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Abstract

Quadratic Dynamic Matrix Control (QDMC) with state estimation is presented for use with
nonlinear process models. This formulation extends Garcia’s nonlinear version of QDMC to
open-loop unstable nonlinear processes and allows for better disturbance rejection. Stability
and better performance is observed when compared to the algorithm without state estima-
tion in rejecting disturbances for processes operating at unstable steady state setpoints, as
illustrated with two simple examples. The algorithm requires that only a Quadratic Program
be solved on-line. The modest computational requirements make it attractive for industrial
implementation. The effectiveness of the approach is demonstrated by its successful applica-
tion to the temperature control of a semibatch polymerization reactor. A model and related
control requirements for this problem were presented at the 1990 AIChE Annual Meeting in
a session on “Industrial Challenge Problems in Process Control.”






1 Introduction

Model Predictive Control (MPC) algorithms have been well received by the industry in the
past few years because of their ability to handle input and output constraints and of their
transparent tuning capabilities. Dynamic Matrix Control (DMC, Cutler and Ramaker, 1979)
is one of the most popular algorithms among the model based control algorithms and it has
been used extensively in the industry. The basic idea is to use a process model, in the form
of step or impulse response coefficients, in parallel with the plant in order to predict future
output values based on the past inputs (manipulated variables) and current measurements.
An objective function is minimized on-line to compute the future manipulated variables. An
extension of DMC to handle constraints explicitly as linear inequalities was introduced by
Garcfa and Morshedi (1986) and denoted as Quadratic Dynamic Matrix Control (QDMC).
Application of QDMC for processes which can be assumed linear has been mostly successful
in the industrial environment for multivariable linear process models with input and output
constraints {Garcifa and Prett, 1986).

Although linear MPC algorithms are successful in controlling processes which are linear and
mildly nonlinear, performance degradation and instability often occur in the presence of
strong nonlinearities. The advent of high speed computers provided enough motivation to
propose algorithms that utilize nonlinear process models in the on-line optimization. As a
result, a significant number of new control algorithms have been proposed based on nonlin-
ear programming techniques (Brengel and Seider, 1989; Li and Biegler, 1989; Patwardhan
et al., 1988). Peterson et al. (1990) update the linear model by computing a time varying
disturbance vector which accounts for the nonlinearities. In their approach a Quadratic
Program is solved repeatedly at each sampling point until the linear model approximates
the output of the nonlinear model. Recent progress in nonlinear control is reviewed by Be-
quette (1990). However, the excessive computational requirements of such methods remain
a serious obstacle to industrial implementation in spite of the advances made in developing
efficient algorithms. Also, not much progress has been made in understanding their stability
and performance properties.

Prior to the development of algorithms based on nonlinear programming techniques, Garcia
(1984) proposed an extension of QDMC to nonlinear processes. In his approach, the future
manipulated variables are predicted at every sampling time. A nonlinear model is used to
compute the effect of past manipulated variables and the future estimated disturbances on
the predicted output. A linear model is obtained by linearization at each sampling time
and used to compute the effect of future manipulated variables on the predicted output.
Then, a Quadratic Program (QP) is solved as in the case of linear QDMC to compute the
future manipulated variables. The requirement of solving only one QP on-line makes this
algorithm an attractive option for industrial implementation. The major disadvantage of
this algorithm is that it may not perform well in controlling integrating processes and may
lead to instabilities when applied to open-loop unstable processes.

The main objective of this paper is to present an algorithm which is computationally feasible
for industrial implementation and at the same time capable of handling open-loop unsta-
ble and integrating processes. This is accomplished by incorporating state estimation into



Garcia’s (1984) nonlinear version of QDMC. The steady state Kalman filter gain is computed
at each sampling time by using a linearized model and a tuning parameter which represents
the ratio between the uncertainty in the state and the noise in the measurement. Model
states are compensated for unmodelled dynamics at each sampling time based on the mea-
sured variables and the steady state filter gain. The effectiveness of the proposed algorithm
is demonstrated by its application to a marginally unstable system and to a completely
unstable system. We also establish the connection between Ricker’s (1990) state space for-
mulation for linear QDMC and the proposed algorithm, when a linear model is used. Finally,
the applicability of the algorithm on an industrial type problem is demonstrated by its suc-
cessful application to the temperature control of a semibatch polymerization reactor. This
process control problem was defined by Chylla and Haase (1990) in a session on “Industrial
Challenge Problems in Process Control” at the 1990 Annual AIChE Meeting.

2 Linear and Nonlinear QDMC

The proposed algorithm is an extension of Garcia’s (1984) nonlinear version of QDMC (ab-
breviated to NLQDMC from here onwards). We give here a brief presentation of the QDMC
concept and its extension to nonlinear processes. For a detailed description the reader is

referred to Garcfa and Morshedi (1986) and Garcia (1984).

In both QDMC and NLQDMC the computation at each sampling time involves the prediction
of values of outputs in the future and the minimization of future squared output deviations
from their setpoints to obtain the future manipulated variables. The output prediction is
computed from the effect of the past and the future manipulated variables as well as the
disturbance prediction into the future, which accounts for unmodelled effects and external
process disturbances. Linear QDMC utilizes a step or impulse response model of the process
and NLQDMC utilizes the model of the process represented by nonlinear ordinary differential
equations. The difference between QDMC and NLQDMC lies only in the way the output
values are predicted. Below we summarize how each contribution to the projected output
is computed in NLQDMC. However, the approximations made in extending the QDMC
to nonlinear processes such as superposition of past and future effects and constant step
response coeflicients for each of the future moves make the solution suboptimal. These
approximations are necessary in order for the on-line optimization to be a single QP at each
sampling point.

Effect of past manipulated variables on the predicted outputs

The model is described in the form of nonlinear differential equations. The contribution of
the effect of past manipulated variables on the predicted outputs is defined as the value of the
outputs if there are no input (manipulated variable) changes in the future. This is obtained
by integrating the model differential equations from the current state over the prediction
horizon with constant inputs.

Effect of future manipulated variables on the predicted outputs

The contribution of the future manipulated variables to the predicted output is represented
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with the use of a step response model. A linear model obtained by linearization of the
nonlinear model at each sampling time is used to compute the step response coefficients.

Effect of future disturbances on the predicted outputs

The unmodelled effects at the current sampling time are computed as the difference be-
tween the plant measurements and the model outputs. In the absence of any information
on unknown disturbances in the future, it is assumed that the future predicted values of
disturbances are equal to the current values.

3 Algorithm Formulation with State Estimation

Navratil et al. (1989) and Li et al. (1989) have proposed the use of state estimation with
linear Model Predictive Controllers. Lee et al. (1990) generalized linear MPC to integrat-
ing systems and systems with measurement noise. Ricker (1990) formulated the objective
function using discrete, linear, time invariant, state space models to take advantage of state
estimation theory. In this paper we combine Ricker’s (1990) approach for linear models with

NLQDMC.

For the general case of Multi-Input Multi-Output (MIMO) systems, consider process and
measurement models of the form

@ = f(z,u) +w (1)
y = h(z)+v (2)

where z is the state vector, y is the output vector, u is the vector of manipulated variables
and w ~ (0,Q) and v ~ (0, R) are white noise processes uncorrelated with each other. ¢ and
R are covariance matrices associated with process and measurement noise respectively. In
chemical processes the dynamic models are often poor and it is very difficult to characterize
the disturbances. In the absence of reliable information on disturbance models, it is desirable
to keep the structure of disturbance/noise as simple as possible. It is assumed that @ ~ o2 1
and R =~ o2], where 02 and o2 are scalar variances. Define ¢ = o,,/o, and let 02 = 1.
The ratio of 62 to o2 determines the value of the Kalman filter gain. Intuitively, o is the
ratio between statistical measures of the uncertainty in the state and the uncertainty in a
measurement. Therefore, o can be used as a tuning parameter to give stability and robustness
in the presence of model-plant mismatch, external disturbances and measurement noise. A
large value of o implies that the model uncertainty dominates over measurement noise.
Ricker (1990) demonstrated the effectiveness of a similar kind of tuning parameter for linear
models.

Algorithm
Known at sampling instant k :

y(k) the plant measurement, #(k|k—1) the estimate of state vector at k based on information
at k — 1, and u(k — 1) the manipulated variable.

Effect of future manipulated variables



Step 1: Linearize the nonlinear model & = f(z,u) at #(k|k — 1) and u(k — 1) to obtain
& = A+ B

y = Gt (3)
where
af
Ak = (ax)lz=x(klk—1),u=u(k—l)
of
B, = (%)lz:i‘(klk—-l),u:u(lc-—l)
oh

Cr = (‘a‘;)lx:.i(klk—l)

The computation of the derivatives can of course be made analytically. This however, is
impractical, except for small systems. In general, numerical differentiation should be used.
In the examples in this paper, the 5-point central difference formula was used, without any
problems.

Step 2: Discretize (3) to obtain
.’;Jj+1 = (I)k:f}j -+ Fkuj
yi = Ciij (4)

where @, and I'; are discrete state space matrices (e.g., Astrém and Wittenmark, 1984),
obtained from Ay, By and the sampling time.

Step 3: Compute the step response coefficients S;x (¢ = 1,2,..., P) where P is the pre-
diction horizon. Step response coefficients are used only to represent the effect of future
manipulated variables. Therefore, only P step response coefficients are required. S can be
obtained from ‘
¢ .
Sik =3 Ci®'Ty (i=1,2,...,P) (5)
=1
S;r is of dimension n, X n;, where n, is the number of outputs and n; is the number of
inputs. Step response coefficients can also be obtained by numerical integration of the
linearized model, since they are defined as the values of output for a constant unit step
change in the input. Therefore, they can be obtained by successively integrating (1) over P
sampling intervals with « = 1.0 and z(¢x) = 0.0 where t; is the time at any sampling point
k. The software package DDASSL (Petzold, 1983) was used for integration.

The contribution of the future manipulated variables to the predicted output values at £ +1
is represented as Y\, S;xAu(k +1—14) (I = 1,2,...,P), where Au is the change in
manipulated variables, defined as Au(k) 2 u(k) — u(k - 1).

Computation of filter gain

Step 4: Compute the steady state Kalman gain using the recursive relation (Astrém and
Wittenmark, 1984):

Pose = B[Py — PauCl(CoPuCT + R CePa)of +Q (6)
](k = q’kpwkCg{CkPkaE + R]—l (7)
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where Pj; is the state covariance at iteration j for the model obtained by linearization at
sampling point k. Py is the steady state value of state covariance for that model.

Effect of past manipulated variables

Step 5: The effect of past inputs on future output predictions, y*(k+1), y*(k+2),...,y*(k+P)
is computed as follows. Here the superscript ‘+’ indicates that input values in the future are
kept constant and equal to u(k — 1).

o Set &*(k|k — 1) = &(k|k — 1).
e Define d(k|k) as y(k) — h(Z(k|k — 1)).

o In the absence of measurement information in the future, it is assumed that d(k+:]k) =

d(klk) for i =1,2,...,P.

e For 7 = 1,2,..., P, successively integrate # = f(z,u) over one sampling time from
#*(k +1— 1k — 1), with u(k +¢ — 1) = u(k — 1) and then add Kid(k|k) to obtain
#*(k + 1]k — 1). Addition of K,d provides correction to the state. We can then write

y(k+i)=h(@"(k+ik-1) (=12,...,P) (8)

Output Prediction

Step 6: The predicted output is computed as the sum of the effect of past and future
manipulated variables and the future predicted disturbances.

Gk +1) =y (k+1)+ is,-,kAu(k Fl—d)+dklk) (I=1,2,...,P) (9)

=1

Even though the model states are compensated for unmodelled effects, the future predicted
disturbances are added to the effect of past and future manipulated variables to compute the
future predicted outputs. This is necessary in order to eliminate steady state offset. Ricker
(1990) adds the disturbance vector d(k|k) to the output prediction indirectly, by adjusting
the reference setpoint used in the objective function. The reader can find there a discussion
why this is necessary for avoiding steady-state offset. In a different form of state space
formulations (Lee ef al. 1990; Ricker, 1991), where outputs are also treated as states, this
addition is not required. No straightforward incorporation of that approach to the original
NLQDMC algorithm seems possible though.

Optimization
k+P , ,
. A - 2 a _ . 2 .
i Bhoae g 2o 0O = OGO = r(0) + Ault = DTNt = 1) (10

where P is the prediction horizon and AM is the number of future moves to be optimized. It
is assumed that u(k+ M — 1) = w(k+ M) = ... = u(k+ P —1). T and A are diagonal
weight matrices.



The above optimization problem with constraints can be written as a standard Quadratic
Programming problem, as shown in Garcia and Morshedi (1986):

min ®(X) = -;-XTGX +4¢7X (11)
subject to:
DTX >b (12)
where
X = [Au(k)...Au(k + M - 1)]T (13)

and D and b depend on the constraints on manipulated variables, change in manipulated
variables and outputs.

Step 7: The M future manipulated variables are computed, but only the first move is
implemented (Garcia and Morshedi, 1986).

Fstimation of state

Step 8: Integrate ¢ = f(z,u) from z(k|k — 1) and u(k) over one sampling time and add
Kid to obtain &(k + 1|k).

The above steps are repeated at each sampling time. For o = 0.0, K is 0.0 and this algorithm
is equivalent to Garcia’s (1984). Ricker (1990) used @ = o2TI'7 in his formulation for linear
models. For such @ and for linear models, our algorithm is equivalent to Ricker’s without
reference model dynamics. Incorporation of reference model dynamics is straightforward.

We formulated the algorithm making an assumption that the process and measurement
noises are white noise processes with zero mean. However, the algorithm is also applicable
for step like disturbances. We have tested the proposed algorithm with step like disturbances
in input and demonstrated in examples 1 and 2. For step like disturbances, the plant states
are not tracked perfectly by the model states, by using the proposed estimator. However,
the purpose of the estimator in this paper is to make the closed loop system stable. The
idea is similar to the design of an observer for linear systems. The asymptotic disturbance
rejection property results from the addition of disturbance vector to predicted values of the
output. We expect similar behavior when the system is subjected to colored noise.

4 Examples

In this section, the performance of the proposed algorithm on a marginally unstable system
and on a completely unstable system is demonstrated. It is shown that NLQDMC can
stabilize the marginally unstable system but not the completely unstable system, whereas
NLQDMC with state estimation can stabilize both systems with excellent performance.

Example 1 (Marginally unstable system)

This example problem is adapted from the paper by Li and Biegler (1988), which describes
a kinetic model of a catalytic reaction in a CSTR with multiequilibrium points at steady
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state. For the reaction A+ B — P the rate of decomposition of B is
k1Cg

_ 14
27 (14 k:Cp)?o (44
The system is described by a dynamic model of the form:

% = wu;+ug;— 0.251:(1"5 (15)

dz, U1 Uy kyz,
a2 _ et —zo)— — 16
di (CBI x2)$1 + (CB2 m2)x1 (1 + k2x2)2'0 ( )
nh = n (17)
Y2 = 22 (18)

where u; is the inlet flow rate with condensed B, u, is the inlet flow rate with dilute B, z;
is the liquid height in the tank and z, is the concentration of B in the reactor. The control
problem is simulated with the values k; = 1.0, k; = 1.0, Cp; = 24.9 and Cp, = 0.1.

The model has two stable and one unstable steady state points. At the unstable steady
state the linear model has the eigenvalues at —0.01 and 0.01286. The model is marginally
unstable with respect to the concentration. Here, we choose the unstable steady state point
as setpoint to demonstrate the control of open-loop unstable systems using the proposed
algorithm.

Figs. 1 and 2 illustrate the response of the reactor for a setpoint change from an initial
condition of x,0 = 40.00 and z49 = 0.1 to the unstable steady state point with values at
z1 = 100.00 and xz; = 2.787. Here, we assume there is no model-plant mismatch. For
no model-plant mismatch and no external disturbances the algorithms with and without
state estimation result in identical responses. The lower bounds on u; and u, are kept at
zero and the upper bounds varied from 5 to co. A sampling time T of 1.0 min and the
tuning parameter values P = 5 and M = 5 are used in the simulations. For the tuning
parameter A, a value of 0.0 is used when the upper bounds on manipulated variables are
at 10.0 and oo, and a value of 0.5 when the upper bounds are at 5.0. The results are
comparable with the results presented by Li and Biegler (1988). Brengel and Seider (1989)
also compare the results of their algorithm with those of Li and Biegler (1988). They claim
marked improvement in reducing both overshoot and settling time. However, the proper
choice of tuning parameters can also reduce the overshoot and settling time. For comparison
purposes, simulations are presented with the same tuning parameters and sampling time
chosen by Brengel and Seider. A sampling time of 1.0 min and tuning parameter values
P=M=1,A=0.0, and ' = diag{1,20} were used in their simulations. The manipulated
variables were bounded between 0.0 and 10.0. The simulations with NLQDMC are given in
Figs. 3 and 4. From Fig. 4, it can be seen that a large value of weight on the second output
leads to better performance. For a value of weight 1.0 on the second output the response is
similar to that presented by Li and Biegler and for a value of 20.0 the performance is better
than that observed by Brengel and Seider.

Figs. 5 and 6 demonstrate the disturbance rejection capability of the proposed algorithm.
Here we assume that the plant is running at the unstable steady state. A sampling time of 1.0
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min and the tuning parameter values P = 5.0, M = 5.0, A = 0.0 and & = 1.0 are used in the
simulations. The lower bounds on u; and u, are kept at zero and there are no upper bounds.
For a step disturbance of 0.5 units in u,, the proposed algorithm rejects the disturbance in
just a few sampling units. It is interesting to analyze the response of outputs using NLQDMC
without state estimation. At steady state, the linear model has a stable pole corresponding
to r; and an unstable pole corresponding to z;. If we design a one-step-ahead controller
based on the unstable linear model, the system will generate an unbounded response for a
bounded input signal. But, in the nonlinear case, against this intuition, a strange behavior
is observed. Since, the pole corresponding to y; is stable, this output slowly reaches its
setpoint (Fig. 5). On the other hand (Fig. 6), y, continues to grow. This happens because
the model goes through the locally unstable region. But, surprisingly after few sampling
instants, the response turns around. Here, one should recall that, at each sampling time the
nonlinear model is linearized at the values of the model states. Initially at steady state the
linearized model has an unstable eigenvalue. Once the input disturbance is introduced, there
is a mismatch between model and plant states and the model states take different values
than the plant states. Initially the response of the closed-loop system is unstable because
the linearized model has an unstable eigenvalue. After a few sampling instants, due to the
nature of the disturbance, the linearized models have all eigenvalues stable. Although this
is not sufficient by itself to stabilize the system, in this case it leads to closed-loop stability.
This is an example where, even though the system is open-loop unstable, it happens that
the nature of the disturbance makes the closed-loop system stable. This phenomenon may
or may not be observed in other cases. It does not happen in example 2.

Example 2 (Completely unstable system)

This example is adapted from the paper by Bruns and Bailey (1975). The system is described
by a dynamic model of the form

dz 1.0

P v oy o 19)
y = 2z (20)

where y is the reactant concentration, ¢ is the dimensionless time, u is the feed reactant
concentration, K; and K, are kinetic constants and § is a constant. The model for the
single enzyme-catalyzed reaction with substrate inhibited kinetics (O’Neill et al., 1971) as
well as the model for the ethylene hydrogenation in an isothermal CSTR (Matsuura and
Kato, 1967) are of the above form. The reactant concentration in the reactor is controlled
using the feed reactant concentration as the manipulated variable. The simulations are made
using the values 8 = 2.0, K} = 0.01 and K> = 0.1.

The model has two stable and one unstable steady state points. The unstable steady state
is at = 0.1250 and u = 0.9834. The linear model at this steady state has the eigenvalue
at 2.4482. The control objective is to keep the reactant concentration at its setpoint in the
presence of input disturbances.

Figs. 7,8 and 9 give the responses for a step input disturbance of 0.05 in the feed reactant
concentration. In all simulations a lower bound of 0.0 is imposed on the input and there is
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no upper bound. A sampling time of 0.1 is used. State estimation NLQDMC can reject the
disturbance in a few sampling times as demonstrated in Fig. 7. Better performance is ob-
served for a larger value of o. If there are no unmeasured disturbances and the measurement
noise is negligible, large values of sigma will lead to better performance. However, in the
presence of measurement noise and unmeasured disturbances a large value of o may lead to
instability. On the other hand, as shown in Figs. 8 and 9 NLQDMC without state estimation
cannot stabilize the process and the output oscillates. The reason for this oscillation is the
following. A linearized model at any state x;o and input uyo takes the form

iif— = qr+u
dt
a = —-10+c¢
2.0(10.0 — &1
= ( %) (21)

(1.0 + 22 4 10.020)?

The sign of the eigenvalue changes when 2%, < 0.001 or ¢ < 1.0 (which occurs when z >
0.342). The model states oscillate between the stable and unstable regions and cannot be
stabilized without the Kalman filter.

5 Temperature Control of a Semibatch Emulsion Poly-
merization Process

In this section we demonstrate the effectiveness of the NLQDMC algorithm for industrial
implementation by its application to a temperature control of a semibatch polymerization
reactor. The process description and control problem specifications are summarized from

the paper by Chylla and Haase (1990).
Process description

A stirred tank reactor is used to make specialty emulsion polymers in semibatch mode. The
reactor temperature is maintained at its setpoint by adjusting the temperature setpoint for
the water recirculating through the reactor jacket. In the current industrial implementation
this is accomplished by a PID master controller. The temperature of the water recirculating
through the reactor jacket is controlled to setpoint using a single input/dual output PID
slave controller. When the controller output is between 0% and 50%, the controller is in
cooling mode with the dump valve open 100% and 0% respectively. When it is between 50%
and 100%, the controller is in heating mode and the steam valve open from 0% to 100%.

Process Model

Chylla and Haase (1990) give material and energy balances in the form of nonlinear dif-
ferential equations. Also, they provide recirculation loop dynamics in the form of transfer
functions obtained by step tests on slave controller. Since a differential equation model is
used in NLQDMC, we have to derive equivalent linear differential equations that include
dead time to represent the recirculation loop dynamics. We transform the transfer function
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representation of the recirculation loop dynamics into a state space representation. This is
illustrated below. Then, we augment the linear state space equation with the nonlinear dif-
ferential equations of the material and energy balances. For the material and energy balance
equations and parameters the reader is referred to Chylla and Haase (1990). The transfer
functions representing the recirculation loop dynamics relate the % change in the span of
the instrument (100° F — 300° F') which measures the jacket temperature T} to a step change
in the controller output (Chylla, 1991). Two different transfer functions are provided for the
recirculation loop dynamics for the heating and cooling modes. For example, the transfer
function for the heating mode is

0.42¢701s
= 22
¢l = 5171 #2)
This equation corresponds to
dz(t) 1.0 0.42
= - ——u(t — 23
dt 510+ e - 01) (23)

z(t)
100.0

T;(t) = (300.0 — 100.0)

jo (24)

where T}, is the initial value of the jacket temperature, z is the % change in the span of the
instrument which measures T}, and u is the deviation variable of the controller output with
respect to its initial value ug. The value ug = 50.0 is used in the simulations. For ¢ < 0.1, u
is set equal to up. Similarly, a state space equation can be derived for the cooling mode.

Control Objectives

e The reactor temperature should be maintained at its setpoint throughout the batch.
Deviations of less than 1°F are considered satisfactory.

® During successive batches of the same product (the reactor is used to manufacture
different products), a polymer film forms on the reactor walls, which gets thicker with
each batch. The controller with the same values of tuning parameters must perform
well over a series of five consecutive batches under both winter and summer conditions.

A minimum change in controller output of 1% (2% valve position) is necessary in order to
overcome friction in the valve stem and hence to change the valve position.

Chylla and Haase (1990) have given recipes and data for products A and B. (A typographical
error (Chylla, 1991) exists on page 16 of Chylla and Haase (1990). The data UAy,, = 1074
Btu h~' °F~! should be read as UAj,, = 10.74 Btu h~! °F~!.) In this paper we only
give simulations for the case of product A. The performance of the algorithm was equally
satisfactory for product B. The recipe for product A is as follows.

(i) Place initial charge of solids and water into the reactor at ambient temperature.

(i1) Raise the temperature of the initial charge to the reaction temperature setpoint.
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(ii1) Feed pure monomer into the reactor at 1.0 1b/min for 70 minutes.

(iv) After the feed addition period is complete, hold at reaction temperature for 60 minutes.

Simulations with NLQDMC

The process never operates at locally open-loop unstable regions, so the Kalman filter is
not needed for stability, although it can be used. The manipulated variable is the controller
output which sends signal to either the steam or the dump valve, depending on whether
the controller is in heating mode or in cooling mode. The process output is the reactor
temperature, which is the measurement fed to the NLQDMC algorithm together with its
desired (setpoint) value. We assume that at k = 0, the temperature of the initial charge has
been raised to its setpoint (180°F). There is no reaction until the monomer addition begins.
In the absence of reaction, the jacket temperature has to be maintained at a higher value than
that of the reactor because of the heat losses to surroundings. From the energy balance, it
was found that the jacket temperature should be maintained at a value somewhere between
180.6°F and 181.5°F depending on the degree of fouling and ambient conditions. The
controller will be in heating mode until the value of heat generation due to reaction exceeds
that of heat losses to surroundings. Since the heat generation due to reaction is large when
compared to heat losses to surroundings, the controller switches to cooling mode almost
immediately once the monomer addition begins. Therefore for simplicity in the simulations,
it is assumed that the controller output is at 50% when the monomer addition begins (at time
0.0 in the simulations). A few cases are simulated to demonstrate that the controller works
over a series of consecutive batches in the presence of fouling and under both winter and
summer ambient conditions. A lower bound of 0.0 is imposed on the manipulated variable in
all simulations. If the change in controller output is less than 1%, then the previous control
move 1s implemented.

The material and energy balance equations augmented with (23) form a state space model
with three states. Because the time delay appears in a linear manner, one can linearize the
nonlinear differential equations first, ignoring the delay, and then simply include it at the
input of the linearized model. This is then integrated numerically with DDASSL to produce
the step response coefficients.

The tuning parameter values P = 10,M = 5 and A = 0.1 are used in the simulations.
In all simulations a value of 1.0 is used for the impurity factor in the rate equation. The
performance is equally good for any random value of impurity factor between 0.8 and 1.2 (as
specified in Chylla and Haase, 1990). Figs. 10 to 13 demonstrate the temperature control
under winter and summer ambient conditions. Simulations are shown with uncertainty in
the fouling factor (hs) as prescribed in Chylla and Haase (1990). In all cases the reactor
temperature is always maintained at its setpoint with £0.2°F error, which is well within the
1.0°F maximum deviation allowed. One should note that although the reactor temperature
remains very close to the setpoint, the process characteristics change quite substantially
when the control system switches from cooling to heating mode. The gain of the linearized
model almost doubles when that happens.
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6 Conclusions

A nonlinear QDMC algorithm with state estimation was presented in this paper. For a
special choice of a tuning parameter the proposed algorithm reduces to Garcia’s (1984)
algorithm. For a special choice of covariance matrix associated with process noise and, for
linear models, the algorithm is essentially equivalent to Ricker’s (1990) linear state space
formulation without reference model dynamics. A tuning parameter similar to that used by
Ricker for linear models is effective for nonlinear models as well. The proposed algorithm
stabilizes open-loop unstable plants and provides better disturbance rejection when compared
to Garcia’s algorithm. For no modeling error and no external disturbances the proposed
algorithm is equivalent to Garcia’s and the results are comparable with those presented
by Li and Biegler (1988). Brengel and Seider (1989) claim better performance of their
algorithm over Li and Biegler’s. However, it was found that by appropriately choosing the
tuning parameters both the results presented by Li and Biegler as well as Brengel and Seider
can be reproduced or improved upon by using nonlinear QDMC with state estimation. The
incorporation of a Kalman filter also results in better disturbance rejection for a marginally
unstable system. In a completely unstable system, the proposed algorithm can reject the
disturbance and drive the system to setpoint almost immediately, whereas Garcia’s algorithm
cannot stabilize the process. One should note, however, that the assumptions on the trivial
form of the covariance matrices result in a very simplified treatment of disturbance modeling.
One can of course use more complex forms, but as the examples show this is usually not
necessary. The effectiveness of the nonlinear QDMC algorithm is also demonstrated on
the temperature control of a semi-batch emulsion polymerization process, which has been
presented as an industrial challenge problem.

Other algorithms based on nonlinear programming techniques (Brengel and Seider, 1989;
Patwardhan et al., 1988; Schmid and Biegler, 1990) have also demonstrated the control of
unstable plants. The major advantage of the proposed algorithm compared to the nonlin-
ear programming approaches is that only a single Quadratic Program ts solved on-line at
each sampling time, which makes the proposed algorithm an attractive option for industrial
implementation.

Conditions for robust stability and performance of the nonlinear control algorithms is still
an open research issue. It is not clear, what are the merits and demerits of the various
algorithms over the others for analysis purposes. Any breakthrough in this area will be a
major accomplishment. The computational simplicity of the proposed algorithm may make
the theoretical analysis simpler. Work in this direction is currently underway in our research
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Modified software from the package CONSYD, developed at Caltech (Dr. M. Morari’s group)
and the University of Wisconsin (Dr. W. H. Ray’s group), was used in the simulations.

Notation

G(s)
hy

k

k+ 1]k

kl, k2a I{la 1{2
M

Moy 124

P

P;

Pook

Q,R

r

TB

Sz',k

Greek letters

B

constants

inequality constraint equation vector
continuous state space matrices
inequality constraint equation matrix
concentration of species B

species B in concentrated feed

species B in dilute feed

disturbance

the gradient vector

hessian matrix

transfer function of recirculation loop
fouling factor

current sampling time index

estimate at k+1 based on information at k
kinetic constants

no. of future moves

no. of process outputs and inputs
prediction horizon

state covariance at iteration j and sampling time &
steady state state covariance at sampling time k
covariance matrices

set point

rate of decomposition of B

step response coefficient matrix

time

sampling time

ambient temperature

jacket temperature

manipulated variable

rate of heat loss to surroundings

white noise processes

state

vector of change in manipulated variables
output

constant



I'A diagonal weight matrices

Iy, 0k discrete state space matrices
A change in the associated variable
0 time delay
o ratio o, /0,
o2 0? scalar variances
Subscripts
0 initial or nominal value
k current sampling time index
k0 initial or nominal value at k
Superscripts

estimated value

derivative
T transpose
* represents the effect of past
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Figure 11: Controller output vs. time; Tymy = 45°F. Dotted line Ay = 0.000; Solid line
hy = 0.002; Alternate dots and dashes hy = 0.004.
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