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ABSTRACT

In this paper we present a Distributed Intelligent
Fault Management (DIFM) system for communication
networks. The overall architecture of the proposed sys-
tem is based on a distributed cooperative multi-agent
paradigm, with probabilistic networks as the framework
for knowledge representation and evidence inferencing.
We adopt the management by delegation paradigm [5]
for network monitoring and integrate both hard and soft
faults.

INTRODUCTION

To meet the needs of current and future communica-
tion networks, it is the responsibility of network man-
agement to maintain the network operations and ser-
vice. The role of fault management is to detect, isolate,
diagnose and correct the possible faults during network
operations.

In current and future communication networks,
which are broadband, very large, heterogeneous and
complex, the dynamics become increasingly difficult to
understand and control. In the cases of multiple faults,
for example, it is almost impossible for the network
manager, inundated in the ocean of alarms, to correlate
the alarms and localize the faults rapidly and correctly
just by his experience. Further, more and more users,
possibly with different or even competing requirements
of quality of service (QoS), wish to benefit from the
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networks. These will pose significant problems on fault
management and thus an automated system with more
advanced techniques is needed.

Knowledge-based expert systems have been very ap-
pealing for automated complex system fault diagnosis
[2][7]. Nevertheless, most of the developed expert sys-
tems were built in an ad-hoc and unstructured manner
by simply transferring the human expert knowledge to
an automated system. Usually, such systems are based
on deterministic models and they are designed to re-
place the human experts. Observing that the cause-
and-effect relationship between symptoms and possible
causes is inherently nondeterministic, probabilistic mod-
els [13] can be considered to gain a more accurate rep-
resentation. Instead of replacing the human expert, the
expert system based on such a probabilistic model is ex-
pected to behave as the assistant to a human expert by
providing processed information and suggestions timely
and automatically.

In a centralized manager-agent paradigm, all of the
symptom information has to be sent to the central man-
ager for processing. Such a paradigm works well for
small networks. But as the networks become larger,
it will result in vast amounts of communication be-
tween manager and agent and thus occupy too much
bandwidth unwisely. Since there are many cases where
the faults can be resolved on-the-spot, we propose that
the faults should be handled locally if they are local.
Only those that cannot be handled locally should draw
global attention. Observing also that communication
networks are hierarchical and distributed by nature, it
is most desirable to take a multi-layered architecture
and distribute some intelligence to the lower layers that
are closer to the managed objects. The entities, which
have the distributed intelligence and whose responsibili-
ties are fault diagnosis in the local domains, are referred
to as “Intelligent Agents”(IA) [10].

In previous research, the term “fault” was usually
taken the same as “failure”, which means component
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malfunctions, e.g. sensor failures, broken links or soft-
ware malfunctions. Such faults are called “hard ” faults
and can be solved by replacing hardware elements or
software debugging and/or re-initialization. The diag-
nosis of the “hard” faults is called “re-active” diagnosis
in the sense that it consists of basically reactions to the
actual failures. In communication networks, however,
there are still some other important kinds of faults that
need to be considered, for example switch performance
degradation and link congestion. Since there might not
be a failure in any of the components, we call such
faults “soft ” faults. “Soft” faults are in many cases
indications of serious problems and for this reason, the
diagnosis of such faults is called “pro-active”diagnosis.
By early attention and diagnosis, such pro-active man-
agement will sense and prevent disastrous failures. In
our system, we consider both hard and soft faults, with
emphasis on the latter.

SYSTEM ARCHITECTURE

Figure 1 shows the general architecture of our DIFM
system. The managed network is divided into several
domains and for each domain, there is an intelligent
agent attached to it. A domain is an abstract notion,
which might be a subnet, a cluster, a host or a member
of a functional partition. For those problems that none
of the individual agents can solve, there is a mechanism
by which the agents can report to the coordinator and
share the information in order to get a global view and
solve it cooperatively. So the whole system is, from the
agent point of view, a distributed, cooperative multi-
agent system.

Network &Domains

 Coordinator

DDADDA DDA

Figure 1. Architecture of DIFM

Each agent is called a “Domain Diagnostic Agent
(DDA)” with the goals of monitoring the health of the

domain, and diagnosing the faults in a cost-efficient
manner. Each local DDA in DIFM includes the follow-
ing three functional components: Fault Detection and
Classification (FDC), Fault Localization and Identifica-
tion (FLI), and Fault Corrections (FC), respectively.

Fault Detection and Classification: The inputs
are measured data, alarms or users reports. Such in-
puts are analyzed so that the current system behavior
is obtained, based on which the fault hypotheses can be
generated and tested. The model of “normal” behavior
will be stored explicitly or implicitly, and model param-
eters should be adapted (learned) along the way. The
output of the FDC is the type of fault(s), for example
call failure.

Fault Localization and Identification: The prin-
cipal operation of FLI is to determine what might be
the primary causes for the symptoms (fault types) rec-
ognized by the FDC. Since the relationship between
symptoms and causes is probabilistic in nature, prob-
abilistic fault models should be considered. Belief net-
works, which form the basis for probabilistic reasoning
and expert systems, manifest themselves as the most
suitable choice [13]. Other examples of using proba-
bilistic models for fault diagnosis can be found in [4]
and [6].

Fault Corrections: Given the possible causes, we
are going to generate a set of tests or repair sequences
based on some heuristic or decision-theoretic strategies.
This is basically a sequential decision process and thus
can be formulated mathematically in some careful way
as a Markov decision problem.

The above functional components are implemented
by the following physical components: Intelligent Mon-
itoring and Detection Assistant (IMDA), Intelligent
Domain Trouble-shooting Assistant (IDTA), and In-
telligent Communication Assistant (ICA). Many such
DDAs will then be distributed in the network and act
as the “local experts” for different domains.

SYSTEM COMPONENTS

Intelligent Monitoring and Detection

IMDA is in the lowest layer and is the interface to
the Network Elements (NE). It provides symptoms in-
formation to IDTA, as illustrated in Figure 2. FDC is
implemented here.
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Figure 2. Illustration of an IMDA

IMDA monitors the network elements that belong to
its network domain. Based on this information it iden-
tifies the specific type of the fault that has occurred in
that network domain. Specifically, for each IMDA we
define a number of outputs and relevant activation sta-
tus, each one modeling a certain type of fault. We call
them Problem Definition Nodes (PDNs). We define five
activation levels for each PDN to reflect the severity of
the relevant network fault. Those five severity levels are
“alarm”, “major”, “minor”, “warning” and “normal”.
Note that the set of PDNs should be defined carefully to
reflect the most typical kinds of problems and the map-
ping to the monitored information is actually a pattern
recognition problem. The definition of the set of PDNs
depends on the specific network technology (eg. ATM,
IP).

From the above description it becomes obvious that
there is an explicit need for network monitoring. IMDA
requires for its operation a good knowledge of the cur-
rent status of the various network elements that com-
prise its network domain, in order to be able to set
accurately the status of the various supported PDNs.
Since we are mostly interested in soft faults, the net-
work monitoring system has to support not only detec-
tion of network failures but also detection of network
performance deterioration. We believe that the classi-
cal polling-based model for network monitoring is not
adequate because it will introduce a large amount of
management traffic, especially for high speed networks.
So IMDA will be based on the management by delega-
tion paradigm [5].

Specifically, we define a number of appropriate net-
work monitoring policies for supporting the monitoring
needs of IMDA. Those monitoring policies can be re-
alized using one of the existing technologies like Java,
CORBA, or even OSI management [1][12]. Each mon-

itoring policy is introducing a number of monitoring
sensor-objects inside the management components of
the various network elements (or at least as close as
possible). Those sensors are actually place-holders for
monitoring intelligence. They can be responsible for
watching a specific number of raw information objects
or even other monitoring sensors, and when some appro-
priately pre-defined condition becomes valid they are
able to notify IMDA. A classic example of such a con-
dition is a threshold crossing of a monitored network
statistic. Its value can be computed from raw statisti-
cal information stored in the NEs.

Using such a network monitoring paradigm we can
realize the operation of IMDA directly in the network
management application running on each monitored
network element in the network domain. The notifica-
tions that will be emitted by the created sensor-objects
will directly be mapped to the supported PDNs. Avoid-
ing the classical polling-based network monitoring re-
sults in reduced network monitoring traffic and allows
the management entities to focus in the realization of
the specific monitoring policies needed by IMDA for
supporting the PDNs.

Intelligent Domain Trouble-shooting

The IDTA is located above IMDA and acts as the
trouble-shooter for the symptoms reported from the
IMDA. FLI and FC are implemented here. It includes
a probabilistic expert system, which is basically a be-
lief network database. Based on the activation status
of the PDNs, a sub-belief network is extracted from the
database and then the inference and trouble-shooting
begin, as described below and shown in Figure 3. The
inputs are the activation status of the PDNs and the
outputs are primary causes and the suggested test se-
quence. The IDTA functionality includes scheduling of
the PDNs, extraction of the sub-belief network, infer-
ence and trouble-shooting. They consist of a trouble-
shooting cycle.

At the same time, there might be more than one
PDNs that are not in the “normal” state. The “alarms”
are to be considered with highest priority and the
“warnings” with the lowest (the “normal” status in-
curs no diagnosis at all). We notice that there should
be a mechanism to discriminate the severity levels and
determine for which PDNs the sub-belief network will
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Figure 3. Illustration of an IDTA

be extracted. For example, in a case where PDN one is
in “alarm” status and PDN two is in “minor” status, it
might be more desirable to take care of PDN one only
instead of considering both of them (let alone PDN two
only). The scheduling algorithm is for further study.

For the selected PDNs, a sub-belief network can be
extracted into the working memory. This can be done
using the idea of d-separation, as defined in the intro-
duction to belief networks in [13][14]. The nodes ex-
tracted are those that are not d-independent of the se-
lected PDNs. In other words, they are related in some
way to the problematic PDNs and hence, the candidates
as the causes of those symptoms.

Given the extracted belief network, the belief of any
non-PDN node to be faulty can be calculated through
backward inference, based on which static or dynamic
trouble-shooting strategies can be adopted to generate
the test sequence. To do this, it is desirable that a sug-
gestive test sequence be proposed by the system based
on some decision-theoretic principles. The principle we
adopt is to minimize the expected value of some appro-
priately defined cost function which takes into consid-
eration labor, time and urgency factors. Such a prob-
lem is basically a Markov decision problem and in [3]
we provide a dynamic programming formulation and
the proposed solution schemes. Reinforcement learning
techniques are also investigated there.

Re-actions are embodied in the handling of the
alarms. For pro-actions, however, we note the following:
First, since the “abnormal” PDNs with status other

than “alarm” can also be dealt with, the diagnosis af-
terwards is actually pro-diagnosis in the sense that it
is dealing with something before it really goes wrong,
assuming proper definition of the PDNs; Second, since
the belief network nodes are not restricted to be phys-
ical entities, they can also be “logical” or performance
nodes, such as “link congestion”, so that “soft” faults
can also be included.

Intelligent Communication

When the problems cannot be solved by any of the
individual DDAs, it is the role of the ICA to report
the problems to an upper layer, where correlation and
coordination can be done and a conclusion can be drawn
from a global point of view. The ICA is illustrated in
Figure 4.

Input Evaluation

Most probable causes and test
results obtained from IDTA

Information Compression
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To Coordinator

Figure 4. Illustration of an ICA

The inputs are results of belief computations (the
most probable causes) for various extracted belief net-
works and results from test sequences. The outputs are
compressed versions of symptom statistics and of the
results given as inputs. The outputs are then trans-
mitted to a coordinator in the upper layer via some
communication links.

The ICA functionality includes assessment of the
value of the results from belief computations and test
sequences (Input Evaluation). This evaluation will de-
cide to what extent it is worthwhile to send these re-
sults to an upper layer. Only the most relevant results
will be sent. In addition, the ICA will have a func-
tion to select features and compress the data describing
valuable inputs (Information Compression). The eval-
uation and compression will help reduce the amount of
data to be transmitted and thus reduce the bandwidth
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overhead for such communications. Finally, the ICA
must include a function which will decide where to send
the compressed descriptions and how to communicate
with minimum overhead with the upper layer (Commu-
nication Interface). To understand such selected and
compressed information (encoded data), the coordina-
tor receiving such information must share with ICA the
same encoding-decoding protocol. The whole commu-
nication will be realized using appropriate CORBA or
Java based technology [11].

CONCLUSIONS 2

In this paper we presented a Distributed Intelligent
Fault Management (DIFM) system for communication
networks. For more details, we refer to [3][9]. Note
that in a communication networks environment, the re-
sponse time of DIFM has to be ultra-short in order to
manage the system meaningfully. So most of the system
functions here are supposed to be well-trained off-line
before they are applied. The off-line training usually
includes identification of the PDNs, determination of
the belief network structure and estimation of the be-
lief network parameters, etc. The on-line learning capa-
bility serves as the complementary characteristic when
prompt adaptation is needed. But the reliance on this
should be limited. Observing also that the system ar-
chitecture is hierarchical by nature and the notion of
domain is quite generic, this system design can be nat-
urally applied to a multi-layered, hierarchical practical
communication network (such as IP over ATM), with
the notion of domain appropriately identified.
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