ABSTRACT

Title of dissertation: SPATIO-TEMPORAL REASONING
ABOUT AGENT BEHAVIOR

Paulo Shakarian, Doctor of Philosophy, 2011

Dissertation directed by: Professor V.S. Subrahmanian
Department of Computer Science

There are many applications where we wish to reason about sgatemporal
aspects of an agent's behavior. This dissertation examingsveral facets of this type
of reasoning.

First, given a model of past agent behavior, we wish to reasoh@ut the proba-
bility that an agent takes a given action at a certain time. Pevious work combining
temporal and probabilistic reasoning has made either indepdence or Markov as-
sumptions. This work introduces Annotated Probabilistic Tenporal (APT) logic
which makes neither assumption. Statements in APT logic corssiof rules of the
form \Formula G becomes true with a probability [L,U] within T time units after
formula F becomes true" and can be written by experts or extcied automatically
from historical data. In this dissertation, we explore the pblem of entailment,
speci cally what is the probability that an agent performs agiven action at a cer-
tain time based on a set of such rules. We show this problem tee lkoNP-hard
(in the complexity class coNP under some natural assumptionand present several

sets of linear constraints for solving this problem exactlywe then develop a sound,

but incomplete xpoint operator as a heuristic for such quees. This approach was
implemented and tested on 23 di erent models automaticallgenerated from several
datasets. The operator quickly converged to produce tightrpbability bounds for
the queries.

Second, agent behavior often results in \observations" ategspatial locations
that imply the existence of other, unobserved, locations werish to nd (\part-
ners"). In this dissertation, we formalize this notion with\geospatial abduction
problems” (GAPs). GAPs try to infer a set of partner locations ér a set of observa-
tions and a model representing the relationship between olpgations and partners
for a given agent. This dissertation presents exact and apgpimate algorithms for
solving GAPs as well as an implemented software package fodaessing these prob-
lems called SCARE (the Spatio-Cultural Abductive Reasoning igine). We tested
SCARE on counter-insurgency data from Iraq, attempting to lod® enemy weapons
caches (partners) based on attacks (observations). On amge, SCARE was able
to locate weapons caches within 690 meters of actual sites. diibnally, we have
considered a variant of the problem where the agent wishes abduce regions that
contain partner points. This problem is also NP-hard. To addsss this issue, we
develop and implement a greedy approximation algorithm thatnds small regions
which contain partner points - on average containing 4 timeas many partners as
the overall area.

We then provide an adversarial extension to GAPs as followsivgn a xed set
of observations, if an adversary has probabilistic knowlgé of how an agent were to

nd a corresponding set of partners, he would place the paréms in locations that

minimize the expected number of partners found by the agentn la complementary
problem, the agent has probabilistic knowledge of how an aehgary locates his part-
ners and wishes to maximize the expected number partners fal We show that
both of these problems are NP-hard and design schemes to ndpapximate solu-
tions - often with theoretical guarantees. With our implemetation, we demonstrate
that these algorithms often obtain excellent solutions.

We also introduce a class of problems called geospatial opization problems
(GOPs). Here the agent has a set of actions that modify attriktes of a geospa-
tial region and he wishes to select a limited number of suchtams (with respect
to some budget) in a manner that either causes some goal to lred (goal-based
GOPs) and/or maximizes a bene t function (bene t-maximizing GOPs). Addition-
ally, there are certain combinations of actions that cannobe combined. We show
NP-hardness (membership in NP under reasonable assumptiors)well as provide
limits of approximation for these problems. We then developets of integer con-
straints that provide an exact solution and provide an appraxnation algorithm with
a guarantee.

While we look to optimize certain geospatial properties in GBs, we note
that for some real-world applications, such as epidemiolggthere is an underlying
di usion process that also a ect geospatial proprieties. Assning the structure of
a social network - a directed graph with weighted and labeledertices and edges
- we study optimization with respect to such di usion proceses in social network
optimization problems (SNOPs). We show that many well-knownaxial network

di usion process can be embedded into generalized annotdterograms [86]. Hence,

a SNOP query seeks to nd a set of vertices, that if given someitial property,
optimize an aggregate with respect to such a di usion procesWe show this class
of problems is also NP-hard (NP-complete under certain assunis). We develop
a greedy heuristic that obtains an approximation guarantetor a large class of such
gueries. We implemented this algorithm and evaluated it on eeal-world data-set

consisting of a graph of 103,000 edges.

SPATIO-TERMPORAL REASONING
ABOUT AGENT BEHAVIOR

by

Paulo Shakarian

Dissertation submitted to the Faculty of the Graduate Schoobf the
University of Maryland, College Park in partial ful liment
of the requirements for the degree of
Doctor of Philosophy
2011

Advisory Committee:

Professor V.S. Subrahmanian, Chair/Advisor
Professor Stuart S. Antman, Dean's Representative
Professor Samir Khuller

Professor Dana Nau

Professor James A. Reggia

Dedication

To my son, Carter.

Acknowledgments

Above all, | would like to thank my wife, Jana, for her love and undrstanding
throughout my graduate experience. | do not think | could ha done this without

her constant support.

| would like to thank my advisor, Prof. V.S. Subrahmanian, whoiasce 2007,

has mentored and guided me throughout this entire process.

| would also like to thank my committee, Prof. Dana Nau, Prof. Sair Khuller,

Prof. James Reggia, and Prof. Stuart Antman who have also beeupportive.

Additionally, | would like to thank the following people who hae all con-
tributed to my success in graduate school (in no particularrder): Gerardo Simari,
Dan LaRocque, Austin Parker, Patrick Roos, John Dickerson, ®e Stoker, Prof.

Maria Luisa Sapino, and Matthias Broecheler.

Finally, I would like to thank the U.S. Army Advanced Civil Schoolng (ACS)
program and the U.S. Military Academy (USMA/West Point) instructor's program
(Department of Electrical Engineering and Computer Scierc- EECS) for funding
my Ph.D. studies at the University of Maryland. In particular, COL Eugene Ressler,

who made it possible for me to earn the degree.

Contents

List of Abbreviations XiX
1 Introduction 1
1.1 Temporal Reasoning about an Agent's Actions 1
1.2 Inferring Geospatial Aspects of an Agents Behavior 2
1.3 Geospatial Abduction under Adversarial Conditions 4
1.4 Optimal Selection of Agent Actions 4
1.5 Applications 6
1.6 Summary of Major Contributions 8
1.7 Related Work 11
2 Annotated Probabilistic Temporal Logic: Sound and Complete Al-
gorithms for Reasoning 15
2.1 Chapter Introduction 16
2.2 APT-Logic Programs 26
221 Syntax e e e e 26
2.2.2 Semantics oAPT-logic programs 29
2.2.3 Frequency Functions 32
2.2.4 Satisfaction of Rules and Programs 83
2.3 CONnSIStENCY e 42
2.3.1 Complexity of Consistency Checking 24
2.3.2 Linear Constraints for Consistency Checking 47
2.3.3 World Equivalence 51
2.3.4 Frequency Equivalence 59
2.3.5 Combining World and Frequency Equivalence | 67
2.4 Entailment by APT-logic programs 70
2.4.1 Linear Constraints for Entailment 72
2.5 Applications of APT Logic 74
2.6 Chapter 2 Related Work 77
2.6.1 Markov Decision Processes 79
2.6.2 Comparison with Probabilistic Computation Tree Logi (PCTL) 89
2.7 Chapter Summary i e 91

3 Annotated Probabilistic Temporal Logic: Approximate Algorithms 9 4

3.1 Chapter Introduction 95
3.2 Technical Background 101
321 Syntax e 101
3.22 SemantiCs 104
3.3 Complexity 109
3.4 A Sound but Incomplete Fixpoint-Computation Algorithm: The Ground
Case 112
3.4.1 Bounding Frequency Function Values 1B
3.4.2 Theorems for Syntactic Manipulation 116
3.4.3 The Fixpoint-Based Heuristic 120
3.4.4 Using ! for Consistency Checking 127
3.5 Consistency and Entailment Algorithms for Non-Ground Prgrams . 130
3.5.1 Consistency Checking for Non-Ground Programs 131
3.5.2 Entailment for the Non-Ground Case 136
3.6 Experimental Results 1B
3.6.1 Experimental Setup. 140
3.6.2 RunTime Evaluation. 142
3.7 Chapter 3 Related Work 149
3.7.1 Work in Vericationand PRISM 150
3.8 Chapter Summary 153
4 Geospatial Abduction 156
4.1 Chapter Introduction 1%
4.1.1 Geospatial Abduction Problem GAP) De nition 159
4.2 Complexity of GAPProblems 166
4.3 Exact Algorithm for GAPProblems 169
4.3.1 Naive Exact Algorithm 169
4.3.2 An Exact Set-Cover Based Approach 171
4.3.3 An Exact Dominating Set Based Approach 174
4.3.4 An Exact Integer Linear Programming based Approach . . .177
4.4 Greedy Heuristics foilGAPProblems 182
4.4.1 A Linear Time Greedy Approximation Scheme 78
4.4.2 Greedy Observation Selection 186
4.5 Implementation and Experiments 191
45.1 A Simple Heuristic to Improve Accuracy 197
4.6 Chapter4 Related Work, 200
4.7 Chapter Summary 207
5 Abducing Regions 210
5.1 Chapter Introduction 20
5.2 Technical Preliminaries 211
5.3 Complexity e 221
5.4 Algorithms. e 223
5.4.1 Exact and Approximate Solutions by Reduction 224

7

5.4.2 Approximation for a SpecialCase 230

5.4.3 Practical Considerations for Implementation 234
55 ExperimentalResults L. B
5.5.1 Experimental Set-Up 239
552 RunningTime. 242
5.5.3 Areaof Returned Regions 244
5.5.4 Regions that Contain Caches 246
555 PartnerDensity e 251
5.6 Chapter 5 Related Work 255
5.7 Chapter Summary 256
Adversarial Geospatial Abduction 257
6.1 Chapter Introduction 25
6.2 Overview of GAPS 260
6.3 Geospatial Abduction as a Two-Player Game 262
6.3.1 Incorporating Mixed Strategies 267
6.4 Selecting a Strategy for the Adversary 269
6.4.1 The Complexity of Finding an Optimal Adversarial Stratgy . 271
6.4.2 Pre-Processing and Naive Approach 273
6.4.3 Mixed Integer Linear Programs for OAS undewrf ;crf ;frf . 275
6.4.4 Correctly Reducing the Number of Variables foecrf 279
6.5 Finding a Counter-Adversary Strategy 288
6.5.1 The Complexity of Finding a Maximal Counter-Adversary
Strategy 290

6.5.2 MCA in the General Case: Exact and Approximate Algorithrs292
6.5.3 Finding a Maximal Counter-Adversary Strategy, the Mono

tonicCase 295
6.6 Implementation and Experiments 299
6.6.1 OAS Implementation 300
6.6.2 MCA Implementation 305
6.7 Chapter 6 Related Work 311
6.8 Chapter Summary e 312
Geospatial Optimization 315
7.1 Chapter Introduction 35
7.2 GOPs Formalized 317
7.3 Complexity Results 322
7.4 Integer Programs for Solving GOPs 25
7.5 Correct Variable Reduction for GBGOP-IP 328
7.6 TheBMGOP-Computélgorithm 330
7.7 Chapter 7 Related Work 335
7.8 Chapter Summary 336

Vi

8 Social Network Optimization Problems

8.1 Chapter Introduction 38
8.2 Technical Preliminaries, 341
8.2.1 Social Networks Formalized 342
8.2.2 Generalized Annotated Programs: ARecap B84
8.3 Social Network Optimization (SNOP) Queries 348
8.3.1 Basic SNOP Queries 348
8.3.2 Special Cases of SNOP Queries 351
8.3.3 Propertiesof SNOPs 356
8.3.4 The Complexity of SNOP Queries 361
8.3.5 Counting Complexity of SNOP-Queries 36
8.3.6 The SNOP-ALL Problem 364
8.4 Applying SNOPs to Real Diusion Problems 86
8.4.1 Tipping Diusion Models 367
8.4.2 Cascading DiusionModels 371
8.4.3 Homophilic Diusion Models 377
8.5 Algorithms. 379
8.5.1 Naive Algorithm 380
8.5.2 A Non-Ground Algorithm in the Monotonic Case 380
8.5.3 Approximation Algorithms: GREEDY-SNOP 386
8.6 Scaling GREEDY-SNOP 391
8.7 Implementation and Experiments 409
8.7.1 Experimental Setting, 409
8.7.2 ExperimentalResults, 412
8.8 Chapter 8 Related Work 415
8.8.1 Related Work in Logic Programming 415
8.8.2 Work in Social Networks 417
8.9 Chapter Summary 418
9 Future Work 421
10 Conclusion 425
A Appendix for Chapter 2 429
Al Additional Results 429
A.1.1 Frequency Equivalence under the PCD Restriction. 429
A.1.2 The ALC-ENT Algorithm for Entailment 434
A.1.3 An Example Comparing PCTL toAPT-rules 436
A2 Proofs e 440
A.2.1 Proof of Lemmas 2.12and 2.14 440
A.2.2 Proof ofpfr Property 5., 441
A.2.3 Proof of Proposition 2.15 441
A.2.4 Proof of Proposition 2.17 444
A25 ProofofLemma2.19 445
A.2.6 Proof of Theorem?2.20 445

Vil

A.2.7 Proofof Lemma3.1. 446

A.2.8 Proofof Theorem3.2 447
A.29 ProofofLemma3.3. 449
A.2.10 Proof of Theorem 3.4 450
A.2.11 Proofof Lemma 3.6. 451
A.2.12 Proof of Theorem 3.7 452
A.2.13 Proof of Proposition 3.9 454
A.2.14 Proofof Lemma 3.13 454
A.2.15 Proof of Proposition 3.15., 455
A.2.16 Proof of Theorem 3.17 456
A.2.17 Proof of Proposition 3.19 456
A.2.18 Proof of Theorem 3.21 457
A.2.19 Proof of Proposition 3.23 458
A.2.20 Proof of Theorem58 459
A.2.21 Proofof Corollary 15 459
A.2.22 Proof of Corollary 16 461
A.2.23 Proof of Proposition 3.25 463
A.2.24 Proof of Theorem 4.2 464
A.2.25 Proof of Proposition 4.3, 465
A.2.26 Proof of Proposition 81 466
A.2.27 Proof of Theorem 6.5 467
A.2.28 Proof of Corollary 6.6 467
B Appendix for Chapter 3 470
B.1 Complexity Proofs (Section 3.3) 470
B.1.1 Small-Model Lemma forAPT-Logic 470
B.1.2 Proofof Theorem10 471
B.1.3 Proof of Theorem 11 472
B.1.4 Proofof Theorem12 472
B.2 Supplementary Information for Section 3.4 476
B.2.1 Proof of Proposition 3.4.1 476
B.2.2 Proof of Proposition 14 476
B.2.3 Proofof Theorem8 476
B.2.4 Proofof Theorem 13 a77
B.2.5 ProofofCorollary2 480
B.2.6 Proofof Theorem14 480
B.2.7 Proof of Propositon15. 482
B.2.8 Proof of Proposition 16 483
B.2.9 Proof of Proposition 17 483
B.2.10 Proof of Proposition 18 484
B.2.11 Proofof Lemma 9. 484
B.2.12 Proof of Lemma 10 485
B.2.13 Proof of Lemma 11 486
B.2.14 Proof of Theorem 15 486
B.2.15 Proof of Lemma 12 486

B.2.16 Proof of Theorem 4 487

B.2.17 Proof of Proposition 19 487
B.2.18 Proof of Proposition 20 488
B.2.19 Proof of Propositon 21 489
B.2.20 Proof of Proposition 22 489
B.3 Proofs for Section3.5 48
B.3.1 Proofof Lemmal13 489
B.3.2 Proofof Theorem 16 490
B.3.3 Proofof Corollary5 492
B.3.4 Proof of Proposition 23 492
B.3.5 Proof of Proposition24 492
B.3.6 Proofof Lemmal4 493
B.3.7 ProofofLemmal5 493
B.3.8 Proof of Theorem 17 493
B.3.9 ProofofLemmal6 494
B.3.10 Proof of Theorem 18 494
B.4 Supplemental Information for Section 3.6 497
B.4.1 Proof of Proposition25. 497
B.4.2 Proof of Proposition26 497
B.4.3 Proof of Proposition 27 498
B.4.4 Proof of Proposition28 498
C Appendix for Chapter 4 499
C.1 Proofs e 499
C.1.1 Proofof Theorem19 499
C.1.2 ProofofCorollary 6 502
C.1.3 ProofofCorollary 7, 503
C.1.4 Proof of Theroem?20 503
C.1.5 Proof of Proposition29 505
C.1.6 Proof of Proposition 30 506
C.1.7 Proof of Theorem21 507
C.1.8 Proof of Proposition 31 508
C.1.9 Proof of Proposition 32 508
C.1.10 Proof of Proposition 33 509
C.1.11 Proof of Theorem22 509
C.1.12 Proof of Proposition 34 510
C.1.13 Proof of Proposition 35 511
C.1.14 Proof of Proposition 36 512
C.1.15 Proof of Proposition 37 512
C.1.16 Proof of Proposition 38, 513
C.1.17 Proof of Proposition 39 513
C.1.18 Proof of Proposition 40 516
C.1.19 Proof of Theorem 23 516
C.1.20 Proof of Proposition 41 518

D Appendix for Chapter 5 519

D.1 Proofs 519
D.1.1 ProofofLemmal7 519
D.1.2 Proof of Theorem?24 520
D.1.3 Proofof Theorem?25 521
D.1.4 ProofofCorollary8 522
D.1.5 ProofofCorollary9 523
D.1.6 Proof of Theorem26 523
D.1.7 Proof of Proposition 42 524
D.1.8 Proof of Proposition 43 524
D.1.9 Proof of Proposition 44 525
D.1.10 Proof of Proposition 45 525
D.1.11 Proof of Proposition 10 528
D.1.12 Proof of Proposition 46 528
D.1.13 Proof of Proposition 11 529
D.1.14 Proof of Proposition 48 529

E Appendix for Chapter 6 530

E.1 MCA where the Solution is an Explanation 530

E.2 Proofs 534
E.21 ProofofLemma 19 534
E.2.2 Proof of Theorem 27 536
E.2.3 Proof of Proposition 49 536
E.2.4 Proof of Proposition50 537
E.2.5 Proof of Proposition51 537
E.2.6 Proof of Proposition52 538
E.2.7 Proof of Proposition53 540
E.2.8 Proofof Theorem28 541
E.2.9 Proof of Theorem29 543
E.2.10 Proof of Theorem 30 543
E.2.11 Proof of Proposition 55 544
E.2.12 Proof of Proposition56 544
E.2.13 Proof of Proposition 54, . 544
E.2.14 Proof of Proposition 57 545
E.2.15 Proof of Proposition 58 546
E.2.16 Proof of Porposition 59 L. 546
E.2.17 Proof of Theorem 31 547
E.2.18 Proof of Theorem 32 548
E.2.19 Proofof Lemma 20, 549
E.2.20 Proofof Lemma 21 549
E.2.21 Proof of Proposition 60 550
E.2.22 Proof of Proposition 61 551
E.2.23 Proof of Theorem 33 551
E.2.24 Alternate Proof of Theorem33 553
E.2.25 Proof of Theorem 34 555

E.2.26 Proof of Theorem 35 556
E.2.27 Proof of Theoerm 36 556
E.2.28 Proof of Proposition 62 557
E.2.29 Proof of Proposition 63 557
E.2.30 Proof of Corollary 12 557
E.2.31 Proof of Proposition 64 558
E.2.32 Proofof Corollary 13 558
E.2.33 Proof of Theoerem 37 559
E.2.34 Proofof Corollary 18, 562
E.2.35 Proof of Theorem 60 562
F Appendix for Chapter 7 565
F.1 Proofs e 565
F.1.1 Proof of Theorem38 565
F.1.2 Proofof Theorem39 567
F.1.3 Proof of Theorem40 569
F.1.4 Proof of Theorem41 569
F.1.5 Proof of Theorem42 570
F.1.6 Proof of Theorem43 570
F.1.7 Proof of Theorem44 571
F.1.8 Proof of Theorem45 573
F.1.9 ProofofLemma22, 573
F.1.10 Proof of Proposition66 574
G Appendix for Chapter 8 575
G.1 Proofsfor Section 8.3 Y4
G.1.1 Proof of Proposition 70 575
G.1.2 Proof of Proposition 71 575
G.1.3 Proofof Lemma 23 576
G.1.4 ProofofLemma24 576
G.1.5 Proof of Theorem47 577
G.1.6 Proofof Theoremd48 582
G.1.7 Proof of Theorem49 586
G.1.8 Proof of Theorem50 589
G.1.9 Proof of Theorem51 589
G.1.10 Proof of Theorem 52 595
G.1.11 Proof of Theorem 53 596
G.2 ProofsforSection85o B9
G.2.1 Proof of Proposition 72 598
G.2.2 Proof of Theorem54 599
G.2.3 Proof of Proposition 73 L 600
G.2.4 Proof of Theorem55 600
G.2.5 Proof of Proposition74 601
G.2.6 ProofofLemma25 603
G.2.7 ProofofLemma26 603

Xi

G.2.8 Proof of Proposition 75 oL 604

G.2.9 Proof of Proposition 76 604
G.2.10 Proof of Corollary 14 604
G.2.11 Proof of Proposition 77o 605
G.2.12 Proof of Theorem 57 605
G.2.13 Proof of Proposition 78 606
G.2.14 Proof of Proposition 79 606
G.2.15 Algorithm for Finding Disjoint Node Sets. 069

G.2.16 Proof of Proposition 80 609

xii

List of Tables

2.1
2.2
2.3

3.1

3.2

4.1

4.2
4.3
4.4
4.5
4.6

5.1
6.1

8.1
8.2
8.3
8.4
8.5
8.6
8.7

Cl

Summary of APT Complexity Results 20
Comparison of Linear Constraints for APT Consistency Cloking . . 25
Comparison of Linear Constraints for APT Entailment Cheking . . . 25
APT-logic programs used in the run time evaluations. Programs;

K.z are based onthe ISW data-set. 144
APT-logic programs used in the run time evaluations. The prognas

in this table are based on the MAROB data-set. <!
key values and related observations for observations in the suedr
scenario introduced in Example 4.1.3. 189
k-SEP Algorithm Results - Solution Size 194
k-SEP Algorithm Results - Distances to Actual Cache Sites 195
k-SEP Algorithm Performance Results 197
The Tie-Breaker heuristic onGREEDY-KSEP-OPT2 Solution Size . . 199
The Tie-Breaker heuristic onGREEDY-KSEP-OPT2 Distances to
Actual Cache Sites 199
Locations and dimensions of areas considered 241
The setL partitioned by const and supported observations. 285
Special cases of SNOP queries 235
Properties that can be proven given certain assumptions 357
How the various properties are leveraged in the Algorithms... . . . 357
Comparison between straightforward and linear Jacksorariv Models 372
First iteration of the greedy algorithm. 389
Incremental Increases for Both Iterations o 6REEDY-SNOP. 390
Calculatingincy™ (Vs). o 396
Quantities for the Greedy-Approach in theDomSet reduction. . . . 511

Xiii

List of Figures

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.1
3.2

Kstock, @ toy APT-Logic Program modeling the behavior to reactions

of stock-related news feeds. As all of these rules are consteal, this

is a constrained program. The English translation of each relis also
provided. 21
A real-world set of rules extracted by APT-Extract from the Hezbol-

lah dataset. The atoms in the rules are represented as a vdiia and

its value. A plain English explanation of each rule is also pvided. . 22
Kiuain @ toy APT-Logic Program modeling rail transit. Items 1-3

are APT-Rules while items 4-5 are annotated formulas. The English
translation of each rule is also provided. 23
Koower @ toy APT-Logic Program modeling a power grid. Items 1-4

are APT-Rules, while item 5 is an annotated formula. The English

translation of each rule is also provided. 24
Example thread for the train scenario from Figure 2.3, wihe only
onetrainispresent. 31
Example thread,Th with worlds Th(1);:::;Th(8). This gure shows

each world that satis es formulaF or formulaG. 33

For a set of atoms consisting afcandgland t,,x of 3 time points, the
above chart shows thefr for all possible threads based on a program

consisting only of rulescandal Tfr: scandal: [1;0:89;0:93 0:8; 1.0]
from Figure 2.1. Figure 2.8 groups these threads in frequenoyuév-
alenceclassesbased @fr. 60

For a program consisting only of rulecandaﬁm: scandat [1;0:89; 0:93 0:8; 1.0]
from Figure 2.1, we have frequency equivalence clas¢esand E,
based on thepfr for all possible threads seen in Figure 2.7. 61
Left: Unrolled MDP in an attempt to create an MDP that satises in-
terpretation | in the text. Notice how the sequencéfag;fg;fag;fagi
must be assigned a non-zero probability. Right: A standardepre-
sentation of the MDP on the left. Notice that the MDP must allow
for non-zero probability of threads that are given a zero prability

ininterpretation 1. 88
Kstock, @ toy APT-Logic Program about stocks. 98
Kisw a real-world APT-Logic Program extracted from counterinsur-

gency data. 99

Xiv

3.3

3.4

3.5

3.6

3.7

4.1

4.2

4.3

4.4

4.5

4.6

5.1

Kmaros @ real-world APT-Logic Program extracted from Minorities

at Risk Organizational Behaviordata. 10
Kuain » @ toy APT-Logic Program modeling rail transit. Items 1-2

are non-groundAPT-Rules, the formulas in 3 are probabilistic tem-
poral formulas, and items 4-5 are annotated formulas. The Eligh
translation of each rule is also provided. 105
Number of ground rules vs. run time (Left: ISW, Right: MAROB)

Note these run-times include the full computation of the xedpoint

oftheloperator. 143
Number of ground rules vs. run time for entailment checkan(Left:
ISW, Right: MAROB). e 146
Attributes of ptf's entailed by the dierent logic programs (ISW
dataset) 147

A space. Red dots denote observations. Yellow squaresatennfea-
sible locations. Green stars show one (0,3) explanation, Wehpink

triangles show another (0,3) explanation. 160
Left: Points f 0,; 0,; 0zg indicate locations of evidence of the Malayan
sun bear (we shall refer to these as s€&t). Points fp;; p.;:::;psgin-

dicate feasible dwellings for the bear. The concentric risgaround
each element o0 indicate the distance = 1:7km and = 3:7km.
Right: Pointsf p;; po; p:g are feasible for crime-scené®,; 0,9. f p;; p2g
are safe-houses within a distance of;[2] km. from crime scen®, and
fp2; p3g are safe-houses within a distance of;[2] km. from crime

Results olKSEP-TO-DOMSETbhased on data seen in Figure 4.2 (right).
Note that fps; p2; p%; p3g form a complete graph andf p,; ps; p29 p3g

also form a complete graph. Note thaf p,g is a dominating set of

size 1. Hencefp,g is a 1-sized simple () explanation for O, as
depicted in Figure 4.2 (right). 176
Left: GREEDY-KSEP-OPTXhccesses the list pointed to by [p]

thus considering all observations available tp;. Right: GREEDY-
KSEP-OPT1laccesses the list pointed to by [p,] and nds it has

more active observations than it found in the list pointed tdby M [p;]. 184
GREEDY-KSEP-OPT(tonsiders the observations available ;. The

X's on 0; and o, signify that OBJo;] and OBJo,] are set toFALSE . 185
Left: GREEDY-KESP-OPTZonsiders all observations that can be
partnered with p,. Notice that in this gure by each observation we
show a box that represents the key of the observation in the Famacci

heap. Right: GREEDY-KSEP-OPT2emoveso, from the heap, and
iterates through the elements inRELOB{o,], causing it to decrease
thekeyofo,. 190

Locations of illegal drug sales and suspected support 28fir5; rp; I'c; Fa; Fe; It ; IO

The distance for each observation is shown with a dashed circle.. 214

XV

5.2 SpaceS and theregionsinseRp. 218
5.3 A set of regions irS created based on the distance = 5km as well
as restricted areas (shown inblack). 221
5.4 Given the instance of I-REP-MCZ for Example 5.4.4 as inpuor
circle-covering, a circle-covering algorithm returns poia p;; p2; ps
(points are denoted with an \x", dashed circles are the areaf @km
fromthe point). 233
5.5 REGION-GENpplied to the paleontology example (Example 5.4.4).
First, it identi es observations associated with grid poins (top). It
then creates minimally-enclosing rectangles around pointsat sup-

port the same observations (bottom). 26
5.6 The run-time of GREEDY-MC2n ms compared with the number of
regions considered. e 244

5.7 A comparison between analytical(()(giz)) and experimental results

for the run-time of REGION-GENompared with grid spacing §). . . 245
5.8 Average areas for solutions provided BREGION-GENGREEDY-MC2

for Baghdad and Sadr City. 246
5.9 Results from two runs olGREEDY-MC2 g = 100m (top), g = 1000m

(bottom). Pinpoint-regions are denoted with plus-signs. Nce that

the average areas of the results are comparable. 247
5.10 Average caches enclosed per region for Baghdad and Saity or
various grid-spacing settings. L L. 248

5.11 The output of GREEDY-MCZor Baghdad with g = 100m compared
with the locations of actual cache sites (denoted with a \C") Notice
that regions A-E do not contain any cache sites while regions-IGll

contain numerous cache sites. L. 249
5.12 Regions in the output that enclose at least one partnecgche) and

total number of regions returned for Baghdad and Sadr City. 250
5.13 Distance to nearest cache vs. grid spacing. 251

5.14 Cache density of outputs produced b REEDY-MC2or Baghdad and
Sadr City compared with overall cache density and linear-geession
analysis. 252
5.15 Close-up of region F from Figure 5.11. While region F coma 1
cache, there are 4 other caches 250n from the boundary of that
region. The area-quadrupling metric helps us account for&uscenarios.253
5.16 Area quadrupled cache density of output produced lyREEDY-MC2

with linear-regression analysis. 254
6.1 Map of poppy elds for Example 6.2.1. For each labeled puip;, the

\p" is omitted for readibility. o L. 261
6.2 Dashed circles encompass all feasible points within 10@ters from

explanationf pso; Pasg. - - - . o 265

6.3 SetL of all possible partners for our drug laboratory location eemple.274

XVi

6.4

6.5

6.6

6.7

6.8

6.9

7.1
7.2

8.1
8.2
8.3
8.4
8.5
8.6
8.7

8.8

The size of the reduced partner sét (left) and the time required to
compute this reduction (right). Regardless of parameters oken, we

see a 9%% decrease in possible partners|as well as integer variads

in our linear program|in under 3 minutes. 302
Expected detriment of the optimal adversarial strategyl¢ft, lower

is better) and the runtime of the integer linear program requed

to produce this strategy in milliseconds (right). Note the smoth
decrease toward zero detriment ak increases, corresponding with a
near-linear increase in total runtime. 304
The average size of the strategy recommended INCA-LSdecreases

as the distance cuto increases. For these experiments, themrhum
cardinality for a given explanationE considered isexfdwas 14, which
gives us a natural lower bound on the expected size of a stragyeg
Note the convergence to this bound at cuto distances at and alve

300 meters. 307
The runtime of MCA-LS decreases as the penalizing cuto distance

is relaxed. Note the relation to Figure 6.6; intuitively, larg@r recom-
mended strategies tend to take longer to compute. 308
Expected benet of the strategy returned byMCA-GREEDY- MONO

as the budget increases, withexfd = 10 (left) and jexfd = 100
(right). Note the decrease in expected bene t due to the incese in
jexfd. Similarly, note the increase in expected benet given a lger

cuto distance. 309
Runtime of MCA-GREEDY-MONQ@s the budget increases, witfexfd =

10 (left) and jexfd = 100 (right). Note the increase in runtime due

to the extra determinism of a largerexfd 311
Locations in a district - contingency groups and unpopated areas. . 316
JICs,J VS. approximation ratio. 334
Example cellular network. o oL &3
Social Network for the painting company. 356
Social network corresponding with Example 8.5.1 conoerg disease
spread. 360

Social network of individuals sharing photographs. SHead vertices
are professional photographers. All edges are directiorsdlare edges. 370
Left: Sample network for disease spread. Right: annogat atoms
entailed after each application ofT . (maximum, non-zero anno-

tationsonly). 375
Search tree for Example 8.5.2. 83
E ect on overall approximation given an incremental appnamation
factor. 397
Left: spread graph after iteration 1. Right: spread grdpafter itera-
toN 2. . . . e 403

XVii

8.9 Top: Social Network for the painting company with vertex gread
shown as shaded ovals. Bottom: Spread gra;ﬂ?@l)(REMo) for the

painting company example. o0 407
8.10 Runtimes of GREEDY-SNOHRor di erent values of andk =5 in

both diusionmodels 412
8.11 Runtimes of GREEDY-SNOPFor di erent values of k and =0:2 in

both diusionmodels 413
8.12 Time per iteration of GREEDY-SNORor = 0:2 in both di usion

models 413

Xviii

List of Abbreviations

#P Sharp-P
alpha
beta
Al Arti cial Intelligence

ALC-ENT Entailment using Alternative Linear Constraints

APT Logic Annotated Probabilistic Temporal

ATS Associated Thread Subset

BMGOP Bene t-Maximizing Geospatial Optimization Problem
BMGOP-IP BMGOP Integer Program

crf Cuto Reward Function

CoNP Complement of Non-deterministic Polynomial Time
DomSet Dominating Set

efr Existential Frequency Function

exfd Explanation Function Distribution

FLOT Front Line of Trace

FPRAS Fully Polynomial Randomized Approximation Scheme
FPTAS Fully Polynomial Time Approximation Scheme

fr Frequency Function

frf Fall-o Reward Function

GAP Geospatial Abduction Problem (spatial chapters)

or Generalized Annotated Program (social network chapters)
GBGOP Goal-Based Geospatial Optimization Problem
GBGOP-IP GBGOP Integer Program

GCD Geometric Covering by Discs

GOP Geospatial Optimization Problem

HSD Honest Signi cant Di erence

In-#P Membership in the complexity class #P

In-coNP Membership in the complexity class coNP

In-NP Membership in the complexity class NP

IP Integer Program

IPB Intelligence Preparation of the Battle eld

I-REP Induced Region Explanation Problem

I-REP-MCZ I-REP Minimum Cardinality with a lower distance bound of zero
ISW Institute for the Understanding of War

JY Jackson-Yariv model

KEDS Kansas Event Data System

k-SEP k-sized Spatial Explanation Problem

Ifp Least Fixed-Point

LP Logic Program or Linear Program (context-dependent)
MAROB Minorities as Risk Database

MCA Maximal Counter-Adversary Strategy

MCA-Exp Maximal Counter-Adversary Strategy - Explaining

MC Minimal Cardinality

Xix

MCA-LS
MDP
ME
MILP
NAI

NP

OAS
PCD
PCTL
pdf

pfr

PITF
PRISM
PTIME
gfr

REP

rf

SAT

SC
SCARE
SEC
SEP
SLC
SLC-ENT
SNOP
SOMA
SPM

st
TD-SEP
tp

wrf

wrt
WT-SEP

Maximal Counter-Adversary Strategy - Local Search
Markov Decision Process

Maximum Explaining

Mixed Integer Linear Program

Named Area of Interest
Non-deterministic Polynomial Time
Optimal Adversarial Strategy
Pre-Condition Disjoint

Probabilistic Computational Tree Logic
Probability Distribution Function

Point Frequency Function

Political Instability Task Force
Probabilistic Symbolic Model Checker
Polynomial Time

Query Frequency Function

Region Explanation Problem

Reward Function

Satis ability

Set-Cover Problem

Spatio-Cultural Abductive Reasoning Engine
Securities Exchange C omission
Spatial Explanation Problem
Straightforward Linear Constraints
Entailment Using SLC

Social Network Optimization Problem
Stochastic Opponent Modeling Agents
Sequence Probability Measure

Such That

Total Distance Spatial Explanation Problem
Temporal-Probabilistic

Weighted Reward Function

With Respect To

Weighted Spatial Explanation Problem

XX

Chapter 1

Introduction

There are many applications where we wish to reason about sgatemporal
aspects of an agent's behavior. This dissertation examingsveral facets of this type

of reasoning.

1.1 Temporal Reasoning about an Agent's Ac-

tions

Given a model of past agent behavior, we wish to reason abounet probabil-
ity that an agent takes a given action at a certain time. Prewus work combining
temporal and probabilistic reasoning has made either indepdence or Markov as-
sumptions. This work introduces Annotated Probabilistic Tenporal (APT) logic
which makes neither assumption. Statements in APT logic corssiof rules of the
form \Formula G becomes true with a probability [L,U] within T time units after

formula F becomes true" and can be written by experts or extrded automatically

from historical data. A set of such statements is referred tas an APT logic pro-
gram. In Chapter 2, we introduce this framework and explorewto key problems:
consistency and entailment. The consistency problem for APTogic mirrors the
consistency problem of probabilistic logic introduced in [113. The complementary
problem of entailment can be used to determine the probabilitthat an agent per-
forms a given action at a certain time based on an APT program. ®&/study the
computational complexity of these two problems and determeénthat consistency
is NP-hard while entailment is coNP-hard. Under some natural assiptions, we
are also able to show a matching upper bound on the complexifgr both prob-
lems (membership in the class NP for consistency and coNP for aihnent). We
then introduce several sets of linear constraints for sohg this problem exactly.
In Chapter 3, we develop a sound, but incomplete xpoint opetor as a heuristic
for such queries. This operator runs in polynomial time in th size of the APT
logic program. This approach was implemented and tested o3 2li erent models
automatically generated from several datasets. The opemtquickly converged to

produce tight probability bounds for the queries.

1.2 Inferring Geospatial Aspects of an Agents Be-

havior

Some agent behavior often results in \observations" at geoatial locations

that imply the existence of other, unobserved, locations weish to nd (\part-

ners"). In Chapter 4, we formalize this notion with \geospaial abduction problems”
(GAPs). GAPs try to infer a set of partner locations for a set of bservations and a
model representing the relationship between observatioasid partners for a given
agent. We shall refer to a set of partner locations as an \exghation." Given a
set of observations and a model of the agent, nding an explation of a certain
size is NP-hard and in-NP under some reasonable assumptions. Yevide an
enumeration-based algorithm that can nd an explanation ofizek - if one exists
- as well as show reductions to several well-known combina#d problems - specif-
ically set-cover, dominating-set, and integer programm@ These reductions allow
us to leverage several known algorithms to nd explanationsf a cardinality within
a certain factor of the minimum. We then develop a new greedylgorithm that
achieves the same approximation ratio as the classic greedypeoach to set-cover
(see [136]) but allows a software designer to use one of a vigrigf heuristics which
do not a ect the guarantee. We implement and experimentallyevaluate several of
these heuristics in a software package called SCARE (the SaCultural Abduc-
tive Reasoning Engine). We tested SCARE on counter-insurgendata from Iraq,
attempting to locate enemy weapons caches (partners) based attacks (observa-
tions). On average, SCARE was able to locate weapons cachethimi 690 meters
of actual sites. We then present a variant of the problem in Gipter 5 where the
agent wishes to abduce regions that contain partner pointsThis problem is also
NP-hard (NP-complete under some natural assumptions). To adess this issue, we
develop and implement a greedy approximation algorithm thainds small regions
which contain partner points - on average containing 4 timeas many partners as

3

the overall area.

1.3 Geospatial Abduction under Adversarial Con-
ditions

In Chapter 6, we provide an adversarial extension to GAPs asllimvs: given
a xed set of observations, if an adversary has probabilistiknowledge of how an
agent were to nd a corresponding set of partners, he would pgla the partners in
locations that minimize the expected number of partners foud by the agent. In a
complementary problem, the agent has probabilistic knowdge of how an adversary
locates his partners and wishes to maximize the expected noien partners found.
We note that the manner in which the explanation of the adversyg is compared
to that of the agent can di er based on domain. As such, we axicatically de ne
a \reward function" and prove results for these two problemsvith respect to this
generalization. We show that these problems are both NP-hgrdnd in-NP under
some natural conditions. We also design schemes to nd apghmate solutions -
often with theoretical guarantees. With our implementation we demonstrate that

these algorithms often obtain excellent solutions.

1.4 Optimal Selection of Agent Actions

In Chapter 7, we introduce a class of problems called geosjabptimization

problems (GOPs). Here the agent has a set of actions that modigttributes of

a geospatial region and he wishes to select a limited numbdrsuch actions (with
respect to some budget) in a manner that either causes somelgm be true (goal-
based GOPs) and/or maximizes a bene t function (bene t-maknizing GOPSs). Ad-
ditionally, there are certain combinations of actions thatcannot be performed to-
gether. We show NP-hardness (membership in NP under reasorallssumptions)
as well as provide limits of approximation for these problesn We then develop sets
of integer constraints that provide an exact solution and mvide an approximation
algorithm with a guarantee.

While we look to optimize certain geospatial properties in GBs, we note that
for some real-world applications, such as some epidemiotadiphenomena, there
is an underlying di usion process that also a ect geospatiaproprieties. Assum-
ing the structure of a social network - a directed graph with wighted and labeled
vertices and edges - we study optimization with respect to sudi usion processes
in Chapter 8 where we introduce social network optimizatioproblems (SNOPS).
We show that many well-known social network di usion processan be embedded
into generalized annotated programs [86]. These di usion pcesses were previously
studied in a variety of di erent contexts including economis [150][73], epidemiol-
ogy [5][67], social media [20][167], and business [177]alBNOP query, we seek to
nd a set of vertices, that if given some initial property, opimize an aggregate with
respect to such a di usion process. We show this class of plelms is also NP-hard
(NP-complete under certain assumptions). We also leveragket results of [46] to
provide a limit of the ability to approximate an optimal solution to such problems.

For a large class of such queries, we then develop an greedyoathm that provides

5

the best possible approximation guarantee unless P=NP as Wwak techniques for
scaling it. We implemented this algorithm and evaluated it o a real-world data-set

consisting of a graph of 103,000 edges.

1.5 Applications

The various frameworks for reasoning about an agent's behaw presented in
this dissertation are su ciently general to solve di cult pr oblems from a variety of
domains. Our discussion of APT logic in Chapters 2-3 includex@mples illustrating
how that framework can be used to reason about power-gridhe stock market,
and transportation services. Likewise, we provide examgl®f geospatial-abduction
and its adversarial extension of Chapters 4-6 applied to coter-drug, naturalist,
criminology, and paleontology domains. Finally, in Chaptey 7 and 8 where we look
to optimally select actions for an agent, we provide examgeelating to a political
campaign, disease-spread, and cell-phone usage.

In addition to the aforementioned problem domains, we notéhaait much of this
work can be used to improve military intelligence analysiof counter-insurgency
applications. Traditionally, military intelligence practices in the US Army rely on a
process known as \Intelligence Preparation of the Battle kel" [170]. In this process,
an intelligence analyst studies terrain and cultural facts along with the capabil-
ities of an adversary in order to predict the actions of an engy combatant on
the battle eld. Since the 9/11 attacks, this process has beemodi ed to handle

counter-terrorism and counter-insurgency situations aseit [171]. However, unlike

traditional military situations, these contemporary envionments are often more

complex for a variety of reasons. Consider the following reaorld problems:

1. In a counter-insurgency operation, enemy reconnaissanaf a target may not
always be indicative of a pending attack on said target (as in &aditional
military conict). Such activity may be designed to elicit a response from
local security forces (for evaluation) or to lull security fotes into a sense of

complacency.

2. Thereis no \front line" or \FLOT" as in a traditional battle eld. In a conven-
tional con ict, a combatant force conducts logistic operatins behind the front
line. By contrast, in a counter-insurgency situation, insugent forces manage
logistics through systems of caches used to store weaponsjramition, and

supplies to support their operations.

3. In a traditional military environment, the structure of a combatant is usually
well-de ned and hierarchical - this is the standard militay structure seen
throughout the militaries of the world. An insurgent force, ly contrast, is
often de-centralized and its structure can resemble a solareetwork which can
have a variety of di erent topologies. Such networks are aéh very survivable

- even if the leadership is killed or captured.

The above three aspects of a counter-insurgency can all be eeksed with the re-
search presented in this dissertation. For instance, APT log introduced in Chap-
ters 2-3 can be used to help determine the probability that aigen reconnaissance
event implies a pending attack. Using the abductive reasonirgf GAPs introduced

7

in Chapter 4, we have created software that has been shown te bseful in locating
enemy weapons cache sites. With SNOPs, introduced in Chapterv@e show that
annotated programs can be leveraged to nd which members ofsacial network
cause the spread of a certain phenomenon { this can allow anadyst to select
targets whose neutralization will have the greatest impaabn the insurgent forces.
Again, we would also like to point out that these three aspectd oounter-insurgency
are not the only problems that can be addressed with this remeh. There are many
other applications of this work { both civilian and military { that will be discussed

throughout this dissertation.

1.6 Summary of Major Contributions

Chapters 2-3

Introduced the framework of APT logic.

Identi ed the complexity class of consistency and entailnmé problems for APT

logic as NP-complete.

Introduced three sound and complete algorithms based on diar programming

for solving consistency and entailment problems for APT logi

Introduced a sound, but incomplete xed-point operator for @proximately solving

consistency and entailment problems for ground APT programs.

Introduced a sound, but incomplete algorithms for approximtely solving consis-
tency and entailment problems for non-ground APT programs wile avoiding a

8

full grounding of the program.

Implemented the ground xed-point operator and evaluatedtiusing a real-world

data set.

Chapters 4-6

Introduced a framework for studying geospatial abduction pblems GAPS).

Identi ed the complexity class of several geospatial abduicin problems.

Developed several exact and approximate approaches to safy GAPsbased on

reductions to known combinatorial problems.

Implemented a software package for solvingAPscalled SCARE (Spatio-Cultural
Abductive Reasoning Engine) and evaluated experimentalljyxewing it to be able

to locate weapons cache sites in Baghdad.

Created a variant of GAPswhere we look to abduce regions, proved this problem

to be NP-complete under some natural assumptions.

Developed and implemented an approximation algorithm to ahdte regions.

Extended GAPsto the case where partner locations are place adversarily deal
on probabilistic knowledge of the agent, as well as the conephentary problem.

Proved these problems to be NP-complete under natural assungts.

Developed approximation algorithms for the adversarial pblems - often with

guarantees. Showed viability of such algorithms with an inilementation.

Chapters 7-8

Introduced geospatial optimization problems, GOPs, in whitthe agent attempts
to optimally select a set of actions to cause some goal to ocamd/or maximize

some function of the resulting geospatial properties.

Proved two variants of GOPs to be NP-complete and establisheldeoretical limits

on approximation.

Developed integer constraints for GOPs as well as an apprmation algorithm

with a guarantee.

Introduced social network optimization problems, SNOPs, wdre we attempt to
optimize an agents selection of vertices with respect to aggregate of the result

of some di usion process.

Proved SNOPs to be NP-complete, explored the limits of approxiation and other

properties of these problems.

lllustrated how many known di usion processes can be embedtlento SNOPs.

Developed exact and approximate approaches to solving SNOF®r a large class

of SNOPs, our approximation algorithm attains the best guaraee unless P=NP.

Experimentally evaluated our approach to SNOPs on a real-widrdata-set.

10

1.7 Related Work

We now provide a brief overview of work related to this dissttion. Addition-
ally, in each chapter, we also provide a related work secti@da give a more in-depth
look at how speci ¢ contributions relate to other work.

APT logic, introduced in Chapters 2-3, is a logic-programmin framework
for reasoning about time and probability together without naking independence
assumptions. Perhaps the most well-known method to reasonalt time and prob-
ability together is the Markov Process [140] - a stochastiac@cess where states are
labeled with atomic propositions with a transition functionthat, given two states
S1; Sz, returns the probability that s; transitions to s,. A Markov Process assumes
what is known as the \Markov Property” which means that each tansition prob-
ability only depends on the current state, and no previous ate [146]. Hence, the
transition probability from state s; to s, is always the same, regardless of which
states precededs;. The Markov Property yields independence among transitian
For example, given functionp which returns a transition probability for any two
states, we know thatp(s;;s,) is independent ofp(s;;ss). Hence, with a Markov
Process starting in states;, we can calculate the probability of sequencs;s;; Ss
asp(si;s2) p(sz;ss). However, in many real-world scenarios, this may not be the
case. With APT logic, we can reason about the probability of evém that may
depend on previous or future events - as there are no independe assumptions
among di erent time points. Further, for a Markov Process wire each state has

a unique atomic label, we demonstrate that it is possible toreate an equivalent

11

APT program, while proving that the relationship in the opposte direction is not
possible!

Geospatial abduction, described in Chapters 4-6 uses a mbdean agent, as
well as observed geospatial phenomenon, to infer unobseryedrtner” locations {
a set of which is termed an explanation. Facility location [@1] is a related problem
where an agent searches for a subset of \supply points” in agple to service a set
of \demand points" in such a manner that optimizes a certain lojective function.
Most facility location problems reduce to an instance of comx geometric covering
- i.e. nd a small set of convex shapes centered on supply panthat cover all
demand points. Geospatial abduction problems, by contrasteduces to a geometric
problem where the shapes are irregular - i.e. they have nonifamm holes? The
irregular shape of the covers in geospatial abduction addsather layer of complexity
not inherent in a facility location problem. We note that this holds true for the
geospatial optimization problems introduced in Chapter 7sawell. To illustrate the
di culty of non-convex covering, [115] shows that for the ginple problem of covering
by uniformly non-convex shapes in just one dimension is NP-cpiete and does not
admit a fully-polynomial time approximation scheme (FPTAS).

Another problem that resembles geospatial abduction is thHemeans clustering

problem [116]. In this problem, sets of points on a plane areogiped into k disjoint

1We explore these relationships in detail in Chapter 2, Section 2.6.1 ongge 79.
2Note that this still holds true even for the case of region-based geospatial atuction (Chapter 5)

as the covers in such a problem are not the regions, but rather the set gfoints associated with

the region, based on the agent model.

12

sets such that the mean distance between any two points in avgn disjoint set is
minimized. Additionally, there is a constrained variant desribed in [176]. However,
this work merely groups points together, and does not make yannference with
regard to unobserved phenomenon based on an agent model. Bovery simple,
restricted agent model, one can naively apply a clustering @dthm as a heuristic
for a geospatial abduction problem by returning a central pot in each cluster as
a partner. However, this heuristic provides no approximatio guarantee and in our
tests, was outperformed by the algorithms introduced in thiglissertation.

Finally, our work on social network optimization problems (SN®s) intro-
duced in Chapter 8 seeks to nd a set of vertices in a social neirk that optimize
an aggregate function with respect to a di usion process. 8w simple approaches
to this type of problem use a degree-maximizing or centrajitmeasure to nd the
set of vertices. It is important to note that these measuresalnot consider any type
of di usion process - therefore cannot normally provide a guantee with respect to
optimality. For example, the work of [6] describes two di ugns processes and prove
that their optimality criteria is proportional to vertex de gree in the rst di usion
process, while inversely proportional to vertex degree imé second. Further, with
these approaches, it is unclear how they apply to graphs withuttiple vertex and
edge labels as the ones considered in SNOPs.

The classic work of [81] is perhaps the best-known generatizframework for
nding the most \in uential vertices" in a social network given some di usion pro-
cess. However, there are some key dierences. With SNOPs, thecisb network

can have weights and labels on the vertices and edges, wher#as is not part of

13

the framework of [81]. Further, [81] does not allow complexggregate functions
as SNOPs does. Finally, the approximation guarantees of [8ljeadependent on
an approximation guarantee associated with their encoding tfe di usion process.
This encoding was shown to be #P-hard in [23] by a reduction fro the counting

version of S-T connectivity, which has no known approximatn algorithm. SNOPs,
by contrast, determines the result of a di usion process byhe calculation of the
xed-point operator of [86] - which can be accomplished in pynomial time - which

make our conditions for approximation guarantees reasonab

14

Chapter 2

Annotated Probabilistic Temporal Logic:
Sound and Complete Algorithms for

Reasoning

Chapters 2-3 investigate reasoning about an agent's behawiin time. The
main contribution of these chapters is Annotated Probabilisc Temporal (APT)
logic, a logic-based framework for this type of reasoningdhdoes not make inde-
pendence or Markovian assumptions. In this chapter, we imduce the framework,
present a suite of complexity and algorithmic results for emistency and entailment
problems, and perform a detailed comparison with other fraeworks for reasoning

about time and probability together?!

1This chapter is based on [155] which was completed in cooperation with Gardo Simari, Austin

Parker, and V.S. Subrahmanian.

15

2.1 Chapter Introduction

There are numerous applications where we need to make statmts of the
form \Formula G becomes true with 50 60% probability 5 time units after formula
F became true." We now give four examples of how such statememtsght be

applied.

Stock Market Prediction There is ample evidence [53] that reports in newspa-
pers and blogs [33] have an impact on stock market prices. Fostance, major
investment banks invest a lot of time, e ort and money attemping to learn
predictors of future stock prices by analyzing a variety ohdicators together
with historical data about the values of these indicators. Asve will show later
in Figure 2.1, we may wish to write rules such as \The probabilt that the
stock of company C will drop by 10% at time T + 2) is over 70% if at time
T, there is a news report of a rumor of an SEC investigation of theompany
and (at time T) there is a projected earnings increase of 10%." It is cledrdt
such rules can be learned from historical data using standamachine learning
algorithms. Financial companies have the means to derive ¢gr sets of such

rules and make predictions based on them.

Reasoning about Terror Groups The Laboratory for Computational Cultural
Dynamics at the University of Maryland has extensively dealtvith historical
data on over 40 terrorist groups from the Minorities at Risk mject [181] and
has published detailed analyses of some of these groups' &atrs (Hezbol-
lah [118] and Hamas [119]). The SOMA Terror Organization Paat [120]

16

has registered users from over 12 US government agencies amutains thou-
sands of (automatically) extracted rules about the behavie of these groups.
For such groups, we might want to say: \Hezbollah targets domts govern-
ment security institutions/lives with a probability of 87 to 97% within 3 years
(time periods) of years when their major organizational gd& were focused
on eliminating ethnic discrimination and when representingheir interests to
government o cials was a minor part of their strategy." Figure 2.2 provides
a list of such rules associated with Hezbollah. Clearly, ayasts all over the
world engaged in counter-terrorism e orts need to be able taeeason with such
rules and make appropriate forecasts; in separate work, wave also done

extensive work on making such forecasts [121, 122].

Reasoning about Trains All of us want to reason about train schedules and plane
schedules. More importantly, railroad companies, airlirsg and shipping com-
panies have an even more urgent need to do such reasoning adiiectly
impacts their planning process. In such settings, a railrdacompany may
learn rules of the form \If train 1 is at station A at time T, then it will be
at station B at time (T + 4) with over 85% probability.” Once such rules are
learned from historical data, various types of reasoning eé to be performed
in order for the railroad company to make its plans. Figure 2.3h®ws a small

toy example of rules associated with trains.

Reasoning about a Power Grid Utility companies need to reason constantly

about power grids. Decisions about which lines and transfoers should be

17

repaired next are based not only on the costs of these repaibgit also when
these components are likely to fail, and many other factorslhus, for exam-
ple, a power company may derive rules of the form \if the transfamer tr and

power lineln are functioning at time T, then there is a probability of over 95%
that they will continue to be functioning at time (T + 3). Figure 2.4 shows a

small toy example of rules associated with power grids.

The examples above illustrate the syntax of a\PT-logic program; we will
give the formal details as we develop the technical materied this chapter. While it
is possible for designers to write such programs manuallyevexpect that machine
learning programs can be used to automatically learn suchqggrams from historical
data using standard machine learning algorithms, as done previous work on ap-
programs [83]. Though this is not claimed as a contributionfahis dissertation,
in order to show that it is possible to automatically learnAPT-programs, we have
developed a simple algorithm calledAPT-Extract and used it to learn models of
certain behaviors exhibited by several terror groups.

This chapter proceeds as follows. In Section 2.2 we introduthe syntax and
semantics of APT-logic programs, including a quick treatment of our notion ba
frequency function a structure unique to APT-logic. In Section 2.3 we introduce
several methods to check consistency &fPT-logic programs, along with appropri-
ate complexity analysis. We introduce several algorithms f@onsistency checking:
one that straightforwardly applies the semantics, one thagxploits the relationships

between formulas in the heads and bodies AP T-rules, and one that works only on

18

speci ¢ sorts of APT-rules but often o ers substantial speedup when it is posdib
These techniques can also be applied to the problem of entagnt, which is covered
in Section 2.4. In Section 2.5, we explore some applicatioosSAPT-logic programs
and nally, we spend a great deal of e ort in Section 2.6 distiguishing this work
from other frameworks for reasoning about time and probalty together. In partic-
ular, we examine the relationship betweeAPT-logic programs and Markov Decision
Processes (MDPs for short) [140], showing that one can cre#®PT-logic programs
\equivalent" to a given MDP and policy, but under natural assunptions, there is no
MDP \equivalent" to certain APT-logic programs. We further address the relation-
ship betweenAPT-logic and a well known logic called Probabilistic Computabn
Tree Logic (PCTL for short) [64] and provide examples demotrating that PCTL
cannot express various things expressible APT-logic programs.

The entire set of complexity results forAPT-logic programs derived in this
chapter is summarized in Table 2.1. Consistency &PT-logic programs is deter-
mined by solving certain linear programs. In this chapter, & develop successively
more sophisticated linear programs that try to use di erenttypes of \equivalence
classes" to collapse multiple variables in the linear progm into one variable; Ta-
ble 2.2 summarizes the main results related to linear prograsize reduction for
consistency checking. Table 2.2 also provides an analogauwsnmary related to
reduction of size of the linear program when considering eiment by APT-logic

programs.

19

APT Complexity Results

Problem Complexity Reference
Consistency of Single Unconstrained Rule NP-complete | Thm 2
Consistency of Single Constrained Rule NP-complete | Thm 3
Consistency of a mixed PCD Program with Guaranteed Thm 4
additional restrictions on lower probability bounds consistent

Entailment of an annotated formula by an program coNP-hard Thm 7

Table 2.1: Summary of APT Complexity Results

20

fi
1. scandal,"”: scandal: [1;0:89;0:93; 0:8; 1:0]
For a given sequence of events, if there is a scandal in the headlines
this will be followed by there not being a scandal in 1 time unit

with probability [0 :89; 0:93].

2. secrumor ~ earnincr(10%) stock decr(10%)

[2;0:65;0:97;0:7; 1:.0]

A4

For a given sequence of events, if there is a rumor of an SE(
investigation and an earnings increase of 10%, then the stoch
price will decrease by 10% in exactly 2 time units frequency range

[0:7; 1.0] and probability [0:65; 0:97].
fi
3. secrumor * earnincr(10%) ,F!)r stock decr(10%) " cfo_resigns :
[2; 0:68; 0:95; 0:7; 0:8]

For a given sequence of events, if there is a rumor of an SEC inves

tigation and an earnings increase of 10%, this will be followed by,
a stock price decrease of 10% and the CFO resigning in exactly 2
time units with a frequency range [07; 0:8] and probability bounds

[0:68; 0:95].

Figure 2.1: Kok, @ toy APT-Logic Program modeling the behavior to reactions of
stock-related news feeds. As all of these rules are constatnthis is a constrained

program. The English translation of each rule is also provide

21

efr

1. INTERORGCON=1) ; (ARMATTACK =1):[2;0:85,0:95]
Armed attacks are carried out within two years of inter-organizational
con icts arising, with probability between 0 :85 and Q95.

efr

2. (DIASUP=0) ~ (MILITIAFORM = 2) ¥ (KIDNAP = 1) : [3;0:68,0:78]
Kidnappings are carried out within three years when no support from
diaspora is received, and Hezbollah has a standing military wing, with
probability between 0:68 and Q78.

efr

3. (ORGST2 = 1) » (ORGDOMGOALS= 1) ¢ (DSECGOV = 1) :
[3;0:87;0:97]
Domestic government/state lives and security are targets of terrorism
within three years if Hezbollah represents interests to o cials as aminor
strategy, and its major organizational goals are focused on eliminating

discrimination, with probability between 0:87 and Q97.

4. (ORGST4=1) A (INTERORGCON= 1) A (MILITIAFORM = 1)
" (BOMB = 0) : [L;0:56; 0:66]
Hezbollah doesnot carry out bombings within the following year if it so-
licits external support as a minor strategy, there are inter-organizaional
con icts, and its military wing is being created, with probability between

0:56 and Q66.

Figure 2.2: A real-world set of rules extracted by APT-Extractfrom the Hezbollah
dataset. The atoms in the rules are represented as a varialaled its value. A plain

English explanation of each rule is also provided.

22

1. at_station(trainl; stnA) ?fr at_station(trainl; stnB) : [4; 0:85; 1]
If train 1 is at station A, train 1 will be at station B within 4 time

units with a probability bounded by [0 :85; 1:00]

2. at_station(trainl; stnB) ?fr at_station(trainl; stnC) : [2; 0:75; 0:9]
If train 1 is at station B, train 1 will be at station C in exactly 2

time units with a probability bounded by [0 :75; 0:90]

3. at_station(trainl; stnA) ?fr at_station(train2; stnB) : [1; 0:95; 1]
If train 1 is at station A, train 2 will be at station B in exactly 1

time units with a probability bounded by [0 :95; 1:00]

4. at_station(trainl; stnA) : [1; 0:5; 0:5]
For a given sequence of events, train 1 will be at station A at time

period 1 with a probability of 0:50.

5. at_station(train2; stnA) : [2; 0:48; 0:52]
For a given sequence of events, train 2 will be at station A at time

period 2 with a probability bounded by [0:48; 0:52].

Figure 2.3: Kyain @ toy APT-Logic Program modeling rail transit. Items 1-3 are
APT-Rules while items 4-5 are annotated formulas. The Englishanslation of each

rule is also provided.

23

1. funo(in) *" : func(in) : [1; 0:05; 0:1]
If the power line is functional, in exactly 1 time unit it will be

non-functional with a probability bounded by [0:05; 0:10]

2. : func(In) ?fr func(n) : [2; 0:99; 1]
If the power line is not functional, within 2 time units it will

functional with a probability bounded by [0 :99; 1:00]

3. func(tr) ~ fung(in) ®" : (fund(tr) ~ fung(In)) : [1; 0:025 0:03]
If the transformer is functional and the line is functional, then in
exactly 1 time unit, at least one of them is not functional with a

probability bounded by [0:025 0:030]

4. : (func(tr) ~ fung(In)) ?fr func(tr) ~ func(In) : [3; 0:95; 1]
If the transformer and/or the line is not functional, then within 3
time units, they both are functional with a probability bounded

by [0:95; 1:00]

5. func(tr) » func(ln) : [1; 0:8; 0:95]

For a given sequence of events, the transformer and the power lin

D

are functional at the rst time point with a probability bounded

by [0:80; 0:95].

Figure 2.4: Kyower @ toy APT-Logic Program modeling a power grid. Items 1-4 are
APT-Rules, while item 5 is an annotated formula. The English traslation of each

rule is also provided.

24

Type of Linear Number of Number of | Cost of Identifying Equivalence Classes

Constraints Constraints Variables

SLC (Straightforward 2iKj +1 2iB L jtmax (equivalence classes not used)

Linear Constraints)

o b
WELC (World Equiv. 2iKj +1 22IKj tmax O 22K +BL

Linear Constraints)

FELC using BFECA 2iKj +1 2iKi o' 2iBLitnax F(tmax) jKj
to identify classes
(Frequency Equiv.
Linear Constraints,

created via brute-force)

FELC using WEFE 2jKj +1 2iKi 0!221"1 tmax tay jKj o+
to identify classes o) ! 22IKj + By

(Frequency Equiv.
Linear Constraints,

created via world euqiv.)

FELC w. 2iKj +1 2IKi (equivalence classes guaranteed)
PCD restrictions on K

(Pre-Condition Disjoint)

Table 2.2: Comparison of Linear Constraints for APT Consisteey Checking

Algorithm Intuition Reference

SLC-ENT Determining both the minimization and maximization Section 2.4

of a constraint wrt SLC

ALC-ENT Determining both the minimization and maximization Appendix A.1.2

of a constraint wrt FELC or WELC

Table 2.3: Comparison of Linear Constraints for APT EntailmehChecking

25

2.2 APT -Logic Programs

In this section, we rst de ne the syntax of APT-logic programs, and then

de ne the formal semantics.

2.2.1 Syntax

We assume the existence of a rst order logical languadge with a nite set
L cons Of constant symbols, a nite setlL ,q Of predicate symbols, and an in nite set

Lvar Of variable symbols. Each predicate symba 2 L ,eq has anarity (denoted

formula is de ned recursively as follows.

De nition 1. A (ground) atom is a (ground) formula. If f; and f, are (ground)

formulas, thenf; ~ f,, f; _f,, and: f, are (ground) formulas.

We useB, to denote the Herbrand base (set of all ground atoms) &f. It is
easy to see thatB, is nite.

We assume that all applications reason about an arbitrarilyarge, but xed

we are interested in.tox can be as large as an application user wants, and the user
may choose his granularity of time according to his needs. Hostance, in the stock
market and power grid examples, the unit of time used might b&ays, andt,,x may
be arbitrarily set to (say) 1,095 denoting interest in stockmarket and power grid
movements for about 3 years. In the case of the train examplepwever, the unit

26

of time might be seconds, and the application developer migket tox to 93,600,
re ecting that we are only interested in reasoning about onday at a time, but at a
temporal resolution of one second. In the case of the terrem application, on the
other hand, our temporal resolution might be one month, and.x might be 360

re ecting an interest in events over a 30-year time span.

De nition 2 (Annotated Formula). If F is a formula,t 2 is a time point, and

[;u] is a probability interval, thenF : [t; ;u] is an annotated formula

Intuitively, F :[t;";u] saysF will be true at time t with probability in [*; u].?

Example 2.2.1. Let us reconsider the progranK,, from Figure 2.3. The anno-
tated formula at_station(trainl; stnB) : [4; 0:85; 1] says that the probability thatrainl

will be at stationstnB at time point 4 is between 85 and 100%.

Throughout this chapter, we assume the existence of a niteesF of symbols
called frequency function symbols Each of these symbols will denote a specic
\frequency function” to be de ned later when we de ne our fomal APT semantics.
We are now ready to de ne the syntax of Annotated Probabilist Temporal (APT
for short) rules and logic programs which will form the maindpic of study for this

chapter.

De nition 3 (APT Rule). Let F, G be two formulas, t be a time interval, ; u be

a probability interval, fr 2 F be a frequency function symbol and 2 [0; 1].

2Assumption: Throughout the chapter we assume, for both annotated formulas andAPT-
rules, that the numbers *; u can be represented as rationala=bwhere a and b are relatively prime

and the length of the binary representations ofa and bis xed.

27

1. F; G:[t;;u]is called anunconstrainedAPT rule.

2.F) G:[t;u;;]is called aconstrainedAPT rule.
An APT logic programis a nite set of APT rules and annotated formulas.

Note that we use the symbol;tr ' for unconstrained APT rules with frequency
function symbol fr, while the symbol]fr " is used for constrained rules with fre-
quency functionfr. The formal semantics of these rules is quite complex and Wil
be explained shortly. But informally speaking, both types forules try to check the
probability that a formula F is true t units before a formulaG becomes true.

Figures 2.1, 2.2, 2.3, and 2.4 respectively show tA@T-logic programs associ-
ated with our stock market, counter-terrorism, trains, andpower grid applications.

We now de ne three types ofAPT-logic programs.

De nition 4 (Types of APT-Logic Programs)
An unconstrained APT-Logic Program consists only of unconstrainedPT-rules.
A constrained APT-Logic Program consists only of constrained\PT-rules.

A mixed APT-Logic Program consists both of constrained and unconstrain@dT-

rules.

Consider theAPTprograms from the introduction of this chapter, we see that
Kstock is a constrainedAPT-logic program, Kuains , Kpower, and Keeror are uncon-

strained APT-logic programs®

3Notably absent from the types of APT-Logic Programs described above are annotated formulas.

28

2.2.2 Semantics of APT -logic programs

In this section, we will provide a formal declarative semaids for APT-logic
programs. As the syntax of these programs is quite complex, well do this one

step at a time. We start with the well known de nition of a world.
De nition 5. A world is any set of ground atoms.

The power set ofB, (denoted 2t) is the set of all possible worlds. Intuitively,
a world describes a possible state of the (real) world or reabrld phenomenon being

modeled by anAPT-logic program. The following are examples of worlds:

Example 2.2.2. Consider the atoms present in the progranKtrain from Fig-
ure 2.3. A few possible worlds aref:at_station(trainl; stnA); at_station(train2; stnB)g,

f at_station(trainl; stnB)g, and fg .

As worlds are just ordinary Herbrand interpretations [106], & usew F F to
denote the standard de nition of satisfaction of a ground fonula F by world w as

expressed in [106].

De nition 6 (Satisfaction of a formula by a world) Let f be a ground formula and

w be a world. We say thatv satises f (denotedw = f) i:

If f

a for some ground atoma, thena 2 w.

If f =: fO%for some ground formulaf ° then w does not satisfyf °

We will show later in Theorem 1 that APT-rules can be used to express annotated formulas and

hence there is no loss of expressive power.

29

If f = f~f, for formulasf, andf,, thenw satises f; andw satises f.

If f =f, f,forformulasf, andf,, thenw satises f, or w satises f,.

We say a formulaf is a tautology if for all w 2 2B+, w E f. We sayf is a
contradiction if for all w2 28- , wf : f.
A thread, de ned below, is nothing but a standard temporal interpreation [42,

96] in temporal logic.

De nition 7 (Thread). A thread is a mapping Th: f1;:::;tnag! 28t.

Th(i) implicitly says that according to the thread Th, the world at time i will
beTh(i). We will use T to denote the set of all possible threads, anth. to denote

the \null" thread, i.e., the thread which assigns to all time points.

Example 2.2.3. Consider the train scenario shown in Figure 2.3 and the worlds

a day from 9:00am to 6:00pmi.e., O represents 9-10am, 1 represents 10-11am, and
so forth. Figure 2.5 shows a sample thread for this setting, where only one train is
present. According to this thread, the train is at station A at 9 o'clock; at 10 o'clock

the thread has an empty world, since the train is still between stations, reaching
station B at 12. The thread shows how the train moves throughout the rest of the

day.

A thread represents a possible way the domain being modelexd, where the
train is) will evolve over all time points. A temporal probabilistic (tp) interpretation
gives us a probability distribution over all possible threds.

30

Th(1) = fat_station(trainl; stnA)g, Th(2) = fg,

Th(3) = fg, Th(4) = fat_station(trainl; stnB)g,
Th(5) = fg, Th(6) = fat_station(trainl; stnC)g,
Th(7) = fg, Th(8) = fat_station(trainl; stnB)g,
Th(9) = fg, Th(10) = f at_station(trainl; stnA)g

Figure 2.5: Example thread for the train scenario from Figure.2, where only one

train is present.

De nition 8 (Temporal-Probabilistic Interpretation). A temporal-probabilistic (tp)

interpretation | is a probability distribution over the set of all possible threadse.,

P
oy 1 (th) = 1.

Thus, a tp-interpretation | assigns a probability to each thread. This re ects
the probability that the world will in fact evolve over time in accordance with what

the thread says about the state of the world at various pointg time.

Example 2.2.4. Consider once again the setting of Figure 2.3. A very simple ex-
ample of a tp-interpretation is the probability distribution that assigns probability 1
to the thread from Figure 2.5 and 0O to every other possible thread. Another example
would be a distribution that assigns probability 0.7 to the thread from Figure 2.5
and 0.3 to the thread TH de ned as follows: hThq1) = fat_station(train1; stnA)g,
Th92) = fg, Thq3) = fg, ThY4) = fg, ThY5) = fat_station(train; stnB)g, Th{6) =

f at_station(trainl; stnQ)g, Th97) = fg, ThY8) = fat_station(train1; stnB)g, ThY9) =

fg, ThY10) = fat_station(trainl; stnA)gi; this thread speci es that the train's trip
from station A to station B takes one time unit longer than speci ed by the previous

31

thread (Th).

We now de ne what it means for a tp-interpretation to satisfyan annotated

formula.

De nition 9 (Satisfaction of an Annotated Formula) Let F : [t; ;u] be an an-
notated formula, andl be a tp-interpretation. We say thatl satisesF : [t; ;u],

P
written | F F :[t;;ul, i thot e | (Th) U

Thus, to check if| satises F : [t; ;u], we merely sum up the probabilities
assigned to those thread3h 2 T which makeF true at time t. If this sum is in

[;u] then| satisesF :[t;;ul.

2.2.3 Frequency Functions

When de ning the syntax of APT-logic programs, we de ned frequency func-
tion symbols. Each frequency function symbol denotes a frgégncy function. The
basic idea behind a frequency function is to represent temab relationshipswithin
a thread. For instance, we are interested in the frequency thiwhich G will be true

t units after F is true. When we study this w.r.t. a specic threadTh, we need
to identify when F was true in thread Th, and whetherG really was true t units
after that. For instance, consider the thread shown in Figur@.6. Here,F is true
at times 1, 3, 6, and 8.G is true at times 2, 4, 5, and 7.F and G should be true

at the times indicated above.

The probability (within the thread of Figure 2.6) that G follows F in exactly two
units of time is 0.33if we ignore the occurrence of at time 8. If, on the other

32

Th(1) Th(2) Th(3) Th(4) Th(5Th(6) Th(7) Th(8)

each world that satis es formulaF or formula G.

hand, we do count that occurrence of at time 8 (even though no times beyond
that are possible), then the probability that G follows F in exactly two units of

time is 0.25.

The probability that G follows F in at most 2 units of time is 100% if we ignore

the occurrence of at time 8; otherwise it is 0.75.

Each of these intuitions leads to di erent ways to measure # frequency (within
a thread) with which G follows F. As we will show shortly, many other possibil-
ities exist as well. To the best of our knowledge, no past work on reasoning with
time and uncertainty deals with frequencies within threads; as a consequence, past
works are not able to aggregate frequencies across multiple thread iror w.r.t.
tp-interpretations. This capability, we will show, is key for the types of applicgons
described in the Introduction of this chapter.

We see above that there are many di erent ways to de ne this figuency from
a given body of historical data. Rather than make a commitmérno one particular
way and in order to allow applications and users to select thieequency function

that best meets their application needs, we now de naxioms that any frequency

33

function must satisfy. Later, we will de ne some speci ¢ frquency functions?

De nition 10 (Frequency Function) Let Th be a thread,F and G be formulas,
and t> 0 be an integer. Afrequency functionfr is one that maps quadruples of
the form (Th;F; G; t) to [0;1] such that it satis es the following axioms:

(FF1) If G is a tautology, thenfr(Th;F;G; t)=1.

(FF2) If F is a tautology andG is a contradiction, thenfr(Th;F;G; t)=0.

(FF3) If F is a contradiction, fr(Th;F;G; t)=1.

(FF4) Under the following conditions, there exist threads ThTh, 2 T such that

fr(Thy; F;G; t)=0 andfr(Th, F;G; t)=1:

F is not a contradiction

G is not a tautology

F or : G is not a tautology

Axiom FF1 says that if G is a tautology, thenfr(Th; F; G; t) must behave like
material implication and assign 1 to the result. LikewisefiF is a tautology andG
is a contradiction, then FF2 says thatfr(Th; F; G; t) must behave like implication
and have avalue of 04 ! B is false wherA is a tautology andB is a contradiction).
Axiom FF3 requiresfr(Th; F; G; t)tobe 1 whenF is a contradiction, also mirroring

implication. Axiom FF4 ensures that in all cases not covered abe, the frequency

“Note: Throughout this chapter, we will assume that frequency function for a given thread
can be computed in polynomial time (i.e. O(jBLj tmax)). Additionally, we shall assume that a
frequency function will return number that can be represented asa rational number a=bwhere a

and b are relatively prime and the length of the binary represenations ofa and bis xed.

34

function will be non-trivial by allowing at least one threadthat perfectly satis es
(probability 1) and perfectly contradicts (probability 0) the conditional. Note that
any function not satisfying Axiom FF4 can be made to do so as long dt returns
distinct values: simply map the lowest value returned to 0 anthe highest value

returned to 1. We now give examples of two frequency functien

De nition 11 (Point Frequency Function). Let Th be a thread,F and G be formu-
las,and t O0Obe aninteger. APoint Frequency Function denoted pf(Th;F;G; t),

is de ned as:

jft:Th(t) F FATh(t+ t)F Ggj
fr(Th:F;G; t)= = : -
pir()= H 0t DA T F Fo

If there is not 2 [0; tax t] such that Th(t) E F then we de ne pfr to bel.

The point frequency function expresses a simple concept: species how
frequently G follows F in t time points. Mathematically, this is done by nding
all time points from [1; tyax t] at which F is true and of all such time points
t, then nding those for which G is true at time t + t. The ratio of the latter
to the former is the value ofpfr. The following lemma says that this is a valid
frequency function. Note that the denominator of the point fequency function does
not include times where the thread satis e after tay t because the \end of

time" of our nite time model comes before t units elapse afterF becomes true.
Lemma 1. pfr satis es Axioms FF1-FF4.

Example 2.2.5 (Point Frequency Function). Consider thread Th from Figure 2.5.
Suppose we want to calculate fffh; at_station(trainl; stnB); at_station(trainl; stnC); 2).

35

In English, this is the ratio of time at_station(trainl; stnB) is followed by
at_station(trainl; stnQ in two units of time in thread Th.

We can see thagt station(trainl; stnB) is satis ed by two worlds: TH4) and Th(8).

We also notice that TH6) | at_station(trainl; stnC) and Th(10) & at_station(trainl; stnC).

Hence, the pfr is simply0:5.

Our second type of frequency function, called aexistentialfrequency function,
does not forceG to occur exactly t units of time after F is true. It can occur at

or before t units of time elapse afterf- becomes true.

De nition 12 (Existential Frequency Function). Let Th be a thread,F and G be
formulas, and t 0 be an integer. AnExistential Frequency Function denoted

efr(Th;F;G; t), is de ned as follows®

~ efn(Th;F;G; t; 0;tmax)
- ft:(t tmax)N Th(t) E Fgj+ efn(Th;F;G; t;tmax t; tmax)

efr(Th;F;G; t)

If the denominator is zero (if there is not 2 [0; tmax t] such that Th(t) £ F

and efn(Th; F; G; t;tmnax t;tmax) = 0) then we de ne efr to bel.

Note that in the denominator of efr, after time tax t, we only count

satisfaction ofF if it is followed by satisfaction of G within [tmax t; tmax |-

Lemma 2. efr satis es Axioms FF1-FFA4.

The point frequency function expresses what is desired in &itions where

there is a precise temporal relationship between eventise(, if one drops an object

SWhere efn(Th;F;G; t;ti;ty) = jft : (t7 t ty) and Th(t) F F and there existst® 2

[t +1;min(to;t+ t)] such that Th(t9 F Ggj.

36

from a height of 98 meters in a vacuum, it will hit the ground in exactlyp 2 seconds).
However, it can be very brittle. Consider mail delivery wherere knows a package
will arrive in at most 5 business days 95% of the time. The exential frequency
function efr allows for the implied condition to fall within some speci & period of

: p_
time rather than after exactly 2 seconds as before.

Example 2.2.6 (Existential Frequency Function). Consider thread TH from Ex-

ample 2.2.4. Suppose we want to calculate
efr(Th® at_station(train1; stnB); : at_station(trainl; stnQ); 2):

In English, this is the ratio of times thatat_station(trainl; stnB) is followed by

. at_station(train1; stnQ) in two units of time in thread Th°

We can see that formulat_station(train1; stnB) is satis ed by two worlds: TH(5) and
ThY8). Consider world TH{6), which occurs one time unit after world TH5). We

can easily see that TK6) & : at_station(train1; stnQ). However, TH(7), two units

later, does satisfy. at_station(train1; stnQ). As ThY9) also satis es: at_station(trainl; stnQ),
we have a world within two time units after every world that satis est_station(trainl; stnB).

Hence, the efr isl in this case.

Properties of pfr: Because of the requirement foF, to be satis ed after a spe-
cic t, pfr has several properties (all formula$y;F, below are assumed to be

satis able).

1. pfr(Th;Fi;Fa_ Fs; t) max(pfr(Th;Fy; Fa; t);pfr (Th; Fi; Fs; t)) (valid

for efr as well)

37

2. pfr(Th;FoyFa ™ Fgy) = pfr(ThyF R Fsp) pfr(ThiFoFs;)

3. pfr(Th;Fy;Fy; t) pfr(Th; Fi™ Fg;Fy; 1)) pfr(Th; Fo ™ Fa By 1)

pfr(Th; Fy; Fy; 1)
4. pfr(Th;Fy; Fo N Fay 1) min(pfr(Th; Fq; Fo; 1), pfr(Th; FyiFa;)

5. If pfr(Th;Fy; Fy; t) = aandpfr(Th; Fy; F3; t) = bthen

pfr(Th;Fy;Fo M Fs; t) a+b 1.

Properties of efr: efr satis es all the properties that pfr has above. In addition,

efr has the property that:
efr(Th;Fy; Fy; t) efr(Th;Fy; Fyy t0 1)
The following result provides some links betweepfr and efr.
Proposition 1. Let Th be a thread,F and G be formulas,

1. Let t; and t, be two positive integers. If t; t,, then:

pfr(Th;F;G; t1) efr(Th;F;G; ty):

2. Let t be a temporal interval. The following inequality always holds:

xt
efr(Th;F;G; t) pfr (Th;F; G;i)

i=1
2.2.4 Satisfaction of Rules and Programs

We are now ready to de ne satisfaction of an Annotated Probalistic Tem-
poral (APT) rule.

38

De nition 13 (Satisfaction of APT rules). Let r be an APT rule with frequency
function fr and | be a tp-interpretation.

r

1. Forr=F; G:[t;;u], we say thatl satisesr (denotedl [r) i
[(Th) fr(Th;F;G; t) u:
Th2T
2. Forr=F ,lfr G:[t;u;;], we say thatl satisesr (denotedl E r), i
[(Th) u:
Th 2T ;
fr(Th;F;,G; t)

Intuitively, the unconstrained APT rule F ;fr G:[t; ;u] evaluates the prob-
ability that F leads toG in t time units as follows: for each thread, it nds the
probability of the thread according tol and then multiplies that by the frequency
(in terms of fraction of times) with which F is followed by G in t time units ac-
cording to frequency functionfr. This product is a little bit like an expected value
computation in statistics where a value (frequency) is mulblied by a probability
(of the thread). It then sums up these products across all teads in much the same
way as an expected value computation.

On the other hand, in the case of constrained rules, the probitity is computed
by rst nding all threads such that the frequency of F leadingtoG in t time units
isin the [;] interval, and then summing up the probabilities of all suchhreads.
This probability is the sum of probabilities assigned to thrads where the frequency
with which F leads toG in t time unitsis in [;]. To satisfy the constrained
APT rule F " G:[t>u;:], this probability must be within the probability
interval [*; u].

39

Example 2.2.7. Coming back to the train scenario from Figure 2.3, the following

is an example of an unconstrained ruler () and a constrained rule (,):
r, : at station(train1,stnCY"" at station(train1,stnB): [2; 0:85; 1]
ro: at,station(train1,stnB)ffr at_station(trainl1,stnC). [2; 0:9; 1; 0:5; 1]

Consider the second tp-interpretation from Example 2.2.4, which we will call By
analyzing the two threads considered possible Iyt is clear that | | rq, since both
threads have the property that after being at station C the train reaches station B
within two time units, and thus the probability of this event is 1. A similar analysis
leads us to con rm thatl F r,, but we must now verify that the constraints placed by
the rule on the threads hold; these constraints require that at least half of the times
in which the train is at station B, station C be reached within 2 time units. This is
indeed the case, since the train stops twice at station B, once going towards C and
once going towards A on its way back. As before, the sum of probabilities of reaching

the station within 2 time units is 1. Finally, consider the rule:
r3 : at station(trainl,stnA)"" at station(trainl,stnC); [2; 0:5; 0:6]

Clearly, | r3, since neither of the threads considered possible by the tp-interpretation
satisfy the condition that the train reaches station C within two time units of being

at station A.

The following proposition says that any tp-interpretationthat satis es certain
kinds of constrained or unconstrainedAPT-logic programs also satis es a certain
APT rule that can be easily constructed from theAPT-rules in the original APT-
logic program.

40

Proposition 2. Let | be a temporal interpretation,F and G be formulas, and t

be a temporal interval.

g N 0 h P
. t pfr L. . efr . . N t .
LIfIFE o F7 G:[i; yu] thenl R G: t;max('i); min i Upsl

2.161 E F " G:[t ,uxal then 8a;b;a,h, such thata a a,

andb b Ik, we havel F ,'fr G:[t wLa;h]andl F F ,'fr G:

[t;,0;up; a;bl:

Note that in unconstrained APT-rules, the *;u probability bounds account
for the frequency function as well. In the case of constrainedPT-rules, the ";u
probability bounds do not account for the frequency function. We now show that
using a special frequency function called gquery frequency function we can use

constrained and unconstrained rules to express annotatedraulas.

De nition 14 (Query Frequency Function) Let Th be a thread,F and G be formu-
las,and t Obe aninteger. A query frequency function, denoted ¢irh; F; G; t)

is de ned as follows:
1. If G is a tautology then gffTh;F;G; t)=1
2. If F is a tautology and G is a contradiction, then gfr(Th;F;G; t)=0
3. If F is a contradiction then gf(Th;F;G; t)=1
4. If Th(l) F F and Th(t) F G then gfr(Th;F;G; t)=1
5. Else, gf(Th;F;G; t)=0

The following result shows thatqfr is a valid frequency function.

41

Lemma 3. gfr satis es Axioms FF1-FF4.

gfr allows us to construct constrained and unconstrained ruléat are equiv-

alent to arbitrary annotated formulas.

Theorem 1. Let g= Q:[t; ;u] be an annotated formula, and be an interpreta-

tion.
1. For constrained ruler = TRUE?fr Q:[t5u L1, I Fqi I Er.
2. For unconstrained ruler = TRUE™ Q:[tul, I Eqi | Er.

The following is an example of how an annotated formula can lexpressed as

a rule usinggfr.

Example 2.2.8. Consider the train setting from Figure 2.3. One of the anno-
tated formulas given in this example waat station(trainl; stnA) : [1;0:5;0:5]. By
applying Theorem 1, this formula is equivalent to the constrained rute and the

unconstrained ruler:
r,: TRUES" at station(train1; stnA) : [1; 0:5: 0:5; 1; 1]

r,: TRUE™" at station(trainl: stnA) : [1; 0:5: 0:5]

2.3 Consistency

2.3.1 Complexity of Consistency Checking

We are now ready to study the complexity of the problem of chking consis-
tency of APT-logic programs. We say that arAPT-logic programK is consistenti

42

there is a tp-interpretation | such that| F K. Before stating complexity results,
we give results that hold for any frequency function and anAPT-rule. The rst

result follows from axioms FF1-FF4 on frequency functions.

Lemma 4. Consider theAPT-Program fr = F ;fr G:[t;;ulg
1. If G is a tautology, thenfrg is consistenti u=1.
2. If F is a tautology andG is a contradiction, thenfrg is consistenti ~ =0.
3. If F is a contradiction, thenfrg is consistenti u=1.

4. If F is not a contradiction, G is not a tautology, and eithef~ is not a tautology

or G is not a contradiction thenfrg is consistent.

Using this lemma, we can show that for any unconstrainedPT-rule, the
problem of determining if anAPT-logic program consisting of just thatAPT-rule is

consistentusing any frequency functions NP-complete.

Theorem 2. Deciding the consistency of a\PT-logic program containing a single

unconstrained APT-rule is NP-complete in the size oB, .

The proof of hardness above is by reduction from the SAT problemvhile
membership in NP relies on manipulating Lemma 4.

In deciding the consistency of a single constrained rule, wake a slightly dif-
ferent approach. The intuition is that if the lower probabilty bound is not zero,
we must have a thread whose frequency function value falls within;[]. Other-

wise, there is no thread available that would ensure a nonfpeprobability mass

43

as per the de nition of satisfaction. The idea of classifyig threads in this manner
for constrained rules comes into play later when we presentnsistency-checking

algorithms in Section 2.3.4.

Lemma 5. Let K = fr = F ,'fr G:[t;u;;]g be a constrainedAPT-logic

program consisting of a single ruleK is consistent i at least one of the following

conditions hold.

u=1 and there exists a thread Th such that fr(Thin; F; G; t)

" =0 and there exists a thread Th,; such that either > fr(Thoy;F;G; t) or

< fr(Thoy; F; G;).

There exists a thread Tk, such that fr(Thi,; F; G; t) and a thread

Thoy such that either > fr(Thoy; F;G; t) or < fr(Thoy; F;G; t).

Lemma 5, used in conjunction with the frequency function agms, allow us to

prove that deciding the consistency of a single constrainedle is also NP-complete.

Theorem 3. Deciding the consistency of a\PT-logic program containing a single

constrained APT-rule is NP-complete in the size 0B, .

The NP-hardness of consistency checking f&PT programs (whether con-
strained, unconstrained, or mixed) with more than one ruleoflows trivially from
Theorems 2 and 3. In the next chapter, we show that the consist®nchecking
problem is in the complexity class NP for generadPTprograms (under some natu-

ral assumptions).

44

However, if we assume that certain conditions hold, we can shahat consis-
tency for an APT-logic program containing multiple APT-rules can be guaranteed.
These restrictions are termed Pre-Condition Disjoint, or ED; intuitively, they refer
to an APT-Program such that there exists a unique world that satis egxactly one
of the rule pre-conditions (theF formulas). Hence, we say that the pre-conditions
are \disjoint" from each other. Perhaps such conditions codlbe specied by a a

tool used to learn the rules from the data-set.

De nition 15 (Pre-Condition Disjoint (PCD) APT-Logic Program) Let K be an

APT-Logic Program such thatKk = frq;:::;r g, wherer; = F; ;fr Gi:[t;ul

or ri = Fy Jfr Gi : [t;'i;u; i; i]. K is Pre-Condition Disjoint (PCD) if the
following conditions hold true.

1. 8i, if r; is constrained, then ; = 1.

2.8, t L

3. 8i there exists a worldw; such thatw; F F; and 8] wherej 6 i;w; 6j F;.

4. 8i, fr; is equal to either pfr, or efr.

5. tmax JK] max(t;j) (wheretna Iis the length of each thread).

6. 9 world w. such that8i w. 6 F; andw. 6] G;.

7.8 2K, u =1.

While somewhat limiting, this restriction still allows APT-Logic Programs that
are useful. Consider the following example.

45

Example 2.3.1. Consider the set of rules shown in Figure 2.3. These rules do not
constitute a PCD program for various reasons. For instance, the upper bound on the
probability of the second rule is not 1. Likewise, condition 3 is not satis ed since the
rst and third rule have the same antecedent. However, the following set of rules
satis es all of the conditions for being a PCD program:

efr

at_stn(trnl; stnA) ~: at_stn(trnl; stnB) ~: at_stn(trnl; stnQ ;
at_stn(trnl; stnB) : [4; 0:85; 1]

at_stn(trnl; stnB) : at_stn(trnl; stnA) *: at_stn(trnl; stnQ ?fr
at_stn(trnl; stnQ : [2; 0:75; 1]

efr

at stn(trn1; stnQ " : at_stn(trnl; stnA) ~: at stn(trnl; stnB) ;

at_stn(trnl; stnB) : [3;0:9; 1]

Conditions 1, 2, 4, and 7 are trivially satis ed, andt,x can be easily chosen to
satisfy condition 5. Condition 3 can be seen to hold by noting that no two antecedents
of rules can be satis ed at once. Finally, condition 6 holds since the empty world

does not satisfy any of the formulas involved in the rules.

The useful feature in a PCD program is that (based on the axiosh we are
guaranteed threads with certain frequency function valuef®r each rule. Consider
Lemma 6 below, where for any subset of a giveXPT-program, we are guaranteed
the existence of a thread whose frequency is 1 according to thies in the subset
and is 0 according to the other rules.

Lemma 6. Consider APT-Program K = fryq;:::;r;:::;rmg wherer; = F; Iri

fl’i

Gi[ti;i;uy; i iJorri = F ;' G : [ti;i;u], depending on whether; is

46

a constrained or unconstrained rule. IfK is PCD, then for any disjoint parti-
tion of rules, K4, K,, there exists a thread Th such that for all rules; 2 K4,

fri(Th; Fi; Gi; tj) =1 and for all rulesr; 2 K,, fri(Th;F;; G;; ti)=0.

The PCD conditions add a \one-tailed" requirement (the rst requirement of
De nition 15) to the constrained rules so that is always one. This allows us to
be guaranteed the existence of threads in the [] bounds. As it turns out, if the
lower bounds on the probabilities are less than a certain ammat, we can create an

interpretation to guarantee the consistency of the PCD progm.

K]

1) .
i —— then K is consistent.
IK]

In the appendix, we show how PCD assumptions can be leveraged a sig-

ni cant reduction in complexity for constrained APT-programs.

2.3.2 Linear Constraints for Consistency Checking

A straightforward algorithm to nd a satisfying interpretation given an APT-
logic programK is a brute-force approach that considers each thread. Giveratoms
and tma timepoints, there are 2 possible worlds at each timepoint, and ¥Zmax
possible threads. For ease of notation, we shall refer to thember of threads as.
Hence, note that a function that is linear in the number of thread is exponential in

the number of atoms.

a7

unknown) probability of thread Th;. We will design the linear program so that solu-
tions of the linear program are in a one to one correspondencéhninterpretations
that satisfy the APT-logic program. Thus, if is a solution of the linear program,
we want to be sure that the tp-interpretation| such that | (Th;) = (v;) is an
interpretation that satis es K.

Hence, given arAPT-logic programK, we will construct a set of \straightfor-

the interpretation | associated as above with any solution satis es K. The set of

constraints are as follows:

De nition 16 (Straightforward Linear Constraints (SLQ). Let K be anAPT-logic
program; the set ofstraightforward linear constraints contains exactly the following:

P
1. J-nzl Vi = 1

2. For each unconstrained ruldF; ;fri Gi:[ti; i;u]2K
. P,
(a) i j=1 fr,(ThJ,F.,G,, t,) Vi
P n
(b) v iz fi(Thi R G)
3. For each constrained ruleF; Iri Gi:[ti;i;u; i i]2K

. P
@ i Th; 2T Vi

i fri(Thj FisGi; ti)

b) u; V]
() I ThjZT i fri(Thj;Fi;Gi; ti) i)

We refer to this set asSLGK).

48

The rst constraint above says that the threads are exhauste. The second
constraint is derived from the formula for satisfaction of ma unconstrained rule, while
the third constraint is derived from the formula for satisfation of a constrained rule.
Note that the coe cient of v; in constraints (2) and (3) above are both constants

(after the calculations are performed), so these constragare all linear.

Example 2.3.2. Recall the programK ,,wer from Figure 2.4. In this simple example,
we supposed the power plant delivers power to a transformer (nanved which is in
turn connected via a power line (nameth) to a home. Hence, the atomiindtr) and
fundIn) denote that the various components are functioning, and the home receives
power only if bothtr and In are func. Therefore, we have four possible worlds:
Wo = ffundtr);funqIn)g, wy, = ffundtr)g, w, = ffundln)g, and w; = ;. If we set
the time limit to 4 days, then there are4* = 256 possible threads (each world may
occur at each time point). We name these threads §i1::; Thoss so that the world

at time point t of thread Th; is ((i=4') mod 4) (i.e. Ths is hwq;w,; wyi;wei) and

associate the variable; with | (Th;). We now show the constraints ir5LC (K gower):

P.
. 0:025 :<=0256 pfr (Thi; func(tr) ~ func(In); : (func(tr) ~ func(In)); 1) vi 0:03

N

P.
3. 0:95 :<:0256efr(Thi;: (func(tr) A func(In)); func(tr) ~ func(In);3) vi 1
. P i< 256
4. 0:.05 i=o __Pfr(Thi;func(In);: func(ln); 1) vi 01
P.
5. 0:99 < 2%%efr(Thi;: fund(n); fung(n);2) vi 1

Given a solution of these constraints, we can see immediately thiat satis es K.

49

Algorithm 1 Compute consistency oK using SLC
SLC-CONSISTEN{APT-Program K)

1. Construct SLGK).

2. Attempt to solve SLGK).

3. If solvable, returnconsistent otherwise,inconsistent

We provide the following proposition about correctness ohe above procedure

for mixed programs.

Proposition 3. For mixed APT-Logic Program K, K is consistent i SLQK) has

a solution.

The size of the linear program foSLCfollows immediately from the de nition.
As each rule requires two linear constraints, and one lineaomstraint is required to
ensure the variables sum to 1, we havgkd +1 constraints. The number of variables

is equal to the number of threads.
Remark 1. SLCcontains 2jKj + 1 constraints and 2/Bt1tmx variables.

Using SLCwe can create Algorithm 1, which is guaranteed to give a cortec
answer to the question of consistency for anjkPT-Logic Program. However, the
linear program's size is exponential in terms B | tnhax, making it a very expensive
operation in many situations. There are several obvious wayto reduce this cost.
One such way would be to consider the set of atoms to loaly the atoms present
in the rules. An obvious method to reduce the other factor in th exponent,tyay,
would be to adjust the granularity of time used. For examplegconvert all time to

50

hours instead of minutes. However, this would only provide aorect result in terms
of the new granularity. This is an issue we intend to explore ifuture research.

It turns out that for arbitrary sets of rules and annotated famulas, one need
not use one variable for each of thel®2!tmx threads. Some threads are equivalent,
and may in fact be considered together. We provide two such theds that consider
equivalent threads. One that reduces the number of worlds basen world equiva-

lence and one that reduces the number of threads based &requency equivalence

2.3.3 World Equivalence

World equivalence uses the following intuition: when two wtds satisfy ex-
actly the same formulas from theAPT-program, they are identical from theAPT-
program's point of view. By partitioning the set of worlds intoclasses of identical
worlds, and working with the classes instead of the individliavorlds, we can create
smaller linear programs by associating just one variable \kiteach equivalence class
(rather than one variable with each world as is the case &LQ.

Consider the ruleF ,'fr G:[t;u;;] The four world-based equivalence
classes resulting from this rule would be the sets of worldsatbsatisfy F* G, F/: G,
:FNG,and: F~: G. We apply this concept toAPT-Logic Programs and divide
the set of worlds accordingly. We can treat these resultinggaivalence classes as
worlds and create world-based thread equivalence classes] aise them instead of
threads. This reduces the number of linear constraints fomaalgorithm similar to

SLC One must note, however, that the equivalence classes mustdmmputed rst,

51

which we will show to be NP-complete.

As world equivalence forAPT-Logic is based on the formulas found IRPT-
Rules and annotated formulas, we will formalize the set of fmulas associated with
a program. We introduce the notationformula(K) to denote the set of all formulas

present in an APT-logic program:

formula(K) = fF; G F ,'fr G:[tt;u;; 12Kg]|[

fR:GjF:" G:[t;u]2Kg

Example 2.3.3. Recall the progranK yower from Figure 2.4. The set formuldK power)

is then
ffundn);: fundIn); fungtr) ~ fundIn);: (fungtr) ~ fundin))g;
since these are the only formula appearing i power -

The cardinality of formula(K) for a given APT-Logic Program is bounded by
2JKj since APT-Rules have two formulasF and G. We notice that for each world
w in 2Bt there is a subset oformula(K) that w satis es and a disjoint subset of
formula(K) that w does not satisfy. Hence, with respect to a given set of formala
certain worlds are indistinguishable: that is, they satisfiexactly the same formulas

from the set. We call such world¥ -equivalent.

De nition 17 (World Equivalence). For APT-logic program K, a world w is K-
equivalent to a worldw® (denotedw ¢ w9 i for all F 2 formula(K), w F F i

Wl F.

52

Example 2.3.4. Continuing with Kpower from Figure 2.4, recall the 4 worlds:wg =
ffung(tr); fung(In)g, wy = ffung(tr)g, w, = ffungIn)g, and wz = ; and the formula

from Kpower:
formula(Kpower) = ffunc(In);: func(in); func(tr) ~ func(n); : (func(tr) ~ func(In)) o:

Here wy is Kpower-€quivalent tows, since bothw; and w; do not satisfy the rst
formula, do satisfy the second formula, do not satisfy the third formula, and do
satisfy the fourth formula. Howeverw; is not Kywer-equivalent tow, since w;

satis es : fundIn) (the second formula), whilew, does not.
The relation ¢ can be extended to threads in the obvious way.

De nition 18 (Thread Equivalence) For APT-logic program K, a thread Th; is
K-equivalent to a thread Th (denoted Th, Thy) i for all time points t, the

world Thy(t) is K-equivalent to world Th(t).

Example 2.3.5. In Example 2.3.4, we saw thatv; is Kpower-e€quivalent tows. As-
suming four time points, then the thread Th= hws; wq; wq; Wi will be equivalent
to Th® = hwy; ws; ws; Wi, since at every time pointt, Th(t) is a world that is K-

equivalent to world TH(t).

The relation g is an equivalence relationi(e., it is transitive, re exive, and
symmetric) both for threads and for worlds; therefore, it cabe used to construct a
partitioning of threads into equivalence classes. L&t[«]= fP;; ;Pmgbe that
partitioning. All threads in each P; are K-equivalent. The following result states
that these partitions have the useful property that all threas in any partition P;
have the same value fopfr, efr, or gfr for formulas in formula(K):

53

for all threads Th; Th°2 P;, all F; G 2 formula(K), and all t;
1. pfr(Th;F;G; t)= pfr(Th®F;G; 1)
2. efr(Th;F;G; t)= efr(Th®F:G; 1)
3. gfr(Th;F;G; t)= qfr(Th®F:G; 1)

Lemma 7 tells us that each partitionP; has a unique value forpfr, efr,
and gfr (for eachF, G, and t). We introduce the notation pfr(P;; F; G; 1),
efr(Pi; F; G; t), andgfr(P;;F;G; t)to denote these values. For technical reasons,
we associate dabelwith each thread Th such that all threads in the same partition
P; have the same label. To de ne the label, we rst order the seformula(K) =
fFiy; ;Fng. Then, for a thread Th, we assignlabel(Th) to be a lengthtp.x n
bitstring where bit t° i (1 t° tpaxandl i n)is1if Th(t) F F and 0 if
Th(t9 & F;.

Clearly, all Th;Th?in the same partition P; have the same label. Also, all
partitions P; have a unique label equivalent to the labels of the containdtireads
and denotedlabel(P;). There are at most as many partitions as there are length
tmax N bitstrings, and determining if there is a partition associted with a given

bitstring b can be done by checking if there is thread whose labelads

Example 2.3.6. Using Kpower from Figure 2.4, we number formul@K power) as fol-
lows:

fF1 = fund(In); F> = : func(In); F3 = func(tr) ~ func(In); F4 = : (func(tr) ~ func(In))g.

54

Here, the label for Th= hws; wy; wyi; Wi (worlds w; de ned in Example 2.3.4) is

PRI

W1 W1

To see this, consider the rst four digits0101 for world ws. World w; does not
satisfy F1, hence the rst 0. It does, however, satisfyF, and F4 causing the second
and fourth digits to be 1.

The thread Th”= hwy; ws; wi; Woi has the same label010101010101101@ny

two threads which areK ywer -equivalent will have the same labels.

We immediately notice that the number of thread partitions § potentially
smaller than the number of threads. While there are®2 'mx threads, there are
only 2formula (K)itmax 22K tmax partitions. Therefore, using these partitions, rather
than threads, is preferable in designing linear constraist We can use Lemma 7
to construct smaller sets of linear constraints tharSLC For these constraints,
we introduce the variablev, where Ibl is a length t;,ox jformula(K)j bitstring
(Ibl 2 f Q; 1g/formula (K)itmax) representing the probability mass assigned to the set of
threads in the partition labeled Ibl (% = 11,25, apei(p,)= | (TH)). We can now

de ne the world-equivalence linear constraints.

De nition 19 (World Equivalence Linear Constraints WELQ). Let K be an APT-
logic program that uses only the frequency functions pfr and efr; the setWbérld

Equivalence Linear Constraints WELJK), contains exactly the following:

55

P
() bI2f 1 fr (PLE:G: 1) ~l=label(Py)g Vbl

(b) bI2f 1] fr (Pj;F;G; t) "I:IabeI(Pi)golbl u

3. ForF;" G:[t;u]

P
@ p fr(PEF G t)apeir)

P
(b) 5 fr(P;F G)0apeip) U

4. For all Ibl 2 f0Q;1gfrmula®itma for which there is noP; such thatlbl =

IabeI(Pi), Op = 0.

Example 2.3.7. WELQK yower) (based on progranK gower from Figure 2.4) is con-
structed using variablesk, for each of the2*# = 65;536 possible labels. Due to
constraint 4, at most 256 of these variables will be non-zero, since there a?&6
worlds to populate thes&b5; 536 possible equivalence classes. We will therefore be
able to eliminate all but at most256 of the variables from the representation al-
together, since they will be known to be zero in every possible solution. As such,
we only need to use the variables not eliminated via constraint 4 when constructing
WELQKower), and we will do so in this example. The only labels that will have
associated threads are those that are combinations of the labels for the wowgls

Wi, W, and ws (de ned in Example 2.3.2). With formula(K power) being:
fF, = fundlIn); F, = : fundlIn); F3 = fundtr) » fundIn); F4 = : (fundtr) » fund(In))g

these labels ardbl(wp) = 1010, Ibl(w;) = 0101, Ibl(w,) = 1001 and Ibl(ws) = 0101.
So, for any labelbl, each four digit sequence must d©1Q 0101, or 1001 Otherwise

there cannot possibly be a thread Th such that lapeh) = Ibl. In fact, since there

56

are only 3 labels for the worlds \{; and w;, being K power -€quivalent, share a label),
we know that when there are four time points, there are onBj = 81 variables that
can be non-zero in our linear program (one label at each time point). So, leaving out
the zeroing constraints and supposing each suFr)nIbl sums over those 81 variables
not known to be zero via the zeroing constraints, the set of linear constraints is:
WELQK poer) =

P
P
2. 0:025 i PIr (Thi; func(tr) ~ fung(In); : (func(tr) ~ func(In)); 1) % 0:03
=]
3. 0:95 b €fr (Thi; o (func(tr) ~ fung(In)); fung(tr) ~ func(in); 3) G 1
P
4. 0:05 i PIr (Thi; func(in); @ func(in); 1) ¢ 0:1

P
5. 0:99 bl €fr (Thi;: func(in); func(In); 2) % 1

Note that this set of linear constraints is substantially smaller thaBLQK power),
which used 256 variables wheWELQK power) USes only 81 variables and exactly the

same number of constraints (after removal of trivial zeroing constraints).
Proposition 4. For any APT-program K, WELQK) is solvable i K is consistent.

This approach can provide a substantial speedup. As we notedrker, the
number of partitions is bounded by 2K tmx which will often be much smaller than
the number of threads, #t/ = Further, the number of partitions is bound by the

number of threads, regardless of the size Kf.

Proposition 5. WELCrequires 2jKj + 1 constraints and at most23Xi tmx variables.

57

Algorithm 2 Compute consistency oK using WELC
WELC-CONSISTEN{IAPT-Program K)

1. Construct WELQK).

2. Attempt to solve WELQK).

3. If solvable, returnconsistent otherwise,inconsistent

This suggests Algorithm 2 for checking consistency Kf. The complexity of Al-
gorithm 2 comes from both creating and solvingVELC Proposition 5 gives the num-
ber of constraints required of a linear program to implemetVELC-CONSISTENT
Building WELC s also di cult: we have constraint 4, which requires the intusion
of the constraint ¥y, = O if there is no non-empty partition in T[] with label Ibl.

Unfortunately, this is an NP-complete operation.

Theorem 5. For APT-Logic Program, K, and labellbl, determining if there is non-

empty P; 2 T[k] such that labe{P;) = Ibl is NP-complete.

To properly construct WELG we must solve SAT for every subset dbrmula(K).
As formula(K) 2jKj, this amounts to O(23X) calls to a SAT solver. Assum-
ing O(2BL)) operations per SAT solution procedure, this operation wiltake time
O(23Ki+iBuly, However, as for most linear program implementations, theunning
time for WELC-CONSISTENTWiIll be exponential in terms of 7Kjtmax [79], the gen-
eration of world equivalence classes will be dominated MYELC tself. Therefore,
in most cases, Algorithm 2 will have a better big-O run time tharsolving the set of

straightforward linear constraints.

58

2.3.4 Frequency Equivalence

For constrained rules it is possible to develop a dierent seof linear con-
straints. Rather than considering equivalent worlds, we delop a partition of the
set of threads based on the value of the frequency functiontlvrespect to each rule
in the program. We will then create a new set of linear constir@s based on this
equivalence, as WithWELG in order to improve performance.

Therefore, the partitions will depend on the thread's relabnship to the prob-
ability interval [;], which we shall refer to as theérequency boundgor a given
rule. Due to the requirement of considering the frequency bods, this type of
thread equivalence will be referred to afequency equivalencand apply only to
constrained rules, though there are manipulations one camply to include anno-
tated formulas; we rst de ne an equivalence relation overhreads.

De nition 20 (Frequency Equivalence) For threads Th, and Th,, and constrained
ruer = F ,'fr G:[t;u;;], we say Th is r-frequency-equivalent to Th
(denoted Thy "Thy) i (fr(Thy F; G; 1) : fr(Thy F; G; 1)).
For APT-Logic Program K containing only constrained conditionals, we say Th
is K-frequency-equivalent to Th (denoted Thy X Thy) i for all rules r 2 K,

Thy " Tho.

Example 2.3.8. Consider rule scandalfffr: scandal: [1;0:89 0:93 0:8; 1:0] from

Figure 2.1, where we usedPT-Rules to represent the behavior of stock price based

on news reports. LetKy.x be anAPT-program containing exactly this rule. We will
consider the set of atoms to consist only eicandaland t,,,x to be3. In Figure 2.7

59

Thread pfr (Th; scandal
: scandgll)
hscandalscandglscandall 0
hscandalscandal: scandall 1/2
hscandgl: scandglscandal 1
hscandal: scandgl: scandal 1
h: scandglscandalscandal 0
h: scandglscandal: scandal 1
h: scandgl: scandglscandal 1
h: scandal: scandal: scandal 1

Figure 2.7: For a set of atoms consisting afcandgland t,,,x of 3 time points, the
above chart shows thepfr for all possible threads based on a program consisting
only of rule scandalffr: scandat [1;0:89;0:93 0:8; 1:.0] from Figure 2.1. Figure 2.8

groups these threads in frequency equivalence classes basegfr.

60

fi
Kfrex = fscandalﬁ”: scandal: [1; 0:89; 0:93; 0:8; 1.0]g

T[Kfr-ex] =

hscandal: scandalscandal;

hscandal: scandal: scandail;

8 8

3 Ei= h: scandalscandal: scandalil; ;
% h: scandal: scandalscandail;

3 :

I NI ©
| NRKARRRRKIRKIRRARRARIAN O

h: scandal: scandal: scandal :

hscandalscandalscandall;

N/ ©

hscandalscandal: scandail;

W/

h: scandalscandalscandal

Figure 2.8: For a program consisting only of rulescandal ffr: scandal :
[1;0:89; 0:93 0:8; 1:0] from Figure 2.1, we have frequency equivalence clasEgesand

E, based on thepfr for all possible threads seen in Figure 2.7.

61

we compute the pfr based on this single rule for all possible threads. In Figure 2.8 we
can then group these threads into two equivalence classes, those whose pfr is within
[0:8; 1] and those whose frequency is outside this range.

For instance, threadshscandglscandalscandal and hscandglscandal: scandal
both have a pfr less thaf:8. Therefore, we have thabscandglscandaglscandal Kirex

h: scandglscandaglscandal.

The relation X satis es several common properties of relations.

Proposition 6. For any constrained APT-logic programK, ¥ is re exive, sym-

metric, and transitive.

Therefore K is an equivalence relation, and we can partitiom (the set
of all possible threads) into equivalence classes accoglito a given K. We let
T[X] be this partitioning, where each seE 2 T[X] contains only K-frequency-
equivalent threads. We then assign each sé&t a binary string str(E) of length m
(the number of constrained formulas inK) where digiti is 1 if for all Th 2 E,

i fr(Th, Fi:G;; t,) iy and O otherwise.

Example 2.3.9. In Figure 2.8 we see a partitioning of the thread3 [=] with
two partitions: E; and E,. The associated binary strings are:str(E;) = 1 and
str(E,) = 0. Notice that we only have two frequency equivalence classes of threads,

which is only 25% of the 8 threads we had originally.

In the following linear program, we introduce variables;, for each binary string

b of length jKj .

62

De nition 21 (Frequency-Equivalence Linear Constraints)For constrained APT-
Logic Program K, the set of Frequency-Equivalence Linear ConstraintSELQK)
contains only the following:

P
1. garp ¢y Vsr(e) =1 (wherestr (E) is the binary number that labels frequency

equivalence clasg)

2. For all lengthjKj binary stringsbif there isnoE 2 T[K]suchthatstr(E) = b

thenv, =0

f . .
3. Forall il Gi:[tiius i il2K, s2oams=1 Vs Ui

Theorem 6. For constrained APT-Logic Program K, K is consistent i there is a

solution to FELQK).

As FELCprovides a correct result for consistency, we can use it to\agop the

consistency-checking algorithnFELC-CONSISTENTEhown below.

Algorithm 3 Compute consistency oK using FELC
FELC-CONSISTEN{APT-Program K)

1. Construct FELGK).

2. Attempt to solve FELQK).

3. If solvable, returnconsistent otherwise,inconsistent

If the frequency equivalence classes of threads for a givewgram are known,

FELCalso o ers an improvement in complexity ovelSLC

Proposition 7. FELCrequires 2jKj + 1 constraints and 2 variables.

63

Example 2.3.10. Consider the APT-Program Kgox from Figure 2.1. Let B be
the set of atoms seen in that program (heng8_j =5). We consider atpy.x Of 4.
From Proposition 1, we know that usingSLCto determine the consistency oK siock
would require7 constraints and 2?° = 1;048 576 variables. We show below a set of
linear constraints based orFELC below that requires? constraints and only2® = 8

variables. For the programK gk, We have the following linear constraints:

For rule scandaﬁfr: scandal [1; 0:89;0:93; 0:8; 1:0]

0:89 Voo1 + Vo11 + Vio1 ¥ V111 0:93

For rule secrumor” earnincr(10%) Ffr stockdecr(10%): [2; 0:65; 0:97; 0:7; 1.0]

0:65 Voi0+ Vo1 + Vio+ Viir 0:97

For rule
secrumor” earnincr(10%) 5’” stock decr(10%)* cfo_resigns [2; 0:68; 0:95; 0:7; 0:8]

0:68 Vioo + Vio1 + V1o ¥ V111 0:95
Vooo + Voo1 + Voio + Vo11 + Vioo + Vior + Viro+ Viin =1

The running time of consistency checking vi&ELCis independentof the num-
ber of atoms or time points or number of worlds. Thus, even thugh it runs in time
exponential in jKj, it will in many cases run faster thanSLG which runs in time
linear in jKj and exponential in the number of worlds or the number of timeqints.
Further, since the size oK, the number of worlds, and the number of time points
are all known in advance, one can tell which approach will bedter dynamically,

and dispatch the smaller, faster linear program.

64

However, as withWELG signi cant computation cost is required to construct
the linear constraints, speci cally in identifying the frequency equivalence classes
that are empty. We refer to the obvious, exhaustive, and exachethod for identify-
ing empty frequency equivalence classes as the Brute Forcedumency Equivalence

Class Algorithm or BFECA

Algorithm 4 Find Frequency Equivalence Classes of Constrained Progrdfn
BFECAAPT-Program K)

1. Generate all possible threads.

2. For each thread,Th, for all i, computefr;(Th; Fi; Gj; t;).

3. Determine for each thread,Th, for each rule,r;, if the associated frequency

function, fr; for Th falls within the range [i; i].

4. Based on the result of step 3, determine which frequencyugealence classh

belongs to.

5. After all threads are generated, return EMPTY if there are o threads found

for a given frequency equivalence class is empty and OK othase.

As BFECA exhaustively considers all threads, we have the followingitial

proposition concerning correctness.

Proposition 8. For each frequency equivalence clags if C is empty BFECAre-

turns EMPTY; otherwise, if C contains at least one threadBFECAreturns OK.

For each thread,BFECAcalculates the frequency function with regard to each

65

rule. Hence, for each of thelBuitmx threads, it calculatesjKj frequency functions.

This leads us to the complexity result below.

Proposition 9. The complexity ofBFECAIs:
O 2Buitma F(tn.) jKj

whereF (thax) is de ned as follows. Suppos@éme; is the time required to compute

fri(Th;Fi; Gi; ti). Then F(tmax) equalsmax; (time;).

Note that if F(tyax) is linear, then the complexity of nding the frequency
equivalence classes and then performiELCis still better than SLC. The domi-
nating term in the complexity of FELChas an exponent ofB_j tmax When BFECA
is used. SLG on the other hand, will have an exponent of:3 jB_j tmax for most

linear program solvers [79]. The following example showsWw®FECAworks.

Example 2.3.11. Consider theFELCconstraints set up forK sk in Example 2.3.10.
Look at rulessecrumor” earnincr(10%) 5’” stockdecr(10%): [2; 0:65; 0:97; 0:7; 1:0]
and secrumor® earnincr(10%) ? " stock decr(10%) cfo_resigns [2; 0:68; 0:95; 0:7; 0:8].
For a given thread, Th, consider the pfr's associated with those rules. Let =

pfr (Th; secrumor® earnincr(10%); stock dec10%); 2) and p, = pfr(Th; secrumor®
earnincr(10%); stock dec(10%) " cfo_resigns2).

We note thatp, must be less than or equal tp, as the G formula for both rules
di ers only by one conjuncted atom. Therefore, there is no possible Th such that
p. > p1. Hence, variables/;oo and vyo; from the FELCconstraints in Example 2.3.10

must be set to zero.

66

To nd such variables,BFECAcalculates the frequency function for all possible
threads. However, withSLC-CONSISTEN,Tthe dominating term in this example
requires 2’° operations, whereBFECA requires only 22° operations. Note that the

complexity of BFECAoften will dominate the complexity oFELC-CONSISTENT

As suggested earlier-ELCcan be used on programs that consist of both con-
strained rules and annotated formulas. We can include anraied formulas in our
constrained program by writing rules that are essentially quivalent to annotated
formulas, as described earlier through use of the Query Fresncy Function in Def-
inition 14.

Note that if the PCD conditions are met (Page 46), we can oftenebguaranteed
that all FELCequivalence classes will be non-empty, making tiBFECAalgorithm

unnecessary. See the Appendix for a complete discussion o$ tbpecial case.

2.3.5 Combining World and Frequency Equivalence

We have introduced two improved methods for computing corstency: FELC-
CONSISTENT/BFECAand WELC-CONSISTENTWe now introduce a hybrid ap-
proach that uses the world-equivalence classes WELCto ease the computation
necessary to compute the frequency-equivalence classesded in FELC World-
equivalence can be used to determine if a frequency equivede class is empty or
not. The intuition is simple: we follow the approach oBFECA generating the set
of threads and nding the frequency function for each one. Hamver, rather than

generating the set of threads, we generate the set of world-bdsthread partitions

67

and nd their frequency functions. As shown in the discussioof WELGC the num-
ber of world-based thread partitions can be considerably Es¢han the number of
threads. Hence, we present world equivalence for nding fyeency equivalence, or

WEFE

Algorithm 5 World Equivalence for nding Frequency Equivalence Classeof Con-

strained ProgramK
WEFHAPT-Program K)

1. Find the world equivalence classes based farmula(K).
2. Generate all world-equivalence based thread partitiorier K.

3. For each world-equivalence thread partition, P, for all i, compute

fri(P; Fi; Gi; ti).

4. For each rule,r; let IN; be the set of thread partitions such that

fri(P;Fi; Gi; ti) i. For each rule, letOUT, be all partitions not in IN;.

. T
5. For string s 2 [0;1]X let the set PCLASSs be de ned as s=1 INi \

T
o OUT .

6. For each clasgls return EMPTY if PCLASS; ; and OK otherwise.

As WEFEexhaustively considers all world equivalence based threpdrtitions,

and each thread belongs to exactly one partitiol\WEFE provides a correct answer.

Proposition 10. If a given frequency equivalence class is empWEFE returns

EMPTY. If there is a thread in a given frequency equivalence clas8/EFE returns

68

OK.

The computational complexity of this algorithm is dependetnupon the num-
ber of thread-partitions resulting from world-equivalene. As stated before, this is
22K tmax - Fyrther, the cost of calculating the frequency function foeach thread is
only O(tmax) as checking the satis ability of the F and G formulas in a rule by a
world equivalence class is a trivial operation, since thetssfaction is pre-determined

when the world-equivalence classes are generated.

Proposition 11. The complexity of WEFEIis

O 22 tmax g K]

when the set of world-equivalence classes ¥oris known.

WEFE/FELC-CONSISTENTS generally preferable for checking the consistency
of constrained programs: because it considers threads on arld-equivalence basis
rather than individually, it should generally have a shorte run time than BFECA
even taking into account the costs of constructing world-edvalence classes. We

illustrate this in the following example:

Example 2.3.12. Suppose we want to buildELC constraints for Kge as we did
in Example 2.3.10 wherdn,x = 4. We note that formula(Kseck) consists of the

following:
1. scandal

2. : scandal

69

3. secrumor” earnincr(10%)
4. stockdec(10%)
5. stockdec(10%) ™ cfo_resigns

Although the number of world equivalence classes, based on forifida.) would

be 2°, which is also the number of worlds due to there only beiB@toms referenced

in the program, we note that many of the world equivalence classes are empty. For

example, we know that there can be no world that satis es both of the rst two formu-

las, which immediately reduces our number of world equivalence classes by a factor

of two. Further, there can be no world that does not satisgtock deci10%0) but sat-

is es stockdec(10%) " cfo_resigns Hence, the number of world equivalence classes

is 12 in this case, a signi cant reduction from the32 worlds originally considered.
Therefore, WEFE only considers12* = 20;736 world-equivalent threads, as

opposed toBFECA which considers32* = 1;048 576 threads. Note that if the

world equivalence classes are known, this costWEFE may still dominate FELC-

CONSISTENT This is a vast improvement over th@’® operations required bySLC-

CONSISTENT

2.4 Entailment by APT -logic programs

Now that we have dealt with consistency, we can explore the iss of entail-

ment, which is de ned in the usual way.

De nition 22 (Entailment). Let K be anAPT-logic program,r be a rule, andaf be

70

an annotated formula. We say thaK entails af i for all models | of K, | F af,

and thatK entailsr i for all models | of K, I E r.

Example 2.4.1 (Entailment). Recall that in Example 2.3.8 we presented the fol-

lowing APT-Program:
Kfrex = fscandaﬁ’fr: scandat [1;0:89;0:93, 0:8; 1.0]g
Suppose we form the following rule as a hypothesis.
Mhyp = scandaffr: scandat [1; 0:88;0:94; 0:8; 1.0]

DoesK.ex entail rpy,? A quick examination of the only rule in the program and the
hypothesis tells us that except for the probability bounds, they are the same. Notice
that the rule in Kg.ex has probability boundg0:89; 0:93] and the probability bounds

of rnyp are a superset,[0:88 0:94] Therefore, we know that any interpretation in
which the sums of the probabilities of threads with a frequency ratio betwf8; 1:0]
sum to a quantity in[0:89 0:93], are also in [0:88,0:94] So, by the de nitions of

satisfaction and entailment, we can say tha.ex entails rpyp.

The following result shows that checking entailment of an amtated formula by an

APT-logic program is coNP-hard.

Theorem 7. Given anAPT-logic programK and an annotated formulaaf , deciding

if K entails af is coNP-hard injBj (the number of atoms).

In the next chapter, we prove a matching upper bound for the caplexity of
this problem.

71

2.4.1 Linear Constraints for Entailment

We shall now provide algorithms for computing entailment bsed on the linear con-
straints SLG WELC and FELC In all cases, the method is straightforward: we
determine the minimal and maximal probability for the annoated formula in in-
terpretations satisfying the original knowledgebase by mimizing and maximizing
the appropriate sum subject to some set of linear constramt Due to the fact that
any annotated formula can be viewed as a constrained rule, wél not describe the

entailment of annotated formulas in this section.

Algorithm 6 Entailment of Rule r by Program K with SLC
SLC-ENTAPT-Program K)

fr fr

1. If r is unconstrained, { = F ;' G : [t;";u]), create ruler®= F ;" G :

[t;°%uq where % ulare variables.

2. If r is constrained, (= F ,Ifr G:[tu;;) createruler®= F Jfr G:

[t;°%u® ;]where % ulare variables.
3. Create set of linear constraintSLQK [f r%).
4. Let “%be the minimization of *?subject to SLC(K [f r%).
5. Let u®be the maximization ofu® subject to SLC(K [f r%).

6. If[%uq [;u] return ENTAILS otherwise return NOT ENTAILS.

We can show Algorithm 6 to be correct and to take time exponerti in jB-j

(as expected due to Theorem 7).

72

Proposition 12 (Checking Entailment using SLC). For unconstrained ruler =
F ;fr G :[t;';u] or constrained ruler = F ,lfr G:[t;u;;]and programK,
SLC-ENTreturns ENTAILS i K entails r and returns NOT ENTAILS i K does

not entail r

Proposition 13. SLC-ENT requires solving at most two linear programs. Each

linear program has2jKj + 1 constraints and 28t itmax yariables.
We now give an example of how Algorithm 6 will run in practice.

Example 2.4.2. Consider APT-Program Kk introduced in Figure 2.1 withtpay =
4. Suppose we want to seelfgck entails the annotated formulaquery = earndeci(10%) :
[3; 0:50; 0:80]

First, we re-write the query as a rule usingjfr. Hence, query,, = TRUE?fr

earndec(10%) : [3;0:50; 0:80; 1; 1]. From this rule, we create query,. TRUE?fr

earndec(10%) : [3; % u® 1; 1].
We now consider all possible threads giv&ye[f query?,.gandtm. = 4. As
there are 6 atoms in the union of the program and query, we ha?&* = 16;777.216

possible threadsjT j = 224). Hence, we set up the following linear constraints:

For rule scandaﬁfr: scandal [1; 0:89; 0:93;0:8; 1.0]

P
0:89 Th; 2T T Y
hj2T o-g pfr (Th; ;scandal: scandatl) 1:0 :
0:93 Th; 2T T
hj2T g8 pfr (Th; ;scandal: scandatl) 1:0 !

For rule secrumor” earnincr(10%) fffr stockdecr(10%): [2; 0:65; 0:97; 0:7; 1.0]

P
0:65 o ot . Vi
i 0:7 pfr (Th; ;secrumor” earn.incr(10%);stock_decr(10%);2) 1:0
P
0:97 Th 2T . Vi
i 0:7 pfr (Thj;secrumor” earn.incr(10%);stock_decr(10%);2) 1:0

73

For rule

secrumor” earnincr(10%) Efr stockdecr(10%)" cfo.resigns [2; 0:68; 0:95; 0:7; 0:8]
]

V.
Thj2T .7 pfr (Thj ;secrumor” earn.incr(10%);stock_decr(10%)" cfo_resigns2) 0:8]
P

V.
Thj 2T .7 pfr (Thj ;secrumor” earn.incr(10%);stock_decr(10%)" cfo_resigns2) 0:8 !

0:68

0:95

For rule queny®,, = TRUES" earndec(10%) : [3; "% u% 1; 1]

. P
0 .
Th 2T Vi
j 1 qgfr (Thj;TRUE;earn_decr(10%);3) 1:0
o P
u Th; 2T Vi
i 1 qfr (Thj,;TRUE,earndecr(10%);3) 1.0
P ..,
<2 — 1.
i Vv =1

As it turns out, the minimization of “%is 0 and the maximization ofu®is 1. Since

[0;1]16 [0:5;0:8], we can say thatk ok doesnot entail query.

SLC-ENTuses the SLC set of linear constraints. However, one could idas
substitute WELCor FELCfor SLC in SLC-ENT We present an algorithm for alter-
nate linear constraints,ALC-ENT, that mirrors SLC-ENTand leverages these other
constraints in the appendix.

There is a further improvement that can be made in practice: wve solve the
linear program once, and nd that the minimization of *°is less than", we have
determined that the rule is not entailed by the program, and @ving the linear

program again is not necessary to decide entailment.

2.5 Applications of APT Logic

APT-logic programs have many possible applications; in this sen we will

74

Algorithm 7 The APT-Extract Algorithm.

APT-Extract (T, ActCond , MaxBody , , SuppLB, ,STAT-Test)

1. Rules = ;;

2. for each combination (environment variable ;value) choose 1;:::; MaxBody f

3. let Body be the current combination; supportBody := 0; supportBoth := 0;
4. for t =1 to maxTime (T) f
5. bodyHappened:= false;
6. if Body is true at time t then
7. bodyHappened:= true; actHappened:= false;
8. ford=1to f
9. if ActCond is true at time t + d then actHappened:= true;
10. break for;
11. g
12. if bodyHappened then supportBody := supportBody + 1;
13. if bodyHappened and actHappened then supportBoth := supportBoth + 1;
14. g
15. if supportBody <> 0 then con dence := supportBoth / supportBody ;
16. else con dence = 0;
17. if (supportBoth > suppLB) ~ STAT _TEST (Body;ActCond) then
18. add Body ';3" ActCond :[;condence ; condence +]to Rules;
19. ¢

20. return Rules;

75

brie y describe an e ort to learn conditions under which varous terror groups took
various actions, in the form of APT-programs. We assume that the data is given
in the form of a table that contains two kinds of attributes: action and environ-
ment, and that each tuple represents the values of each of thesdriutes for a
certain time point. A good example of this kind of data is the Minorities at Risk
Organizational Behavior" (MAROB) data set [181]. This data st has identi ed
around 150 parameters to monitor for about 300 groups arournbe world that are
either involved in terrorism or are at risk of becoming fulledged terrorist organi-
zations. The 150 attributes describe aspects of these grayguch as whether or not
the group engaged in violent attacks, if nancial or militay support was received
from foreign governments, and the type of leadership the gip has. It was a sim-
ple task to divide the attributes into actions that could be taken by the group (.e.,
bombings, kidnappings, armed attacks, etc.) and environmth conditions (i.e., the
type of leadership, the kind and amount of foreign support, véther the group has a
military wing, etc.). Values for these 150 parameters are aNable for up to 24 years
per group, though it is less for some groups(g., groups that have been around
for a shorter duration). For each group, MAROB provides a tald whose columns
correspond to the 150 parameters and the rows correspond teetyears. There are
many social science data sets that use such data. These indihe KEDS data set
from the University of Kansas that tracks country stability data (rather than terror
group data) [151] and the Political Instability Task Force (RTF) data [57].

The APT-Extract algorithm provides a basic approach to extractingAPT-

76

rules 6. The inputs are: a table of historic data, a condition on an don variable
(variable name and value), a maximum size for the body, a valder , a lower
bound for the support of the rule, and a real number 2 [0; 1] that will determine
the width of the probability annotations for the extracted mles, and an arbitrary
statistical test (e.g. a t-test or something based on p-values in statistics) seted by
the user that measures the correlation between the valuestbke body of a possible
rule and the head. We use the standard measurements of supgpand con dence
from the literature on association rules: given tabld, the support of a condition
C in T is the number of tuples for whichC is true; given conditionsC; and C,,
the con dence in the fact that C; is accompanied byC, is the ratio of the support
of C; * C, to the support of C;. As an example of the kind of rules that can be
extracted by this algorithm, some of the rules extracted fio the data for Hezbollah

are given in Figure 2.2.

2.6 Chapter 2 Related Work

In addition to past work on probabilistic logic programming[130, 129], proba-
bilistic logic programs were studied in [84], [86], and [994, 95], who showed how to
introduce various probabilistic dependencies into probdlstic LPs. [111, 112] made
major contributions to bottom up computations of probabiligic LPs.

[98] and [66] were among the rst to provide a logic to integta time and prob-

SNote that this algorithm is not a novel one, and simply performs calculatiors to capture
interesting relationships present in the data in order to build rules. More complex algorithms for

rule extraction are outside the scope of this dissertation.

77

ability. [78] also studied the integration of time and probaliity in order to facilitate

e cient planning. He was primarily interested in how the prolability of facts and
events change over time. [62] developed a logic for reasgnabout actions, prob-
ability and time using an interval time model. [30] develop® methods to extend
possibilistic logic to handle temporal information. This Igic associates, with each
formula of possibilistic logic, a set of time points describbg when the formula has a
possibilistic truth value. [63] studied the semantics of esoning about distributed
systems where uncertainty is present using a logic where aopess has knowledge
about the probability of events for decision making by the mcess. [44, 43] devel-
oped logics of time and belief to model the behavior of disuted systems, while
[169] developed a framework that integrates beliefs, timeprmmitment, desires, and
multiple agents. [13] developed a language to reason aboatians in a probabilistic
setting; their models use static and dynamic causal laws tetper with background
(unknown) variables whose values are determined by factorstrin the model. Build-
ing on top of past work by [34], [36] introduce heterogeneotemporal probabilistic
agents to model agent behavior and develop a model theory angipoint semantics
focusing on agents built using legacy code.

Though there has been extensive work on temporal reasonirtige key di er-
ence betweerAPT logic programs and past works in veri cation [96, 42, 173, 256,
97] is the use of frequency functions in our work to de ne thedquency with which
a given formulaG holds (some given time) after a given formul& holds. We show
that such a de nition can be given in many di erent ways and, réher than commit-
ting to one such de nition, we provide axioms that any frequecy function should

78

satisfy. A result of our introduction of the frequency fundbn is that the probability
an event occurs at timet is dependent on the events that occur in interval [1] and
interval [t; t max]-

APT-Logic distinguishes itself from other temporal logics in thfollowing ways:

1. It provides for reasoning about probability of events witin a sequence of

eventsand probabilistic comparison between sequences of events.
2. Future worlds can depend on more than just the current watl
3. It provides bounds on probabilities rather than just a poihprobability.

4. It does not make any independence assumptions.

2.6.1 Markov Decision Processes

Many temporal logics, whether probabilistic or not, make wesof some sort of
state transition system as an underlying structure. A statéransition system is said
to conform to the Markov Property if each transition probability only depends on the
current state [146]. We demonstrate that whiléAPT-Logic Programs maintain much
of the expressiveness of most state-transition systemsgthalso have the ability of
expressing non-Markovian sequences of events. Speciygdlhe semantic structures
used in APT-Logic (worlds, threads, interpretations) can be represesd by state

transition systems when the following restrictions are apied:

1. As APT-Logic only deals with nite temporal sequences, only the st tyax

states generated by an MDP will be considered.

79

2. By de nition, each world represents a unique set of atomsTherefore, a cor-
responding state transition system must have the restriain that each state

is uniquely labeled;i.e., each state in the MDP represents exactly one world.
3. Each transition in the MDP takes one unit of time.

Our notation for an MDP most resembles thereactive probabilistic labeled
transition system (RPLTS) [25, 56, 97]. Below, we will formally de ne an MDP
with respect to a set of actionsAct, and a set of atomic propositionsB,. When
comparing MDPs to APT-Programs, we will assume that theAPT-Program uses
the same set of ground atoms, and that each state in an MDP hasuaique atomic
label. In this manner, we can equate MDP states with worlds itp-interpretations.

Hence, an MDP is de ned as follows:

De nition 23 (MDP). A Markov Decision Process (MDP) consists of a 4-tuple

L =(S; ;P;lIbl;s;) where:
S is a nite set of states
S Act S is the transition relation
P : I [0;1]is the transition probability distribution, which satis es:
P
852 S;8a2 ACt o (saep P(Sia8) 2 [01]
P
852 S;8a2 Act (9s15;a,9) 2)) a2 P(Sa)=1

Ibl : S! 2Bt is the labeling of each state that speci es the set of propositions that

are true in a state. Each state has a unique set of propositions.

80

s; 2 S is the initial state.

When an MDP is employed with policy , it means that in state s;, action

(si) is taken. An MDP that uses only a single policy is often refeed to as a
Stochastic Processor Markov Process With the de nition of an MDP and notion
of a policy, we can now state what it means for a tp-interpretadn to satisfy an

MDP.

De nition 24. Let L be an MDP, be a policy,I be a tp-interpretation, andtax
be the maximum value of time. We say thdt satis es the pair (L;) i: for all
sequences of = ta States,seq s;! :::! s! i1 s, there exists a thread

Th such that:

For everys; in seqg a2 Ibl(s;)) i a2 Th(i)

Qinzll P(si; (si);si+1) = 1(Th)

Further, we say that an interpretation | satis es an MDP L and set of policies
POL i there exists a policy 2 POL such thatl F (L;).

We can extend the notion ofentailment described earlier to MDP's and de-
scribe entailment relationships between MDP's andPT-Programs. Based on this
idea, we now can de ne a notion okquivalencebetween an MDP and anAPT-

Program as follows.

De nition 25 (Equivalence/Entailment). An MDP L and set of policies POL is
equivalent to APT-Program K when tp-interpretation| F (L; POL) i | F K.
(L; POL) is said to entail K if for all tp-interpretations 1, if 1 E (L; POL) then

81

| F K. Finally, K is said to entail (L; POL) if for all tp-interpretations 1, if | F K

thenl| = (L; POL).

With this notion, given an MDP and policy, we can now create a\PT-Logic
Program such that the set of satisfying interpretations fothe MDP and policy is
the same as the set of satisfying interpretations for th&PT-Logic Program. We
use these notions of entailment and equivalence to specifietsemantic relationship
betweenAPT-Logic: if for any APT-Program there is an equivalent MDP and a set
of policies, then we will consideAPT-Logic to be no more expressive than MDPs.
Soon we will see this is not the case, and th&PT-Logic is in fact more expressive
than MDPs.

First however, we provide the following formula notation.F is a mapping of
states to formulas such thatF (s) (Va2|b,(s) a)” (V beibi(s) - B)- Second, we provide
the following probability measurement of a-length sequence starting with states;
and ending with states;. We use the notations ! ! s°to denote the set of sequences

of t transitions from s to s°

De nition 26 (Sequence Probability Measure)Let L be an MDP, be a policy,
S1; S be states, and be a positive integer. Thesequence probability measureSP M
is de ned as follows:
w s #
SPM; (si;t) = P(si; (si):si+1)

syl tlg Q=1

So, the SPM totals the probabilities of all sequences from ¢hinitial state to

st int 1 transitions.

82

Next, we will present Algorithm 8 that, given an MDP and set of pbcies
(L; POL), creates anAPT-Program K such that (L; POL) entails K. This construc-

tion is guaranteed to be correct by the following theorem.

Algorithm 8 Generate APT-Program that is entailed by a given MDP and set of

policies.
MAKE-APT(MDP L; PolicySet POL)

1. Create annotated formulaF (s;) : [1;1; 1].

2. For each states, and each time pointt, there arejPOLj SPM's, one for each

policy. Let min(SPM_. (s;t)) be the minimum such SPM.

3. For each states, and each time pointt, let max(SP M. (s;t)) be the maxi-

mum SPM.

4. For each time pointt 2 [1;tnhax], and each states;, create the following anno-

tated formula: F(s;) : [t; min (SPML. (si;t)); max(SPM.. (si;t))].

Theorem 8. If an interpretation | satis es MDP L with set of policiesL, then it

satis es APT-Program K generated fromMAKE-APT.

Clearly, if we restrict the MDP to a single policy, then we carcreate anAPT-

Program usingMAKE-APT that is equivalent to the MDP and single policy.

Corollary 1. An interpretation | satises MDP L with policy , i it satises

APT-Program K generated fromMAKE-APT.

83

It is interesting to note, however, that although we can craa an APT-Logic
Program that is entailed by a given MDP and set of policies, weannot always create
an APT-Logic Program that entails an MDP and a set of policies. The intuition is
that, in certain circumstances we are guaranteed that aAPT-Logic Program has
an in nite number of satisfying interpretations. If an MDP and set of policies are
created such that these circumstances hold, then creatingn @PT-Program that
entails the given MDP and set of policies is impossible. Henceewst make the
claim of the special circumstance that guarantees an in nig¢ number of satisfying
interpretations. The claim is that for APT-Program K, if there exists satisfying
tp-interpretations for K, I, I, such that for threadsTh,, Th,, 1,(Th;) = 1 and
1,(Thy) = 1, then there is an in nite number of satisfying interpretations for K. We
describe why this is true in the following paragraph.

Letc2 (0;1) andb2 (c;1). Let I3 represent an in nite number of interpreta-
tions such thatl3(Th;) = bandI3(Th;) =(1 b). K is then satis ed by an in nite
number of interpretations if all possiblel 3 interpretations satisfy K. Suppose by

way of contradiction that somel ; does not satisfyK. We have two cases:

Case 1: There exists an unconstrained rule;, such thatl; 6] r.
Letr = F ;fr G:[t;;u]. Leta; = fr(Thy;F; G; t)anda, = fr(Thy F; G; t).
Leta; a,. By the de nition of satisfaction, we know that [a;;a,] [;u]. By
the de nition of satisfaction, we know that i ot 13(Th)fr(Th; F;G; t) <®
or P ot 13(Th)fr(Th; F;G; t)>u aslz; 6 r. Therefore,ba;+(1 b) a, <~

orba+(1 b a>u. However, clearlyb a;+(1 b a (ai;ay) which

84

impliesb a;+(1 b a, [;u]. Hence, we have a contradiction.

Case 2: There exists a constrained rule; such thatl; 6 r.

Letri=F ,'fr G:[t;;u;;]. We have three cases:

Case 2.1: Th;Th, 2 ATS
Then,” 1 u and the probabilities of both threads summed together
must fall in this probability bounds. As 13(Thy) + 13(Thy) =1, I3 then

must satisfy r;, so we have a contradiction.

Case 2.2:Either Th; 2 ATS; or Th, 2 ATS
If © 6 1, then there existsc 2 (0; 1) such that there is an in nite number
of interpretations as per the de nition of I3 such that Iz F r;. If = =1,

then either I, or I, does not satisfyr;. Hence, we have a contradiction.

Case 2.3: Th;Th, 2 ATS
In this case, any interpretation that assigns probabilitis only to Th; and

Th, satis es r;. Therefore,l3; must satisfyr;.

Now we consider a very simple MDP with only two policies. We sélat this MDP
causes the above mentioned circumstances to occur. Hencegcaenot construct an
APT-Program that entails the MDP and set of policies.

Let L be an MDP, the set of atomsB,, befag, S = fs;;s,g be such that
Ibl(s;) f agandlbl(sy) ; , Act = fx;yg, P(s1;%;81) =1 and P(s1;X;s2) =0,

P(s1;y;s) =0, and P(s1;Y;s) = 1. We de ne the set of policies,POL = f 1; .9

85

such that 1(s;) = x and ,(s1) = y. Let thax = 2. We claim that it is impossible
to construct an APT-Program that entails (L; POL).

So, we can see why there does not exist &PT-Program that entails the
MDP described above. Assume by way of contradiction that we oareate anAPT-
Logic ProgramK such that all interpretations that satisfy (L; ;) or (L; ») satisfy
K. As each MDP-policy tuple is satis ed by exactly one interpredtion, we have
the following threads and interpretations based on the set eforlds W = fw;; w,g

wherew; Ibl(s;) and w, Ibl(s,).

Thread Thy h wy;w,i. Let I, be an interpretation such thatl,(Th;) = 1 and

sets the probability of all other threads to zero.

Thread Th, h wy;wyi. Let I, be an interpretation such thatl,(Th,) = 1 and

sets the probability of all other threads to zero.

Hence,APT-Logic ProgramK must be satis ed by exactlyl; and I,. However, by
the claim above, any program satis ed by these two interpreitions is also satis ed
by an in nite number of interpretations, so we have a contratttion.

So, based on the earlier de nition ofequivalence while we can construct an
equivalent APT-Program for an MDP and a single policy, we cannot do so for an
MDP and set of policies. However, is the opposite true? It ist would be trivial to
construct an MDP that entails an APT-Program, since the null MDP can accomplish
this. This highlights a di erence between MDPs andAPT-Logic Programs: we
cannot have rules that saythis relationship holds with probabilityp; or probability
p.. However, we can express ranges of probabilities.

86

While we cannot create anAPT-Program that entails a given MDP and set
of policies,APT-Programs can be satis ed by tp-interpretations that cannotsatisfy
any MDP. In other words, there are APT-programs and tp-interpretations that
satisfy those APT-programs where there is no MDP that is satis ed by that tp-
interpretation. Consider the set of ground atom®$, = fag and t,,ox = 4 and the

below APT-Logic Program,K:
a:[111]
2’ :a:[10505] (oral™ a:[10505 11])

We included an alternate second rule to illustrate that thisype of expressiveness
result is true about both constrained and unconstrained pgyams. Consider worlds
w; f agandw, ; . Letl be an interpretation that assigns probabilities to the

threads below:
Thy hwy;wy;wy;wo;i, 1(Thy) =0:5
Thy hwy;wy;wy;wyi, 1(Thy)=0:5

It is trivial to show that | £ K. We claim that it is impossible to build an MDP L
with set of policiesPOL such that tp-interpretation | E (L; POL).

Let S = fs;;s,0 such that Ibl(s;) w; and Ibl(s;) w,. Suppose by way of
contradiction that | F (L; POL). Therefore, there exists a policy, 2 POL such

that | satises (L;). Hence, the following must be true:

P(s1; (s1);S2) P(s2; (S2);81) (S1; (S1);S2) = I4(thy)) =05

87

Figure 2.9: Left: Unrolled MDP in an attempt to create an MDP that satis es
interpretation | in the text. Notice how the sequencénfag;fg;fag;fagi must be
assigned a non-zero probability. Right: A standard represtion of the MDP on
the left. Notice that the MDP must allow for non-zero probabiity of threads that

are given a zero probability in interpretationl .
P(si; (s1);s1) P(s1; (s1)is1) (s1; (S1);81) = la(thp) =015

Refer to the left side of Figure 2.9 for a graphical represenitan of what follows. Let
P(s1; (s1);s2) = p. Then, by the de nition of an MDP, P(s;; (S1);s1)=1 p. By
the above equalities, 1 p> 0. Let P(sy; (Sp);S1) = r. Therefore,p? r = 0:5. Now
consider the sequenceeq s;! s,! s;! s;. The probability of this sequence
must be set to zero, by the de nition ofl. Then, P(seg = p r (1 p) = 0.
However, we know thatp r cannot be zero and we know that 1 p > 0. Hence, we
have a contradiction.

The above discussion illustrates the di erences between MDR&ad APT-Logic.
One could argue that the use of policies is overly restricevfor an MDP, i.e., that
perhaps the action should be decided based on time, or a condiion of time and

the current state. However, we can easily modify the above ctabased on time or

88

actions based on time and current state and obtain the samestdt. We suspect that
it is not possible to have an MDP that replicates amAPT-Logic Program without
breaking the Markov Property, or causing a massive increasethe number of states,

which also would change the assumption about the relationghbetween worlds and

states.

2.6.2 Comparison with Probabilistic Computation Tree Logic

(PCTL)

In this section, we show thatAPT-Logic rules dier signi cantly in mean-
ing from similar structures presented in PCTL [12, 64], a weknown probabilistic
temporal logic.

A derived operator in LTL with an intuition similar to that of our APT-Rules
was introduced by Susan Owicki and Leslie Lamport in [132].HE operator, known
as leads-to and an equivalent LTL formula are shown belowd and g are state

formulas).
(py @ G(p) F)

This formula intuitively says that if p is true in a state, theng must be true in the
same (or future) state. As Owicki and Lamport's operator is &#sed on LTL, it does
not describe the correlation betweemp and g with probabilities or with reference
to a speci c time interval; g merely must happen sometime after (or withjp. A

probabilistic version of CTL, known as PCTL [12, 64] introdues another operator

based on a similar intuition; the authors refer to this operar as \leads-to" as well.

89

This derived operator, and the equivalent PCTL formula, areshown below {; and

f, are state formulas).

fay of2 G (f1) F f2)

>1

Intuitively, this operator reads as \f, follows f; within t periods of time with a
probability of p or greater”. As PCTL formulas are satis ed by a Markov Proces&n
MDP with a single policy), satisfaction is determined by theransition probabilities.
So, to determine if a Markov Process satis es the above leattsformula, we must
compute the minimum probability of all sequences that starin a state satisfying
f, and satisfy f, in t units of time or less. Note that this is determined by the
transition probabilities of the Markov Process; hence, wiieer a Markov Process
satis es the lead-to operator depends on the interval betwa f, and f,, but not
on the total length of the sequence of states. So, if we limihé number of states
being considered, using an operator such & ;™ which PCTL provides to limit
consideration to only the rst t,a States, the Markov Process will satisfy the formula
regardlessof the value oft,«. Note that G ‘1"‘6‘* placed at the head of the PCTL has
no e ect on the satisfaction of the formula as there is alregda G path-quanti er
included at the beginning of the leads-to operator.

As previously described, the frequency function is often highsensitive tot .
Our two primary examples of frequency functionspfr and efr, are based on ratios
of numbers of worlds in a given thread. For example, if we crieaa thread Th on a
single atoma, we can see that for threadhfag; f ag; fgi , the value ofpfr(Th;a;: a;1)

is much greater than ifTh werehfag;fag; fg;fag;fag;fag;fagi. The fact that the

90

length of the thread has an e ect on the frequency function fther illustrates how
APT-Logic allows for reasoning beyond the restrictions of the &fkov Property.
The limited thread length forces us to consider worlds beferand after a time-
point we wish to reason about. If our probabilities were xedbased on transition
probabilities, they would not, and we would conform to the Mekov Property.

Even though there are syntactic similarities, in the Appendi we provide a

short example illustrating semantic di erences betweeAPT-rules and PCTL.

2.7 Chapter Summary

Statements of the form \Formula G is/was/will be true with a probability
in the range [;u] in/within t units of time after formula F became true" are
common. In this chapter, we have provided examples from fouronchains (stock
markets, counter-terrorism, reasoning about trains, and peer grids), but many
more examples exist. Further, the counter-terrorism logiprogram (described in
further detail in the next chapter) are more than mere exampte{ they are created
using an extraction algorithm and a real-world data-set. The could be used, for
instance, to describe when the health or environmental e &cof industrial pollution
may arise after a polluting event occurred, to the time takerfior a medication to
produce (with some probability) some e ects. In the same wayhey can be used in
domains as widely divergent as industrial control system®te ects of educational
investment on improved grades or graduation rates.

In this chapter, we have provided the concept of Annotated Plmbilistic Tem-

91

poral (APT) logic programs within which such statements can be express APT-
logic programs consist of two kinds of rulesunconstrained and constrained rules
with an expected value style semantics and a more ordinaryrsantics. Both types
of rules are parameterized by the novel concept offeequency function Frequency
functions capture the probability that G followsF in exactly (or within) T time units
within a thread (temporal interpretation). We show that this notion of \follows"
can intuitively mean many di erent things, each leading to adi erent meaning.
We propose amaxiomatic de nition of frequency functions which is rich enough to
capture these di ering intuitions and then provide a formalsemantics forAPT-logic
programs.

We then study the problems of consistency and entailment f&PT-logic pro-
grams. We show that the consistency problem is computatioly intractable and
is naturally solved via linear programming. We develop thee successively more
sophisticated linear programs for consistency checking astiow that they lead to
smaller linear programs (though not always). We also devel@psuite of complexity
results characterizing the entailment problem and providelgorithms to solve the
entailment problem.

A natural question that arises in any probabilistic logic franework is \Where
do the probabilities come from?" In order to answer this quésn, we develop
the (straightforward) APT-Extract algorithm that shows how APT-logic programs
can be derived from certain types of databases. We have agpliAPT-Extract to
extract APT-rules about several terror groups (further details on thesprograms are

provided in the next chapter).

92

Last, but not least, we have developed a detailed comparisbetween ourAPT-
framework and two well known frameworks: Markov decision pcesses [140] and
probabilistic computation tree logic [64]. We show the forer can be captured within
APT-logic program framework (but not vice versa). The latter ha a more complex
relationship with APT-logic programs, but cannot express intra-thread propesgs of
the type expressed vidAPT-logic programs.

We note that the algorithms of this chapter all rely on the saltion to a lin-
ear program with an exponential number of variables, which isoh practical for a
real-world implementation. Additionally, our complexity results of NP and coNP
hardness for consistency and entailment checking suggdsat this is an intractable
problem under the assumption that BNP. In the next chapter, we take a more
practical approach, resorting to approximation algorithns that provide sound, but

incomplete solutions to consistency and entailment probites for APT-logic.

93

Chapter 3

Annotated Probabilistic Temporal Logic:

Approximate Algorithms

In the previous chapter, we explored reasoning about an adgisrbehavior with
respect to time by introducingAPT logic. This framework allows us to reason about
the probability that an agent takes a certain action at a giva time based on a model
consisting of probabilistic rules. In that chapter, we showveethat the consistency
and entailment in APT logic are NP and coNP hard respectively. In that chapter, we
provided several sound and complete algorithms for these prebis, but due to the
complexity of the problem, these approaches are not viablerfa real-world system.
In this chapter, we take a more practical approach, creatingound, but incomplete

algorithms for the consistency and entailment problem'’s.

1This chapter is based on [156] which was completed in cooperation with Gardo Simari and

V.S. Subrahmanian.

94

3.1 Chapter Introduction

In the previous chapter, we have shown that there are numeroagplications
where we need to make statements of the form \Formul& becomes true with
50 60% probability 5 time units after formulaF became true." Statements of this
kind arise in a wide variety of application domains.

This chapter takes a more practical approach to the problenmassociated with
Annotated Probabilistic Temporal (APT) logic already presenin this dissertation.
Although the previous chapter presented algorithms for coistency and entailment
problems that are sound and complete, they are not practicébr general problems.
This chapter takes a more practical approach. We develop a point operator for
APT-logic that we prove to be sound. We can use this operator torrectly identify
many inconsistentAPT-programs { although we cannot guarantee a program to be
consistent by this means. Additionally, this operator can infeprobability ranges
for queries, but we cannot guarantee that they are the tightt possible bounds.
Most importantly, nding the xpoint of this operator is e ci ent to compute. We
also show that some of the techniques can also be adopted inoarsd algorithm for
non-ground APT-programs, where we only require a partial grounding.

We also implement an algorithm for the ground case and perfar experi-
ments on two data sets | the well known Minorities at Risk Organization Behavior
(MAROB) data set [10] that tracks behaviors of numerous ternogroups, and an-
other real-world data counter-insurgency data from the Ingute for the Study of

War [72] (ISW). We used the algorithmAPT-EXTRACT from the previous chapter

95

to automatically learn 23 APT-logic programs | no bias exists in thesé\PT-logic
programs as no one manually wrote themWe then conducted experiments using
those APT-logic programs and entailment problems were solved on an eage in
under 01 seconds per ground rule, while in the other, it took up to 1.3sonds per
ground rule. Consistency was also checked in a reasonableoant of time. To the
best of our knowledge, ours is the rst implementation of a system for reasoning
simultaneously about logic, time, and probabilities without making independence or
Markovian assumptions

The chapter is organized as follows. Section 3.2 extends thgntax and se-
mantics of APT LPs from the last chapter to add integrity constaints (ICs) as well
as probabilistic time formulas (ptf's) { a generalization dthe \annotated formulas”
from the previous chapter (also seen in [34]). Section 3.308¥s that consistency
and entailment in APT-logic are in-NP and in-coNP, respectively, matching the
hardness results from the previous chapter (identifying tlse respective problems as
NP-complete and coNP-complete). Section 3.4 describes oumpapximate xpoint
algorithm which is based on a sound (but not complete) xpoioperator. The
operator works by syntactically manipulating the rules in tle APT-program to it-
eratively tighten the probability bounds of the formula whee entailment is being
checked. We adapt the techniques for a consistency-chegkiand entailment algo-
rithms for non-ground APT-programs in Section 3.5 (note that these algorithms do
not require a full grounding of a program). In Section 3.6 werpsent our implemen-
tation of the xpoint approach to solving consistency and etailment problems for
ground programs. Finally, in Section 3.7, we provide an oveew of related work.

96

Before continuing, we note that applications such as thosébave use auto-
mated rule learning (e.g. using theAPT-Extract algorithm of the previous chap-
ter) to automatically learn relationships and correlatiols between atoms. In partic-
ular, the existence of speci ¢ such relationships make indendence and Markovian

assumptions invalid for these types of applications.

97

. fi
. secrumor”? earmncr(lO%)',{!)r stock decr(10%): [2; 0:65; 0:97; 0:7; 1:0]
An SEC rumor and a rumor of an earnings increase leads to a stock price dexase

of 10% in 2 days with probability [0:65; 0:97].

: f .
. secrumor” earnincr(10%) F'J ' stock decr(10%)* cfo_resigns: [2; 0:68; 0:95; 0:7; 0:8]
An SEC rumor and a rumor of an earnings increase of 10% leads to the CF(

resigning in exactly 1 days with a probability [0:5; 0:95].

. OC(cfo_resigny: [0; 1]

The CFO resigns between 0 and 1 timesif(e., [lo;up] = [0; 1]).

. BLK(secrumor) :< 4

An SEC rumor cannot be reported more than 3 days in a row {.e., blk = 4).

. (- secrumor”: rum.incr(10%)” : stock decr(10%)": cfo_resign$: 1"
(secrumor”™ rum.incr(10%)” . stock decr(10%)": cfo_resign$: 2"

(secrumor”: rum.incr(10%)” stock decr(10%)": cfo_resign$: 3"

(secrumor” rum.incr(10%)” . stock decr(10%)" cfo_resignd: 4 :[1; 1]

Based on events that have already occured, we can state things such as \atay
1 there was no SEC rumor, there is no rumor of a stock increase, the @tk price

did not decrease, and the CFO did not resign."

Figure 3.1: Kgck, @ toy APT-Logic Program about stocks.

98

1. detainmentdistr(2) detainmentrelig(1) ?fr attack_relig(1):[2, 0.0906, 0.1906]
A detainment in district 2 and detainment in an area where religion 1 dominates
is followed by an attack in an area where religion 1 dominates within 2 dag with

a probablilty [0:0906 0:1906].

2. attack neigh(28)” attack relig(1) ?fr cacherelig(1):[7, 0.6833, 0.7833]
An attack in neighborhood 28 and an attack in an area where religion 1 dominates
is followed by a cache being found in an area where religion 1 dominatesithin

7 days with a probablilty [0:6833 0:7833].

3. cachedistr(2) ?fr detainmentrelig(2):[10, 0.6559, 0.7558]
Cache being found in district 2 is followed by a a detainment in an ara where

religion 2 dominates within 10 days with a probablilty [0:6559 0:7558].

4. detainmentdistr(2) ¢ attack distr(7):[10, 0.1346, 0.2346]
A detainment in district 2 is followed by a an attack in district 7 wi thin 10 days

with a probablilty [0 :1346 0:2346].

5. attaclcneigh(28)e;fr detainmentdistr(2):[9, 0.5410, 0.6500]
An attack in neighborhood 28 is followed by a detainment in district 2 within 9

days with a probablilty [0:541Q 0:6500].

6. cachedistr(5) ?fr strike_relig(1):[8, 0.2833, 0.3833]
A cache found in disrict 5 is followed by a precision strike conudatd in an area

domnated by religion 1 within 8 days with a probablilty [0:2833 0:3833].

Figure 3.2: K|sw a real-world APT-Logic Program extracted from counterinsur-

gency data.

99

1. orgstl(1)*orgstl1(2y domorgviolence(Z)e;fr armattack(1):[2, 0.95, 1]

-

Whenever education and propaganda are used as a minor strategy, coalitio
building is used as a major strategy, and the group is using domestic glence
regularly by targeting security personnel (but not government non-scurity per-

sonnel or civilians), the group carries out armed attacks within two time periods

with probability at least 0 :95.

2. orgstl(1l)*orgst11(2) domorgviolence(2)e;fr dsecgov(1):[3, 0.95, 1]
This rule has the same antecedent as the previous one, but the consesnt stands
for the group targeting people working for the government in security,or in non-

state armed militias.

3. violrhetrans(0} orgst5(0) drug(0) " armattack(1):[2, 0.58, 0.68]
Whenever the group does not justify targeting transnational entities in pub-
lic statements, uses non-coercive methods to collect local suppt (as a minor
strategy), and does not engage in drug production/tra cking, armed attacks are

carried out within two time periods with probability between 0 :58 and Q68.

4. orgstL1(1) orgstl1(2) orgst8(2) ¢ dsecgov(1):[3, 0.9500, 1]

-

Whenever education and propaganda are used as a minor strategy, coalitio
building is used as a major strategy, and insurgencies are used as a raptrategy,
the group targets people working for the government in security, or in ron-state

armed militias, within 3 time periods with probability at least 0 :95.

Figure 3.3: Kyaros @ real-world APT-Logic Program extracted from Minorities at

Risk Organizational Behavior data.

100

3.2 Technical Background

This section extends the syntax and semantics of APT LPs fronhé previous
chapter to include integrity constraints, probabilistic ime formulas, and non-ground

semantics for all previously introduced constructs.

3.2.1 Syntax

We assume the existence of a logical languabeas speci ed in the previous
chapter (see page 26). We also assume the existence of a rs&t F whose mem-
bers are calledfrequency functionsymbols (see the previous chapter, page 32). A
(ground) term, atom, and formula are de ned as per the previgs chapter.

Also as in the last chapter, we assume that all applications arinterested
in reasoning about an arbitrarily large, but xed size windav of time, and that

= f1;:::;thax g denotes the entire set of time points we are interested iy Can
be as large as an application user wants, and the user may ch®bss granularity of
time according to his needs.

We now extend the syntax with the de nition of a \time formula."
De nition 27 (Time Formula). A time formula is de ned as follows:

If F is a (ground) formula andt 2 [1;tyax] thenF : t is an (ground) elementary

time formula.

If ; are (ground) time formulas, then: , ~ ,and _ are (resp. ground)

time formulas.

101

Example 3.2.1. Consider the ground atoms in théPT-program from Figure 3.1.
The expression(: secrumor”: rum.incr(10%)": stockdecr(10%)*: cfo.resign¥: 1

is an elementary time formula.

Throughout, we will use Greek letters; for time formulas and capital letters
F; G for regular formulas. We now extend a time formula to includa probability

annotation.

De nition 28. If is a (ground) time formula and[;u] [0;1], then :[;u]is

a (resp. ground)probabilistic time formula , or ptf for short.

Note that when considering ptf's of the fornk :t : [;u], we will sometimes

abuse notation and writeF : [t; *; u].
Example 3.2.2. Item 5 in the APT-program from Figure 3.1 is a ptf.

Intuitively, : [;u] says time formula is true with a probability in [;u].?

Our next extension to the syntax of the previous chapter armtegrity constraints.

De nition 29 (Integrity constraint) . SupposeA; 2 B, and [loj;up] [0; tmax]-
Then OCQA)) : [lo;;up] is called anoccurrence IC If blk 2 [2;thax + 1] is an
integer, then BLK(A;) :< blk is called a block-size IC. IfA; is ground then the

occurrence (resp. block-size) IC is ground { otherwise it is non-ground.

An occurrence ICOCQA)) : [lo;;up] says that A must be true at leastlo;

times and at mostup times. Likewise, the block-size IC says thaf cannot be

2Assumption: Throughout the chapter we assume, for both ptf's and APT-rules, that the
numbers “;u can be represented as rational@=bwhere a and b are relatively prime integers and

the length of the binary representations ofa and bis xed.

102

consecutively true forblk; or more time points. Figure 3.1 also contains an example

occurrence IC and an example block-size IC.

Example 3.2.3 (Integrity Constraints). Consider the ground atoms in theAPT-
program from Figure 3.1 andt,,x = 6. Suppose historical data indicates that for a
sequence o6 days, there is never more thad day where the CFO resigns. Hence,
we should add the constrainOC(cfo_resign} : [0; 1] to the program. There are
other types of integrity constraints that could be useful in this domain. For example,
a drastic stock price decrease may never occur more than a few times a quarter.
To see why block-size constraints are natural, consider the ground atsetrumor.
Suppose there is never more thahdays historically where an SEC rumor is reported.
This would make the constrainBLK(secrumol) :< 4 appropriate. Other examples
of such constraints in this domain would be reports of pro ts, which only occur once

per quarter (.e., we would haveblk = 2 for such a case).

We have automatically extractedAPT-programs from the ISW and MAROB
data sets mentioned earlier. In the case of the ISW data set,caerence and block-
size constraints are needed because militant groups have stoained resourcesi.e.,
a limited amount of personnel and munitions to carry out an attac. Hence, an
occurrence integrity constraint can limit the amount of athcks we believe they are
capable of in a given time period. Likewise, such groups aftémit the amount of
consecutive attacks, as police and military often responditiv heightened security.
Block-size constraints allow us to easily encode this intauoformalism.

We now extend the de nition of APT rules and programs from the previous

103

chapter to include non-ground versions of these syntacticeshents.

De nition 30 (APT Rules and Programs) (i) SupposeF, G are (ground) formulas,
t is atime interval, ['; u] is a probability interval, andfr 2 F is a frequency function

symbol. ThenF ;fr G:[t;7;u]is an (ground) APT rule.

(i) An (ground) APT logic programis a nite set of (ground) APT rules, ptf's, and

integrity constraints.

(iii) Given a non-ground APT-logic programK ("9, the set of ground instances of all

rules, ptf's, and IC's in K("9 is called the grounding oK ("9,

Note: Unless specied otherwise, throughout this chapterAPT-logic programs,

rules, IC's, and ptf's are ground.

Example 3.2.4. Figure 3.1 shows a smalAPT LP dealing with the stock market,

together with an intuitive explanation of each rule.

3.2.2 Semantics

We now extend the semantics oAPT LPs from the previous chapter to account
for the extended syntax and the non-ground case. The struses of worlds and
threads are de ned exactly as in the previous chapter (see page 29). Wmever, here
we de ne a notion of a thread satisfying a time formula or intgrity constraint as

follows:

De nition 31. (i) Given thread Th and ground time formula , we say Thsatis-

es (written Th F)i:

104

1. at_station(T; $;) » adjEas(Sy; Sp) ?fr at_station(T; S) : [4; 0:85; 1]
If train T is at station S; and the station adjacent to it to the Eastis Sy, T will

be at station S, within 4 time units with a probability bounded by [0 :85; 1].

2. at station(T: S;) » adjWes(S1:Sp) ¢ at station(T: S,) : [2; 0:6; 0:7]
If train T is at station S; and the station adjacent to it to the West is Sy, T will

be at station S, within 2 time units with a probability in the interval [0 :6;7].

Y Vv
3. I™ adjEast(stnA, stnB) : t : [1;1], ™ adjEast(stnB, stnC) : t : [1;1],
Vv Vv
i adjWest(stnB, stnA): t : [1;1], ;™ adjWest(stnC, stnB): t : [1;1]
Probabilistic time formulas specifying that Station B is (always) adjacent to the

East of A, and C is adjacent to the East of B.

4. at_station(trainl; stnA) : 1 : [0:5; 0:5]
For a given sequence of events, train 1 will be at station A at time perial 1 with

a probability of 0:50.

5. at_station(train2; stnA) : 2 : [0:48; 0:52]
For a given sequence of events, train 2 will be at station A at time perial 2 with

a probability bounded by [0:48; 0:52].

Figure 3.4: Kin , @ toy APT-Logic Program modeling rail transit. Items 1-2 are
non-ground APT-Rules, the formulas in 3 are probabilistic temporal formals, and
items 4-5 are annotated formulas. The English translationfeach rule is also pro-

vided.

105

F:t: ThE iTh@M®EFF

:ThE 1 Th §

ASThiE iTh f andThE ©

_®ThiE iTh E orThE ©

(if) Given thread Th and ground occurrence ICOCQA;) : [lo;; up], we say Thsat-
ises OCQA)):[loj;up]i jfijTh(i) F Aigj2 [lo;up].
(iif) Given thread Th and block-size ICBLK(A;) :< blk, we say Th satis es
BLK(A) :< blk i there does not exist an interval [i;i + blk, 1] such that for
allj 2 [i;i + bl 1], Th(j) F Ai.
(iv) Th satis es a non-ground formula or IC i it satis es all ground instances of
it.

Given a setT of threads and a setC of integrity constraints, we useT (IC)
to refer to the setf Th 2 T jTh F ICQg.

We use the symbol ' to denote entailment between two time formulas.

De nition 32. Given time formulas; ,wesay: F i 8Th2T st ThfE

it is the case that Thf

If we view time formulas as sets of threads, we can think ofE , as equivalent
to

As in the previous chapter, atemporal probabilistic (tp) interpretation gives
us a probability distribution over all possible threads. Thusa tp-interpretation |
assigns a probability to each thread. This re ects the proMaility that the world will

106

in fact evolve over time in accordance with what the thread ya. We now de ne

what it means for a tp-interpretation to satisfy a ptf or integrity constraint.

De nition 33. (i) Given interpretation | and ptf : [;u], we sayl satis es
c[u] (written | 5 [u]) i

X
1(Th) U

Th2T
Thi

(if) Given interpretation | and occurrence ICOCQA)) : [lo;; up], we sayl satis es
OCdA)) : [loj;up] (written 1| E OCQA)) : [lo;up]) i 8Th 2 T sit. Th §
OCdA)) : [lo;;up], it is the case thatl (Th) =0.

(i) Given interpretation | and block-size ICBLK(A)) :< blk;, we sayl satis es
BLK(A)) :< blk (written | F BLK(A;) :< blk)i 8Th 2T s.t. Th 6 BLK(A)) :<
blk, it is the case thatl (Th) =0.

(iv) Interpretation | satises a non-ground formula or IC i it satis es all ground

instances of it.

With the above de nition, we now de ne a special type of ptf thd can be used
to specify a set of threads that start with the same worlds { tk intuition is based

on the idea of apre x in [25].

De nition 34. For n tmax, let Fi; i F i F, be formulas s.t. eachF; is

satis ed by exactly one world. Then, the following ptf:

Fi:1n N FiNMicMNFyini[L1]

is called apre x .

107

Example 3.2.5. Item 5 in the APT-program from Figure 3.1 is a pre Xx.

Intuitively, including a pre x in an APT-program forces the rstn worlds of
every thread assigned a non-zero probability to satisfy d¢amn formulas. Further,
we can use a pre x to force the rstn worlds of every thread with a non-zero
probability to be the same. For example, if we want the'th world of thread Th to
be set to worldw, we would simply use the following formula a§; in the pre x:

\% \%

A .
aow & a .

azw *

The de nition of a frequency function is also exactly the samas in the previous
chapter. For the sake of simplicity, in this chapter we only se the existential
frequency function (also de ned in the previous chapter). Mst techniques in this
chapter can be easily extended for use with other frequencynfttions. Now we

extend the de nition of satisifaction of APT rules to account for the non-ground

case.

De nition 35 (Satisfaction of APT rules). Letr = F ;'(r G:[t;;u] be anAPT
rule and| be a tp-interpretation.

@) If r is aground rule , interpretation | satises r (denotedl F r) i

X
[(Th) fr(Th;F;G; t) wu:
Th2T
(i) Interpretation | satis es a non-ground ruler i | satis es all ground instances

ofr.

Interpretation | satis es an APT-program i it satis es all rules, ptf's, and
IC's in that program. Given an APT-program K, we will often refer to the set of
integrity constraints in K as simplyIC.

108

Intuitively, the APT rule F ;fr G : [t;7;u] evaluates the probability that

F leads toG in t time units as follows: for each thread, it nds the probabiliy
of the thread according tol and then multiplies it by the frequency (in terms of
fraction of times) with which F is followed by G in t time units according to
frequency functionfr. This product is like an expected value in statistics where a
value (frequency) is multiplied by a probability (of the thread). It then sums up

these products across all threads.

3.3 Complexity

In the previous chapter, we showed that consistency and erftaent in APT-
logic are NP-hard (consistency) and coNP-hard (entailment).n this section, we
prove that consistency is in the complexity class NP and entailent is in the com-
plexity class coNP. The result is somewhat surprising, becauthe exact algorithms
presented in the previous chapter relied on the solution tonkear programs with an

exponential number of variables. For example, consider ti@lowing linear program.

De nition 36 (CONS). Given an APT-logic program, K, where IC K is the
set of integrity constraints in K, we can create the linear constraintsCONJK) as

follows:

109

For each Th 2 T (IC), variable v; denotes the probability of thread Th

@ "oy =1
@8F "G [t;ul2K (@) i }:T:ilc)j fri(Th;; Fi; Gi; t) v
(b) u; P }ng'c)j fri(Thi;Fi;Gi; ti) v
)8 i:[i;u]2K (@) i i ™ 2T (IC) 1h 1=, Vi
(b) ui Thy 2T (IC) 7, | V)

We proved in the previous chapter that there is a solution t€ONSK) i K
is consistent and that, given ptf :[;u], let L be the minimization andU be the
maximization ofP Th 2T (1C) 1, Vi subject to CONSK). Then :[’;u]is entailed
by Ki [L;U] [;u]. See Proposoiton 3 (page 50) and Proposition 12 (page 73)
respectiely.

However, it turns out that we can be guaranteed a solution to # linear
program where only a polynomial number of the variables aretsto a value other
than 0. Consider the following theorem from [24] and later esl in [44] to show that

deciding the validity of a formula in the logic of [44] is NP-Coplete.

Theorem 9 ([24, 44]) If a system ofm linear equalities and/or inequalities has
a nonnegative solution, then it has a nonnegative solution with at mast positive

variables.

We can leverage the previous two results to guarantee the stance of an
interpretation that assigns a zero probability to all but a wlynomial number of

threads, thus giving us a \small model" theorem.

110

Theorem 10. Deciding if APT-program K is consistent is NP-complete ifKj is a

polynomial in terms ofjB_j.

Theorem 11. Deciding if APT-rule r is entailed by APT-program K is coNP-

complete ifjKj is a polynomial in terms ofjB_j.

One may wonder if APT-programs can be made more tractable if wvassume
a single probability distribution over threads, that is a sngle tp-interpretation. Un-
fortunately, even if we assume a uniform probability distbution, this special case

is still not tractable.

Theorem 12. Given APT-program K, interpretation |, and ptf , determining the
maximum = and minimum u such that :[;u] is entailed byK and is satis ed by
| is # P-hard. Furthermore, for constant > 0, approximating either the maximum

* and/or minimum u within 28ti* s NP-Hard.

The above theorem is proved using an interpretation that aggas a uniform
probability across all threads. The negative approximatiomesult follows from a
result of [145].

Although it remains an open question if theAPT-entailment problem (without
the single-interpretation requirement) can be approximad within a reasonable fac-
tor, the above result is not encouraging. Further, De nition 36 illustrates several
challenges relating the intractability of this problem. (i) First, we need to compute

T (IC), which is a challenge becaus€ contains 2m= c@d(BL) possible threads and

3As an aside, as the construction in the proof of Theorem 12 does not depend amultiple

time-points, this result holds for the probabilistic logic of [131] as wel.

111

each must be examined to see if it satis ekC ; (ii) Second, the constraints in items
(1-2) may contain up toQ 2imax cad(BL) yariables (this bound can be tightened), so
even though linear programming is polynomial [79], the inpus exponential in the
size oftax and By . In practice, even if we considet,,x = 10 and B, to consist of
just 100 ground atoms, we are looking at the possibility of @xining 219 threads
to nd T(IC) and writing constraints containing exponentially large nmbers of
variables. In practice, we will not be able to even write theseonstraints. With
these intractability results in mind, we proceed to developeuristics in the next two

sections.

3.4 A Sound but Incomplete Fixpoint-Computation

Algorithm: The Ground Case

This section presents a heuristic algorithm based on a xpwei operator !
which mapsAPT-programs toAPT-programs and iteratively tightens the probability
bounds on rules and ptf's in the program. To nd probability bounds on some time
formula , we simply add the ptf :[0O; 1] to the program, iteratively apply ! until
a xed point is reached, and then examine the bounds on the ptbfmed with in
the resulting program. Our approach is sound { so, if the inteal ['; u] is assigned
to , then K entails :[';u] (provided, of course, thatK is consistent). However,
there may exist some'Puq [;u] suchthat :[%u9is also entailed.

Our algorithm requires that K contain at least one APT-rule of the form

112

F :[;u]. This is not really a restriction in most applications wherea pre x would
exist (cf. De nition 34, Page 107). The rest of the section isrganized as follows.
Section 3.4.1 describes how to nd bounds on a frequency ftionn given ptf 's.
Section 3.4.2 describes how to use frequency bounds to sgtitally manipulate
rules and ptf's in APT-programs { which in turn allow us to tighten the probability
bounds. Section 3.4.3 performs various syntactic maniptilens in the ! operator
and shows that the operator has a least xed point. Finally, Sé¢ion 3.4.4 demon-
strates how ! can also be used to check the consistency of &®T logic program.
Again, such a consistency check is sound but not complete { ! o@ctly identi es

inconsistent programs but does not guarantee consistency.

3.4.1 Bounding Frequency Function Values

In this chapter, we only use theefr frequency function. However, our tech-
niques can be easily adapted to other frequency functions buas pfr from the pre-
vious chapter. Our rst de nition is a function, EFR, which returns tight bounds

on efr givenF; G, and t.

De nition 37. SupposeF; G are formulas, t is a time point, and is a time

formula. We dene EFR(F;G; t,)=[tgnt; tgnt] Where

inf fefr (Th;F;G; 1)jTh2T ~ ThiE g

tight

supfefr(Th;F;G; t)jTh2T ~ ThE g:

tight

The intuition in the above de nition is that g is the least value ofefr
(w.r.t. formulas F; G and time interval t) for all threads satisfying . Likewise,

113

ight 1S the greatest value okfr (w.r.t. formulas F; G and time interval t) for all
threads satisfying . We can easily approximate [gn: ; tight] When we make certain

assumptions on . Consider the following special case of a ptf:

De nition 38. SupposeETF f Fy:ty;:::;F, :t,gis a set of elementary time
formulas, wheren tna and for any two such formulasf; : ti;F; : tj 2 ETF,

ti6 tj. ThenFy:t, " :i:” Fy ity is atime conjunction

Example 3.4.1. Item 5 in the APT-program from Figure 2.1 is a time-conjunction.

We shall refer to this time-conjunction as g,k in later examples.

We notice right away that a pre x (De nition 34, Page 107) is smply a special
case of time conjunction annotated with probability [11]. One useful property of

time conjunctions that we leverage in our operator is the fl@wing.

Observation 3.4.1. If Fy ity ™ i M Fy i tn N Freg 2192 1002 Fre 2 t0 and

m

Gty N 1N Gy it N Gpag 19 111 Gy : t2%re time conjunctions, then
(F12Gy) i 117 1M (Fa* Gp) s tn A Frag S92 A P (10 A Grag 192 10 A Gy 1 120
is also a time conjunction.

We leverage the above property in the following way: if we kmoa bound for
EFR(F;G; t;)andEFR(F;G; t; ™), we may be able to use this information
to nd probability bounds on . We will describe this further when we discuss
syntactic manipulation. Next, with a time conjunction in mind, we will show how
to nd a tight bound on EFR. In this case, we introduce the following notation
and obtain a bound onEFR in Proposition 14.

114

De nition 39. For formulas F; G, time t, and time conjunction , we de ne the

following:
cnt(;F;G; t)=jft2[1 tmax t]j9t°2 (t;t+ t]st. (F F:t” G:t9gj
end(:F:G; t)=jft2 (tmax t tmax)jOt°2 (Ltmax] st (E F 1t~ G :t9gj
denom(;F; t)=jft2 [1;tmax t]j9Th s.t. (Th g)" (Th E F :t)gj

posy ;F;G; t) = jft 2 [1;tmax t]jot® 2 (t;t + t]s.t. 9Th st. (Th F

YA(ThE F :t~ G:t9gj

endposg ;F;G; t)= jft 2 (tmax t; tmax)jOt°2 (t;tmax] S.t. 9Th s.t. (Th F

YA (ThEF t~ G:t9gj

The intuitions behind the components of De nition 39 are asdilows. For a
givenF; G; t, cntis simply the number of times in the rstt; t timesteps (of
all threads satisfying some ptf) where a world satisfyingF is followed by a world
satisfying G within t time units. Likewise, end performs this count for the last

t time units. Similarly, possand endpossperform similar calculations, but rather
than considering all threads that satisfy , there must only exist a thread satisfying
where a world satisfyingF is followed by a world satisfyingG in t time units.

The de nition of denomcaptures the total number of timed- is satis ed in the rst
tmax t worlds (for all threads satisfying). Due to the boundary condition of
efr (refer to Section 3.2 for details), we usend and endpossto perform this count

in the last tyay t worlds of the threads. Hence, in the below proposition, we are

115

able to show thatEFR(F;G; t;) is a subset of two fractions created from the

components we de ned.

Proposition 14. For formulas F; G, time t, and time conjunction ,
EFR(F;G; t;)

cent(;F;G;, t)y+end;F;G; t) posq;F;G;, t)+ endposg;F;G; t)
denom(;F; t)+ end(;F;G; t) denom(;F; t)+ endpos§;F;G; t)

Example 3.4.2. Consider the APT-program from Figure 2.1 that includes time
conjunction gock (see Example 3.4.1). Consider the pre and post conditions of

rules 1-2; we shall refer to them as follows (in this and later examples):

F1 secrumor” rum.incr(10%)
G, stock decr(10%)
F, secrumor” rum.incr(10%)

G, stockdecr(10%)* cfo_resigns
Using De nition 39, we can determine that:
EFR(stock; F1;G1;2) [0:5,1:0]

and

EFR(swock; F2;G2; 1) [0:0;0:667]

3.4.2 Theorems for Syntactic Manipulation

In the last section, we bounded the values thaefr can have for a thread
given some time formula . This section leverages that information to obtain tighter

116

bounds on ptf's andAPT-rules. First, we introduce a simple result that allows for

syntactic manipulation of ptf's without these bounds.

Lemma 8. Let :[%u9 be a ptf andl be an interpretation; then:
1L.IfIE :[ul,thenl F 2~ :[max(0;" + ° 1);min(u;u9]
2.1f 1 F :[ul,thenl o [max(; 9;min(d;u+ u9]
3.1fIlF :[;uland FE thenl F :[;1]

4. 1f 1 = :[;uland F thenl F :[O;u]
5.1f 1 :[ulthenl F: :[1 ul 7]

Example 3.4.3. Suppose progranK gk entails ptf secrumor: 6 : [0:3;0:6]. Then,

it also entails: secrumor: 6 : [04; 0:7].

We notice right away that syntactic manipulation sometimesdenti es incon-
sistent APT-programs. For example, if : [0:7;0:6] is entailed via Lemma 8, then
we know that K is not consistent. We explore this issue further in Section 84.
Next, we use the bounds oEFR to syntactically manipulate APT-rules, yielding
rules with tighter probability bounds { perhaps uncoveringan inconsistent program.
Theorem 13 tightens the bound when th&PT-program includes a ptf that happens

with probability 1. Its corollary tightens the lower bound gven any ptf .

Theorem 13. Supposel is an interpretation and is a time formula such that

| F :[L1]andEFR(F;G; t) [; L. Thenl FF¥ G:[t; 1.

117

Corollary 2. Supposel is an interpretation and is a time formula such that

| E :[;ulandEFR(F;G; t) [;] ThenlEF G:[t 1]

The above theorem and corollary are proved by showing that ¢hlower prob-
ability bound of an APT-rule has to be at least as much as the lower bound on the

associatedEF R for all threads.

Example 3.4.4. Consider the scenario from Example 3.4.2. By the result of that

example and Corollary 2, we know thd{ s, must entail:
secrumor” rumincr(10%)°" stock decr(10%): [2; 0:5; 1:0] and

secrumor” rurrLincr(lo%);efr stock decr(10%)" cfo_resigns [1; 0:0; 0:667]

Note that we can now nd a tighter bound on rule 2, obtaining a probability bound
of [0:5;0:667] that is substantially tighter than[0:5; 1] from the original rule using

just one syntactic manipulation.

We can useAPT-rules, EFR, and Theorem 8 to further tighten the bounds

on ptf's with the following theorem.

Theorem 14. Suppose-; G are formulas, ; are time formulas,| is an interpre-
tation, and [1; 1];[2; 2] are intervals such thatEFR(F;G; t;) [1; 1] and
EFR(F:G: t) [2 2l E :[L1ll(seenotd)andl EF " G:[t;ul

Then:

h i
1. If ,< 4, thenl F : O;min ‘2 !

“Note that Theorem 13 requires’ rand 1 u

118

h i
2. 1f ,> 4 thenl F : O;min “2 L1

From the above theorem, we can easily obtain the following adlary that can
be used with just one time formula (.e., only). Simply consider the case where

IS TRUE: thax and [1; 1] =[0;1].

Corollary 3. Supposed-; G are formulas, is atime formula, | is an interpretation,
and [;]is an interval such thatEFR(F;G; t) [; Jandl F F ¢ G:

[t;;u]. Then:
1. If < 1thenl E :[0:min(—%;1)]
2. If > Othenl F :[0;min(¥;1)]

Example 3.4.5. Following from Example 3.4.4, consider the time-formulstock decr(10%):
5. Using De nition 39, we nd that EFR (gock * Stockdecr(10%): 5;F;; G1; 2)

[1;1]. Previously, we saw that EFR gock; F1;G1;2) [0:5;1]. As the lower bound

on frequency increases (by conjuncting the new time formula), that is> 0:5, we

apply part 2 of Theorem 14 (and/or Corollary 3) to obtain an upper probability

bound onstockdecr(10%): 5. Hence, this formula is no more probable tha@:94.

Finally, we show that we can also use integrity constraints toid in syntactic
manipulation. For certain ptf's with probability 1, a given IC may cause another ptf
(or multiple ptf's) to be entailed with a probability of 0, which can also contribute

to bounding EFR.
Proposition 15. For atom A; and programK where BLK(A)) :< blk 2 K, if there
existsaptf :[1;1]2K suchthat F Aj:t blk+1"A;:t blk+2":::"A;:t 1,

119

then K entails A; : t : [0; 0].

Proposition 16. For atom A; and programK where OCQA) : [loj;up] 2 K, if

Example 3.4.6. Consider K¢k from the previous examples. As this program in-
cludes OCQcfo_resign} : [0;1] and entails cforesigns: 4 : [1 1] (by the included
pre x), we can conclude thatcfo_resigns: 5 : [0 0] and cfo_resigns: 6 : [0 0] are

entailed by this program.

3.4.3 The Fixpoint-Based Heuristic

We are now ready to use the results of the last section to credtes ! operator.
First, we present some preliminary de nitions to tighten prdvability bounds for ptf's
and rules. Note that the correctness of these bounds followsetditly from the results
of the previous section. First we show how, given alPT-program, we can tighten

the lower and upper bound of a ptf.

De nition 40. SupposeK is an APT-program and is a time formula. We de ne:

| bnd(; K)=sup(fOg[f "j [ul]2K* (F)0):

120

u_bnd(; K) is the inf of the set:

f 1 gl
f u i ul2zkK™ (F gl

f min(—=;1) j(F Gl thul ([L12K[f true: tm : [11lg) "

(EFR(F;G;) [D"
(EFR(F;G; 6t) [25 D" (2< 19l
f min(L—:1) j(F Gl thull ([L12K[f true: tm : [L1]g) "

(EFR(F;G;) [14 D™

(EFR(F;G; t ~) [20 2kh(2> 19

This bound on a time formula is derived from its relationshigith other time
formulas (by Lemma 8) or it relationship with rules (by Theoem 14 and/or Corol-

lary 3). Below we show an example.

Example 3.4.7. Following from Example 3.4.5, consider, once again, the time-
formula stock decr(10%): 5. For program K gock, We know that_bnd(stock decr(10%):

5; Kstock) = 0:0. This is due to the simple fact that there is no lower probability bound
assigned to the time formulastock decr(10%): 5 by Kqock that is greater than0:0.
Examining the upper bound, we consider thaf of setf1;0:94g as 1 is the trivial
upper bound, there are no other upper probability bounds f&inck decr(10%): 5 seen
directly in Kgock and we have already used Example 3.4.5 to derive the upper bound

of 0:94 based on syntatic manipulation of rules ik (Which re ects the last two

121

parts of theu_bnd de nition). Hence, u_bnd(stockdecr(10%): 5; Kgtock) = 0:94.

Note that for ptf's we do not include any manipulation that reles on the
bounds of the negated time formula in the above de nitions. Wéandle this type
of manipulation in the de nition of the operator. The following are versions of

|_bnd:; u_bnd for rules.

De nition 41. SupposeK is an APT-program, F; G are formulas, and t> 0 is

an integer.

The quantity |_bnd(F; G; t; K) is the sup of the following set:

f 0 (of|
f ‘ JFS G thul2Kg]
f g0 sl L 2K[F true: tmax (15 1]9)

(EFR(F;G; . ~) [, Dol
f @ uw jC :[ul; [L12K[f true:tmax :[1;1]g) »

(EFR(F;G; t ~:) [; Do

The quantity u_bnd(F; G; t; K) is theinf of the following set:

f 1 gf

efr

f u jF; G:[tt;u]2Kg]

f JO DL 2K)N (EFR(FG 6) [Dy

122

Hence, the new probability bound assigned to a rule is based twow the
bounds on the frequency function are tightened given the p#f present in the pro-
gram. Given a ptf, we use a bound oEF R, which allows us to leverage Theorem 13
and Corollary 2 to obtain a tighter bound on the rule. Tighterbounds on rules are
useful for two reasons: (1) subsequent applications of the wmt operator will in
turn use these new bounds to tighten bounds on ptf's and (2) dy can be used to

identify inconsistent program (as we discuss in Section 34.

We now de ne setformula(K) which intuitively means \all time formulas that
appear inK". These are the formulas upon which De nition 40 will act, ad also
through syntactic manipulation, a ect other ptf's in K. As stated earlier, we can

nd bounds for any time formula by adding : [0;1] to the initial APT program.

De nition 42. Given programK consisting of ptf's and constrained rules, formuld)

is the following set:

f i [;ul2Kgl
fFit j(t2 [Lteax) A (F$ G:[tul2K) g

f Gt j(t2 [Ltma) (FS G:[t5ul2K)g

We now have all the pieces we need to de ne our operator !.

123

De nition 43. Given programK, !(K) is de ned as the following set:

efr

f F® G:[tlbnd(F;G; tK);
u_bnd(F; G; t;K)] JF; G:[tul2Kg]
f :[-bnd(; K);u_bnd(; K)]\
[1 ubnd(; K):1 lbnd(: ; K)] j 2 formula(K)g]
f A t:[0;0] j (BLK(A) :< blk 2 K)~ (:[L1]2K)A
(EA:t blk+17:::MA it 1)g]

f A :t:[0;0] J(OCQA)) : [lo;up] 2 K)~ (1 [L;1]2K)A

(t2fty; 5 tup0)gl
f BLK(A;) :< blk jBLK(A)) :< blk 2 Kg [

f OCQA)) : [loj; up] jOCQA)) : [lo;;up] 2 Kg

Intuitively, ! tightens the probability bounds on rules by | everaging proba-
bilistic time formulas using the results we proved in Theora 13 and Corollary 2. It
tightens the probability bounds on time formulas based otheaime formulas, rules,
and integrity constraints. This uses the results proved in €mma 8, Theorem 14

(and/or Corollary 3), and Propositions 15-16 respectively

Example 3.4.8. Consider the programK .k from the previous examples. By Def-
inition 42, we know that a ptf time-formulastock decr(10%): 5 will be included in
I(Kstock). We saw in Example 3.4.7 that_bnd(stockdecr(10%): 5; Kgiock) = 0:0

124

and u_bnd(stockdecr(10%): 5; Kstoek) = 0:94. In the same manner, we can com-
pute that | _bnd(: stockdecr(10%): 5; Ksock) = 0:0 and u_bnd(: stockdecr(10%):
5; Kstock) = 0:667 (this follows from the fact that EFR gock © : stockdecr(10%):
5, F1;Gy1;2) [0:5;0:667). Hence, we know that the ptfstockdecr(10%): 5 :

[0:333 0:94] is included in !(Kgiock)-

Note that ! returns an APT-program that is satis ed by the exact same set of
interpretations as the original program; this follows diretly from the results in the

previous section.

Proposition 17. Supposd is an interpretation and K is an APT-program. Then:
|l F Ki | Y K).

We can also make the following statement about the complexityf the opera-

tor.

Proposition 18. One iteration of ! can be performed in time complexitYD(jKj 2
CHK') where CHK is the bound on the time it takes to check (for arbitrary time

formulas ;)if [E istrue.

One source of complexity is comparing ptf's with other ptf'sif a ptf is formed
with an elementary time formula, then it only needs to be congred to other ptf's
that share the same time point { this could reduce complexityAs is usual in logic

programming, ! can be iteratively applied as follows.
De nition 44. We de ne multiple applications of! as follows.

I(K)" 0=K

125

1K) " (i +2)=10(K)" i)

Now, we will show that ! has a least xed point. First, we de ne a patial

ordering of APT-programs.

De nition 45 (Preorder overAPT-Programs) Given K1; K,, we sayK; v P K, if

and only if:

8 [Tul2K4, 9 [%u92Kyst. [%ug [;u]

efr

8F G:[tu]2K, 9F " G [t %ul2K,st [Cu] [:u]
If BLK(A)) :< blk 2 K 1, then BLK(A)) :< blk 2 K »
If OCQA)) : [loj;up] 2 K4, then OCQA)) : [loj;up] 2 K>

The intuition behind the above de nition is that program K is belowK5 if it
has less rules or ptf's { or rules/ptf's with tighter probablity bounds. Note that if
K, is aboveK 1, then K; has at least as many satisfying interpretations, and possibly
more, thanK,. Let PROGg, 1., be the set of allAPT-programs given Herbrand
baseB, and time ty.. Itis easy to see thatP ROGg, .., ;V P®i is a re exive and
transitive, and therefore a preorder. In the following, we W say that K; K ,,
read \K is equivalent to K," if and only if K; vP*® K, and K, vP® K;. The\ "

relation is clearly an equivalence relation; we will usé&| to denote the equivalence

class corresponding t& w.r.t. this relation.

De nition 46 (Partial Ordering of APT-Programs) Given two equivalence classes

[K41]; [K2] w.r.t. relation , we say[K;] v [K5] if and only if K; v P K.

126

The \v " relation is clearly re exive, antisymmetric, and transitive, and there-
fore a partial order over sets oAPT-programs. Note that when we use the symbol
v, we will often write K; v K , as shorthand for K;] v [K;]. We will also overload
the symbol PROGg, 4., to mean \all equivalence classes oAPT-programs" (for
a givent,.x and B_) where appropriate. Therefore, we can now de ne a complete
lattice, where the top element is a set containing all incorstent programs, and the

bottom element is set containing the empty program.

Lemma 9. Given? = f;g and > = fKj K is inconsisteng, then the partial order

P ROGg, ... ; Vi de nes a complete lattice.

What remains to be shown is that ! is monotonic; if this holds, v can state

it has a least xed point.
Lemma 10. Kv [(K).
Lemma 11. ! is monotonic.
By the Tarski-Knaster theorem, ! has a least xed point.

Theorem 15. ! has a least xed point.

3.4.4 Using ! for Consistency Checking

As noted earlier, the ! operator can be used to nd \loose" entdment bounds
by simply adding an entailment time formula () with probability bounds [0; 1] to
the logic program, and then examining the tightened bounds taf one or more
applications of the operator. In this section, we examine oto use ! for consistency
checking. First, we have a straightforward lemma on consisteyn

127

Lemma 12. Let K be anAPT-logic program that entails ruleF ?fr G:[t;u]or

. [;u] such that one of the following is true:
.
"< Qor >1

u<Ooru> 1

Under this circumstance,K is inconsistent , i.e., there is no interpretation| such

that | E K.
The following result follows immediately.

Corollary 4. Let K be anAPT-logic program whetre there exists natural number
such that!(K) " i entails rule F " G :[t:u]lor :[;u]such that one of the

following is true:
sy
"< Qor >1
u<Ooru>1
Under this circumstance,K is inconsistent

We note that the ! adds time formulas whose probaiblity bound is determined
by an intersection operation. We observe that an empty intsection of the prob-
ability bounds is equivalent to the case where > u, which allows us to apply the
above corollary to correctly state that the program is not cesistent. We illustrate
this in the below example.

128

Example 3.4.9. ConsiderKgo« from the previous examples. By the de nition of,
the ptf stockdecr(10%}* cfo_resigns 5 : [0:499 1]is in I(Kswocek). By Example 3.4.6,
we know thatcfo resigns 5 : [0, 0] is also in!(Ksock). HOwever, another application
of I entails cfo_resigns 5 : [0:499 0] (equivalently, cfo_resigns 5 : ;). As 0:499> 0,

we know thatK gk IS NOt consistent.

In addition to checking consistency with the ! operator, we an check for

inconsistencies based on the block and occurence ICs via thkowing result.

Proposition 19. If there does not exist at least one thread that satis es all integrity

constraints in an APT-logic program, then that program is inconsistent.

The Thread Existence Problem (ThEX) problem is that of checking ex-
istence of a thread that satis es all block and integrity costraints. Here we show
that ThEX can be solved in constant time { this can allow us to quickly ientify

certain inconsistencies in am\PT-program. First, we de ne a partial thread.

De nition 47. A partial thread PTh is a thread such that for alll i tyax,
PTh(i) is a singleton set.

For any ground atom A; with a single associated block-size and occurrence

(blki 1) tmax

constraint® if more than T

worlds must satisfyA; in each partial thread,
then all partial threads will have a block of sizeblk. This allows us to derive the

following results.

5There is no loss of generality looking at just one block-size IC per graud atom as multiple
such ICs can be coalesced into one by taking the minimum; likewiseéhere is no loss of generality
in considering just one occurrence per ground atom as they can be mergé@to one by intersecting

the [lo; up] intervals for that atom.

129

(blki 1) tmax

Proposition 20. If lo; > Bik,

then there does not exist a partial thread for
ground atomA; such that the single block-size and occurrence IC associated wth

hold.

(blki 1) tmax

Proposition 21. For ground atomA; (with associated ICs), ifup > Bk

m
we know that the number of worlds satisfyiny cannot be in the range &4 tme oy

The reason for this is simple: it would force the partial thrad to have a
sequence oblk; consecutive worlds satisfyingdj. We also notice that these checks
can be performed based solely on the values lof; up; blk; and tn.x. Hence, we

have the following proposition.
Proposition 22. ThEX can be solved in constant time.

In the next section we extend these results for non-grourAPT-programs.

3.5 Consistency and Entailment Algorithms for

Non-Ground Programs

The xpoint procedure described via the ! operator works in thie ground case.
In this section, we study how we may avoid grounding. We startSection 3.5.1)
with a sampling based approach for consistency checking ofnraground programs.
Section 3.5.2 de nes a non-ground xpoint operator for eniément queries. This
operator avoids grounding the entire program, but guaranesl to provide entailment

bounds for a query that are as tight as our ground operator. Wemind the reader

130

that both our consistency-checking algorithm and our xpoih operator presented

in this section are sound, but not complete.

3.5.1 Consistency Checking for Non-Ground Programs

In this section, we present a sound algorithm for consistepchecking of non-
ground programs. We avoid complete grounding of the ruleshile still maintaining
soundness of the algorithm through random sampling of grodrinstances of rules.
The larger the sample, the more potential inconsistenciesrcée found.

For a non-ground time formula, .4, we shall use the notationgnd() to
refer to the ground formulavf j is a ground instance of ,;g. We are now ready
to describe a non-ground analog to the bound&FR described in the previous

section.

De nition 48. For non-ground formulasF,g; Gng, time t, and non-ground time

formula 4, we de ne

EFR_SET(Fng;Gng: t ng) = fEFR(F;G; t;gnd(ng))j

F; G are ground instances ofq; Gng9

EFR.IN (Fng;Gng; & ng)=(in; in)
Where9[in; §[% in]2 EFR.SET(Fng;Gng; t ng),and6p ; °%[%9 12

131

EFR_OUT(Fng;Gng; t ng) =[out; outl

Where9[out; T % ouw] 2 EFR SET(Fng;Gng; t ng),and6p ; %[%9]2

EFR SET(Fng;Gng; & ng) St L 5 1 [outs oul

The intuition behind De nition 48 is as follows. EFR_SET is the set of all
frequency bounds for the di erent ground instances df,q; G,y. EFR_IN is a pair
consisting of the greatest lower bound oéfr (j,) and the least upper bound of
efr (i,) of all the elements ofEFR_SET. (in; in) iS a tuple, not a bound. It is
possible for i, > i,. EFR_OUT represents the tight bound okefr for any ground

instance ofFng; Gng. We now prove these bounds to be tight.

Lemma 13. SupposeF,g; Gng are non-ground formulas, time t> 0 is an integer,
and g is a non-ground time formula. Let(in; in) = EFR_IN (Fng;Gng; t ng)

1. for all ground instances~; G of Fng; Gng We have effF; G; t; Th) 2 [ou; outl

2. there exist ground instancef&; G of F,q; G,g, and we have eff; G; t; Th)

3. there exist ground instance&; G of F,q; G,g, and we have eff; G; t; Th)

Note that if we were to use the techniques of Section 3.4 for afiment, we
would most likely need to nd tight bounds on the elements inhe tuple returned by
EFR_.OUT(Fng; Gng; t ng) (speci cally a tight lower bound on EFR { as we can

132

be sure that for all ground instances; G of F.g; G, that EFR(F; G; t;gnd(ng))
will fall within these bounds). However, there are a few di cuties with this. First,
we conjecture that to nd a good bound onEFR _OUT, we would most likely have
to examine all combinations of ground instances &f,q; Gng { Which is most likely
equivalent to grounding out the logic program and using !. Seand, even if we could
e ciently nd tight bounds on EFR _OUT, they would most likely be trivial - i.e.
[0; 1].

Conversely, consider the tuple (in; in) = EFR_IN (Fng; Gng; t ng). We

know that for all ground instancesF; G of Fny; Gng such that for
[; 1= EFR(F;G; tgnd(ng))

we have i, and i, % We also know that nding a lower bound on j, and
an upper bound on j, can be done by simply considering any subset of combinations

of ground instances of g and Gq.

Example 3.5.1. Consider Ky, from Figure 2.3 with tnax = 4. Suppose we add

the following ptf (called) to the program.

at_station(trainl; stnA) : 1 adjEas{stnA;stnB) : 1*

. (at_station(trainl; stnA) : 2) * at_station(trainl; stnA) : 3 : [1; 1]
Clearly, as
EF R (at_station(trainl; stnA)" adjEas{stnA; stnB); at_station(trainl; stnA); 2;) =1[1;1]
we know for

(in; in) = EFR_IN (atstation(T; S;) * adjWes(S;; S); at_stationT; S); 2;)

133

that , =1 and ;, 1

Algorithm 9 Finds bounds onEFR_IN
FIND-EFR-INFsam; Gsam Subsets of ground instances of non-ground

formulas F,q; Gng; t natural number; .4 non-ground time formulg,

+

returns natural numbers ;,; i,
1. Computegnd(ng)

=0and =1

n

2. Set

in
3. For eachF 2 Fgam

(a) For eachG 2 Ggam
i. Let (;)= EFR(F;G; t;gnd(ng))

ii. 5, =max(; i)

ii. *o=min(;)

Algorithm 9 leverages this technique { if .y is already ground, algorithm
FIND-EFR-INruns in time quadratic in the size of the sample of ground inahces of
Fng; Gng. Clearly, this simple algorithm is guaranteed to return a laver bound on

in and an upper bound on j,.

This information can be leveraged in order to perform consency checks sim-
ilar to those described in Section 3.4.4 without resortingot fully grounding out
Fng; Gng @and considering all combinations of those ground instanceShe intuition

is simple { if there is just one ground instance of a non-grodrrule where™ > u, then

134

the program is inconsistent. The theorem and corollary belomirror Theorem 13

and Corollary 2 (Page 118) that we described in Section 3.4.@rfthe ground case.

Theorem 16. Let K("9) be a non-groundAPT-program that contains the following:

Non-ground rule: Fng " Gng i [£ u]
Non-ground ptf: ng - [1;1]

+
in

and (in; in) = EFR.N (Fng; Gng; t; ng). If we are given in and

in

+

n, then, K9 is not consistent if either ,, >u or ; <°

in
Corollary 5. Let K("9) be a non-groundAPT-program that contains the following:

ef

Non-ground rule: Fpg ' Gng:[t;ul
Non-ground ptf: ng - U

+

in in and in

and (in; in) = EFRIN (Fng;Gng; t; ng). If we are given

in, then, K9 is not consistent if 0>y,

in
Algorithm 10 is a sound (but not complete) method to quickly chack for in-

consistency in the non-ground case.

Proposition 23. If the list returned by NG-INCONSIST-CHIKontains any elements,

then K(") is not consistent.
Note that the algorithm performs only a quadratic number of camparisons.

Proposition 24. NG-INCONSIST-CHHKoerforms O(jK ("9j?) comparisons®

SNote: each comparison requires generating samples of ground instances of tworfarlas in a

rule and running FIND-EFR-IN

135

Algorithm 10 Checks for inconsistencies in a non-ground program
NG-INCONSIST-CHEK ("9) non-ground progran)

returns list of rules that cause inconsistencies
1. Let L be a list of rules initialized to;
2. For each ptf g : [%uq 2 KM whereu®= 1, do the following.

(a) For each ruleFng & Gpg [t;;u]2 K™, do the following.

I. Generate sample set&sam; Gsam Of ground instances of pg; Gpg.

ii. Let (' jy; in) = FIND-EFR-INFsam; Gsam: t; ng)

efr

ji. If ;, "°>u,thenaddF,g; Gng:[t;u]l2K®M toL

iv. Elseif °=1and ; <, then addFpy ¢ Gng:[t;;u]2 KM to

in

L

3. Return list L

3.5.2 Entailment for the Non-Ground Case

In this section, we introduce a non-ground operator, « g), that maps ground
programs to ground programs. Using the same lattice &PT-programs we used in
Section 3.4.3, we show that y) also has a least xed point. Our intuition is as
follows. Suppose we want to nd the tightest entailment bound®n some ptf ; if
we computelfp (wwo)(: [0;1])), the result will be an APT-program (let us call
this program K) s.t. Ifp (!(K)) will provide the same entailment bounds on as

if we had computed the least xed point of ! on the grounding ofK (9, However,

136

in most casesK will be much smaller than the grounding oK ("9,

De nition 49. For non-ground programK ™9 and ground programK (note that

formula (K) is a set of ground formulas, as de ned in De nition 42), ¢~ mMaps

ground programs to ground programs and is de ned as followsy «g) (K) =

efr

fF; G:[t;ul

fooull

fBLK(A) :< blk

fOCQA) : [lo; uplj

[

efr

F® G:[t ;u]is aground instance of a rule iRk s.t.
9 2 formula (K) where is ground and
9t 2 [Lithax]St. FF:tor EG:t
or F:F:tor F:G:tg]
:[;u] is a ground instance of a ptf inK (" s.t.
9 2 formula (K) where is ground and F
or F: gl
BLK(A) :< blk is a ground instance of a constraint inkK ("¥s.t.
9 2 formula (K) where is ground and
Ot 2 [Lithax] St. FA:tor F:A:tg]
OCQA) : [lo; up] is a ground instance of a constraint inK "9s.t.
9 2 formula (K) where is ground andg

Ot 2 [L;tmax] St. FA:tor E:A:tQ

We will now present an example for this operator.

Example 3.5.2. Recall Ky, from Figure 2.3 with t.x = 4. The following rules

137

comprise the set ., (fatstation(trainl; stnB) : 4Q):

at_station(trainl; stnB) : 4
at_station(trainl; stnA) * adjEas{stnA; stnB)
at_station(trainl; stnB) * adjEas(stnB; stnB)
at_station(trainl; stnC) N adjEas(stnC stnB)
at_station(trainl; stnA) * adjWes{stnA; stnB)
at_station(trainl; stnB) * adjWes{stnB; stnB)

at_station(trainl; stnQ " adjWes{stnC stnB)

efr

efr

efr

at_station(trainl; stnB) :
at_station(trainl; stnB) :
at_station(trainl; stnB) :
at_station(trainl; stnB) :
at_station(trainl; stnB) :

at_station(trainl; stnB) :

[4;0:85; 1:0]
[4;0:85; 1:0]
[2;0:85; 1:0]
[2;0:6;0:7]
[2;0:6;0:7]

[2;0:6;0:7]

We use the same partial ordering and lattice from Section 33} and show the

monotonicity of) as follows.

Lemma 14. KV) (K) wrt PROGg, 4,,, ;Vi

Lemma 15. ,ng) IS monotonic.

Now, we show that) has a least xed point.

De nition 50. We de ne multiple applications of as follows.

K(ng)(K) " 0 = K

ko) (K) " (1 +1) = ko) (ko) (K) ™ 1)

Theorem 17. (g has a least xed point.

138

The next two results demonstrate the soundness of . Given meground
program K() | let ground(K(9)) be the grounding of this program. The lemma
below follows directly from the de nition of the operator. I states that the least

xed point of the operator is a subset of the grounding oK ("9,

Lemma 16. Given non-ground progranK ("9, and ground programk, Ifp (mg) (K))

ground(K(9) [K .

Additionally, the following result states that, for a given etailment query, we

obtain the same result whether we usey .y, or simply ground out K("9),

Theorem 18. Given non-ground programK ("9)

tul2 fp (P (koo (F 2 [051]9))))

1[5 ul 2 Ifp ({(ground(K™) [f : [0;1]g))

3.6 Experimental Results

This section reports on experiments carried out in the groundase with our
xpoint algorithm. We demonstrate the ! operator on 23 dier ent ground APT-
programs automatically extracted from two di erent data sés using a slight im-
provement of the APT-EXTRACT algorithm from the previous chapter. We were
able to compute xpoints of APT-programs consisting of over 1,000 ground rules in

about 20 minutes (see the left-hand side of Figure 3.5). Note ththis is the time to

139

compute the xpoint, not to perform a deduction (i.e., via the operator), which
can be done for speci ¢ entailment queries, and would be fast

This section is organized as follows. Section 3.6.1 desesbour experimental
setup, data set, and how we extracted rules, integrity constits, and ptf's while

Section 3.6.2 examines the runtime of the Xxpoint operator.

3.6.1 Experimental Setup

All experiments were run on multiple multi-core Intel Xeon E5385 proces-
sors at 2.33GHz, 8GB of memory, running the Scienti ¢ Linux disibution of the
GNU/Linux OS, kernel version 2.6.9-55.0.2.ELsmp. Our implementation consists
of approximately 4,000 lines of Java code (JDK 1.6.0).

Irag Special Groups (ISW) This data-set contains daily counterinsurgency events
from Baghdad in 2007-2008. The event data was provided by ttestitute for the
Study of War (ISW) and augmented with neighborhood data fromte International
Medical Corps. The historical data was represented with 183round atoms over
567 days { which is the time granularity we used. Using th&PT-Extractalgorithm
(presented in the previous chapter), we extracted 3,563 gnad rules using theefr
frequency function.

We considered 13 logic programs from this dataset; each shaaprogram is a
subset of any of the larger ones, sowe hatlg K , ::: K ;2 K 13. Ineach

program, we included a pre x consisting of 50 worlds (for moren pre xes, refer to

"We note that this implementation makes use of only one processor and one @ffor a single

run, though di erent runs were distributed across the cluster.

140

De nition 34 on Page 107). The same pre x was used for each IS@ogram. We set
tmax = 60 for all ISW programs. Additionally, for all ground atoms gpearing in a
given program, we added the appropriate block and occurrenmtegrity constraints.

Later we will present our extraction algorithms for these austraints.

Minorities at Risk Organizational Behavior (MAROB) This data set con-
tains yearly attributes for a variety of political and violent groups over a period of 25
years [181]. Overall, we have extracted over Zimillion APT-rules from this data

set. These rules were also extracted usilgPT-EXTRACT with the efr frequency
function.

We considered 10APT-logic programs from this dataset, each corresponding
to a dierent group. As each of these logic programs is assoct with actions
for a speci c group, all 10 of the MAROB programs are pairwiseisjoint. In each
MAROB program, we included a unique pre x of 10 worlds speci do the group
in the program. We setty,x = 13 for each MAROB program. Block-size and
occurrence constraints were also included in each prograifables 3.1-3.2 provides
some information on theseéAPT-programs.

While integrity constraints (as with rules) could come from a expert, we
decided to extract our ICs from the data. We have included thstraightforward
algorithms OC-EXTRACTand BLOCK-EXTRACTto show how we extracted occur-

rence and block-size IC's (respectively) for each of the 18ibms in the data set.

Proposition 25. OC-EXTRACTruns in time O((n tmax) tmax)-

Proposition 26. There are no historical threads such that atora; is satis ed by

141

Algorithm 11 Extracts occurrence constraints

returns natural numberslo;; up

1. Setup =0 and lo; = thyax

2. Fori=1,1 n tnx t1, loop

(@) Setcur=0
(b) For j =i,j<i + tmax lOOp

i. If W, F &, thencur= cur+1
(c) If cur < lg; then setlo; = cur

(d) If cur > up then setup = cur

3. Return lo;; up

less thanlo; or more than up worlds whenlo;; up, are produced byOC-EXTRACT

Proposition 27. BLOCK-EXTRACTruns in time O(n).

Proposition 28. Given blk; as returned byBLOCK-EXTRACT there is no sequence

of blk; or more consecutive historical worlds that satisfy atora;.

3.6.2 Run Time Evaluation

To evaluate performance, for each logic program, we clock&d trials until !
reached a xpoint. In all our trials, a xpoint was reached ater only two or three
applications (see Tables 3.1-3.2). We also note that the exqamental relationship

142

ISW MAROB
1400 60

1200
1000
800

oAl
o O

Runtime (seconds)
Runtime (seconds)

30
600
400 20
200 10
0 0 e o
0 500 1000 0 200 400 600
Number of Ground Rules Number of Ground Rules

Figure 3.5: Number of ground rules vs. run time (Left: ISW, Right MAROB). Note

these run-times include the full computation of the xed poin of the ! operator.

between run time and the number of rules was linear { we condied a statistical
R2-test for this and came up with anR? value of Q97 for ISW programs and &/7
for MAROB programs (refer to Figure 3.5). We must point out thatthe disjoint
relationship among MAROB programs may account for why the rutime relation-
ship is not as linear as that for the ISW programs. This graceff degradation in
performance is most likely due to the fact that the number ofules/ptfs that can
tighten the bound of a given rule or ptf is much smaller than th set of entire rules,
which makes the running time of the inner loop very small. Heeg for practical
purposes, theO(jKj ?) is a loose bound; this worst case is likely to occur only in e
rare circumstances.

We checked entailment by looking at the probability bounds oformulas in
formula(K) (see De nition 42), which is obtained by nding the xpoint for the
I operator on a consistent APT-program. After our initial runs of ! on the 23

logic programs, we found that 21 of them were inconsistent. Asconsistencies are

143

Program | Gr. Rules | Post. Gr. Atoms | Range of t | tnax | Time Points | ! App.
Ky 92 76 [2,10] 60 | 567 2
K, 102 76 [2,10] 60 | 567 3
Ks 126 76 [2,10] 60 | 567 3
Ky 144 76 [2,10] 60 | 567 2
Ks 169 76 [2,10] 60 | 567 2
Ke 214 76 [2,10] 60 | 567 3
K 241 76 [2,10] 60 | 567 3
Kg 278 76 [2,10] 60 | 567 3
Ky 360 79 [2,10] 60 | 567 3
K10 503 80 [2,10] 60 | 567 3
K11 644 80 [2,10] 60 | 567 3
K12 816 80 [2,10] 60 | 567 3
K1z 1081 84 [2,10] 60 | 567 3
Table 3.1: APT-logic programs used in the run time evaluations. Programé; K 13

are based on the ISW data-set.

144

Program | Gr. Rules | Post. Gr. Atoms | Range of t | tmax | Time Points | ! App.
Ky 586 189 [2,3] 13 |23 3
K, 679 192 [3,3] 13 | 25 2
Ka 661 162 [2,3] 13 | 25 2
Kg 163 175 [3,3] 13 | 24 2
Kp 539 176 [3,3] 13 | 25 2
Ker 482 188 [2,3] 13 |22 3
Ker 310 177 [3,3] 13 25 2
Kua 458 168 [3,3] 13 |13 2
K 330 182 [2,3] 13 | 25 2
Kk 94 181 [1,3] 13 | 25 3

Table 3.2: APT-logic programs used in the run time evaluations. The prognas in

this table are based on the MAROB data-set.

145

ISW MAROB
1000

[o2]
o

@

o

o
[6)]
o

B D
o o
o o
N W b
o O O

Runtime (seconds)
Runtime (seconds)

N

o

o
=
o

o

0 oo
0 200 400 600 0 200 400 600

Number of Ground Rules Number of Ground Rules
Figure 3.6: Number of ground rules vs. run time for entailmenthecking (Left: ISW,

Right: MAROB).

found in a constructive way (refer to Section 3.4.4 on Page 72 we could eliminate
rules that caused inconsistencies (we designate the \catsnt" subset of a program
with a tick mark, i.e., K9 is K, with inconsistency-causing rules removed). Using
these \consistent" APT-programs, we rst looked to revalue the performance of
the ! operator for entailment. Unsurprisingly, as with the run time evaluation we
performed for consistency checking, we found that the run tienwas related linearly
to the number of ground rules considered. We obtainegd? values of 095 for ISW
programs and @4 for MAROB programs. See Figure 3.6 for details; run times are
based on the average of 10 trials for each logic program.

As a consequence of De nition 42 (Page 123), the logic programturned by
multiple applications of ! includes several ptf's not in theoriginal program. These
ptf's were either based on formulas seen in the rules, or atsrseen in the rules where
an integrity constraint forces the associated atomic ptf tde assigned probability

0. Many of these ptf's have probability bounds tighter than(; 1] { some extremely

146

500
450
400
350
300
250 m Decision ptf's
200 Ou-1<0.1
150
100
50

O - - - - - L - - - - L L -
K1' K2' K3 K4' K5 K6 K7' K8 K9 K10' K11l' K12' K13'

Figure 3.7: Attributes of ptf's entailed by the di erent logic programs (ISW dataset)

tight. We note, as shown in Figure 3.7, that all of our ISW logigrogram produce
over 300 ptfs where the di erence between and u is less than 01 (the number
steadily increases with larger ISW prograniy. We also looked at \decision ptf's";
these are ptf's where eithet 0:5oru 0:5 { the intuition is that the probability
mass is either above or below, allowing a user to make a decision. The ! operator
also was successful in producing many ptf's of this type, ptacing well over 400 in

over half of the logic programs we considered from the ISW datds

8t is important to point out that all numbers of ptf's with tight bounds ar e associated with a

world outside the range of the pre x.

147

Algorithm 12 Extracts block-size constraints

returns natural number blk;

1. Setcur =0

2. Setbest=0

3. Fori=1,i n,loop

(@ f Wi F &
i. cur=cur+1
(b) Else
i. If cur > best then setbest= cur

i. Setcur=0

4. |If cur > best setbest= cur

5. Setblk; = best+ 1

6. Return blk;

148

3.7 Chapter 3 Related Work

In the previous chapter, we showed thaPAPT-Logic distinguishes itself from
other temporal logics in the following ways(i) It supports reasoning about probabil-
ity of events over time, (ii) Future worlds can depend on more than just the current
world (i.e., it does not assume the Markov property).(iii) It provides probability
bounds instead of a point probability. (iv) No independence assumptions are made.

[34] was the rst e ort to provide a declarative semantics fo temporal prob-
abilistic LPs. We compared this work withAPT-Logic in the previous chapter. No
implementation was proposed and thus no experimental ressiwere studied.

[124] introduce an extension to the Situation Calculus fordndling actions
with uncertain e ects. The semantics of their logical langage is given in terms of
a \Randomly Reactive Automaton", which allows for probabilstic e ects of actions
but has no notion of the current time apart from that implied by the sequence of
actions. They examine next move determination where the n@és of a move are
dependent on the move chosen as well as on draws from singlefrom multiple
distributions.

Santos and Young [148] propose the Probabilistic Temporal Nerk model
(PTNSs), which allows to represent temporal (and atemporal)riformation in com-
bination with probabilistic semantics. PTNs are suitable forepresenting causality
constrained by time, conditions for the occurrence of even{and at what time they
occur), and periodic and recurrent processes. This model iaded on Bayesian

networks (for the probabilistic aspect) and on work by Allen3] on temporal in-

149

terval algebra for the temporal aspect. Even though this wéls goals overlap to
some extent with those of our own, the fundamental di erenceds in the initial
assumptions made. In order to build a PTN, one must have avail&binformation
regarding dependencies, prior probabilities for all rando variables, temporal causal
relationships between random variables in temporal aggratgs, etc. The focus of
our work is to reason about events making no independence wsgtions, and only
based on limited information relating small subsets of evenn The PTN framework
is, however, very useful for scenarios in which the requiredformation is avail-
able, as is the case in probabilistic reasoning with traddnal Bayesian Networks.
The key aspect that separate®\PT-logic from PTN's, is the fact that APT -logic
makes no assumptions about independence. For example, consider item 1 of
Theorem 8, one of the key building blocks of our xpoint heurigc. In this case,
ifl & :[p;pand :[p%p9, thenl 2~ :[max(Qp+ p® 1); min(p;P)]. If
we had assumed independence, thenE _ : [p?; p?] { clearly a dierent an-
swer and not appropriate for domains where we do not wish to k& assumptions
about dependence/independence (i.e., the counter-insergcy data that we used for
our experiments). This also is our motivation for the use of pbability intervals {

rather than point probabilities.

3.7.1 Work in Veri cation and PRISM

Logics merging time and probabilities have been studied deia bit in the area

of veri cation. [173] was one of the pioneers in this, follosd by many including

150

probabilistic CTL [65], and others [25]. Building on this work, Kwiatkowska etal.
developed a tool known as PRISM [91, 92] to perform this typd model checking.

PRISM has the following characteristics:

1. The user speci es anodel - a discrete-time Markov chain (DTMC), continuous-

time Markov chain (CTMC) or Markov decision processes (MDP)

2. The user also speci es aroperty - which is normally a CTL formula

3. PRISM returns avalue (normally a probability or expected value) associated

with the property

One can view our implementation in the same light - taking a®\PT-program
as a model, time formula as a property, and returning entailent bounds as the
value. However, PRISM operates under some very di erent assutigns than APT-

logic which are appropriate for some applications but not faall.

1. Themodel speci ed by the user in PRISM is a stochastic process that asses
the Markov property - that is the probability of being in the next state only
depends on the current state and action. Conversely, aPT-program does
not assume the Markov property . Further, we demonstrated translations
from stochastic processes tAPT-programs in Chapter 2. Also, in that chapter,
we showed how it is easy to construct a very simplPT-program where there

is no analogous MDP (using a natural construction).

2. Based on thanodel speci ed by the user, PRISM also makes an independence
assumption. Suppose we are in initial stat&; and consider the following

151

sequence of states, actions, and probabilities in an MDB; 1@ o S2 1° 0 S3
which states that \state 1 transitions to state 2 on actioma with probability p;
and state 2 transitions to state on actiorb with probability p,." PRISM would
calculate the probability of such a sequencep; p, - hence it has assumed
independence between the two transitions. Likewise, coder the formulas
F(S1); F(S2); F(Ss) { formulas satis ed exactly by states S;; S;; Ss. Using
the natural translation described in Chapter 2, we can creatan analogous

APT-program as follows:

(F(S)"ar: b1 F(Sy):2: [p;pil

(F(S) " b7: @)1 27 F(S3) 31 [p2; P2l

By item 1 of Theorem 8, the following ptf is tightly entailed:
(F(Sp)~anr:b: 1~ (F(S)Mbnr:a) 2N F(Sg) @ 3: [max(Gpy + p2

1); min(ps; p2)]

With APT-logic, we allow for uncertainty -all we can say about the sequence
is it has a probability in [max(0;p. + p> 1); min(py; p2)] { which is clearly

dierent than p; p..

. The property specied by the user in PRISM is based on PCTL [12, 65].
Although there are constructs in PCTL that appear similar to he syntax of
APT-logic, as our semantics di er substantially, the statemds have di erent
meanings. Even if an MDP is encoded in aAPT-program, a \leads-to" PCTL

operator (which has a strikingly similar intuition to an APT-rule) has a very

152

di erent meaning. We explored the speci cs of these di ereces in the previous

chapter.

Basically, PRISM is best suited for situations where the uretlying model can
be represented as a stochastic process. Popular applicatidhave included software
veri cation and certain biology problems that can be easilyepresented as stochastic
processesAPT-logic is best suited for situations where there are no indepdence
or Markov assumptions made about the model - which is often¢hcase when we are
working with extracted rules. We have showAPT-logic to be viable for studying the
actions of militia groups in a counter-insurgency environent. Other applications

where APT-logic is well suited include policy analysis and stock priaaovement.

3.8 Chapter Summary

Logical reasoning with time and probabilities is essentiah any application
where the occurrence of certain conditions at timemay cause or imply that other
phenomena may occur units in the future. There are numerous such applications
including ones relating to how stock markets will move in th&uture based on current
or past conditions, medicine where the condition of a patiem the future depends
on various things true now, behavior modeling where the belar of an individual
or group in the future may depend on his current/past situatia. In addition,
most applications where we reason about the future are fralgwith uncertainty.
Annotated Probabilistic Temporal Logic (APT-logic for short) was introduced in the
previous chapter as a paradigm for reasoning about sentea@d the form \If formula

153

F is true at time t, then formula G will be true at time t with a probability in the
range L;U]." More importantly, APT-logic programs were introduced in a manner
that did not require independence or Markovian assumptionsnany of which are
inapplicable for several applications.

To date, no implementation of probabilistic temporal logicexists that does
not make use of Markovian or independence assumptions. To durowledge, this
chapter represnt the rst attempt at any implementation of swch logics. However,
due to the high complexity of such reasoning (which may alsx@ain why imple-
mentations may not exist), practical temporal probabilistc reasoning systems may
not always be complete.

In this chapter, we developed, implemented, and evaluated &point-based
heuristic for consistency and entailment problems iMPT-logic programs. This

chapter makes the following contributions:

1. We show NP-completeness of th&PT-logic consistency problem, and coNP-
completeness of théPT-logic entailment problem, extending hardness results

of the previous chapter.

2. We developed axpoint based heuristic from the following observations:

The presence of ptf's with the probability of 1 in anAPT-program allows

us to tightly bound values for frequency functions.

The bound on frequency functions, in turn, allows us to tiglgn the bounds

of elements in anAPT-program

154

The above two characteristics can be employed in an operattirat maps

APT-programs to APT-programs and has a least xed point
3. We developed consistency and entailment algorithms forégmon-ground case.

4. We implemented our xpoint heuristic and applied it to 23real world APT-
logic programs derivedautomatically from two di erent real world data sets.
This suite of test programs was not written by us. Our experients show that
our xpoint based heuristical can calculate xpoints in time roughly linear

w.r.t. the number of ground rules

5. We also show that using our implementation, we can solvedhtight entail-
ment problem"” where the goal is to nd the tightest interval [; u] such that
F : [t; ;u] is entailed by anAPT-logic program for a given timet and formula

F.

155

Chapter 4

Geospatial Abduction

In the previous two chapter, we explored temporal aspects ah agent's be-
havior with APT logic. The next three chapters deal with spatial aspects ofna
agent's behavior. These chapters are primarily concernedtlvivariants of geospa-
tial abduction problems - inferring unobserved geospatial locations assted with
agent behavior. In this chapter, we formalize the idea of gpspatial abduction and

study some natural problems associated with this framewark

4.1 Chapter Introduction

There are numerous applications where we wish to draw geospainferences
from observations. For example, criminologists [144, 15] Ve found that there
are spatial relationships between a serial killer's househ@ geospatial inference we

wish to make), and locations where the crimes were committéthe observations).

IThis chapter is based on [157] and [158] which were completed in cooperatiorittvMaria Luisa

Sapino and V.S. Subrahmanian.

156

A marine archaeologist who nds parts of a wrecked ship or itsargo at various
locations (the observations) is interested in determininghere the main portion of
the wreck lies (the geospatial inference). Wildlife expertmight nd droppings of an
endangered species such as the Malayan sun bear (observeiand might want to
determine where the bear's den is (the geospatial inferertcebe made). In all these
cases, we are trying to nd a single location that best explains the observations (or
the k locations that best explain the observationsThere are two common elements
in such applications.

First, there is a setO of observationsof the phenomena under study. For
the sake of simplicity, we assume that these observationsegooints where the phe-
nomenon being studied was known to have been present. Secotdre is some
domain knowledgeD specifying known relationships between the geospatial leca
tion we are trying to nd and the observations. For instance, n the serial killer
application, the domain knowledge might tell us that seriakillers usually select
locations for their crimes that are at least 1.2 km from theihhomes and at most
3 km from their homes. In the case of the sun bear, the domain dwledge might
state that the sun bear usually prefers to have a den in a cavehile in the case of
the wreck, it might be usually within a radius of 10 miles of tk artifacts that have
been found.

The geospatial abduction problerf{GAPfor short) is the problem of nding the
most likely set of locationsthat is compatible with the domain knowledgeD and
that best \explains" the observations inO. To see why we look for aset of loca-

tions, we note that the serial killer might be using both his hom and his o ce as

157

launching pads for his attacks. In this case, no single lodah may best account for
the observations. In this chapter, we show that many natural pblems associated
with geospatial abduction are NP-Complete, which cause us tesort to approxima-
tion techniques. We then show that certain geospatial abdtion problems reduce
to several well-studied combinatorial problems that haveiable approximation algo-
rithms. We implement some of the more viable approaches witkeuristics suitable
for geospatial abduction, and test them on a real-world dataet. The organization

and main contributions of this chapter are as follows.

Section 4.1.1 formally de nes geospatial abduction probies (GAPsfor short) and

Section 4.2 analyzes their complexity.

Section 4.3 develops a \naive" algorithm for a basic geospaltiabduction problem
called k-SEP and shows reductions to set-covering, dominating set, anchéiar-
integer programming that allow well-known algorithms for hese problems to be

applied to GAPs

Section 4.4 describes two greedy algorithms f&arSEP and compares them to a

reduction to the set-covering problem.

Section 4.5 describes our implementation and shows that ogreedy algorithms
outperform the set-covering reduction in a real-world appation on identifying
weapons caches associated with Improvised Explosive Dev{ieD) attacks on
US troops in Irag. We show that even if we simpliffk-SEP to only cases where
k-means classi cation algorithms work, our algorithms outprform those. We
also note that k-means can only be applied to geospatial abduction in centi

158

restricted cases as a heuristic with no approximation guamtee. Such cases are
guite limited as the sociol-culutral variables encoded is adsibility overlay cannot

be incorporated into the input of ak-means algorithm.

Section 4.6 compares our approach with related work.

4.1.1 Geospatial Abduction Problem (GAP) De nition

Throughout this chapter, we assume the existence of a nite, 2-dimensional
M N spaceS? for some integersM;N 1 called the geospatial universe (or
just universe). Each pointp 2 S is of the form (x;y) where x;y are integers and
0 x MandO y N. We assume that all observations we make occur within
spaceS. We use the space shown in Figure 4.1 throughout this chaptes tllustrate
the concepts we introduce. We assume th& has an associated distance function
d which assigns a non-negative distance to any two points andtis es the usual

distance axioms>
De nition 51 (observation). An observationO is any nite subset of S.

Consider the geospatial universe shown in Figure 4.1. In therige killer ap-
plication, the red dots would indicate the locations of the mrders, while in the
ship-wreck example, they would indicate the locations wherartifacts were found.

We wish to identify the killer's location (or the sunken shipor the sun bear's den).

2We use integer coordinates as most real world geospatial information systesn(GIS) systems

use discrete spatial representations.
3d(x;x) = 0; d(xy) = d(y;x); d(xy) + d(y;2) d(x;2).

159

12

Figure 4.1: A space. Red dots denote observations. Yellow sages denote infeasible
locations. Green stars show one (0,3) explanation, whilengi triangles show another

(0,3) explanation.

As mentioned earlier, there are many constraints that goverwhere such lo-
cations might be. For instance, it is unlikely that the sun-lear's den (or the killer's

house or o ce) is in the water, while the sunken ship is unlikg to be on land.

De nition 52 (feasibility predicate). A feasibility predicatefeasis a function from

S to f TRUE FALSH).

Thus, feagp) = TRUE means that point p is feasible and must be considered
in the search. Figure 4.1, denotes infeasible places via a gellsquare. Throughout
this chapter, we assume thafeasis an arbitrary, but xed predicate.* Further, as

feasis de ned as a function overf TRUE FALSH)j, it can allow for user input based

4We also assume throughout the chapter thatfeasis computable in constant time. This is a
realistic assumption, as for most applications, we assuméasto be user-de ned. Hence, we can

leverage a data-structure indexed with the coordinates of to allow for constant-time computation.

160

on analytical processes currently in place. For instancen the military, analysts
often create \MCOQ" overlays where \restricted terrain" isdeemed infeasible [170].
We can also easily express feasibility predicates in a Prgistyle language { we
can easily state (in the serial killer example) that pointp is considered feasible if
p is within R units of distance from some observation ang is not in the water.
Likewise, in the case of the sun bear example, the same langeanight state thatp
is considered feasible i is within R; units of distance from marks on trees, within
R, units of scat, and if p has some landcover that would allow the bear to hide.
A Prolog-style language that can express such notions of &#aility is the hybrid
knowledge base paradigm [108] in which Prolog style rulesncdirectly invoke a GIS

system.

De nition 53 ((;) explanation). SupposeO is a nite set of observations,E is
a nite set of points in S, and 0, > 0 are some real numbersE is said to be

an (;) explanationof O i:

p 2 E implies that feagp) = TRUE i.e. all points in E are feasible and

(8020)(9p 2E) d(p; 0 , 1.e. every observation is neither too close nor

too far from some point inE.

Thus, an (;) explanation is a set of points (e.g. denoting the possible
locations of the home/o ce of the serial killer or the possile locations of the bear's
den). Each point must be feasible and every observation musave an analogous

point in the explanation which is neither too close nor too fa

161

Given an (;) explanation E, there may be an observatioro 2 O such that
there are two (or more) pointsp;; p, 2 E satisfying the conditions of the second
bullet above. If E is an explanation forO, a partnering function } g is a function
from O to E such that for allo 2 O, d(} e(0); 0) . }e(o) is said to beo's
partner according to the partnering function} g. We now present a simple example

of (;) explanations.

Example 4.1.1. Consider the observations in Figure 4.1 and suppose=0; = 3.
Then the two green stars denote afy;) explanation, i.e. the sef (6;6);(12;8)g is
a (0; 3) explanation. So is the set of three pink triangles, i.e. the siet5; 6); (10; 6);

(13;9)g is also an(0; 3) explanation.

The basic problem that we wish to solve in this chapter is the lowing.

The Simple (;) Explanation Problem (SEP).
INPUT: Space S, a setO of observations, a feasibility predicatdeas and numbers
0, > 0.

OUTPUT: \Yes" if there exists an (;) explanation for O | \no" otherwise.

A variant of this problem is the k-SEP problem which requires, in addition,
that E containsk elements or less, fok < jOj. Yet another variant of the problem

tries to nd an explanation E that is \best" according to some cost function.

De nition 54 (cost function). A cost function is a mapping from explanations
to non-negative reals.

162

We will assume that cost functions are designed so that the siter the value
they return, the more desirable an explanation is. Some exale cost functions are
given below. The simple one below merely looks at the mean tdisces between

observations and their partners.

Example 4.1.2 (Mean-distance) SupposeS; O;feas ; are all given and suppose
Eisan(;) explanation forO and} g is a partnering function. We could initially

set the cost of an explanatioie (with respect to this partnering function) to be:

020 d(0;}e(0) .
jOj '

}E(E) =

Supposeptn(E) is the set of all partner functions forE in the above setting. Then

we can set the cost of as:

mean(E) = inff }E(E)j}E 2 ptn(E)g:

The above de nition removes reliance on a single partneringriction as there
may be several partnering functions associated with a singd&planation. We illus-

trate this de nition using our sun bear example.

Example 4.1.3. Wildlife experts have found droppings and other evidence of the
Malayan sun bear in a given spaces, depicted in Figure 4.2. Pointsfoy; 0,; 039

indicate locations of evidence of the Malayan sun bear (we shall refer to these as set

rings around each element oD indicate the distance = 1:7km and = 3:7km.
The setf ps; psg is a valid (1:7; 3:7) explanation for the set of evidenc&). However,
we note that observatioro, can be partnered with either point. If we are looking to

163

I

AR |

Pl Y \
TP
\,’

e, -

Figure 4.2: Left: Points f0y; 0,; 0:g indicate locations of evidence of the Malayan

dwellings for the bear. The concentric rings around each etent of O indicate the
distance = 1:7km and = 3:7km. Right: Points fps;p.; psg are feasible for
crime-scened 0,; 0,g. fpy;pg are safe-houses within a distance of;[2] km. from
crime scene; and f p,; psg are safe-houses within a distance of;[4] km. from crime

sceneo,.
minimize distance, we notice that(o,; ps) = 3km and d(o,; ps) = 3:6km, henceps
is the partner for o, such that the distance is minimized.

We now de ne an \optimal” explanation as one that minimizes cst.

De nition 55. SupposeO is a nite set of observations,E is a nite set of points
in S, 0, > 0 are some real numbers, and is a cost function. E is said to be
an optimal (;) explanationi Eis an(;) explanation forO and there is no

other (;) explanationE®for O such that (E9 < (E).

164

We present an example of optimal () explanations below.

Example 4.1.4. Consider the sun bear from Example 4.1.3 whose behavior is de-
picted in Figure 4.2 (left). While f p3; psg is a valid solution for thek-SEP problem
(k = 2), it does not optimize mean distance. In this case the mean distance would

be 3km. However, the solutionf ps; p;g provides a mean-distance a2:8km.

Suppose we are tracking a serial killer who has struck at locatidds= f 0;; 0,0.
The pointsf p;; p,; p:g are feasible locations as safe-houses for the killer (partners).
This is depicted in Figure 4.2 (right). Based on historical data, we know that serial
killers strikes are at leastlkm away from a safe-house and at mo&km from the
safe house (=1, =2). Thus, for k =2, any valid explanation of siz& provides
an optimal solution wrt mean-distance as every feasible location for a safe-house is

within 2km of a crime scene.

We are now ready to de ne the cost-based explanation problem
The Cost-based (;) Explanation Problem.
INPUT: SpaceS, a setO of observations, a feasibility predicatéeas numbers 0,
> 0, a cost function and a real numberv > 0.
OUTPUT: \Yes" if there exists an (;) explanation E for O such that (E) v
| \no" otherwise.
It is easy to see that standard classi cation problems liki&k-means® can be

captured within our framework by simply assuming that =0, > max (M;N)?

5See [4] for a survey on classi cation work.

165

and that all points are feasible. In contrast, standard clas cation algorithms cannot

take feasibility into account - and this is essential for thabove types of applications.

4.2 Complexity of GAP Problems

SEP can be easily solved in PTIME. Given a seD of observations, for each
020, letP,=fp2Sjfeas(p) = TRUE" d(p; 0 g. If P, 6 ; for each
o, we return \yes". We call this algorithm STRAIGHTFORWARD-SEPAnother
algorithm would merely nd the set F of all feasible points and return \yes" i for
every observationo, there is at least one pointp 2 F such that d(p; 0 . In
this case,F is the explanation produced - but it is a very poor explanatio. In the
serial killer example,F merely tells the police to search all feasible locations wibut
trying to do anything intelligent. k-SEPallows the user to constrain the size of the
explanation so that \short and sweet" explanations that are tuly meaningful are
produced. The following result states thak-SEP is NP-Complete - the proof is a

reduction from Geometric Covering by Disc{GCD [76].
Theorem 19. k-SEP is NP-Complete.

In the associated optimization problem withk-SEP, we wish to produce an
explanation of minimum cardinality. Note that minimum cardinality is a common
criterion for parsimony in abduction problems [141]. We slhiarefer to this problem
as MINSEPR This problem is obviously NP-hard by Theorem 19. We can adjtus
STRAIGHTFORWARD-SER nd a solution to MINSEPby nding the minimum
hitting set of the P,'s.

166

Example 4.2.1. Consider the serial killer scenario in Example 4.1.4 and Figure 4.2
(right). Crime scene (observation)o, can be partnered with two possible safe-houses
fp1; P29 and crime sceneo, can be partnered withf p,; psg. We immediately see that
the potential safe house located @b is in both sets. Thereforep, is an explanation
for both crime scenes. As this is the only such point, we conclude tlatg is the
minimum-sized solution for theSEP problem. However, while it is possible for
STRAIGHTFORWARD-SER return this set, there are no assurances it does. As
we saw in Example 4.1.4E = fp;;p.g is a solution to SEP, although a solution

with lower cardinality (f p,g) exists. This is why we introduce théMINSEP problem.

With the complexity of k-SEP, the following corollary tells us the complexity
class of the Cost-based Explanation problem. We show thisdction by simply

setting the cost function (E) = JEj.

Corollary 6. Cost-based Explanation is NP-Complete.

As described earlierMINSEPhas the feel of a set-covering problem. Although
the generalized cost-based explanation cannot be directhewed with a similar in-
tuition (as the cost maps explanations to reals { not elemestof S), there is an
important variant of the Cost-based problem that does. We tnoduce weighted

SEP, or WT-SEP below.

Weighted Spatial Explanation. (WT-SEP)
INPUT: A space S, a setO of observations, a feasibility predicatdeas numbers
0, > 0, aweight functionc: S !< , and a real numberv > 0.

167

P
OUTPUT: \Yes" if there exists an (;) explanationE for O such that ¢ c(p)

v | \no" otherwise.

In this case, we can easily show NP-Completeness by reductioom k-SEP,
P
we simply set the weight for each element & to be one, causing ,. c¢(p) to equal

the cardinality of E.
Corollary 7. WT-SEP is NP-Complete.

Cost-based explanation problems presented in this sectioneavery general.
While the complexity results hold for an arbitrary function n a general case, we
also consider speci c functions as well. Below we presentethotal-distance min-
imization explanation problem (D-SEP). This is a problem where we seek to
minimize the sum of distances between observations and thelosest partners while

imposing a restriction on cardinality.

Total Distance Minimization Explanation Problem. (TD-SEP)

For spaceS, letd: S S!< be the Euclidean distance between two points i8.

INPUT: A space S, a setO of observations, a feasibility predicatdeas numbers
0, > 0, positive integerk < jOj, and real numberv > 0.

OUTPUT: \Yes" if there exists an (;) explanation E for O such that JEj = k and

o20 Minp 2e d(oi;p) v | \no" otherwise.
Theorem 20. TD-SEP is NP-Complete.

The NP-hardness of theTD-SEP is based on a reduction from thd-Median

168

Problem [134]. This particular reduction (details in the apendix) also illustrates
how the k-median problem is a special case &APs but k-median problems cannot
handle arbitrary feasibility predicates of the kind that occu in real-life geospatial

reasoning. The same argument applies tomeans classi ers as well.

4.3 Exact Algorithm for GAP Problems

This section presents four exact approaches to solkeSEP and WT-SEP .
First, we provide an enumerative approach that exhaustivelgearches for an expla-
nation. Then, we show that the problem reduces to set-covedtpminating set, and
linear-integer programming. Existing algorithms for thes problems can hence be
used directly. Throughout this section, we shall use the symols to represent the
bound on the number of partners that can be associated with angle observation
and f to represent the bound on the number of observations supped by a single
partner. Note that both values are bounded by (? 2), however they can be

much less in practice { speci callyf is normally much smaller than .

4.3.1 Naive Exact Algorithm

We now show correctness oNAIVE-KSEP-EXACT This algorithm provides
an exact solution tok-SEP but takes exponential time (ink). The algorithm rst
identi es a setL of all elements ofS that could be possible partners fo©. Then, it
considers all subsets df of size less than or equal t&. It does this until it identi es

one such subset as an explanation.

169

Algorithm 13 (NAIVE-KSEP-EXACY

INPUT: Space S, a set O of observations, a feasibility predicate feas real numbers 0, > 0, and natural
number k> 0

OUTPUT: Set E S of sizek (or less) that explains O

1. Let M be a matrix array of pointers to binary string f0;1g/° . M is of the same dimensions as S. Each

element in M is initialized to NULL. For a given p2 S, M [p] is the place in the array.
2. Let L be a list of pointers to binary strings. L is initialized as null.
3. For each o; 2 O do the following

(a) Determine all points p 2 S such that d(o; p) such that feagp) = TRUE.

(b) For each of these points, p, if M [p] = NULL then initialize a new array where only bit i is set to 1.

Then add a pointerto M [p]in L.

(c) Otherwise, set bit i of the existing array to 1.

4. For any k elements of L (actually the k elements pointed to by elements of L), we shall designate

“1;100 700 as the elements. We will refer to the ith bit of element “j as 7 (i).

5. Exhaustively generate all possible combinations of k elements of L until one such combination is found

P
where 8i 2 [1;j0j], [, (j (i) > 0

6. If no such combination is found, return NO. Otherwise, ret urn the rst combination that was found.

170

Proposition 29. If there is a k-sized simple(;) explanation forO, then NAIVE-

KSEP-EXACTreturns an explanation. Otherwise, it returns NO.
Finally, we have the complexity of the algorithm.
Proposition 30. The complexity ofNAIVE-KSEP-EXACTs O(ﬁ((2 2)j0j)kD)y,

An exact algorithm for the cost-based explanation problemsliows trivially
from the NAIVE-KSEP-EXACTalgorithm by adding the step of computing the value
for for each combination. Provided this computation takes cotent time, this

does not a ect the O(ﬁ((2 2j0)**D) run time of that algorithm.

4.3.2 An Exact Set-Cover Based Approach

We now show thatk-SEP polynomially reduces to an instance of the popular
set-covering problem [80] which allows us to directly applthe well-known greedy

algorithm reviewed in [136].SET_COVERIs de ned as follows.
The Set-Cover Problem. (SET.COVER

positive integerk.
S
OUTPUT: \Yes" if there exists a k-sized subset ofF, Fy, such that !‘zlfSi 2

Fkg E.

Through a simple modi cation of NAIVE-KSEP-EXACTwe can take an in-
stance ofk-SEP and produce an instance oSET.COVER We run the rst four

171

steps, which only takeO(jOj) time by the proof of Proposition 30.
Theorem 21. k-SEP polynomially reduces toSET COVER

Example 4.3.1. Consider the serial killer scenario in Example 4.1.4 and Figure 4.2
(right). Suppose we want to solve this problem as an instancekeS8EP by a reduc-
tion to set-cover. We consider the set of crime-scene locatior3, f 0;;0,9 as the
set we wish to cover. We obtain our covers from the rst four steps NAIVE-KSEP-
EXACT. Let us call the result listL. Hence, we can view the values of the elements
in L as the following setsS; f 0,0;S, f 0;,0,9;Ss f 0,9. These correspond

with points py; p;; ps respectively. AsS, coversO, p, is an explanation.

The traditional approach for approximation of set-cover hga time complexity
of O(JEj jFj size), wheresize is the cardinality of the largest set in the family
F (i.e. size = max;; r;]Sij). This approach obtains an approximation ratio of 1 +
In(size) [136]. Asf is the quantity of the largest number of observations supptad
by a single partner, the approximation ratio fork-SEP using a greedy-scheme after a
reduction from set-cover is 1+Inf). The NAIVE-KSEP-S@lgorithm below leverages

the above reduction to solve th&k-SEP problem.

Proposition 31. NAIVE-KSEP-SChas a complexity of0(f jOj?) and an ap-

proximation ratio of 1 + In(f).

Proposition 32. A solution E to NAIVE-KSEP-S(Grovides a partner to every ob-

servation in O if a partner exists { otherwise, it returns IMPOSSIBLE.

The algorithm NAIVE-KSEP-SGs a naive, straight-forward application of the
O(jEj jF] size) greedy approach for set-cover as presented in [136]. Weeathat it is

172

Algorithm 14 (NAIVE-KSEP-ST

INPUT: Space S, a set O of observations, a feasibility predicate feas and real numbers 0, >0

OUTPUT: Set E S that explains O

1. Initialize list E to null. Let M be a matrix array of the same dimensions as S of lists of pointers initialized
to null. For a given p2 S, M[p] is the place in the array. Let L be a list of pointers to listsin M, L is

initialized to null.

2. Let O%be an array of Booleans of length jOj. 8i 2 [1;jOj], initialize OYi]= TRUE. For some element 02 O,

0Y0] is the corresponding space in the array. Let numObs = jOj

3. For each element 02 O, do the following.

(a) Determine all elements p 2 S such that feagp) = TRUE and d(o;p) 2 [;]

(b) If there does not exist a p 2 S meeting the above criteria, then terminate the program and r eturn

IMPOSSIBLE.
(c) If M[p]= null then add a pointer to M [p] to L

(d) Add a pointer to o to the list M [p].

4. While numObs> 0 loop

(a) Initialize pointer cur _ptr to null, integer cur _size to 0
(b) For each ptr 2 L, do the following:

i. Initialize integer this _size to 0, let M [p] be the element of M pointed to by ptr
ii. For each obsptr in the list M [p], do the following

A. Let i be the corresponding location in array O°to obs.ptr

B. If O9i]= TRUE, increment this _size by 1

iii. If this _size > cur _size, set cur _size = this _size and have cur _ptr point to M [p]
(c) Add pto E
(d) For every obsptr in the list pointed to by cur _ptr, do the following:

i. Let i be the corresponding location in array O°to obs ptr

ii. If O], then setitto FALSE and decrement numObs by 1

(e) Add the location in space S pointed to by cur _ptr to E

5. Return E

173

possible to implement a heap to reduce the time-complexitpO(f jOj Ig(jOj))
- avoiding the cost of iterating through all possible partnes in the inner-loop.

In addition to the straightforward greedy algorithm for setcovering, there
are several other algorithms that provide di erent time comgexity/approximation
ratio combinations. However, with a reduction to the set-coveng problem we must
consider the result of [113] which states that set-cover caot be approximated
within a ratio ¢ log(n) for any ¢ < 0:25 (wheren is the number of subsets in the
family F) unlessNP ~ DTIME [nPoVY log n],

A reduction to set-covering has the advantage of being stgditforward. It
also allows us to leverage the wealth of approaches develbger this well-known
problem. In the next section, we show thak-SEP reduces to the dominating set
problem as well. We then explore alternate approximation tlniques based on this

reduction.

4.3.3 An Exact Dominating Set Based Approach

We show below thatk-SEP also reduces to the well known dominating set
problem (DomSet) [54] allowing us to potentially leverage fast algorithmsueh as
the randomized-distributed approximation scheme in [75]DomSet is de ned as

follows.

Dominating Set. (DomSet)

INPUT: Graph G =(V;E) and positive integerK | Vj.

174

OUTPUT: \Yes" if there is a subset V® V such thatjVy K and such that every

vertexv2 V VCis joined to at least one member o¥°by an edge inE.

As the dominating set problem relies on nding a certain set ofiodes in a
graph, then, unsurprisingly, our reduction algorithm, Algeithm 15, takes spaceS,
an observation setO, feasibility predicatefeas and numbers; and returns graph
Go based on these arguments.

We now present an example to illustrate the relationship beteen a dominating
set of sizek in Go and a k-sized simple () explanation for O. The following

example illustrates the relationship between &-SEP problem andDomSet .

Example 4.3.2. Consider the serial killer scenario in Example 4.1.4, pictured in
Figure 4.2 (right). Suppose we want to solve this problem as an instance&k&bEP
by a reduction toDomSet . We want to nd a 1-sized simple(;) explanation
(safe-house) forO (the set of crime scenesfo,;0,g). Suppose that after running
an algorithm such asSTRAIGHFORWARD-SERve nd that f ps; p2; psg are elements
of S that are feasible.f p;; p.g are all within a distance of ; from o, and f p,; psg
are all within a distance of; from 0,. We run KSEP-TO-DOMSETwhich creates
graph, Go. Refer to Figure 4.3 for the graph. We can see thdip,g is a 1-sized

dominating sets forGo, hence al-sized explanation forO.

We notice that the inner loop of KSEP-TO-DOMSETis bounded by O()
operations and the outer loop will iteratgOj times. Thus, the complexity of KSEP-

TO-DOMSETis O(jOj).

175

P, —— Py

| X

T PTps

p|1>< |
Py ——P;

Figure 4.3: Results oKSEP-TO-DOMSETbased on data seen in Figure 4.2 (right).
Note that f py; p2; p3; pog form a complete graph and p.; ps; p3¢ p3g also form a com-
plete graph. Note thatfp,g is a dominating set of size 1. Hencép,g is a 1-sized

simple (;) explanation for O, as depicted in Figure 4.2 (right).

Proposition 33. The complexity of KSEP-TO-DOMSETis O(jOj).

Example 4.3.2 should give us some intuition into why the redtion to Dom-

Set works. We provide the formal proof in the Appendix.
Theorem 22. k-SEP is polynomially reducible toDomSet .

The straightforward approximation scheme foDomSet is to view the prob-
lem as an instance oSET COVERand apply a greedy algorithm. The reduction
would view the set of vertices inGo as the elements, and the family of sets as each
vertex and its neighbors. This results in both a greater conigxity and a worse

approximation ratio when compared with the reduction diretty to SET.COVER

Proposition 34. Solving k-SEP by a reduction to DomSet using a straight-
forward greedy approach has time-complexi®(* f jOj?) and an approximation

ratio bounded byO(1+In(2 f)) .

There are other algorithms to approximateDomSet [75, 89]. By leveraging
[75], we can obtain an improved complexity while retaininghte same approximation

176

ratio as the greedy approach.

Proposition 35. Solvingk-SEP by a reduction toDomSet using the distributed,
randomized algorithm presented in [75] has a time complexi@(jOj +In(2

jOj) In(2 f)) with high probability and approximation ratio ofO(1+In(2 f)) .

Hence, although a reduction to dominating set generally gigseus a worse
approximation guarantee, we can (theoretically) outperfon set-cover with the ran-

domized algorithm for dominating set in terms of complexity

4.3.4 An Exact Integer Linear Programming based Approach

Given an instance ok-SEP, we show how to create a set of integer constraints

that if solved, will yield a solution to the problem.

De nition 56 (OPT-KSEP-IPQ. The k-SEP integer programming constraints QPT-

KSEP-IPQ require the following information, obtained inO(jOj (2 ?2) time:

Let L be the set of all possible partners generated in the rst four stepsNAIVE-

KSEP-EXACT

For eachp 2 L, let str(p) be the string ofjOj bits, where bitstr(p); is 1 if p is
a partner of theith observation (this is also generated in the rst four steps of

NAIVE-KSEP-EXACT.

For eachp 2 L, letx; 2f0;19. x; =11 p isin E
Then KSEP-IPCconsists of the following:

P
Minimize b 2L Xj Subject to

177

P
1.80620, ,, X% str(p)i 1
2.8p 2 L, x; 2f0;1g (for the relaxed linear program:x; 1)

Proposition 36. OPT-KSEP-IPCconsists ofO(jOj (2 ?)) variables andO(jOj

(2 ?)) constraints.

Proposition 37. For a given instance of the optimization versiok-SEP , if OPT-

S
KSEP-IPCis solved, then ,, _ p is an optimal solution tok-SEP .
(=

P 2
Example 4.3.3. Consider the serial killer scenario in Example 4.1.4, pictured in
Figure 4.2 (right). Suppose we want to solve this problem as an instancé/dbNSEP
We would set up the constraints as follows:

Minimize X;+ X+ Xz subjectto 1 x;+1 X,+0 x3 landO0 x;+1 X,+1 X3 1,
wherexy; X,; X3 2 f 0; 1g

Obviously, settingx; = 0;x, = 1;x3 =0 provides an optimal solution. Hence, ag,

is the only non-zero variablep, is the explanation for the crime-scenes.

A solution to the constraints OPT-KSEP-IPCcan be approximated using the
well-known \rounding" technique [68, 174] that relaxes catraints. We present an

OPT-KSEP-IPCusing rounding.

Proposition 38. NAIVE-KSEP-ROUNDeturns an explanation forO that is within
a factor from optimal, where is the maximum number of possible partners

associated with any observation.

There are several things to note about this approach. Firstt can be easily
adapted to many of the weighted variants - such agVT-SEP . Second, we note

178

that the rounding algorithm is not a randomized rounding algrithm { which often
produces a solution that satis es all of the constraints inhie linear-integer program.
The above algorithm guarantees that all of the observationwill be covered (if an
explanation exists). Finally, this approach allows us to leerage numerous software

packages for solving linear and linear-integer programs.

179

Algorithm 15 (KSEP-TO-DOMSEY
INPUT: Space S, a set O of observations, a feasibility predicatdfeas and real

numbers 0, >0

OUTPUT: Graph Gg for use in an instance of @omsSet problem
1. Let Go =(Vo;Eop) be a graph. SetVp = SandEp = ;.

2. Let S be a mapping dened asS : S! Vp. In words, S takes elements of the
space and returns nodes fromGo as de ned in the rst step. This mapping does

not change during the course of the algorithm.
3. For eacho; 2 O do the following
(@) Determine all points p 2 S that are such that d(o; p) . Call this set P;
(b) For all p2 P; calculate feagp). If feagp) = FALSE removep from P;.
(c) Let V; = fv2 Vpj9p 2 P; such thatS(p) = vg.
(d) Add jP;j new nodes toVp. Add these nodes toV; as well.
(e) For every pair of nodesvs; v, 2 Vi, add edge {1;V2) to Eo.

4. Remove allv 2 Vo where there does not exist arv® such that (v;v% 2 Eg

5. Ifany P; ; return IMPOSSIBLE. Otherwise return Go.

180

Algorithm 16 (NAIVE-KSEP-ROUND
INPUT: Space S, a set O of observations, a feasibility predicatdeas and real

numbers 0, >0

OUTPUT: Set E S that explains O
1. Run the rst four steps of NAIVE-KSEP-EXACT
2. Solve the relaxation ofOPT-KSEP-IPC

3. Forthe 0 2 O with the most possible partners, let be the number of possite

partners associated witho. This can be done in line 1

4. Return all p; 2 L wherex; 1

181

4.4 Greedy Heuristics for GAP Problems

4.4.1 A Linear Time Greedy Approximation Scheme

In this section, we introduce a greedy approximation schemerfthe optimiza-
tion version of k-SEP that has a lower time-complexity thanNAIVE-KSEP-SMut
still maintains the same approximation ratio. OurGREEDY-KSEP-OPT algorithm
runs in linear time w.r.t. O. The key intuition is that NAIVE-KSEP-Sdterates
through O(jOj) possible partners in line 4. Our algorithm rst randomly piks
an observation and then greedily selects a partner for it. T results in the greedy

step iterating through only O() partners.

Example 4.4.1. Consider the sun bear from Example 4.1.3 and Figure 4.2. After
initializing the necessary data structures in lines 1-3GREEDY-KSEP-OPTiterates
through the observations i where the associated position i®°is TRUE Suppose
the algorithm pickso, rst. It now accesses the list pointed to fromOBJo,]. This
gives us a set of pointers to the following elements f f p;; p2; ps; p49. Following
the greedy selection outlined in line 4 oNAIVE-KSEP-SCthe algorithm iterates
through these points, visiting the list of observations associated with each one in the
matrix array M.

First, the algorithm accesses the list pointed to byl [p;]. Figure 4.4 (left)
shows the observations considered whenis selected. As there is only one observa-
tion in list M [p,] whose associated Boolean i®°is TRUE, the variablecur_size is

set to 1 (see line 4(b)iii of NAIVE-KSEP-SET cur _ptr is then set toM [p,].

182

Algorithm 17 (GREEDY-KSEP-OPT)1
INPUT: Space S, a set O of observations, a feasibility predicatdfeas and real

numbers 0, >0

OUTPUT: Set E S that explains O
1. Run lines 1-2 of NAIVE-KSEP-SC

2. Let OBSbe an array, sizejOj of lists to pointers in M. For some observationo, let

OBYo] be the corresponding list in the array.

3. Run the loop in line 3 of NAIVE-KSEP-SCbut when partner p of observation o
is considered, add a pointer toM [p] in the list OBYo]. The list L need not be

maintained.

4. While numObs> 0 loop

(a) Randomly select an elemento 2 O such that 09o] = TRUE

(b) Run the greedy-selection loop of line 4 ofNAIVE-KSEP-SC but consider the

list OBYo] instead of L

5. Return E

183

Figure 4.4: Left: GREEDY-KSEP-OPTaccesses the list pointed to b [p;] thus
considering all observations available tp;. Right: GREEDY-KSEP-OPTaccesses
the list pointed to by M [p,] and nds it has more active observations than it found

in the list pointed to by M [p4].

Now we consider the next elemenp,. Figure 4.4 (right) shows the list pointed
to by M [p,]. As M [p,] points to more observations whose associaté Boolean is
TRUE, we updatecur _size to 2 and cur_ptr to M [pz].

The algorithm then iterates througltps and ps4, but nds they do not o er more
observations thanp,. Hence, p, is added to the solution setHE). The algorithm
updates the array of BooleansQ? and setsOYo,] and OYo,] to FALSE (depicted by
X's over those observations in subsequent gures)umObsis decremented by?.

Now, we enter the second iteration of line 4. The only element for the algo-
rithm to pick at this point is oz, as only OYos] is TRUE The list OB]os] points
to the positionsf ps; p7; psg. In Figure 4.5 we look at what happens as the algo-
rithm considers thep;. As OBJo,] = FALSE it only considers os when computing
this _size.

When the algorithm nishes its consideration of all the elements pointed to

184

Figure 4.5: GREEDY-KSEP-OPTZtonsiders the observations available tp;. The

X's on 0; and o, signify that OBJo;] and OBJo,] are set toFALSE

by OBJo0s], it will return the rst element of that set (ps) as neither p; nor psg

were partners to more available observations thamg (in our implementation of this

algorithm, we use a coin- ip to break ties among partners with the same number of

observations). GREEDY-KSEP-OPT1hen addsps to E and terminates. The nal

solution returned, f p,; peg, is a valid (and in this case, optimal) explanation.

Proposition 39 (Complexity of GREEDY-KSEP-OPT)1 GREEDY-KSEP-OPThas

a complexity ofO(f jOj) and an approximation ratio of1 + In(f).

Proposition 40. GREEDY-KSEP-OPTZeturns a jEj-sized(;) explanation for
0.

GREEDY-KSEP-OPT1teturns IMPOSSIBLE if there is no explanation forO.

We can bound the approximation ratio forGREEDY-KSEP-OPTby O(1 +
In(f)), as it is still essentially a greedy algorithm for a coverig problem. The
main di erence betweenGREEDY-KSEP-OPTIs the way it greedily chooses covers

(partners). This algorithm randomly picks an uncovered olesvation in each loop

185

and then greedily chooses a cover that covers that obsenati Improving the
accuracy of this algorithm (in practice) is tied directly tothe selection criteria used
to pick observations, which is random inGREEDY-KSEP-OPTL1 In Section 4.4.2
we develop an algorithm that \smartly" picks observations \ith a dynamic ranking
scheme while maintaining a time complexity lower than the andard set-covering

approach.

4.4.2 Greedy Observation Selection

GREEDY-KSEP-OPTfandomly selects observations although subsequent part-
ner selection was greedy. It is easy to implement aapriori ranking of observations
based on something like the maximum number of other obseri@ts which share
a partner with it. Such a ranking could be implemented at thetart of GREEDY-
KSEP-OPT1with no e ect on complexity, but the ranking would be static ard may
lose its meaning after several iterations of the algorithm\We could also implement
a dynamic ranking. We present a version oGREEDY-KSEP-OPT1hat we call
GREEDY-KSEP-OPT#hat picks the observations based on dynamic ranking, runs
intime O(f2 jOj+jOj In(jOj)), and maintains the usual approximation ratio of
1+In(f) for greedy algorithms. Our key intuition was to use a Fibonazs heap [49].
With such a data structure, we can update the rankings of obseatrons at constant
amortized cost per observation being updated. The most expéves operation is to
remove an observation from the heap - which costs an amortiz®(In(jOj)), however

as we can never remove more thg@j items from the heap, this cost is most likely

186

dominated by the cost of the rest of the algorithm, which is morexpensive than
GREEDY-KSEP-OPTby a factor of f . Recall that f is the bound on the number
of observations supported by a single partner - and is ofterery small in practice.

In order to leverage the Fibonacci heap, there are some restions on how
the ranking can be implemented. First, the heap puts an elemiewith the minimal
key on top, and can only decrease the key of elements - an elatria the heap can
never have its key increased. Additionally, there is a needrfeome auxiliary data
structures as searching for an element in the heap is very exqsive. Fortunately,
the k-SEP problem is amenable to these type of data structures.

We based the key (ranking) on a simple heuristic for each olvgation. The
key for a given observationo is the number of unique observations that share a
partner with 0. As we are extracting the minimum-keyed observation, we araking
the observation that has the \least in common" with the other tservations. The
intuition of choosing an observation with \less in common" vth other observations
ensures that outliers get covered with larger covers. Meahile, elements with a
higher rank in this scheme are covered last, which may lead o more e cient
cover. In Section 4.5 we show experimentally that this hewtic was viable for the
data-set we considered - providing more accurate resultsath the reduction from

set-covering.

Example 4.4.2. The basic intuition behind GREEDY-KSEP-OPT32s similar to
GREEDY-KSEP-OPTIh that it iterates through the observations and greedily chooses

a partner. The main di erence is that it ranks the observations instead of just ran-

187

Algorithm 18 GREEDY-KSEP-OPT2

INPUT: Space S, a set O of observations, a feasibility predicate feas and real numbers 0, >0

OUTPUT: Set E S that explains O

1. Run lines 1-3 of GREEDY-KSEP-OPT1.

2. Let keys;:::keyjo; be natural numbers associated with each observation. Initi ally, they are set to 0. For

someo 2 O let key, be the associated number.

3. Let REL_OBS be an array of lists of pointers to elements of O. The size of the array is O. For element

020, let REL.OBSJ[0] be the corresponding space in the array.

4. For each 02 O, do the following:

(a) For each element p 2 OBS[o], do the following.

i. For each element obsptr of the list pointed to by M [p], do the following

A. If obsptr points to an element of O not pointed to in the list REL_OBS|[o], then add

obs ptr to REL_OBS[o] and increment keyo by 1.

5. Let OBS_HEAP be a Fibonacci heap. Let QUICK_LOOK be an array (size O) of pointers to elements of
the heap. For each o 2 O, add the tuple ho;keyoi to the heap, along with a pointer to the tuple to

QUICK_LOOK][0o]. Note we are using key, as the key for each element in the heap.

6. While OBS_HEAP is not empty, loop

(a) Take the minimum element of OBS_HEAP, let o be the associated observation with this element.

(b) Greedily select an element of OBS[0] as done in the loop at line 4 of GREEDY-KSEP-OPT1. We shall

call this element p.
(c) For every 02 O pointed to by a pointer in M [p], such that 0%0% = TRUE, do the following.
i. Set 090% = FALSE
ii. Remove the element pointed to by QUICK_LOOK[0% from OBS_HEAP

iii. For every element 0°°2 O pointed to by an element of REL_OBS[o"] where 0%0%] = TRUE do

the following.

A. Decrease the key,oo by 1.

7. Return E

188

Observation | key; | RELOBYo0]

01 2 fO]_; 00
0 2 for; 0,0
03 2 f 05 030

Table 4.1: key values and related observations for observations in the surear

scenario introduced in Example 4.1.3.

domly selecting them. Consider the sun bear from Example 4.1.3 whose behavior is
depicted in Figure 4.2. In Example 4.4.1, we useéBREEDY-KSEP-OPT10 solve
the associatedk-SEP problem for this situation. We shall discuss howREEDY-
KSEP-OPT2di ers.
The rst main di erence is that the algorithm assigns a rank to each observation,
called key;, which is also the key used in the Fibonacci heap. This is done in the
loop at line 4. It not only calculateskey; for each observation, but it also records
the elements \related"” to it in the arrayREL OBS Note that a \related" observation
needs only to share a partner with a given observation. Not all related observations
need to have the same partner. For the sun bear scenario, we show the keys and
related observations in Table 4.1.

As thekey values are the same for all elements O, let's assume the algorithm
rst considers o, as in Example 4.4.1. As written, we would take the minimum ele-
ment in the Fibonacci heap (a constant time operation). We would then consider the

partners for o, which would result in the greedy selection p§, (just as in GREEDY-

189

.
A

— = P

X \

Figure 4.6: Left: GREEDY-KESP-OPT2onsiders all observations that can be part-
nered with p,. Notice that in this gure by each observation we show a box tha

represents the key of the observation in the Fibonacci heapRight: GREEDY-KSEP-
OPT2removeso, from the heap, and iterates through the elements IRELOBYoq],

causing it to decrease the key ad,.

KSEP-OPT1land NAIVE-KSEP-SCAIso notice we retain the array of BooleansQ®
as well as the array of listsM to help us with these operations.).

Now the issue arises that we must update the keys for the remaining obser-
vations, as well as remove observations covered @y As we maintain RELOBS
and O the procedure quickly iterates through the elements coveredoby 0, and 0,.
Figure 4.6 shows the status of the observations at this point.

We removeo,; from the heap, and seDYo,] to FALSE This prevents us from
considering it in the future. We now iterate through eack®in the list pointed to
by RELOBSo0;] where0J0c% is TRUE and decrease the key of each by one. As per
table 4.1, RELOBYo0;] = fo;;0,9. As OYo;] = FALSEwe do nothing. AsOYo,] =

TRUE we decrease the key of the associated node in the Fibonacci heap. The array

190

QUICKLOOK ensures we can access that element in constant time. Figure 4.6 (left)
graphically depicts this action.

Next, we consider the other element covered by partr@r o,. After removing
this element from the heap and settin@Jo,] to FALSE we can easily see that there
does not exist any’’2 REL.OBY0,] whereOYa’) = TRUE Hence, we can proceed to
pick a new minimum observation from the heap - which @g in this case. The greedy
selection proceeds (resulting in the choice @), followed by the update procedure
(which simply removes the node associated with from the heap and set©Y9o;] =
FALSB. As there are no more elements in the heaiREEDY-KSEP-OPTZ2eturns

the solutionf p,; peg.

Theorem 23 (Complexity of GREEDY-KSEP-OPT)2 GREEDY-KSEP-OPThas a

complexity ofO(f?2 jOj + jOj In(jOj)) and an approximation ratio of1 +In(f).

Proposition 41. GREEDY-KSEP-OPTZ2eturns a jEj-sized(;) explanation for
0.

GREEDY-KSEP-OPTZ2eturns IMPOSSIBLE if there is no explanation forO.

4.5 Implementation and Experiments

In this section, we show that our geospatial abduction framewk and algo-
rithms are viable in solving real-world geospatial abductioproblems. Using a real-
world data set consisting of counter-insurgency informatn from Iraq, we were able
to accurately locate insurgent weapons cache sites (parteggiven previous attacks
(observations) and some additional data (used fdeasand ;). This validates our

191

primary research goal for the experiments - to show that gquatial abduction can
be used to solve problems in the real-world.

We considered the naive set-covering approach along wiBREEDY-KSEP-
OPT1 and GREEDY-KSEP-OPT_2vhich according to our analytical results, had the
best approximation ratios and time-complexities. We impleented these algorithms
in 4000 lines of Java code, running on a Lenovo T400 ThinkPadpk@p running
Vista with an Intel Core 2 Duo T9400 2.53 GHz processor and 4.0 G& RAM.
Our SCARE (Social-Cultural Abductive Reasoning Engine) sysim [157] enabled us
to carry out tests on real-world data. This data includes 21 onths of Improvised
Explosive Device or IED attacks in Baghdati(a 25x27 km region) { these constitute
our observations. It also included information on locatiosof caches associated with
those attacks discovered by US forces. The locations of thechas constitute the
(;) explanation we want to learn. We used data from the Internatinal Medical
Corps to de ne feasibility predicates which took the followng factors into account:
(i) the ethnic makeup of neighborhoods in Baghdad - speci dg Sunni locations
were deemed infeasible for cache locations, (ii) the loaats of US bases in Baghdad
were also considered infeasible and (iii) bodies of waterne@also deemed infeasible.
We also separately ran tests on that part of the above data fosed on Sadr City
(a 7x7 km district in Baghdad) alone. On both these regions, weverlaid a grid
whose cells were 100m x 100m each | about the size of a standaufS city block.
All timings were averaged over 100 runs.

We split the data into 2 parts | the rst 7 months of data was used as a

6Attack and cache location data was provided by the Institute for the Study of War

192

Algorithm 19 (FIND-BOUND$
INPUT: Historical, time-stamped observationsOy, historical, time-stamped part-

ners, g, real number (distance threshold) max

OUTPUT: Real numbers ;

1. Set =0and = max

2. Set Boolean variableflag to TRUE

3. For eacho 2 Oy, do the following:

(a) For eachp 2 E;, that occurs after o, do the following.

i. Let d be the Euclidean distance function.
ii. If flag, and d(o;p) max then set = d(o;p) and = d(o;p)
iii. If not flag, then do the following:
A. If d(o;p) < thenset = d(o;p)

B. If d(o;p) > andd(o;p) max then set = d(o;p)

4. Return reals ;

\training" set and the next 14 months of data was used for expenental evaluation.
We used the following simple algorithmFIND-BOUNDS to determine the ; val-
ues. We set ax to 2.5 km. We leave more advanced procedures for learning siee
parameters to future work. Such parameters could also comern an expert.
Accuracy. Our primary goal in the experiments was to determine if the gespatial
abduction framework and algorithms could provide viable mailts in a real-world

setting. \Accuracy" in this section refers to two aspects - ge of the solution, and

193

Area Algorithm Sample Mean| Sample Mean
Solution Size | Number of Partners
0:5 km

to actual cache

NAIVE-KSEP-SC 14:53 8:13
Baghdad | GREEDY-KSEP-OPT1| 1502 7:89
GREEDY-KSEP-OPT2 14:00 7:49
NAIVE-KSEP-SC 8:00 3:00
Sadr City | GREEDY-KSEP-OPTY 6:61 4:44
GREEDY-KSEP-OPTZ2| 6:00 5:28

Table 4.2: k-SEP Algorithm Results - Solution Size

the distance to the nearest actual cache site. The distance hearest cache site was
measured by taking the straight-line Euclidean distance tthe nearest cache site
that was found after the rst attack supported by the projected cache site. We used
the raw coordinate for the actual cache in the data set - not @ position closest to

the nearest point in the 100 m resolution grid that we overldi on the areas. The

accuracy results are summarized in Tables 4.2-4.3.

Overall, GREEDY-KSEP-OPTZonsistently found the smallest solution - of
cardinality 14 for Baghdad and 6 for Sadr City - on all 100 triks. For Baghdad, the
other two algorithms both found a solution of size 14, but bdét averaged a higher
solution. For Sadr City, GREEDY-KSEP-OPTbften did nd a solution of 6 caches
while NAIVE-KSEP-S®nly found solutions of size 8. Additionally, in both tests, te

solution sizes forGREEDY-KSEP-OPT%aried more than the other two algorithms.

194

Area Algorithm Sample Mean| Sample Std Dev| Sample Mean
Avg Dist to of Avg Dist to Std Dev of Dist to
actual cache | actual cache actual cache

NAIVE-KSEP-SC 0:79 km 0:02 0:64

Baghdad | GREEDY-KSEP-OPT1| 0:76 km 0:07 0:60

GREEDY-KSEP-OPT2| 0:72 km 0:03 0:63
NAIVE-KSEP-SC 0:72 km 0:03 0:46
Sadr City | GREEDY-KSEP-OPT1| 0:45 km 0:03 0:46
GREEDY-KSEP-OPT2| 0:35 km 0:03 0:47

Table 4.3: k-SEP Algorithm Results - Distances to Actual Cache Sites

Moreover, the HSD for both Baghdad and Sadr City indicated sig cant di erence
between all pairs of algorithmswrt solution size.

Of the partners in a given solution, we also recorded the numbef partners less
than 0:5 km away from an actual cache. For BaghdadjAIVE-KSEP-S(erformed
best in this regard - averaging 83 partners less than & km from an actual cache
site. Although this result for Baghdad is signi cant based oran analysis of variance
(ANOVA) and honest signi cant di erences (HSD) (p-value of 23 10 °), we also
note that the greatest di erence among averages was stillde than one partner.
This same result for Sadr City, however, tells a di erent stoy. For this test, NAIVE-
KSEP-SCperformed poorly with regard to the other two algorithms - oly nding
3 partners meeting these criteria for each of the 100 trialSGREEDY-KSEP-OPT2

performed very well in this aspect (for Sadr City). It average over 5 partners less

195

than 0:5 km from an actual cache. Further, for Sadr Cityall partners found by
GREEDY-KSEP-OPT#&vere within 600 m of an actual cache site. The ANOVA-

value of 22 10 1) and HSD of partners less than % km from an actual cache for
the Sadr City trials indicate that these results are signi cat.

Our primary metric of accuracy was average distance to actueache. In this
regard, GREEDY-KSEP-OPTperformed the best. It obtained an average distance
of 0:72 km for Baghdad and @5 km for Sadr City. This number was 40 m less for
Baghdad and 100 m less for Sadr City when compared GREEDY-KSEP-OPT,1
whose average distance varied widely among the trials. Withgard to this metric,
NAIVE-KSEP-SMerformed the worst - particularly in Sadr City, where it pralicted
caches over twice as far from actual caches @REEDY-KSEP-OPTZ2on average).
For both Baghdad and Sadr City, the simple ANOVA yielded g-value of 22 10 16,
which suggests with a 99% probability that there is a di erene among the algo-
rithms. Also, for both areas, Tukey's HSD indicates signi candi erence between
each pair-wise comparison of algorithms.

Algorithm run times. Table 4.4 shows the run-times of our algorithms. In
order to validate the ndings suggested by Table 4.4 statigtally, we ran analysis of
variance (ANOVA) and Tukey's Honest Signi cant Di erence test (H) for pair-
wise comparisons [50]. An ANOVA for the Baghdad run-times gave @value of
2:2 10 16, which suggests with well over 99% probability thaGREEDY-KSEP-OPT1
is statistically faster than GREEDY-KSEP-OPT2The HSD for Baghdad indicates
that, with regard to run-times, all pair-wise-comparison othe three algorithms are
signi cantly di erent. For Sadr City, the ANOVA gave a p-value of 49 10 3, which

196

Area Algorithm Sample Mean Run-Time| Sample Run-Time
Standard Deviation
NAIVE-KSEP-SC 35475 ms 1286
Baghdad | GREEDY-KSEP-OPT1 16208 ms 40:83
GREEDY-KSEP-OPT2 20140 ms 3644
NAIVE-KSEP-SC 2885 ms 1052
Sadr City | GREEDY-KSEP-OPT1 2544 ms 9:33
GREEDY-KSEP-OPT2 24:64 ms 8:95

Table 4.4: k-SEP Algorithm Performance Results

suggests with a 99% probability that the algorithms di er inrun-times. However, the
HSD indicates, with an 82% probability, that there is no di erence amondsREEDY-
KSEP-OPTland GREEDY-KSEP-OPT2vhile both di er signi cantly from NAIVE-

KSEP-SC

45.1 A Simple Heuristic to Improve Accuracy

In our implementation of all three algorithms, \ties" in greedy selection of
partners were determined by a \coin toss." Speci cally, wera considering the case
wherethis _size = cur_size in line 4(b)iii of NAIVE-KSEP-SGn Section 4.3.2. Let
us re-phrase the situation as follows. Le© be the entire set of observations and
0O° O be the set of observations currently not assigned a partnet.et p be the

current partner that best meets the criteria for greedy set¢ion and p°be the partner

197

we are considering. We de né® and P° as subsets oD that are the observations
associated withp and p° respectively. Hence, ifP°\O § > jP \ O Y, we pick p°

As implemented, ifjiP°\O § = jP\O Y, we ip a coin. We add a simple heuristic
that simply states that \partners that cover more observatons are preferred.” We

change the criteria as follows:

If jiP\O 9= jP\0O Y, then do the following:

If jPg > jPj, pick p°
If jPj > jPY, pick p

If jPj=jPY, ip a coin

We shall refer to this as the \tie-breaker" heuristic. The resit is that the solution
set of partners covers more observations and hence providerore \dense" solution.

We added this heuristic to our existing code for all three algihms and ran
each one 100 times for both the Baghdad and Sadr City areas. Wngrisingly, as
this is a constant-time operation, run-times were not a ead. However, accuracy
improved in all cases. ASGREEDY-KSEP-OPT2till provided the most accurate
results, the following exposition shall focus on how the heaastics a ected the solution
size and accuracy for this algorithm.

Because the tie-breaker heuristic only adjusts how two parérs are chosen -
both of which can be paired with the same uncovered obsenatis - the size of the
solution was una ected in both the Baghdad and Sadr City tri¢s. However, the
number of predicted cache sites less than 500 m from an actste increased for
both the Baghdad and Sadr City tests. For Baghdad, more trialeeturned solutions

198

Area Tie-Breaker | Sample Mean| Sample Mean
Heuristic Solution Size | Number of Partners
0:5 km

to actual cache

No 14:00 7:49
Baghdad

Yes 14:00 7.87

No 6:00 5:28
Sadr City

Yes 6:00 6:00

Table 4.5: The Tie-Breaker heuristic orGREEDY-KSEP-OPT?2 Solution Size

Area Tie-Breaker | Sample Mean| Sample Std Dev| Sample Mean
Heuristic Avg Dist to of Avg Dist to Std Dev of Dist to
actual cache | actual cache actual cache
No 0:72 km 0:03 0:63
Baghdad
Yes 0:69 km 0:02 0:64
No 0:35 km 0:03 0:47
Sadr City
Yes 0:28 km 0:02 0:11

Table 4.6: The Tie-Breaker heuristic olGREEDY-KSEP-OPT2Distances to Actual

Cache Sites

199

with 8 predictions less than 500 m from an actual site than ratned 7 - the opposite
being the case without the tie-breaker heuristic. For Sadri, all elements of every
solution set returned was less than 500 m from an actual cackiée. Using the well
known T-Test [50], we showed that these results are statistlly signi cant as this
test returned ap-value of 62 10 8 for Baghdad and 22 10 ° for Sadr City.
Summary. The above experiments demonstrate statistically thaGREEDY-KSEP-
OPT2 provides a viable solution - consistently producing the smal solution sets
which were closer to actual cache sites faster than the basgt-sovering approach,
at times approaching the faster, although less-accura@REEDY-KSEP-OPT1The
proximity of the elements of the solution set to actual cachsites is encouraging for
real-world use. The results are strong enough that two US Armynits used SCARE

to aide in locating IED caches.

4.6 Chapter 4 Related Work

In this section we present related work of three di erent vaeties. We com-
pare GAPs to other forms of abduction, facility location,k-means clustering, and
constrained clustering. As an aside, readers interested irdscussion of the SCARE
software from the perspective of military analysis or sodigcience can refer to [157]
where the software package was introduced. However, that Wwodoes not include
any formal technical details on the framework of geospatiabduction, complexity
results, or algorithm analysis.

GAPs and other forms of Abduction. Abduction [137] has been extensively

200

studied in medicine [141, 138], fault diagnosis [26], beliefvision [133], database
updates [77, 27] and Al planning [37]. Two major existing thei@s of abduction
include logic-based abduction [41] and set-covering abdion [19]. Though none
of the above papers deals with spatial inference, [160] peats a logical formalism
dealing with objects' spatial occupancy, while [149] desbe the construction of a
gualitative spatial reasoning system based on sensor datarh a mobile robot. In
[149], sensor data are explained by hypothesizing the exste of physical objects
along with the dynamic relationships that hold between themall with respect to a
(possibly moving) viewpoint. This approach combines bothpsice and time. [90] de-
scribes theSpatial Semantic Hierarchywhich formalizes, the spatial context in which
a robot moves. In the hierarchy, the topological level de rea map which describes
the environment as a collection of places, paths, and reggnlinked by topologi-
cal relations such as connectivity, order, containment, bowlary, and abstraction.
Places (i.e., zero-dimensional points), paths (i.e., onéntensional subspaces, denot-
ing for example a street in a city, possibly represented as andering relation on the
places they contain), and boundary regions (i.e., two-dimsional subspaces of the
robot environment) are created from experience represedtas a sequence of views
and actions. They are created by abduction, positing the mimal additional set of
places, paths, and regions required to explain the sequerafeobserved views and
actions.

Set-covering abduction [19] assumes the existence of a fumetdetermining
the observable e ects of a set of hypotheses, and is based wverting such function.

Given a set of hypothese$l and a set of observation®©, the domain knowledge

201

is represented by a functiore that takes as an argument a set of hypotheses and
gives as a result the corresponding set of observations. Bhdior every subset of the
hypothesesH® H, their e ects are known to bee(H9. In this case, abduction
nds a set H® H such thatO e(H9, that is, it nds a set of hypothesesH?
whose e ectse(H 9 include all observations inO. A common assumption is that the
e ects of the hypotheses are independent, that is, for evei® H, it holds that
e(H9 = ShZHoe(f hg). If this condition is met, abduction can be seen as a form of

set-covering. No spatial reasoning is done here.

Comparison with facility location. There are several important ways in which

GAPsdi er from facility location problems.

Although it is possible to specify a distance-based cost furan, in a GAP prob-
lem, the distances between observations and partners are soaints (and in
this chapter) whereas facility location problems usually &mpt to minimize the

distance between producers and consumers.

In this chapter, GAPproblems have a minimum distance between observations and
partners that must be exceeded. In many respects, this regeiment makesGAP
problems more di cult than facility location and other computational geometry
problems as the set of possible partners that cover a givensalovation is a non-
convex ring. Further, the feasibility function feag adds non-uniform holes to
such aring. [115] addresses the complexity of non-convexeang and highlights

issues with problems such as this.

202

The feasibility predicate,feasis not part of a facility location problem. This gives

us the ability to restrict certain locations that can be parners.

In general, the relation between observations and partnecan be viewed to be a
set of constraints. In this chapter, we only used ; and feas However, in the
future, we could add additional constraints. Further, as ouformalism represents
space as a set of discrete points (also not typically done Wwitacility location),

we can easily specify certain properties of these points tp@y such constraints

(such asfeag.

Comparsion with k-means clustering. A well-known and studied problem in
clustering location is thek-meansproblem [116]. This problem can be expressed as
follows:

k-means :

INPUT: Coordinates on a planeC and natural numberk

clidean distance among al€ 2 C; is minimized.

Clustering problems group points into clusters, associaty each cluster with a
center. At rst glance, one may think that the points are equialent to observations
and the \centers are equivalent to partners. However, this isat so. Most versions of
the clustering problem seek only to arrange points in grougswith \centers" being
a side-e ect of the algorithm. Geospatial abduction problem seeks to nd partners

that support observations and places constraints on the location of the partners -

203

this is a key di erence from \centers" in clustering problems.Clustering algorithms
cannot handle the generality of our feasibility predicate othe (;) constraints.

In addition to these obvious di erences, we experimentallyampared an imple-
mentation of k-meanswith GREEDY-KSEP-OPTan the Sadr City data. Even when
we ignore the obvious value of, and the feasibility predicate, GREEDY-KSEP-
OPT2 outperforms the SimpleKMeansolver in WEKA version 3.7.0 [180]. Note
that the exclusion of these parameters makeéSREEDY-KSEP-OPTperform worse
than it performs with these parameters { yet, it performed bter than k-means in

terms of accuracy. Our experiment was set-up as follows:

We used the same area for the Sadr City tests, as the value was 0 in these
tests and there were virtually no non-feasible points neahé observations. This
allowed us to use WEKA's k-means implementation \out-of-thdsox" as we did

not have to implement any extra infrastructure to deal with €asibility and = 0.

We setk = 6, the number of partners consistently found byGREEDY-KSEP-
OPT2 Normally, we would rather have the algorithm determine thisige. Note
that supplying the algorithm with a size already determinecoy GREEDY-KSEP-
OPT2 (and, also the smallest size of any explanation for Sadr Cityesfound in
our trials) gives an advantage tok-means Hence, we did not compare solution

sizes.

We clustered the observations wittk-meansand considered the \center" of each

cluster the cache location for the cluster.

We did not compare timing results, as we ran WEKA in its GUI envionment.

204

We ran 500 iterations of theSimpleKMeansnd worked with the average cen-
ters for the clusters as reported by WEKA. Multiple runs of the BO iterations

yielded the same centers.

Average DistanceUsing WEKA, we obtained an average accuracy of¥8 km, which

is worse thanGREEDY-KSEP-OPTZ2average over 100 trials, 28 km).

Worst-Case DistanceWEKA's SimpleKMeanseturned 2 of the 6 points with a dis-
tance of greater than 600 meters from a cache site. Without thei&-breaking”
heuristic, GREEDY-KSEP-OPT2ever reported a prediction over 600 meters from
a cache site (all reported partners over 100 trials). With théneuristic, GREEDY-

KSEP-OPT2never reported a prediction over 500 meters from a cache site

Best-Case DistanceT he closest partners ever returned bEREEDY-KSEP-OPTRei-
ther with our without the heuristic) were 200 m away from an atual cache site (on
average, the closest partner per explanation was 220 m awayVEKA's SimpleK-
Meansdid return two partners less than 200 m - each only 100 m awayofn an

actual cache site.

These results suggest thak-meansmay not be the optimal method for GAP
problems. Further, it does not support feasibility and . The results do hold some
promise for some variants of cost-based spatial explanatiproblems that require a
k input from one of our greedy-approaches. However, even inghiase, there would

205

be modi cation required of the k-meansalgorithm to support feasibility and

Comparison with Constrained clustering. Constrained clustering[176] stud-

ies clustering where, in addition to the points to be clustetg there are constraints
that either force two points in the same cluster (must-link)or force two points to

be in di erent clusters (cannot-link). Later work on constiained clustering has fo-
cused on distance constraints between elements®br distance constraints between
clusters [32]. Much of the work in this area is summarized i14].

At rst glance, it may appear that spatial abduction can be eyressed as a
cannot-link constrained clustering problem as follows: Feacho; P20 if 6p2 S
st.dlo;p2[;],d(o%p)2[; 1], andfeagp), then create a cannot-link constraint
for o; &

However, such a mapping cannot be guaranteed to provide a cut result.
For example, takeoy; 0;; 03 and pi2; pos; Pr3- Supposeo; and o, share just partner
P12, 0> and 03 share just partnerp,s and o;; 0; share just partnerp;s. This is entirely
possible given the generality ofeas In such a case, all three observations could be
incorrectly grouped into a single cluster - although it is oldous there is no single
partner that supports all of them. Hence, such a mapping would hde trivial.
Further, most clustering algorithms are not seeking to cotsictively nd centers
that are constrained. We leave the study of constrained chgsing to solve GAP
problems (i.e. an adaption of the k-means algorithm) to futie work. However,
it is also worth noting that solving constrained clusteringproblems given cannot-

link constraints is NP-complete, so the application of clusting techniques to this

206

problem does not imply a more tractable version of geospatabduction, but rather

an alternative heuristic.

4.7 Chapter Summary

There are a wide variety of problems where we can make geodtsti observa-
tions \on the ground" and where we want to infer a partner locaon. In this chapter,
we have presented four examples of such problems | one dealingtiwvserial killers,
another dealing with wildlife studies, and a third (perhapsmore fun) application
dealing with nding sunken ships. A fourth real world appliation we have looked
at is that of nding weapons caches associated with Improwsl Explosive Device
(IED) attacks in Iraq where we were able to use real world, opesource data. It is
clear that many other applications exist as well. For examp| a bizarre (but real
world) combination of two of our examples involves frequenttiacks by man-eating
leopards on children in certain parts of greater Bombay in thia. This situation is
analogous to the serial killer scenario where the leopard iset serial killer. We want
to nd the leopard's favorite \hang outs", capture it, and sdve the problem.

In this chapter, we have made an attempt to formally de ne a @ss ofgeospatial
abduction problems GAPsfor short). We speci cally made the following contribu-

tions.

We developed formal mathematical de nitions of geospatiabduction problems,
including several variants of the above problems. We conded a detailed analysis

of the complexity of these problems.

207

We developed exact algorithms for many of the problems, incling a straight-
forward enumeration approach NAIVE-KSEP-EXACY, by showing and leveraging
reductions to both the set-covering and dominating set praéms, and by articu-

lating these geospatial abduction problems via integer kar programs.

As the complexity of most of the problems we have studied is NRarld, we de-
veloped two greedy approximation schemes for tHeSEP problem (other than
set-covering) and illustrated a scheme to quickly nd a solion using randomized

approaches to the dominating set problem.

We have implemented these algorithms and conducted experint& comparisons
of the reduction to set-covering and two other greedy approbhes - GREEDY-
KSEP-OPTland GREEDY-KSEP-OPT2Both of these algorithms outperformed
the set-covering reduction in an experiment on thé&nderstanding War Special
Groups data set. We also implemented a \tie-breaker" heuristic thatfurther

improved the accuracy of the algorithms.

We have also developed approximation schemes using relazas of the linear-

integer program fork-SEP and the cost-based varianWT-SEP .

There are many interesting directions for future work. Forxample, spatial
abduction in dimensions greater than two might be exploredA probabilistic vari-
ant might replace the feasibility predicate with a probabilly distribution function,
or express the relationship between observations and paens as a PDF based on

distance rather than rely on; . Also, the use of randomization in the approxima-

208

tion algorithms may improve results for both the greedy andinear programming
approaches presented in this chapter.

One aspect to explore in future work is the relationship be®en observations
and partners. k-SEP and its cost based variants only rely on; . However, many
applications may have other constraints. Perhaps there istrection associated with
each observation (as in identifying where an artillery rouh originated from), which
would limit the locations of the partner. Another possibiliyy is to add geographic
constraints. Perhaps the observation cannot have a partnacross a body of water,
or beyond the edge of a cli .

Another important question is: where do we look for partnersfithey are
placed they are placed by an adversary? We can think of sceia; such as in
counterinsurgency, where an enemy obtains a copy of our sate and wants to
plan his cache sites in a place where an agent would be unlikedysearch for them.
We study this particular problem in Chapter 6. Another naturd question is: what
if we want to abduce regions rather than point locations for grtners? There are
many real-world applications where a user may wish to nd an &a to search rather
than a point - in elds varying from paleontology to intelligence. We describe this

extension to the geospatial abduction framework in chapter. 5

209

Chapter 5

Abducing Regions

In the previous chapter, we studied a variety of geospatialrpblems where
the space is represented as a plane that used discrete integeordinates. In this
chapter, we modify the framework to use a continuous spacestead. Additionally,
rather than abducing points, we assume the space is divideato a set of regions,

and we wish to abduce a set of regions that explains the agenbehavior?

5.1 Chapter Introduction

In this chapter, we introduce a variant GAPs calledregion-based geospatial
abduction problemgRGAPS. In RGAPswe are given a map, a séd of observations,
and a set of subregions of the map (this could include all sidgions of the map in
the worst case or can be de ned by some logical condition). Weant to nd a set
of regions that best \explain" the observations and includedor each observation,

at least one partner.

1This chapter is based on [153] which was completed in cooperation with V.SSubrahmanian.

210

In this chapter, we make several contributions. In Section B.we introduce
multiple possible formal de nitions of RGAPs- including cases where the regions are
determined by a given radius from each observation, regioase non-convex, and
when regions are of irregular shape due to terrain restriots. We then perform
a detailed complexity analysis in Section 5.3, proving that nsb of these problems
are NP-complete. This leads us to use approximation techniguén Section 5.4.
We also describe some practical implementation issues. &®t 5.5 describes our
implementation and includes an experimental evaluation on eeal-world data-set
consisting of IED attacks in Baghdad, Iraq and related weams cache sites. In
our evaluation, regions outputted by the algorithm contaied, on average, I cache
sites, with an average cache density of ovB8rcaches per square kilometer { signi -
cantly higher than the city-wide average df:4. Further, the algorithm ran quickly,
performing computation in just over 2 seconds on commodityedktop hardware.

Finally, we survey related work in Section 5.6.

5.2 Technical Preliminaries

To address the problem of region-based geospatial abductiave introduce a
framework that resembles that of Chapter 4 - but di ers in segral important aspects.
These include the use of a continuous space and multiple tygef explanations. In
Chapter 6, we return to the original framework of Chapter 4.

We assume the existence of a real-valuddl N spaceS whose elements are

pairs of real numbers from the set [(M] [0;N]. An observation is any member

211

of S. We useO to denote an arbitrary, but xed, nite set of observations We
assume there are real numbers such that for each observatioro , there exists
a partner p, (to be found) whose distance frono is in the interval [;].? Without

loss of generality, we also assume that all elements ©@fare over distance away
from the edge ofS. Example 5.2.1 presents a neighborhood as a space and lanadi

of illegal drug sales as observations.

Example 5.2.1 (lllegal Drug Sales) A criminal gang is selling illegal drugs. Con-

sider the spaceS depicted in Figure 5.1. Drug dealers were arrested by police at

5km of such transactions (i.e. =0 and =5km). Note that in Figure 5.1, cir-
cles of radius5km are drawn around the observation points. Police are interested

in locating such safe-houses.

Throughout this chapter, we assume the notion of distance functiond on S
satisfying the usual properties of such distance functiodsWe now de ne a region
and how they relate to the set of observations. Our intuitioris simple - a region

explainsan observation if that region contains a partner point for tlat observation.

De nition 57 (Region / Super-Explanation / Sub-Explanation). A regionr is a
subset ofS such that for any two points(x;y); (x%y% 2 r, there is sequence a of

line segments from(x;y) to (x%y9 s.t. no line segment lies outside.

2Chapter 4 describes methods to learn; automatically from historical data.
3d(x;x) = 0; d(x;y) = d(y;x); d(x;y) + d(y;2) d(x;2).

212

1. A region r super-explains point oin S i there exists a point p 2 r such

that d(o;p 2 [; |

2. A regionr sub-explains some pointoin Si (8p2r)do;p2[; |

First, note that regions can have any shape and may overlap. Tdughout this
chapter, we assume that checking if some pointis sub-(super-) explained by region
r can be performed in constant (i.eO(1)) time. This is a reasonable assumption for
most regular shaped regions like circles, ellipses and pgyns. The following result

follows immediately from De nition 57.

Observation 5.2.1. If region r 6 ; sub-explains pointo, then r super-explains

point o.

We would like to explain observations by nding regions comtining a partner.
In some applications, the user may be able to easily search thatire region { hence
a super-explaining region would su ce. In other applicatios, we may want to be
sure that any point within the region can be a partner as not tavaste resources -
so only a sub-explanation would make sense in such a case. Qftlese situations
may depend on the size of the regions. We shall discuss theues®f restricting
region size later in this section. For now, we shall consideegions any shape or

size. Example 5.2.2 shows regions that super- or sub-explaarious observations.

Example 5.2.2. Consider the scenario from Example 5.2.1 and the regions
R = frarpre;ra;re; 1 rgg shown in Figure 5.1. Suppose these regions correspond

with \support zones" for the drug sales { i.e. places that may contain a safe-house.

213

Figure 5.1: Locations of illegal drug sales and suspected popt zones
fra;rore;ra;fe;ls;rgg. The distance for each observation is shown with a dashed

circle.

214

Consider regionr,. As it totally lies within the ; distance ofoy, it sub- and super-
explains this observation. Conversely, regiory super-explains bothos and o; but

sub-explains neither.

This chapter studies following decision problems.

Sub-(Super-)Region Explanation Problem (Sub/Sup-REP)

INPUT: Given a spaceS, distance interval [;], set O of observations, selR of
regions, and natural numbeik 2 [1;]Oj].

OUTPUT: Set R® R, wherejRY k and for eacho2 O, there is anr 2 R s.t. r

sub-(super-) explainso.

The fact that a setR of regions is part of the input is not an assumption, but
a feature. A user might sefR to be all the regions associated witls; alternatively,
he might use a logical condition to de ne regions, taking it account, the terrain
and/or known aspects of the population living in the area ofnterest. For instance,
when trying to identify regions containing IED caches in Bagiad used for attacks
by Shi'ite groups, regions were de ned to be places that weret predominantly
Sunni and that did not contain US bases or bodies of water. Oth&inds of logical
conditions may be used when dealing with burglaries or drugarking. Thus, the
setR of regions allows an analyst to specify any knowledge he hasdaallows the
system to bene t from that knowledge. If no such knowledge iavailable, R can be

taken to be the set of all regions associated with. R can also be used to restrict

215

the size of the region (e.g. only considering regions whoseais less than 5 sq.
km.).

There are two di erent associated optimization problems assiated with both
Sub-REP and Sup-REP. The rst deals with nding a subset of rgions of minimal

cardinality that explains all observations.

Sub-(Super-)Region Explanation Problem-Minimum Cardinality (Sub/Sup-
REP-MC)

INPUT: Given a space,S, distance interval [;], set of observationgD, and set of
regionsR.

OUTPUT: Set R® R of minimum cardinality, where for eacho 2 O, there is an

r 2 R s.t. r sub-(super-) explainso.

Our second optimization problem xes the number of regionseturned in the

solution, but maximizes the number of observations that arexplained.

Sub-(Super-)Region Explanation Problem-Maximum Explaining (Sub/Sup-
REP-ME)

INPUT: Given a spaceS, distance interval [;], set O of observations, selR of
regions, and natural numberk 2 [1;]jOj].

OUTPUT: Set R® R, wherejRY k s.t. the number ofo 2 O where there is an

r 2 R s.t. r sub-(super-) explainso is maximized.

216

Consider the following Example.

Example 5.2.3. Consider the scenario from Example 5.2.2. Consider an instance
of Sup-REP withk = 7. The setfr,;ry; re;rg;re; 'v; g9 is @ solution to this problem.
Now consider Sup-REP-MC withk = 6, the setfra;re;rqg;re; I't;gg is a solution to
this problem. Finally, consider Sup-REP-ME withk = 2. The setfr;rqg is a

solution to this problem.

We now consider a special case of these problems that ariséemwthe setR
of regions is created by a partition of the space based on thet ®f observations Q)
and concentric circles of radii and drawn around eacho2 O. We can associate
regions in such a case with subsets 6f. For a given subsetO°® we say that there

is an associated set ahduced regions(denoted Rqpo), de ned as follows:

Roo= ff Xj 8020°%d(x;0)2[; "

80°20°%d(x;0% 2[; 19 ¢

We note that for a given subset of observations, it is possélto have a set of
induce regions,Rqo that has more than one element. For example, consider set
R. = fry;r20 in Figure 5.2. For a given set of observation®, we will use the

notation Ro do denote the set of all induce regions. Formally:

Ro = ROO
00220
Ry06;

We illustrate the idea of induce regions in the following exaple.

217

Figure 5.2: SpaceS and the regions in seRo.

Example 5.2.4. In order to identify locations of drug safe-houses, police cread3

induced regions in S by drawing 5km radius circles around all observations (see

For the special case wherR is the set of regions, we have the following result.

Lemma 17. SupposeO is a set of observation anRp is the induced region. A

regionr 2 Rp sub-explains an observation 2 O i it super-explains o.

By this result, for the special case of induced regions, welpmeed one deci-

sion problem.

Induced Region Explanation Problem (I-REP)

INPUT: Given a space,S, distance interval [;], setO of observations, and natural

218

numberk 2 [1;]Oj].
OUTPUT: Set R® Ro, wherejRY k and for eacho 2 O, there is anr 2 R s.t.

r sub-explainso.

As mentioned earlier, the sizes of regions can be regulateddayr choice ofR.
However, we may also explicitly require that all regions mustéless than a certain

area. Consider the following variant of Sup-REP.

Area-Constrained Super-Region Explanation Problem (AC-Sup-REP)

INPUT: Given a space,S, distance interval [;], set O of observations, seR of
regions, areaA, and natural numberk 2 [1;]Oj].

OUTPUT: Set R® R, wherejRY k and eachr 2 R%has an area A and for

eacho 2 O, there is anr 2 R s.t. r super-explainso.

The following proposition tells us that AC-Sup-REP is at leatsas hard as
I-REP, yet no harder than Sup-REP (an analogous result can sdy be shown for
an area-constrained version of Sub-REP). We note that essiatly, we eliminate the
regions whose area is above arég which gives us an instance of Sup-REP. To go
the other direction, we directly encode I-REP into an instace of AC-Sup-REP and

have A be larger than the area of any region.

Theorem 24. |-REP is polynomially reducible to AC-Sup-REP.

AC-Sup-REP is polynomially reducible to Sup-REP.

219

In our nal observation of this section, we note that the seRp can be used as
a \starting point" in determining regions. For instance, suplemental information
on area that may be restricted from being partnered with an aervation may also
be considered and reduce the area of (or eliminate altogethesome regions in the

set. Consider the following example.

Example 5.2.5. Consider the scenario from Example 5.2.4. The police may elim-
inate a river running through the area and certain other ares from their search.
These \restricted areas" are depicted in Figure 5.3. Note that several regions from
Figure 5.2 are either eliminated or have decreased in size. However, by eliminating
these areas, the police have also pruned some possibilities from their search. For

example, regiongg; ri3 were totally eliminated from consideration.

220

Figure 5.3: A set of regions ir5 created based on the distance = 5km as well as

restricted areas (shown in black).

5.3 Complexity

In this section, we show that Sub-REP, Sup-REP, and I-REP ardP-Complete
and that the associated optimization problems are NP-Hard. Walso show that
the optimization problems Sub-REP-MC, Sup-REP-MC, and I-EEP-MC cannot be
approximated by a fully polynomial-time approximation schee (FPTAS) unless
P = NP. We also note that the complexity of the area-constrained v&ons of
these problems follows directly from the results of this skon by the reduction of
Theorem 24 (page 219).

We rst prove that I-REP is NP-complete, which then allows us tocorrectly

identify the complexity classes of the other problems by levaging Lemma 17. First,

221

we introduce the problem \circle covering” (CC) that was preen to be NP-complete

in [125].

Circle Covering (CC)
INPUT: A space S° setP of points, real number ° natural number k°.
OUTPUT: \Yes" if there is a set of points, Q in S°such that all points in P are

covered by discs centered on points @ of radius °wherejQj k°{\no" otherwise.

The theorem below establishes that I-REP is NP-complete.
Theorem 25. |-REP is NP-Complete.

Proof Sketch. Clearly, a solution to I-REP can be veried in PTIME. To show
NP-hardness, we show that CC , I-REP by the following transformation: S = S°
O=P, = % =0,andk= k% (() Given a solution to the instance of I-REP,
we can simply pick a point in each returned region, and center a circle on it of radius

O - which will be a solution to CC. Likewise,)() given a solution to CC, we can
be assured that each point in the solution is enclosed by exactly one region from the

set Rp, which would ensure a solution to I-REP.

Further, as the optimization version of circle covering is hown to have no
FPTAS unlessP = NP [70], by the nature of the construction in Theorem 25, we

can be assured of the same result for I-REP-MC.

Corollary 8. [I-REP-MC cannot be approximated by a fully polynomial-time ap-

222

proximation scheme (FPTAS) unles®® = NP .

So, from the above Theorem and Corollary and Lemma 17, we gigetfollowing

results:
Corollary 9. 1. Sub-REP and Sup-REP are NP-Complete.

2. Sub-REP-MC, Sup-REP-MC, I-REP-MC, Sub-REP-ME, Sup-REP-ME, and

I-REP-ME are NP-Hard.

3. Sub-REP-MC, Sup-REP-MC cannot be approximated by a FPTAS unleBs=

NP.

5.4 Algorithms

In this section we devise algorithms to address the optimitian problems
associated with Sup-REP, Sub-REP, and I-REP. First, we show thhahese opti-
mization problems reduce to either instances of set-coven(fSub/Sup-REP-MC)
or max-k-cover (for Sub/Sup-REP-ME). These problems are well-stueld and there
are algorithms that provide exact and approximate solutiosn. We then provide a
new greedy-algorithm for Sub/Sup-REP-MC that also providesn approximation
guarantee. This is followed by a discussion of approximatidor I-REP-ME for the
case where = 0. Finally, we discuss some practical issues dealing with irtgmen-

tation.

223

5.4.1 Exact and Approximate Solutions by Reduction

In this section we show that the -MC problems can reduce to sebver and
that the -ME problem can reduce to maxk-cover. First, we introduce the two prob-

lems in question. First, we present set-cover [136].
Set-Cover
.. o S
OUTPUT: SubsetH® H of minimum cardinality s.t. |, ,40Hi S.

Next, we present maxk-cover [46], which is often regarded as the dual of
set-cover:

Max- k-Cover

kK jSj

S
OUTPUT: SubsetH® H s.t. jHY kwherej ,,0Hi\ Sjis maximized.

The key to showing that Sub/Sup-REP optimization problems an reduce to
one of these problems is to determine the family of subsets.eVdccomplish this as
follows: for each regiorr 2 R, we nd the subset of O that can be partnered with
r. We shall refer to this set asO,. This gives us the following algorithm for the
optimization problems (we simply omit thek parameter for the -MC problems that

reduce to Set-Cover):

224

REDUCE-TO-COVERIN® set of observationsR set of regions,k natural number)

returns instance of covering problenhS;H ; ki
1. Foreachr 2 R, nd O, (i.e. oisin O; i r sub/super-explains o)

S
2. Return hQ; | ,zfO(g; ki

Proposition 42. REDUCE-TO-COVERIN@&quiresO(jOj jRj) time.

The following theorem shows thaREDUCE-TO-COVERING@orrectly reduces

a Sub/Sup-REP optimization problem to set-cover or ma¥-cover as appropriate.

Theorem 26. Sub/Sup-REP-MC polynomially reduces to Set-Cover and Sub/Sup-

REP-ME polynomially reduces to Maxk-Cover.

This result allows us to leverage any exact approach to the abe optimization
problems to obtain a solution to an optimization problem asswated with Sub/Sup-
REP. A straightforward algorithm for any of the optimization problems would run
in time exponential injOj or k and consider everyOj or k sized subset o? »rfO 0.
Clearly this is not practical for real-world applications.Fortunately, there are several
well-known approximation techniques for both these probmes. First, we address the
Sub/Sup-REP-ME problems, which reduce to Max-Cover. As the Maxk-Cover
problem reduces to the maximization of a submodular functioover a uniform ma-
troid, we can leverage the greedy approximation algorithm ¢127] to our problem.
We do so below.

Supposef' denotes the maximum number of observations that can be part
nered with a given region.

225

GREEDY-REP-ME set of observationsR set of regions,k natural number)

returns R® R
S .
1. LetO = ~,,5fO g (obtained by REDUCE-TO-COVERIN$
2. Let O%= O, setR%= ;
3. While k 6 0 loop

(a) Let the element O, be the member ofO s.t. jO, \O § is maximized.
RO= RO[r
0%= 0% (0,\09

k

4. Return R©

Proposition 43. GREEDY-REP-MEuns in O(k jRj f) time and returns a solution
such that the number of observations i@ that have a partner region inR%is within

a factor %5 of optimal.

Example 5.4.1. Consider Example 5.2.2 (page 213), where the set of regions is
R = fra;rprera;re e ;rg0. Suppose the police want to ruGREEDY-REP-MHEo

solve an instance of Sup-REP-ME associated with this situation wikh= 3. Initially

f 0,; 03; 04; 099 Where the cardinality ofO,,\ O °is maximum. Hence, it picks region
re. The setO%= fo,;05;:::;08;010;:::0130. On the second iteration, it identi es
O, = fos; 0139, which intersected withO° provides a maximum cardinality, causing

re to be picked. Set0%is now fo;;0s;:::; 08 010;:::;0120. On the last iteration,

226

it identies O, = foy1; 0120, again the maximum cardinality when intersected with

OC% The element is picked and the solution is;re; g, and the observations super-

explained aref 0,; 03; 04; Os; Og; O11; O12; O130.

Likewise, we can leverage the greedy algorithm for set-coy&36] applied to

Sub/Sup-REP-MC.

GREEDY-REP-M(set of observationsR set of regions,) returns R R
S :
1. LetO = ,xfO g (obtained by REDUCE-TO-COVERINg
2. Let 0%= O, setR%=;
3. While not O° ; loop

(a) Let the element O, be the member ofO s.t. jO, \O § is maximized.
RO= RO[r

0%°= 0% (O,\0 9

4. Return RO

Proposition 44. GREEDY-REP-MQuns in O(jOj jRj f) time and returns a

solution whose cardinality is within a factor ofl + In(f) of optimal.

Example 5.4.2. Consider the scenario from Example 5.4.1. To explain all points,
the police can create an instance of Sup-REP-MC and u&REEDY-REP-MCThe
algorithm proceeds just asGREEDY-REP-MEN the rst three steps (as in Ex-
ample 5.4.1, but will continue on until all observations are super-explained. So,

GREEDY-REP-M@®roceeds for three more iterations, selecting (O,, = f0g; 0100),

227

rq (Or, = f0s;0,9), and nally r, (O;, = f0,0). The solution returned is:

freresrg;re;ra;rag

We now focus on speeding up the set-cover reduction via tiBREEDY-REP-
MC2 algorithm below.
In the rest of this section, we use "' to denote the maximum nuber of

di erent regions that can be partnered with a given observaon.

Proposition 45. GREEDY-REP-MC2uns in O(f? jOj + jOj In(jOj) time and

returns a solution whose cardinality is within a factor ofl + In(f) of optimal.

Although GREEDY-REP-MCRonsiders regions in a di erent order thatGREEDY -
REP-MQ it maintains the same approximation ratio. This is becausehe region (in
set GRP,) that is partnered with the greatest number of uncovered olesvations
is selected at each iteration, allowing us to maintain the appximation guarantee.
There are two selections at each step: the selection of thesebvation (in which
we use a minimal key value based on related observations) aadyreedy selection
in the inner loop. Any selection of observations can be used aah step and the
approximation guarantee is still maintained. This allowsdr a variety of di erent
heuristics. Further, the use of a data structure such as a Fibacci Heap allows us

to actually obtain a better time complexity than GREEDY-REP-MC

Example 5.4.3. Consider the situation in Example 5.2.4 where the police are con-

wish to solve I-REP-MC using GREEDY-REP-MC. On the rst iteration of the loop

228

GREEDY-REP-MJ® set of observationsR set of regions,) returns R® R
S .
1. LetO = ~,,5fO g (obtained by REDUCE-TO-COVERINEG
2. For each observationo 2 O, let GRP, = fO, 2 0Ojo2 O,g

S
3. For each observationo 2 O, let REL, = fo°2 0jo° 2 o ,egrp, Org and let

keyo, = JREL ¢
4. Let O%= O, setR%=;
5. While not O° ; loop

(@) Let o be the element ofO where key, is minimal.
(b) Let the element O, be the member of GRP, s.t. jO, \O § is maximized.

(c) If there are more than one setO, that meet the criteria of line 5b, pick the set

w. the greatest cardinality.
(d) R°=RO[r
(e) For eacha®2 O, \0 © do the following:
i. 0%= 0% o
ii. For each 0°%2 0%\ REL g, keygo

6. Return RO

229

at line 5, the algorithm picksos, as key,, = 1. The only possible region to pick is
I, Which can only be partnered witlog. There are no observations related tasg
other than itself, so it proceeds to the next iteration. It then selectg as key,, = 2
becauseREL o, = f0g; 0;,9. It then greedily picksri; which sub-explains botlos; o;.
As all observations related tags are now sub-explained, the algorithm proceeds with
the next iteration. The observation with the lowest key value as as key,, =3 and
REL . = fo4; 05, 0130. It then greedily picks regionr,; which sub-explaings; 0;3.
The algorithm then reduces the key value associated withfrom 4 to 3 and decre-
ments the keys associated witho; 011; 01> (the un-explained observations related to
0,3) also from 4 to 3. In the next iteration, the algorithm picksog as key,, = 3.

It greedily picksri, which sub-explaingg; 0,. It then decreaseskey,, to 2 and also
decreases the keys associated with and o;. At the next iteration, it picks o, as
key,, = 2. It greedily selectsr,, which sub-explain®,; 0; and decreases th&ey,, to

1 which cause®, to be selected next, followed by a greedy selectiom@f{ no keys
are updated at this iteration. In the nal iteration, it selects 0,y as key,,, = 3. It
greedily selects ,5, which sub-explains all un-explained observations. The algorithm

terminates and returnsfrqq;riz;ri7;r9; ro1;r250.

5.4.2 Approximation for a Special Case

In Section 5.3, we showed that circle covering is polynomigalteducible to I-
REP-MC. Let us consider a special (but natural) case of I-RERIC where =0, i.e.

there is no minimum distance between an observation and a pair point that caused

230

it. We shall call this special case I-REP-MCZ. There is a gréaimilarity between
this problem and circle-covering. It is trivial to modify ou earlier complexity proof

to obtain the following result.

Corollary 10. [-REP-MCZ is polynomially reducible to CC.

Further, we can adopt any algorithm that provides a construgte result for CC
to provide a result for I-REP-MCZ in polynomial time with the following algorithm.
Given some pointp, it identi es the set O, associated with the region that encloses

that point.

FIND-REGIONS spaceO observation set real ;p point) returns set O,

1. SetO, = ;

2. Foreacho2 O, if d(p; 0 then O, = O, [f og

3. Return O, .

Proposition 46. The algorithm, FIND-REGIONruns O(jOj) time, and regionr

(associated with the returned se®,) contains p.

By pre-processing the regions, we can compui® a-priori and simply pick a
regionr associated with the output for FIND-REGION While there may be more
than one such region, any one can be selected as, by de nitiaghey would support

the same observations.

Example 5.4.4. Paleontologists working in @80 26km area represented by space
S have located scattered fossils of prehistoric vegetation@t= f 0;; 0,; 03; 04,9. Pre-

231

vious experience has led the paleontologists to believe that a fossil site will be within

3km of the scattered fossils. In Figure 5.4, the observations are labeled and circles

also labeled. As the paleontologists have no additional information, and: 0, they
can model their problem as an instance of I-REP-MCZ witk = 3. They can solve
this problem by reducing it to an instance of circle-covering. The circle-covering al-
gorithm returns three points -p; p;; p3 (marked with an "x' in Figure 5.4). Note that
each point in the solution to circle-covering falls in exactly one region (when using
induced regions). The algorithmFIND-REGIONeturns the setf o;; 0,g for point p,,
which corresponds with regiom,. It returns set f osg for p,, corresponding withrg
and returns setfo,g for ps, corresponding withrs. Hence, the algorithm returns

regionsr,; rg; rs, which explains all observations.

Any algorithm that provides a constructive result for CC can povide a con-
structive result for I-REP-MCZ. Because of this one-to-onenapping between the
problems, we can also be assured that we maintain an approxtion ratio of any

approximation technique.

Corollary 11. An a approximation algorithm for CC is ana-approximation for I-

REP-MCZ.

This is useful as we can now use approximation algorithms f@C on I-REP-
MCZ. Perhaps the most popular approximation algorithms foCC are based on the
\shifting strategy” [70]. To leverage this strategy, we wold divide the space,S,
into strips of width 2 . The algorithm considers groups of consecutive strips {

232

Figure 5.4: Given the instance of -REP-MCZ for Example 5.4.4s input for circle-
covering, a circle-covering algorithm returns point$s; p2; ps (points are denoted

with an \x", dashed circles are the area of IBm from the point).

is called the \shifting parameter.” A local algorithm A is applied to each group of
strips. The union of all solutions is a feasible solution to theroblem. The algorithm
then shifts all strips by 2 and repeats the process, saving the feasible solution.
This can be done a total of 1 times, and the algorithm simply picks the feasible
solution with minimal cardinality. In [70], the following lemma is proved (we state

it in terms of I-REP-MCZ { which is done by an application of Coollary 11):

Lemma 18 (Shifting Lemma [70]) Let asa) be the approximation factor of the
shifting strategy applied with local algorithnA and a, be the approximation factor

for the local algorithm. Then:
1
asia)=aa 1+ <

Further, the shifting strategy can actually be applied twie, solving the local

233

algorithm in squares of size 2 =~ 2 ". This gives the following result:

1 2
ds(sa) = aAa 1+ < :

A good survey of results based on the shifting strategy can beuhd in [48],
which also provides a linear-time algorithm (this result isdter generalized by [52]
for multiple dimensions). The following result leverageshts for I-REP-MCZ by

Corollary 11 (and is proved in [52]).

Proposition 47. |-REP-MCZ can be solved with an approximation ratio ok
1+1%in O(K-. jOj) time. Where p is the maximum number of points in a nite
lattice over a square of side lengt@ " s.t. each observation in such a square

lies directly on a point in the lattice andx 2 f 3;4;5; 6g (and is determined by , see

[48] for details) andK . is de ned as follows.
d 'Dxée2 1
K\; = ~2 i
i=1
An alternative to the shifting strategy leverages techniquessed for the re-

lated problem of geometric dominating set. In [104], the ahbrs present a 1 +

approximation that runs in O(jOj°¢2 9 () time.

5.4.3 Practical Considerations for Implementation

We now describe some practical implementation issues. Ourirpary aim is
to nd a set of regions that resembles the set of induced regis, Ro. There are
several reasons for doing this. One reason is to implementastf heuristic to deal
with I-REP optimization problems, speci cally when 6 0. Another, is that such

234

a set of induced regions in the space may be a starting pointr foreating a set of
regions that may include other data, such as that shown in Exaple 5.2.5.

As most GIS systems view space as a set of discrete points, wermiszed the
space using theREGION-GEMlgorithm below. The parameterg is the spacing of

a square grid that overlays the space.
Proposition 48. REGION-GEMas a time complexity(jOj g—zz).

Example 5.4.5. Consider the scenario from Example 5.4.4. Suppose the paleon-
tologists now want to generate regions usirREGION-GENnNstead of using induced
regions. The algorithmREGION-GEMverlays a grid on the space in consideration.
Using an array representing the space, it records the observations that can be ex-
plained by each grid point (Figure 5.5, top). As it does this, any grid point that can
explain an observation is stored in list.. The algorithm then iterates through lisL,
creating entries in a hash table for each subset of observations, enclosing all points

that explain the same observation with a minimally-enclosing rectangle. Figure 5.5

One advantage to usiniREGION-GENSs that we already have the observations
that a region super-explains stored { simply consider the bstring used to index the
region in the hash table. Another thing that can be done, for @&sin an algorithm
such asGREEDY-MC2where the regions are organized by what observation they
support, can also be easily done during the running of thisgdrithm at an additional
cost off (the number of observations that can be partnered with a giveregion) -

by updating an auxiliary data structure at line 6a.

235

> w w

3

i N

l'e
ry
“,
°
0,
r2 '
r, 3
°
0, .o 4
Ia

Figure 5.5: REGION-GENapplied to the paleontology example (Example 5.4.4).
First, it identi es observations associated with grid poins (top). It then creates

minimally-enclosing rectangles around points that suppbthe same observations

(bottom).

236

REGION-GERB spaceO observation set; ;g realsreturns setR

1. Overlay a grid of spacingy on spaceS. With each grid point, p, associate set

O, = ;. This can easily be represented with an array.
2. Initialize list L of pointers to grid-points.

3. For eacho 2 O, identity all grid points within distance [;]. For each point

p meeting this criteria, if O, = ;, addpto L. Also, setO, = O, [f og

4. For some subse©® O , let str (09 be a bit string of length jOj where every

position corresponding to an element d®®is 1 and all other positions are O.
5. Let T be a hash table of sizdjOj ?Ze regions indexed by bit-strings of length
jOj
6. For eachp 2 L, do the following:

(a) If T[str(Op)] = null then initialize this entry to be a rectangle that en-
closes pointp.
(b) Else, expand the region at locationT|[str (O,)] to be the minimum-

enclosing rectangle that enclosgsand regionT [str (O,)].

7. Return all entries inT that are not null.

5.5 Experimental Results

We implementedREGION-GENwind GREEDY-MC2n approximately 3000 lines

of Java code and conducted several experiments on a Windowséa computer with

237

an Intel x86 processor. Our goal was to show that solving the optimizati problem

Sup-REP-MC would provide useful results in a real-world spario. We looked
at counter-insurgency data from [72] that included data onmprovised-explosive
device attacks in Baghdad and cache sites where insurgentsrstd weapons. Under
the assumption that the attacks required support of a cachete a certain distance
away, could we use attack data to locate cache sites using arstance of Sup-
REP-MC solved with GREEDY-MC2using regions created withREGION-GER In

our framework, the observations were attacks associated Wit cache (which was
a partner). The goal was to nd relatively small regions thatcontained partners

(caches). We evaluated our approach based on the followingteria:

1. Do the algorithms run in a reasonable amount of time?

2. DoesGREEDY-MCZeturn regions of a relatively small size?

3. Do the regions returned byGREEDY-MCZ2isually contain a partner (cache)?

4. Is the partner (cache) density within regions returned b\GREEDY-MCXig-

ni cantly greater than the partner density of the space?

5. How does the spacing between grid points a ect the runtimena accuracy of

the algorithms?

Overall, the experiments indicate thatREGION-GENand GREEDY-MCZXat-
isfactorily meet the requirements above. For example, foruo trials considering

locating regions with weapons cache sites (partners) in Badgd given recent IED

238

attacks (observations), with a grid spacingg = 100m, the combined (mean) run-
time on a Windows-based laptop was just over 2 seconds. The @ighm produced
(mean) 1554 regions with an average area of83&m?2. Each region, on average,
enclosed 1739 cache sites. If it did not contain a cache site, it was (owverage) 275m
away from one. The density of caches within returned regionsas 809caches=kmn

- signi cantly higher than the overall density for Baghdad 6 0:488aches=km.

The rest of this section is organized as follows. Section 3.5describes the
data set we used for our tests and experimental set-up. Isslies addressed in Sec-
tion 5.5.2. We shall discuss the area (issue 2) of the regioesurned in Section 5.5.3
and follow this with a discussion of issue 3 in Section 5.5.4.e/ghall discuss issue 4
in Section 5.5.5. Throughout all the sections, we shall degme results for a variety

of di erent grid-spacings, hence addressing issue 5.

5.5.1 Experimental Set-Up

We used theMap of Special Groups Activity in Iragavailable from the Institute
for the Study of War [72]. The map plots over 1000 insurgent teities attributed
to what are termed as \Special Groups" - groups with access t@ertain advanced
weaponry. This data set contains events for 21 months betwe&ebruary 2007 and

November 2008. The activity types include the following categies.
1. Attacks with probable links to Special Groups
2. Discoveries of caches containing weapons associatechvpecial Groups

3. Detainments of suspected Special Groups criminals

239

4. Precision strikes against Special Groups personnel

We use this data for two geographic areas: the Baghdad urbanearand the Sadr
City district. In our experiment, we will view the attacks by the special groups (item
1) as observations and attempt to determine the minimum set afache sites (item
2), which we shall view as partners. Hence, a region returndty GREEDY-MC2
encloses a partner i a cache falls within the region.

For distance constraints, we used a simple algorithm to learthe parameter

(was set to zero). This was done using the rst 7 months of attactata (% of
the available months) and 14 months of cache data. We used tfalowing simple
algorithm, FIND-BETA to determine these values. Note we setyox t0 2.5 km.

We ran the experiments on a Lenovo T400 ThinkPad laptop with .53 GHz
Intel Core 2 Duo T9400 processor and 4GB of RAM. The computer waunning
Windows Vista 64-bit Business edition with Service Pack 1 inatled.

As the relationship between attacks and cache sites may di efaried on ter-
rain, we ran tests with two di erent geographic areas. First\we considered the
entire Baghdad urban area. Then, we considered just the Sa@ity district. We
ran FIND-BETAwith a ,ax Of 25 km on both areas prior to testing the algorithms.
There were 73 observations (attacks) for Baghdad and 40 foa@® City. Table 5.1
shows the exact locations and dimensions of the areas conside

We conducted two types of tests: tests focusing 0cBREEDY-MC2and tests

focusing onREGION-GEN

240

Algorithm 20 Determines value from historical data

FIND-BETA(Oy, historical, time-stamped observations

E, historical, time-stamped partners nax real)

1. Set = ax

2. Set Boolean variabldlag to TRUE

3. For eacho 2 Oy, do the following:

(a) For eachp 2 Ey, that occurs after o, do the following.
i. Let d be the Euclidean distance function.
ii. If flag, and d(o;p max then set = d(o;p
iii. If not flag, then do the following:

A. If d(o;p > andd(o;p max then set = d(o;p

4. Return real

Area Lower-Left | Lower-Left | E-W N-S

Latitude Longitude | Distance | Distance

Baghdad | 33200 N | 44250 E | 27 km 25 km

Sadr City | 33345 N | 44423 E | 7 km 7 km

Table 5.1: Locations and dimensions of areas considered

241

For the tests of GREEDY-MC2we used multiple setting for the grid spacing.
We tested grid grid spacings at every 10 meter interval in theange of [701000]
meters - giving a total of 93 di erent values forg. Due to the fact that REGION-GEN
produces a deterministic result, we ran that algorithm onlyonce per grid setting.
However, we ran 100 trials olGREEDY-MC2er each parameteg. This was done
for both Baghdad and Sadr City - giving a total of 18600 experiments.

To study the e ects of grid-spacing on the run-time ofREGION-GENwe also
ran 25 trials for each grid spacing setting for both geographareas - giving a total of
4; 650 experiments. To compare the algorithms running with di eent settings forg
in a statistically valid manner, we used ANOVA [50] to determie if the di erences
among grid spacings are statistically signi cant. For somtest results, we conducted

linear regression analysis.

5.5.2 Running Time

Overall, the run-times provided by the algorithms were qué reasonable. For
example, for the Baghdad trials, 73 attacks were consideréor an area of 67?2.
With a grid spacing g = 100m, REGION-GENan in 2340ns and GREEDY-MC2

took less than 3mns.
For GREEDY-MC2we found that run-time generally decreased agincreased.
For Baghdad, the average run times ranged over.gB; 34.47ms. For Sadr City, these

times ranged over [A5 4:97ms. ANOVAs for both Baghdad and Sadr City run-

242

times gave p-values of:2 10 16, which suggests with well over 99% probability that
the algorithm run with di erent grid settings will result in di erent run-times. We
also recorded the number of regions considered in each expent (resulting from
the output of REGION-GEN Like run-times, we found that the number of regions
considered also decreased as the grid spacing increased. Baghdad, the number
of considered regions ranged over [8811]. For Sadr City, this number ranged over
[25; 356]. ANOVAs for both Baghdad and Sadr City number of considerecgions
gave p-values of 2 10 8 which suggests with well over 99% probability that the
algorithm run with di erent grid settings will result in di erent numbers of consid-
ered regions. Note that this is unsurprising aREGION-GENun deterministically.
We noticed that, generally, only grid spacings that were neahe same value would

lead to the same number of considered regions.

The most striking aspect of the run-time/number of regions awsidered results
for GREEDY-MCZ2s that these two quantities seem closely related (see Figuses).
This most likely results from the fact that the number of regins that can be as-
sociated with a given observation () increases as the numbeof regions increases.
This coincides with our analysis olGREEDY-MCZsee Proposition 45).

We also studied the average run-times fadREGION-GENor the various di er-
ent settings forg. For Baghdad, the average run times ranged over [B3; 918472ms.
For Sadr City, these times ranged over [84; 30892Jms. ANOVAs for both Baghdad
and Sadr City run-times gave p-values of:2 10 16, which suggests with well over
99% probability that the algorithm run with di erent grid se ttings will result in

243

SADR CITY 0 BAGHDAD

Time in ms / 100s of Regions

Solid Line = Runtirr
Dotted Line = Number of Regio

Figure 5.6: The run-time of GREEDY-MC2n ms compared with the number of

regions considered.

di erent run-times. Our analysis of REGION-GENSee Proposition 48) states that
the algorithm runs in time O(giz). We found striking similarities with this analysis

and the experimental results (see Figure 5.7).

5.5.3 Area of Returned Regions

In this section, we examine how well th&@EGION-GENGREEDY-MCZAuite of
algorithms address the issue of returning regions that areigerally small. Although
not inherently part of the algorithm, our intuition is that t he Sup-REP-MC opti-
mization problem will generally return small regions basedn the setR produced
by REGION-GENThe reason for this is that we would expect that smaller regns
generally support more observations (note that this is notlaays true, even for in-
duced regions, but our conjecture is that it is often the cas®r induced regions or

the output of REGION-GEN

244

SADR CITY BAGHDAD

350 10000
300 9000
8000
250
" 7000
£ 200 6000
= 5000
o 150 4000
.E 100 3000
\ 2000
50 1000 \
0 0
OO0 00000000 O O OO0 000000000 OoO
N MO AN M—AO0NLW N M AN MAODNLW
S NOMOMO T O ON~NNOO® AN MO ON~NNOWO®D
Grid Spacing (m)

Solid Line = Runtirr
Dotted Line = Analytical Resu

Figure 5.7: A comparison between analyticaIQ(g%)) and experimental results for

the run-time of REGION-GENompared with grid spacing ¢).

To de ne \small" we look at the area of a circle of radius as a basis for
comparison. As dierent grid settings led to di erent valuesfor , we looked at
the smallest areas. For a given trial, we looked at the averagrea of the returned

regions.

For Baghdad, the average areas ranged overg@1 2:985km?. For Sadr City,
these times ranged over (01; 0:576km?. ANOVAs for both Baghdad and Sadr City
run-times gave p-values of 2 10 6, which suggests with a 99% probability that
the algorithm run with di erent grid settings will result in di erent average areas.
Plotting the areas compared with the established \minimum gea" described earlier
in this section clearly shows thatREGION-GENGREEDY-MC2Zproduce solutions
with an average area that is about half of this value - refer to Bure 5.8.

Overall, there seemed to be little relation between grid spang and average

area of the returned set of regions - based on grid spacings[#0; 1000in. As

245

SADR CITY BAGHDAD

e eeeceeeesme ; oo eo= T

=
B, N M O

Avg Area per Region (Kin

o i S b €

o O o o
N B O
o = N w

Figure 5.8: Average areas for solutions provided BREGION-GENGREEDY-MC2

for Baghdad and Sadr City.

an example, we provided screen-shots GFREEDY-MCZor g = 100 and g = 1000
(Figure 5.9). Anecdotally, we noticed that larger grid spacig led to more \pinpoint"
regions - regions encompassing only one point in the grid ¢hmiewed as having an
area of 0). This is most likely due to the fact that overlaps irthe circles around
observations points would overlap on fewer grid points foatger values ofy. Another
factor is that di erent settings for g led to some variation of the value - which
also a ects accuracy (note for our analysis we consideredlprihe smallest values

of as an upper bound for the area - see Figure 5.8.

5.5.4 Regions that Contain Caches

In this section we discuss the issue of ensuring that most > returned regions
enclose at least one partner (cache in the case of our expexints). One measure
of this aspect is to look at the average number of caches ersgd per region in a

given result. We found, that for Baghdad, we generally encled more than 1 cache

246

Figure 5.9: Results from two runs oflGREEDY-MC2 g = 100m (top), g = 1000m
(bottom). Pinpoint-regions are denoted with plus-signs. Nae that the average

areas of the results are comparable.

247

SADR CITY BAGHDAD

0.35 35
0.3 3
0.25 25
0.2 2
0.15 15
0.1 1
0.05 0.5

0 0
o
=~

Avg Caches Enclosed Per Region

ool oNoNoNoNoNa} o
DM AN IHOOmd ~
ANM®OST 0o~ ©

950
230
310
390
470
550
630
710
790
870
950

S RS
~ —
G 9

rid Spacing (m)

Figure 5.10: Average caches enclosed per region for Baghdad &adir City for

various grid-spacing settings.

per region in a given result - this number was in the range:[64 3:25]. The results
for Sadr City were considerably lower - in the range [0:322]. ANOVAs for both
Baghdad and Sadr City gave p-values of:2 10 1%, which suggests with a 99%
probability that the algorithm run with di erent grid setti ngs will result in di erent
average number of enclosed caches. However, we did not obsen obvious trend

in the data (see Figure 5.10).

As an alternative metric - we look at the number of regions in jvided by
GREEDY-MC2hat contain at least one region. Figure 5.12 shows the numbef o
regions returned in the output. For Baghdad, generally leshan half the regions
in the output will enclose a cache - the number of enclosinggiens was in [18],
while the total number of regions was in [1@9;22]. This result, along with the
average number of caches enclosed by a region - may indicdtattwhile sometimes

GREEDY-MC2may nd regions that enclose many caches, there are often regs

248

Figure 5.11: The output of GREEDY-MCZor Baghdad with g = 100m compared
with the locations of actual cache sites (denoted with a \C") Notice that regions
A-E do not contain any cache sites while regions G-I all containumerous cache

sites.

that enclose no caches as well. This may indicate that for Baghad, some attacks-
cache relationships conform to our model and others do not -nh@ps there is another
discriminating attribute about the attacks not present in the data that may account
for this phenomenon. For example, perhaps some attacks wemeformed by some
group that had a capability to store weapons in a cache locatdurther outside the
city, or perhaps some groups had the capability to conduct atks using cache sites
that were never found. We illustrate this phenomenon with amxample output in
Figure 5.11. Note that in the gure, regions A-E do not contain ap cache sites

while regions G-I all contain numerous cache sites.

For Sadr City, the number of caches that contain one region wasigni cantly

249

(=

[2)
<
i=)
=)
Q
0
—
[S)
.
]
e}
>
Z

SADR CITY BAGHDAD

(=] o o
o N~ W0 ~ n N
~ o O - M < 0O
Grid Spacing (m)
Solid Line = Avg. number of regions enclosaideast one cach|
Dotted Line = Average total regio

SADR CITY BAGHDAD

24
(]
p=l
[2]
2
>
(o]
(]
ey
Q
©
O
put
%]
o
o
3
o
z
o
e
(]
(8]
e
3
8
i)
[a)

Solid Line = Avg. Distan
Dotted Line = Linear Regress

SADR CITY

per ki
&G 8

=
o

0
)
<
Q
©
©]

BAGHDAD

Dashed Line = Overall cache den
Solid Line = Cache density in returned reai

per k@

(2]

0
Q
c
c4
©

O

N

SADR CITY BAGHDAD

o o
— 0
D D O .
Grid Spacing (m
Solid Line = Cache density in quadruple-sexgiong
Dotted Line =Linear regressio

04
%3'§4.35 -

3. 14. 15.1 6

Computation Time (s)

OAS Partner Set Reduction: Size vs. Distance
lefd| = {10,15,20,...,200}

300
Cutoff Distance

OAS Partner Set Reduction: Time vs. Distance
|efd| = {10,15,2 200}

T~
N A O ® O N B O
© © © © © & ©o ©o © o

300
Cutoff Distance

OAS: Expected Detriment vs. Size k
|efd| = {10,20,50,100,200}

Expected Detriment

32
Maximum Size k

OAS: Time vs. Size k
|efd| = {10,20,50,100,200}

Computation Time (ms)

32
Maximum Size k

Strategy Size

Strategy Size

MCA-LS: Strategy Size vs. Distanc
min| ¢ = 14, |efd| = {5,10,...,40}

250 300 350

Distance (Penalty Cutoff)

MCA- Average Strategy Size vs. Distanct
min| ¢ = 14, |efd| averaged across {5,10,...,40}

250 300 350

Distance (Penalty Cutoff)

MCA-LS: Time vs. Distance
min| g = 14, |efd| = {5,10,...,40}

140000
120000
100000

80000

60000

Time (ms)

40000
20000

0
350

Distance (Penalty Cutoff)

MCA-LS: Average Time vs. Distance
min| ¢= 14, |efd| averaged across {5,10,...,40}

Average Time (ms)

250 300 350

Distance (Penalty Cutoff)

MCA-Greedy-Mono: EXB vs. Budget
|efd| = 10, Distances = {50, 100, ..., 500}

Expected Benefit

12 3 45 6 7 8 9 101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28
Budget

MCA-Greedy-Mono: EXB vs. Budget
lefd| = 100, Distances = {50, 100, ..., 500

Expected Benefit

1 2 3 45 6 7 8 9 101112 13141516 17 18 19 20 21 22 23 24 25 26 27 28
Budget

MCA-Greedy-Mono: Time vs. Budget
|efd| = 10, Distances = {50, 100, ..., 500}

Time (ms)

1 23 45 6 7 8 9 10111213141516 17 18 19 20 21 22 23 24 25 26 27 28
Budget

MCA-Greedy-Mono: Time vs. Budget
|efd| = 100, Distances = {50, 100, ..., 500

Time (ms)

— .
0 | =

123456 7 8 91011121314151617 18 19 20 21 22 23 24 25 26 27 28

Budget

High-cost area (hi_cost) Group 1,§grpl Influential center for group 1 (hq
Non-populated area (non_pop) Group 2 {grp2 Influential center for group 2 ¢hq

©
|
(6]

Best unless P=NP

o
a
an

BMGOP-Compute

4 7 10 13 16 19
Number of Integrity Constraints

o
=
ol

S
o
Q
@®©
LL
c
S
£0.35
X
2
Q.
Qo
<

7 ONG n ,
b
,Wﬂgl/j

74N Q
G) N o2
Z1] / ’)
ol e e

_—-. y

=
A
an

@
>

rec,(a):1, reg(c):1, reg(d):1, inf(b):0.2, inf(d):O0.
inf(f):0.3, inf(g):0.05, inf(i):0.1

rec,(a):1, reg(c):1, reg(d):1, reg(b):0.2,
rec,(d):0.3, reg(f):0.3, reg(g):0.05, reg¢(i):0.1

Iidgiszare bi-directional, 5[rec,(g):0.08

N
0?’ Q7 o Q‘)

A I R I R s N R
o v Q? Q"’ Q"’ Q'b Q‘h Q"\ Q/'\ SN

INARNARNARN
Approximation of Increment

[TERATION 1 | TERATION 2

~&/#$'%012%3"4$2$&5%)%0*+

&l
“#=)*+*-/0"1.23+.4/"

oI

o ~B-566./0"1.23+.4/" /—7/0/‘—'7
ool

2 Hil”

/

e e —

!l!#ll !I$|I !l$#|l !l%ll !I%#Il !I&II !I&#ll !I(ll !l(#ll !l#ll
)%*+,-$9

$

&%

#$%

|

Figure 8.10: Runtimes ofGREEDY-SNOPRor di erent values of andk =5 in both

di usion models

For both models, we derive a unique logic program for each seg of the
parameter . The parameter depends on the application and can be learned from

ground truth data. In our experiments, we varied to avoid introducing bias.

8.7.2 Experimental Results

Run-time of GREEDY-SNOP with varying and di erent di usion mod-

els. Figure 8.10 shows the total runtime ofGREEDY-SNORN seconds to nd the
set of k = 5 most in uential users in the Wikipedia voting network for di erent
values of the strength of in uence parameter . We varied from 0:05 (very low
level of in uence) to @5 (very high level of in uence) for both the cascading and
tipping di usion model. We observe that higher values of lead to higher runtimes
as expected since the scope of in uence of any individual ihd network is larger.

Furthermore, we observe that the runtimes for the tipping dusion model increase

412

I"#$%0-%5&1%68&1"2""

K
i"” | ==+ 4 /012/34,/50" s
o - ~8-6/77/01"2/34,/50" -~
S g el
5;: %l /
= onn
#1 M
" T T T

#1" #" " $"
V#+$,%-.%(-#/*0$1%"&1"2"1*34

Figure 8.11: Runtimes of GREEDY-SNOHor di erent values of k and

both di usion models

=0:2in

"#$%2$3%)&*"."*/C
&HI"
&
g,’ Valn
S opI"
S a
@ $HI"
s
- ~#--/-0123"4156.172"
o -M-8199123"4156.1°
$" % &M # (") H' PSP PUBLE" $HB("P)"$*'$+%!' %P HROL0 Yot
)&*$+%,-%)&*"."*/C
Figure 8.12: Time per iteration of GREEDY-SNOHor = 0:2 in both di usion
models

413

