
Analysis and Comparison of P2P Search Methods

Dimitrios Tsoumakos

Department of Computer Science

University of Maryland

College Park, MD 20742, USA

dtsouma@cs.umd.edu

Nick Roussopoulos

Department of Computer Science

University of Maryland

College Park, MD, 20742, USA

nick@cs.umd.edu

CS-TR-4539, UMIACS-TR-2003-107

Abstract

The popularity and bandwidth consumption attributed to current Peer-to-Peer file-sharing applications makes

the operation of these distributed systems very important for the Internet community. Efficient object discovery is

the first step towards the realization of distributed resource-sharing. In this work, we present a detailed overview

of recent and existing search methods forunstructuredPeer-to-Peer networks. We analyze the performance of the

algorithms relative to various metrics, giving emphasis on the success rate, bandwidth-efficiency and adaptation to

dynamic network conditions. Simulation results are used to empirically evaluate the behavior of nine representative

schemes under a variety of different environments.

I. I NTRODUCTION

Peer-to-Peer (hence P2P) computing represents the notion of sharing resources available at the edges

of the Internet [1]. Its initial success (e.g., Napster [2]), boosted the interest in this new approach. A

large number of systems and architectures that utilize P2P technology have emerged since ([3]–[6],

etc.). The P2P paradigm dictates a fully-distributed, cooperative network design, where nodes collectively

form a system without any supervision. Its advantages (although application-dependent in many cases) in-

clude robustness in failures, extensive resource-sharing, self-organization, load balancing, data persistence,

anonymity, etc.

According to a very conservative estimate [1], there exist more than 10× 109 MHz of CPU power

and 10,000 TB of storage not utilized at the edges of the Internet. According to a different report [7],

bandwidth consumption attributed to popular file-sharing applications amounts to a considerable fraction

(up to 60%) of the total Internet traffic. These two reports identify two different problems: First, there is

a vast amount of “untapped” potential around the Internet. On the other hand, current resource-sharing

applications waste huge amounts of bandwidth. P2P technology can play a key role in our efforts to tackle

both issues. In all cases, the first step involves the efficient discovery of the various resource locations

inside a network.

Today, the most popular P2P applications operate onunstructurednetworks. In these networks, peers

connect in an ad-hoc fashion, the location of the documents is not controlled by the system and no

guarantees for the success or the complexity of a search are offered. Search methods can be categorized

as eitherblind or informed, according to whether peers utilize information to locate resources. In ablind

search, nodes hold no information that relates to document locations, while ininformedmethods, there

exists a centralized or distributed directory service that assists in object discovery.

In this work, we describe a variety of proposed search algorithms forunstructuredP2P networks. A

search process includes aspects such as the query-forwarding method, the set of nodes that receive query-

related messages, the form of these messages, local processing, stored indices and their maintenance, etc.

This paper describes current approaches from both (blind and informed) categories and analyzes their

performance. We focus on the behavior of these algorithms for each of the following metrics:

• Efficiency in object discovery (accuracyand number ofhits)

• Bandwidth consumption

• Adaptation to changing topologies and workloads

The first metric measures searchaccuracyand the number of discovered objects per request (this is

very important for many applications, as it makes object retrieval very scalable). Minimizing message

production always represents a high-priority goal for all distributed systems. Finally, it is important that

any search algorithm adapts to changing conditions, since in most P2P networks users frequently enter

and leave the system, as well as update their collections.

To evaluate our analysis, we simulate nine of the described methods and present a direct quantitative

comparison of their performance. We identify the relative advantages and disadvantages of each method

as well as the conditions under which they can be most or least effective. We believe this is an important

contribution that can provide a better understanding of the various search mechanisms and assist in

choosing an algorithm that best fits a particular application.

The rest of this paper is organized as follows: Section II presents the related work. In Section III

we classify and describe many current search techniques, while in Section IV we present the simulation

results. Finally, Section V contains our conclusions.

II. RELATED WORK

Peer-to-Peer networks have been studied a lot in the last few years. A large amount of information for

P2P computing with taxonomies, definitions, current trends, applications and related companies can be

obtained at [8], [9], as well as individual sources (e.g., [5], [6]). P2P computing is also described in [10],

with basic terminology, taxonomies and description of some systems. A brief summarization of Gnutella

[3] and Napster [2] search schemes, together with approaches forstructurednetworks are also included.

Gnutella and Napster are the focus of two measurement studies; Ref. [11] attempts a detailed characteri-

zation of the participating end-hosts, while [12] measures the locality of stored and transferred documents.

In [13], a traffic measurement for three popular P2P networks is being conducted at the border routers of

a large ISP. Extensive results for traffic attributed to HTTP, Akamai and P2P systems are also presented

in [14].

Quantitative comparisons between the search methods in [15], [16] and the original Gnutella algorithm

are presented in these two papers. Their main comparison metric is bandwidth consumption. The work

in [17] presents a thorough comparison between theAPSalgorithm and the search schemes introduced

in [16], [18] on a variety of metrics.

Our work focuses exclusively on proposed search methods for unstructured P2P networks and provides

a direct experimental comparison of these algorithms under different environments.

III. P2P SEARCH ALGORITHMS

A. Our Framework

First, we briefly describe our system model for search in structure-less P2P networks. Each peer retains

a local collection of documents, while it makes requests for those it wishes to obtain. The documents

are stored at various nodes across the network. Peers and documents (or objects) are assumed to have

unique identifiers, with object IDs used to specify the query target. Objects are assumed to be of varying

popularity, which affects the respective number of replicas and received requests. Objects are distributed

over the network according to thereplication distribution, which dictates the number and identity of

objects stored at each node. Each peer makes requests according to aquery distribution, which controls

how many requests are made for each object (e.g., popular objects get many more requests than unpopular

ones).

Search algorithms cannot in any way dictate object placement and replication in the system. Nodes

that are directly linked in the overlay areneighbors. Peers obtain only a local knowledge of the network

(e.g., are only aware of their neighbors). We also assume that they can keepsoft state(i.e., information

that is erased after a short amount of time) for each query they process. Each search is assigned an

identifier, which, together with the soft state, enables peers to make the distinction between new queries

and duplicate ones.

A search issuccessfulif it discovers at least one replica of the requested object. The ratio of successful

to total searches made is called thesuccess rate(or accuracy). A search can result to multiple discoveries

(or hits), which are replicas of the same object stored at distinct nodes. A globalTTL parameter represents

the maximum hop-distance a query can reach before it gets discarded.

B. Search Taxonomy

There are two possible strategies used to search for an object: Search in ablind fashion, trying to

propagate the query to a sufficient number of nodes in order to satisfy the request; or utilize information

about document locations and thus perform aninformedsearch. The semantics of the used information

range from simple forwarding hints to exact object locations. The placement of this information can

also vary: In centralized approaches (e.g., [2]), a central directory known to all peers exists. Distributed

approaches can also be sub-divided intopure and hybrid. In pure approaches (e.g., [15], [17], [19]), all

participating peers maintain some portion of the information. Other algorithms (e.g., [20]) operate on

hybrid P2P architectures, where certain nodes assume the role of asuper-peerand the rest becomeleaf-

nodes. Each super-peer acts as a proxy for its leaf-nodes by indexing all their documents and serving

their requests.

The semantics of the stored indices in informed approaches can be used for another categorization.

Indices might relate to exact object locations (e.g., [21]), probability of discovery through a link (e.g.,

[17]), number of objects through a link (e.g., [19]), or even other metrics (e.g., [22]).

Finally, we can categorize search schemes according to the query forwarding method intoflood-based

(utilizing the standard flooding scheme or one of its variations) and nonflood-based(e.g., [16], [23]).

C. Blind Search Methods

GNUTELLA [3]: The original Gnutella algorithm uses flooding (BFS traversal of the underlying graph)

for object discovery, contacting all accessible nodes withinTTL hops. Its basic characteristics are its

simplicity and the huge overhead it produces by contacting many nodes.

Modified-BFS [15]: In this variation of the flooding scheme, peers randomly choose only a ratio of

their neighbors to forward the query to. This algorithm certainly reduces the average message production

compared to the previous method, but still contacts a large number of peers.

Iterative Deepening: Two similar approaches that use consecutive BFS searches at increasing depths

are described in [16], [24]. These algorithms achieve best results when the search termination condition

relates to a user-defined number of hits and it is possible that a “small-range” flood will satisfy the query.

In a different case, they produce even bigger loads than the standard flooding mechanism.

Random Walks [16]: In Random Walks, the requesting node sends outk query messages to an equal

number of randomly chosen neighbors. Each of these messages follows its own path, having intermediate

nodes forward it to a randomly chosen neighbor at each step. These queries are also known aswalkers. A

walker terminates either with a success or a failure. Failure can be determined by two different methods:

The TTL-based method and thecheckingmethod, where walkers periodically contact the query source

asking whether the termination conditions have been satisfied. The algorithm’s most important advantage

is the significant message reduction it achieves, since it producesk×TTL messages in the worst case.

Results in [16], [17] show that messages are reduced by more than an order of magnitude compared to

the standard flooding scheme. It also achieves some kind of local “load balancing”, since no nodes are

favored in the forwarding process over others. The most serious disadvantage of this algorithm is its highly

variable performance. Success rates and number of hits vary greatly depending on network topology and

the random choices made. Another drawback of this method is its inability to adapt to different query

loads, since queries for popular and unpopular objects are treated in the exact same manner.

Recently, two new search protocols which operate on hybrid topologies made their appearance:

GUESS [18]: This algorithm builds upon the notion ofUltrapeers [25]. Each ultrapeer is connected

to other ultrapeers and to a set of leaf-nodes (peers shielded from other nodes), acting as their proxy. A

search is conducted by iteratively contacting different ultrapeers (not necessarily neighboring ones) and

having them ask all their leaf-nodes, until a number of objects are found. The order with which ultrapeers

are chosen is not specified.

Gnutella2 [20]: In Gnutella2 (G2), when a super-peer (orhub) receives a query from a leaf, it forwards

it to its relevant leaves and also to its neighboring hubs. These hubs process the query locally and forward

it to their relevant leaves. No other nodes are visited with this algorithm. Neighboring hubs regularly

exchange local repository tables to filter out unnecessary traffic.

Although the details of these protocols are still formulating, we observe they rely on a dynamic hierarchical

structure of the network. They present similar solutions for reducing the effects of flooding by utilizing

the structure of hybrid networks. The number of leaf-nodes per super-peer must be kept high, even after

node arrivals/departures. This is the most important condition in order to reduce message forwarding and

increase the number of discovered objects.

D. Informed Search Methods

Intelligent-BFS [15]: This is an informed version ofmodified-BFS. Nodes store query-neighborID tuples

for recently answered requests from (or through) their neighbors in order to rank them. First, a peer

identifies all queries similar to the current one, according to a query similarity metric; it then choses to

forward to a set number of its neighbors that have returned the most results for these queries. If a hit occurs,

the query takes the reverse path to the requester and updates local indices. This approach focuses more

on object discovery than message reduction. At the cost of an increased message production compared

to modified-BFS(because of the update process), the algorithm increases the number of hits. It achieves

high accuracy, enables knowledge sharing and induces no overhead during node arrivals/departures. On

the other hand, its message production is very large and only increases with time as knowledge is spread

over the nodes. It shows no easy adaptation to object deletions or peer departures, because the algorithm

does not utilize negative feedback and forwarding is based on ranking. Finally, its accuracy depends highly

on the assumption that nodes specialize in certain documents.

APS [17]: In APS, each node keeps a local index consisting of one entry for each object it has requested

per neighbor. The value of this entry reflects the relative probability of this node’s neighbor to be chosen

as the next hop in a future request for the specific object. Searching is based on the deployment ofk

walkers and probabilistic forwarding. Each intermediate node forwards the query to one of its neighbors

with probability given by its local index. Index values are updated using feedback from the walkers.

If a walker succeeds (fails), the relative probabilities of the nodes on the walker’s path are increased

(decreased). The update procedure takes the reverse path back to the requester and can take place either

after a walker miss (optimisticupdate approach), or after a hit (pessimisticupdate approach).APSemploys

an indexing scheme that refines its knowledge as queries are made. Every node on the deployed walkers

updates its indices according to search results, so peers eventually share and adjust this knowledge with

time. Walkers are directed towards objects or redirected if a miss occurs.APS is also very bandwidth-

efficient (achieving very similar levels withRandom Walks) and induces zero overhead over the network

at join/leave/update operations. Thes-APSmodification adaptively switches between the optimistic and

pessimistic approaches to minimize the amount of updates along the reverse paths. SinceAPSgains from

knowledge build-up, these advantages are mainly seen when many different peers contribute with big

workloads. Moreover, bothAPSandRandom Walkshavek as an upper bound in their hits per search.

Local Indices (LI) [24]: Each node indexes the objects stored at all nodes within a certain radiusr

and can answer queries on behalf of all of them. A search is performed in a BFS-like manner, but only

nodes accessible from the requester at certain depths process the query. To minimize the overhead, the

hop-distance between two consecutive depths must be 2r + 1. This approach resembles the two search

schemes for hybrid networks. The method’s accuracy and hits are very high, since each contacted node

indexes a whole neighborhood. On the other hand, message production is comparable to the flooding

scheme, even if the processing time is smaller because many nodes just forward the query. The scheme

also requires a flood withTTL= r whenever a node joins/leaves the network or updates its local repository,

so the overhead becomes even larger for dynamic environments.

GIA [22]: In GIA, requesting nodes deploy biased walkers in order to discover various objects. Each

peer chooses to forward the query to the neighbor with the highest announcedcapacity. This is a user-

defined metric that reflects the processing power of a node inside the system. Moreover, the protocol

requires that each peer indexes the documents of its neighbors. This scheme also provides for a topology

adaptation algorithm which runs continuously. Its goal is to re-configure the overlay connectivity such

that each node is connected to a number of peers proportional to its capacity. What this achieves is that

the biased walkers are in fact directed to the highly connected neighbors and, probabilistically, to those

with the highest number of indexed objects. Finally, the scheme provides a flow-control mechanism which

allows peers to control the rate at which they can accept and process requests from their neighbors. Once

the topology has been set, we expectGIA to perform very bandwidth-efficient searches with several hits.

On the other hand, the adaptation algorithm plus the indexing of the neighbors’ repositories increase the

responsibilities of each peer as well as the communication overhead. Another issue is how fast can the

algorithm work for joining peers and at what cost for their neighborhood.

Routing Indices (RI) [19]: Documents are assumed to fall into a number of thematic categories. Each

node stores an approximate number of documents from every category that can be retrieved through

each outgoing link (i.e., not only from that neighbor but from all nodes accessible from it). The query

termination condition always relates to a minimum number of hits. The forwarding process is similar to

DFS: A node that cannot satisfy the query stop condition with its local repository will forward it to the

neighbor with the highest “goodness” value. Three different functions which rank the out-links according

to the expected number of documents discovered through them are also defined. The algorithm backtracks

if more results are needed. This is another keyword-search approach which trades index maintenance

overhead for increased accuracy. While a search is very bandwidth-efficient, RIs require flooding in order

to be created and updated, so the method is not suitable for highly dynamic networks. Moreover, stored

indices can be inaccurate due to thematic correlations, over- or under-counts in document partitioning and

network cycles.

In [23], each node holdsd bloomfilters for each neighbor. A filter at depthi summarizes documents

that can be foundi hops away through that specific link. Nodes forward queries to the neighbor whose

smaller depth bloom filter matches a hashed representation of the object ID. After a certain number of

steps, if the search is unsuccessful, it is handled by a deterministic algorithm instead of backtracking. The

scheme’s expectation is to find only one replica of the object with high probability. Index maintenance

requires flooding messages initiated from nodes that arrive or update their collections.

Distributed Resource Location Protocol (DRLP) [26]: Nodes with no information about the location

of a document forward the query to each of their neighbors with a certain probability. If an object is

found, the query takes the reverse path to the requester, storing the document location at those nodes.

In subsequent requests, nodes with indexed location information directly contact the specific node. If

that node does not currently obtain the document, it just initiates a new search as described before. This

algorithm initially spends many messages to find the locations of an object. In subsequent requests, it

might take only one message to discover it. Obviously, a small message production is achieved only with

a large workload that enables the initial cost to be amortized over many searches. In rapidly changing

networks, this approach fails and more nodes have to perform blind search. This also affects the number

of hits: If many blind searches are made, then many results are found; if many direct queries take place,

then only one replica is retrieved.

Gnutella with Shortcuts (GS) [21]: In this work, the authors propose the addition ofshortcuts(i.e.,

direct links to peers that have recently proved useful in answering queries) to a Gnutella-like overlay. The

original flooding mechanism is initially used to locate documents. Peers that provide answers are indexed

by the requesters, following the assumption that they could provide answers to more requests. When a

new query is made, nodes first forward it to their shortcuts (ranked in a descending order of usefulness

— usually the success rates). If all shortcuts fail, the standard flooding scheme is again used to locate the

object. This approach resembles theDRLP scheme but stores more than one pointer and keeps statistics

on them. For semantically related queries, we expect it to quickly identify relevant peers and mostly use

the shortcuts for object location. Moreover, we anticipate a very high success rate since the fall-back

mechanism is flooding. On the other hand, if peers make many unrelated queries or they do not store

relevant content, it is possible that the shortcuts will fail, which in turn means that the system pays the

price of a full-scale flooding. The same is true when objects are removed or peers depart frequently.

E. New Approaches

Structured P2P systems (also known as Distributed Hash Tables — DHTs) base all operations on an

“overlay” network, which handles file and replica placement and guarantees bounded number of steps

and reliable storage. Recently, there has been an effort to combine the advantages of both DHTs and

unstructured systems. In [27], animmediate neighborhoodarea is defined for each peer. Object placement

inside these overlapping areas is performed in a DHT-like fashion. Searches use the standard flooding

mechanism except that only certain areas are probed. In [28], peers are grouped intopossession rules,

according to whether they contain a specific item or not. Nodes search inside one possession rule in a

blind fashion. The possession rule is chosen by a greedy mechanism according to past query results.

IV. SIMULATION RESULTS

A. Simulation Model and Algorithm Implementations

In this section we present results for nine of the described methods: (G2, Random Walks, Modified-BFS,

Intelligent-BFS, Local Indices, s-APS, DRLP, GSandGIA). The simulated methods are representative blind

and informed schemes, both flood and non flood-based, with or without user-initiated index updates (that

is, updates triggered strictly by the search process). We briefly summarize our simulation model here.

We mainly use random topology graphs of 10,000 nodes and varying out-degrees generated by GT-ITM

[29] to simulate the P2P overlay structure. We assume a pure P2P model, where all peers equally make

and forward requests. We also test the performance of the algorithms using the popular power-law model

with graphs generated by Inet 3.0 [30].

Queries are made for 100 objects, with object 1 being the most popular and object 100 the least. The

small number of objects enables a good observation of the effect that popularity has over the performance

of a search. A zipfian distribution with parametera = 0.82 is used to model both query and replication

distributions and achieve workloads similar to [12]: The top-10% of the objects account for about 50%

of the total number of stored objects and receive about 50% of all requests. The replication ratios range

from 11% to 0.25% (least popular object). With this distribution, there exist around 8,500 replicas of the

100 objects inside our network (each peer holds less than one object on average). Requester nodes are

randomly chosen and represent about 20% of the total number of nodes. Each requester makes about

1,500 queries over a time period. We do not allow extra replicas to be stored (i.e., we only consider the

search phase, not object retrieval). TheTTL parameter was set to 5, since larger values produced very

similar results. Results were also collected for 20,000 objects with 5,000 requester nodes (each making

2,000 queries).

To simulate dynamic network behavior, we insert “on-line” nodes and remove active ones with varying

frequency. The objects are also re-distributed to model file insertions and deletions. We always keep

approximately 80% of the network nodes active, while arriving nodes start functioning without utilizing

any (possibly built) prior knowledge. Object re-location always follows the initial distribution parameters.

The Intelligent-BFSmethod was modified to allow for object-ID requests. Index values at peers now

represent the number of replies for an object through each neighbor and nodes choose the neighbors with

the highest index values when forwarding a query. ForModified-BFS’s, DRLP’s and Intelligent-BFS’s

flood-based search, nodes choose an equal number of neighbors to forward a query in order to make

direct comparisons. ForG2/GUESS, peers randomly choosek neighbors to forward the query to. The

chosen nodes forward the query to all their neighbors. By modifying the value fork we can simulate the

operation of bothG2 (with k always larger than the average node degree) andGUESS. In our simulations,

G2/GUESSoperate on a pure (instead of a hybrid) model in order to achieve uniformity in our results.

Moreover, they both function in a blind manner, so no cache or repository table exchange takes place. We

name this approachHG2 (Hybrid G2/Guess). For ourLI implementation, nodes index the objects of their

neighbors (r = 1). To ensure that the search is equivalent to a flood withTTL= 5, only peers at depths 1

and 4 process the query. We also ensure that no object from the same peer is being discovered multiple

times. Again for the purpose of reporting comparable results, ourGIA implementation does not use the

overlay adaptation process.k random walkers are independently deployed, and each peer forwards to the

neighbor with the highest out-degree (similar to the method described in [31]). Peers index the documents

of their neighbors. For ourGS implementation, we use 5 shortcuts and rank them by their success rates.

B. Basic performance comparison

In our first set of experiments, we use a Gnutella-type graph (average degreed = 4) to compare the

nine methods over 5 different environments: A static one, one with low/high object relocation frequency

and one with low/high peer departure frequency. In the two low-frequency scenarios, relocation and

departures/arrivals occur about 300 times per run, while in the high-frequency ones they occur 10 times

more often.DRLP and Int/Mod-BFS forward to 3 neighbors, whilek = 7 for s-APS, GIA, HG2and

Random Walks. Figures 1 and 2 present the results.

Blind methods show a fairly stable performance between the static and dynamic settings, since the

dynamic operations do not interfere with the forwarding scheme. Flood-based schemes discover many

objects at a higher cost. Nevertheless, onlyLI and GS with the pure-flooding scheme achieve very

high accuracy. This happens because of the small out-degree of our network. We also notice that blind

and flood-based techniques do not get affected by object relocation, but only by peer joins/leaves.

While our relocation process does not substantially alter anything in those algorithms’ operation, peer

arrivals/departures alter the topology and the amount of available resources.

Mod/Int-BFSshow relatively high accuracy and return many hits. Their performance is very similar,

with the informed method showing marginally better results. For environments resembling this setup, the

modified method will be preferred, since its performance is equally high and it is much simpler. We

expect the informed method to perform better in richer or more specialized environments (like the one

described in [15]), mainly in the number of hits.

Random Walksdisplays low accuracy (<34%) and finds less than 0.5 objects on average. Its bandwidth

Int-BFS LI HG2 RWalks s-APSMod-BFS DRLP GS GIA
0

20

40

60

80

100
Su

cc
es

s
R

at
e(

%
)

High relocation
Low relocation
Static
Low departures
High departures

Int-BFS LI HG2 RWalks s-APSMod-BFS DRLP GS GIA
1

10

100

1000

M
es

sa
ge

s
pe

r R
eq

ue
st

High relocation
Low relocation
Static
Low departures
High departures

Fig. 1. Accuracy and message production for the methods using a 10,000-node random graph with average degreed = 4

consumption is quite low (about 15 messages), while its performance is hardly affected by the dynamic

operations.HG2 behaves similarly, with the exception of producing about 5 more messages per search. In

general, these algorithms exhibit poor performance and appear very robust to increased network variability.

This is reasonable, as walkers are randomly directed with no regard to topology or previous results.

Thes-APSmethod achieves a success rate of over 75% in the static run, a number that drops by around

30% in the highly dynamic settings, but only around 12% in the two less dynamic ones. The metric that is

reasonably affected is the number of discovered objects, which are almost cut to a third (from 2 to 0.63).

This happens because it takes some time for the learning feature to adapt to the new topology and paths

to discovered objects frequently “disappear”. On the other hand, it manages to keep its messages almost

as low asRandom Walks’. The scheme is equally affected by relocations and departures/arrivals, since

walkers are directed towards specific locations which are altered by both types of events. Nevertheless, it

exhibits a good overall performance compared to the non-BFS related schemes, without indexing other

peers’ repositories.

TheDRLPalgorithm exhibits some interesting characteristics. First, its message production is very low

(less than 6 messages per request). Our simulations count the direct contact of a node (both forDRLP

andGS) as one message, although a link between them might not exist in the overlay. Dynamic behavior

causes the stored addresses to become more frequently “stale”, thus the initial flooding is performed more

often. This is the reason for the decrease in its accuracy from 99% in the static case to 77% and 15%

in the highly dynamic ones.DRLP produces the same amount of messages for its initial search with

Modified-BFS, so it needs many successful requests to amortize this initial cost. The number of objects

it discovers is very small, ranging from 1.4 to 0.2. IfDRLP is forced to use flooding many times, then

the number of hits increases. If it is successful and produces few messages, then it only finds one replica

per request. Despite this, we notice that it proves very bandwidth-efficient and flooding is scarcely used.

This is due to the fact that, with many nodes making requests, most of them obtain a pointer for every

object after a while. So, even if some node initiates a flood, most of its neighbors will only forward to

one other node. This scheme seems ideal for relatively static environments and large workloads, with the

exception that the number of hits will be very close to one. Another important observation is thatDRLP

is affected far more by object relocation than by node departures. This is reasonable if we consider that

Int-BFS LI HG2 RWalks s-APSMod-BFS DRLP GS GIA
0.1

1

10

100
H

its
 p

er
 R

eq
ue

st

High relocation
Low relocation
Static
Low departures
High departures

Fig. 2. Hits per query for the first graph

Int-BFS LI HG2 RWalks s-APSMod-BFS DRLP GS GIA
0

0.2

0.4

0.6

0.8

1

%
 o

f H
its

 p
er

 H
op

-c
ou

nt

hop=1
hop=2
hop=3
hop=4
hop=5

Fig. 3. % Hits vs. Hop-distance for the second graph

with departures there still exist nodes with a valid pointer to an object, whereas object relocation may

make many pointers become stale at once.

The LI scheme proves the most productive in terms of discovered locations and the most costly in

message production. It produces one order of magnitude more messages than the other BFS-related

methods but also discovers about 10-20 times more objects, taking advantage of its index scheme. Its

performance is only affected by the dynamic joins and leaves, with a decrease of more than 50% in located

objects. The cost of the index updates, even under the more dynamic settings, is negligible compared to

the cost of a search (at most 2% over the total number of messages). On the other hand, this cost is

considerable for nodes that stay idle (and possibly alter their local repositories), since it induces traffic

without any search involved.

GSshows very high accuracy, since it can always fall back to the flooding scheme. Nevertheless, when

peers do not have shortcuts or when these fail (this happens mostly when objects get relocated), message

consumption increases dramatically. On the other hand, similarly toDRLP, the more flood searches

are performed, the more objects are discovered. Shortcuts are mostly used in the static and dynamic

arrival/departure modes, since 5 shortcuts proved sufficient for at least one of them to provide an answer

most of the times.

Finally, GIA manages to perform as well asMod/Int-BFSbut being more bandwidth-efficient. The

combination of one hop indexing and biased walkers achieves a good, robust performance at relatively

low cost. Only in the high relocation setting we notice a considerable increase (200%) in the average

message consumption since peers have to refresh their indices frequently.

C. Results on more dense graphs

In the next set of simulations we use a random graph with an average degreed = 10 to compare the

9 methods over two different environments: A static one, and one where both object relocation and peer

departures occur about 600 times per run.DRLP and Int/Mod-BFSforward to 4 neighbors at each step,

while k = 12 for s-APS, Random Walks, HG2, GIA. All other parameters remain the same. The results

for the static case are shown in Table I. We also report the percentage of messages per search that are

duplicates and the average distance of the hits in overlay hops.

TABLE I

COMPARISON ON A10,000-NODE RANDOM GRAPH WITH DEGREEd = 10

Metric Mod-BFS Int-BFS LI HG2 RWALKS s-APS DRLP GS GIA
Success(%) 98.8 99.8 100 70.2 53.4 91.7 100 100 97.0
Mesg 875.0 1233.4 39710.1 108.7 43.6 43.0 8.0 2344.2 35.0
Dupl Mesg(%) 10.3 0.4 18.7 8.3 0.2 0.1 1.8 17.8 0.9
Hits 20.2 32.6 300.0 2.9 1.2 6.1 1.4 18.9 9.5
Hit Distance 4.58 4.61 3.99 1.88 2.78 3.16 1.90 4.60 3.06

Blind forwarding causes a large amount of messages to be dropped. Informed methods with no direct

indices perform much better (s-APS, Int-BFSwasting only 0.1%, 0.4% of their messages). Flood-based

schemes also exibit large hop distances for their hits.

All algorithms produce a larger number of messages per request in the new graph, taking advantage

of the larger number of connections.DRLP still manages to average less than 10 messages per request.

Random Walksand s-APSroughly double their hit discovery, and increase their accuracy. On the other

hand,Int/Mod-BFSproduce 10 times more messages.HG2 performs in between, producing about 5 times

more messages.LI increases its bandwidth production by more than an order of magnitude. Updates

now play an even lesser role, since its search bandwidth consumption overshadows their effect.GS’s

performance increases similarly toLI ’s since they use the same underlying mechanism. Finally,GIA

exhibits a very good performance again, having low message consumption and increased accuracy/hits.

Figure 3 depicts the percentage of hits discovered at various distances (1 throughTTL) by the methods

in the static setting. This is an important metric that shows how many objects each method locates with

few or more messages. Flood-based schemes discover the vast majority of the objectsTTL hops away,

since the available nodes increase exponentially with distance. This is the case forLI and Int/Mod-BFS.

LI always locates about 99% of its objects 4 hops away and the rest only 1 hop away from the requesters

(since only nodes at these two depths process the queries).HG2 discovers about 90% of the objects with

its flooding phase (2 hops away).Random Walksdiscovers almost the same number of objects per distance,

since the query forwarding is done randomly.GIA also uses walkers and exhibits the same characteristic,

but this is not due to random forwarding, but due to the random graph model and replication distribution

in the overlay.DRLP finds almost 70% of its hits using its indices (which also explains why its hit

average is close to one). The rest are discovered through the flooding phase and therefore their number

increases as the distance increases for the same reason as before.s-APS1 displays a symmectic curve.

After a certain distance, possible paths become too many and the accuracy of the indices drops. Finally,

we notice thatGS only discovers about 5% of its hits using the shortcuts, whereas in the smaller graph

the respective number was 50%. This can be explained by the fact that the flooding scheme now finds 2

orders of magniture more objects than in the previous graph, while shortcuts still find one.

Figure 4 shows how object popularity affects the methods’ accuracy and message production in the

dynamic environment. Popularity decreases as we move to the right along the x-axis. The first data point

1not the w-APS version that favors the discovery of nearby objects

Object Popularity

20

40

60

80

100
Su

cc
es

s
R

at
e(

%
)

Int-BFS
LI
Mod-BFS
s-APS
HG2
RWalks
DRLP
GS
GIA

Object Popularity

0.1

1

10

100

1000

M
es

sa
ge

s
pe

r R
eq

ue
st

Int-BFS
LI
Mod-BFS
s-APS
HG2
RWalks
DRLP
GS
GIA

Fig. 4. Accuracy and message production vs. object popularity in the dynamic setting

represents the accuracy/messages of the methods for the top-10%, the second for objects ranked between

11–20%, etc. This is an important comparison, because different applications or users target objects of

various popularity.

The three BFS-related methods together withGSexhibit very high accuracy, withMod-BFSshowing a

noticeable decrease only for the least popular items.Random Walks, HG2, s-APSandGIA show decreasing

accuracy as popularity drops, withGIA ands-APSclearly performing better.DRLP performs very poorly

for the very popular documents (about 20%), but its accuracy increases as popularity drops. This can

be explained by the fact that less popular objects receive considerably fewer queries. Therefore, object

relocations and node departures which affect the algorithm happen less frequently during requests for

such objects. All algorithms — exceptDRLP and GS — waste roughly the same amount of messages

per request for each popularity group.DRLP andGS increase their consumption with popularity for the

sole reason that the cost of the initial floods is now amortized over a smaller number of requests. In

our experiments we finally noticed that all algorithms (exceptDRLP and GIA that deploy full flooding)

discover a decreasing number of objects as popularity drops, exactly because this means there exist fewer

objects to be located.

In the dynamic environment, we also measure the percentage of messages per request sent due to index

updates (for relevant methods only). We found thatInt-BFS requires 11%(=131 mesg) of its messages

for index updates. The respective numbers forLI, GIA ands-APSare 14.4%(= 2968 mesg), 31.7%(= 14

mesg) and 18.5%(= 8 mesg). AlthoughGIA ands-APSappear to require a larger portion of updates, they

are much more bandwidth-efficent than the other methods in absolute performance.

Our previous simulations depicted the relative performance characteristics of the nine algorithms. To

some extent, that sort of comparison was not direct either because of the different nature of the methods

or because of the single choice of the various parameters. Since it is impossible to directly compare the

methods for the same parameter values (e.g.,k,TTL), we select simulations using a more dense 10,000-

node random graph (d = 20), where the algorithms had similar performance in one of two important

metrics: Messages and hits per query. These results were obtained by experimenting on various values

TABLE II

COMPARISON ON A10,000-NODE RANDOM GRAPH WITH DEGREEd = 20

Comparison Metric Mod-BFS Int-BFS HG2 RWALKS s-APS DRLP GS GIA

Success(%) 63.6 67.6 63.5 62.2 93.4 100 90.8 99.9

Messages Mesg 73.4 83.0 77.0 72.5 70.6 79.2 77.0 70.0

Hits 1.9 2.3 2.1 2.0 10.7 5.3 1.12 14.9

Success(%) 75.8 77.0 71.9 75.0 80.2 100.0 100.0 92.2

Hits Mesg 134.4 117.1 115.1 125.2 31.4 43.0 356.5 32.1

Hits 3.5 3.2 3.1 3.2 3.8 3.4 3.6 3.8

for k, TTL, number of neighbors to forward and number of requester nodes. The results are presented in

Table II and the comparison metric is typed in boldface.LI is omitted from this table because its large

message and hit production could not be matched by the other methods.

For similar message consumption, firstGIA, thens-APSdiscover the most objects (followed byDRLP

with about 10 extra messages per search). These three methods also prove extremely accurate, while the

rest of the schemes (either flood-based or random) do not perform well. For similar hits per search, again

GIA ands-APSstand out aboveDRLP, which wastes few more messages but is perfectly accurate. From

the rest of the methods, onlyGS is 100% successful, but exhibits the highest message consuption.

D. Increased number of objects

In the previous settings, we simulated an environment where peers had multiple requests for certain

objects. Imagine a network of sensors which collect information that changes with time. Sensors may also

relocate or start collecting new data. Our previous model was mainly tailored for such a system, where

peers want specific objects at various times (more than once) but they are not guaranteed to find them at the

same place. The small number of objects (with a wide range of replication ratios) together with the varying

workload and network dynamics best enables us to observe the effect of popularity, dynamic behavior and

forwarding scheme. We now consider a more general situation, with a large number of objects (20,000)

and peers making random requests. This could be an example of a P2P search engine application, with

users having their own preferences (changing with time). Table III presents our comparison using two

graphs, our original 10,000-node (d = 4) random graph and a 10,000-node (d = 4.4) power-law (PLAW)

graph. For larger graphs (simulations up to 50,000 nodes), results are qualitatively similar.

Compared to the previous results, we clearly notice a small performance degradation, which is natural

if we consider than now more queries are made for sparsely located objects, while flooding is used more

by some of the methods. Nevertheless, firstDRLP, followed by s-APSandGIA achieve numbers closest

to the original ones. With the power-law topology, although the average out-degree is the same as with

the random graph, various neighborhoods differ substantially, since there are few nodes with very high

connectivity.GIA clearly takes advantage of this and discovers a number of objects comparable toLI, as it

routes queries through the high connectivity areas. Another observation is that pure flood-based schemes

TABLE III

COMPARISON OF THE NINE METHODS WITH A20,000-OBJECT POOL

Graph Mod-BFS Int-BFS LI HG2 RWALKS s-APS DRLP GS GIA

Success(%) 68.4 69.7 89.9 30.7 29.8 75.2 99.0 89.2 74.4

RANDOM Mesg 118.8 115.4 1511.6 24.9 18.6 24.1 7.1 563.5 18.3

Hits 2.3 2.4 37.7 0.5 0.4 2.2 1.2 5.0 3.2

Success(%) 56.8 62.3 93.3 76.7 22.9 75.7 98.3 88.4 94.1

PLAW Mesg 73.3 82.0 1473.0 750.3 13.1 15.1 5.0 355.9 40.7

Hits 1.53 1.85 86.1 17.7 0.32 1.9 1.2 3.0 55.9

also discover substantially more objects (again compared to the random graph simulation with 20,000

objects).HG2 achieves more than 10 times more hits with a 150% increase in accuracy, using 30 times

more messages.LI doubles its hits without any message increase. The rest of the schemes perform very

similarly to the previous simulation.

V. CONCLUSIONS

This paper presents a description of current search techniques for unstructured P2P networks, along

with a quantitative comparison through simulation. Our analyses focus on the performance metrics of

search accuracy, bandwidth consumption, discovered objects and behavior under dynamic operations.

The specifics of the problem play a big role in choosing the right method. Each scheme has its own goals

and it is important that these goals match the application’s. Important parameters that could influence our

decision include how dynamic the system is, what is its primary purpose (e.g., fast object discovery, many

hits, bandwidth-efficient and accurate, easy deployment, combinations of them), what is the underlying

topology, the expected workload, etc. We offer some general-purpose observations based on our analysis

and simulations, hoping they will prove useful in evaluating the plethora of different schemes.

1) Blind forwarding is not adequate for both high performance and low cost.

2) Keeping direct pointers to more peers (e.g.,DRLP, GS) is very efficient in relatively static environ-

ments

3) The index semantics play an important role. Direct location information is effective but sensitive

to changes and more demanding (becomes obsolete if a failure/relocation occurs, requires update

messages). Indirect information (e.g., success rates ins-APS, Int-BFSor connectivity/capacity in

GIA) is much more robust but less accurate

4) Indexing other peers’ repositories can prove very useful but must be carefully applied, since it

requires updates to keep the indices up-to-date. Even when these updates are piggybacked, they still

require bandwidth

5) Adaptation is sometimes desirable. Peers that have a prolonged stay in the network or route/answer/make

many requests should enhance their knowledge with time.GS, s-APSand Int-BFS learn from the

system queries and the more they participate, the more they improve.

6) Experience has taught that, in many cases, the simple protocols are the preferred ones. The simplicity

of the mechanisms behind flooding or random walks make them powerful and easy to implement.

They can be used either by themselves or in combination with other schemes to improve their

performance

Finally, we summarize our specific observations:LI shows excessive bandwidth consumption even in

sparse graphs, similar toGS’s searches for unseen objects. A choice betweenMod-BFS and Int-BFS

must evaluate the trade-off between an increased bandwidth/hit production and simplicity on a well-

defined context. Other blind methods (e.g.,Random Walks, HG2) are simple and can reduce the amount

of messages, but generally fail to perform satisfactorily and adapt to different workloads. Conversely,

most informed methods achieve great results but have to cope with index maintenance.DRLP ands-APS

require no costly updates. The former performs best in relatively static environments, deteriorating when

the network is very dynamic. The latter uses its adaptive scheme to achieve a good all-around performance

at low cost, but performs best with larger workloads. Finally,GIA proved a very good all-around solution,

combining different ideas from other schemes. The question here relates to the overhead and effectiveness

of the overlay adaptation algorithm that it proposes.

REFERENCES

[1] Clay Shirky, “What Is P2P ... And What Isn’t,”OpenP2P.com, 2000.
[2] “http://www.napster.com.,” Napster website.
[3] “http://www.gnutella.com,” Gnutella website.
[4] “http://www.kazaa.com,” Kazaa website.
[5] “http://www.jxta.org,” Project JXTA.
[6] “http://www.microsoft.com/net,” Microsoft .NET.
[7] “The impact of file sharing on service provider networks. An Industry White Paper, Sandvine Inc.,” .
[8] “http://www.openp2p.com.,” openP2P website.
[9] “http://www.peer-to-peerwg.org/.,” Peer-to-Peer working group.

[10] D. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard, S. Rollins, and Z. Xu, “Peer-to-Peer Computing,” Tech.
Rep. HPL-2002-57, HP, 2002.

[11] S. Saroiu, P. Gummadi, and S. Gribble, “A measurement study of peer-to-peer file sharing systems,” Tech. Rep. UW-CSE-01-06-02,
Un. of Washington, 2001.

[12] J. Chu, K. Labonte, and B. Levine, “Availability and Locality Measurements of Peer-to-Peer File Systems,” inSPIE, 2002.
[13] S. Sen and J. Wang, “Analyzing peer-to-peer traffic across large networks,” inSIGCOMM Internet Measurement Workshop, 2002.
[14] S. Saroiu, K. Gummadi, R. Dunn, S. Gribble, and H. Levy, “An Analysis of Internet Content Delivery Systems,” inOSDI, 2002.
[15] V. Kalogeraki, D. Gunopulos, and D. Zeinalipour-Yazti, “A Local Search Mechanism for Peer-to-Peer Networks,” inCIKM, 2002.
[16] C. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and Replication in Unstructured Peer-to-Peer Networks,” inICS, 2002.
[17] D. Tsoumakos and N. Roussopoulos, “Adaptive Probabilistic Search for Peer-to-Peer Networks,” in3rd IEEE Intl Conference on P2P

Computing, 2003.
[18] S. Daswani and A. Fisk, “Gnutella UDP Extension for Scalable Searches (GUESS) v0.1,” .
[19] A. Crespo and H. Garcia-Molina, “Routing Indices for Peer-to-Peer Systems,” inICDCS, July 2002.
[20] M. Stokes, “Gnutella2 Specifications Part One: http://www.gnutella2.com/gnutella2search.htm,” .
[21] K. Sripanidkulchai, B. Maggs, and H. Zhang, “Efficient Content Location Using Interest-Based Locality in Peer-to-Peer Systems,” in

INFOCOM, 2003.
[22] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker, “Making Gnutella-like P2P Systems Scalable,” inSIGCOMM,

2003.
[23] S. Rhea and J. Kubiatowicz, “Probabilistic Location and Routing,” inINFOCOM, 2002.
[24] B. Yang and H. Garcia-Molina, “Improving Search in Peer-to-Peer Networks,” inICDCS, 2002.
[25] A. Singla and C. Rohrs, “Ultrapeers: Another Step Towards Gnutella Scalability,” .
[26] D. Menasće and L. Kanchanapalli, “Probabilistic Scalable P2P Resource Location Services,”SIGMETRICS Perf. Eval. Review, 2002.
[27] P. Ganesan, Q. Sun, and H. Garcia-Molina, “YAPPERS: A peer-to-peer lookup service over arbitrary topology,” inINFOCOM, 2003.
[28] E. Cohen, A. Fiat, and H. Kaplan, “Associative search in peer to peer networks: Harnessing latent semantics,” inINFOCOM, 2003.
[29] E. Zegura, K. Calvert, and S. Bhattacharjee, “How to model an internetwork,” inInfocom, 1996.

[30] C. Jin, Q. Chen, and S. Jamin, “Inet: Internet Topology Generator. Technical Report CSE-TR443-00, Department of EECS, University
of Michigan,” 2000.

[31] L. Adamic, R. Lukose, A. Puniyani, and B. Huberman, “Search in power-law networks,”In press, Phys. Rev. E, 2001.

