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Dedication

My wife: \You should plant pansies outside."
Me: \We should be getting a hard freeze soon, it's pointless!"
Me two months later in late December:\It's been 60 degrees outside for weeks, |

should have planted pansies a long time ago!"

...may my research someday help improve short-term climate foretasso I'll know

when to plant the stupid pansies.
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Chapter 1: Introduction

1.1 Data assimilation in coupled ocean atmosphere models

Coupled ocean-atmosphere models have become increasingly imgdrto im-
proving operational numerical weather prediction for a wide rangef phenomena.
Such phenomena on seasonal climate timescales include the fotaugof the El
Nino Southern Oscillation (ENSO) and the Madden Julian Oscillation Nladden
and Julian, 1972 Zebiak, 1989. It has been shown that improvements on shorter
time-scales can be made with coupled ocean-atmosphere models el for tropi-
cal cyclones Fu et al.,, 2007 and annual monsoonsKlingaman et al., 200§. The
importance of such systems can be noted by the choice of the Eoean Centre for
Medium-Range Weather Forecasts (ECMWEF) to transition to fully capled models
for all of their operational numerical weather prediction.

Climate models typically consist of separate domains, modeled indeplently,
which are then coupled together when running the forecast. Fokample, an earth
system model might be composed of individual ocean, atmosphelad, ice, and
wave, models. This work will focus primarily on data assimilation in a colgd ocean-
atmosphere model context, though the concepts can be applied &ll components

of a coupled Earth system model that would normally be considered @eparate

1



domains.

In order to initialize these coupled models, an accurate estimate dfet initial
state of the atmosphere and ocean is required. Over the past s@al decades nu-
merical weather prediction has advanced in part due to progressage in producing
these initial conditions more accurately. The process of generdiirthis objective
analysis is known as data assimilation (DA), and can be described mastccinctly
as combining current observations with past information (from a mvious model
forecast) to produce an analysis, the best estimate of the systs current state.
DA methods have evolved from simple nudging, optimal interpolationdl), and
three dimensional variational (3DVAR) methods, to the more advaced ensemble
Kalman Iter (EnKF) and four-dimensional variational method (4DVAR) (Kalnay,
2003. Today, further advances are made in the area of data assimilatidoy com-
bining the most advanced of these existing methods into hybrid EnKIMar systems
(Bannister, 2017.

The data assimilation methods used for coupled models can be broadiyided

into three categories summarized by dL.1:

1. uncoupled DA - A separate ocean background forecast and atmosphere back-

ground forecast are used with separate data assimilation.

2. weakly coupled DA (WCDA) - A single coupled forecast is used for the

background, but DA is still performed separately on the ocean aratmosphere.

3. strongly coupled DA (SCDA) - A single coupled forecast is used for the
background, and a single DA system is used for generating the arsy

2



It is important to remember that here the word \coupled" when desribing
data assimilation refers to how the domains interact with each othdor the gener-
ation of the analysis, and not with subsequent longer forecastsing those initial
conditions. Uncoupled DA (g 1.1a) uses the background forecast from separate
ocean and atmosphere model runs, and also performs data assitintaon each do-
main completely independently (e.g.Saha et al.(2006; Maclachlan et al.(2015).
As an example, the original Climate Forecasting System (CFS) used the Na-
tional Centers for Environmental Prediction (NCEP) starting in 2004 (Saha et al,
2009, was a coupled ocean-atmosphere-land model that was used dbmate fore-
casts. However, the initial conditions for the background were tdined from data
assimilation cycles that used di erent stand-alone models. The atmspheric ini-
tial conditions were obtained from the atmosphere-only NCEP Realysis-2 (R2)
(Kanamitsu et al., 2009, and the ocean initial conditions were obtained from the
ocean-only Global Ocean Data Assimilation System (GODASBghringer and Xue
2009. R2 is prescribed sea surface temperatures from an indeperntd88T product,
and the GODAS ocean is given atmospheric uxes from the independeR2 run.
So, although CFS was a coupled model, it utilized uncoupled data assintiten to
initialize the model.

With weakly coupled DA (g 1.1b), the same coupled model that is used for
subsequent forecasts is also used to generate the backgroundie data assimilation
cycle. The actual data assimilation is, however, still then done sedely. Infor-
mation can be transferred between the two domains only throughe integration

of the background forecast. Therefore assimilation of obseri@ts in one domain
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take time to become bene cial, if ever, to the other domain. WCDA hsvbeen per-
formed successfully in at various centers including the UK Met O ce l(ea et al,
2015, GFDL (Zhang et al, 2007, and NCEP (Saha et al, 2014, and has been
shown to possibly produce better forecasts due to better initiabaditions from the
weakly coupled DA. The CFSv2, for example, uses the Climate Data gimilation
System (CDAS), in which the same coupled model is used for the foasts and for
the generation of the background for the data assimilation.

When initializing any model there is a potential for "initialization shock$
whereby some type of imbalance, arti cially generated as an artifaérom the data
assimilation cycle, is present and can degrade the initial forecastrfigmance. This
is true of any model, but coupled models present additional opportities for gener-
ating initialization shocks. As described byMulholland et al. (2015, these shocks

can occur when:

1. using an uncoupled model to produce the initial conditions for theoupled
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forecast model

2. using a di erent forecast model than the model used for the tlassimilation's

background
3. using the same model, but with di erent or removed bias correctinschemes

All of the above instances produce initial conditions that may be initiy
incompatible with the coupled model and so require a spin-up time whildné ux
balances adjust. Using the same coupled ocean atmosphere mdaoethe forecasts
as is used for the data assimilation should therefore reduce the inltzation shocks
that would otherwise be produced. Reducing these initialization shke& is thought
to be important for improving seasonal forecastsB@almaseda and Anderson2009
and the Madden-Julian oscillation Marshall et al., 2017).

There are several reasons why uncoupled DA had been, and still issome
situations, preferred over WCDA. Drifts in coupled ocean-atmosyere models are
a common problem, and unless they are properly accounted for ffgedrifts can
signi cantly impact the background used in the data assimilation. Foexample, it
is a currently reoccurring problem for NCEP's weakly coupled CDAS ed in the
CFSv2 that the ocean in the tropical Atlantic develops a large cold bsaand drifts
away from observations. However, the standalone ocean-only GAS, for which
the data assimilation system is nearly identical, does not drift.

Strongly coupled DA (SCDA) (g 1.1c) uses a coupled forecast for the back-
ground, similar to WCDA, but then also performs the data assimilatioras a single
system. In this way, observations in one domain are able to immedigteémpact
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other domains during the analysis step. SCDA is able to transmit cagctions to
the state of one domain both through the integration of the modddackground fore-
cast, and also by utilizing the cross-domain background-error @ance during the
analysis step. Such coupling allows observations in one domain to ing&neously
impact the state variable in the other domain. Strongly coupled DA shuld be able
to extract more information from the same observations, given #t there are mean-
ingful ocean-atmosphere correlations to be used by the data ias#ation system,
and should retain a better balance between the two domains.

It is being increasingly realized by various centers in the United StatgNa-
tional Academies of Sciences Engineering and Medici2€16 and Europe ECMWF,
2019 that moving from weakly to strongly coupled DA has the potential b be bene-
cial for sub-seasonal to seasonal (S2S) prediction and may breicial for improving
long range forecasts. There are currently no operational syste utilizing SCDA for
Earth system models, and until now, the majority of research int&CDA has been
performed using simplistic models. E orts are now being made to adeeate the
development of SCDA researchL@wless 2012 Penny and Hamill, 2017).

There are several reasons why ocean-atmosphere models haeel WCDA, ini-
tializing the two domains independently. There is often a much highetbservational
coverage in the atmosphere compared to the ocean, and additilyabocean obser-
vations had traditionally been slower to be processed, lagging behittte sub-daily
times common for synoptic atmospheric observations. Advancentg in data assim-
ilation have usually been focused on improving the atmosphere rsand so ocean
DA has generally lagged behind. For example both NCERK(eist and Ide, 2019
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and ECMWEF (Bonavita et al., 2012 have operational hybrid ensemble/variational
DA systems for the atmosphere, though are still using traditionaB-D variational
methods for the ocean%aha et al, 2014 Mogensen et al.2019. There have been no
signi cant updates to the global ocean DA system used by NCEP sia@about 2003
(Behringer and Xue 2004 relying on the same 3d variational system. Di erent tem-
poral and spatial scales and di erent grid types by each model addcomplications
as well.

Much work goes into specifying the background error covariancerfeither an
atmospheric or oceanic variational data assimilation system, andeaing to specify
cross domain covariance would greatly add to the di culty. The ocea-atmosphere
boundary layer between two domains, is often insu ciently modeledThe rst level
of NCEP's current global ocean system is 10 meters thick, far tooarse to properly
resolve a diurnal cycle in the ocean. Itis recognized that the veréitresolution of the
models at the interface, and parameterizations used for repreiag the boundary

layer need to be improved Grissom et al, 2017 Cravatte et al., 2015.

1.2 Strongly coupled DA and recent research

The possible reduction of initialization shocks is one motivation for mawy
from uncoupled data assimilation to weakly coupled DAMulholland et al., 2015.
Even when the same model is used for the data assimilation backgnduand the
subsequent forecast, initialization shocks can still occur due to éhway in which

the data assimilation is performed. For example, ensemble data assation often



speci es a localization radius, eliminating the impact of an observatioftom model
grid points that are too far away to account for spurious correl&ns caused by
insu cient ensemble size Greybush et al, 201]). If the localization radius is too
small, such as less than the Rossby radius of deformation, the arsdyis left in an
imbalanced state, and gravity waves are generated at the rst tiersteps of the fore-
cast, and therefore represent an initialization shock. This has beebserved within
a single model domain, but it is also likely that weakly coupled data assimilan
(which is in e ect using domain localization) is generating cross domairhgcks, as
the surface states and uxes might no longer be in a physically realiststate.

No operational strongly coupled ocean-atmosphere data assimitat system
currently exists but the closest to SCDA is the coupled ECMWEF reargsis (CERA)
(Laloyaux et al, 2019. With this system, the atmosphere data assimilation is per-
formed with a 4DVAR, and the ocean with a separate 3DVAR. The argsis step
is therefore inherently weakly coupled DA, and observations do ndirectly impact
across the domain. However, the 4DVar uses an outer loop, whHare minimization
is performed with the tangent linear model, and then the full non-lirer coupled
model is run again before repeating the inner loop minimization. By ugnthe full
coupled model in the outer loop, the observations are able to inditgcimpact the
opposite domains as can be seen in single observation experiments 1.2). This
method lies somewhere between SCDA and WCDA (Quasi-SCDA), sinite varia-
tional minimization does not work across the domain, but the analysis impacted
due to the model integration of the outer loop.

Most research with truly strongly coupled data assimilation has beerarried

8



Temperature increment ind incres
-0.56 -0.45 -0.35 -0.25 ~0.15 -0.05 0.05 015 025 035 045 055 Zonal wind increment
I [ [

-32-27 -22-17 -1.2 -0.7 -0.2 02 07 12 17 22 27 32
20 B
(b) (a)
20
20
T
. 3
-"g‘ 20 =
E 2 ¥
2 E
s 2
£ £
E . Z w
< i E
| o —— = | <
‘j -
- _—
- 1 ﬂn '
] % 0 : ‘
» - (d) (c) ‘
20
. 40 -—
& — 40
5 & E [
2 £ 60
é 80 E} .
g -
& 100 g 80}
000 & 100 4
3000 & . -, | 1000
4000 ’ 2000 F
i 3000
g i 4000/
180 180°W 140°W 120°W 100"W BO'W smo{. —_— — k|
Tl - 6000 : ¥
| . 180 160°W 140°W 120°W 100°W 80°W
055 =033 =011 o1 033 055 =
Temperature increment [
-0.10 -0.08 -0.06 004 002 -0.00 0.0 0ns 0.06 0.08 010

Temperalure increment

Figure 1.2: Single observation tests with the ECMWF CERA climate reanalysis
showing the cross domain impacts due to it's 'quasi-strongly couplemthplementa-

tion. A single ocean temperature observation at 5m depth (left). Aingle atmo-
spheric zonal wind observation at the lowest atmospheric level (hf. (Laloyaux

et al,, 2015



( dx
mld_,fl = a)(z9 — 21)
atmosphere dry
) m— = by — o — 2113
(wind) dt
iy (I‘J::{ — Y . Ty YV
| T i =T1T2 Cirs
1T, o
atmosphere 'm'at(_l = C(r] - Ta) - ;U'a:,TaL + 422
(surface temp) dt
ocean % = RT +vh+c(Ty — T) + caz2 — en(h + bT)3
(SST, thermoclin i
depth) W = —rh — abl

Figure 1.3: A simpli ed coupled ocean-atmosphere single column model frolmu
et al. (2013.

out using simple one-dimensional toy models, such as coupled Loreradels ( g 1.3).
Most have used an EnKF Lu et al., 20153 Liu et al., 2013 Han et al., 2013 Luo and
Hoteit, 2014 Tardif et al., 20149 although some work has been done with 4DVAR
data assimilation as well Emith et al., 2015. Liu et al. (2013 found that strongly
coupled DA provides substantial improvements, with the greatestnpacts seen by
assimilating atmospheric observations into the oceans in the exttespics. Tardif
et al. (20149 found that the Atlantic meridional overturning circulation (AMOC) in
the ocean can is not be correctly initialized in their low dimensional mobeven
when only time averaged atmospheric observations are assimilated.

One study to date with a more realistic coupled ocean atmosphere d& has

explored SCDA (u et al.,, 20150. Lu et al. (20150 uses a low resolution ocean
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atmosphere model to assimilate averaged atmospheric observasianto the ocean.
They found that weakly coupled DA is detrimental with regard to maimaining a

proper correlation at the ocean atmosphere interface d.4. Also, correlations
between the two domains are stronger when the atmospheric obh&ions are aver-
aged over at least a week. A method called the lagged average codipievariance
(LACC) is developed. Using this method, they nd that they, similar to the sim-
pli ed 1-dimensional models, are able to improve the extra-tropicsybassimilating

atmospheric observations into them ( gl1.5. The LACC experiments, though, were
driven with monthly averaged SSTs, at shorter timescales the sigsawould have
been damped.

For strongly coupled DA systems to be practical for operationalumerical
weather prediction (NWP), the ocean and atmosphere DA cycles @hld use sim-
ilar observational windows. Ensemble Kalman lIters (EnKFs), in contast to 4D-
Variational methods, perform best with short assimilation windowsKalnay et al.,
2007. Thus, the EnKF allows for both systems to perform assimilation athe
shorter window length of the atmosphere§ingleton 2011). With a variational sys-
tem, the cross domain covariance needs to be explicitly de ned in senmanner.
There is a signi cant amount of work, even for a single domain in uncpled DA,
that goes into generating these background error covariancdswould be expected
that things would be further complicated by having to generate theovariances for
a coupled system, though some groups are pursuing this routedlov et al., 2016
Smith et al., 2018. A benet of the EnKF is that these background-error covari-
ances are automatically generated by the ensemble, assuming teath correlations

11
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Figure 1.4: Impact of coupled DA on cross domain correlations, frorhu et al.
(20158.
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from Lu et al. (20150. Simple simultaneous SCDA worsens the analysis (top) but
assimilating averaged atmospheric observations improves the arsa$ycompared with
WCDA (middle) and simultaneous SCDA (bottom).
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are indeed present in the model. Special care does need to be takemugh to prune
spurious correlations that appear due to rank de ciency of the eemble {Yoshida
and Kalnay, 2018. Given the EnKFs preference for short assimilation windows,
allowing us to perform all DA at the atmospheric timescale (6 hrs to 1lay), as well
as not needing to manually specify cross-domain background-eromvariances, the
EnKF was chosen here to pursue SCDA experiments with a realistic ohal.

Given that multiple studies with low dimensional ocean atmosphere mets
(Liu et al., 2013 Tardif et al., 2019 demonstrate that SCDA has a more bene cial
impact when assimilating the atmospheric observations into the oagathe initial
experiments for this dissertation will focus on the same method ofsimilating

atmospheric observations into the ocean with the LETKF.

1.3 Local ensemble transform Kalman lter

A brief description of how the LETKF operates, and how its formulabn can
benet from strongly coupled DA follows. The LETKF (Hunt et al., 2007 is a
type of ensemble Kalman Iter Evensen 1999, using an ensemble of forecasts

x®) i =1;2;::k  to determine the statistics of the background error covariance.
This information is combined with new observations/®, to generate an analysis
mean, x2, and a set of new ensemble members2?. First, the model state is
mapped to observation space by applying a non-linear observatiopayator H to
each background ensemble membg™) = HxX), |f the observed and modeled

variables are the sameH is simply an interpolation of the model state to the
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observation locations. The weightsv? are calculated to nd the analysis mearx?

h i
Pa= (k 1)1+ YPTR lyb (1.1)

wi=pa ybTR 1 yo yb (1.2)

x3 = xP+ XPw? (1.3)

wherex® and y° are the ensemble mean of the background in model space and obser
vation space, respectivelyX ® and Y P are the matrices whose columns represent the
ensemble perturbations from those means, ail is the observation error covariance

matrix. Last, the set of weightsW 2 are calculated to nd the perturbations in the

model space for the analysis ensemble by

h 1=
Wi= (k 1)P? (1.4)

X3 = Xbw?a (1.5)

In practice, the LETKF is able to calculate the above equations in pailel for
each grid pointj using the subset of observations;?, within its localization radius.
This makes the LETKF computationally e cient and highly scalable. For weakly

coupled DA,y contains only observations from the same domain as the grid point
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being considered, whereag’ can contain both atmospheric ¥3,,) and ocean ¢g.,)
observations in strongly coupled DA.

The LETKF bene ts from strongly coupled DA in two key ways. First, the
calculation of x2 by equations (L.1)  (1.3) uses the cross domain error covariance
to allow observations in one domain to directly inform the analysis measalculated
at grid points in the other domain. This can be especially bene cial tohe ocean,
where observations are often sparse compared with the obseiva densities of the
atmosphere.

Second, the creation of the analysis ensemble by equatiofislf and (1.5) main-
tains balance between the two domains within each ensemble membleeighboring
grid points use overlapping sets of observations, and singgwill be nearly identical
for adjacent grid points, W & will be similar as well (vang et al, 2009. Similar
weights for neighboring grid points, both vertically and horizontallyensures the en-
semble perturbations are kept \matched together" at the domairnterface. Weakly
coupled DA is not able to retain this ocean-atmosphere surface batz within the

ensemble members.

1.4 Outline of this research

The goal of this research is produce a prototype strongly coupleacean-
atmosphere data assimilation system that would be suitable for opional numeri-
cal weather prediction. Previous studies have not been condudterith operational

quality models, and those that have used realistic models are oriedtewards di er-
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ent timescales, such aku et al. (20150 focusing on monthly and weekly timescales.
These timescales, and associated methods, are not practicalreal-time operations.
The methods developed here will focus on daily and sub-daily SCDA tgs.

The research will be conducted in three steps. The rst step towd SCDA in
an operational cycle, described in Chapter 2, will be the construon of a strongly
coupled DA system using the local ensemble transform Kalman IteLETKF). This
system will be tested with an observing system simulation experime(®SSE) and
a simplied climate model (SPEEDYNEMO). This model is still able to prodice
realistic phenomena, though is simple enough to be run extremely ttas

Next, a realistic, operational quality model, the Climate Forecastingystem
version 2 (CFSv2) will be used in Chapter 3, this time under an OSE eggment
using real observations. The model is identical to that which is beingsed opera-
tionally by NCEP, though with a lower horizontal resolution in the atmasphere due
to computational constraints. This CFSv2-LETKF strongly coupl@ system will be
tested with real observations. Assimilation of real observationggsents a slew of ad-
ditional di culties such as observation and model biases, and so tke experiments
will only be carried out with a limited subset of insitu observations to deonstrate
potential improvements and di culties with a full system.

Finally, the development of a next generation ocean data assimilati@ystem
(Hybrid-GODAS) at NCEP will be discussed in Chapter 4. While Hybrid-GODAS
does not directly relate to strongly coupled data assimilation at the oment, this sys-
tem uses the LETKF as its backbone, and may form the foundatiorf @ near-future
coupled ocean/ice/wave data assimilation at NCEP, a possible gateyaoward a
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full earth system model SCDA system.
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Chapter 2: Intermediate Model OSSE: SPEEDYNEMO-LETKF

Before beginning strongly coupled data assimilation experiments with full
ocean-atmosphere general circulation model, it is useful to appliie method rst
to a more simple, yet still realistic, model. There exists a general h&tchy of cou-
pled ocean-atmosphere climate models, ranging from simpli ed anailyal models
of ENSO variability (e.g. Battisti and Hirst (1989; Zebiak (1989) and the MJO
(Madden and Julian 19732 to full scale state-of-the-art models used for operational
climate prediction such as the Climate Forecasting System (CFSv2péha et al,
2014, Community Earth System Model (CESM) Hurrell et al., 2013, or Goddard
Earth Observing System Model folod et al., 2012, just to name a few. Most
studies of strongly coupled data assimilation to date have been pamihed using one
extreme of this hierarchy: one-dimensional simplistic models (e.§ingleton (2011);
Han et al. (2013; Luo and Hoteit (2014). With the ultimate goal of providing
improvements to the operational coupled data assimilation systenused for numer-
ical weather forecasting, it is therefore logical to move toward wilying SCDA with
intermediate complexity models, also known as Earth system modédlintermediate
complexity (EMIC), (Kucharski et al., 2013.

EMICs are a big step up in terms of complexity compared with simple one
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dimensional analytical models and share many similarities with oceatr@osphere
GCMs. Where they dier from full scale GCMs is usually with regard to laver
resolution, both in the horizontal and the vertical direction, whichallows for longer
step sizes and therefore lowers the costs of the dynamical coldso, parameteri-
zations usually have been simpli ed as much as possible, such as by maiuding

a diurnal cycle, which greatly speeds up the radiative transfer pameterizations.
These types of simpli cations help reduce the costs of the model ysics. Despite
the simpli cations present with an EMIC, they are still three dimensimal models
with orography in the general shape of the continents and ocearand are able to
often represent features such as seasonal cycles, Hadley &attns, jet streams,
inter-tropical convergence zones, and even ENSO-like phenoraehsystem is tuned
correctly. This balance between model speed and the delity reqeid to still exhibit

somewhat realistic phenomena is extremely bene cial to ensemblaaassimilation.
Multiple iterative experiments utilizing many ensemble members are @fb required
to test and tune a system. However, this requirement would likely baverly costly
to do rst with a full atmosphere-ocean general circulation modg/AOGCM).

The SCDA system developed here is designed with an operational @assim-
ilation cycle in mind, namely a 6 hour cycle similar to that used by the Natioal
Center for Environmental Prediction's (NCEP) Climate ForecastingSystem version
2 (CFSv2). Since the SPEEDY-NEMO model is very fast, testing cabe done in
short time, and the lessons learned in the process and the resultgygstem developed
can then be ported to use an operational-quality model such as tig=Sv2.

Two unique experiments are carried out with the SPEEDY-NEMO, edccom-
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paring the performance of weakly coupled versus strongly couplBeé:

1. atmospheric observations only

2. ocean observations only

Experiments with both ocean and atmosphere observations beingnsitane-
ously assimilated into both domains were attempted as well, but wer@nhsuccessful,

as will be described in the concluding section.

2.1 Method

The following experiments of SCDA with an intermediate model are pfermed
as a series of observing system simulation experiments (OSSEs).ammOSSE, the
model is rst integrated for a long period of time and the output is seed as what is
called a \nature run". This nature run is the truth from which synthetic observations
are generated and to which the subsequent data assimilation expeent analyses
are compared against to evaluate performance. By utilizing an OSSHth this
nature run, the experiments and performance metrics are simplidebecause the
truth is known. This would not be the case if initial experiments wered use actual
observations because the truth from which real observations mgeobtained is not
known. Also, by using the same model in the generation of the naturun as is used
in the data assimilation experiments (known as a \perfect twin" exp@ment) we can
ignore the e ects of model and observation bias that must be hatedl with actual

observations. A drawback to this approach that must be kept in mith is that since
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model and observation biases are not introduced it is possible thasults from such

a system are not actually relevant to an operational system usingal observations.

2.1.1 Data assimilation

Data assimilation will be accomplished by using the Local Ensemble Trsfiorm
Kalman Filter (LETKF). Two separate systems will be used, one forlte atmosphere
and one for the ocean. For the atmosphere, the SPEEDY-LETKRiyoshi, 2005
has widely been used for past data assimilation experiments and will bsed here
with only minor modi cations. For the ocean, the NEMO-LETKF has besn devel-
oped, but it is based mostly on the ocean LETKF developed yenny et al. (2013.
The general structure of how these computer programs will berawected to form a
strongly coupled data assimilation system are shown in F&1, with mathematical
justi cation given by Eq 1.1-1.5. The code for each domain is actually two executa-
bles, OBSOP and LETKF. The OBSOP program rst performs the obsrvation
operator on the ensemble model statg;,” = HxP, transforming the state to obser-
vation space. In this case OBSOP is speci c to the domain. The SPEEBELETKF
OBSOP will only process atmospheric observations, and the NEMCEKTF OB-
SOP will only process the ocean observations. Once the observatidepartures
have been calculated, the next executable, LETKF, can use themhetures regard-
less of which domain it comes from. The NEMO-LETKF can use the outp from
SPEEDY-LEKTF OBSOP and vice-versa. The only modi cation to the S’EEDY-

LETKF and NEMO-LETKF LETKF codes required is to inform the solver how the

22



vertical localization should be performed for observations from ¢hopposite domain.
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Figure 2.1: Schematic of the LETKF con guration for the coupled SPEE-
DYNEMO system. Shared observational departures (red arroyvbetween the sepa-
rate LETKF systems enable them to e ectively perform as a single singly coupled
DA system.

It is possible to alternatively have a single strongly coupled SPEEDYN#O-
LETKF that handles the entire system in one executable. Howevett, is preferable
to use the approach given here for several reasons. By keepihg LETKF code
separate for the two domains, the code is simpler and easier to folloBince the
atmosphere and ocean often are run with di erent grid resolutionghe code is kept
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cleaner by keeping the LETKFs separate. The bene ts might seermall for for just

a two domain ocean-atmosphere SCDA system, but the complexityould quickly

add up for a full Earth system model. The land, atmosphere, oceaitce, wave, etc,
can all be coded as separate LETKFs that are then made into a SCD¥#stem just
by sharing the observation operator output.

It was found that the respective SPEEDY-LETKF and NEMO-LETKF code-
bases contained an unnecessarily large number of places with haodled variable
names, which slowed down transition from WCDA to SCDA experimentsBecause
of this, a prototype for a universal LETKF that should work with any geophysical
system was created. This publicly available software is a complete fesstorization
of the original Miyoshi code, termed the universal multi-domain LEKF (UMD-
LETKF, Sluka (20180) and should allow a future researcher to experiment with
SCDA without having to change any of the LETKF code. All state varables, do-
mains, parameters, etc., are controlled by a set of con gurationles. The UMD-
LETKF software is described in more details in Chapter 5, and its delegpment

continues as it is made ready for adoption by the marine modeling gnowat NCEP.

In ation methods

To account for errors in the background estimate, covariance iation is typ-
ically required to keep the ensemble spread from becoming too smalleven col-
lapsing. There are several choices for covariance in ation includirgconstant mul-

tiplicative factor (Anderson 200J), adaptive multiplicative (Miyoshi, 2011, addi-
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tive (Houtekamer and Mitchell 2009, relaxation to prior background (Zhang et al,
20049, and relaxation to prior spread {Vhitaker and Hamill, 2012. Also, during the
model integration stochastic parameterizationsShutts, 2005 Berner et al, 2009
can be used to increase the ensemble spread. Additive in ation is fgally more
important for dealing with model error (Whitaker and Hamill, 2012. Since we are
using a perfect model OSSE, a form multiplicative in ation will instead le used.
Several of these in ation methods have been previously incorpdéea into the
LETKF code, but the ones already provided create problems with thocean. Con-
stant multiplicative in ation is the simplest, but this method causes poblems with
the ocean-LETKF. With a constant multiplicative factor, unobsened regions of
the ocean (such as the southern hemisphere before the satellite, @r the deeper
ocean) will have their spread continue to grow unbounded and will entually blow
up unless arti cial bounds are placed on the spread at various logahs and depths.
Adaptive in ation ( Miyoshi, 2011 is often used for data assimilation exper-
iments with the SPEEDY-LETKF. This method estimates an evolving sptially
varying multiplicative covariance in ation factor, and often works well assuming the
observation network does not change in time and that model grident locations
with an observation haveall of its state variables observed. Since the same in ation
factor is applied to all state variables, the unobserved state vatbées can \blow-
up”, unless variable localization is used in the data assimilation. Tempegture and
salinity are typically the only widely sampled variables in the ocean, anddaptive
in ation therefore has a tendency to cause the spread of the agecurrents to grow

unbounded and fails to work.
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It is for these reasons that relaxation to prior spread (RTPS) méiod of
Whitaker and Hamill (2012 was added to the LETKF. This method, shown by
eq 2.1, in ates the spread of the analysis, @, some percentage, , back toward the
original spread of the background, ®, where xfa are the analysis ensemble pertur-

bations for each ensemble membeér

By +1 (2.1)

This method is simple to implement and has the bene t of in ating the aml-
ysis more where observation density is higher (similar to what adapsvin ation
will do), but without over-in ating as adaptive can do if there are nodirectly ob-
served variables. RPTS was chosen over the similar relaxation to prigerturbations
(RTPP) ( Zhang et al, 2009 in part because it was shown byVhitaker and Hamill
(2012 that RTPS is less sensitive to the choice of the value. RTPP was shown to
blow-up if is chosen from outside a narrower range of acceptable values, éaosv,
this result was found with a di erent avor of EnKF and might not hold true with

the LETKF.

26



2.1.2 SPEEDYNEMO model

The SPEEDYNEMO model is a simpli ed ocean-atmosphere coupled meld
that was developed byKucharski et al. (2019 to investigate the role of the Atlantic
Multidecadal Oscillation (AMO) on the tropical Paci c. The primary bene t of this
model is that the con guration and parameterizations are compreensive enough to
create realistic atmospheric phenomena while at the same time is cantgtionally
cheap. For example, the atmospheric component by itself is able tenorm a
one year simulation in a mere 6 minutes on a single core of a standardsktep
computer (Kucharski et al., 2013. This intermediate-complexity model enables
ensemble experiments with a fast turn around time and is therefohosen for the
strongly-coupled OSSEs.

The atmospheric component consists of the Simpli ed Parameterizan, prim-
itivE Equation DYnamics (SPEEDY) model, version 41 Molteni, 2003 Kucharski
et al., 200§. SPEEDY is a hydrostatic, eight-level sigma coordinate spectrahodel
with T30 resolution and is capable of producing fairly realistic phenoma despite
the simpli ed parameterizations. This model is a small upgrade fromhe SPEEDY
model used for the initial LETKF experiments (Miyoshi, 2009, primarily using an
increase in the number of vertical levels from 7 to 8.

The ocean component consists of the Nucleus for European Modgliof the
Ocean (NEMO) (Madec 2009. NEMO is con gured with the ORCA2 grid, a 30
level vertical z-coordinate grid with a 2 horizontal tripolar grid that tapers to

0.25 at the equator to capture equatorial wave dynamics.
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The SPEEDY and NEMO models are coupled by exchanging SST from the
ocean to the atmosphere, and total heat ux, shortwave radian, wind stress, and
evaporation minus precipitation from the atmosphere to the ocearThis exchange
was originally performed by the OASIS coupler, though the coupleras removed for
simplicity due to the fact that the coupling period (6 hours) would be he same as
the data assimilation period and so the data assimilation code is usedths coupler.

If a period other than this is required the OASIS coupler will have to & reinserted.
The original SPEEDYNEMO has been modi ed to produce instantanas model
output every 6 hours. The LIM ice model that comes with NEMO is tuned o
and sea ice distribution is prescribed by using observed monthly clinzdbgy from
ERA-15 (Gibson et al, 1999

In order for the model to produce ENSO-like patterns when run aa freely
running nature run, a ux correction has to be applied. FollowingKmeger and
Kucharski (201]) a one-way anomaly coupling is applied from the ocean to the at-
mosphere. This corrects a cold bias in the East Paci c. The reducé&thst-West SST
gradient allows for El Nino-Southern Oscillation-type variability tooccur (g 2.2).
However, the model has an ENSO pattern with a lower frequency @more per-
sistent signal than what should be observed ( @.3). Also, the SST anomalies are

slightly too far to the west and do not move northward along the ca.
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2005 2010 2015 2020

Figure 2.2: The spontaneous ENSO-like pattern seen in the SPEEDYNEMO dur-
ing a long nature run. Shown are the SST anomaly over the Nino 3dgion (a) and
an example of a typical El Nino phase during 2007 (b) and La Nif#hase during
2008 (c)
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Figure 2.3: Auto-correlation of NINO3.4 indices (a) for observed conditions (&ack)
and the SPEEDYNEMO model nature run (red). Power spectrum obbservations
(b) and the SPEEDYNEMO model (c). SPEEDYNEMO is shown to prodae ENSO
phases that last too long and at a period longer than observed in nme. Image
courtesy of Alfredo Ruiz-Barradas.
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2.2 One-way SCDA with atmospheric observations

Perfect model observation system simulation experiments (OSSEme con-
ducted using synthetic atmospheric observations. First, a longde run of the model
is performed and used as the truth for the remainder of the experents. To generate
this nature run, SPEEDY-NEMO is rst initialized with climatological ocean tem-
perature and salinity, an atmosphere at rest, and run freely for®2years to spin-up.
The subsequent 6 years are then saved as the nature run.

From this run, synthetic rawinsonde observations and satellite raevals are
generated every 6 hours at the locations shown in 8.4. This provides observations
of surface pressure (Ps) and vertical pro les of temperaturel’}, humidity (q), and
wind(U,V). For each observation the values at the appropriate time and positions
of the nature run are used and independent Gaussian errors arégdad with zero
mean and unit standard deviation (1 hPA, 1 C, 1 g/kg, and 1 m/s). It should
be emphasized that for this rst OSSE no ocean observations arergrated or
assimilated. For simplicity, observations are only generated at thenalysis times,
though a 4D-LETKF that uses observations throughout a window wuld be expected
to perform similarly. Also, these observations are generated atdtexact grid-points,
and so no interpolation is needed from the observation operator.

Two runs of the data assimilation system are performed, one with aldy
coupled DA (WEAK) and a second with strongly coupled DA (STRONG).For
WEAK the atmospheric observations are assimilated only into the atosphere by

the SPEEDY-LETKF. NEMO-LETKF is not run and the ocean is updated every 6
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Figure 2.4: Locations of atmospheric observations for SPEEDYNEMO OSSE ave
a single 6 hour period. The locations of the AIRS-like T and g satellite sbrvations
changes with each 6 hour time period to provide global coverage.

hours only through the normal ux exchanges of heat, momentupand evaporation
minus precipitation. This method is the standard way a coupled oceaatmosphere
system would be run given only atmospheric observations.

For the second data assimilation run with strongly coupled DA (STROS),
both SPEEDY-LETKF and NEMO-LETKF are given the atmospheric olservation
departures, thereby allowing the atmospheric observations to assimilated into the
ocean. In this case the ocean state is corrected both by the uxdérom the atmo-
sphere during the model integration and by the data assimilation thas performed
every 6 hours.

It should be emphasized that in both cases the atmosphergi(,) and the
ocean K3.,) analyses are generated separately by the respective SPEEDFEIIKF
and NEMO-LETKEF codes, though for STRONG this is mathematically idetical to

having a single LETKF handling the entire state k?) due to the fact that cross-
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horizontal localization 1000 km
vertical localization (atm) | 0:1In( P)
vertical localization (ocn) | none
ensemble size 40
in ation RTPS ( ocn =90% am = 60%)

Table 2.1: Data assimilation parameters used by the SPEEDYNEMO OSSEs

domain observational departures are shared with the two system

Starting with an arbitrarily labeled date of January 1, 2005, both egeriments
are initialized with identical ensemble members that are randomly ches from sub-
sequent years of the nature run. This gives the initial conditions stient error and
spread from which to start the experiments. STRONG and WEAK expriments are
then run for 6 years using the data assimilation parameters sumnized by table2.1
A horizontal localization radius of 1000km is used in both the atmosphe and the
ocean. Vertical localization in the atmosphere is carried out by eaahodel level
so that observations at one level only have minimal impact on the legeabove and
below it.

No vertical localization is used in the ocean, the entire water column ikere-
fore able to be updated by the atmospheric observations at the legt level of the
atmosphere in STRONG. It has been shown that while vertical localizan is very
important for atmospheric data assimilation, the ocean performsditer without any
vertical localization (Penny et al, 2015. In fact, not using any vertical localization
in the ocean is computationally more e cient, since the analysis needs only be
calculated once for the entire column instead of separately at eaevel, and is more

able to produce an analysis where the water column remains in hydiatsc balance.
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The relaxation to prior spread method, or RTPS {Whitaker and Hamill, 2012,
is used and has been tuned with di erent values for the atmosphefem = 0:6) and
the ocean ( ocn = 0:9) so that in the STRONG run an ensemble spread of similar
magnitude to the root-mean-square-error is maintained. The us# di erent RTPS
values for the two domains is not ideal, however. A major bene t of DA is that it
should improve balance at the domain interface, but this balance mde disturbed
by not keeping the ensemble perturbations matched up perfectlizreferably, other
methods of increasing ensemble spread for the ocean, such asguaitigher eddy-
permitting resolution or stochastic perturbations, should be usesb that an identical
RTPS value can be used for both domains. These changes are naqpical for the

following experiments, though.

Results

The root mean square error (RMSE), as given by e8.2, is used as the pre-
dominant veri cation method for the performance of the experimats. The RMSE
is calculated for the ocean temperature, salinity, and sea surfabeight, as well as

the atmospheric variables.

X %) (2.2)

The di erence in analysis RMSE as compared to the nature run truttfor
STRONG minus WEAK (g 2.6) shows that the ocean is signi cantly improved

when strongly coupled DA is used to assimilate atmospheric obseneats into both
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Figure 2.5: Temporally averaged ocean analysis RMSE for the WEAK run. Shown
are upper temperature (a), salinity (b), sea surface height (cand zonal currents

(d).

the ocean and atmosphere at the same time. The near-surfacenperatures and
SSH RMSE are reduced compared with WEAK results by about 50% aftan initial
spin-up period of just a couple of weeks. The Northern Hemisphgid¢H) and tropics,
which have the largest initial errors in the WEAK run (g 2.5, also improve the

most in STRONG.
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Ocean salinity errors are reduced more slowly than temperatureytihis reduc-
tion continues for several years throughout the duration of thexperiment. Globally,
the strongly coupled DA reduces errors in salinity and temperaturan average of
46% for the upper ocean over the last 5 years of the experiment.

Annual variations in the RMSE reduction by STRONG can be seen at th
ocean surface (g2.6a). The northern hemisphere mid-latitudes experiences the
greatest improvement in SST during the winter/spring months, awaging 52% over
the last 5 years while only 37% over the summer months. The same isidrfor
the southern hemisphere, though with a smaller amplitude. Thesesudts could
be expected due to stronger mid-latitude atmospheric dynamicsiding the ocean
during the winter and spring months, as well as well as a deeper mixiyer depth
in the winter.

Figure 2.7 shows the spatial patterns of analysis RMSE reduction betweeneh
two cases. The ocean state is improved most in the NH midlatitudes ete the
greatest density of atmospheric observations are and where theean is generally
considered to be driven by weather anomalies. The NEMO-LETKF is ogured to
use no vertical localization in the ocean, which enables observatiaisove the ocean
to impact the entire water column, accelerating the improvement ahe barotropic
mode of the ocean. The strongest improvements in the northerntlantic extend
down below 2.5 km. Although SST errors are not reduced signi cantiy the tropical
Paci c, RMSE errors of the subsurface waters in the upper 250nreareduced by
aboutl C.

Assimilating atmospheric observations into the ocean corrects tlsea surface
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Figure 2.6: Spatially averaged di erence of analysis RMSE for STRONG-WEAK
using only atmospheric observations. Negative values indicate impements by
strongly coupled DA. Shown are results averaged over the NortineHemisphere
mid-latitudes (blue), tropics (green), and Southern Hemisphere intlatitudes (red).

Shown are temperatures (a and c¢) and salinity (b and d) at the swa€te (a and b)
and deep ocean (c and d)Sluka et al. (2019
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Figure 2.7: Time mean di erence of analysis RMSE for STRONG-WEAK using
only atmospheric observations. Negative values (blue) indicate imgrements by
strongly coupled DA. Shown are temperatures (a,c, and e) and satin(b,d,and f)
over the upper 500 meters (a and b) and cross sections of the Ra¢c and d) and
Atlantic (e and f) basins. Sluka et al. (2019
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Figure 2.8: Time mean di erence of analysis RMSE for STRONG-WEAK using
only atmospheric observations. Negative values (blue) indicate imgrements by
strongly coupled DA. Shown are temperature (a) and humidity (b) aathe lowest
model levels, and zonal wind speed through the troposphere (§luka et al. (2019

temperatures in STRONG which then re ect back on the atmosphey, resulting in a
reduction in atmospheric RMSE in STRONG, as shown in gur@.8. Improvements
in atmospheric temperature and humidity at the lowest model levelsverlap the
same areas of the ocean ( @.7) experiencing corrected SSTs. Precipitation and
other uxes are all improved in these areas as well. Zonal winds are proved
throughout the troposphere of the tropical Paci ¢, presumablyfrom an improved
Walker circulation, as well as over the oceanic NH mid-latitudes.

In addition to the STRONG and WEAK cases using all atmospheric obse
vations, a similar experiment was performed using only rawinsonde s#vations
(g 2.9. Although extremely few observations are directly over the ocas, the

strongly coupled data assimilation was still able to provide similar impr@aments in
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most regions, except for the Southern Hemisphere where thene @00 few rawin-

sondes.

T (upper 512m) S(upper 512m)

RAOB only

RAOB + AIRS

-0.5 [PSU] 0.5

Figure 2.9: Time mean di erence of analysis RMSE for STRONG-WEAK using
only rawinsonde observations (top) compared with the rawinsondend satellite ob-
servations (bottom). Shown are RMSE in upper 512m for ocean t@mrature (left)

and salinity (right).
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2.3 One-way SCDA with ocean observations

Experiments similar to the previous atmospheric-only observatiorxperiments
are repeated, although this time using only ocean observations inthaveakly and
strongly coupled settings. The same nature run is utilized, and theTRONG vs
WEAK experiments are run over the same 2005-2010 time period. iShcon gu-
ration tests what impacts ocean observations have on the atmdsye when using
strongly coupled data assimilation. Synthetic observations are gerated to mimic
temperature and salinity pro les from Argo oats (Roemmich et al, 2009 and satel-
lite based sea surface temperature platforms. Argo oats provdtemperature and
salinity pro les down to about 2km with nearly global coverage, althagh with a
sparse 300 or so pro les a day, starting in the early 2000's. With fewobservations
now being assimilated into the ocean and atmosphere, less in ation svaequired.
The RTPS value was reduced from 90% to 50% for both the atmospbeand ocean.
Horizontal localization for the ocean is 700km at the equator, dezasing to 200km
at the poles. Atmospheric horizontal localization of 1000km was wke

Roughly 120 temperature and salinity pro les each day are geneeat with
random locations to simulate the Argo pro les (g2.10. These positions are pseudo-
randomly generated, with less likelihood of observations being geatad in the polar
regions, or in areas where the ocean depth is less than 2km. The t@mngenerated
is less than the actual number of operational Argo pro les that a currently present
in reality, which consists of roughly 3000 oats that give pro les ewy 10 days, for

a total of 300 pro les a day. This reduction is justi ed given the rediced resolution
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ARGO floats for 1 day

Figure 2.10: Example location of synthetic Argo T/S ocean pro le observations
for one day. The locations are randomly generated to cover an arsimilar to that
of the actual Argo system with about 200 pro les per day.

and variability of the low resolution NEMO system being used. The valsegenerated
from the nature run have Gaussian noise, with mean of zero, and eglh dependent
standard deviation as given by g2.11 This simulates increased errors near the
thermocline. Synthetic satellite based SST observations are gesexd by randomly
selecting 1/4 of the ocean grid points each day, and adding 1 degezeor.

Results of the RMSE di erences for STRONG vs WEAK are shown in .12
Overall, it can be seen that the error in the heat ux between the ahosphere
and ocean is improved globally when ocean observations are assimdaiao the
atmosphere. The mid latitudes require a spin-up of several month&fore SCDA is
able to outperform WCDA, but then after this period these uxes ae consistently
better throughout the remainder of the experiment. Initially, theother atmospheric
variables plotted (humidity, temperature, and wind speed, all at tk lowest model

level) show reduced errors with SCDA for the rst 2 years, but the SCDA performs
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Lvl Depth (m) TErr S Err

T Error 1 4999938 056 0.056
0o 02 04 06 08 1 2 15.00029 061 0.061
0
3 2500176 0.66 0.066
4 35.00541 07 007
200
5 4501332 074 0.074
6 550295 078 0.078
400
7 65.06181 08 008
8 75.12551  0.82 0.082
600
9 8525037 0.82 0.082
10 9549429 084 0.084
800
11 105.9699  0.83 0.083
E 12 116.8962 0.82 0.082
£ 1000
5 13 1286979 081 0081
=]

14 1421953 078 0.078
1200
15 158.9606 0.76 0.076
16 181.9628 07 007
1400

17 216.6479  0.66 0.066
18  272.4767 06 0.6
1600

19 364303 054 0.054
20 5115348  0.49  0.049
N 21 7322009 036 0.036

22 1033.217 0.31 0.031

e 23 1405.698 027 0.027

24 1830.885 0.27 0.027

Figure 2.11: Argo pro le errors are randomly generated with a Gaussian distribu
tion using depth dependent standard deviation given in the table.
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Figure 2.12: Spatially averaged analysis RMSE for ocean observations only exper
iments. Shown are results for STRONG (solid) and WEAK (dashed) faboth the
tropics (blue) and mid-latitudes (red). Atmospheric variables are éat ux (a), and
humidity (b), temperature (c), and zonal wind (d), at the lowest levels.

the same as WCDA in the tropics. In the extra-tropics, temperatte and humidity
continue to have lower RMSE with SCDA compared with WCDA throughat the
duration of the experiment.

The results given in g 2.13show that in these experiments the atmospheric
observations have a slightly larger impact with SCDA in the tropics (geecially zonal
winds), whereas ocean observations have a stronger impact in #dra-tropics.

This latitudinal variation in the e ects of SCDA can possibly be explaind
by an observed latitudinal variation of which domain typically dynamicédy drives
the other. Several studies (e.g.Pena et al. (2003; Ruiz-Barradas et al.(2017)
have sought identify the spatial variation of which domain is the main mver of the

coupled system, the atmosphere or the ocean, by examining theupted anomalies
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Figure 2.13: Temporally averaged dierence of analysis RMSE for STRONG-
WEAK for several atmospheric variables. Shown are experimentsiog ocean obser-
vations only (left) and atmospheric observations only (right). Vaiables shown are
at the lowest model level for zonal wind (U), temperature (T), hmidity (q), as well
as downward shortwave radiation (SWFlux) and evaporation minus rpcipitation
(E-P). Ocean observations mainly show improvement in the extra<pics, whereas
atmospheric observations show improvements in the tropics.
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Figure 2.14: Schematic of local dynamical ocean-atmosphere coupling. Shown
are instances where atmospheric anomalies drive the ocean (topdavhere ocean
anomalies drive the atmosphere (bottom)Ruiz-Barradas et al.(2017

in atmospheric vorticity at 850mb and ocean SST. Figur@.14 summarizes these
coupled anomalies. The atmosphere typically drives the ocean in thedalatitudes,
where a cyclonic atmosphere is associated with storminess which dsvocean cool-
ing through reduced shortwave radiation and Ekman upwelling in theagan. Con-
versely, an anticyclonic atmosphere is associated with higher dowand radiation
and therefore a warmer ocean. The opposite is true in the tropioshere the ocean
is typically the main dynamic driver of the coupled system. Warm SST amimalies
lead to convection and subsequent cyclonic vorticity in the atmosghe, while cold
SSTs lead to an anti-cyclonic atmosphere.

With data assimilation, the ow of information across the ocean-atrasphere

domain interface is accomplished in two ways:
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1. the previously explained dynamical forcing which is mediated by thex ex-

change during model integration

2. by performing SCDA and utilizing the coupled covariance to allow obsvations

in one domain to impact the other domain

Since the atmosphere is the main dynamical driver of the system inetmid-
latitudes, the impact of atmospheric observations assimilated intonty the atmo-
sphere are inherently felt by the ocean anyway even with WCDA th&s to the
atmosphere passing that information to the ocean via the uxes,na so assimila-
tion of atmospheric observations into the ocean under SCDA havetlé impact in
the mid-latitudes. On the other hand, if an ocean observation is asslated into
the ocean only with WCDA, then that information has no way of improing the
atmosphere, since the ocean is not dynamically driving the atmosphen this loca-
tion. The only way to have an ocean observation improve the atmasere is through
SCDA. The coupled covariance enables the ocean observation teoreot the atmo-
sphere, by choosing the atmosphere that led to that ocean statdn the tropics
everything is reversed, and atmospheric observations have a l@ggmpact under
SCDA due to the ocean being the main dynamical driver of the atmokgre.

The above results, however, are complicated by the fact that thEPEEDY
atmospheric model has a tendency to easily become unstable durthg course of
data assimilation cycles. This problem is more likely to happen for SPEBDON cases
involving an imperfect model or imperfect boundary conditions. Th&CDA and

WCDA experiments performed are inherently using imperfect bourdglies, since the
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SST during the data assimilation run will necessarily not be the same #®t of the
nature run. These types of instabilities developing in the atmosphermodel are the
result of an accumulation of energy at the shortest wavelengths iemperature and
humidity at the lowest model levels (e.g. g2.15 and were found by several other
students, Cathy Thomas Thomas 2017 and Yan Zhou (Zhou, 2014. It appears
that a regular grid of observations, along with an imperfect model,ra enough to
force the problem. Neither student was able to eliminate the spuristhigh energy
waves completely, but it was found that performing an additional sgctral truncation
of the analysis, or performing the analysis at a resolution lower thathe forecast
were helpful methods.

Even with attempting additional spectral truncation of the atmogheric state
by removing all spectral coe cients with wave-numbem > = 30, SCDA experiments
with ocean observations assimilated into the atmosphere were ndilato be run for
inde nite periods of time without the atmospheric model blowing up. Te results in
g 2.12and g 2.13are therefore not completely conclusive. The atmospheric suréac
pressure appears ne for the rst year or two before the high &éguency variations
in tropical pressure become visible. However, even with surfaceepsure becoming
unstable, the other elds plotted show little di erence over the yees, meaning the
results might be trusted somewhat. These instabilities, and the indlly by several
students to overcome them, are the major reasoning for moving to more realistic

SCDA tests with the CFSv2 model as described in the subsequentagiers.
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Figure 2.15: Instance of SPEEDY model exhibiting growing standing waves in
the temperature eld atthe =0:5 level. These waves eventually cause the model
to blow up (top), compared with a normal run (bottom). Image coutesy of Cathy

Thomas.
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2.4 Summary

By performing strongly coupled DA, where the ocean-atmosphestates and
observations are e ectively treated as a single system, improvenmsg can be seen
in both domains compared to weakly coupled DA in speci c situations. Haring
the ensemble observational departures between the separaRBEEDY-LETKF and
NEMO-LETKF systems takes advantage of the cross-domain bagplound error co-
variance and allows atmospheric observations to directly impact thecean. Ocean
observations can similarly improve the atmosphere, though this is meodi cult for
long term runs with SPEEDYNEMO given the instabilities in the atmosphee.

Several ndings with the SPEEDYNEMO system are interesting andtsould be
further explored with a more realistic (and more stable) system. it hinted at that
atmospheric observations have more of an impact with SCDA in the dpics, and
ocean observations having more of an impact with SCDA in the extri@pics. This
latitudinal dependence on the directionality of impact for observabns can possibly
be explained in terms of the latitudinal dependence on who the dynaeal driver
of the system is. l.e, if the ocean is the dynamical driver, atmosptie observations
should have more of an impact with SCDA since there is no other wayriaformation
from the atmosphere to improve the ocean during model integratio In essence, the
downstream observations improve the upstream domain.

These results contradict other ndings ([u et al., 20153, but this could be
explained by the fact that the data assimilation cycle period in the exgriments

presented here are dierent. Lu et al. used longer weekly or moryhtimescales,
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whereas 6 hourly scales are used here. With the longer data assinndiatcycles the

previous assumption of \the atmospheric observations assimilatedto the ocean

don't help much under SCDA in the extra-topics because the atmolgric observa
tions are felt by the ocean anyway via the ux exchange during modetegration”
isn't necessarily true. If the coupled anomalies have a lag period o¥eral days then
an error in the atmosphere would have enough time to lead to an errio the ocean.
This error could then be corrected by assimilating the atmospheridservations into
the into the ocean with SCDA.

A number of problems were found with the SPEEDYNEMO-LETKF sysém
that limits its use in studying short, 6-hour, strongly coupled data asimilation

cycles as intended. These include:

The atmospheric SPEEDY-LETKF can be unstable when imperfect nuels
are used. In this case, the sea surface temperature boundaonditions pro-
vided by the ocean are inherently going to be imperfect. The LEKTF ithen
more likely to excite atmospheric waves at the lower levels that are ¢h not

properly damped by the model.

The coupling frequency of SPEEDYNEMO is at the same timescale astidata
assimilation length. It is possibly too infrequent for a proper crossoanain

covariance to form for use in SCDA.

The low resolution of the ocean model causes very little ocean variléip,
especially in the extra-tropics, as shown in (2.13 Because of this lack of
variability, it is di cult to maintain a proper ensemble spread even with large
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values of relaxation. The small spread becomes even more problémehen
atmospheric observations, which are more numerous than ocedrservations,

are assimilated into the ocean.

Due to the low variability of the ocean, the errors in the ocean wherssimilat-
ing any ocean observation is very low, meaning the atmospheric ohsgions
have very little ability to improve the ocean and in the case of experimés

tried SCDA actually decreased the performance when all obseriats are used.

Due to the above mentioned di culties with the SPEEDYNEMO-LETKF, its
use has proven less than ideal for the 6 hour cycling experimentsfpemed. Since
the SPEEDYNEMO model itself was initially designed for climate length ras, the
system may be better suited for studying strongly coupled data signilation with
other phenomena at longer timescales such as the Atlantic merididraverturning
circulation (AMOC), Paci ¢ decadal oscillation (PDO), and Atlantic mu ltidecadal
oscillation (AMO), assuming these phenomena are able to be repmasel by the
model. Such an experiment was performed bijardif et al. (2014, though with
a more simplistic model. Choices that were made earlier in the developmef
the SPEEDYNEMO-LETKF make changing from a 6 hour cycle dicult, and is
therefore easier to switch to a di erent model (CFSv2) for the mmainder of the

experiments.
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Chapter 3: Full Model OSE: CFSv2-LETKF

The goal of this section is to develop a strongly coupled ocean atmbsre
data assimilation system that is geared towards an operational glitg model with
a realistic 6 hour or daily data assimilation cycle, such as is used by maapera-
tional centers worldwide. The system that has been built for the siphi ed SPEE-
DYNEMO in chapter 2 will be modi ed to utilize a realistic model, namely NCEP's
Climate Forecasting System v2 (CFSv2). This should additionally allevia some
of the problems that were occurring with SPEEDYNEMO, patrticularlythe issues
of the atmosphere blowing up when the ocean was assimilated into taenosphere,
and the low resolution and insu cient ensemble spread of the ocearThis will be
tested, with real observations.

The LETKF used is a combination of the already existing GFS-LETKF
(Lien et al.,, 2013 and MOM-LETKF ( Penny et al, 2013. First, an initial ensemble
will be spunup for several months. Then, WCDA will be used to furtér spinup
the ensemble members. The cross-domain correlations found in WWEDA results
will then be used to determine which observations should be used inettSCDA
experiment. And nally, a SCDA cycle is run over the same period thatvas used

for the WCDA run.
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3.1 CFSv2 model

The second version of the Climate Forecast System (CFSv2) is a ptad
atmosphere-ocean-land model that was made operational at NEEn March of 2011
Saha et al.(201Q 20149. It has been used since by NCEP for seasonal forecasting,
retrospective reanalysis, and reforecasts. The CFSv2 has shogigni cant skill
improvements in seasonal forecasts for coupled ocean-atmaspghphenomena such
ENSO and Madden-Julian Oscillation. It consists of three separatexecutables
that are run simultaneously, the atmosphere-land model (GFS)he ocean model
(MOM4), and the coupler. The CFSv2 is used as the forecast model the Climate
Forecast System Reanalysis (CFSR) that runs from 1979 to 2013aha et al, 2010,
and for the realtime Climate Data Assimilation System (CDAS) that is run to the
present.

The atmospheric component consists of the Global Forecastingsism (GFS)
run at a reduced resolution than what the standalone atmosphefer weather fore-
casting is run. For the CFSR a resolution of T382 is used for the 9 holorecast used
as the background in the data assimilation cycle. The subsequentisenal forecasts
use a horizontal resolution of T126. There are 64 vertical levels, @&nhybrid sigma
coordinate system. The 4 level Noah land surface modd&lk, 2003 is run as part
of the GFS component.

The ocean component consists of the GFDL Modular Ocean Model QM)
version 4 run at a horizontal resolution of 1/2 degree with a latitudial spacing of

1/4 degree near the equator to better capture the equatorialytiamics. The vertical
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coordinates are 40 z* levels.

These two components are coupled at the ocean time step, evehyrtyy min-
utes. The atmosphere accumulates net downward shortwave alodgwave radiation,
sensible and latent heat ux, wind stress, and precipitation. The aan sends back
the atmosphere SST and sea ice fraction. The land model is run asrtpaf the
atmospheric model, and so is not seen directly by the coupler. With wpling every
30 minutes, uxes are exchanged 18 times in the 9 hour forecasingeated for the
background. This is compared with the 6 hour forecast for the SEEDYNEMO that
used a 6 hour period of the coupling. The strength of the resultingass domain

covariance should therefore be stronger and more useful for[Bwith the CFSv2.

3.2 Experiment Setup

The observation set to be used consists of the in-situ portion of éhobserva-
tions used operationally at NCEP for the CDAS. For the atmospherthis is a subset
of the PREPBUFR data as described in table3.1 Observations such as nexrad
wind reports (VADWND) and wind pro lers and acoustic sounders (ROFLR) are
not utilized due to their high density and concentration over land. Ogan observa-
tions consist of the in-situ temperature and salinity pro les from tle moored buoys
(MRBs), expendable bathythermographs (XBTs), and Argo oas (ARGO). An ex-
ample of the observation density over a given day is shown in §.1

The CFSv2 uses a relaxation to OISST in operations for a more acatg anal-

ysis. No relaxation is used in these experiments so as not to dampée ensemble
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Figure 3.1: The subset of conventional observations used in the experiments
Shown are the atmospheric PREPBUFR obs over a 6 hour period (ah ocean
pro les over a 24 hour period (b).
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ob type | description count
atmosphere observations 288,938

ADPUPA upper-air reports, mainly rawinsondes 74,322
AIRCAR| MDCRS ACA®ISraft reports 53,953
AIRCFT| AIREP, PIREP, AMDAR, TAMD#®Rraft reports 49,076
SATWNDsatellite derived motion vectors 20,496
ADPSFC surface land reports SYNOPTIC, METAR 31,606
SFCSHH marine surface reports SHIP, BUOY 26,569
QKSWNDscatterometer wind data from quickscat 11,906
SPSMIR scatterometer wind data from SSM/I 21,010
ocean observations 14,949

OCN T | ocean temperature 9,253
OCN S | ocean salinity 5,696

Table 3.1: Operational in-situ atmospheric observations used from PREPBUF
along with counts from a typical 24 hour period (Jun 1, 2005)SFCSHERre the only
observations used by the ocean during strongly coupled DA. Eadate variable and
vertical level counts as a separate observations.

spread and weaken the cross domain correlations. Also, without B&elaxation,
larger biases in the ocean are expected, which for the purposeshekse experiments
is good as it gives the strongly coupled DA another possible area to irope com-
pared with WCDA.

To generate the initial ensemble the CFSR analysis from January 02005 is
used and run freely for each of the 50 ensemble members until sieat spread in
both the atmosphere and ocean develops. Tiny perturbations in ¢hatmosphere
quickly give rise to large spread after several weeks, and this dierce in forcing
causes spread in the subsurface ocean after several montlgs 3.2).

These members are run for a total of four months until May 01, 2&. Weakly
coupled DA is then performed for one month until June 01, 2005. This necessary
so that the atmospheric ensemble is collapsed su ciently so that laeganalysis

increments from the atmospheric observations do not overly distuthe ocean during
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the spin-up phase of the strongly coupled DA. The nal output of he ensemble
members at June 01, 2005 are used as the initial conditions for thebsequent
experiments.

Other methods of generating an initial ensemble are possible, such w@sing
a random sampling of CFSR analyses from the same month over the tbrgcal
reanalysis period, which would help result in a larger and more realisticitial
spread at depth. However, by initializing with random samples of CFSRnalyses,
it was found that the ocean had di culty spinning up without generating large noise
and ultimately diverging if the ensemble di ered too greatly from the tuth, and so a
single CFSR analysis was used and run for su cient time to generatengle spread
and errors.

The following parameters are used by the LETKF for all experiments

ensemble size 50
in ation | RTPS at 95%
ATM localization | 1000km Hz, 0.4InP vertical
OCN localization | 720-200km Hz, 0.4InP into ATM

Table 3.2: LETKF parameters used for CFSv2-LETKF experiments with real
observations.

3.3 Control run OSE with WCDA

WCDA ensemble spread/rmsd/bias

The CFS-LETKF is run with weakly coupled DA for one month from May 1

2005 to June 1, 2005. The ensemble spread of the ocean tempgratand salinity
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at various depths is shown in g3.2 Compared to the SPEEDYNEMO weakly
coupled runs, the spread in the CFS is much larger and exhibits realspatterns of
increased spread along the equatorial thermocline and westernubdary currents.
This increased spread is likely due in large part to increase ocean mioasolution
from 2 to 1/2

The WCDA con guration run is continued for several more monthsand the
resulting background minus observation (B-O) bias and RMSD avegad over the
summer months are shown in @3.3. There are small upper ocean errors throughout
most of the open ocean (less than 06), with larger errors (> 2 C) in the northern
hemisphere mid latitudes and along the coastlines. These same a@darger RMSD
also have a large warm bias in the model, as seen from the SFCSHP andam B-O

bias.
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Figure 3.2: Ocean ensemble spread after the WCDA spinup for one month, engin
Jun 1, 2005. Temperature in C (left) salinity in PSU (right) at 5m (a,b)50m (c,d),
100m (e,f) and 500m (g,h) depths on a semi-logarithmic scale.
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SFCSHP ATM T bias SFCSHP ATM T RMSD

Figure 3.3: Background minus observation statistics of bias (left) and RMSD
(right) averaged over JJA of 2005 with weakly coupled DA. Shown arthe statistics
for 5m ocean temperature observations (top) and SFCHP atmdsgric temperature
(bottom) in C.
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WCDA ensemble cross-domain correlations

The background error cross-domain correlations from a single éainh the NH
summer (June 1, 2005) and a single date in the NH winter (Decembey 2005)
are examined to determine how much information within the ensemble @&vailable
for use by SCDA. These data shown are from a single instantaneduse, and not
a climatological average. |If there is no correlation shown, SCDA wunot be
expected to provide any bene t, and may even harm the analysis ihg correlations
present are spurious. The strength of spurious correlations wdube expected to
change based on the ensemble size used.

The cross correlations in g3.4and g 3.5 are generated from the given vari-
ables by calculating the correlation between each atmospheric motvel and the
ocean surface level (top) and between each ocean level and tl&tdm atmosphere
level (bottom) using the ensemble member perturbations. The na$s are then
zonally averaged.

For the ocean and atmosphere temperature cross correlationitscan be seen
in Fig 3.4 that temperature near the interface is highly correlated as would é
expected. The highest correlation extends down into the ocean tioe base of the
mixed layer. The highest correlation extends up into the atmospheito roughly the
0.9 sigma level. The correlations are stronger in the summer time (NH ig 3.4a,
SH in g 3.4b). The plotted values have been normalized due to the di erences in
maximum correlation in June and December (0.64 vs 0.36). The Junelwas are

likely arti cially large due to insu cient spinp-up time: the ensemble spread in the

62



Figure 3.4: Zonally averaged instantaneous cross-domain background eroarre-
lations represented by the ensemble between ocean temperatatesach level and
surface atmospheric temperature (bottom) and atmospheric tgperature at each
level and surface ocean temperature (top). Dark blue line indicatdocation of the
ocean mixed layer depth. NH summer (left) and NH winter (right) areshown. Plot-
ted values have been normalized, maximum correlations are 0.64 for Summer,
and 0.36 for NH winter.

ocean is large in June, resulting in larger corresponding anomalies i ttmosphere.
The 0.36 maximum correlation value in the winter is closer to the resulteund from
Feng et al.(2018 with the ECMWF CERA for SST-T2m 3hr ensemble correlations.
Fig 3.5 shows the similar cross correlations against ocean temperature &b-
mospheric humidity (g 3.5a) and wind speed (g 3.%b), zonal wind speed and
meridional ocean current( g 3.5c), and meridional wind speed and zonal ocean cur-
rent(g 3.5d)in December. The overall pattern of OCNT X ATM _Q is similar to
that of OCN_T X ATM _T, although weaker. Atmospheric wind is shown to be
negatively correlated with surface ocean temperature as a likelystdt of increase
heat loss from the higher winds. The cross correlations with atmdsgric winds are
much weaker than those of temperature and humidity, and so areotnlikely to be

represented will with a limited ensemble size. Winds are correlated witicean cur-
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(@) (b)
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Figure 3.5: Zonally averaged instantaneous cross-domain background erwor-
relations represented by the ensemble between the three-dimensl ocean value
and the surface atmospheric value (bottom), and the three-dimsional atmospheric
eld and the surface ocean eld (top). Variables shown are betwaeocean temper-
ature and atmospheric humidity (a), ocean temperature and windpged (b), ocean
meridional currents and atmospheric zonal wind (c), and oceanrzl currents and
atmospheric meridional wind (d). Dark blue line indicates location of th ocean
mixed layer. Plotted values have been normalized, maximum correlati® are given
by table 3.3 The ensemble at a single snapshot at 2005-12-01 00Z is used.

64



ATM
T q u v wnd vort
T 0.34 0.15 0.07 0.02 0.11 0.06
OCN S 0.04 0.05 0.04 0.03 0.03 0.05
u 0.08 0.06 0.17 0.14 0.11 0.05
v 0.06 0.06 0.21 0.14 0.13 0.03

Table 3.3: The absolute values of the maximum zonally averaged cross correat
between the given atmospheric and oceanic variables between 60 &0S on 2005-
12-01 00Z.

rents that are at a 90 angle, due to the Ekman transport. Table3.3 shows a more
complete listing of the absolute value of the maximum cross-domainroelation for

various variables, including derived atmospheric vorticity and diveence. Atmo-
spheric temperature and humidity have the strongest correlatienwith the surface

ocean.

Observation bias

When the SFCHP observation bias with respect to the model forestais cal-
culated over the summer months, and separated by observatioour (0, 6, 12, 182)
it can be seen that the bias over large parts of the ocean are diuliyadependent
(g 3.6). The model is systemically colder than observations during the dase,
and warmer than observations at night. This type of bias is seen in ¢hMERRA2
reanalysis also (James Carton, personal comm.), and is theorizeu ie a combi-
nation of model and observation biases. The SFCSHP temperatuobservations
are obtained from ships and so are placed over a warm deck, andiahles such

as sensor position and deck color are not well accounted for. Asesult the sen-
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Figure 3.6: Background minus observation (B-O) diurnal bias shown by compizg
CFS weak run with SFCSHP T observations averaged over JJA of ZR0

sors may read observations warmer than they would otherwise dlug the daytime.
Also, the CFSv2 ocean model uses a top layer thickness of 10m, aadhas a poor

representation of the diurnal cycle.

3.4 SCDA OSE with SFCSHP obs

Single Observation Test

After 1 month of spinup with WCDA con guration, there are severa areas,
especially along the coastline, that exhibit large SST errors. The Yellosea is
chosen as a quick test of the SCDA con guration, the location of thobservations

and the background biases are shown in §.7. By independently assimilating the
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ocean observation or atmospheric observation with SCDA, a beraal cross-domain
analysis increment is generated ( @3.9).

It is interesting to note that, at least in this one test case, the o@n obser-
vation was able to improve the atmosphere more than the atmospieeobservation
was able to. This can be attributed to the di erence in the backgrond and obser-
vation error ratio of the two domains. The ocean background sprd (not shown) is
larger than that of the atmosphere. The synthetic observationfr both the atmo-
sphere and ocean have a prescribed observation error o€1Therefore, the ocean
observation carries more information about the coupled systemropared with the
background than the atmospheric observation does. With SCDA, is possible that
there are inter-domain observations that are have more impact ém intra-domain
observations, depending on the background ensemble spreadssrdomain correla-

tions, and the observation error variance.

Experiment Setup

For the full SCDA experiment, only the SFCSHP temperature and hmidity
observations are assimilated into the ocean. These are the mostuabant insitu
atmospheric temperature observations over the ocean, and givhat the ocean and
atmosphere temperature cross correlations were the stronges the WCDA run,
other atmospheric observation types will not be used. By removingbservations
of model states shown to have small cross domain correlations,canfi of variable

localization (Kang et al., 201]) is essentially being used. Since the GODAS ocean
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Figure 3.7: Location of the single test observations (yellow dots) and backgrmd
bias for the ocean (top) and atmosphere (bottom).
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Figure 3.8: Vertical cross section of the SCDA analysis increment resulting fro
assimilating a single atmospheric temperature observation (top) dra single ocean
temperature observation(bottom).

69



Figure 3.9: The subset of observations that are used across domains with SED
Shown are the top level ocean observation (top) and SFCSHP T arg (bottom)
over the months of June, July, August in 2005.
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observation dataset has already undergone daily averaging, thesanilation of the
upper ocean observations into the atmosphere would be more di &u So, as with
the SPEEDYNEMO experiments, only a one-way atmosphere into thecean SCDA
experiment will be attempted with real observations.

Both the ocean and the atmosphere LETKF are running in 6 hour cyes.
However, ocean observations are only available every 24 hoursevdas atmospheric
observations are available for each 6 hour cycle. Given that the @reDA is essen-
tially only occurring every 24 hours, how often should atmospheridservations be
assimilated into the ocean, 6 hours or 24 hours? Synchronous SCD4 3.1(a),
is called so because the atmosphere observations are assimilated the ocean at
the same time as they are into the atmosphere. Initial experimentsith the CFS
failed with synchronous SCDA. This is likely due to the large diurnal biadiscovered
(g 3.6) resulting in repeated shocks to the ocean by pulling it in opposite ditgons
every 12 hours.

For SCDA to be successful, the model and observation biases coblel ad-
dressed (which is important, but outside the scope of this work). 1©Qa longer
window can be used for the ocean DA. Asynchronous SCDA (8 1), assimilated
the atmospheric observations into the atmosphere every 6 houbait those ensemble
observation departures are saved up and then used in the oceatadassimilation
every 24 hours, the same time that ocean observations are pragsé his is a similar
concept to the lagged average coupled covariancelof et al. (2015h, except with-
out any explicit averaging of the observations, leveraging the abilitior the LETKF
to operate as a 4D-EnKF.
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a) synchronous assimilation

00Z 06Z 127 1872 00z 06Z 127

atmosphere

b) asynchronous assimilation

00Z 06Z 127 1872 00z 06Z 127

atmosphere

Figure 3.10: Synchronous SCDA (top) whereby atmospheric observations are
assimilated into the ocean at the same time they are assimilated into éhatmo-
sphere (every 6 hours). Asynchronous SCDA (bottom) where the atmospheric
observation are assimilated into the ocean at the normal ocean tytime (every 24

hours).
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It is not obvious that an asynchronous SCDA method would work, heever
it does if the background and analysis ensemble members stay "ntegtd up" after
the analysis step. The local ensemble Kalman lter, LEKF, Qtt et al., 2009, on
which the LETKF is based, has the bene cial property that the disance between
the background and analysis ensemble member is minimized (s et al. (2009
Appendix A). This has been shown to be useful biKretschmer et al. (2019, who
has developed the climatologically augmented LETKF (CaLETKF). TheCaLETKF
splits the ensemble members into dynamic and static ensemble mensehe rst
kg members are always the dynamic members. Separating the ensemhblembers
this way works because there is a natural correspondence bedwehe perturbation

direction of a given ensemble member's background and analysis wittetLETKF.

Results

Comparing the resulting SCDA run to WCDA over the summer months in
g 3.11 the errors in the 6 hour background for atmospheric temperate are greatly
reduced in the northern hemisphere where there is the greatestraity of observa-
tions. SFCSHP temperature RMSD reduction is 13% by the end of Augt in the
northern hemisphere, with small improvements of 3.8% and 2% seerthie southern
hemisphere and the tropics, respectively.

Shown spatially (g 3.12, both the ocean and atmosphere are shown to have
improvements in the northern hemisphere in the same regions showmnhave the

large biases. There is some degradation in the ocean near the ceastor better
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Figure 3.11: The RMSD for atmospheric SFCSHP surface ship temperature ob-
servations comparing the 6 hour forecast to the observed value€shown are results
with WCDA (dashed) and SCDA (solid) averaged over the northern émisphere
(NH), tropics (TP), and southern hemisphere (SH)

performance, the SFCSHP observations close to land should beleged.

The SCDA-WCDA O-F RMSD at various depths is shown in g3.13 It can
be seen that the RMSD of the tropical ocean is reduced betweeretburface down to
100m. In the northern hemisphere however, only the upper oceanimproved, and
is in fact degraded below 15m. This is likely due to spurious correlatiohetween
the surface and the deeper ocean due to insu cient ensemble size.

The ocean in the extra-tropics during the summer time have a venhallow
mixed layer (g 3.14. As was shown with the WCDA correlations, the strongest

correlations between the ocean and the atmosphere exists withinet mixed layer.
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Figure 3.12:. STRONG - WEAK change in observation minus forecast (O-F)
RMSD for atmospheric temperature at the lowest model level (tg@mnd upper ocean
temperature (bottom).
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Figure 3.13: STRONG - WEAK change in observation minus forecast (O-F)
RMSD for ocean temperature. Averaged over the tropics (TP) ahNorthern Hemi-
sphere (NH) at various depths (left) and shown spatially (right). Br the spatial
plot blue is an RMSD improvement, red is a degradation.

Therefore, to further improve performance, the vertical localaion needs to be
applied to limit the impact of the atmospheric observations to the mixg layer. The
tropics exhibit a slightly deeper mixed layer, which explains why the tqgical ocean

has a consistent reduction of RMSD to a deeper depth.

3.5 Summary

The strongly coupled data assimilation experiments performed witthe CFSv2
and real observations has demonstrated that SCDA in an operaftial context might

be possible if done carefully, however model and observational lgsdikely need
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Mixed layer depth*JJA average

*MLD delned as level where " =/;,+ 0.2°C

Figure 3.14: The depth of the mixed layer averaged over the JJA months for 260
in the WCDA experiment as calculated by a change in surface tempéuge of 0.2C.

to be addressed rst before any substantial improvements canebhad with real
observations.

A coupled run with weakly coupled DA is bene cial for identifying the sate
variables and observation types that have a chance to provide keaial impacts to
the SCDA analysis. Using vertical and variable localizationKang et al., 201]) as
a form of correlation cuto method (Yoshida and Kalnay 201§ is vital when using
a limited ensemble size. These cross-domain state variables with sntalfrelations
need to be removed in the data assimilation step in order to avoid theettimental
impact of spurious correlations in the ensemble.

The weakly coupled CFSv2-LETKF runs exhibited a strong bias in past of

the northern hemisphere, when examining the observation minusrézast statistics.
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These areas were the areas most easily helped by using SCDA to a#ais the
atmospheric surface temperature and humidity into the ocean. Aas without a
large ocean bias did not improve as substantially.

The CFSv2-LETKF was di cult to get working well in a SCDA setting. Th is
was due to the very strong diurnal signal in the atmospheric obs@tion minus
forecast biases. For a well tuned ocean-atmosphere SCDA to waorrectly, the
vertical resolution of the ocean model needs to be increased to wailfor better
representation of the surface diurnal cycle, and bias correctiaf the atmospheric
observations needs to be performed. As a work around, asyrmhous SCDA was
utilized. With asynchronous DA, the 6-hourly atmospheric obseryen ensemble
departures were collected for several cycles and then assimilateth the ocean at
the 24-hour interval the ocean observations were present. Thigethod smoothed out
the diurnal bias of the atmospheric observations allowing assimilationto the ocean
to work. This has a similar e ect as the lagged average coupled coiarce (LACC)
method ofLu et al. (20150 increasing the strength of atmosphere-ocean correlations.

If diurnal bias issues are resolved, synchronous SCDA may be bera.
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Chapter 4: Towards Operational SCDA: Hybrid-GODAS

A new ocean data assimilation system is currently being developed aCHP
called the Hybrid-GODAS. This system will serve as a replacement ftine global
ocean data assimilation system (GODAS) used at NCEP for realtime e@n moni-
toring (Behringer and Xue 2004 Behringer, 2007). GODAS is run in two con gu-
rations, one is as part of the weakly coupled data assimilation used fhe CFSv2,
the other con guration is a stand-alone ocean monitoring systemrigden by o ine
atmospheric uxes. Hybrid-GODAS will serve as an upgrade to theéand-alone GO-
DAS (described in this chapter), but a similar upgrade will be made tohie coupled
system in the near future.

While the work presented does not directly involve strongly coupledcean-
atmosphere data assimilation, the upgrade of GODAS presented wiltline the
ways in which considerations are made for future use as a stronglyupled system.
The future coupled model should alleviate some of the problems ndtevith the
CFSv2 in chapter 3 that are preventing the system from easily beingsed with
SCDA. Notably, the ocean vertical resolution will be much higher athte surface,
allowing for a better diurnal cycle representation in the ocean. Alsblybrid-GODAS

is based on the LETKF, meaning the SCDA methods presented in chiaps 2 and
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3 can easily be implemented in the future with it.

The current GODAS is based on the original 3DVAR algorithm for the cean
developed byDerber and Rosati(1989 using a state-space variational solver. The
background error covariance model is simple compared with more desn ocean DA
systems used operationally. All background error covarianceseaunivariate: tem-
perature and salinity analysis are essentially performed independegn This can be
compared with other systems, such as NEMOVAR, which have balamoperators to
allow for a single temperature increment to update all other stateaviables (salinity,
zonal, and meridional current).

GODAS has served well over the years, and is a popularly downloaddataset.
However, the last major update was in 2003, and the system is begimg to show
its age. The system often does not perform as well as other cestéXue et al,
2017. Several design de ciencies compared with other operationainters are noted:
GODAS only assimilates insitu temperature, and does not take adviage of a wide
range of other observation platforms (e.g. salinity, satellite altimey, satellite SST,
drifter positions, and ocean currents from ADCP). The 3DVAR algothm that is
implemented is computationally ine cient for the ocean, due to its stée space
formulation and the use of di usion operators for the horizontal bckground error
correlation model.

The GODAS system is being replaced by the Hybrid-GODAS, described
this chapter, with a target operational deployment at NCEP by theend of 2019.
The new system is a complete upgrade (no code spared!) and aims t@iiave
all aspects of the system: observation platforms and their qualitgontrol, ocean
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and ice model, atmospheric surface forcing, and data assimilationtmed (g 4.1).
Hybrid-GODAS will become the next real-time ocean monitoring syste used by
the CPC. It is also expected to form the basis for future work at NEP with cou-
pled oceanl/ice/wave data assimilation, and parts of the advancemis made will
be available for the coupled data assimilation system using MOM6/FV3nder the
Joint E ort for Data Assimilation Integration (JEDI). JEDI is expec ted to be the
replacement data assimilation system used at NCEP, and is being deged by the
Joint Center for Satellite Data Assimilation (JCSDA)

All code for Hybrid-GODAS is already publicly available online for use byhe
research community, even though active system development idlsingoing, (Sluka,

20183.

4.1 Hybrid-GODAS

A summary of the major changes between GODAS and hybrid-GODA&e

given in Table 4.1 and are expanded upon in the text following.

4.1.1 Model

The Modular Ocean Model 6 (MOMB®6), is the latest generation of oceanodel
produced by the NOAA Geophysical Fluid Dynamics Laboratory (GF), and is a
substantial change from the previous MOM models. MOM®6 uses a nalgorithm,
the arbitrary Lagrangian-Eulerian (ALE) algorithm, to allow for any type of vertical

grid without having to worry about violating CFL conditions. MOM®6 is coupled
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Ocean/lce Model Data Assimilation

h guess analysis mean
| MOM 6/SIS2 e I m
GFDL's OM4_025 1/4°

e r?éjj L':InSéa analysis mean

configuration
ens. perturbations T
* T/S insitu prolles

II 20CRv2
e L2 satellite SST from

monthlyclim. ACSPO AVHRR RANl
« L2 ADT Satellite Al'metry

CFSR
6hr: T/g 2m, U/V10m, SLP
daily: DSW, DLW, Precip

Figure 4.1: Overview schematic of the Hybrid-GODAS ocean data assimilation
system, with updates to all components.
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Surface Forcing

clim,
correc’on
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GODAS | Hybrid-GODAS

model

model MOM4pl MOMG6

ice model -none- SIS2

hz resolution 1 deg 1=4 deg

vt resolution 40 levels, top 10m thick 75 levels, top 2m thick

forcings

. R2 daily uxes CFSR: 6hr UN/T/q/MSLP

atm. forcing (wind stress, heat : :

daily DSW, DLW, Precip.
& freshwater ux)

clim. correct. -none- DFS52: :
U/V/DSW/DLW/Precip

ens. purturb. -none- 20 members from 20CRv2

SST relaxation

SSS relaxation

river runo

OISST, 5 day scale
WOA, 10 day scale

Dai and Trenberth
annual clim.

-none-
Monthly WOA clim.
166 mm/day
Dai and Trenberth
monthly clim.
+ stochastic perturb.

observations

T prole NCEP BUFR tank WOD & NCEP BUFR tank
for operations
S prole synthetic salinity from clim. | observed S pro les
SST relaxation to Reynolds SST | Night time ACSPO L2 SST
. L2 ADT altimetry
Altimetry -none- .
(in progress)
data assim.
method univariate 3DVar Hybrid EnKF/3DVar
ensemble size | 1 20
bkg. err. var. | vertical gradient of bkg ensemble spread, vertical gra-

vertical scales

model level thickness

dient of bkg, horizontal T O-F
at surface
mixed layer depth at surface
transitioning to model level
thickness

Table 4.1: Major di erences between GODAS and the new Hybrid-GODAS
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with the sea ice simulator 2 (SIS2) ice model.

The con guration used here is the OM4 1/4 degree con guration &m GFDL,
which is the con guration to be used in their next coupled model systm. The
horizontal grid is 1/4 degree, and the vertical grid consists of 75Vels, with the
top levels at 2m thickness down to 10m. The default vertical coordite system
used in OM4 is the hybrid z-isopycnal coordinate. However, due tosiges with
spurious spread that have been found (Steve Penny, personairan.) current work
with MOM®6 here is being done with z* coordinates. Hybrid vertical coalinates
are shown to have better model performance in the deep oceardan areas of high
vertical strati cation, and so we do wish to switch from Z* to the hybrid- vertical
coordinates as soon as the spurious spread issue is resolved.

The increased horizontal resolution allows the model to be eddy patting in
the mid latitudes, and therefore should represent western bouaxy currents better
than the ocean model in the current CFSv2. Also, the increase inrtieal resolution

at the surface should allow for a better diurnal cycle represenian.

4.1.2 Surface forcing

The stand-alone GODAS is forced with a set of atmospheric uxesdm the
NCEP-DOE AMIP-II Reanalysis (R2) (Kanamitsu et al., 2009. R2 provides the
momentum (zonal and meridional wind stress), heat (sensible, laie radiative), and
freshwater (precipitation minus evaporation) uxes from 1979 tdhe present on a

T62 resolution grid. Since the ocean model is driven by a set of uxesalculated by
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an o ine atmospheric reanalysis, a strong relaxation to a sea surfa temperature
product must be used in order to provide the negative feedbackewed to keep the
ocean temperature from drifting. The weekly ReynoldsReynolds et al, 2002 SST
product is used with a relaxation timescale of 5 days, and the World ®an Atlas
climatological salinity (Conkright and Coauthors 1999 is used with a relaxation
timescale of 10 days. Without relaxation of the SSS and SST to thegeducts, the
ocean surface state would begin to drift away quite rapidly.

The surface forcing for Hybrid-GODAS uses a bulk formulation baden Large
and Yeager(2009. With this formulation the uxes are calculated from the SST of
the ocean model and the surface elds of the o ine atmosphere.il®e the model's
SST is considered in these calculations, there exists a negative fesedk the prevents
the model SST from drifting too far away from nature. For this reaon relaxation
to an SST product is no longer as important and can be removed emly if the
model biases are small enough. Since there is no similar negative liee# for ocean
salinity, an SSS restoration term is still required.

The atmospheric forcing for Hybrid-GODAS uses a combination of infmation
from three di erent sources. These components are a 1) relatlyehigh resolution
mean forcing from the CFSR, 2) a climatological correction to the CFR from
DFS5.2, and 3) a low resolution set of ensemble perturbations frommet 20th Century

Reanalysis.

85



4.1.2.1 Mean Forcing from CFSR

The CFSR provides the mean surface forcing for the ocean from78%to 2011
at a resolution of T382. The CFSv2 operational analysis providesélhmean forcing
from 2011 to the present, however, due to it's higher resolution &t574 the sur-
face elds are remapped to the lower resolution of T382 for consesicy. For the
Hybrid-GODAS, daily averaged elds of downward shortwave (DSW)downward
longwave (DLW), and precipitation rate (rain + snow) are calculated The ocean
model calculates an arti cial diurnal cycle using the daily averagedadiation elds
when the model is run. Also, 6 hourly instantaneous elds for 2m teperature and
humidity, mean sea-level pressure, and 10m zonal and meridionahds are used.
Daily averaged winds had been used initially in the testing of Hybrid-GORS, but
this produced wind stresses that were too weak in the extra troc Hourly elds
were tested as well, but the di erence with 6 hourly elds was determed to be
minimal for the purposes of this system.

Since precipitation rate in CFSR is provided as the total sum of liquid ah
frozen precipitation, the default MOMG6 con guration is changed tgpartition frozen

and liquid precipitation from the total based on the 2m atmosphericamperature.

4.1.2.2 Climatological Correction

There exist very large known biases in the CFSR uxes. The CFS, azivas
many other coupled climate models, fails to produce correct marinad patterns

in several key regions. The eastern ocean basins are home to igg¥st marine
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Figure 4.2: The CFSR exhibits a very large bias in the shortwave radiation of over
60 W=m?. Shown is CFSR - CORE2 for the annually averaged downward shoeve
in 2005.

stratocumulus clouds which the model does not produce well. As audt, shortwave
radiation is too high, and longwave radiation is too low in these regionsn the
western tropical paci ¢ and Indian ocean, the downward shortwee radiation is too
high by as much as 6@V=n?. (Imagine an extra incandescent light bulb sitting over
the ocean every meter!). This can be seen compared to other ralysis products
that have been calibrated to t observations, g4.2

The original GODAS had very strong relaxation to an SST product, hich
likely masked the e ect of atmospheric forcing biases. Since the HylhGODAS
does not use any SST relaxation, these forcing biases must be Haddas best as
possible. The climatology of the DRAKKAR forcing set (DFS52) Dussin et al,
2019 is used to correct the climatology of the CFSR. DFS52 is a produchat is

based on the ERA-interim reanalysis Pee et al, 201]) and uses various observa-
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tional datasets to correct the radiation, precipitation rate, andsurface winds.
Monthly climatologies are calculated for the 1980 to 2015 period footh the
CFSR and the DFS5.2. A multiplicative correction factor (Eg4.1) is calculated for
each month in the period for precipitation rate, downward shortwee, and downward
longwave, and 2m humidity. An additive correction factor (Ec4.2) is calculated for

the winds and temperature.

CorMmu = (CFSReim  DF S5Zim )=CF SRyjim (4.1)

COITaqqd = CFSRgjim DF S52im (42)

The choice of an additive or multiplicative correction factor both reglt in iden-
tical climatologies, but the actual daily elds will be di erent. The multiplicative
factor is used for elds that should not become negative (radiatignprecipitation,
humidity) when applying the correction. The winds receive an additiveorrection
so that high wind events in the storm tracks don't receive an overly kge increase
in intensity as they would with a multiplicative correction factor.

The CFSR, as well as many other reanalysis products, exhibits sergoshifts
in its climatology due to abrupt changes in the observation platformbeing assimi-
lated. The largest known shift occurs between 1998 and 1999 doelite assimilation
of the Advanced TIROS Operational Sounder (ATOVS). This jump esulted in a
marked increase in global precipitation rate{hang et al, 2012. Many other atmo-

spheric surface elds are a ected in the tropics, including tempetare, humidity,
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eld description freq. clim. corr.
DSWRF downward shortwave | daily | multiplicative
DLWRF downward longwave | daily | multiplicative
PRATE precipitation rate daily | multiplicative

PRES| sea level pressure | 6 hr NONE
TMP 2m temperature 6 hr NONE
SPFH 2m humidity 6 hr NONE

UGRD 10m zonal wind 6 hr additive
VGRD| 10m meridional wind | 6 hr additive

Table 4.2: Overview of the atmospheric forcing elds supplied to the Hybrid-
GODAS. Shown for each eld are the short names used within the ceddescription,

whether daily averaged or 6 hourly instantaneous frequency, arige type of clima-

tological correction applied.

and winds. As a result, two climatology periods 1980-1998 and 192@15 are used
when calculating the correction factors. These are shown in Fg3and Fig 4.4. It
should be noted though that monthly correction elds are calculat® and used by
the model, though only an annual average is shown in these gures fsimplicity.
Using the corrected elds with a free running model ocean (as deded later),
the model SST exhibits a cold bias especially in the tropics. As has alseelm found
in applications of DFS5.2 forced SODA (James Carton, personal com) it appears
that there is a bias in the 2m temperature and humidity in the DFS5.2 tht results
in too much cooling of the ocean through latent and sensible heat es (g 4.5).
For this reason, the temperature and humidity corrections that &ve been calculated
for CFSR from the DFS52 are not applied. By only applying a correctioto the
radiative, precipitation, and wind uxes, an SST in the tropics with les bias is
produced. A summary of the nal con guration for the atmospheic forcing les is

given by Table 4.2
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1980-1998 1999-2015

longwave shortwave

precip

Figure 4.3: The multiplicative bias corrections that are applied to the downward
shortwave, downward longwave, and precipitation rate, as calcuél from the clima-
tology di erence between CFSR and DFS52. Monthly bias correctisrare generated,
but only the annual average is shown here.
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1980-1998 1999-2015

U wind 10m

V wind 10m

Figure 4.4: The multiplicative bias corrections for 2m humidity, and the additive
bias corrections for 2m temperature and 10 meter winds, as caldgd from the
climatology di erence between CFSR and DFS52. Monthly bias corrgons are
generated, but only the annual average is shown here.
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b)

Figure 4.5: Dierence in the ocean SST for forced run without data assimilation
compared with DA analysis, averaged over 1 year. Shown is a forcedh using
uncorrected CFSR uxes (a) and CFSR uxes with climatology correted by DFS5.2

(b).
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4.1.2.3 Ensemble Perturbations

After the climatological correction is applied to the CFSR elds, ensable
perturbations for each ocean ensemble member are applied. Thesdurbations are
derived from the 6 hour forecast elds of the 20th Century Reargsis v2, 20CRv2
(Compo et al, 200§. The 20CRv2 elds are not used directly because of the low
resolution of the reanalysis (T62). The 20CRv2 is a 56 ensemble meamipeanalysis
that assimilates only surface pressure. It is chosen for its long tifimee available
(1851-2014).

As can be seen in Figlt.6, most of the spread in the 20CRv2 is located in
the tropics. The extra-tropics are suspected of having insu cienspread in the
T2m, Q2m, and wind elds for our purposes. This is expected given ¢hcoarse
resolution of the 20CRv2, and the fact that the ocean SST drivinghe 20CRV2
ensemble members are very similar. Future improvements to HybrfldODAS will
use a higher resolution reanalysis (20CRv3, which is in the works) dre ensemble
reanalysis from a coupled model.

In addition to the atmospheric surface forcings, the ocean alsoqguéres river
and land water runo elds. The monthly Dai-Trenberth ( Dai, 2016 climatology
is used for this purpose. In initial tests Hybrid-GODAS had shown diculty in
maintaining the salinity spread, and seemed especially weak near theastlines.
Stochastic perturbations to the runo elds are therefore usedo help add salinity
spread to the ocean.

The monthly climatological variability of the Dai-Trenberth dataset is rst
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Figure 4.6: Ocean surface forcing spread from the 20CRv2 for a single datép2-
03-15, for 2m temperature, humidity, downward shortwave, daward longwave,
precipitation rate, and windspeed.
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Figure 4.7: The increase in surface salinity spread after 1 month data assimilatio
cycle when turning on stochastic land/river runo perturbations.

calculated using the available interannual forcing les from 1948 - P@. Then a
Perlin noise is generated for each ensemble member that slowly varfiesn month
to month. This noise generates a eld varying from -1.0 to 1.0 with peensemble
member horizontal and temporal correlations. Each ensemble mieen's stochastic
noise is then multiplied by the climatological variability, and then added @ the
climatology. In this way, short of obtaining a better estimate of theactual monthly
river and continental runo in real-time, this method adds a slightly nore realistic
spread to the runo climatology for the ocean ensemble.

There is a resulting increase in the salinity spread along the coastlined
especially near rivers, Figh.7. It is not clear how much of an impact this actually

has in the ensemble ocean DA system, as the spread dissipates rgpad the water
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mass leaves the coastline, especially when the nearly-global cogeraf satellite SST
observations are used. However, this method is likely to be of moregortance when

ocean data assimilation is applied on regional scales.

4.1.3 Observations

The inclusion of additional observations is another area of signi caprogress
with the Hybrid-GODAS. The previous GODAS only assimilated obsereetemper-
ature proles. Salinity was constrained by assimilating a synthetic dimity that
was calculated from an observed climatological temperature / saligitrelationship.
While this served well for purposes of analyzing temperature, thalgity elds were
always very close to climatology and exhibited very little inter-annualariability.
Hybrid-GODAS has been upgraded to use insitu temperature, insitgalinity, and
along track satellite SST retrievals. Future plans also include the usa satellite
altimetry.

Insitu temperature and salinity pro les are obtained from the worldocean
database (WOD) (Boyer et al, 2013. Only the pro les with the highest quality
control ags are used. There are multiple platform types in WOD, btionly a subset
are used here: expendable bathythermographs (XBT), mooredidys (MRB), and
pro ling oats (PFL). The pro les are temporally and spatially averaged so that
multiple pro les from a single platform, in a single grid point, in a single dayare
averaged together. These observations are suitable for testingd reanalysis, but

observation quality control procedures are being developed socathocean pro les
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from the NCEP BUFR data tanks can be used going forward.

The previous GODAS used satellite SST indirectly by relaxing the top lay
of the ocean model toward the weekly Reynolds SST producRé¢ynolds et al,
2007. This method resulted in an adequately accurate SST from GODASut
was not taking full advantage of all the information SST observatits could o er.
Hybrid-GODAS directly assimilates the SST by using the along track tgevals from
NOAA's Advanced Clear Sky Processor for Ocean, ACSPOIgfatov et al., 2016.
When assimilated, the 3DVar and LETKF use the satellite SST to impacdhe entire
mixed layer. This results in an instantaneous correction to the mixethyer with
Hybrid-GODAS, whereas GODAS would take much longer to impact thenixed
layer since only the top layer is being relaxed toward observed SSTdditionally,
the LETKF produces a multivariate update, and so SST observatiacan impact
the salinity and ocean currents, which will be shown to be important imaintaining
more accurate western boundary currents in the model backgmd during the DA
cycle.

The de nition of \SST" is an ambiguous term. For our purposes, theSST is
represented by the top level of the model, at 1m. However, due $trati cation in
the upper centimeters and even millimeters of the ocean, satellitdsserve a di erent
SST depending on the time of day, underlying strati cation of the oean, and the
amount of mixing from the wind. Satellites actually observe a skin-SSTwhich for
infrared satellites is at a depth on the order of a centimeter. Durinthe day, this
skin-SST will be signi cantly warmer than the temperature just belav this at 1m.
During the night time, this warm skin disappears, and the skin-SST is are similar
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to the bulk SST, although a cool skin layer is still present due to evaypative cooling.
For this reason, only the night time tracks of the SST retrievals arassimilated.

Initially, the Hybrid-GODAS reanalysis was planned to use the AVHRR Rth-
nder dataset, version 5.3 Casey et al, 2010Q. Path nder presents an SST retrieval
spanning from the beginning of the satellite era (1979) to near pexg (2012). The
best quality AVHRR satellite at any given time is used, and e orts are rade to bias
correct among the satellites for a continuous reliable record. Due the extensive
record presented by this dataset, it is widely used.

However, large biases were discovered in Path nder while developthg Hybrid-
GODAS, which were negatively impacting the resulting analysis. A netiee bias
exists in the tropics, and a positive bias in the extra-tropics, whichan be seen by
comparing the insitu and satellite SST observation minus forecast (B) statistics.
As can be seen in Fig.8a, the insitu observations were constantly trying to cool the
model due to excess warming from the SST observations. Additidlyawhen com-
paring Path nder to other SST retrievals such as Reynolds, Fig¢.8, these biases
are more apparent. Path nder is known to have shifts in the bias wdn the predom-
inant satellite is changed, and has poor performance when dealing lwéerosols and
cloud contamination. Most importantly, Path nder is not maintained in real-time.

Hybrid-GODAS was switched to the Advanced Clear Sky ProcessarrfOcean
(ACSPO) produced by NOAA/NESDIS (Ignatov et al., 2016. This SST retrieval is
superior to Path nder in that the satellite SST minus insitu temperature di erences
are far smaller, as con rmed by NESDIS with their quality control raitines, and
by examining O-F statistics in the Hybrid-GODAS. The best two satellies at any
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Figure 4.8: Insitu O-F bias in an early Hybrid-GODAS run
(@ and the dierence between Pathnder and daily OISST (from
https://www.nodc.noaa.gov/SatelliteData/path nderdkm53/). P ath nder ex-

hibits large biases that change when satellites are changed (e.g. tieat dashed
lines on July 2002).
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Figure 4.9: Satellite SST observation density for a single 5 day cycle (January
1 to January 5 of 2004). Shown is the number of satellite SST obsations, after
superobbing, per 1.

given time are used with ACSPO, and a wider scan angle of the AVHRRtsdites is
used. This increases the number of available observations in the dsé&t compared
with Path nder, and end up providing nearly global coverage of evg model grid
box in any given 5 day data assimilation cycle (Fig.9), except in areas of persistent
cloud cover.

As with the Path nder dataset, only the observations at nighttime and with
the highest quality control ags are used. Another benet of theACSPO dataset
is that an estimate of the skin-SST to 1m-SST bias correction is giveas well as
an observation error estimate. The observation error estimaterimarily takes into
consideration the errors from cloud contamination and the redudequality of the

SST observations near the edge of the satellites swath. The prosttibias correction
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term was found to be adequate to remove biases between the 8a&eSST and insitu
top level temperature observations within Hybrid-GODAS.

Before being assimilated, the satellite SST observations underggeuwbbing
so that there is at most 1 observation per grid-box per day. Othesise, the over
abundance would lead to di culty in maintaining the ocean ensemble spad. To
help account for errors of representativeness, the variancetbé& observations going
into each grid-point before the superobbing is calculated. The nabbservation
error variance then equal to the variance of the superobbed @pgations plus the

estimated error variance from the ACSPO dataset.

4.1.4 Data assimilation

The upgrade to the data assimilation system, from a simple 3DVar tde hy-
brid gain EnKF/Var ( Penny, 2019, is the central motivation for the Hybrid-GODAS
project. Inthe atmosphere, operational centers have moved more advanced hybrid
EnKF/Var systems (Kleist and Ide, 2015 Bonavita et al., 2019, relying on ensemble
perturbations from an EnKF system to provide the dynamic part bakground error
covariance used in the variational solver. In such systems, theriaional solver is
the true work-horse of the system. With the hybrid-gain, the opgpsite is true in
that the EnKF solver is the system's work-horse. Described in modepth in Penny
(2019, the essence of the hybrid gain solver (green box in 4.1) is that the EnKF
creates an analysis, which then has its mean partially corrected by\ariational

solver that is run using the analysis created from the EnKF as it's b&ground.
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By using the 3DVAR after the EnKF, the 3DVar allows the system to gplore
parts of the model state space that are not represented by thensemble. This is
essential when using a small ensemble size, as we are doing with HHSTDAS's
limited ensemble of 20 members. Model biases and highly non-lineariosg of the
ocean that are not captured well by the ensemble such at near tlailf Stream could
ultimately cause the EnKF to undergo lIter divergence and begin to dft from the
observations, but the 3DVar helps mitigate this and allows the datassimilation to
remain stable with a much smaller ensemble size than would normally begsle
with just an EnKF implemented.

A signi cant bene t of switching from 3DVAR to hybrid-gain is that th e data
assimilation system will now be able to create multivariate analysis inarents. GO-
DAS is only able to update temperature and salinity independently. Hyrid-GODAS
will update all state variables (temperature, salinity, currents) likely resulting in a
better analysis and a better balance in the analysis, as shownR®enny et al. (2015.
As shown in the NEMOVAR ocean data assimilation system\{ogensen et al.2012
maintaining a proper temperature/salinity balance near the thermdine is impor-
tant for a good quality analysis. GODAS was not able to do this, but ta EnKF
portion of Hybrid-GODAS now should be able to.

Hybrid-GODAS makes use of the LETKF and a new observation spa&®Var.
The LETKF used is the UMD-LETKF implementation (described in chaper 5)
(Sluka, 2018h, that aims to become the standard LETKF implementation used at
NCEP. The UMD-LETKF is a generic model-independent solver, and sks to make

future SCDA easier by ensuring the various domains of a coupled n&@re using an
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identical LETKF code base. The current LETKF con guration for Hybrid-GODAS
uses relaxation to prior spread of 60% for covariance in ation, and latitudinally
dependent localization that varies from 600km at the equator to D&m in the high
latitudes for insitu observations, and a smaller 200km EQ to 50km higlatitudes
for satellite SST observations. The smaller localization radius for sdlite SST
observations is important, otherwise the large number of SST olvgations leads to
an overly small ensemble spread.

The observation space formulation solver for the 3DVar is modeledter the
Navy's NCODA (Daley and Barker, 200 Cummings and Smedstad2013, and is
described in more detail in AppendixA. The observation space formulation allows
the solver to run much faster than the previous state space GO given that
ocean observations are very sparse compared with the number3@ grid points.
One current shortcoming though is the lack of multi-variate balanceperators, so
for the time being this new 3DVAR is essentially performing separatetmperature
and salinity analyses such as GODAS was doing. This will be remedied ineth
future by migrating toward the JEDI ocean 3DVAR system, which is &l under
development, but will be a more sophisticated multivariate 3DVar withbackground
error covariance model similar to NEMOVAR (Mogensen et al. 2012. Within
the hybrid-gain framework, the 3DVAR uses the analysis mean frote LETKF
analysis, and applies a percentage of the analysis increment (cuthg con gured
as 50%) to adjust the analysis ensemble mean.

Hybrid-GODAS has been built so that switching between data assimilatn
methods (freerun, 3DVar, EnKF, hybrid EnKF/Var) is done simply through the
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con guration scripts.

4.2 Initial Results

Iterative tests are being conducted with a 20 ensemble member HgbGODAS
to tune the system before implementation into operations at NCEPTo setup the
test experiments, the ocean model ensemble members are initializeith identical
climatological temperature and salinity from the World Ocean Atlas 203 (Locarnini
et al., 2013 Zweng et al, 2013. The hybrid data assimilation is then run from Jan
1, 2003 to Jan 1, 2004, and the ensemble members at the end date saved as
the initial conditions for subsequent experiments. All ensemble mérs start with
initial conditions, however due to the atmospheric forcing perturétions, the spread
in the ocean ensemble quickly grows after several months. At thedinning of the
run, the 3DVar will be doing all of the work, since the initial members i@ all nearly
identical and therefore LETKF will have no impact on the analysis. Agshe data
assimilation cycle progresses, the spread increases and the LETB&gins to have
more of an impact. This gradual increase in LETKF impact prevents tge initial
shocks to the system as was experienced with the CFS-LETKF expeents. This
initial spinup method is used for simplicity for these experiments, thayh other
methods of initial ensemble generation could be used.

From these Jan 1, 2004 initial conditions, experiments with severabn g-
urations are conducted. Hybrid-GODAS is run with 1) no data assimit&on, just

prescribed atmospheric forcing 2) 3DVar data assimilation mode, @) hybrid-gain
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Figure 4.10: Hybrid-GODAS ensemble spread at the surface averaged over &un
(left) and December (right) of 2004. Surface spread is higher indlsummer months.

EnKF/3DVar data assimilation. The results are then compared agast several data
sets, including the original GODAS, the UK MetO ce EN4, OISST, and OSCAR
surface current estimates.

The resulting ensemble spread for the hybrid-gain run is shown kigure 4.10
and Figure 4.11 After tuning the LETKF localization and satellite observation thin-
ning parameters, the resulting spread looks reasonable. There isregased spread,
and corresponding uncertainty in the analysis, in the mid-latitude cgan surface
during the summer months, along the western boundary current&nd along the

thermocline in the tropics.
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Figure 4.11: Hybrid-GODAS ensemble spread averaged over the June 2004 for
temperature in C (left) salinity in PSU (right) at depths of 1m (a,b), 50m (c,d),
100m (e,f), and 500m (g,h).
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4.2.1 Comparison to GODAS/EN4/CMC

To evaluate the performance of Hybrid-GODAS, itis rst comparedigainst the
pentad analysis from GODAS and either the UK MetO ce EN4 objective analysis
(Good et al, 2013 for temperature and salinity at depth, or the SST product from
the Canada Meteorological CenterBrasnett, 200§ for sea surface temperature. The

following issues should be noted while examining the results:

For technical reasons in the le processing, the 5 dalgackground average
(not the analysis), was used for the Hybrid-GODAS. This is due to # fact

that IAU has not yet been implemented for Hybrid-GODAS.

The Hybrid-GODAS freerun (marked fr.02 in some of the gures), @as ini-
tialized on 2004-01-01 from a spinup with hybrid DA, and so a subsesqut
longer freerun is likely to show a bigger di erence between the fregr and

data assimilation run.

The EN4 and CMC datasets are not truth, they have their own erns, and so

other methods of veri cation (e.g. O-F statistics) will be discussethter

It will be seen though that despite these considerations, Hybrid@DAS largely
outperforms GODAS in several key areas.

To evaluate the performance of sea surface temperature for btid-GODAS,
the RMSD compared with the daily SST product from the Canadian Metorological
Center (CMC) are calculated over the year 2004 and shown in 4.18 Unsurpris-
ingly, Hybrid-GODAS has better SST due to the fact that it directly assimilates
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Figure 4.12: SST RMSD (C) as compared with CMC SST averaged over 2004
for GODAS (top left), Hybrid-GODAS forced run with no DA (top right), 3DVAR
component only of Hybrid-GODAS (bottom left), and the full 3DVAR/LETKF
Hybrid-GODAS (bottom right).

the along-track SST retrievals from ACSPO, whereas GODAS relaxdo OISST.
Hybrid-GODAS shows marked improvement globally, especially in the 8Sthern
Oceans, the eastern coastline of the Paci ¢ and Atlantic basins, agll as along the
Western boundary currents. The Hybrid-GODAS is also an eddy-pmitting model,
at 1/4 , and so better resolves the position of the Western boundary cants,
especially once altimetry data is assimilated.

The timeseries of model minus OISST RMSD averaged over the globg .13
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Figure 4.13: SST RMSD compared with OISST for 2004 averaged globally over
60S to 60N. Shown are GODAS (blue) Hybrid-GODAS (red), Hybrid-GDAS with
only 3DVar on (green) and Hybrid-GODAS with no DA (dashed red).

shows again that Hybrid-GODAS has less error over time, with an argge SST
RMSD of 0.4C. Even without any data assimilation, the SST RMSD only gws as
high as 0.6C, showing that it is well constrained by the atmospheric gace forcings.
The heat content in the upper 300 meters ( g4.14), unfortunately, does not
show marked improvement yet. There is some improvement with HylolrGODAS in
the Southern Ocean, however, there are currently known issuasing addressed that
are degrading performance in the western boundaries and operaa. These issues,
mainly the lack of vertical localization with the LETKF for satellite SST dbservation,
and quality control of pro le observations, are being addressedd should hopefully

be xed in the next iteration of Hybrid-GODAS being tested before inplementation
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Figure 4.14: Heat content in upper 300m RMSD as compared with EN4 averaged
over 2004 for GODAS (top left) Hybrid-GODAS with no DA (top right), Hybrid-
GODAS with only 3DVar (bottom left), and Hybrid-GODAS with EnKF/3 DVar
(bottom right).

into operations.

The sea surface salinity RMSD compared against EN4 (g.15 shows that
Hybrid-GODAS is clearly improved. This is not surprising given that we aw as-
similate actual salinity observations, whereas GODAS only used symtic salinity.
Noticeable decreases in RMSD are visible in the tropics, however, asional large
salinity errors in Hybrid-GODAS along the west coast of equatorial fkica are ap-
parent. It is suspected that the cause of this is the same causetioé H300 under-
performance (lack of LETKF vertical localization, and observatiorguality control),

and will therefore hopefully be improved in the next Hybrid-GODAS tet iteration.
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Figure 4.15: Sea surface salinity RMSD as compared with EN4 averaged over 2004
for GODAS (top left) Hybrid-GODAS with no DA (top right), Hybrid-G ODAS with
only 3DVar (bottom left), and Hybrid-GODAS with EnKF/3DVar (bot tom right).

Salinity RMSD compared against EN4 in the deeper ocean levels of 300m
to 750m (g 4.16 again shows the improvement in Hybrid-GODAS especially in
the extra-tropics. There is a decrease in performance near thailGStream and
equatorial Atlantic, likely due to the previously mentioned outstanihg DA issues.

It should also be noted that the di erence between the hybrid-DA3DVar, and
freerun versions of Hybrid-GODAS are small. This similarity in results islue to
the fact that all three of those experiments were initialized with thesame initial

conditions on Jan 1, 2004, from an ensemble run made with hybrid-Déver 2003.
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Figure 4.16: Ocean salinity RMSD as compared with EN4 averaged over 2004
between 300m and 700m for GODAS (top left) Hybrid-GODAS with no B (top
right), Hybrid-GODAS with only 3DVar (bottom left), and Hybrid-GO DAS with
EnKF/3DVar (bottom right).

The results would expect to diverge more as the experiments arenrimto later years.

4.2.2 Comparison to OSCAR

An important test of the data assimilation system is to compare agast ob-
servations that are not assimilated into the system. Here we look #he surface
currents from OSCAR (Ocean Surface Current Analysis Real-timgBonjean et al,

2002. OSCAR estimates surface ocean currents from indirect obsatons such as
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sea surface height, SST, and surface winds, and then using dymeathbalances such
as geostrophic balance to calculate surface currents. A 1/3 degrgrid is produced
every 5 days.

The western boundary currents can be di cult for an ocean data ssimilation
system to properly capture. The Kuroshio current, as observdyy OSCAR, is shown
in g 4.17a for a single day in Oct 2004. The GODAS analysis ( g.17) is not
capable of reproducing the Kuroshio because of the coarse hamiab resolution
of the model, 1 degree. There is a resemblance of the currents ire t&6ODAS
analysis, however it is too weak and di use, with a maximum current sged less
than 0.5 m/s, compared with the observed> 1.5 m/s. The Hybrid-GODAS is
eddy-permitting due to its 1/4 degree horizontal grid. As a resulta forced run will
spontaneously produce a Kuroshio current (g4.17c) even though it is not in the
correct place. Using Hybrid-GODAS with 3DVar-only enabled (g4.14) is still
not able to put the current in the correct location. The Hybrid-GODAS with full
hybrid DA, however, is able to place the Kuroshio current ( g4.17) with reasonably
accurate location and speed of the meanders. There are even s@ddies present in
OSCAR that the hybrid DA is trying to place in the model. This is a good rseult,
especially considering that altimetry is not being assimilated yet in Hylol-GODAS.
Once altimetry is being assimilated, it is expected that the placement the western

boundary currents and some eddies could be even better.
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Figure 4.17: Top level ocean current speed on Oct 6, 2004, for OSCAR observa
tions (a) GODAS (b) Hybrid-GODAS with no DA (c) Hybrid-GODAS with o nly
3DVAR (d) and Hybrid-GODAS with EnKF/3DVar (e).
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4.2.3 Comparison of O-F RMSD/bias

The remaining system evaluations are performed using the obsdrea minus
forecast (O-F) statistics and compare only the various con gutéons of the Hybrid-
GODAS runs. The RMSD for SST observations is shown in ¢g.18over the 1 year
data assimilation experiment. The forced run (exmone.02) begins to diverge from
the initial conditions, but stays relatively constrained by the atmopheric surface
forcing, reaching a peak error of slightly over 1C in the northern hemisphere
summer. The summer time is typically when the highest surface RMSzaurs. The
3DVAR (exp_var.02) and hybrid DA (exp_hyb.02) are substantially better than the
freerun, although there is not much di erence between 3DVAR anbybrid RMSD in
the northern hemisphere and tropics, although hybrid performdightly better. The
hybrid DA does perform quite a bit better than 3DVAR in the southen hemisphere,
reducing the SST RMSD from just under 0.6C to 0.4C.

The global SST O-F bias is shown in g4.19 An earlier con guration of the
Hybrid-GODAS using DFS5.2 climatology corrections on all atmosphiervariables
(denoted exp.none.01) shows that such a con guration resulted averly cold model
SST that the observations were constantly trying to warm. By remwving the clima-
tology correction on 2m temperature and humidity (denoted exp.mo02) the global
SST bias still exhibits small seasonal variations, but is now centeredound 0 C.
The hybrid data assimilation results in SST bias very close to G.

Vertical pro les averaged over the 1 year experiment are showworftemper-

ature (g 4.20 and salinity (g 4.21), showing that the hybrid DA has a marked

115



Figure 4.18: Hybrid-GODAS SST O-F RMSD averaged over northern hemisphere
(NH), tropics (TP), and southern hemisphere (SH). Shown are foed run with no
data assimilation (blue), 3DVar only (orange) and hybrid EnKF/3DVa (green).
Ensemble spread is shown in dashed line. A 1 month moving average lagapto
smooth data.
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Figure 4.19: Hybrid-GODAS SST O-F bias averaged over the globe between 60S
and 60N. Shown are forced run with no data assimilation (blue), 3DYanly (orange)
and hybrid EnKF/3DVar (green). Original forced run with full DFS5.2 corrections
(red) also shown. A 1 month moving average applied to smooth data.

benet over 3DVar, except for salinity in the northern hemisphergwhich is likely
due to the previously mentioned known issues with the system. It iggain worth
mentioning that all three experiments were initialized from the sameah 1, 2004
initial conditions, which would likely mean that the 3DVar and no data asimilation
runs would appear worse compared with the hybrid DA once the expments are

run for longer.

4.2.4 De ciencies

The results shown are only the second iteration of hybrid DA comp@on ex-
periments integrated over a full year, and so the system is still begntuned for
optimal performance as issues are found. Several areas of thisteam under per-
forming have already been mentioned, but the most striking de ciaay is currently

with the salinity at depths in the tropical Atlantic as shown in g 4.22 Salinity
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Figure 4.20: Hybrid-GODAS temperature prole O-F RMSD for the northern
hemisphere (left) tropics (center) and southern hemisphere (h. Shown are forced
run with no data assimilation (blue), 3DVar only (Orange) and hybrid EnKF/3DVar

(green).

118



(@) (b) (€

Figure 4.21: Hybrid-GODAS salinity pro le O-F RMSD for the northern hemi-
sphere (left) tropics (center) and southern hemisphere (right)Shown are forced run
with no data assimilation (blue), 3DVar only (Orange) and hybrid EnKH3DVar

(green).
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Figure 4.22: Ocean salinity RMSD as compared with EN4 averaged over 2004
along the equator between Om and 700m depth for GODAS (top leftHybrid-
GODAS with no DA (top right), Hybrid-GODAS with only 3DVar (bottom left),
and Hybrid-GODAS with EnKF/3DVar (bottom right). Large errors are introduced

in the tropical Atlantic with Hybrid-GODAS

is improved most everywhere with Hybrid-GODAS, except for largerers that are
introduced by the 3DVar in the western tropical Atlantic below 750m Several bad
salinity observations have been found that have slipped past the WiDquality con-
trol procedures, which is likely the cause of this problem. Custom glity control

code that is currently being developed will be used before the nexst experiments
are started. Results are also expected to be better, especiallyan¢he boundary

currents, once altimetry observations are being assimilated.

120



4.3 Operational plans

As has been shown here, the Hybrid-GODAS is already superior toetlcurrent
operational GODAS in several major areas (salinity, SST, surfa@rrents). There
are however some areas (upper 300m heat content in the Atlantitt)at are under-
performing with respect to the operational GODAS. These de cienes are expected
to be addressed as the system continues to be tuned, and knowsuis (such as lack
of LETKF vertical localization for satellite observations, and obsestion quality
control) are xed.

Immediate plans for Hybrid-GODAS are to prepare it for implementaon into
operations with a target date of late 2019. Several changes will beade to accom-
modate this, including replacing the SIS2 ice model with CICE5 to maiain an
identical model con guration to that which will be used for the upcaning NCEP
coupled model. Pro le observation sources will be switched from th&orld Ocean
Database to NCEP's in house data tanks. If time permits, the obsetion opera-
tors used by Hybrid-GODAS will be replaced by the JEDI uni ed forwad operators
(UFO). Several bene ts will be had by switching to UFO, including haing an online
observation operator, meaning all observation operators will beegformed at their
observed time and at the closest model time step. Currently daily exages are used
as input to the observation operator, having an at time observatio operator from
UFO should provide improvements near the surface where the diwincycle is im-
portant, and could allow for the assimilation of not only night time SST dta, but

also daytime SST. Last, the source of atmospheric perturbatiomgll be switched to
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a di erent source that is run in realtime at NCEP, as the 20CRv2 is notvailable
in real-time.

But how does this all t into the goal of strongly coupled data assimilaon?
Hybrid-GODAS is expected to form the basis of work at NCEP for mame data
assimilation. This includes not only the ocean, but wave and ice DA. Allhtee
of these domains are expected to use the UMD-LETKF, which has & designed
with strongly coupled DA in mind. In this way, after independent deviopment on
the data assimilation for these components has been completedrddgly coupled
con gurations can be 'switched on' in the UMD-LETKF for experimenation with

SCDA.
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Chapter 5: Conclusion

In summary, strongly coupled data assimilation with the LETKF has ben
shown to be easy to implement from a software engineering standgo and may
soon be practical in operational settings for limited sets of obsetions used across
domains. SCDA was able to have a small, but bene cial impact on the (Gv2 using
real observations. Currently, an e ective implementation of SCDAs made di cult
by biases in the observations and the models. However, near-teupgrades to the
operational coupled models may alleviate this. The observations thean be used
in SCDA depend heavily on the timescale of the desired DA cycle, with ¢huse of
strong vertical and variable localization required for short timesdas

As a result of the work presented here, several software pagka have been

developed and are publicly available on GitHub.
SPEEDYNEMO-LETKF
CFSV2-LETKF (https://github.com/UMD-AOSC/CFSv2-LETKF )
UMD-LETKF ( https://github.com/travissluka/UMD-LETKF )

Hybrid-GODAS (https://github.com/UMD-AOSC/hybrid-godas )
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5.1 Unied Multi-Domain LETKF (UMD-LETKF)

While developing the strongly coupled ocean-atmosphere data ass#tion
systems for both the SPEEDY-NEMO, and the CFSv2, it became appent that the
current structure of the local ensemble transform Kalman lter ode was problematic.
Typically, when someone was creating an LETKF for a new model, theyould have
to use an existing LETKF for a similar model and then go through andeplace
sections of hard-coded logic. This is somewhat tedious and proneewor. If an
improvement is then made to the LETKF by someone else (for examplgdating
to include a di erent in ation scheme), the user would then have to mnually nd
a way to include this improvement into their own code.

The Ocean-LETKF by Steve Penny mitigates this to some degree byliing
out code that is common to multiple ocean models. However, for a sirgly coupled
DA system, it would still be bene cial to have a base LETKF that can k& used by
any domain (ice, ocean, land, atmosphere, etc.) and any speci casiges required
by the domain's model are kept completely separately.

Most of the code for the LETKF is not in the core algorithm itself (whit only
take up at most 100 lines of code). Instead, most of the code is inetlsupport
for the core LETKF algorithms (localization, reading/writing obsenations and the
model state, distributing the state and observations in an intelligeanand scalable
manner).

As aresult of the CFSv2-LETKF, SPEEDYNEMO-LETKF, and MOMG6-L ETKF

development, | have developed a completely independent Univerdaiilti-Domain
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LETKEF library (UMD-LETKF) that should be able to be used as-is for nearly any
geophysical model $luka, 20180. The only assumption made by the code is that
the domain of interest is represented by a latitude/longitude grid, wh one or more
state variables of arbitrary vertical structure. The \geophysial grid" assumption
would unfortunately make the library as it currently stands more di cult to use
with models such as the Lorenz95. For most cases, all con gurati@an be done
through con guration les, and the provided LETKF driver can be used, resulting
in the user not needing to touch any code for the LETKF to port to anew model.
If the user desires changes to the code, they simply need to use ttETKF library
and provide function callbacks for the places where they wish to mifglthe behavior
of the code.

A summary of the design choices made when creating the UMD-LETK&re

as follows:

model independent library - provides a single LETKF library that is com-
piled once and can be used for all systems. Eliminates redundanciesaue.
Most specialization for a given domain is done though con guration lea
generic driver is provided for simple use cases, and if the user is willing t
constraints such as having all I/O be in NetCDF format. A custom dier can

easily be built to interface with the library with minimal code required.

object oriented design - classes for observation 1/O, state 1/0O, and local-
ization behavior have a default implementation that are capable of pviding

for most use cases, but can be overridden with user speci ed catleequired.
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multi-model strong coupling - The code should allow for easy transition
from weakly coupled to strongly coupled DA with no changes requirday the

code, everything is done within the con guration les.

Special attention has been paid to improving memory and computatial e -
ciency in the MPI code, as well as a complete generalization of modalts de nition
and state / observation I/O.

The code, and further documentation of it, is publicly available on githb at

https://github.com/travissluka/UMD-LETKF
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5.2 Possible future work

SPEEDYNEMO was originally designed for climate length runs and has @ved
less than ideal for the 6 hour cycling runs | performed. Howeverjvgn its low
computational cost, it may be very useful in examining the impactsfostrongly
coupled DA on climate timescales. For exampldardif et al. (2014 found with a
simple model that the Atlantic meridional overturning circulation car be initialized
correctly using only ocean observations. Similar results may be falwith this and
other longer timescale phenomena such as the Paci ¢ decadal ostitla and Atlantic
multidecadal oscillation. SPEEDYNEMO has been used to examine thetlantic
forcing of Paci c decadal variability (Kucharski et al,, 2015. It is not known if
such decadal variability results spontaneously from the model, suas the case with
ENSO where ux corrections had to be performed in order to get aBNSO signal to
appear. It would be a good project to see if SPEEDYNEMO producegmi-realistic
decadal variability, and if so use the SPEEDYNEMO-LETKF to examinethe role
of strongly vs weakly coupled DA on the model's performance.

The CFSv2-LETKF experiments with real observations only used owentional
observations due to the added di culty of using radiances. The Comunity Radia-
tive Transfer Model (CRTM) is being integrated with the GFS-LETKF by others
and should be available for use shortly. This will allow an investigation dlfie e ects
of strongly coupled DA on the assimilation of radiances. Since the @aresea surface
temperature is required by the CRTM when computing radiances fro atmospheric

temperatures, and conversely, corrections due to atmosphecanditions need to be
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Figure 5.1: Coupled Earth system data assimilation

considered when using infrared brightness temperatures to exam SST, it is an
inherently coupled observations, and so strongly coupled DA couldqgvide an extra
bene t in this case.

The successor to the CFSv2 being developed by NCEP will be using ankiE
of some avor for all components of the data assimilation system. dde speci cally,
the land, ice, wave, and ocean components will be using the LETKFhis provides

an ample opportunity to test the concepts of strongly coupled DArothis future
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model version.
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Appendix A: Observation-space 3DVar for Hybrid-GODAS

The development of the data assimilation system for Hybrid-GODASeapends
on the combination of two systems, the LETKF and an ocean 3DVAROriginally,
this task was to be accomplished using the existing GODAS 3DVAR. Hewer, the
existing system was quite slow and did not scale well due to the use ofliausion
operator to model the horizontal correlations and from the algdéhm's state-space
formulation. It was expected that the speed of the 3DVAR would bmme a bot-
tleneck at the planned 1/4 degree model resolution. Therefore,ne@w 3DVAR was
created by combining concepts from the operational ocean datssamilation systems
of the Navy (Cummings and Smedstad2013, UK MetO ce ( Waters et al,, 2015,
and ECMWF (Mogensen et al.2012.

Hybrid-GODAS is designed expecting that the LETKF performs mosbf the
heavy lifting. The accompanying 3DVAR is there mainly to correct anyiases that
the LETKF cannot handle on its own. A lightweight, fast, 3DVAR is therefore the
target, and while on its own its performance might not match that ofthe other
operational centers, it should perform well when combined with theETKF. This
new ocean 3DVAR is seen as temporary, ultimately it will be replaced witthe

marine data assimilation being developed under the JEDI for NCEP.
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State-Space Formulation

The cost function which is to be minimized is given by
J:%(y Hx)'R Yy HxX)+(x xp)' B Y(x xp) (A.1)

wherex is the resulting analysisyy is the observationsH the observation operator
to take state-space to observation-space, arl8l and R are the background and
observation error covariances, respectively. Typically, this is s@g in an incremental

3DVAR with a state-space formulation
B!+HR™ x=H'R'y (A.2)

where X is the analysis increment that is iteratively solved for through someype
of minimization algorithm, and y = y° H xP are the observation increments.

When solved using a preconditioned conjugate gradient decent rhet, the B
matrix is used as the preconditioner, eliminating the need to explicitlyatculate B 1.
The matrix to e ectively be inverted by the iterative solver isA = H'TR H+ B 1.

This is the method that was used in the existing GODAS 3DVAR.
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A.1 Observation-Space Formulation

Using the Sherman-Morrison-Woodbury formulaEquation A.2 can be rear-
ranged to obtain the following observation-space formulation

x=BHT HBHT+R 'y (A.3)

This formulation is known otherwise as PSAS (Physical Space Assimilaih System)
at NASA/Goddard (Cohn et al, 1998. The matrix to e ectively be inverted by
the iterative solver isA = HBH T + R. If the number of observations is less than
the number of grid points, which is easily the case with the ocean, thfe matrix is
smaller with this formulation, and therefore computationally faster Satellite based
observations can be thinned or superobbed in order to maintain tleessumption that
there are fewer observations than model grid points.

The observation-space formulation can be divided into two stepshe calcula-

tion of an intermediate vectorz

HBH "+ R z= vy (A.4)

followed by the projection ofz vector back into state-space

X=BHTz (A.5)

the computational expense of calculating by an iterative algorithm depends on the
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number of observations. So, for the ocean, the minimization herboalld be faster
than with state-space. The subsequent matrix multiplication requed projectz onto
the model-space is more computationally expensive, but is only reqedr once, not

iteratively.

Preconditioned Conjugate Gradient Solver

An outline of the preconditioned conjugate gradient algorithm usetb solve
the observation-space formulation follows, withA * de ned as an approximate

inverse toA, andA = HBH T + R . The following variables are rst initialized:

20:O
fro=Y
(A.6)
$=A g
P1= S

The iterative solver is run until the solution converges, usually whethe residual
decreases by two orders of magnitude. At each step:

if k> 1:
e 1S 1

Mk 25k 2 (A7)

Pk =Sk 1+ «kPx 1
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then for each iteration with k > 0:

Ok = Ap«
. Sk 1Mk 1
pIQK
Zx = Zx 1t kP« (A-8)

e =Tk 1+ kQk

1

S« = A Ik

it should be noted that in the actual code, only the most recent véars for r, and
s are stored, and so only the nal dot products of s are kept from two previous
steps for calculating .

The preconditioning matrix A ' is calculated by a block diagonal approxima-
tion to the full A ! matrix. This is done by dividing observations into blocks so that
each block contains a reasonably small number of observations ¢(ba order of 1000).
Then a Cholesky decomposition is performed on each block in parallel directly
invert the matrix. The use of this preconditioning step speeds up neergence of the
solver substantially and is relatively inexpensive to perform a8 ' is calculated

once at the beginning of the solver and stored for subsequent &pations.

A.2 Background Error Covariance Model

For the observation-space formulation of the 3DVAR, the backgund error
covariance between two observation locationdHBH ), and the background error

covariance between an observation location and a model grid locati¢BH ) are
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required. These are nearly identical functions, however, thergeasmall di erences
in the code for performance reasons, which will not be discussedehe

The covariance is decomposed into a background error variancelarrelation.
The correlations are further separated into the horizontal, vertal, and variable
correlations, as well as an SSH gradient tensor and coast distateesor to modulate
the horizontal correlation. Since the background error covari@e model used here is
rather simple, there is no balance operator between temperatusrad salinity, and so
the covariance between observations and model variables of dieet types is zero.

All distance based correlations are calculated using a compact spline
(Gaspari and Cohn 1999 given the distance between two pointsg, and the desired
length scale,L, (equivalent to 1 standard deviation of a Gaussian). Using =

d=(Lp 10=3), a distance based correlation value is given by:

gdr)= r°=4+r*=2+5r3=8 b5r2=3+1; 0o r 1

r’°=12 r*=2+5r3=8+5r2=3 5 +4 2=3r 1 r 2 (A.9)

=0; r> 2

Horizontal Correlation

The correlation lengths in the horizontal are calculated as an anisopic 2D
Gaussian approximated by the Gaspari-Cohn function. These lergt vary with

latitude as a function of the Rossby radius. The correlation length ithe meridional
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Figure A.1: The zonal and meridional horizontal correlation length scales uséu
the 3DVAR.

direction is given by

L ( )=max min L (A.10)

min

C
2 jsin()j max

where c = 2:7 m/s is the assumed gravity wave speed. The value is clamped to
a minimum of 50 km in the high latitudes, and a maximum of 150km along the
equator. The correlation length in the zonal direction is equal th. in the extra-
tropics, but is stretched longer near the equator within 1@o a maximum of 525km
as given by

L ()=L ()A+ge2= 1)( 10) (A.11)

The value of the parameters used are given ifable A.1 and the resulting

horizontal correlation length scales are shown iRigure A.1.

136



L .. 50 km
L .. 150 km
L 10
35
C 2.7 m/s
729 10°

Table A.1: horizontal correlation length scale parameters

Coast Distance and SSH Gradient Tensor

In order to introduce an element of crude ow dependence into tHeackground
error covariance model, the horizontal correlations are modulateby two gradient
tensors based on 1) the distance from the coast and 2) the SSHdeThis method
is borrowed fromCummings and Smedstaq2013.

The horizontal correlation is modi ed by multiplying by the following calaila-

tion

jri ry
e

Ceoast = max Ccoastmm 1 (A.12)

wherer. is the distance from the coast at which this e ect beging,; andr, are the
distances to the coast for the two grid points of interest (clampetb a maximum
value ofr¢). Ceoast,, IS the strength of the e ect, 1.0 being o and 0.0 forcing grid
points on the coast to be completely uncorrelated with those pointg away from
the coast. Hybrid-GODAS uses . = 75km, Ccoasi,,, = 0:3. For an observation that
is next to the coast, this has the e ect of spreading the analysis irement along the
coastline, and not out into the open ocean.

An additional similar modulation is performed to the horizontal corréations
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based on the dierence in sea surface height of the two points. Imis way, anal-
ysis increments are spread along fronts instead of across themfeature that is
particularly important along the western boundary currents, as & be shown in
Figure A.2. Any surface eld can be used, SSH, SST, etc, but the benet ohis
surface gradient tensor relies on the surface elds being repret relatively real-
istically. For Hybrid-GODAS, SSH is used, with a strength of 10cm. Asan be
seen inFigure A.2, increments are stretched out along the Kuroshio Current, and
not across it. This method is also useful for preventing analysis ir@nents across
bodies of water separated by land, such as between the Paci ¢ aAtlantic oceans
near Panama, since the SSH is di erent enough between the two Iticas to isolate

analysis increments.

(@) (b)

Figure A.2: Surface temperature analysis increment for a single cycle with noain
horizontal correlations (a) and horizontal correlations modulagtby an SSH gradient
tensor (b)
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Vertical Correlation

Three dimensional vertical correlation lengths were originally calculed by
scaling the vertical density gradient, as done itCummings and Smedstaq2013.
However, if not done very carefully and with ample smoothing of theesulting eld,
this would lead to instances wherd3 was not positive de nite, and the Cholesky
decomposition for the preconditioner would fail.

Instead, the vertical correlation length is rst set equal to the nodel level
thickness. The top ocean model level has its vertical correlationnigth set equal
to the mixed layer depth (MLD) de ned as the depth where a reduddn in density
of 0:125 kg=m?® occurs. If this depth is deeper than 250m it is clamped to 250m.
Between the top model level and the base of the mixed layer, thertreal correlation
length is linearly interpolated between the values at the two locationdn this way,
satellite SST observations are able to impact the entire mixed layerubbelow the
mixed layer observation pro les impact primarily only the model level inwhich they
occur.

The 3D vertical correlation length eld is then smoothed using a recsive lIter
using the horizontal and vertical correlation lengths that were fand. This helps
ensure stability of the solver, aB can fail to be positive de nite if the correlation
lengths vary spatially at a rate faster than their own correlation legth. A cross

section along the equation for an example date is shown kigure A.3.
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Figure A.3: Cross section of vertical correlation lengths along equator a single
example date. Vertical correlation length is equal to model level itkness, except
when within the mixed layer.

Background Error Variance

The method of calculating the 3D background error variance for thtemper-
ature and salinity was adopted from the 1/4 degree NEMOVAR data ssimilation
system used at the UK MetO ce (Waters et al,, 2019, and is similar in concept to
the method used for the original GODAS. First, the vertical tempeature gradient

is calculated and multiplied by a scaling factorz

-, 9T (A.13)

W dz
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The resulting 3D eld is smoothed by the previously calculated horizaal and ver-
tical correlation lengths. The nal standard deviations of the bakground error

variance are given by

= max( min ;min( vg> max)) (A-14)
where ax IS a de ned constant, and ,, is calculated from

= dot( suf do) EXP w (A.15)

min
The minimum background error varies vertically with a maximum at the ar-
face of g+ decreasing exponentially with a length scale &f to a minimum of .
The value for ¢, for salinity is a xed constant, however for temperature a 2D
eld is generated based on a scaled and clamped climatological averagd the O-F
RMSD from the satellite SST observations of a previous 3DVar rur-{gure A.4).

The other constant parameters used in the calculation of the bagfound error

variance for temperature and salinity are given bylable A.2.

Temp | Salt
L 500m | 250m
max 1.8 0.25
do 0.1 0.02
suf | 2D eld | 0.3
z 20 2.5

Table A.2: Parameters used by 3DVar background variance calculation

The 2D 4, eld for temperature is needed in order to increase the back-

ground error variance where the vertical temperature gradiertoes not capture all

141



Figure A.4: The minimum surface temperature background error covariancesed
in the Hybrid-GODAS 3DVar. Calculated from annual average of satlite SST O-F
RMSD.

the error, such as near the western boundary currents. This ect can be seen in

Figure A.5.
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a) d)

b) e)

c) f)

Figure A.5: The 3DVar background error variance for 2004-04-01 at deptiud 1
meter (top), 50 meters (middle), and 200 meters (bottom) using mmum surface
background error variance of 0.5C as done by GODAS (left) and a 2i{arying
modi ed background error variance as in Hybrid-GODAS (right).
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