,Proceedings of the First International Workshop on Social
Computing, Behavioral Modeling and Prediction, 2008.

[121] V. Martinez, G.I. Simari, A. Sliva, and V.S. Subrahmanian. CONVEX:
Similarity-Based Algorithms for Forecasting Group Behavior. IEEE Intel-
ligent Systems, 23(4):51{57, 2008.

[122] V. Martinez, G.I. Simari, A. Sliva, and V.S. Subrahmanian. CAPE: Automati-
cally Predicting Changes in Terror Group Behavior.to appear in Mathematical
Methods in Counterterrorism (ed. N. Memon), 2009.

[123] S. Masuyama, T. Ibaraki, and T. Hasegawa. The computational complexity of
the m-center problems on the plane.Trans. IECE of Japan, E84:57{64, 1981.

[124] P. Mateus, A. Pacheco, J. Pinto, A. Sernadas, and C. Sernadas. Probabilistic
situation calculus. AMAI , 32:393{431(39), 2001.

[125] Nimrod Megiddo and Kenneth J. Supowit. On the complexityof some common
geometric location problems. SIAM Journal of Computing, 13(1):182{196,
1984.

[126] A. Pentland N. Eagle and D. Lazer. Mobile phone data for inferring social
network structure. In Proc. 2008 Intl. Conference on Social and Behavioral
Computing, pages 79{88. Springer Verlag, 2008.

[127] G. L. Nemhauser, L. A. Wolsey, and M.L. Fisher. An analysis of approxima-
tions for maximizing submodular set functionsi.Mathematical Programming,
14(1):265{294, 1978.

[128] Raymond T. Ng and V. S. Subrahmanian. Probabilistic logicprogramming.
Information and Computation, 101(2):150{201, 1992.

[129] Raymond T. Ng and Venkatramanan Siva Subrahmanian. A semantical
framework for supporting subjective and conditional probabilities in deduc-
tive databases. In Koichi Furukawa, editor,Proceedings of ICLP '91, pages
565{580. The MIT Press, 1991.

621

[130] Raymond T. Ng and Venkatramanan Siva Subrahmanian. Probabilistic logic
programming. Information and Computation, 101(2):150{201, 1992.

[131] Nils Nilsson. Probabilistic logic.Arti�cial Intelligence , 28:71{87, 1986.

[132] Susan Owicki and Leslie Lamport. Proving liveness properties of concurrent
programs. ACM Trans. Program. Lang. Syst., 4(3):455{495, 1982.

[133] Maurice Pagnucco.The Role of Abductive Reasoning within the Process of Be-
lief Revision. PhD thesis, Basser Department of Computer Science, University
of Sydney, Australia, 1996.

[134] Christos H. Papadimitriou. Worst-Case and Probabilistic Analysis of a Geo-
metric Location Problem. SIAM J. Comput., 10(3):542{557, 1981.

[135] P. Paruchuri, M. Tambe, F. Ord�o~nez, and S. Kraus. Security in multiagent
systems by policy randomization. InProc. 5th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS-2006), 2006.

[136] Vangelis T. Paschos. A survey of approximately optimal solutions to some
covering and packing problems.ACM Comput. Surv., 29(2):171{209, 1997.

[137] Charles S. Peirce.Philosophical writings of Peirce, selected and edited with an
introd. by Justus Buchler. Dover Publications New York,, 1955.

[138] Yun Peng and James A. Reggia. Plausibility of DiagnosticHypotheses. In
Proceedings, 5th National Conference on AI (AAAI-86), pages 140{145, 1986.

[139] J. Pita, M. Jain, F. Ord�o~nez, M. Tambe, S. Kraus, and R. Magori-Cohen.
E�ective solutions for real-world stackelberg games: When agents must deal
with human uncertainties. In Proc. 8th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS-2009), pages 369{376, 2009.

[140] M. L. Puterman. Markov Decision Processes. Wiley, 1994.

[141] James A. Reggia and Yun Peng.Abductive inference models for diagnostic
problem-solving. Springer-Verlag New York, Inc., New York, NY, USA, 1990.

[142] J. Renz and B. Nebel. On the complexity of qualitative spatial reasoning: A
maximal tractable fragment of the region connection calculus. Artif. Intell. ,
108:69 { 123, 1999.

[143] Thomas Hewitt Rich, Mildred Adams Fenton, and Carroll Lane Fenton. The
fossil book: a record of prehistoric life. Dover Publications, 2 edition, 1996.

[144] D. Kim Rossmo and Sacha Rombouts. Geographic Pro�ling.In Richard Wort-
ley and Lorraine Mazerolle, editors,Enviromental Criminology and Crime
Analysis, pages 136{149. 2008.

622

[145] Dan Roth. On the hardness of approximate reasoning.Arti�cial Intelligence ,
82:273{302, 1996.

[146] Stuart Russell and Peter Norvig.Arti�cial Intelligence: A Modern Approach .
Prentice-Hall, Englewood Cli�s, NJ, 2nd edition edition, 2003.

[147] Jan Rycht�a�r and Brian Stadler. Evolutionary dynamics on small-world net-
works. International Journal of Computational and Mathematical Sciences,
2(1), 2008.

[148] Eugene Santos and Joel D. Young. Probabilistic temporal networks: A uni-
�ed framework for reasoning with time and uncertainty. Inter. Journal of
Approximate Reasoning, 20, 1999.

[149] Paulo Santos and Murray Shanahan. Hypothesising objectrelations from
image transitions. InProc. ECAI02, 2002.

[150] Thomas C. Schelling.Micromotives and Macrobehavior. W.W. Norton and
Co., 1978.

[151] P. Schrodt and D.J. Gerner. Cluster analysis as an earlywarning technique for
the middle east. Preventive Measures: Building Risk Assessment and Crisis
Early Warning Systems (eds. John L. Davies and Ted Robert Gurr), 1998.

[152] P. Shakarian, M. Broecheler, and V.S. Subrahmanian. Using generalized an-
notated programs to solve social network optimization problems. (submitted),
2011.

[153] P. Shakarian and V.S. Subrahmanian. Region-based Geospatial Abduction
with Counter-IED Applications. In U. Kock Wiil, editor, Counterterrorism
and Open Source Intelligence (to appear). Springer, 2010.

[154] Paulo Shakarian, John Dickerson, and V.S. Subrahmanian. Adversarial geosp-
taial abudction. (submitted), 2011.

[155] Paulo Shakarian, Austin Parker, Gerardo Simari, and V.S. Subramanian. An-
notated probabilstic temporal logic. ACM Transactions on Computational
Logic, 12(2), 2011.

[156] Paulo Shakarian, Gerardo Simari, and V.S. Subramanian. Annotated proba-
bilistic temporal logic: Approximate �xpoint implementation. ACM Transac-
tions on Computational Logic (accepted), 2011.

[157] Paulo Shakarian, V.S. Subrahmanian, and Maria Luisa Sapino. SCARE: A
Case Study with Baghdad. InProceedings of the Third International Confer-
ence on Computational Cultural Dynamics. AAAI, 2009.

[158] Paulo Shakarian, V.S. Subrahmanian, and Maria Luisa Sapino. GAPs:
Geospatial Abduction Problems. ACM Transaction on Intelligent Systems
and Technology (accepted), 2010.

623

[159] Paulo Shakarian, V.S. Subrahmanian, and Maria Luisa Sapino. Using gen-
eralized annotated programs to solve social network optimization problems.
In Manuel Hermenegildo and Torsten Schaub, editors,Technical Communica-
tions of the 26th International Conference on Logic Programming, volume 7
of Leibniz International Proceedings in Informatics (LIPIcs), pages 182{191,
Dagstuhl, Germany, 2010. Schloss Dagstuhl{Leibniz-Zentrum fuer Informatik.

[160] M. Shanahan. Noise and the common sense informatic situation. In Proc.
AAAI96 , page 1098, 1996.

[161] David B. Shmoys, Eva Tardos, and Karen Aardal. Approximation algorithms
for facility location problems (extended abstract). InIn Proceedings of the
29th Annual ACM Symposium on Theory of Computing, pages 265{274, 1998.

[162] V. Sood, Tibor Antal, and S. Redner. Voter models on heterogeneous net-
works. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics),
77(4):041121, 2008.

[163] R.K. Srihari. Automatic indexing and content-based retrieval of captioned
images.Computer, 28(9):49 {56, September 1995.

[164] John F. Stollsteimer. A Working Model for Plant Numbers and Locations.
45(3):631{645, Aug. 1963.

[165] Bogdan Stroe and V. S. Subrahmanian. First order heterogeneous agent com-
putations. In AAMAS '03: Proceedings of the second international joint con-
ference on Autonomous agents and multiagent systems, pages 217{224, New
York, NY, USA, 2003. ACM.

[166] V. S. Subrahmanian and Diego Reforgiato Recupero. AVA: Adjective-Verb-
Adverb Combinations for Sentiment Analysis. IEEE Intelligent Systems,
23(4):43, 2008.

[167] Eric Sun, Itamar Rosenn, Cameron Marlow, and Thomas Lento. Gesundheit$
modeling contagion through facebook news feed. InProceedings of the Third
International Conference on Weblogs and Social Media, San Jose, CA, May
2009. AAAI Press, AAAI Press.

[168] K. Thirunarayan and M. Kifer. A theory of nonmonotonicinheritance based
on annotated logic.Arti�cial Intelligence , 60(1):23{50, 1993.

[169] S. Rebecca Thomas. The placa agent programming language. In ECAI-94:
Proceedings of the workshop on agent theories, architectures, and languages on
Intelligent agents, pages 355{370, New York, NY, USA, 1995. Springer-Verlag
New York, Inc.

[170] US Army.Intelligence Preparation of the Battle�led (US Army Field Manual),
FM 34-130 edition, 1994.

624

[171] US Army. Counterinsurgency (US Army Field Manual), FM 3-24 edition,
2006.

[172] Pascal Van Hentenryck. Constraint logic programming.The Knowledge En-
gineering Review, 6(03):151{194, 2009.

[173] Moshe Y. Vardi. Automatic veri�cation of probabilistic concurrent �nite state
programs. Symp. on Foundations of Comp. Sci., 0:327{338, 1985.

[174] Vijay V. Vazirani. Approximation Algorithms. Springer, March 2004.

[175] J. Venneksn, S. Verbaeten, and M. Bruynooghe. Logic programs with anno-
tated disjunctions. In Proc. Intl. Conf. on Logic Programming, pages 431{445.
Springer Lecture Notes in Computer Science Vol. 3132, 2004.

[176] Kiri Wagsta�, Claire Cardie, Seth Rogers, and Stefan Schr•odl. Constrained
k-means clustering with background knowledge. InICML '01: Proceedings of
the Eighteenth International Conference on Machine Learning, pages 577{584,
San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[177] D.J. Watts and J. Peretti. Viral marketing for the real world. Harvard Business
Review, May 2007.

[178] Duncan J. Watts. Networks, dynamics, and the small-world phenomenon.The
American Journal of Sociology, 105(2):493{527, 1999.

[179] Y. Weiss and E.H. Adelson. A uni�ed mixture framework formotion segmen-
tation: incorporating spatial coherence and estimating the number of models.
In Computer Vision and Pattern Recognition, 1996. Proceedings CVPR '96,
1996 IEEE Computer Society Conference on, pages 321 {326, June 1996.

[180] WEKA. WEKA 3 Data Mining, http://www.cs.waikato.ac.nz/ ml/weka/.
2009.

[181] Jonathan Wilkenfeld, Victor Asal, Carter Johnson, Amy Pate,and Mary
Michael. The use of violence by ethnopolitical organizations in the middle
east. Technical report, National Consortium for the Study of Terrorism and
Responses to Terrorism, February 2007.

625

