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Sequential decisions and predictions are common problems in natural language processing,

robotics, and video games. Essentially, an agent interacts with an environment to learn how to

solve a particular problem. Research in sequential decisions and predictions has increased due

in part to the success of reinforcement learning. However, this success has come at the cost of

algorithms being very data inefficient, making learning in the real world difficult.

Our primary goal is to make these algorithms more data-efficient using an expert in the

loop (e.g., imitation learning). Imitation learning is a technique leveraging an expert in sequential

decision and prediction problems. Naive imitation learning has a covariate shift problem (i.e.,

training distribution differs from test distribution). We propose methods and ideas to address this

issue and address other issues that arise in different styles of imitation learning. In particular, we

study three broad areas of using an expert in the loop for sequential decisions and predictions.

First, we study the most popular category of imitation learning, interactive imitation

learning. Although interactive imitation learning addresses issues around the covariate shift

problem in naive imitation, it does this with a trade-off. Interactive imitation learning assumes



access to an online interactive expert, which is unrealistic. Instead, we propose a setting where

this assumption is realistic and attempt to reduce the number of queries needed for interactive

imitation learning.

We further study modern imitation learning algorithms. Unlike interactive imitation

learning, these algorithms only address the covariate shift using demonstration data instead

of querying an online interactive expert. These algorithms assume access to an underlying

reinforcement learning algorithm to optimize a reward function learned from demonstration data.

We benchmark all algorithms in this category and relate them to modern structured prediction

NLP problems.

Beyond modern and interactive imitation learning, some problems cannot be naturally

expressed and solved using these two categories of algorithms. For example, solving a particular

problem while satisfying safety constraints. We introduce expert-in-the-loop techniques that

extend beyond traditional imitation learning paradigms, where an expert provides demonstration

features or constraints instead of state-action pairs.
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Chapter 1: Introduction

es the impact of machine learning on all aspects of our lives continues to grow, having

systems that learn through interaction with users and the world becomes increasingly pressing.

The success of machine learning methods in a wide range of tasks of practical relevance over

the past decade can largely be attributed to scalable data-driven learning methods. For example,

natural language processing (NLP) and computer vision have seen tremendous success using

enormous pre-trained models. In these settings, training on more data leads to higher accuracy and

better-learned features [146]. However, these advances have primarily been limited to traditional

supervised classification tasks. In interactive sequential decision-making and predictions, on

the other hand, a learner’s earlier decision influences later choices leading to complex feedback

loops [14, 253]. It is enticing to consider can the same kind of data-driven learning be applied in

the context of sequential- decision-making and predictions; e.g., in areas such as robotics [216],

virtual assistants (such as Alexa, Cortona, Siri) [241], video games [193], autonomous driving

[238], and personalization systems [87].

This thesis addresses the practical and theoretical issues that arise when problem-solving

sequential decision-making and predictions when an expert is available (i.e., expert-in-the-loop).

We mainly use the framework of imitation learning to study these problems. First, we build

on the interactive imitation learning techniques, which assume access to an online interactive

expert. Then, we introduce two frameworks, one that motivates the practical use of interactive

imitation learning algorithms and another to address the pitfalls of interactive imitation learning
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algorithms.

This thesis further addresses issues of interactive imitation learning by studying modern

imitation learning algorithms. Unlike interactive imitation learning, these algorithms does not

assume access to an online interactive expert but instead assumes access to expert demonstration

data. These algorithms learn a reward function from data and optimize that reward using any off-

the-shelf reinforcement learning algorithm. We further introduced frameworks that incorporate

an expert-in-the-loop but extend beyond traditional imitation learning, e.g., incorporating expert

constraints instead of expert demonstration.

To establish our contributions in the literature, we next briefly motivate our work and

highlight prior work that acts as critical practical and theoretical motivation for this thesis

To establish our contributions in the literature, we next briefly motivate our work and

highlight prior work that acts as critical practical and theoretical motivation for this thesis (see

section 1.1). After stating our motivation (see section 1.1), we formally define the central

research question of this thesis (see section 1.2). We provide a concise statement of this thesis’s

contributions ( see section 1.3) and elaborate on this dissertation’s organization (see section 1.4)

1.1 Motivation

Supervised learning is the most common learning paradigm of machine learning. In this

paradigm, a learner is given input-output pairs and learns a function mapping from each input

to output based on the tuple pairs. From the learning perspective, sequential decision-making

and predictions problems differ because the decisions made now can have both immediate and

long-term effects (where the best choice early on depends on the future). Decisions early on affect

later states, so the states seen are not independent and identically distributed, which is assumed in
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supervised learning. Sequential decision-making and predictions research has focused on casting

the learning paradigm under reinforcement learning. Instead of making predictions in supervised

learning, reinforcement learning algorithms take actions in a system where the objective is to

maximize a reward function of the state-action (i.e., input-output) pairs.

Unfortunately, today’s sequential decision-making approaches–typically driven by reinforcement

learning algorithms–require a considerable number of interactions, which is feasible only for

systems we can fully simulate or for very narrow applications like ad placement or news

recommendations. However, simulators do not already exist for many real-world systems,

and building one can be very difficult or impossible. This means we need to develop algorithms

that can interact with real systems and have very low sample complexity to learn in a reasonable

amount of time.

Imitation learning uses an expert (e.g., human demonstrations) to reduce sample complexity

(i.e., system interactions) while solving sequential decision-making and predictions problems.

However, although imitation learning algorithms dramatically reduce the sample complexity

in comparison to traditional reinforcement learning algorithms, several issues arise in varied

domains: in natural language processing, text generation models lead to degeneration—output

text generated that is confusing, inconsistent, and repetitive [128, 225, 247]; and in end-to-

end learning for autonomous driving, models make errors when visiting areas not seen in the

demonstration data [20, 67, 134, 160, 211]. In theory, it has been shown that no matter how much

data you have, naively learning a model from demonstration data suffers from issues related to

covariate shift between training data features and the state features the learner encounters when

executing its own decisions (also called "exposure bias" in NLP) [212, 225, 232, 235].
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1.2 Research questions

Alvinn: (An autonomous land vehicle in a neural network) [212] was the first attempt

to develop an algorithm to interact with real systems using an expert-in-the-loop that occurred

3 decades ago. Instead of training using a reward function (i.e., with reinforcement learning),

Alvinn was trained using imitation learning with pre-collected data from an expert to reduce

sample complexity. However, the Alvinn experiment introduced a fundamental issue in imitation

learning called the ‘covariate shift’ [231]. Essentially, suppose the set of states (i.e. roads

maps in the Alvinn example) from the expert demonstrations are different from the set of states

the agent sees on the road. In that case, the agent will perform poorly because the agent was

not trained on these states. There have been several proposed ideas to address this issue, but

they all come with their set of trade-offs. Given the increased emergence of systems that can

potentially learn through interaction (e.g., Amazon’s Alexa, Google Assistant, Online Video

Games, Amazon Warehouse Robots), addressing these issues has become very important. In

this thesis, we address the problem of how do you incorporate any kind of expert feedback into

sequential decision-making and prediction problems.

1.3 Contribution

The primary contribution of this thesis is outlined below:

Experimental: We empirically study the merits of recent imitation learning algorithms

compared to naive imitation learning algorithms. Prior work has empirically compared current

algorithms against naive imitation learning algorithms. However, we fill the gap in the literature,

showing the pitfalls of specific categories of imitation learning algorithms (see chapters 3 and
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5). We also extensively compare missing domains and tricks that prior did not include (see

chapter 6). We further present a new set of problems requiring a different expert-in-the-loop type

than demonstration data or online expert (see chapters 7 and 8).

Algorithmic-Design: We introduce new algorithms for learning with an expert-in-the-loop

motivated by the issues of current imitation learning (see chapters 3, 5,7, and 8). Naive imitation

learning algorithms encounter problems when the expert’s states are different from the states

the agent sees. One algorithm, in particular, attempts to guide the agent back to states similar to

the expert when interacting in a system (see chapter 5). We also address issues in interactive

imitation learning where the expert state-visitation is not taken into account (see chapter 7).

Theoretical: We introduce a new imitation learning category that attempts to address the

covariate without assuming access to an online expert that can be queried (see chapter 6). We

study one algorithm in-depth in this category. We show that this algorithm can overcome the

covariate shift issues in naive imitation learning in theory (see chapter 5). We further justify the

theoretical guarantees of most techniques introduced in this thesis to understand their respective

behavior compared to prior work.

Direction: There has been a discount between theoretical and empirical issues in imitation

learning. In theory, the covariate shift problem is a big issue, but it is not an issue in practice. We

close this gap by connecting some of the most successful modern imitation learning algorithms

for structured prediction natural language processing to a new category of imitation learning

algorithms. This connection relates some modern natural language processing issues to the

covariate shift issues (i.e.exposure bias issues) (see section 6.7).
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1.4 Organization

The primary contribution of this thesis is outlined in three parts consisting of six content

chapters: chapters 3, 4 explore interactive imitation learning, chapters 5, 6 explore modern

imitation learning algorithms, and chapters 7, 8 explore techniques beyond traditional imitation

learning. Before the three parts is a review of the most commonly used terminology and methods

in the imitation learning community (see chapter 2). In particular, we focus on stating the

performance guarantees for each algorithm. This is important because it provides a standard to

compare all novel algorithms introduced in this thesis.

1.4.1 Interactive Imitation Learning

Part 1 covers the most popular category of imitation learning algorithms, interactive

imitation learning to address the covariate shift issue. It consists of two chapters, chapter 3 and

chapter 4. These algorithms assume you query an online expert at any time instead of learning

from pre-collected demonstrations. Algorithms in this category have been applied to a wide

range of applications, from quadcopter flight [236] to natural language [75] to games [235].

Chapter 3 explores an interactive setting in which an expert provides labels for pieces of

the input rather than the complete input (e.g., labeling at the level of words, not sentences). We

introduce an algorithm called Learning to Query for Imitation (LEAQI) to reduce online expert

queries in interactive imitation learning. LEAQI assumes access to a noisy heuristic labeling

function that can provide low-quality labels instead of querying the expert. There have been

various ideas to minimize the number of queries to an expert [140, 149, 163, 318]. Unlike past

ideas, LEAQI attempts to address this issue by combining active learning and one-sided feedback
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learning idease

Chapter 4 covers a setting where interactive imitation learning algorithms work well. It

is possible to compute (near-)optimal behavior at the cost of expanding computation in many

contexts. This is the case in structured prediction or game settings (where one can, in principle,

expand out a search- or game-tree [76, 260]) or other settings in which simulation is possible. In

structured prediction problems, environments are generally known and fully deterministic. For

example, consider the problem of training an agent to perform machine translation. Typically,

computing the optimal next action (i.e., next word in the output translation) is possible, but the

computational cost of that optimal next action will be expensive. Although interactive imitation

learning is not query-efficient when the expert is human, they often perform well when the expert

is a computational oracle.

We address the research questions around the sequential-generation order of natural

language processing models with this computational oracle. Almost all language generation

models in the NLP community operate entirely left-to-right over the output string precisely

because we know how to compute the next word at training time (by copying it from the training

data). This chapter asked whether we could design a computational oracle that could do more

computation, thus allowing for non-monotone, non-left-to-right generation. We framed the

learning problem as an interactive imitation learning problem, in which we aimed to learn a

generation order without having to specify an order in advance. Because the optimal order is

unknown, the oracle cannot know the correct actions and has to compute them based on the

learned agent decisions.
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1.5 Modern Imitation Learning

Part 2 covers modern imitation learning algorithms, consisting of two chapters, chapter 5

and chapter 6. These algorithms, unlike interactive IL, learn a reward function that estimates

the support of the expert occupancy measure from demonstration data and optimize it with

reinforcement learning (RL). Unlike interactive imitation learning, these algorithms do not

assume access to an online interactive expert that can be queried. The most popular algorithm

amongst these algorithms is inspired by generative adversarial networks (GAN) [107], called

general adversarial imitation learning (GAIL).

Chapter 5 covers an uncertainty-based learning modern imitation learning algorithm called

Disagreement-Regularized Imitation Learning (DRIL). DRIL addresses the problem in imitation

learning, where the execution of an agent in a system causes it to move to a set of states different

than it was trained on (the covariate shift problem). Intuitively, DRIL is based on the idea that the

agent should avoid states with little information. To achieve this, DRIL operates by training an

ensemble of policies on the demonstration data and using the disagreement in their predictions

as a cost. Thus, the policies in the ensemble will tend to agree on the set of states covered by the

expert, leading to low cost, but are more likely to disagree on states not covered by the expert,

leading to high cost. We optimize this cost function using an off-the-shelf reinforcement learning

method together with a supervised cost to encourage fitting the demonstration data.

Chapter 6 is an empirical study of modern imitation learning algorithms. The state of

modern imitation learning is unclear due to conflicting results in the literature around the

quality of evaluation tasks and the performance of baselines. To this end, our study evaluates

all IL algorithms using continuous control, pixel, and structured prediction tasks. We find
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that interleaving behavioral cloning updates with RL updates is a crucial design choice when

designing IL algorithms that learn a reward function from demonstration to optimize with

RL. Furthermore, we notice that most modern imitation learning algorithms take advantage of

environment interactions to improve baseline algorithms. However, most baseline algorithms do

not take advantage of environment interactions, making the comparison unfair, so we introduce

new baselines that use environment interactions with a biased reward function and notice that they

are competitive. We connect IL algorithms that we study to the most influential reinforcement

learning for natural language processing algorithms.

1.6 Beyond Traditional Imitation Learning

Part 3 introduces algorithms that go beyond traditional forms of imitation learning in

chapters 7 and 8. Although imitation learning algorithms work well in practice, some problems

are easily solvable through other means of expert-in-the-loop. We explore two non-standard

expert-in-the-loop types, constraints, and embeddings.

Chapter 7 covers the first non-standard expert-in-the-loop algorithm, which does exact

imitation learning. Unlike imitation learning algorithms discussed in previous chapters, this

algorithm learns a rich embedding space that encapsulates all possible rewards, policies, and

states. Similar to ideas in NLP, we pretrain this embedding space with demonstration data

provided by an expert. Of course, learning it is hard because this embedding space is so rich. We

can find and imitate any policy in the embedding space in constant time with this embedding

space.

Chapter 8 assumes that an expert can provide constraints for specific problems instead of

demonstration data. For example, when training an assembly line machine robot, having safety
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constraints is much easier than inferring the safety constraints from demonstration data. Or,

when training an autonomous car to go around a track, providing intermediate checkpoints for

the agent to monitor progress is easier for the expert than the expert providing demonstration

or, worse, being queried online. In comparison to interactions, constraints allow an expert to

provide a single declarative statement that generalizes across all behaviors rather than providing

a potentially large number of demonstrations to achieve the same goal.
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Chapter 2: Background

This chapter introduces the fundamental Markov Decision Process (MDP), a model that

allows agents proposed in this thesis to learn through interaction. We present an extension to the

Markov Decision process called a Partially Observable Markov Decision Process (POMDP) and

a Predictive state representation (PSR) which generalizes POMDPs. We also cover two styles of

learning in an MDP: Successor Features and Imitation Learning.

2.1 Markov Decision Process

An MDP is a framework for modeling agent interactions in an environment. At each time

step t, the agent sees an environment state st and takes action at to perform in the environment.

The action updates the environment, which updates the state using the transition function

P (·|st, at) and determines the agent reward received. Formally, a Markov Decision process

models the process of agent-environment interaction:

Definition 1. A Markov Decision Process can be defined by a tuple (S,A,P , R, ρ0) in which:

S is the state space observed, A is the action space, P(·|s, a) is the state transition probability

s ∈ S to any state s′ ∈ S taking action a ∈ A; R : S × A → R is the reward function that

determines the immediate reward received; and ρ0 : S → [0, 1] is the distribution of the initial

state.

We can think of a finite MDP (i.e., an MDP with a finite number of states and actions) as

being represented as a set of matrices, allowing for more compressed matrix notation. Assume
11



there are k possible discrete states, numbered 1 . . . k. The environment starts in one of these

states, sk. For each possible action a ∈ {1 . . .A}, the transition matrix Ta ∈ Rk·k tells us how

our state changes if we execute action a: [Ta]ij is the probability that the next state is st+1 = i

if the current state is st = j. More compactly, we can associate each state 1, 2, . . . , k with a

corresponding standard basis vector e1, e2, . . . , ek, and write qt for the vector at time t. (So, if

st = i then qt = ei.) Then, Taqt is the probability distribution over the next states:

P (st+1 | qt, do a) = E(qt+1 | qt, do a) = Taqt

Here we have written do a to indicate that choosing an action is an intervention.

2.2 Partially Observable Markov Decision Process

In an MDP, the agent knows the exact state at each time step: qt is always a standard

basis vector. By contrast, in a POMDP, the agent only receives partial information about

the underlying state: at each time step, after choosing our action at, we see an observation

ot ∈ {1 . . .O} according to a distribution that depends on the next state st+1. The observation

matrix D ∈ RO·k tells us the probabilities: Dij is the probability of receiving observation ot = i

if the next state is st+1 = j. To represent this partial state information, we can let the state vector

qt range over the probability simplex instead of just the standard basis vectors: [qt]i tells us the

probability that the state is st = i, given all actions and observations so far, up to and including

at−1 and ot−1. The vector qt is called our belief state; we start in belief state q1.

As in an MDP, we have E(qt+1 | qt, do a) = Taqt. But now, instead of immediately

resolving qt+1 to one of the corners of the simplex, we can only take into account partial state
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information: if ot = o, then by Bayes rule

[qt+1]i = P (st+1 = i | qt, do a, o)

=
P (o | st+1 = i)P (st+1 = i | qt, do a)

P (o | qt, do a)

= Doi[Taqt]i /
∑

o′ Do′i[Taqt]i

More compactly, if u ∈ Rk is the vector of all 1s, and

Tao = diag(Do,·)Ta

where diag(·) constructs a diagonal matrix from a vector, then our next belief state is

qt+1 = Taoqt / u
TTaoqt

2.2.1 PSRs

A predictive state representation (PSR) [178] further generalizes a POMDP: we can think

of a PSR as dropping the interpretation of qt as a belief state and keeping only the mathematical

form of the state update. That is, we no longer require our model parameters to have any

interpretation in terms of probabilities of partially observable states; we only need them to

produce valid observation probability estimates. In a POMDP, the belief state is a latent variable

that tracks the agent’s current understanding of the environment state. In contrast, a PSR uses

the agent’s sequence of actions and observations to make predictions about future observations.

PSRs representation can potentially be more compact than POMDPs, which is important for

13



planning in large domains [262].

In more detail, we are given a starting state vector q1, matrices Tao ∈ Rk·k, and a

normalization vector u ∈ Rk. We define our state vector by the recursion

qt+1 = Tatotqt/u
TTatotqt

and our observation probabilities as

P (ot = o | qt, do a) = uTTaoqt

The only requirement on the parameters is that the observation probabilities uTTaoqt should

always be nonnegative and sum to 1: under any sequence of actions and observations, if qt is the

resulting sequence of states,

(∀a, o, t)uTTaoqt ≥ 0 (∀a, t)
∑

o u
TTaoqt = 1

2.3 Successor Features

Given an MDP, define a vector of features of the current state and action, f(s, a) ∈ Rd;

we call this the one-step or immediate feature vector. We can define the successor feature

representation [22, 80] as:

φπ(s) = Eπ

[
∞∑
t=1

γt−1f(st, at)

∣∣∣∣ do s1 = s

]

Where now the reward function function R is linear in the one-step feature vector (i.e.,
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R(st, at) = wT · f(st, at), for some weight matrix w ∈ Rd). Successor features allow us to learn

a representation that decouples the reward from the transition matrix.

2.4 Imitation Learning

An MDP is a framework modeling sequential decisions of an agent in an environment.

Most structured prediction problems can be framed in terms of the MDP framework [? ]. The

“learning to search” approach to structured prediction casts the joint prediction problem of

producing complex output as a sequence of smaller predictions [69, 78, 226], which means that

MDPs can be viewed as a framework for modeling sequential decisions and predictions of agents

in an environment. For sequential structured prediction problems, the actions are the learners’

predictions, and the states are a concatenation of all the predictions made so far. The cost is the

loss of taking a particular action in a given state (i.e., cost is the opposite of reward). Formally, a

Finite-Horizon Markov Decision process models the process agent-environment interaction:

Definition 2. A Finite-Horizon Markov Decision Process can be defined by (S,A,P , C, ρ0, T )

in which: S is the state space observed, A is the action space, P(·|s, a) is the state transition

probability s ∈ S to any state s′ ∈ S taking action a ∈ A; C : S ×A → R is the cost function

determines the immediate cost received denoted as C(s, a); T is the finite horizon (max number

steps) of the MDP and ρ0 : S → [0, 1] is the distribution of the initial state.

We consider episodic finite horizon MDP in this work. Let Π the class of policies the

learner is considering and π? the expert policy whose behavior the learner is trying to mimic.

For any policy π, let dπ denote the distribution over states induced by following π. We assume

the C(s, a) is bounded in [0, 1]. In the imitation learning setting, we do not necessarily know the

actual costs C(s, a), and instead, we observe expert demonstrations. Our goal is to find a policy
15



π which minimizes an observed surrogate loss ` between its actions and the actions of the expert

under its induced distribution of states, i.e.,

π̂ = arg minEs∼dπ [`(π(s), π?(s))] (2.1)

Our goal is thus to minimize the following quantity, which represents the distance between

the actions taken by our policy π and the expert policy π?:

Jexp(π) = Es∼dπ
[
||π(·|s)− π?(·|s)||

]
(2.2)

2.4.1 Behavior Cloning

Unfortunately, it is often impossible to optimize Jexp directly since it requires evaluating

the expert policy on the states induced by following the current policy. The supervised behavioral

cloning cost JBC, which is computed on states induced by the expert, is often used instead:

JBC(π) = Es∼dπ? [||π?(·|s)− π(·|s)||] (2.3)

Minimizing this loss within ε yields a quadratic regret bound on regret:

Theorem 2.4.1. [231] Let JBC(π) = ε, then JC(π) ≤ JC(π?) + T 2ε.

The drawback of the supervised learning approach (i.e., behavior cloning) is that it does not

consider that the learner π and expert π∗ state-distribution are different, leading to the covariate

shift problem. Essentially, there is a mismatch between the distribution of states trained and

tested on. In particular, during training, the learner π is trained on state-action pairs from the
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expert policy π∗. But during test time, the learner is executed on state-action pairs induced by its

actions, which means the learner may visit states never seen in the expert data.

2.4.2 DAgger

To alleviate this problem, we need to train the learner on its own state distribution to

resolve the train and test time mismatch problem. The key idea of DAgger is to iteratively learn

a policy by teaching the learner the optimal action to take from its own state-distribution The

tradeoff is assuming we have an interactive expert that we can query for every state. Formally,

the DAgger algorithm is outlined in Algorithm 1. DAgger allows the learner policy π to learn

from mistakes on its state-distribution because it knows what the expert would do, unlike in

behavior cloning.

Algorithm 1 DAgger(Π, N, 〈βi〉Ni=0, π
?)

1: initialize dataset D = {}
2: initialize policy π̂1 to any policy in Π
3: for i = 1 . . . N do
4: . stochastic mixture policy
5: Let πi = βiπ

? + (1− βi)π̂i
6: Generate a T -step trajectory using πi
7: Accumulate data D ← D ∪ {(s, π?(s))} for all s in those trajectories
8: Train classifier π̂i+1 ∈ Π on D
9: end for

10: return best (or random) π̂i

Denote Qπ
t (s, a) as the standard Q function of policy π, which is defined as

Qπ
t (s, a) = C(s, a) + γEs P(·|s,a)

[
Vπt−1(s′)

]
where Vπt (s) represented the cost of executing

π. The following result for DAgger shows that if ` is an upper bound on the 0 − 1 loss and

C satisfies certain smoothness conditions, then minimizing this loss within ε translates into an

O(εT ) regret bound on the true task cost JC(π) = Es,a∼dπ [C(s, a)]:
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Theorem 2.4.2. [236] Let π be such that Jexp(π) = ε, and Qπ?

T−t+1(s, a)−Qπ?

T−t+1(s, π?) ≤ u

for all a ∈ A, t ∈ {1, 2, ..., T}, dtπ(s) > 0. Then JC(π) ≤ JC(π?) + uTε.

The theorem means if the supervised learning loss is ε, then loss with respect to the expert

is O(uT ε), given the expert recoverability cost is bounded by u. The recoverability cost is the

difference between the expert action and any action under the optimal cost of executing an action.

2.4.3 Roll-In Policies

The roll-in policy determines the state distribution over which the learned policy π is to be

trained. In most formal analyses, the roll-in policy is a stochastic mixture of the learned policy π

and the oracle policy π∗, ensuring that π is eventually trained on its own state distribution [54,

79, 233, 235]. Despite this, experimentally, it has often been found that simply using the

oracle’s state distribution is optimal [167, 225]. This is likely because the noise incurred early

on in learning by using π’s state distribution is not overcome by the benefit of matching state

distributions, especially when the policy class is sufficiently high capacity to be nearly realizable

on the training data [167]. In preliminary experiments, we observed the same is true in our

setting: simply rolling in according to the oracle policy (subsection 4.4.2) yielded the best results

experimentally. Therefore, even though this can lead to inconsistency in the learned model [54],

all experiments are with oracle roll-ins

2.4.4 Learning to Search

In learning-to-search-style algorithms, we aim to learn a policy π that mimics an oracle

(or“reference”) policy π∗. To do so, we define a roll-in policy πin and roll-out policy πout. We

then repeatedly draw states s according to the state distribution induced by πin, and compute
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cost-to-go under πout, for all possible actions a at that state. The learned policy π is then trained

to choose actions to minimize this cost-to-go estimate. Formally, denote the uniform distribution

over {1, . . . , T} as U [T ] and denote by dtπ the distribution of states induced by running π for

t-many steps. Denote by C(π; πout, s) a scalar cost measuring the loss incurred by π against

the cost-to-go estimates under πout (for instance, C may measure the squared error between the

vector π(·|s) and the cost-to-go estimates). Then, the quantity being optimized is:

EY∼DEt∼U [2|Y |+1]Est∼dt
πin

[C(π; πout, st)] (2.4)

Here, πin and πout can use information unavailable at test-time (e.g., the ground-truth Y ). Learning

consists of finding a policy which only has access to states st but performs as well or better than

π∗. By varying the choice of πin, πout, and C, one obtains different variants of learning-to-search

algorithms, such as DAgger [235], AggreVaTe [233] or LOLS [54].

In (interactive) imitation learning, we aim to imitate the behavior of the expert policy,

π?, which provides the true labels. The learning to search view allows us to cast structured

prediction as a (degenerate) imitation learning task, where states are (input, prefix) pairs, actions

are operations on the output, and the horizon T is the length of the sequence. States are denoted

s ∈ S, actions are denoted a ∈ [K], where [K] = {1, . . . , K}, and the policy class is denoted

Π ⊆ [K]S . The goal in learning is to find a policy π ∈ Π with small loss on the distribution of

states that it, itself, visits.
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Part Part 1

Interactive Imitation Learning
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Chapter 3: Reducing Interactive Feedback

1 The primary goal of this chapter (within the broader context of the thesis) is to address

issues in interactive imitation learning (see section 2.4.2). Although, interactive imitation learning

algorithms provide state-of-the-art results on many structured prediction tasks [27, 78, 168, 234].

They assume that we can query an expert at every state (which is not sample efficient to an

expert) and not realistic in many settings. To combat this query complexity, we consider an

active learning setting in which the learning algorithm has additional access to a much cheaper

noisy heuristic that provides noisy guidance. Our algorithm, LEAQI, learns a difference classifier

that predicts when the expert is likely to disagree with the heuristic and queries the expert only

when necessary. We apply LEAQI to three sequence labeling tasks, demonstrating significantly

fewer queries to the expert and comparable (or better) accuracies over a passive approach.

3.1 Introduction

Structured prediction methods learn models to map inputs to complex outputs with internal

dependencies, typically requiring a substantial amount of expert-labeled data. To minimize

annotation cost, we focus on a setting in which an expert provides labels for pieces of the input,

rather than the complete input (e.g., labeling at the level of words, not sentences). A natural

starting point for this is imitation learning-based “learning to search” approaches to structured

prediction [27, 78, 168, 234]. In imitation learning, training proceeds by incrementally producing

1A previous version of this work was presented in [42]
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After	completing	his	Ph.D.	,	Ellis	worked	at	Bell	Labs	from	1969	to	1972	on	probability	theory...x	=

yh	=

y	= 		O							O							O			O			O	PER					O				O	ORG		ORG			O					O		O			O				O						O								O

		O							O						PER		O			O		O						O				O	ORG		ORG			O					O		O			O				O						O								O

		O							O						PER		O			O	PER					O				O	ORGŷ1:9	= s10π*(s10)	=		ORG								π
h(s10)	=		ORG									y

disagree	=	False

Figure 3.1: A named entity recognition example (from the Wikipedia page for Clarence Ellis). x
is the input sentence and y is the (unobserved) ground truth. The predictor π operates left-to-right
and, in this example, is currently at state s10 to tag the 10th word; the state s10 (highlighted in
purple) combines x with ŷ1:9. The heuristic makes two errors at t = 4 and t = 6. The heuristic
label at t = 10 is yh10 =ORG. Under Hamming loss, the cost at t = 10 is minimized for a = ORG,
which is therefore the expert action (if it were queried). The label that would be provided for s10

to the difference classifier is 0 because the two policies agree.

structured outputs on piece at a time and, at every step, asking the expert “what would you do

here?” and learning to mimic that choice. This interactive model comes at a substantial cost:

the expert demonstrator must be continuously available and must be able to answer a potentially

large number of queries.

We reduce this annotation cost by only asking an expert for labels that are truly needed; our

algorithm, Learning to Query for Imitation (LEAQI, /"li:,tSi:/)2 achieves this by capitalizing on

two factors. First, as is typical in active learning, LEAQI only asks the expert for a label when it

is uncertain. Second, LEAQI assumes access to a noisy heuristic labeling function (for instance,

a rule-based model, dictionary, or inexpert annotator) that can provide low-quality labels. LEAQI

operates by always asking this heuristic for a label, and only querying the expert when it thinks

the expert is likely to disagree with this label. It trains, simultaneously, a difference classifier

[317] that predicts disagreements between the expert and the heuristic (see Figure 3.1).

The challenge in learning the difference classifier is that it must learn based on one-sided

feedback: if it predicts that the expert is likely to agree with the heuristic, the expert is not queried

and the classifier cannot learn that it was wrong. We address this one-sided feedback problem

using the Apple Tasting framework [120], in which errors (in predicting which apples are tasty)

2Code is available at: https://github.com/xkianteb/leaqi
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are only observed when a query is made (an apple is tasted). Learning in this way particularly

important in the general case where the heuristic is likely not just to have high variance with

respect to the expert, but is also statistically biased.

Experimentally (subsection 3.4.5), we consider three structured prediction settings, each

using a different type of heuristic feedback. We apply LEAQI to: English named entity

recognition where the heuristic is a rule-based recognizer using gazetteers [148]; English

scientific keyphrase extraction, where the heuristic is an unsupervised method [90]; and Greek

part-of-speech tagging, where the heuristic is a small dictionary compiled from the training data

[113, 316]. In all three settings, the expert is a simulated human annotator. We train LEAQI on

all three tasks using fixed BERT [82] features, training only the final layer (because we are in

the regime of small labeled data). We do not consider studying improving word representations

[298] or model architecture [312] which most SOTA (state-of-the-art) techniques study. Instead

we leave these two areas as future to consider how does improving these two areas, improve

our algorithm performance. The goal in all three settings is to minimize the number of words

the expert annotator must label. In all settings, we’re able to establish the efficacy of LEAQI,

showing that it can indeed provide significant label savings over using the expert alone and over

several baselines and ablations that establish the importance of both the difference classifier and

the Apple Tasting paradigm.

3.2 Background

We review online active learning, and then applications of active learning to structured

prediction and imitation learning problems.
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3.2.1 Active Learning

Active learning has been considered since at least the 1980s often under the name “selective

sampling” [12, 228]. In agnostic online active learning for classification, a learner operates

in rounds [e.g. 19, 31, 32]. At each round, the learning algorithm is presented an example x

and must predict a label; the learner must decide whether to query the true label. An effective

margin-based approach for online active learning is provided by Cesa-Bianchi et al. [52] for

linear models. Their algorithm defines a sampling probability ρ = b/(b + z), where z is the

margin on the current example, and b > 0 is a hyperparameter that controls the aggressiveness of

sampling. With probability ρ, the algorithm requests the label and performs a perceptron-style

update.

Our approach is inspired by Zhang and Chaudhuri [317] setting, where two labelers are

available: a free weak labeler and an expensive strong labeler. Their algorithm minimizes queries

to the strong labeler, by learning a difference classifier that predicts, for each example, whether

the weak and strong labelers are likely to disagree. Their algorithm trains this difference classifier

using an example-weighting strategy to ensure that its Type II error is kept small, establishing

statistical consistency, and bounding its sample complexity.

This type of learning from one-sided feedback falls in the general framework of partial-

monitoring games, a framework for sequential decision making with imperfect feedback. Apple

Tasting is a type of partial-monitoring game [177], where, at each round, a learner is presented

with an example x and must predict a label ŷ ∈ {−1,+1}. After this prediction, the true label is

revealed only if the learner predicts +1. This framework has been applied in several settings, such

as spam filtering and document classification with minority class distributions [254]. Sculley
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[254] also conducts a through comparison of two methods that can be used to address the one-side

feedback problem: label-efficient online learning [52] and margin-based learning [288].

3.2.2 Active Imitation & Structured Prediction

In the context of structured prediction for natural language processing, active learning has

been considered both for requesting full structured outputs [e.g. 72, 110, 281] and for requesting

only pieces of outputs [e.g. 37, 230]. For sequence labeling tasks, Haertel et al. [111] found that

labeling effort depends both on the number of words labeled (which we model), plus a fixed cost

for reading (which we do not).

In the context of imitation learning, active approaches have also been considered for at

least three decades, often called “learning with an external critic” and “learning by watching”

[303]. More recently, Judah et al. [141] describe RAIL, an active learning-for-imitation-learning

algorithm akin to our ACTIVEDAGGER baseline, but which in principle would operate with any

underlying i.i.d. active learning algorithm (not just our specific choice of uncertainty sampling).

3.3 Our Approach: Learning to Query for Imitation

As a concrete example, return to Figure 3.1: at s10, π must predict the label of the tenth

word. If π is confident in its own prediction, LEAQI can avoid any query, similar to traditional

active learning. If π is not confident, then LEAQI considers the label suggested by a noisy

heuristic (here: ORG). LEAQI predicts whether the true expert label is likely to disagree with the

noisy heuristic. Here, it predicts no disagreement and avoids querying the expert.
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Algorithm 2 LEAQI(Π,H, N, π?, πh, b)

1: initialize dataset D = {}
2: initialize policy π1 to any policy in Π
3: initialize difference dataset S = {}
4: initialize difference classifier h1(s) = 1 (∀s)
5: for i = 1 . . . N do
6: Receive input sentence x
7: . generate a T -step trajectory using πi
8: Generate output ŷ using πi
9: for each s in ŷ do

10: . draw bernouilli random variable
11: Zi ∼ Bern

(
b

b+certainty(πi,s)

)
; see subsection 3.3.3

12: if Zi = 1 then
13: . set difference classifier prediction
14: d̂i = hi(s)
15: if AppleTaste(s, πh(s), d̂i) then
16: . predict agree query heuristic
17: D ← D ∪

{ (
s, πh(s)

) }
18: else
19: . predict disagree query expert
20: D ← D ∪ { (s, π?(s)) }
21: di = 1

[
π?(s) = πh(s)]

22: S ← S ∪
{ (

s, πh(s), d̂i, di
) }

23: end if
24: end if
25: end for
26: Train policy πi+1 ∈ Π on D
27: Train difference classifier hi+1 ∈ H on S to minimize Type II errors (see subsection 3.3.2)

28: end for
29: return best (or random) πi

3.3.1 Learning to Query for Imitation

Our algorithm, LEAQI, is specified in Alg 2. As input, LEAQI takes a policy class Π, a

hypothesis class H for the difference classifier (assumed to be symmetric and to contain the

“constant one” function), a number of episodes N , an expert policy π?, a heuristic policy πh, and

a confidence parameter b > 0. The general structure of LEAQI follows that of DAgger, but with

three key differences:
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(a) roll-in (line 7) is according to the learned policy (not mixed with the expert, as that would

require additional expert queries),

(b) actions are queried only if the current policy is uncertain at s (line 12), and

(c) the expert π? is only queried if it is predicted to disagree with the heuristic πh at s by

the difference classifier, or if apple tasting method switches the difference classifier label

(line 15; see subsection 3.3.2).

In particular, at each state visited by πi, LEAQI estimates z, the certainty of πi’s prediction at that

state (see subsection 3.3.3). A sampling probability ρ is set to b/(b+ z) where z is the certainty,

and so if the model is very uncertain then ρ tends to zero, following [52]. With probability ρ,

LEAQI will collect some label.

When a label is collected (line 12), the difference classifier hi is queried on state s to

predict if π? and πh are likely to disagree on the correct action. (Recall that h1 always predicts

disagreement per line 4.) The difference classifier’s prediction, d̂i, is passed to an apple tasting

method in line 15. Intuitively, most apple tasting procedures (including the one we use, STAP;

see subsection 3.3.2) return d̂i, unless the difference classifier is making many Type II errors, in

which case it may return ¬d̂i.

A target action is set to πh(s) if the apple tasting algorithm returns “agree” (line 17), and

the expert π? is only queried if disagreement is predicted (line 20). The state and target action

(either heuristic or expert) are then added to the training data. Finally, if the expert was queried,

then a new item is added to the difference dataset, consisting of the state, the heuristic action on

that state, the difference classifier’s prediction, and the ground truth for the difference classifier

whose input is s and whose label is whether the expert and heuristic actually disagree. Finally,

πi+1 is trained on the accumulated action data, and hi+1 is trained on the difference dataset
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Algorithm 3 AppleTaste_STAP(S, ah
i , d̂i)

1: . count examples that are action ah
i

2: let t =
∑

(_,a,_,_)∈S 1[ah
i = a]

3: . count mistakes made on action ah
i

4: let m =
∑

(_,a,d̂,d)∈S 1[d̂ 6= d ∧ ah
i = a]

5: w = t
|S| . percentage of time ah

i was seen
6: if w < 1 then
7: . skew distribution
8: draw r ∼ Beta(1− w, 1)
9: else

10: draw r ∼ Uniform(0, 1)
11: end if
12: return (d = 1) ∧ (r ≤

√
(m+ 1)/t)

(details in subsection 3.3.3).

There are several things to note about LEAQI:

� If the current policy is already very certain, a expert annotator is never queried.

� If a label is queried, the expert is queried only if the difference classifier predicts disagreement

with the heuristic, or the apple tasting procedure flips the difference classifier prediction.

� Due to apple tasting, most errors the difference classifier makes will cause it to query the

expert unnecessarily; this is the “safe” type of error (increasing sample complexity but not

harming accuracy), versus a Type II error (which leads to biased labels).

� The difference classifier is only trained on states where the policy is uncertain, which is

exactly the distribution on which it is run.

3.3.2 Apple Tasting for One-Sided Learning

The difference classifier h ∈ H must be trained (line 27) based on one-sided feedback

(it only observes errors when it predicts “disagree“) to minimize Type II errors (it should only

very rarely predict “agree” when the truth is “disagree”). This helps keep the labeled data for
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the learned policies unbiased. The main challenge here is that the feedback to the difference

classifier is one-sided: that is, if it predicts “disagree” then it gets to see the truth, but if it predicts

“agree” it never finds out if it was wrong. We use one of [120]’s algorithms, STAP (see Alg 3),

which works by random sampling from apples that are predicted to not be tasted and tasting them

anyway (line 12). Formally, STAP tastes apples that are predicted to be bad with probability√
(m+ 1)/t, where m is the number of mistakes, and t is the number of apples tasted so far.

We adapt Apple Tasting algorithm STAP to our setting for controlling the number of Type

II errors made by the difference classifier as follows. First, because some heuristic actions are

much more common than others, we run a separate apple tasting scheme per heuristic action

(in the sense that we count the number of error on this heuristic action rather than globally).

Second, when there is significant action imbalance3 we find it necessary to skew the distribution

from STAP more in favor of querying. We achieve this by sampling from a Beta distribution

(generalizing the uniform), whose mean is shifted toward zero for more frequent heuristic actions.

This increases the chance that Apple Tasting will have on finding bad apples error for each action

(thereby keeping the false positive rate low for predicting disagreement).

3.3.3 Measuring Policy Certainty

In step 11, LEAQI must estimate the certainty of πi on s. Following Cesa-Bianchi et al.

[52], we implement this using a margin-based criteria. To achieve this, we consider π as a

function that maps actions to scores and then chooses the action with largest score. The certainty

3For instance, in named entity recognition, both the heuristic and expert policies label the majority of words as O
(not an entity). As a result, when the heuristic says O, it is very likely that the expert will agree. However, if we aim
to optimize for something other than accuracy—like F1—it is precisely these disagreements that we need to find.
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measure is then the difference in scores between the highest and second highest scoring actions:

certainty(π, s) = max
a
π(s, a)−max

a′ 6=a
π(s, a′)

3.3.4 Analysis

Theoretically, the main result for LEAQI is an interpretation of the main DAgger result(s).

Formally, let dπ denote the distribution of states visited by π, C(s, a) ∈ [0, 1] be the immediate

cost of performing action a in state s, Cπ(s) = Ea∼π(s)C(s, a), and the total expected cost of π

to be J(π) = TEs∼dπCπ(s), where T is the length of trajectories. C is not available to a learner

in an imitation setting; instead the algorithm observes an expert and minimizes a surrogate loss

`(s, π) (e.g., ` may be zero/one loss between π and π?). We assume ` is strongly convex and

bounded in [0, 1] over Π.

Given this setup assumptions, let εpol-approx = minπ∈Π
1
N

∑N
i=1 Es∼dπi `(s, π) be the true loss

of the best policy in hindsight, let εdc-approx = minh∈H
1
N

∑N
i=1 Es∼dπierr(s, h, π?(s) 6= πh(s)) be

the true error of the best difference classifier in hindsight, and assuming that the regret of the

policy learner is bounded by regpol(N) after N steps, Ross et al. [234] shows the following4:

Theorem 3.3.1 (Thm 4.3 of Ross et al. [234]). After N episodes each of length T , under the

assumptions above, with probability at least 1− δ there exists a policy π ∈ π1:N such that:

Es∼dπ`(s, π) ≤ εpol-approx + regpol(N) +
√

(2/N) log(1/δ)

This holds regardless of how π1:N are trained (line 26). The question of how well LEAQI

4Proving a stronger result is challenging: analyzing the sample complexity of an active learning algorithm that
uses a difference classifier—even in the non-sequential setting—is quite involved [317].
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Task Named Entity
Recognition

Keyphrase Extraction Part of Speech Tagging

Language English (en) English (en) Modern Greek (el)
Dataset CoNLL’03 [282] SemEval 2017 Task 10

[13]
Universal Dependencies
[200]

# Ex 14, 987 2, 809 1, 662
Avg. Len 14.5 26.3 25.5
# Actions 5 2 17
Metric Entity F-score Keyphrase F-score Per-tag accuracy
Features English BERT [82] SciBERT [25] M-BERT [82]
Heuristic String matching against

an offline gazeteer of
entities from Khashabi
et al. [148]

Output from an
unsupervised keyphrase
extraction model
Florescu and Caragea
[90]

Dictionary from
Wiktionary, similar to
Zesch et al. [316] and
Haghighi and Klein
[113]

Heur Quality P 88%, R 27%, F 41% P 20%, R 44%, F 27% 10% coverage, 67% acc

Table 3.1: An overview of the three tasks considered in experiments.

performs becomes a question of how well the combination of uncertainty-based sampling and the

difference classifier learn. So long as those do a good job on their individual classification tasks,

DAgger guarantees that the policy will do a good job. This is formalized below, where Q?(s, a)

is the best possible cumulative cost (measured by C) starting in state s and taking action a:

Theorem 3.3.2 (Theorem 2.2 of Ross et al. [234]). Let u be such thatQ?(s, a)−Q?(s, π?(s)) ≤ u

for all a and all s with dπ(s) > 0; then for some π ∈ π1:N , as N →∞:

J(π) ≤ J(π?) + uTεpol-approx

Here, u captures the most long-term impact a single decision can have; for example, for average

Hamming loss, it is straightforward to see that u = 1
T

because any single mistake can increase

the number of mistakes by at most 1. For precision, recall and F-score, u can be as large as one

in the (rare) case that a single decision switches from one true positive to no true positives.
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3.4 Experiments

The primary research questions we aim to answer experimentally are:

Q1 Does uncertainty-based active learning achieve lower query complexity than passive

learning in the learning to search settings?

Q2 Does learning a difference classifier improve query efficiency over active learning alone?

Q3 Does Apple Tasting successfully handle the problem of learning from one-sided feedback?

Q4 Is the approach robust to cases where the noisy heuristic is uncorrelated with the expert?

Q5 Is casting the heuristic as a policy more effective than using its output as features?

To answer these questions, we conduct experiments on three tasks (see Table 6.2): English

named entity recognition, English scientific keyphrase extraction, and low-resource part of

speech tagging on Modern Greek (el), selected as a low-resource setting.

3.4.1 Algorithms and Baselines

In order to address the research questions above, we compare LEAQI to several baselines.

The baselines below compare our approach to previous methods:

DAGGER. Passive DAgger (Alg 1)

ACTIVEDAGGER. An active variant of DAgger that asks for labels only when uncertain. (This

is equivalent to LEAQI, but with neither the difference classifier nor apple tasting.)

32



DAGGER+FEAT. DAGGER with the heuristic policy’s output appended as an input feature.

ACTIVEDAGGER+FEAT. ACTIVEDAGGER with the heuristic policy as a feature.

The next set of comparisons are explicit ablations:

LEAQI+NOAT LEAQI with no apple tasting.

LEAQI+NOISYHEUR. LEAQI, but where the heuristic returns a label uniformly at random.

The baselines and LEAQI share a linear relationship. DAGGER is the baseline algorithm used by

all algorithms described above but it is very query inefficient with respect to an expert annotator.

ACTIVEDAGGER introduces active learning to make DAGGER more query efficient; the delta

to the previous addresses Q1. LEAQI+NOAT introduces the difference classifier; the delta

addresses Q2. LEAQI adds apple tasting to deal with one-sided learning; the delta addresses Q3.

Finally, LEAQI+NOISYHEUR. (vs LEAQI) addresses Q4 and the +FEAT variants address Q5.

3.4.2 Data and Representation

For named entity recognition, we use training, validation, and test data from CoNLL’03

[282], consisting of IO tags instead of BIO tags (the “B” tag is almost never used in this dataset,

so we never attempt to predict it) over four entity types: Person, Organization, Location, and

Miscellaneous. For part of speech tagging, we use training and test data from modern Greek
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portion of the Universal Dependencies (UD) treebanks [200], consisting of 17 universal tags5.

For keyphrase extraction, we use training, validation, and test data from SemEval 2017 Task 10

[13], consisting of IO tags (we use one “I” tag for all three keyphrase types).

In all tasks, we implement both the policy and difference classifier by fine-tuning the

last layer of a BERT embedding representation [82]. More specifically, for a sentence of

length T , w1, . . . , wT , we first compute BERT embeddings for each word, x1, . . . ,xT using the

appropriate BERT model: English BERT and M-BERT6 for named entity and part-of-speech,

respectively, and SciBERT [25] for keyphrase extraction. We then represent the state at position

t by concatenating the word embedding at that position with a one-hot representation of the

previous action: st = [wt; onehot(at−1)]. This feature representation is used both for learning

the labeling policy and also learning the difference classifier.

3.4.3 Expert Policy and Heuristics

In all experiments, the expert π? is a simulated human annotator who annotates one word

at a time. The expert returns the optimal action for the relevant evaluation metric (F-score for

named entity recognition and keyphrase extraction, and accuracy for part-of-speech tagging).

We take the annotation cost to be the total number of words labeled.

The heuristic we implement for named entity recognition is a high-precision gazeteer-based

string matching approach. We construct this by taking a gazeteer from Wikipedia using the

CogComp framework [148], and use FlashText [263] to label the dataset. This heuristic achieves

a precision of 0.88, recall of 0.27 and F-score of 0.41 on the training data.

The keyphrase extraction heuristic is the output of an “unsupervised keyphrase extraction”

5ADJ, ADP, ADV, AUX, CCONJ, DET, INTJ, NOUN, NUM, PART, PRON, PROPN, PUNCT, SCONJ, SYM, VERB, X.
6Multilingual BERT [82]
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Figure 3.2: Empirical evaluation on three tasks: (left) named entity recognition, (middle)
keyphrase extraction and (right) part of speech tagging. The top rows shows performance (f-
score or accuracy) with respect to the number of queries to the expert. The bottom row shows
the number of queries as a function of the number of words seen.

approach [90]. This system is a graph-based approach that constructs word-level graphs

incorporating positions of all word occurrences information; then using PageRank to score

the words and phrases. This heuristic achieves a precision of 0.20, recall of 0.44 and F-score of

0.27 on the training data.

The part of speech tagging heuristic is based on a small dictionary compiled from

Wiktionary. Following Haghighi and Klein [113] and Zesch et al. [316], we extract this dictionary

using Wiktionary as follows: for word w in our training data, we find the part-of-speech y by

querying Wiktionary. If w is in Wikitionary, we convert the Wikitionary part of speech tag to a

Universal Dependencies tag (see subsection 3.6.1), and if word w is not in Wiktionary, we use a

default label of “X”. Furthermore, if word w has multiple parts of speech, we select the first part

of speech tag in the list. The label “X” is chosen 90% of the time. For the remaining 10%, the
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Figure 3.3: Ablation results on (left) named entity recognition, (middle) keyphrase extraction
and (right) part of speech tagging. In addition to LEAQI and DAgger (copied from Figure 3.2),
these graphs also show LEAQI+NOAT (apple tasting disabled), and LEAQI+NOISYHEUR. (a
heuristic that produces labels uniformly at random).

heuristic achieves an accuracy of 0.67 on the training data.

3.4.4 Experimental Setup

Our experimental setup is online active learning. We make a single pass over a dataset,

and the goal is to achieve an accurate system as quickly as possible. We measure performance

(accuracy or F-score) after every 1000 words (≈ 50 sentences) on heldout test data, and produce

error bars by averaging across three runs and reporting standard deviations.

Hyperparameters for DAGGER are optimized using grid-search on the named entity

recognition training data and evaluated on development data. We then fix DAGGER hyperparameters

for all other experiments and models. The difference classifier hyperparameters are subsequently

optimized in the same manner. We fix the difference classifier hyperparameters for all other

experiments.7

7We note that this is a somewhat optimistic hyperparameter setting: in the real world, model selection for active
learning is extremely challenging. Details on hyperparameter selection and LEAQI’s robustness across a rather wide
range of choices are presented in subsection 3.6.2, subsection 3.6.3 and subsection 3.6.4 for keyphrase extraction
and part of speech tagging.
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3.4.5 Experimental Results

The main results are shown in the top two rows of Figure 3.2; ablations of LEAQI are

shown in Figure 3.3. In Figure 3.2, the top row shows traditional learning curves (performance

vs number of queries), and the bottom row shows the number of queries made to the expert as a

function of the total number of words seen.

Active vs Passive (Q1). In all cases, we see that the active strategies improve on the passive

strategies; this difference is largest in keyphrase extraction, middling for part of speech tagging,

and small for NER. While not surprising given previous successes of active learning, this confirms

that it is also a useful approach in our setting. As expected, the active algorithms query far less

than the passive approaches, and LEAQI queries the least.

Heuristic as Features vs Policy (Q5). We see that while adding the heuristic’s output as a

feature can be modestly useful, it is not uniformly useful and, at least for keyphrase extraction

and part of speech tagging, it is not as effective as LEAQI. For named entity recognition, it is

not effective at all, but this is also a case where all algorithms perform essentially the same.

Indeed, here, LEAQI learns quickly with few queries, but never quite reaches the performance

of ActiveDAgger. This is likely due to the difference classifier becoming overly confident too

quickly, especially on the “O” label, given the (relatively well known) oddness in mismatch

between development data and test data on this dataset.

Difference Classifier Efficacy (Q2). Turning to the ablations (Figure 3.3), we can address Q2

by comparing the ActiveDAgger curve to the LeaQI+NoAT curve. Here, we see that on NER

and keyphrase extraction, adding the difference classifier without adding apple tasting results
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in a far worse model: it learns very quickly but plateaus much lower than the best results. The

exception is part of speech tagging, where apple tasting does not seem necessary (but also does

not hurt). Overall, this essentially shows that without controlling Type II errors, the difference

classifier on it’s own does not fulfill its goals.

Apple Tasting Efficacy (Q3). Also considering the ablation study, we can compare LeaQI+NoAT

with LeaQI. In the case of part of speech tagging, there is little difference: using apple tasting to

combat issues of learning from one sided feedback neither helps nor hurts performance. However,

for both named entity recognition and keyphrase extraction, removing apple tasting leads to

faster learning, but substantially lower final performance (accuracy or f-score). This is somewhat

expected: without apple tasting, the training data that the policy sees is likely to be highly biased,

and so it gets stuck in a low accuracy regime.

Robustness to Poor Heuristic (Q4). We compare LeaQI+NoisyHeur to ActiveDAgger. Because

the heuristic here is useless, the main hope is that it does not degrade performance below

ActiveDAgger. Indeed, that is what we see in all three cases: the difference classifier is able to

learn quite quickly to essentially ignore the heuristic and only rely on the expert.

3.5 Conclusion

In this paper, we considered the problem of reducing the number of queries to an expert

labeler for structured prediction problems. We took an imitation learning approach and developed

an algorithm, LEAQI, which leverages a source that has low-quality labels: a heuristic policy

that is suboptimal but free. To use this heuristic as a policy, we learn a difference classifier

that effectively tells LEAQI when it is safe to treat the heuristic’s action as if it were optimal.
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We showed empirically—across Named Entity Recognition, Keyphrase Extraction and Part

of Speech Tagging tasks—that the active learning approach improves significantly on passive

learning, and that leveraging a difference classifier improves on that.

1. In some settings, learning a difference classifier may be as hard or harder than learning

the structured predictor; for instance if the task is binary sequence labeling (e.g., word

segmentation), minimizing its usefulness.

2. The true labeling cost is likely more complicated than simply the number of individual

actions queried to the expert.

Despite these limitations, we hope that LEAQI provides a useful (and relatively simple)

bridge that can enable using rule-based systems, heuristics, and unsupervised models as building

blocks for more complex supervised learning systems. This is particularly attractive in settings

where we have very strong rule-based systems, ones which often outperform the best statistical

systems, like coreference resolution [170], information extraction [229], and morphological

segmentation and analysis [265].
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3.6 Extend Details

3.6.1 Wiktionary to Universal Dependencies

POS Tag Source Greek, Modern (el)
Wiktionary

Universal Dependencies

adjective ADJ
adposition ADP
preposition ADP
adverb ADV
auxiliary AU
coordinating conjunction CCONJ
determiner DET
interjection INTJ
noun NOUN
numeral NUM
particle PART
pronoun PRON
proper noun pROPN
punctuation PUNCT
subordinating conjunction SCONJ
symbol SYM
verb VERB
other X
article DET
conjunction PART

Table 3.2: Conversion between Greek, Modern (el) Wiktionary POS tags and Universal
Dependencies POS tags.

3.6.2 Hyperparameters

Here we provide a table of all of hyperparameters we considered for LEAQI and baselines

models. (see section 3.4.4)
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Table 3.3: Hyperparameters

Hyperparameter Values Considered Final Value
Policy Learning rate 10−3, 10−4, 10−5, 10−6, 5.5 · 10−6, 10−6 10−6

Difference Classifier Learning rate h 10−1, 10−2, 10−3, 10−4 10−2

Confidence parameter (b) 5.0 · 10−1, 10 · 10−1, 15 · 10−1 5.0 · 10−1

3.6.3 Ablation Study Difference Classifier Learning Rate

0 10K 20K 30K 40K 50K
number of words seen

0.4

0.5

0.6

0.7

0.8

dif
fer

en
ce

 cl
as

sif
ier

 f-
sc

or
e

Keyphrase Extraction

LeaQI - h learning-rate:1e-2
LeaQI - h learning-rate:1e-3
LeaQI - h learning-rate:1e-4

0 10K 20K 30K 40K 50K
number of words seen

0

2.5K

5K

7.5K

10K

12.5K

15K

17.5K
nu

m
be

r o
f w

or
ds

 q
ue

rie
d

Keyphrase Extraction

0 5K 10K 15K
number of words queried

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

ph
ra

se
-la

be
l f

-sc
or

e

Keyphrase Extraction

0 5K 10K 15K 20K 25K
number of words seen

0.5

0.6

0.7

0.8

0.9

dif
fe

re
nc

e c
las

sif
ier

 f-
sc

or
e

Part of Speech Tagging

0 10K 20K
number of words seen

0

2K

4K

6K

8K

10K

12K

14K

nu
mb

er
 of

 w
or

ds
 qu

er
ied

Part of Speech Tagging

0 5K 10K 15K
number of words queried

0.3

0.4

0.5

0.6

0.7

0.8

0.9
ac

cu
ra

cy
Part of Speech Tagging

Figure 3.4: (top-row) English keyphrase extraction and (bottom-row) low-resource language part
of speech tagging on Greek, Modern (el). We show the performance of using different learning
for the difference classifier h. These plots indicate that their is small difference in performance
depending on the difference classifier learning rate.
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3.6.4 Ablation Study Confidence Parameter: b

0 5K 10K 15K 20K 25K
number of words queried

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

ph
ra

se
-la

be
l f

-sc
or

e
Keyphrase Extraction

LeaQI - b: 5e-1
LeaQI - b: 10e-1
LeaQI - b: 15e-1

0 10K 20K 30K 40K 50K
number of words seen

0

5K

10K

15K

20K

25K

nu
m

be
r o

f w
or

ds
 q

ue
rie

d

Keyphrase Extraction

0 5K 10K 15K
number of words queried

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ac
cu

ra
cy

Part of Speech Tagging

0 5K 10K 15K 20K 25K
number of words seen

0

2.5K

5K

7.5K

10K

12.5K

15K

17.5K

nu
m

be
r o

f w
or

ds
 q

ue
rie

d

Part of Speech Tagging

Figure 3.5: (top-row) English keyphrase extraction and (bottom-row) low-resource language
part of speech tagging on Greek, Modern (el). We show the performance of using difference
confidence parameters b. These plots indicate that our model is robust to difference confidence
parameters.
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Chapter 4: Interactive Text Generation

Although interactive imitation learning algorithms such as DAgger (see section 2.4.2)

assumes that we query an online expert for every state that an agent visit, there are settings

where this assumption holds. This assumption is unrealistic in most settings, as discussed in the

previous chapter (see chapter chapter 3), except when the expert is a computational oracle. The

computational oracle can learn the near-(optimal) decision at the expense of e.g., expanding a

game-tree or search-tree. We use a computational oracle to study a fundamental issue in modern

sequence generation models.

1 In this chapter, we study the problem that standard sequential generation methods assume

a pre-specified generation order, such as text generation methods that generate words from

left to right. We propose a framework for training models of text generation that operate in

non-monotonic orders; the model directly learns good orders without additional annotation. Our

framework works by generating a word at an arbitrary position and then recursively generating

words to its left and then words to its right, yielding a binary tree. The learning problem is

framed as an interactive imitation learning problem using DAgger [236] (see section 2.4.2). We

include computational oracles such as a coaching method that moves from imitating an oracle to

reinforcing the policy’s preferences. Experimental results demonstrate that it is possible to learn

policies that generate text without pre-specifying a generation order using the proposed method

while achieving competitive performance with conventional left-to-right generation.

1A previous version of this work was presented in [299]
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Figure 4.1: A sequence, “how are you ?”, generated by the proposed approach trained on
utterances from a dialogue dataset. The model first generated the word “are” and then recursively
generated left and right subtrees (“how” and “you ?”, respectively) of this word. At each
production step, the model may either generate a token, or an 〈end〉 token, which indicates that
this subtree is complete. The full generation is performed in a level-order traversal, and the
output is read off from an in-order traversal. The numbers in green squares denote generation
order (level-order); those in rounded blue squares denote location in the final sequence (in-order).

4.1 Introduction

Most sequence-generation models, from n-grams [18] to neural language models [29]

generate sequences in a purely left-to-right, monotonic order. This raises the question of whether

alternative, non-monotonic orders are worth considering [92], especially given the success of

“easy first” techniques in natural language tagging [286], parsing [105], and coreference [271],

which allow a model to effectively learn their own ordering. In investigating this question, we

are solely interested in considering non-monotonic generation that does not rely on external

supervision, such as parse trees [6, 86].

In this paper, we propose a framework for training sequential text generation models

which learn a generation order without having to specifying an order in advance. An example

generation from our model is shown in Figure 4.1. We frame the learning problem as an imitation
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learning problem, in which we aim to learn a generation policy that mimics the actions of an

oracle generation policy. Because the tree structure is unknown, the oracle policy cannot know

the exact correct actions to take; to remedy this we propose a method called annealed coaching

which can yield a policy with learned generation orders, by gradually moving from imitating

a maximum entropy oracle to reinforcing the policy’s own preferences. Experimental results

demonstrate that using the proposed framework, it is possible to learn policies which generate

text without pre-specifying a generation order, achieving easy first-style behavior. The policies

achieve performance metrics that are competitive with or superior to conventional left-to-right

generation in language modeling, word reordering, and machine translation.2

4.2 Related Work

Arguably one of the most successful approaches for generating discrete sequences, or

sentences, is neural autoregressive modeling [273, 284]. It has become de facto standard in

machine translation [62, 274] and is widely studied for dialogue response generation [292]

as well as speech recognition [63]. On the other hand, recent works have shown that it is

possible to generate a sequence of discrete tokens in parallel by capturing strong dependencies

among the tokens in a non-autoregressive way [109, 171, 201]. Stern et al. [270] and Wang

et al. [295] proposed to mix in these two paradigms and build a semi-autoregressive sequence

generator, while largely sticking to left-to-right generation. Our proposal radically departs from

these conventional approaches by building an algorithm that automatically captures a distinct

generation order.

In (neural) language modeling, there is a long tradition of modeling the probability of a

2Code and trained models available at https://github.com/wellecks/nonmonotonic_
text.
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sequence as a tree or directed graph. For example, Emami and Jelinek [85] proposed to factorize

the probability over a sentence following its syntactic structure and train a neural network to

model conditional distributions, which was followed more recently by Zhang et al. [324] and

by Dyer et al. [84]. This approach was applied to neural machine translation by Eriguchi et al.

[86] and Aharoni and Goldberg [6]. In all cases, these approaches require the availability of the

ground-truth parse of a sentence or access to an external parser during training or inference time.

This is unlike the proposed approach which does not require any such extra annotation or tool

and learns to sequentially generate a sequence in an automatically determined non-monotonic

order.

4.3 Background

Formally, we consider the problem of sequentially generating a sequence of discrete tokens

Y = (w1, . . . , wN), such as a natural language sentence, where wi ∈ V , a finite vocabulary. Let

Ṽ = V ∪ {〈end〉}.

Unlike conventional approaches with a fixed generation order, often left-to-right (or

right-to-left), our goal is to build a sequence generator that generates these tokens in an order

automatically determined by the sequence generator, without any extra annotation nor supervision

of what might be a good order. We propose a method which does so by generating a word at an

arbitrary position, then recursively generating words to its left and words to its right, yielding a

binary tree like that shown in Figure 4.1.

We view the generation process as deterministically navigating a state space S = Ṽ ?

where a state s ∈ S corresponds to a sequence of tokens from Ṽ . We interpret this sequence of

tokens as a top-down traversal of a binary tree, where 〈end〉 terminates a subtree. The initial
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state s0 is the empty sequence. For example, in Figure 4.1, s1 = 〈are〉, s2 = 〈are, how〉, . . . ,

s4 = 〈are, how, ?, 〈end〉〉. An action a is an element of Ṽ which is deterministically appended

to the state. Terminal states are those for which all subtrees have been 〈end〉’ed. If a terminal

state sT is reached, we have that T = 2N + 1, where N is the number of words (non-〈end〉

tokens) in the tree. We use τ(t) to denote the level-order traversal index of the t-th node in

an in-order traversal of a tree, so that 〈aτ(1), . . . , aτ(T )〉 corresponds to the sequence of discrete

tokens generated. The final sequence returned is this, postprocessed by removing all 〈end〉’s. In

Figure 4.1, τ maps from the numbers in the blue squares to those in the green squares.

A policy π is a (possibly) stochastic mapping from states to actions, and we denote the

probability of an action a ∈ Ṽ given a state s as π(a|s). A policy π’s behavior decides which

and whether words appear before and after the token of the parent node. Typically there are

many unique binary trees with an in-order traversal equal to a sequence Y . Each of these trees

has a different level-order traversal, thus the policy is capable of choosing from many different

generation orders for Y , rather than a single predefined order. Note that left-to-right generation

can be recovered if π(〈end〉|st) = 1 if and only if t is odd (or non-zero and even for right-to-left

generation).

4.4 Our Approach: Non-Monotonic Sequence Generation

Learning in our non-monotonic sequence generation model amounts to inferring a policy

π from data. We first consider the unconditional generation problem (akin to language modeling)

in which the data consists simply of sequences Y to be generated. Subsequently (paragraph 4.7.1)

we consider the conditional case in which we wish to learn a mapping from inputs X to output

sequences Y .
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Figure 4.2: A sampled tree for the sentence “a b c d” with an action space Ṽ = (a,b,c,d,e,〈end〉),
showing an oracle’s distribution π∗ and consecutive subsequences (“valid actions”) Yt for
t ∈ {0, 1, 2, 3, 6}. Each oracle distribution is depicted as 6 boxes showing π∗(at+1|st) (lighter
= higher probability). After b is sampled at the root, two empty left and right child nodes are
created, associated with valid actions (a) and (c, d), respectively. Here, π∗ only assigns positive
probability to tokens in Yt.

This learning problem is challenging because the sequences Y alone only tell us what

the final output sequences of words should be, but not what tree(s) should be used to get there.

In left-to-right generation, the observed sequence Y fully determines the sequence of actions

to take. In our case, however, the tree structure is effectively a latent variable, which will be

determined by the policy itself. This prevents us from using conventional supervised learning

for training the parameterized policy. On the other hand, at training time, we do know which

words should eventually appear, and their order; this substantially constrains the search space

that needs to be explored, suggesting learning-to-search [79] and imitation learning [233, 235]

as a learning strategy.3

3One could consider applying reinforcement learning to this problem. This would ignore the fact that at training
time we know which words will appear, reducing the size of the feasible search space from O(|V |T ) to O(|X|T ),
a huge savings. Furthermore, even with a fixed generation order, RL has proven to be difficult without partially
relying on supervised learning [15, 17, 225].
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The key idea in our imitation learning framework is that at the first step, an oracle policy’s

action is to produce any word w that appears anywhere in Y . Once picked, in a quicksort-esque

manner, all words to the left of w in Y are generated recursively on the left (following the same

procedure), and all words to the right of w in Y are generated recursively on the right. (See

Figure 4.2 for an example.) Because the oracle is non-deterministic (many “correct” actions

are available at any given time), we inform this oracle policy with the current learned policy,

encouraging it to favor actions that are preferred by the current policy, inspired by work in direct

loss minimization [116] and related techniques [57, 117].

We describe the cost function we use, a set of oracle policies and a set of roll-in policies

(see background section), both of which are specifically designed for the proposed problem

of non-monotonic sequential generation of a sequence. These sets of policies are empirically

evaluated later in the experiments.

4.4.1 Cost Measurement

There are many ways to measure the prediction cost C(π; πout, s); arguably the most

common is squared error between cost-predictions by π and observed costs obtained by πout at

the state s. However, recent work has found that, especially when dealing with recurrent neural

network policies (which we will use), using a cost function more analogous to a cross-entropy

loss can be preferred [56, 167, 302]. In particular, we use a KL-divergence type loss, measuring

the difference between the action distribution produced by π and the action distribution preferred

by πout.

C(π; πout, s) = DKL (πout(·|s) || π(·|s)) (4.1)

49



=
∑
a∈Ṽ

πout(a|s) log π(a|s) + const.

Our approach estimates the loss in Eq. Eq. (2.4) by first sampling one training sequence, running

the roll-in policy for t steps, and computing the KL divergence Eq. (4.1) at that state using π∗

as πout. Learning corresponds to minimizing this KL divergence iteratively with respect to the

parameters of π.

4.4.2 Oracle Policies

In this section we formalize the oracle policies that we consider. To simplify the discussion

(we assume that the roll-in distribution is the oracle), we only need to define an oracle policy that

takes actions on states it, itself, visits. All the oracles we consider have access to the ground truth

output Y , and the current state s. We interpret the state s as a partial binary tree and a “current

node” in that binary tree where the next prediction will go. It is easiest to consider the behavior

of the oracle as a top-down, level-order traversal of the tree, where in each state it maintains a

sequence of “possible tokens” at that state. An oracle policy π∗(·|st) is defined with respect to

Yt, a consecutive subsequence of Y . At s0 = 〈〉, π∗ uses the full Y0 = Y . This is subdivided as

the tree is descended. At each state st, Yt contains “valid actions”; labeling the current node with

any token from Yt keeps the generation leading to Y . For instance, in Figure 4.2, after sampling

b for the root, the valid actions (a, b, c, d) are split into (a) for the left child and (c, d) for the

right child.
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Given the consecutive subsequence Yt = (w′1, . . . , w
′
N ′), an oracle policy is defined as:

π∗(a|st) =



1 if a = 〈end〉 and Yt = 〈〉

pa if a ∈ Yt

0 otherwise

(4.2)

where the pas are arbitrary such that
∑

a∈Y pa = 1. An oracle policy places positive probability

only on valid actions, and forces an 〈end〉 output if there are no more words to produce. This is

guaranteed to always generate Y , regardless of how the random coin flips come up.

When an action a is chosen, at st, this “splits” the sub-sequence Yt = (w′1, . . . , w
′
N ′) into

left and right sub-sequences,
←−
Y t = (w′1, . . . , w

′
i−1) and

−→
Y t = (w′i+1, . . . , wN), where i is the

index of a in Yt. (This split may not be unique due to duplicated words in Yt, in which case we

choose a valid split arbitrarily.) These are “passed” to the left and right child nodes, respectively.

There are many possible oracle policies, and each of them is characterized by how pa in

Eq. Eq. (4.2) is defined. Specifically, we propose three variants.

Uniform Oracle. Motivated by Welleck et al. [302] who applied learning-to-search to the

problem of multiset prediction, we design a uniform oracle π∗uniform. This oracle treats all possible

generation orders that lead to the target sequence Y as equally likely, without preferring any

specific set of orders. Formally, π∗uniform gives uniform probabilities pa = 1/n for all words in Yt

where n is the number of unique words in Yt. (Daumé [77] used a similar oracle for unsupervised

structured prediction, which has a similar non-deterministic oracle complication.)
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Coaching Oracle. An issue with the uniform oracle is that it does not prefer any specific set of

generation orders, making it difficult for a parameterized policy to imitate. This gap has been

noticed as a factor behind the difficulty in learning-to-search by He et al. [117], who propose the

idea of coaching. In coaching, the oracle takes into account the preference of a parameterized

policy in order to facilitate its learning. Motivated by this, we design a coaching oracle as the

product of the uniform oracle and current policy π:

π∗coaching(a|s) ∝ π∗uniform(a|s) π(a|s) (4.3)

This coaching oracle ensures that no invalid action is assigned any probability, while preferring

actions that are preferred by the current parameterized policy, reinforcing the selection by the

current policy if it is valid.

Annealed Coaching Oracle. The multiplicative nature of the coaching oracle gives rise to an

issue, especially in the early stage of learning, as it does not encourage learning to explore a

diverse set of generation orders. We thus design a mixture of the uniform and coaching policies,

which we refer to as an annealed coaching oracle:

π∗annealed(a|s) = βπ∗uniform(a|s) + (1− β)π∗coaching(a|s) (4.4)

We anneal β from 1 to 0 over learning, on a linear schedule.

Deterministic Left-to-Right Oracle. In addition to the proposed oracle policies above, we

also experiment with a deterministic oracle that corresponds to generating the target sequence

from left to right: π∗left-right always selects the first un-produced word as the correct action, with
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probability 1. When both roll-in and oracle policies are set to the left-to-right oracle π∗left-right,

the proposed approach recovers to maximum likelihood learning of an autoregressive sequence

model, which is de facto standard in neural sequence modeling. In other words, supervised

learning of an autoregressive sequence model is a special case of the proposed approach.

4.5 Experiments

In this section we experiment with our non-monotone sequence generation model across

four tasks. The first two are unconditional generation tasks: language modeling (subsection 4.5.1)

and out-of-order sentence completion (subsection 4.5.2). Our analysis in these tasks is primarily

qualitative: we seek to understand what the non-monotone policy is learning and how it compares

to a left-to-right model. The second two tasks are conditional generation tasks, which generate

output sequences based on some given input sequence: word reordering (subsection 4.5.3) and

machine translation (subsection 4.5.4).

4.5.1 Language Modeling

We begin by considering generating samples from our model, trained as a language model.

Our goal in this section is to qualitatively understand what our model has learned. It would be

natural also to evaluate our model according to a score like perplexity. Unfortunately, unlike

conventional autoregressive language models, it is intractable to compute the probability of a

given sequence in the non-monotonic generation setting, as it requires us to marginalize out all

possible binary trees that lead to the sequence.
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Oracle %Novel %Unique Avg.
Tokens

Avg.
Span

BLEU

left-right 17.8 97.0 11.9 1.0 47.0
uniform 98.3 99.9 13.0 1.43 40.0
annealed 93.1 98.2 10.6 1.31 56.2

Validation 97.0 100 12.1 - -

Table 4.1: Statistics computed over 10,000 sampled sentences (in-order traversals of sampled
trees with 〈end〉 tokens removed) for policies trained on Persona-Chat. A sample is novel when
it is not in the training set. Percent unique is the cardinality of the set of sampled sentences
divided by the number of sampled sentences.

Dataset. We use a dataset derived from the Persona-Chat [321] dialogue dataset, which consists

of multi-turn dialogues between two agents. Our dataset here consists of all unique persona

sentences and utterances in Persona-Chat. We derive the examples from the same train, validation,

and test splits as Persona-Chat, resulting in 133,176 train, 16,181 validation, and 15,608 test

examples. Sentences are tokenized by splitting on spaces and punctuation. The training set has a

vocabulary size of 20,090 and an average of 12.0 tokens per example.

Model. We use a uni-directional LSTM that has 2 layers of 1024 LSTM units. See section 4.7.1

for more details.

Basic Statistics. We draw 10,000 samples from each trained policy (by varying the oracle) and

analyze the results using the following metrics: percentage of novel sentences, percentage of

unique, average number of tokens, average span size4 and BLEU (Table 4.1). We use BLEU to

quantify the sample quality by computing the BLEU score of the samples using the validation

set as reference, following Yu et al. [314] and Zhu et al. [325]. In section section 4.7 we report

additional scores. We see that the non-monotonically trained policies generate many more novel

sentences, and build trees that are bushy (span ∼ 1.3), but not complete binary trees. The policy

4The average span is the average number of children for non-leaf nodes excluding the special token 〈end〉,
ranging from 1.0 (chain, as induced by the left-right oracle) to 2.0 (full binary tree).
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π∗ Samples

le
ft

-r
ig

ht

◦ hey there , i should be !
◦ not much fun . what are you doing
?
◦ not . not sure if you .
◦ i love to always get my nails done
.
◦ sure , i can see your eye
underwater

while riding a footwork .
un

if
or

m

◦ i just got off work .
◦ yes but believe any karma , it is .
◦ i bet you are . i read most of good
tvs

on that horror out . cool .
◦ sometimes , for only time i
practice

professional baseball .
◦ i am rich , but i am a policeman .

an
ne

al
ed

◦ i do , though . do you ?
◦ i like iguanas . i have a snake . i
wish

i could win . you ?
◦ i am a homebody .
◦ i care sometimes . i also
snowboard .
◦ i am doing okay . just relaxing ,

and you ?

Table 4.2: Samples from unconditional generation policies trained on Persona-Chat for each
training oracle. The first sample’s underlying tree is shown. Section 4.7.1 for more samples.

trained with the annealed oracle is most similar to the validation data according to BLEU.

Content Analysis. We investigate the content of the models in Table 4.2, which shows samples

from policies trained with different oracles. Each of the displayed samples are not a part of

the training set. We provide additional samples organized by length in section section 4.7 and

show the underlying trees that generated them in section section 4.7. We additionally examined

word frequencies and part-of-speech tag frequencies, finding that the samples from each policy

typically follow the validation set’s word and tag frequencies.
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Figure 4.3: POS tag counts by tree-depth, computed by tagging 10,000 sampled sentences.
Counts are normalized across each row (depth), then the marginal tag probabilities are subtracted.
A light value means the probability of the tag occurring at that depth is higher than the prior
probability of the tag occurring.

Generation Order. We analyze the generation order of our various models by inspecting the

part-of-speech (POS) tags each model tends to put at different tree depths (i.e. number of edges

from node to root). Figure 4.3 shows POS counts by tree depth, normalized by the sum of counts

at each depth (we only show the four most frequent POS categories). We also show POS counts

for the validation set’s dependency trees, obtained with an off-the-shelf parser. Not surprisingly,

policies trained with the uniform oracle tend to generate words with a variety of POS tags at each

level. Policies trained with the annealed oracle on the other hand, learned to frequently generate

punctuation at the root node, often either the sentence-final period or a comma, in an “easy first”

style, since most sentences contain a period. Furthermore, we see that the policy trained with the

annealed oracle tends to generate a pronoun before a noun or a verb (tree depth 1), which is a

pattern that policies trained with the left-right oracle also learn. Nouns typically appear in the

middle of the policy trained with the annealed oracle’s trees. Aside from verbs, the annealed

policy’s trees, which place punctuation and pronouns near the root and nouns deeper, follow a

similar structure as the dependency trees.
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4.5.2 Sentence Completion

A major weakness of the conventional autoregressive model, especially with unbounded

context, is that it cannot be easily used to fill in missing parts of a sentence except at the

end. This is especially true when the number of tokens per missing segment is not given in

advance. Achieving this requires significant changes to both model architecture, learning and

inference [30].

Our proposed approach, on the other hand, can naturally fill in missing segments in a

sentence. Using models trained as language models from the previous section (subsection 4.5.1),

we can achieve this by initializing a binary tree with observed tokens in a way that they respect

their relative positions. For instance, the first example shown in Table 4.3 can be seen as the

template “ favorite food ! ” with variable-length missing segments. Generally,

an initial tree with nodes (wi, . . . , wk) ensures that each wj appears in the completed sentence,

and that wi appears at some position to the left of wj in the completed sentence when wi is a

left-descendant of wj (analogously for right-descendants).

To quantify the completion quality, we first create a collection of initial trees by randomly

sampling three words (wi, wj, wk) from each sentence Y = (w1, . . . , wT ) from the Persona-Chat

validation set of subsection 4.5.1. We then sample one completion for each initial tree and

measure the BLEU of each sample using the validation set as reference as in subsection 4.5.1.

According to BLEU, the policy trained with the annealed oracle sampled completions that were

more similar to the validation data (BLEU 44.7) than completions from the policies trained with

the uniform (BLEU 38.9) or left-to-right (BLEU 14.3) oracles.

In Table 4.3, we present some sample completions using the policy trained with the uniform
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Initial Tree Samples

◦ lasagna is my favorite food !
◦ my favorite food is mac and cheese !
◦ what is your favorite food ? pizza , i love it !
◦ whats your favorite food ? mine is pizza !
◦ seafood is my favorite . and mexican food !

what is yours ?

◦ hello ! i like classical music . do you ?
◦ hello , do you enjoy playing music ?
◦ hello just relaxing at home listening to

fine music . you ?
◦ hello , do you like to listen to music ?
◦ hello . what kind of music do you like ?

◦ i am a doctor or a lawyer .
◦ i would like to feed my doctor , i aspire

to be a lawyer .
◦ i am a doctor lawyer . 4 years old .
◦ i was a doctor but went to a lawyer .
◦ i am a doctor since i want to be a lawyer .

Table 4.3: Sentence completion samples from a policy trained on Persona-Chat with the uniform
oracle. The left column shows the initial seed tree. In the sampled sentences, seed words are
bold.

oracle. The completions illustrate a property of the proposed non-monotonic generation that is

not available in left-to-right generation.

4.5.3 Word Reordering

We first evaluate the proposed models for conditional generation on the Word Reordering

task, also known as Bag Translation [47] or Linearization [244]. In this task, a sentence

Y = (w1, ..., wN) is given as an unordered collection X = {w1, ..., wN}, and the task is to

reconstruct Y from X . We assemble a dataset of (X, Y ) pairs using sentences Y from the

Persona-Chat sentence dataset of subsection 4.5.1. In our approach, we do not explicitly force

the policies trained with our non-monotonic oracles to produce a permutation of the input and

instead let them learn this automatically.
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Validation Test
Oracle BLEU F1 EM BLEU F1 EM

left-right 46.6 0.910 0.230 46.3 0.903 0.208
uniform 44.7 0.968 0.209 44.3 0.960 0.197
annealed 46.8 0.960 0.230 46.0 0.950 0.212

Table 4.4: Word Reordering results on Persona-Chat, reported according to BLEU score, F1
score, and percent exact match.

Model. For encoding each unordered input x = {w1, ..., wN}, we use a simple bag-of-words

encoder: f enc({w1, ..., wN}) = 1
T

∑N
i=1 emb(wi). We implement emb(wi) using an embedding

layer followed by a linear transformation. The embedding layer is initialized with GloVe [208]

vectors and updated during training. As the policy (decoder) we use a flat LSTM with 2 layers

of 1024 LSTM units. The decoder hidden state is initialized with a linear transformation of

f enc({w1, ..., wT}).

Results. Table 4.4 shows BLEU, F1 score, and exact match for policies trained with each oracle.

The uniform and annealed policies outperform the left-right policy in F1 score (0.96 and 0.95

vs. 0.903). The policy trained using the annealed oracle also matches the left-right policy’s

performance in terms of BLEU score (46.0 vs. 46.3) and exact match (0.212 vs. 0.208). The

model trained with the uniform policy does not fare as well on BLEU or exact match. See

section 4.7.1 for example predictions.

Easy-First Analysis. Figure 4.4 shows the entropy of each model as a function of depth in

the tree (normalized to fall in [0, 1]). The left-right-trained policy has high entropy on the first

word and then drops dramatically as additional conditioning from prior context kicks in. The

uniform-trained policy exhibits similar behavior. The annealed-trained policy, however, makes

its highest confidence (“easiest”) predictions at the beginning (consistent with Figure 4.3) and

defers harder decisions until later.
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Figure 4.4: Normalized entropy of π(·|s) as a function of tree depth for policies trained with
each of the oracles. The anneal-trained policy, unlike the others, makes low entropy decisions
early.

Validation Test
Oracle BLEU (BP) Meteor YiSi Ribes BLEU (BP) Meteor YiSi Ribes

left-right 32.30 (0.95) 31.96 69.41 84.80 28.00 (1.00) 30.10 65.22 82.29

uniform 24.50 (0.84) 27.98 66.40 82.66 21.40 (0.86) 26.40 62.41 80.00

annealed 26.80 (0.88) 29.67 67.88 83.61 23.30 (0.91) 27.96 63.38 80.91
+tree-encoding 28.00 (0.86) 30.15 68.43 84.36 24.30 (0.91) 28.59 63.87 81.64
+〈end〉-tuning 29.10 (0.99) 31.00 68.81 83.51 24.60 (1.00) 29.30 64.18 80.53

Table 4.5: Results of machine translation experiments for different training oracles across four
different evaluation metrics.

4.5.4 Machine Translation

Dataset. We evaluate the proposed models on IWSLT’16 German→ English (196k pairs)

translation task. The data sets consist of TED talks. We use TED tst2013 as a validation dataset

and tst-2014 as test.

Model & Training. We use a Transformer policy, following the architecture of [289]. We

use auxiliary 〈end〉 prediction by introducing an additional output head, after observing a low
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brevity penalty in preliminary experiments. For the 〈end〉 prediction threshold τ we use 0.5, and

also report a variant (+〈end〉 tuning) in which τ is tuned based on validation BLEU (τ = 0.67).

Finally, we report a variant which embeds each token by additionally encoding its path from the

root (+tree-encoding) based on [257]. See section 4.7 for additional details and results with a

Bi-LSTM encoder-decoder architecture.

Results. Results on validation and test data are in Table 4.7 according to four (very) different

evaluation measures: BLEU, Meteor [164], YiSi [181], and Ribes [133]. First focusing on the

non-monotonic models, we see that the annealed policy outperforms the uniform policy on all

metrics, with tree-encoding yielding further gains. Adding 〈end〉 tuning to the tree-encoding

model decreases the Ribes score but improves the other metrics, notably increasing the BLEU

brevity penalty.

Compared to the best non-monotonic model, the left-to-right model has superior performance

according to BLEU. As previously observed [50, 304], BLEU tends to strongly prefer models

with left-to-right language models because it focuses on getting a large number of 4-grams

correct. The other three measures of translation quality are significantly less sensitive to exact

word order and focus more on whether the “semantics” is preserved (for varying definitions

of “semantics”). For those, we see that the best annealed model is more competitive, typically

within one percentage point of left-to-right.

4.6 Conclusion

We described an approach to generating text in non-monotonic orders that fall out naturally

as the result of learning. We explored several different oracle models for imitation, and found that
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an annealed “coaching” oracle performed best, and learned a “best-first” strategy for language

modeling, where it appears to significantly outperform alternatives. On a word re-ordering task,

we found that this approach essentially ties left-to-right decoding, a rather promising finding

given the decades of work on left-to-right models. In a machine translation setting, we found

that the model learns to translate in a way that tends to preserve meaning but not n-grams.

There are several potentially interesting avenues for future work. One is to solve the

“learning to stop” problem directly, rather than through an after-the-fact tuning step. Another is

to better understand how to construct an oracle that generalizes well after mistakes have been

made, in order to train off of the gold path(s).

Moreover, the proposed formulation of sequence generation by tree generation is limited to

binary trees. It is possible to extend the proposed approach to n-ary trees by designing a policy

to output up to n+ 1 decisions at each node, leading to up to n child nodes. This would bring a

set of generation orders, that could be captured by the proposed approach, which includes all

projective dependency parses. A new oracle must be designed for n-ary trees, and we leave this

as a follow-up work.

Finally, although the proposed approach indeed learns to sequentially generate a sequence

in a non-monotonic order, it cannot consider all possible orders. It is due to the constraint that

there cannot be any crossing of two edges when the nodes are arranged on a line following the

inorder traversal, which we refer to as projective generation. Extending the proposed approach

to non-projective generation, which we leave as future work, would expand the number of

generation orders considered during learning.
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4.7 Extend Details

4.7.1 Neural Net Policy Structure

We use a neural network to implement the proposed binary tree generating policy, as it has

been shown to encode a variable-sized input and predict a structured output effectively [24, 46,

61, 65, 91, 274, 278]. This neural network takes as input a partial binary tree, or equivalently a

sequence of nodes in this partial tree by level-order traversal, and outputs a distribution over the

action set Ṽ .

LSTM Policy. The first policy we consider is implemented as a recurrent network with long

short-term memory (LSTM) units [127] by considering the partial binary tree as a flat sequence

of nodes in a level-order traversal (a1, . . . , at). The recurrent network encodes the sequence into

a vector ht and computes a categorical distribution over the action set:

π(a|st) ∝ exp(u>a ht + ba) (4.5)

where ua and ba are weights and bias associated with a.

This LSTM structure relies entirely on the linearization of a partial binary tree, and

minimally takes advantage of the actual tree structure or the surface order. It may be possible

to exploit the tree structure more thoroughly using a recurrent architecture that is designed to

encode a tree [8, 39, 83, 324], which we leave for future investigation. We did experiment with

additionally conditioning π’s action distribution on the parent of the current node in the tree, but

preliminary experiments did not show gains.
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Transformer Policy. We additionally implement a policy using a Transformer [289]. The level-

order sequence a1, ..., at is again summarized by a vector ht, here computed using a multi-head

attention mechanism. As in the LSTM policy, the vector ht is used to compute a categorical

distribution over the action set Eq. (4.5).

Auxiliary 〈end〉 Prediction. We also consider separating the action prediction into token

(ai ∈ V) prediction and 〈end〉 prediction. The policy under this view consists of a categorical

distribution over tokens Eq. (4.5) as well as an 〈end〉 predictor which parameterizes a Bernoulli

distribution, πend(〈end〉|st) ∝ σ(u>e ht + be), where πend(〈end〉 = 1|st) means at is 〈end〉, and at

is determined by π according to Eq. (4.5) otherwise. At test time, we threshold the predicted

〈end〉 probability at a threshold τ . In our experiments, we only use this approach with the

Transformer policy (subsection 4.5.4).

Conditional Sentence Generation An advantage of using a neural network to implement the

proposed policy is that it can be easily conditioned on an extra context. It allows us to build

a conditional non-monotonic sequence generator that can for instance be used for machine

translation, image caption generation, speech recognition and generally multimedia description

generation [59]. To do so, we assume that a conditioning input (e.g. an image or sentence) X

can be represented as a set of denc-dimensional context vectors, obtained with a learned encoder

function f enc(X) whose parameters are learned jointly with the policy’s.

For word-reordering experiments subsection 4.5.3, the encoder outputs a single vector

which is used to initialize the LSTM policy’s state h0. In the machine translation experiments

subsection 4.5.4, the Transformer encoder outputs |X| vectors, H ∈ R|X|×denc , which are used as

input to a decoder (i.e. policy) attention function; see [289] for further details.
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4.7.2 Word Reordering

Model The decoder is a 2-layer LSTM with 1024 hidden units, dropout of 0.0, based on a

preliminary grid search of nlayers ∈ {1, 2}, nhidden ∈ {512, 1024, 2048}, dropout ∈ {0.0, 0.2, 0.5}.

Word embeddings are initialized with GloVe vectors and updated during training. All presented

Word Reordering results use greedy decoding.

Training Each model was trained on a single GPU using a maximum of 500 epochs, batch size

of 32, Adam ] optimizer, gradient clipping with maximum `2-norm of 1.0, and a learning rate

starting at 0.001 and multiplied by a factor of 0.5 every 20 epochs. For evaluation we select the

model state which had the highest validation BLEU score, which is evaluated after each training

epoch.

Oracle For π∗annealed, β is linearly annealed from 1.0 to 0.0 at a rate of 0.05 each epoch, after

a burn-in period of 20 epochs in which β is not decreased. We use greedy decoding when

π∗coaching is selected at a roll-in step; we did not observe significant performance variations with

stochastically sampling from π∗coaching. These settings are based on a grid search of βrate ∈

{0.01, 0.05}, βburn-in ∈ {0, 20}, coaching-rollin ∈ {greedy, stochastic} using the model selected

in the Model section above.

4.7.3 Unconditional Generation

We use the same settings as the Word Reordering experiments, except we always use

stochastic sampling from π∗coaching during roll-in. For evaluation we select the model state at the

end of training.
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Table 4.6: Unconditional generation BLEU for various top-k samplers and policies trained with
the specified oracle.

Oracle k BLEU-2 BLEU-3 BLEU-4

π∗left-right 10 0.905 0.778 0.624
100 0.874 0.705 0.514

1000 0.853 0.665 0.466
all 0.853 0.668 0.477

π∗uniform 10 0.966 0.906 0.788
100 0.916 0.751 0.544

1000 0.864 0.651 0.435
all 0.831 0.609 0.395

π∗annealed 10 0.966 0.895 0.770
100 0.931 0.804 0.628

1000 0.907 0.765 0.585
all 0.894 0.740 0.549

Validation Test
Oracle BLEU (BP) Meteor YiSi Ribes BLEU (BP) Meteor YiSi Ribes

left-right 29.47 (0.97) 29.66 52.03 82.55 26.23 (1.00) 27.87 47.58 79.85

uniform 14.97 (0.63) 21.76 41.62 77.70 13.17 (0.64) 19.87 36.48 75.36
+〈end〉-tuning 18.79 (0.89) 25.30 46.23 78.49 17.68 (0.96) 24.53 42.46 74.12

annealed 19.50 (0.71) 26.57 48.00 81.48 16.94 (0.72) 23.15 42.39 78.99
+〈end〉-tuning 21.95 (0.90) 26.74 49.01 81.77 19.19 (0.91) 25.24 43.98 79.24

Table 4.7: LSTM Policy results for machine translation experiments.

Unconditional Samples

Additional BLEU Scores Since absolute BLEU scores can vary by using a softmax temperature

[49] or top-k sampler, we report additional scores for k ∈ {10, 100, 1000} and BLEU-{2, 3, 4}

in Table 4.6. Generally the policy trained with the annealed oracle achieves the highest metrics.
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4.7.4 Machine Translation

Data and Preprocessing We use the default Moses tokenizer script [154] and segment each

word into a subword using BPE [255] creating 40k tokens for both source and target. Similar to

[16], during training we filter sentence pairs that exceed 50 words.

Transformer Policy The Transformer policy uses 4 layers, 4 attention heads, hidden dimension

256, feed-forward dimension 1024, and is trained with batch-size 32 and a learning rate 1e−5.

For this model and experiment, we define an epoch as 1,000 model updates. The learning rate is

divided by a factor of 1.1 every 100 epochs. For π∗annealed, β is linearly annealed from 1.0 to 0.0

at a rate of 0.01 each epoch, after a burn-in period of 100 epochs. We compute metrics after each

validation epoch, and following training we select the model with the highest validation BLEU.

Loss with Auxiliary 〈end〉 Predictor A binary cross-entropy loss is used for the 〈end〉 predictor

for all time-steps, so that the total loss is Lbce(π
∗, πend) + LKL(π∗, π) where LKL is the loss from

Section 3.2. For time-steps in which 〈end〉 is sampled, LKL is masked, since the policy’s token

distribution is not used when at is 〈end〉. LKL is averaged over time by summing the loss from

unmasked time-steps, then dividing by the number of unmasked time-steps.

Tree Position Encodings We use an additional tree position encoding, based on [257], which

may make it easier for the policy to identify and exploit structural relationships in the partially

decoded tree. Each node is encoded using its path from the root, namely a sequence of left or

right steps from parent to child. Each step is represented as a 2-dimensional binary vector ([0, 0]

for the root, [1, 0] for left and [0, 1] for right), so that the path is a vector e(ai) ∈ {0, 1}2∗max-depth

after zero-padding. Finally, e(ai) is multiplied element-wise by a geometric series of a learned

67



parameter p, that is, e(ai) · [1, p, p, p2, p3, ...]. We only use this approach with the Transformer

policy.

Additional LSTM Policy Results are shown in Table 4.7. We use a bi-directional LSTM

encoder-decoder architecture that has a single layer of size 512, with global concat attention

[183]. The learning rate is initialized to 0.001 and multiplied by a factor of 0.5 on a fixed interval.
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Part Part 2

Modern Imitation Learning
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Chapter 5: Uncertainty-Based Learning

Having shown the usefulness and addressed issues of interactive imitation learning in the

previous chapters (see chapters 3 and 4), we turn to solve the covariate shift problem without an

online interactive expert. There have been some preliminary results under certain assumptions,

showing that this is possible [266]. However, this work does not propose a practical algorithm;

instead is a theoretical observation. In contrast, proposed practical algorithms do not have any

theoretical guarantees [126, 296].

1 This chapter presents a simple and effective algorithm designed to address the covariate

shift problem in imitation learning without interacting with an online expert. It operates by

training an ensemble of policies on the expert demonstration data and using the variance of their

predictions as a cost minimized with reinforcement learning and a supervised behavioral cloning

cost. The uncertainty-based algorithm introduced in this chapter does not assume access to a

cheap heuristic function, unlike the uncertainty-based technique, LEAQI introduced in chapter 3.

We prove a regret bound for the algorithm, which is linear in the time horizon multiplied by a

coefficient which we show to be low for specific problems on which behavioral cloning fails.

We evaluate our algorithm empirically across multiple pixel-based Atari environments and

continuous control tasks and show that it matches or significantly outperforms behavioral cloning

and generative adversarial imitation learning.

1A previous version of this work was presented in [43]
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5.1 Introduction

Training artificial agents to perform complex tasks is essential for many applications in

robotics, video games and dialogue. If success on the task can be accurately described using

a reward or cost function, reinforcement learning (RL) methods offer an approach to learning

policies which has proven to be successful in a wide variety of applications [123, 175, 190, 192].

However, in other cases the desired behavior may only be roughly specified and it is unclear

how to design a reward function to characterize it. For example, training a video game agent

to adopt more human-like behavior using RL would require designing a reward function which

characterizes behaviors as more or less human-like, which is difficult.

Imitation learning (IL) offers an elegant approach whereby agents are trained to mimic

the demonstrations of an expert rather than optimizing a reward function. Its simplest form

consists of training a policy to predict the expert’s actions from states in the demonstration data

using supervised learning. While appealingly simple, this approach suffers from the fact that

the distribution over states observed at execution time can differ from the distribution observed

during training. Minor errors which initially produce small deviations become magnified as the

policy encounters states further and further from its training distribution. This phenomenon,

initially noted in the early work of [213], was formalized in the work of [231] who proved a

quadratic O(εT 2) bound on the regret and showed that this bound is tight. The subsequent work

of [236] showed that if the policy is allowed to further interact with the environment and make

queries to the expert policy, it is possible to obtain a linear bound on the regret. However, the

ability to query an expert can often be a strong assumption.

In this work, we propose a new and simple algorithm called DRIL (Disagreement-
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Regularized Imitation Learning) to address the covariate shift problem in imitation learning,

in the setting where the agent is allowed to interact with its environment. Importantly, the

algorithm does not require any additional interaction with the expert. It operates by training an

ensemble of policies on the demonstration data, and using the disagreement in their predictions

as a cost which is optimized through RL together with a supervised behavioral cloning cost. The

motivation is that the policies in the ensemble will tend to agree on the set of states covered

by the expert, leading to low cost, but are more likely to disagree on states not covered by the

expert, leading to high cost. The RL cost thus guides the agent back towards the distribution

of the expert, while the supervised cost ensures that it mimics the expert within the expert’s

distribution.

Our theoretical results show that, subject to realizability and optimization oracle assumptions2,

our algorithm obtains a O(εκT ) regret bound, where κ is a measure which quantifies a tradeoff

between the concentration of the demonstration data and the diversity of the ensemble outside

the demonstration data. We evaluate DRIL empirically across multiple pixel-based Atari

environments and continuous control tasks, and show that it matches or significantly outperforms

behavioral cloning and generative adversarial imitation learning, often recovering expert performance

with only a few trajectories.

5.2 Reated Work

Imitation learning has been used within the context of modern RL to help improve sample

efficiency [54, 55, 124, 165, 233, 272] or overcome exploration [198]. These settings assume the

reward is known and that the policies can then be fine-tuned with reinforcement learning. In this

2We assume for the analysis the action space is discrete, but the state space can be exponentially large or infinite.

72



case, covariate shift is less of an issue since it can be corrected using the reinforcement signal.

The work of [182] also proposed a method to address the covariate shift problem when

learning from demonstrations when the reward is known, by conservatively extrapolating the

value function outside the training distribution using negative sampling. This addresses a different

setting from ours, and requires generating plausible states which are off the manifold of training

data, which may be challenging when the states are high dimensional such as images. The work

of [227] proposed to treat imitation learning within the Q-learning framework, setting a positive

reward for all transitions inside the demonstration data and zero reward for all other transitions

in the replay buffer. This rewards the agent for repeating (or returning to) the expert’s transitions.

The work of [242] also incorporates a mechanism for reducing covariate shift by fitting a Q-

function that classifies whether the demonstration states are reachable from the current state.

Random Expert Distillation [296] uses Random Network Distillation (RND) [48] to estimate the

support of the expert’s distribution in state-action space, and minimizes an RL cost designed to

guide the agent towards the expert’s support. This is related to our method, but differs in that it

minimizes the RND prediction error rather than the ensemble variance and does not include a

behavior cloning cost. The behavior cloning cost is essential to our theoretical results and avoids

certain failure modes, see section 5.7.2 for more discusion.

Generative Adversarial Imitation Learning (GAIL) [126] is a state-of-the-art algorithm

which addresses the same setting as ours. It operates by training a discriminator network to

distinguish expert states from states generated by the current policy, and the negative output

of the discriminator is used as a reward signal to train the policy. The motivation is that states

which are outside the training distribution will be assigned a low reward while states which are

close to it will be assigned a high reward. This encourages the policy to return to the expert
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distribution if is strays away from it. However, the adversarial training procedure means that

the reward function is changing over time, which can make the algorithm unstable or difficult to

tune. In contrast, our approach uses a simple fixed reward function. We include comparisons to

GAIL in our experiments.

Using disagreement between models in an ensemble to represent uncertainty has recently

been explored in several contexts. The works of [121, 206, 258] used disagreement between

different dynamics models to drive exploration in the context of model-based RL. Conversely,

[122] used variance across different dropout masks to prevent policies from exploiting error in

dynamics models. Ensembles have also been used to represent uncertainty over Q-values in

model-free RL in order to encourage exploration [204]. Within the context of imitation learning,

the work of [189] used the variance of the ensemble together with the DAGGER algorithm

to decide when to query the expert demonstrator to minimize unsafe situations. Here, we use

disagreement between different policies trained on demonstration data to address covariate shift

in the context of imitation learning.

5.3 Our Approach: Disagreement-Regularized Imitation Learning

Our algorithm is motivated by two criteria: i) the policy should act similarly to the expert

within the expert’s data distribution, and ii) the policy should move towards the expert’s data

distribution if it is outside of it. These two criteria are addressed by combining two losses: a

standard behavior cloning loss, and an additional loss which represents the variance over the

outputs of an ensemble ΠE = {π1, ..., πE} of policies trained on the demonstration data D. We

call this the uncertainty cost, which is defined as:
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Algorithm 4 Disagreement-Regularized Imitation Learning (DRIL)
1: Input: Expert demonstration data D = {(si, ai)}Ni=1

2: Initialize policy π and policy ensemble E = {πe}
3: for e = 1, E do
4: Sample De ∼ D with replacement, with |De| = |D|.
5: Train πe to minimize JBC(πe) on De to convergence.
6: end for
7: for i = 1, ... do
8: Perform one gradient update to minimize JBC(π) using a minibatch from D.
9: Perform one step of policy gradient to minimize Es∼dπ ,a∼π(·|s)[C

clip
U (s, a)].

10: end for

CU(s, a) = Varπ∼ΠE
(π(a|s)) =

|E|∑
i=1

(
πi(a|s)−

|E|∑
i=1

πi(a|s)/|E|
)2

The motivation is that the variance over plausible policies is high outside the expert’s

distribution, since the data is sparse, but it is low inside the expert’s distribution, since the data

there is dense. Minimizing this cost encourages the policy to return to regions of dense coverage

by the expert. Intuitively, this is what we would expect the expert policy π? to do as well. The

total cost which the algorithm optimizes is given by:

Jalg(π) = Es∼dπ? [||π?(·|s)− π(·|s)||]︸ ︷︷ ︸
JBC(π)

+Es∼dπ ,a∼π(·|s)[CU(s, a)]︸ ︷︷ ︸
JU(π)

The first term is a behavior cloning loss and is computed over states generated by the

expert policy, of which the demonstration data D is a representative sample. The second term is

computed over the distribution of states generated by the current policy and can be optimized

using policy gradient.
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Note that the demonstration data is fixed, and this ensemble can be trained once offline. We

then interleave the supervised behavioral cloning updates and the policy gradient updates which

minimize the variance of the ensemble. The full algorithm is shown in Algorithm 7. Dropout

[268] has been proposed as an approximate form of ensembling. We also experimented with

using dropout (see section 5.7.4.2) and found that it also worked well.

In practice, for the supervised loss we optimize the KL divergence between the actions

predicted by the policy and the expert actions, which is an upper bound on the total variation

distance due to Pinsker’s inequality. We also found it helpful to use a clipped uncertainty cost:

Cclip
U (s, a) =


−1 if CU(s, a) ≤ q

+1 else

where the threshold q is a top quantile of the raw uncertainty costs computed over

the demonstration data. The threshold q defines a normal range of uncertainty based on the

demonstration data, and values above this range incur a positive cost (or negative reward).

The RL cost can be optimized using any policy gradient method. In our experiments we

used advantage actor-critic (A2C) [190], which estimates the expected cost using rollouts from

multiple parallel actors all sharing the same policy (see section 5.7.3 for details). We note that

model-based RL methods could in principle be used as well if sample efficiency is a constraint.

5.4 Analysis
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5.4.1 Coverage Coefficient

We now analyze DRIL for MDPs with discrete action spaces and potentially large or

infinite state spaces. We will show that, subject to assumptions that the policy class contains

an optimal policy and that we are able to optimize costs within ε of their global minimum, our

algorithm obtains a regret bound which is linear in κT , where κ is a quantity which depends

on the environment dynamics, d?π and our learned ensemble. Intuitively, κ represents a tradeoff

between how concentrated the demonstration data is and how high the variance of the ensemble

is outside the expert distribution.

Assumption 1. (Realizability) π? ∈ Π.

Assumption 2. (Optimization Oracle) For any given cost function J , our minimization procedure

returns a policy π̂ ∈ Π such that J(π̂) ≤ argminπ∈Π J(π) + ε.

The motivation behind our algorithm is that the policies in the ensemble agree inside the

expert’s distribution and disagree outside of it. This defines a reward function which pushes the

learner back towards the expert’s distribution if it strays away. However, what constitutes inside

and outside the distribution, or sufficient agreement or disagreement, is ambiguous. Below we

introduce quantities which makes these ideas precise.

Definition 3. For any set U ⊆ S, define the concentrability inside of U as

α(U) = maxπ∈Π sups∈U
dπ(s)
dπ?(s)

.

The notion of concentrability has been previously used to give bounds on the performance

of value iteration [196]. For a set U , α(U) will be low if the expert distribution has high mass at

the states in U that are reachable by policies in the policy class.
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Definition 4. Define the minimum variance of the ensemble outside of U as

β(U) = mins/∈U ,a∈AVarπ∼ΠE
[π(a|s)].

We now define the κ coefficient as the minimum ratio of these two quantities over all

possible subsets of S.

Definition 5. We define κ = minU⊆S
α(U)
β(U)

.

We can view κ as the quantity which minimizes the tradeoff over different subsets U

between coverage by the expert policy inside of U , and variance of the ensemble outside of U .

Note that by making U very small, it may be easy to make α(U) small, but doing so may also

make β(U) small and κ(U) large. Conversely, making U large may make β(U) large but may

also make α(U) large as a result.

5.4.2 Regret Bound

We now establish a relationship between the κ coefficient just defined, the cost our

algorithm optimizes, and Jexp defined in Equation (2) which we would ideally like to minimize

and which translates into a regret bound. All proofs can be found in section 5.7.1.

Lemma 1. For any π ∈ Π, we have Jexp(π) ≤ κJalg(π).

This result shows that if κ is not too large, and we are able to make our cost function

Jalg(π) small, then we can ensure Jexp(π) is also be small. This result is only useful if our cost

function can indeed achieve a small minimum. The next lemma shows that this is the case.

Lemma 2. minπ∈Π Jalg(π) ≤ 4ε.

Here ε is the threshold specified in Assumption 2. Combining these two lemmas with the

previous result of [236], we get a regret bound which is linear in κT .
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Figure 5.1: Example of a problem where behavioral cloning incurs quadratic regret.

Theorem 5.4.1. Let π̂ be the result of minimizing Jalg using our optimization oracle, and assume

that Qπ?

T−t+1(s, a) − Qπ?

T−t+1(s, π?) ≤ u for all a ∈ A, t ∈ {1, 2, ..., T}, dtπ(s) > 0. Then π̂

satisfies JC(π̂) ≤ JC(π?) + 5uκεT .

Our bound is an improvement over that of behavior cloning if κ is less than O(T ). Note

that DRIL does not require knowledge of κ. The quantity κ is problem-dependent and depends

on the environment dynamics, the expert policy and the class of policies available to the learner.

We next compute κ exactly for a problem for which behavior cloning is known to perform poorly,

and show that it is independent of T .

Example 1. Consider the tabular MDP given in [231] as an example of a problem where

behavioral cloning incurs quadratic regret, shown in Figure 5.1. There are 3 states S =

(s0, s1, s2) and two actions (a1, a2). Each policy π can be represented as a set of probabilities

π(a1|s) for each state s ∈ S 3. Assume the models in our ensemble are drawn from a posterior

p(π(a1|s)|D) given by a Beta distribution with parameters Beta(n1 + 1, n2 + 1) where n1, n2

are the number of times the pairs (s, a1) and (s, a2) occur, respectively, in the demonstration data

D. The agent always starts in s0 and the expert’s policy is given by π?(a1|s0) = 1, π?(a1|s1) =

0, π?(a1|s2) = 1. Here d?π = ( 1
T
, T−1

T
, 0). For any π, dπ(s0) = 1

T
and dπ(s1) ≤ T−1

T
due

3Note that π(a2|s) = 1− π(a1|s).
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to the dynamics of the MDP, so dπ(s)
d?π(s)

≤ 1 for s ∈ {s0, s1}. Writing out α({s0, s1}), we get:

α({s0, s1}) = maxπ∈Π sups∈{s0,s1}
dπ(s)
d?π(s)

≤ 1.

Furthermore, since s2 is never visited in the demonstration data, for each policy πi in

the ensemble we have πi(a1|s2), πi(a2|s2) ∼ Beta(1, 1) = Uniform(0, 1). It follows that

Varπ∼ΠE
(π(a|s2)) is approximately equal 4 to the variance of a uniform distribution over [0, 1],

i.e. 1
12

. Therefore:

κ = min
U⊆S

α(U)

β(U)
≤ α({s0, s1})
β({s0, s1})

.
1
1
12

= 12

Applying our result from Theorem 5.4.1, we see that our algorithm obtains an O(εT )

regret bound on this problem, in contrast to the O(εT 2) regret of behavioral cloning5.

5.5 Experiments

5.5.1 Tabular MDPs

As a first experiment, we applied DRIL to the tabular MDP of [231] shown in Figure 5.1.

We computed the posterior over the policy parameters given the demonstration data using a

separate Beta distribution for each state s with parameters determined by the number of times

each action was performed in s. For behavior cloning, we sampled a single policy from this

posterior. For DRIL, we sampled an ensemble of 5 policies and used their negative variance to

4Via Hoeffding’s inequality, with probability 1− δ the two differ by at most O(
√

log(1/δ)/|ΠE|).
5Observe that a policy with π(a1|s0) = 1− εT, π(a2|s1) = εT, π(a2|s2) = 1 has a behavioral cloning cost of ε

but a regret of εT 2.

80



0 100 200 300 400 500
Time Horizon

0

20

40

60

80

100

120

Re
gr

et

N=1 demonstration
DRIL
Behavior Cloning

0 100 200 300 400 500
Time Horizon

0

20

40

60

80

100

120

Re
gr

et

N=5 demonstrations
DRIL
Behavior Cloning

0 100 200 300 400 500
Time Horizon

0

20

40

60

80

100

120

Re
gr

et

N=10 demonstrations
DRIL
Behavior Cloning

Figure 5.2: Results on tabular MDP from [231]. Shaded region represents range between 5th

and 95th quantiles, computed across 500 trials. Behavior cloning exhibits poor worst-case regret,
whereas DRIL has low regret across all trials.

define an additional reward function. We combined this with a reward which was the probability

density function of a given state-action pair under the posterior distribution, which corresponds

to the supervised learning loss, and used tabular Q-learning to optimize the sum of these two

reward functions. This experiment was repeated 500 times for time horizon lengths up to 500

and N = 1, 5, 10 expert demonstration trajectories.

Figure 5.2 shows plots of the regret over the 500 different trials across different time

horizons. Although the average performance of BC improves with more expert demonstrations,

it exhibits poor worst-case performance with some trials incurring very high regret, especially

when using fewer demonstrations. Our method has low regret across all trials, which stays

close to constant independantly of the time horizon, even with a single demonstration. This

performance is better than that suggested by our analysis, which showed a worst-case linear

bound with respect to time horizon.

5.5.2 Atari Environments

We next evaluated our approach on six different Atari environments. We used pretrained

PPO [251] agents from the stable baselines repository [125] to generate N = {1, 3, 5, 10, 15, 20}

expert trajectories. We compared against two other methods: standard behavioral cloning (BC)
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Figure 5.3: Results on Atari environments. a) Final policy performance for different numbers
of expert trajectories. b) Evolution of policy reward and uncertainty cost during training with
N = 5 trajectories.

and Generative Adversarial Imitation Learning (GAIL). Results are shown in Figure 5.3a. DRIL

outperforms behavioral cloning across most environments and numbers of demonstrations, often

by a substantial margin. In the worst case its performance matches that of behavior cloning.

In many cases, our method is able to match the expert’s performance using a small number of

trajectories.
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Figure 5.3b shows the evolution of the uncertainty cost and the policy reward throughout

training. In all cases, the test reward improves while the uncertainty cost decreases. Interestingly,

there is correspondence between the change in the uncertainty cost during training and the gap in

performance between behavior cloning and DRIL. For example, in MsPacman there is both a

small improvement in uncertainty cost over time and a small gap between behavior cloning and

our method, whereas in Breakout there is a large improvement in uncertainty cost and a large

gap between behavior cloning and our method. This suggests that the gains from our method

comes from redirecting the policy back towards the expert manifold, which is manifested as a

decrease in the uncertainty cost.

We were not able to obtain meaningful performance for GAIL on these domains, despite

performing a hyperparameter search across learning rates for the policy and discriminator, and

across different numbers of discriminator updates. We additionally experimented with clipping

rewards in an effort to stabilize performance. These results are consistent with those of [227],

who also reported negative results when running GAIL on images. While improved performance

might be possible with more sophisticated adversarial training techniques, we note that this

contrasts with our method which uses a fixed reward function obtained through simple supervised

learning.

In section 5.7.4 we provide ablation experiments examining the effects of different cost

function choices and the role of the BC loss. We also compare the ensemble approach to a

dropout-based approach for posterior approximation and show that DRIL works well in both

cases.
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Figure 5.4: Results on continuous control tasks.

5.5.3 Continuous Control

We next report results of running our method on a 6 different continuous control tasks

from the PyBullet6 and OpenAI Gym [45] environments. We again used pretrained agents to

generate expert demonstrations. Results are shown in Figure 5.4. In these environments we

found behavior cloning to be a much stronger baseline than for the Atari environments, and

in many tasks it was able to match expert performance using as little as 3 trajectories. Our

method exhibits a modest improvement on Walker2D and BipedalWalkerHardcore when a single

trajectory is used, and otherwise has similar performance to behavior cloning. The fact that our

method does not perform worse than behavior cloning on tasks where covariate shift is likely

less of an issue provides evidence of its robustness.

6https://github.com/bulletphysics/bullet3/tree/master/examples/
pybullet/gym/pybullet_envs/examples

84

https://github.com/bulletphysics/bullet3/tree/master/examples/pybullet/gym/pybullet_envs/examples
https://github.com/bulletphysics/bullet3/tree/master/examples/pybullet/gym/pybullet_envs/examples


5.6 Conclusion

Addressing covariate shift has been a long-standing challenge in imitation learning. In this

work, we have proposed a new method to address this problem by penalizing the disagreement

between an ensemble of different policies sampled from the posterior. Importantly, our method

requires no additional labeling by an expert. Our experimental results demonstrate that DRIL can

often match expert performance while using only a small number of trajectories across a wide

array of tasks, ranging from tabular MDPs to pixel-based Atari games and continuous control

tasks. On the theoretical side, we have shown that our algorithm can provably obtain a low regret

bound for tabular problems in which the κ parameter is low.

There are multiple directions for future work. On the theoretical side, characterizing the κ

parameter on a larger array of problems would help to better understand the settings where our

method can expect to do well. Empirically, there are many other settings in structured prediction

[75] where covariate shift is an issue and where our method could be applied. For example, in

dialogue and language modeling it is common for generated text to become progressively less

coherent as errors push the model off the manifold it was trained on. Our method could potentially

be used to fine-tune language or translation models [60, 300] after training by applying our

uncertainty-based cost function to the generated text.
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5.7 Extend Datails

Imitation learning has been used within the context of modern RL to help improve sample

efficiency [54, 55, 124, 165, 233, 272] or overcome exploration [198]. These settings assume the

reward is known and that the policies can then be fine-tuned with reinforcement learning. In this

case, covariate shift is less of an issue since it can be corrected using the reinforcement signal.

5.7.1 Proofs

Lemma 3. For any π ∈ Π we have Jexp(π) ≤ κJalg(π)

Proof. We will first show that for any π ∈ Π and U ⊆ S, we have Jexp(π) ≤ α(U)
β(U)

Jalg(π). We

can rewrite this as:

Jexp(π) = Es∼dπ
[
||π(·|s)− π?(·|s)||

]
= Es∼dπ

[
I(s ∈ U)||π(·|s)− π?(·|s)||

]
+ Es∼dπ

[
I(s /∈ U)||π(·|s)− π?(·|s)||

]

We begin by bounding the first term:

Es∼dπ
[
I(s ∈ U)||π(·|s)− π?(·|s)||

]
=
∑
s∈U

dπ(s)||π(·|s)− π?(·|s)||

=
∑
s∈U

dπ(s)

dπ?(s)
dπ?(s)||π(·|s)− π?(·|s)||

86



≤
∑
s∈U

(
max
π′∈Π

sup
s∈U

dπ′(s)
dπ?(s)

)
︸ ︷︷ ︸

α(U)

dπ?(s)||π(·|s)− π?(·|s)||

= α(U)
∑
s∈U

dπ?(s)||π(·|s)− π?(·|s)||

≤ α(U)
∑
s∈S

dπ?(s)||π(·|s)− π?(·|s)||

= α(U)Es∼dπ?
[
||π(·|s)− π?(·|s)||

]
= α(U)JBC(π)

We next bound the second term:

Es∼dπ
[
I(s /∈ U)||π(·|s)− π?(·|s)||

]
≤ Es∼dπ

[
I(s /∈ U)

]
≤ Es∼dπ

[
I(s /∈ U)

mina∈AVarπi∼ΠE
[πi(a|s)]

β(U)

]
=

1

β(U)
Es∼dπ

[
I(s /∈ U)

∑
a∈A

π(a|s)Varπi∼ΠE
[πi(a|s)]

]
=

1

β(U)

∑
s/∈U

dπ(s)
∑
a∈A

π(a|s)Varπi∼ΠE
[πi(a|s)]︸ ︷︷ ︸

A(π)

Now observe we can decompose the RL cost as follows:

JU(π) = Es∼dπ ,a∼π(·|s)

[
Varπi∼ΠE

πi(a|s)
]

=
∑
s

dπ(s)
∑
a

π(a|s)
[
Varπi∼ΠE

πi(a|s)
]
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=
∑
s∈U

dπ(s)
∑
a

π(a|s)
[
Varπi∼ΠE

πi(a|s)
]

︸ ︷︷ ︸
B(π)

+
∑
s/∈U

dπ(s)
∑
a

π(a|s)
[
Varπi∼ΠE

πi(a|s)
]

︸ ︷︷ ︸
A(π)

Putting these together, we get the following:

Jexp(π) ≤ α(U)JBC(π) +
1

β(U)
A(π)

=
α(U)β(U)

β(U)
JBC(π) +

α(U)

α(U)β(U)
A(π)

≤ α(U)

β(U)
JBC(π) +

α(U)

β(U)
A(π)

≤ α(U)

β(U)

(
JBC(π) + A(π)

)
≤ α(U)

β(U)

(
JBC(π) + JU(π)

)
=
α(U)

β(U)
Jalg(π)

Here we have used the fact that β(U) ≤ 1 since 0 ≤ π(a|s) ≤ 1 and

α(U) ≥ sups∈U
d?π(s)
d?π(s)

= 1 hence 1
α(U)
≤ 1. Taking the minimum over subsets U ⊆ S, we get

Jexp(π) ≤ κJalg(π).

Lemma 4. minπ∈Π Jalg(π) ≤ 4ε

Proof. Plugging the optimal policy into Jalg, we get:
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Jalg(π?) = JBC(π?) + JU(π?)

= 0 + Es∼dπ? ,a∼π?(·|s)

[
Varπi∼ΠE

[πi(a|s)]
]

= Es∼dπ? ,a∼π?(·|s)

[ 1

|E|
∑
i

(
πi(a|s)− π̄(a|s)

)2]
≤ 2Es∼dπ? ,a∼π?(·|s)

[ 1

|E|
∑
i

(
πi(a|s)− π?(a|s)

)2

+
(
π̄(a|s)− π?(a|s)

)2]
= 2Es∼dπ? ,a∼π?(·|s)

[ 1

|E|
∑
i

(
πi(a|s)− π?(a|s)

)2]
︸ ︷︷ ︸

Term1

+2Es∼dπ? ,a∼π?(·|s)

[(
π̄(a|s)− π?(a|s)

)2]
︸ ︷︷ ︸

Term2

We will first bound Term 1

Es∼dπ? ,a∼π?(·|s)

[ 1

|E|

|E|∑
i=1

(
πi(a|s)− π?(a|s)

)2]

:

=
1

|E|
Es∼dπ?

[∑
a∈A

π?(a|s)
|E|∑
i=1

(
πi(a|s)− π?(a|s)

)2]

≤ 1

|E|
Es∼dπ?

[∑
a∈A

π?(a|s)
|E|∑
i=1

∣∣∣πi(a|s)− π?(a|s)∣∣∣]

≤ 1

|E|
Es∼dπ?

[ |E|∑
i=1

∑
a∈A

∣∣∣πi(a|s)− π?(a|s)∣∣∣]

≤ 1

|E|

|E|∑
i=1

Es∼dπ?
[
||πi(·|s)− π?(·|s)||

]
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≤ 1

|E|

|E|∑
i=1

ε

= ε

We will next bound Term 2

Es∼dπ? ,a∼π?(·|s)

[(
π̄(a|s)− π?(a|s)

)2]

:

= Es∼dπ? ,a∼π?(·|s)

[(
π?(a|s)− 1

|E|

|E|∑
i=1

πi(a|s)
)2]

= Es∼dπ? ,a∼π?(·|s)

[( 1

|E|

|E|∑
i=1

π?(a|s)− 1

|E|

|E|∑
i=1

πi(a|s)
)2]

= Es∼dπ? ,a∼π?(·|s)

[( 1

|E|

|E|∑
i=1

(π?(a|s)− πi(a|s))
)2]

≤ Es∼dπ? ,a∼π?(·|s)

[ 1

|E|2
|E|

|E|∑
i=1

(
π?(a|s)− πi(a|s)

)2]
(Cauchy − Schwarz)

=
1

|E|

|E|∑
i=1

Es∼dπ? ,a∼π?(·|s)

[(
π?(a|s)− πi(a|s)

)2]
≤ 1

|E|

|E|∑
i=1

Es∼dπ? ,a∼π?(·|s)

[∣∣∣π?(a|s)− πi(a|s)∣∣∣]
≤ 1

|E|

|E|∑
i=1

Es∼dπ?
[
||π?(·|s)− πi(·|s)||

]
=

1

|E|

|E|∑
i=1

JBC(πi)
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≤ ε

The last step follows from our optimization oracle assumption: 0 ≤ minπ∈Π JBC(π) ≤

JBC(π?) = 0, hence JBC(πi) ≤ 0 + ε = ε. Combining the bounds on the two terms, we get

Jalg(π?) ≤ 4ε. Since π? ∈ Π, the result follows.

Theorem 5.7.1. Let π̂ be the result of minimizing Jalg using our optimization oracle, and assume

that Qπ?

T−t+1(s, a) − Qπ?

T−t+1(s, π?) ≤ u for all a ∈ A, t ∈ {1, 2, ..., T}, dtπ(s) > 0. Then π̂

satisfies J(π̂) ≤ J(π?) + 3uκεT .

Proof. By our optimization oracle and Lemma 2, we have

Jalg(π̂) ≤ min
π∈Π

Jalg(π) + ε

≤ 4ε+ ε

= 5ε

Combining with Lemma 1, we get:

Jexp(π̂) ≤ κJalg(π̂)

≤ 5κε

Applying Theorem 1 from [236], we get J(π̂) ≤ J(π?) + 5uκεT .
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5.7.2 Importance of Behavior Cloning Cost

The following example shows how minimizing the uncertainty cost alone without the BC

cost can lead to highly sub-optimal policies if the demonstration data is generated by a stochastic

policy which is only slightly suboptimal. Consider the following deterministic chain MDP:

The agent always starts in s1, and gets a reward of 1 in s3 and 0 elsewhere. The optimal

policy is given by:

π?(·|s0) = (0, 1)

π?(·|s1) = (0, 1)

π?(·|s2) = (0, 1)

π?(·|s3) = (0, 1)

Assume the demonstration data is generated by the following policy, which is only slightly

suboptimal:

πdemo(·|s0) = (0, 1)
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πdemo(·|s1) = (0, 1)

πdemo(·|s2) = (0.1, 0.9)

πdemo(·|s3) = (0, 1)

Let us assume realizability and perfect optimization for simplicity. If both transitions

(s2, a0) and (s2, a1) appear in the demonstration data, then Random Expert Distillation (RED)

will assign zero cost to both transitions. If we do not use bootstrapped samples to train the

ensemble, then DRIL without the BC cost (we will call this UO-DRIL for Uncertainty-Only

DRIL) will also assign zero cost to both transitions since all models in the ensemble would

recover the Bayes optimal solution given the demonstration data. If we are using bootstrapped

samples, then the Bayes optimal solution for each bootstrapped sample may differ and thus the

different policies in the ensemble might disagree in their predictions, although given enough

demonstration data we would expect these differences (and thus the uncertainty cost) to be small.

Note also that since no samples at the state s0 occur in the demonstration data, both RED

and UO-DRIL will likely assign high uncertainty costs to state-action pairs at (s0, a0), (s0, a1)

and thus avoid highly suboptimal policies which get stuck at s0.

Now consider policies π̂1, π̂2 given by:

π̂1(·|s0) = (0, 1)

π̂1(·|s1) = (0, 1)
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π̂1(·|s2) = (1, 0)

π̂1(·|s3) = (0, 1)

and

π̂2(·|s0) = (0, 1)

π̂2(·|s1) = (0, 1)

π̂2(·|s2) = (0.2, 0.8)

π̂2(·|s3) = (0, 1)

Both of these policies only visit state-action pairs which are visited by the demonstration

policy. In the case described above, both RED and UO-DRIL will assign π̂1 and π̂2 similarly

low costs. However, π̂1 will cycle forever between s1 and s2, never collecting reward, while π̂2

will with high probability reach s3 and stay there, thus achieving high reward. This shows that

minimizing the uncertainty cost alone does not necessarily distinguish between good and bad

policies. However, π̂1 will incur a higher BC cost than π̂2, since π̂2 more closely matches the

demonstration data at s2. This shows that including the BC cost can be important for further

disambiguating between policies which all stay within the distribution of the demonstration data,

but have different behavior within that distribution.
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5.7.3 Experimental Details

5.7.3.1 Atari Environments

All behavior cloning and ensemble models were trained to minimize the negative log-

likelihood classification loss on the demonstration data for 500 epochs using Adam [152] and a

learning rate of 2.5 · 10−4. For our method, we initially performed a hyperparameter search on

Space Invaders over the following values:

Table 5.1: Hyperparameters (our method)

Hyperparameter Values Considered Final Value
Policy Learning rate 2.5 · 10−2, 2.5 · 10−3, 2.5 · 10−4 2.5 · 10−3

Quantile cutoff 0.8, 0.9, 0.95, 0.98 0.98
Number of supervised updates 1, 5 1
Number of policies in ensemble 5 5
Gradient clipping 0.1 0.1
Entropy coefficient 0.01 0.01
Value loss coefficient 0.5 0.5
Number of steps 128 128
Parallel Environments 16 16

We then chose the best values and kept those hyperparameters fixed for all other environments.

All other A2C hyperparameters follow the default values in the repo [156]: policy networks

consisted of 3-layer convolutional networks with 8 − 32 − 64 feature maps followed by a

single-layer MLP with 512 hidden units.

For GAIL, we used the implementation in [156] and replaced the MLP discriminator by a

CNN discriminator with the same architecture as the policy network. We initially performed

a hyperparameter search on Breakout with 10 demonstrations over the values shown in Table

5.2. However, we did not find any hyperparameter configuration which performed better than

behavioral cloning.
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Table 5.2: Hyperparameters (GAIL)

Hyperparameter Values Considered Final Value
Policy Learning rate 2.5 · 10−2, 2.5 · 10−3, 2.5 · 10−4 2.5 · 10−3

Discriminator Learning rate 2.5 · 10−2, 2.5 · 10−3, 2.5 · 10−4 2.5 · 10−3

Number of discriminator updates 1, 5, 10 5
Gradient clipping 0.1 0.1
Entropy coefficient 0.01 0.01
Value loss coefficient 0.5 0.5
Number of steps 128 128
Parallel Environments 16 16

5.7.3.2 Continuous Control

All behavior cloning and ensemble models were trained to minimize the mean-squared

error regression loss on the demonstration data for 500 epochs using Adam [152] and a learning

rate of 2.5 · 10−4. Policy networks were 2-layer fully-connected MLPs with tanh activations and

64 hidden units.

Table 5.3: Hyperparameters (our method)

Hyperparameter Values Considered Final Value
Policy Learning rate 2.5 · 10−3, 2.5 ·1 0−4, 1 · 10−4, 5 · 10−5 2.5 · 10−5

Quantile cutoff 0.98 0.98
Number of supervised updates 1 1
Number of policies in ensemble 5 5
Gradient clipping 0.1 0.1
Entropy coefficient 0.01 0.01
Value loss coefficient 0.5 0.5
Number of steps 128 128
Parallel Environments 16 16

5.7.4 Ablation Experiments
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5.7.4.1 Cost Terms

Here we provide ablation experiments showing the effect of different cost function choices.

We compare the following variants:

• DRIL This is the regular DRIL agent, which optimizes both the BC cost and the clipped

cost:

Cclip
U (s, a) =


−1 if CU(s, a) ≤ q

+1 else

• DRIL (clipped cost 0/1) This is the same as the regular DRIL agent, except that

we use the following clipped cost function:

Cclip
U (s, a) =


0 if CU(s, a) ≤ q

+1 else

• DRIL (raw cost) This is the same as the regular DRIL agent, except that we use the

raw cost CU(s, a) rather than the clipped cost.

• DRIL (no BC cost) This is the same as the regular DRIL agent, except that we

remove the BC updates and only optimize Cclip
U (s, a).

Results are shown in Figure 5.5. First, switching from the clipped cost in {−1,+1}

to the clipped cost in {0, 1} or the raw cost causes a large drop in performance across most

environments. One explanation may be that since the costs are always positive for both variants

(which corresponds to a reward which is always negative), the agent may learn to terminate the

episode early in order to minimize the total cost incurred. Using a cost/reward which has both
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Figure 5.5: Cost ablation experiments on Atari environments.

positive and negative values avoids this behavior.

Second, optimizing the pure BC cost performs better than the pure uncertainty cost for some

environments (MsPacman, SpaceInvaders, BeamRider) while optimizing the pure uncertainty

cost performs better than BC for others (Breakout, Qbert). DRIL, which optimizes both, has

robust performance and performs the best out of the different variants over most environments

and numbers of trajectories.

5.7.4.2 Uncertainty Estimation Comparison

We provide additional results comparing the ensembling and MC-dropout [98] approaches

to posterior estimation. For MC-Dropout we trained a single policy network with a dropout

rate of 0.1 applied to all layers except the last, and estimated the variance for each state-action

pair using 10 different dropout masks. Similarly to the ensemble approach, we computed the

98th quantile of the variance on the demonstration data and used this value in our clipped cost.

Results are shown for three environments in Figure 5.6. MC-dropout performs similarly to the

ensembling approach, which shows that our method can be paired with different approaches to
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Figure 5.6: Comparison of ensembling and MC dropout for posterior estimation on Atari
environments.

posterior estimation.
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Chapter 6: Emperical Study of Imtation Learning

The previous chapter introduced an algorithm to address the covariate shift issues in naive

imitation learning. While we only compare that algorithm introduced to GAIL, other algorithms

learn a reward function from demonstration data to optimize using reinforcement learning,

introduced in the literature.

We perform a thorough investigation into imitation learning algorithms that optimize a

reward function learned from demonstration data in this chapter. These algorithms were never

fairly compared because they all use different environments to run experiments. For example,

GAIL used Mujoco, and DRIL (see chapter 5) used Pybullet. To this end, we run all the

algorithms on all environments considered in recent and past imitation learning literature to get a

comprehensive understanding of the relative performance of every algorithm. We expand each

algorithm to include all tricks to ensure that differences exist solely in algorithmic design. We

further draw a connection between these algorithms and modern success reinforcement/imitation

learning algorithms in natural language processing.

6.1 Introduction

Learning from demonstration (LFD) is a paradigm that uses expert demonstration data

to solve sequential decision-making and prediction problems. Unlike reinforcement learning

(RL) algorithms, which assume a reward function exists no matter how complex tasks are,

LFD assumes the behavior in the demonstration data describes the tasks. Moreover, using
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demonstration data instead of a reward function reduces the time needed to solve tasks [4, 223,

236].

Imitation learning (IL) is a widely studied approach to doing LFD that directly mimics the

behavior provided in the expert demonstration data. The most naive IL approach assumes no

environment interactions and uses supervised learning to predict the actions of the corresponding

states in the expert demonstration data offline [213]. Although this approach requires no

environment interactions, it suffers from a feedback-driven covariate shift issue. For example, in

end-to-end learning for autonomous driving, models make errors when visiting areas not seen

in the demonstration data [20, 67, 134, 160, 213]. Similarly, in natural language processing

(NLP), text generation models lead to degeneration, where the output text generated is confusing,

inconsistent, and repetitive [58, 173, 225, 247, 301]. The feedback-driven covariate issue occurs

because the states seen when training on the expert demonstration data and the states seen

while interacting in an environment during evaluation are different [213, 225, 231], resulting in

compounding errors.

Interactive IL is another approach to IL that attempts to mitigate the feedback-driven

covariate shift issue using environment interactions and an interactive expert. Algorithms under

this approach [54, 233, 236? ], query an interactive expert at arbitrary states seen when interacting

in an environment during training. However, in many cases querying an interactive expert in an

online setting is not practical for many situations where online human feedback is not possible or

computationally expensive with automated experts [141, 149, 162]. Under certain assumptions,

new approaches in IL address the feedback-driven covariate shift issue without an interactive

expert.

Unlike interactive IL, these new IL approaches only use environment interactions to
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Algorithm BC RL Performance Objective Function

KNN 7 7 -
LWL 7 7 -
BC 3 7 E(s∗,a∗)∼Dexp [`(π(s∗), π∗(s∗))]
CR 7 3 E(s,a)∼µπ [1]
GAIL+ 7 3 E(s,a)∼µπ [logDθ(s, a)]
GAIL- 7 3 E(s,a)∼µπ [− log(1−Dθ(s, a))]
AIRL 7 3 E(s,a)∼µπ [− log(1−Dθ(s, a)) + log(Dθ(s, a))]
RED 7 3 E(s,a)∼µπ [exp(−σ−1(||fθ̂(s, a)− fθ(s, a)||22))]
DRIL 3 3 JBC(π) + E(s,a)∼µπ [−Varπe∼ΠE [πe(a|s, )]]
BC-GAIL+ 3 3 JBC(π) + E(s,a)∼µπ [logDθ(s, a)]
BC-GAIL- 3 3 JBC(π) + E(s,a)∼µπ [− log(1−Dθ(s, a))]
BC-AIRL 3 3 JBC(π) + E(s,a)∼µπ [− log(1−Dθ(s, a, s,

′ )) + log(Dθ(s, a, s,
′ ))]

BC-RED 3 3 JBC(π) + E(s,a)∼µπ [− exp(−σ||fθ(s, a)− fθ̄(s, a)||22)]
BC-CR 3 3 JBC(π) + E(s,a)∼µπ [1]

Table 6.1: Summary of IL algorithms considered in this work. The table indicates whether a
particular algorithm performs BC updates interleaved with RL updates, as well as the reward
used to train the policy. The RL component of the objective specifies what reward function
each algorithm is optimizing, i.e. E(s,a)∼µπ [r(s, a)] where r(s, a) various for each algorithm’s
objective.

address the feedback-driven covariate shift issue. In particular, these algorithms learn a reward

function that estimates the support of the expert occupancy measure from demonstration data

and optimize it with RL [44, 126, 267, 296]. These IL algorithms cannot be fully classified

as Inverse Reinforcement Learning(IRL) because they do not recover the underlying reward

function of the MDP [203]. The focus of this study is to understand these algorithms.

Although these new IL algorithms that address the feedback-driven covariate shift issue

using only environment interactions have been successful, there has been concerns regarding

around evaluation of these algorithms. In particular, Spencer et al. [266] mentioned that the

continuous-control tasks used for evaluation are "too easy". It is not evident that all of these IL

algorithms will generalize to tasks beyond continuous-control tasks, such as pixel or structured-

prediction tasks. Moreover, there have been conflicting performance results of the Behavioral

Cloning (BC) baseline algorithm across various papers [44, 73, 126, 150, 267, 296]. For example,
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authors of GAIL [126], sub-sample expert demonstration data to reduce the performance of BC,

making their results not comparable with results that do not sub-sample expert demonstration

data. Because of these concerns, we perform a thorough empirical evaluation of the performance

of baseline algorithms and notice BC performs exceptionally well when sub-sampling is not

applied.

Our study investigates crucial pieces for designing and implementing IL algorithms that

leverage only environment interactions. Some of these IL algorithms only perform RL updates,

whereas others interleave BC updates with RL updates. To this end, we benchmark all these

algorithms on 36 environments spanning three broad task categories: continuous-control, pixel,

and structure prediction. We introduce two new simple baselines, Constant Reward (CR) and

Behavioral Cloning -Regularized Constant Reward (BC-CR) inspired from Jena et al. [136] and

Wang et al. [296]. We notice that the BC-CR baseline we introduce is competitive and sometimes

better than most IL algorithms in this study across all three task categories. Finally, we relate

algorithms in this study to a broader set of algorithms and problems in NLP that attempt to

address the feedback-driven covariate shift issue (i.e., exposure-bias [225]) in language models.

To summarize, the contributions of this work are:

• Benchmarking IL algorithms that only use environment interactions across three broad

tasks

• Providing insight to important IL algorithm components and introducing new algorithm

variants

• Relating IL algorithms in this study to modern NLP algorithms
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6.2 Background

Task Continuous Control Pixel Structured
Prediction

Toolkits MuJoCo [283],
Pybullet [70]

DeepMind Control
Suite [279], Box2D
[51]

NLPGym [224]

Trajectories [1,2,3,5,10] [1,3,5,10] Full Dataset
# Environments 25 6 5
# Seeds 5 5 5
# Experiments Per
Task

(5× 25× 5) = 625 (4× 6× 5)=120 (1× 5× 5)=25

Action Space continuous continuous discrete
Observation space state features pixels state word embeddings

and context features

Table 6.2: An overview of the three tasks categories considered in experiments. Each task
category state space is different.

We consider a standard episodic finite-horizon Markov Decision Process (MDP) discussed

in (see chapter 2). For any policy π : S → ∆(A), let dπt represent the state visitation distribution

induced by following π for t time steps. Let dπ = 1
T

∑T
t=1 d

π
t be the average state visitation

distribution if we follow policy π for T steps. Similarly, we define the state-action visitation

distribution µπt of π. Let µπ = 1
T

∑T
t=1 µ

π
t be the average state-action visitation distribution if

we follow policy π for T steps. It is known that µπ(s, a) = dπ(s) · π(a|s) [219]. Given a ∈ A,

s ∈ S and immediate cost c(s, a) cost of performing action a in state s, the total cost of executing

policy π for T steps is J(π) =
∑T

t=1 E(st,at)∼µπt [c(st, at)] = TE(s,a)∼µπ [c(s, a)].

In IL, we do not have access to the true costs c(s, a) for a particular task. Instead, we

are given a finite amount of demonstration data Dexp = {(s∗, a∗)} generated by executing an

optimal expert policy π∗. The environment dynamics are often either unknown or complex.

However, there are many settings, for example, a video game or physics engine simulator,
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where we can assume that the learner can interact with an environment denoted as Σ and collect

state-action pairs {(s, a)}Tt=1 ∼ µπ. Note that we use Dexp to correspond to the finite state-

action pairs of demonstration provided by an expert, where µπ∗ is the expert’s entire state-action

visitation distribution. The goal is to train a policy π that minimizes the performance difference

J(π)− J(π∗).

The naive approach to IL, Behavioral Cloning (BC) [213] ignores access to the environment

Σ and trains a policy π̂ using the expert demonstration data Dexp by minimizing the following

objective:

JBC(π) = E(s∗,a∗)∼Dexp [`(π(s∗), π∗(s∗))]

where ` is a surrogate loss; for theoretical analysis, this surrogate loss can be any convex

loss function used for training, for example, hinge loss. In practice, this surrogate loss

can be maximum-likelihood [147]. It has been shown that if we drive training error down

E(s∗,a∗)∼Dexp [`(π(s∗), π∗(s∗))] ≤ ε and have low holdout error, the learner may still not perform

well. The issue is that in sequential decision-making there is a feedback loop between past

actions at−1 and the current input st of at time t, i.e. π̂(at|st, at−1). This feedback loop creates

covariate shift between the input the learner sees interacting in an environment and the input

trained on from the expert demonstration data Dexp. This covariate shift leads to compounding

error of O (T 2ε), formalized in Ross and Bagnell [231]

6.3 Algorithms

In this section, we summarize all algorithms in this study, shown in table 6.1. For further

details see section 6.9.7.
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6.3.1 Baseline Algorithms

The standard baseline that all IL algorithms commonly compare against is Behavioral

Cloning. We additionally consider two classic baselines algorithms k-nearest neighbor and

Locally Weight Learning.

BC: Behavioral Cloning (BC) [213] is the simplest IL baseline algorithm to run discussed

in section 6.2.

KNN: K-Nearest Neighbor (KNN) [215, 261] test whether simple memorization of the

expert’s actions is sufficient to solve a task. At each time step we use a distance function d to

find the k closest states in the expert demonstration data Dexp to the current learners state st and

execute the corresponding action a?.

LWL: Locally Weighted Learning (LWL) [11, 131] is a nonparametric instance-based

learning algorithm that leverages demonstration similar to KNN. LWL finds the k closest states

in the expert demonstration data Dexp and uses the distance of these neighboring points to train a

weighted regression function.

CR: A few IL algorithms have optimized a constant reward [227, 296]. Kostrikov et al.

[157] shared for specific environments, a survival bonus in the form of a per-step positive reward

may correlate with task performance. Inspired by ideas, we include a simple baseline to train an

RL agent with a constant reward (CR) r > 0. Formally, the reward is r if the current state is not

terminal and 0 otherwise.

BC-CR: Most IL algorithms improve upon baselines by taking advantage of interacting

in an environment. Jena et al. [137] proposed a baseline that took advantage of environment

interactions by optimizing a random reward. We propose a new and straightforward baseline
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Behavior Cloning -Regularized Constant Reward (BC-CR) inspired by Jena et al. [137], which

combines BC updates with a constant reward function, thus taking advantage of the expert data

Dexp and environment interactions.

KNN: K-Nearest Neighbor (KNN) [215, 261] test whether simple memorization of the

expert’s actions is sufficient to solve a task. At each time step we use a distance function d to

find the k closest states in the expert demonstration data Dexp to the current learners state st and

execute the corresponding action a?.

LWL: Locally Weighted Learning (LWL) [11, 131] is a nonparametric instance-based

learning algorithm that leverages demonstration similar to KNN. LWL finds the k closest states

in the expert demonstration data Dexp and uses the distance of these neighboring points to train a

weighted regression function.

CR: A few IL algorithms have optimized a constant reward [227, 296]. Kostrikov et al.

[157] shared for specific environments, a survival bonus in the form of a per-step positive reward

may correlate with task performance. Inspired by ideas, we include a simple baseline to train an

RL agent with a constant reward (CR) r > 0. Formally, the reward is r if the current state is not

terminal and 0 otherwise.

BC-CR: Most IL algorithms improve upon baselines by taking advantage of interacting

in an environment. Jena et al. [137] proposed a baseline that took advantage of environment

interactions by optimizing a random reward. We propose a new and straightforward baseline

Behavior Cloning -Regularized Constant Reward (BC-CR) inspired by Jena et al. [137], which

combines BC updates with a constant reward function, thus taking advantage of the expert data

Dexp and environment interactions.
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Figure 6.1: Aggregate results for continuous control tasks without sub-sampled trajectories.
Scores are normalized between a random and expert agent performance. Bars indicate 95%
confidence intervals computed using stratified bootstrapping. Red colors perform BC and RL
updates, blue colors are baselines and green only perform RL updates. Arrows indicate higher
(↑) or lower (↓) is better.

6.3.2 Existing IL Algorithms

IL algorithms in this study learn a cost function designed to estimate the support of the

expert [296]. Some methods interleave BC updates with RL updates, while others only perform

RL updates. We create new algorithms that interleave updates for those that do not interleave

BC and RL updates. All algorithm objectives are defined in table 6.1.

GAIL: Generative Adversarial Imitation Learning (GAIL) [126] draws connections

between GANs [106] and maximum entropy IRL [327]. GAIL trains a discriminator, Dθ :

S ×A → [0, 1] to distinguish between state-action pairs drawn from the expert and the learner

policy. While the learner maximizes a reward using RL for confusing the discriminator. The

108



original GAIL paper proposes to use a particular reward, while in their codebase 1, they use an

alternative reward for specific tasks [157]. We evaluate both, denoted as GAIL- and GAIL+

(see table 6.1).

AIRL: Adversarial Inverse Reinforcement Learning (AIRL) [95] builds on the GAIL

framework. Although the original intention of the algorithm is to deal with changes in environment

dynamics, their proposed reward function can assign both positive and negative rewards [157].

Besides reward, we do not include any of their other proposed modifications in our implementation

since the large-scale study of [202] did not report any significant improvement.

RED: Inspired by Random Network Distillation [48], Random Expert Distillation [296]

(RED) is trained to minimize the mean-squared error distance between outputs of a fixed random

neural network fθ : S ×A → Rk and a predictor network fθ̂ : S ×A → Rk, using state-action

pairs (s?, a?) drawn from demonstration data Dexp. The cost function captures a measure of

similarity between the learner state-actions and those of the expert. The policy objective function

is in table 6.1 where σ is a bandwidth hyperparameter which is tuned.

DRIL: Disagreement-Regularized Imitation Learning (DRIL) (see chapter 5) learns a

reward function based on variance of an ensemble of BC policies ΠE = {π1, . . . , πE} trained on

the expert demonstration data Dexp. Unlike previous methods, DRIL interleaves BC updates

and RL updates, using a reward based on the variance across the ensemble. The BC updates

help the learner policy mimic the expert’s state-action distribution. The RL updates guide the

learner policy towards the expert’s state-action distribution if it deviates. These BC updates are

necessary for this algorithm’s theoretical guarantees.

BC-GAIL: Behavior Cloning -Regularized Generative Adversarial Imitation Learning

1see section 6.9.12 for links
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(BC-GAIL) was proposed by [137] and consists of interleaving GAIL RL updates with BC

updates. The original work anneals the weight between the two cost terms during training. We

do not anneal to be comparable with DRIL.

BC-RED: The authors of DRIL [44] presented a counterexample of the importance

of interleaving BC updates with RL updates when using an estimation reward such as RED.

Behavior Cloning -Regularized Rand Expert Distillation (BC-RED) consists of interleaving the

RED RL updates with BC updates.

BC-AIRL: Behavior Cloning -Regularized Adversarial Inverse Reinforcement Learning

(BC-AIRL) combines AIRL and BC-GAIL, by interleaving the AIRL reward function RL

updates with BC updates.

6.4 Related Work

We focus on additional IL algorithms that are similar to the algorithms we study in this

section and discuss other related work in the extended related work section (see section 6.9.6).

There have been more IL algorithms proposed than the ones discussed so far that learn

a reward function from demonstration data and optimize it will RL. Generative Moment

Matching Imitation Learning (GMMIL) [150] constructs reward functions using maximum

mean discrepancy. Primal Wasserstein Imitation Learning (PWIL) [73] uses the optimal transport

distance between the current policy and the expert’s policy to construct a reward function. We do

not include these algorithms in our study because it is unclear how to apply them to pixel tasks.

Soft-Q imitation learning (SQIL) [227] adapts off-policy Q-learning by assigning reward

+1 to expert transitions and reward 0 to transitions from the current policy. Discriminator Actor

critic (DAC) uses an off-policy algorithm to make GAIL sample efficient Kostrikov et al. [157].
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Figure 6.2: Aggregate results for continuous control tasks with sub-sampled trajectories.
Scores are normalized between a random and expert agent performance. Bars indicate 95%
confidence intervals computed using stratified bootstrapping. Red colors perform BC and RL
updates, blue colors are baselines and green only perform RL updates. Arrows indicate higher
(↑) or lower (↓) is better.

Sasaki et al. [242] and Kostrikov et al. [158] are two off-policy algorithms that minimize the

Jensen-Shannon divergence between the occupancy measures of learner and expert. Sample-

efficient Adversarial Mimic (SAM) [34] maintains three functions that approximate a reward

function, state-action value function, and policy. Neural Density Imitation (NDI) performs

density estimation to estimate the expert occupancy measure, then performs an off-policy RL

update with an entropy regularization on the occupancy measure [151]. Swamy et al. [276]

shows that many proposed algorithms for imitation learning are doing some form of moment

matching with respect to distributions or features and proposes an algorithm that uses an off-

policy algorithm. Liu et al. [180] uses energy-based models (EMB) in optimizing imitation

learning. We strictly use an on-policy RL optimizer (PPO), so our study does not include

off-policy methods.
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Adversarial imitation learning (AIL) algorithms solve a min-max game with discriminators

and generator networks, similar to (GANs) [107]. Orsini et al. [202]2 did a thorough study of

various AIL algorithms Blondé et al. [35], Ghasemipour et al. [103], Wang et al. [297], Xiao

et al. [310], Xu and Denil [311]. We use their results when deciding what AIL algorithms to

include.

6.5 Experiments
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Figure 6.3: Aggregate results for pixel tasks. Scores are normalized between a random and
expert agent performance. Bars indicate 95% confidence intervals computed using stratified
bootstrapping. Red colors perform BC and RL updates, blue colors are baselines and green
colors only perform RL updates. Arrows indicate higher (↑) or lower (↓) is better.

We consider three broad categories of tasks: continuous control, pixel, and structured

prediction (see table 6.2). We chose Proximal Optimal Policy (PPO) [251] as our RL algorithm

because it is an on-policy algorithm that supports both discrete and continuous actions. Maintaining

2Benchmarks adversarial imitation learning algorithms
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the same underlying RL algorithm across all tasks makes the difference IL algorithms consider

in this study performance mainly due to their algorithmic design choices. See the section 6.9.19

for additional experiments details.

Evaluation Setup: We normalize the scores between random and expert performance on

each task. After normalization, we use performance profiles to compare all algorithms scores[5].

There are four aggregated metrics in performance profiles: mean, median, interquartile mean

(IQM), and optimality gap. Mean is the average score of a task across five runs but is often

dominated by the performance of outlier tasks. Optimality gap is an alternative to mean, which

measures the amount an algorithm fails to meet a minimum score of γ. We set γ = 1 because

imitation learning algorithms aim to match expert performance. Median is the middle score of an

order list of task scores but is a poor indicator of overall performance because it does not include

all the scores for calculation (i.e., changes in scores may not affect the median value). IQM is an

alternative to the median, discarding the bottom and top 25% runs and using the remaining 50%

runs to calculate the mean score.

6.6 Results

This section reports results for continuous control, pixel, and structured prediction tasks.

We provide additional details and results in section 6.9.23. Furthermore, in all figures, we use

three colors to represent three groups of algorithms: red represents algorithms that interleave RL

updates with BC updates, blue represents baseline algorithms, and green represents algorithms

that only perform RL updates.
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6.6.1 Continuous Control Results

An important detail not mentioned in the original GAIL paper but seen in the original

GAIL codebase is that the expert trajectories are sub-sampled (see section 6.9.19). Because

of this we compare all algorithms in two settings, when the expert provides full trajectories

(figure 6.1) and sub-sampled trajectories (figure 6.2). Although there have been conflicting

results regarding BC, we notice in the full trajectories in figure 6.1, BC performs well even with

1 trajectory, leaving no room for improvement. Whereas, in the sub-sampled trajectories results

in figure 6.2, BC performs badly when there are a low number of trajectories provided. This

shows that sub-sampling alone is insufficient to reduce BC performance because the number of

trajectories is equally important.

We evaluate the performance of all algorithms across both settings. The DRIL authors

reported better results than GAIL, but the authors do not report the number of seeds they used in

their experiments. Similar to DRIL authors, we notice that DRIL performs competitively to

GAIL across both settings. Furthermore, we were unable to reproduce the results in RED, hence

the poor performance in figure 6.1 and figure 6.2, which is consistent with Blondé et al. [36]

and Jena et al. [136]. In the original RED codebase, the authors use separate hyperparameters

for each environment. Instead, we use one set of hyperparameters for all environments similar

to Blondé et al. [36]. The original BC-GAIL+ results were compared against BC in the full-

trajectory setting using version v2 of MuJoCo. We use version v3 of MuJoCo task 3 instead of

version v2. Although BC performs better on version v3 tasks than version v2, we notice that

BC-GAIL+ still performs competitively to all other algorithms.

We see some trends when comparing the three algorithm groups using their respective

3https://github.com/openai/gym/issues/1541
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color schemes. First, the baseline algorithms in blue, simply copying (KNN) or weighting

(LWL) the demonstration data, does not perform well. However, the new BC-CR baseline that

takes advantage of environment interactions performs similar to and sometimes better than BC.

Moreover, in both settings, BC-CR performs similar or better than all IL algorithms except for

BC-GAIL+ or GAIL+, showing that a simple constant reward function is better than learning

the reward function from demonstration data. Furthermore, all algorithms in red that interleave

BC updates with RL updates perform better than their counterparts that do not interleave RL

updates in green.

6.6.2 Pixel Results

A subset of algorithms in this study were evaluated on pixel tasks. The left-side of

figure 6.3 shows pixel tasks results. In the original GAIL codebase, the authors did not evaluate

on any pixel task. However, despite conflicting results on GAIL working [68, 136, 287] and

not working on pixel task [44, 220, 315], we noticed that GAIL performs well when using DrQ

data augmentation. The DRIL authors showed that GAIL performed significantly worse than

DRIL on pixel Atari task and reported a bug in their official codebase regarding how the expert

demonstration data was collected. We notice that DRIL performs slightly better than GAIL

when provided a low number of trajectories and is similar to GAIL as the number of trajectories

increases. The original RED codebase was not evaluated on pixel tasks. RED performs worse

than all algorithms in figure 6.3.

The trends in results for pixel tasks are similar to continuous control tasks. The two

simple baselines KNN and LWL perform worse than most IL algorithms. Furthermore, both

BC and BC-CR (i.e., the highest blue algorithms in figure 6.3) are very competitive baselines,
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performing similar to or better than all most IL algorithms. BC-CR performs better than BC

and all algorithms that do not interleave BC updates in green. Moreover, all algorithms that

interleave BC updates in red perform better than their green counterparts is consistent with

continuous control results. These results show that these IL algorithms can generalize beyond

continuous control tasks.

6.6.3 Structured Prediction Results

Unlike the previous two tasks, structure-prediction tasks use discrete actions instead of

continuous actions. We notice in the rightmost column of figure 6.3 that simple memorization

(KNN) and weighting demonstration distance (LWL) perform competitively to all IL algorithms.

We also see that all IL algorithms perform well on structured prediction tasks except for RED

and CR. A slight improvement exists amongst algorithms that interleave BC updates with RL

updates versus their counterparts.

6.7 Discussion

Interleaving BC Updates. We introduce the Uncertainty cost MDP (figure 6.4) introduced

in chapter 5 to understand the importance of interleaving BC updates. The agent always starts

in state s1 (blue state) and only gets a reward in s3 (green state). Lets assume three things: the

expert is slightly suboptimal in-state s2 (red state), i.e., π∗(·|s2) = (0.1, 0.9), a perfect optimizer,

and perfect realizability. If both transitions (s2, a0) and (s2, a1) appear in the demonstration data

then it is possible for algorithms in this study to assign zero cost to both transitions. We could

learn two polices π̂1 and π̂2, by optimizing the RL reward function learned from demonstration

data, that are suboptimal in state s2, i.e. π̂1(·|s2) = (1, 0) and π̂(·|s2) = (0.2, 0.8). Furthermore,
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π̂1 and π̂2 are assigned similar low demonstration data RL cost, where π̂1 cycles forever between

s1 and s2, and π̂2 with high-probability reaches the goal state s3. However, π̂1 has higher BC

cost than π̂2 because π̂2 matches the demonstration data at s2. This shows that the BC cost

disambiguates polices that are within distribution of the demonstration data that exhibit different

behaviors.

s0 s1 s2 s3

a1

a0

a1

a0

a1

a0

a1a1

Figure 6.4: Uncertainty cost MDP seen in chapter 5

Modern Covariate Shift. IL algorithms have been applied to address the NLP exposure

bias problem [79, 225] (i.e., the feedback-driven covariate shift problem of BC [212, 232]).

DAGGER (i.e., DAD [290] applied in Schedule Sampling [28])4 is the most popular interactive

IL algorithms amongst, Zhang et al. [323], Goyal et al. [108], MIXER [225], and Beam-Search

Optimization [305] that attempt to address the NLP exposure bias issue. But DAGGER suffers

from the counterexample mentioned in [235] and Schedule Sampling is considered an improper

training objective [130] for NLP generative modeling. Moreover, these interactive IL algorithms

assume access to a dynamic-oracle (i.e., interactive expert), but properly defining the oracle

actions when the generated sequence no longer exists in the demonstration data is difficult

[130]. Besides interactive IL algorithms, other IL algorithms have succeeded on complex NLP

problems, using only demonstration data.

The most widely used RL algorithms in NLP optimize a reward such as Bleu [205],

ROUGE-2 [176] or some other evaluation metric that is non-differentiable. However, it is

possible to increase the model score without increasing the quality and readability of the model

output [179]. Most of the highly influential RL in NLP papers: Li et al. [173, 174], Paulus et al.
4https://nlpers.blogspot.com/2016/03/a-dagger-by-any-other-name-scheduled.html
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[207], Ranzato et al. [225], Wu et al. [307, 309] are a part of the IL algorithms discussed in

this study. These papers optimize RL updates with a fixed reward NLP metric interleaved with

BC updates, akin to IL algorithms which interleave BC updates in this study. They interleave

BC updates to stabilize training, decrease convergence time, and create more human-like text.

These algorithms have succeeded in dialogue generation, neural machine translation, abstract

summarization, and Language Modeling. A future research question is how can these IL

algorithms solve exposure bias problems in large-scale NLP models, such as text-degeneration

issues [58, 301]? Studying exposure bias problems in large-scale NLP models provides a

practical problem that can be studied in a low-cost and safe simulator.

Sub-sampling. Although sub-sampling has been accepted as the standard for comparing

algorithms, we argue that this setting is unnatural. A more natural setting is the low-resource

setting often studied in NLP. The low-resource [118] setting in NLP, assumes a lack task-specific

labeled data. Unlike sub-sampling trajectories in demonstration data, this setting assumes the

availability of full-trajectories. However, the data labels are noisy [88], scarce [71] or low-quality

non-expert labeled data [100].

6.8 Conclusion

This paper studies IL algorithms that learn reward functions from demonstration data and

optimize them with RL. We found that for these IL algorithms, continuous control tasks are

"easy" [266]. The traditional baseline algorithm BC can solve continuous control tasks. We

investigate other tasks such as structured prediction and pixel continuous control and notice that

BC performs well. In fact, low-resource imitation learning (see section 6.7) seems to be the

only setting where BC performs badly on tasks. We notice that our new baseline algorithms
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BC-CR performs similar to and sometimes better than BC and other IL algorithms on all tasks.

Furthermore, interleaving BC updates with these algorithms seems essential (similar to Chang

et al. [53], Fujimoto and Gu [97] findings) and relates to highly influential RL NLP algorithms.

We hope this study inspires ideas in this research area.
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6.9 Extend Details

6.9.1 Reinforcement Learning Background

In order to compare algorithms, we require the ability to optimize a reinforcement

learning algorithm. The reinforcement learning algorithm that we use across all experiments

is Proximal Policy Optimization (PPO) Schulman et al. [252]. We follow the works of Zhang

[322], Andrychowicz et al. [9], and Kostrikov [155] when setting our parameters for PPO. For

completeness, we include a brief description of each component of PPO and share the default

hyperparameters used across all tasks. We also provide convenience links that allow navigating

between the description of the hyperparameter and the default value inspired by Orsini et al.

[202] and [9].

Trust region style policy gradient methods [143, 144, 249, 252] attempt to constrain the

local variation of the parameters in policy-space by restricting the distributional distance between

successive policies when updating. In particular, PPO Schulman et al. [252] tries to enforce a

trust region with a different objective that does not require computing a projection. PPO proposes

replacing the KL-constrained objective of TRPO Schulman et al. [249] by clipping the objective

function

LεPPO = −min

[
π(at|st)
µ(at|st)

Âπt , clip
(
π(at|st)
µ(at|st)

,
1

1 + ε
, 1 + ε

)
Âπt

]

where ε ∈ R is a hyperparameter (R1). We adopt the nomenclature from Andrychowicz

et al. [9] to describe the various RL hyperparameters which we use. Please see Andrychowicz

et al. [9] and Schulman et al. [252] for a more in-depth discussion of PPO. When the action space

is continuous we use a global standard deviation (R2, R3) and set the initial standard deviation
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to a non-zero value (R4). Below is a description of various PPO hyperparameter that we used in

our experiments.

6.9.2 PPO Hyperparameters

PPO alternates between a data collection step and a policy and value function optimization

step. Additionally, the PPO algorithm involves several choices: how many environments to run

in parallel (R5), how long collected rollouts should be (R6), and hyperparameters related to the

gradient-based updates. When performing policy and value function optimization, we have to set

the minibatch size (R7) and the number of passes over the random minibatch to perform value

and policy updates (R8). We also perform per minibatch advantage normalization (R9, R10).

This idea was discussed in Andrychowicz et al. [9] and seen in various common codebases such

as Raffin et al. [221]. We use the recommended discount factor (R11) and gradient clipping

paramater (R12) discussed in Andrychowicz et al. [9]. We use the GAE advantage estimator

(R13, R14) when approximating the value function. For computing the value function loss we

use MSE (R15).

We use the Adam Kingma and Ba [153] gradient-based optimizer (R16) for all our

experiments and set the adam hyperparameters (R17, R18, R74) to recommend values in

Andrychowicz et al. [9]. For further understanding of adam please see Kingma and Ba [153] for

more details. We use a linear learning rate decay (R20), where the learning rate decays from the

initial learning to zero.
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6.9.3 Neural network architecture

We use multilayer perceptron (MLPs) neural networks for continuous control and structured-

prediction tasks and convolutional neural networks for pixel tasks to represent policies and value

functions. For continuous control tasks, we use separate networks for the policy and value

function R21. Whereas for structured-prediction tasks, we use a shared network for the policy

and value function. For continuous control and structured-prediction tasks, both the policy (R22,

R23) and value (R24, R25) networks we use the same width, depth, and activation function

(R26). For pixel tasks we use a single convolutional (R27) network with two linear heads, one

for the policy and one for the value function R28 and the ReLU activation function (R26).

We use orthogonal weight normalization to initialize all the layers in MLP and CNN

networks except for the last layer (R29, R30). For the initialization of the last layer in the policy

MLP head (R31) and the last layer in the value MLP value head (R32), we choose them based

on Andrychowicz et al. [9].

6.9.4 Data Normalization

Data normalization is a subtle detail that can significantly impact performance in RL. For

continuous control tasks, we perform observation normalization (R33) (i.e., average), which

involves normalizing observations based on the observations seen so far. We then normalize

observations by subtracting the mean and dividing the standard deviation for each dimension.

We clip the normalized observations to the range [−omax, omax] where omax is a hyperparameter

(R34).

For pixel tasks, we perform image normalization (R33) by dividing each pixel by 255 (i.e.,
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scale). We then construct inputs by stacking the 3 consecutive past frames and repeating actions

for each environment according to Hafner et al. [112]. We use the Data regularized Q (DrQ)

[313] (R35) data augmentation technique. It works by padding each side of the image by 4

pixels and then selecting random 84× 84 crops, yielding the original image shifted by ±4 pixels.

For continuous control and pixel continuous control tasks, we clip the actions (R36)

because most environments expect actions to be within a bounded range. We do not perform

reward normalization (R37). Lastly, we do not perform any data normalization for a structured-

prediction task.
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6.9.5 Default Reinforcement Learning Hyperparameters

Table 6.3: Default settings used in RL experiments.

Name Feature Pixel SP

R5 num_envs 1 1 1
R6 iteration_size 2048 2048 2048
R8 num_epochs 10 10 10
R7 batch_size 32 32 64
R9 batch_mode Recompute Recompute Recompute
R11 Discount factor γ 0.99 .99 0.99
R13 advantage_estimator GAE GAE GAE
R14 GAE λ 0.95 0.95 0.95
R15 Value function loss MSE MSE MSE
R1 PPO ε 0.3 0.3 0.2
R16 Optimizer Adam Adam Adam
R74 RL Adam learning rate 3e-04 3e-04 5e-04
R18 Adam momentum 0.9 0.9 0.9
R17 Adam ε 1e-05 1e-05 1e-05
R20 Learning rate decay Anneal Anneal Anneal
R21 Shared MLPs? Separate - Shared
R22 Policy MLP width 64 512 100
R24 Value MLP width 64 512 100
R23 Policy MLP depth 2 1 2
R25 Value MLP depth 2 1 2
R26 Activation Tanh - Relu
R27 Policy CNN layers - 4 -
R28 Shared CNNs? - True -
R29 MLP Initializer Gain 1. 1. 1.
R30 CNN initializer Gain - 1. -
R31 Last policy layer scaling 0.01 0.01 0.01
R32 Last value layer scaling 0.01 .01 1.0
R2 Global standard deviation? True True -
R3 Standard deviation Tρ Softplus Softplus -
R4 Initial standard deviation iρ 0.5 0.5 -
R36 Action transformation Tu Clip Clip -
R33 Input normalization Average Scale -
R34 Input clipping 10.0 10.0 -
R37 Reward normalization - - -
R10 Per minibatch adv. norm. True True True
R12 Gradient clipping 0.5 0.5 0.5
R35 RL Data Augmentation - DrQ -
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6.9.6 Extended Related Work

This section focuses on the remainder of the related work not mentioned in section 6.4.

This section discusses imitation learning benchmarks and algorithms that interleave RL updates

with BC updates.

Several recent works have benchmarked different aspects of IL related to our study. [202]

performed a thorough investigation of design choices for adversarial IL algorithms in the

continuous control domain with sub-sampled trajectories. Orsini et al. [202] most surprising

findings are that most discriminator regularization techniques perform the same, and there

is a difference in performance depending on whether the demonstration data is synthetic

or human. This study focuses on more algorithms than adversarial IL. Arulkumaran and

Lillrank [10] compared various IL algorithms cost functions on continuous control tasks, and

most algorithms performed the same, except for the kernel-based GMMIL, which showed

improvement. Kanervisto et al. [145] focuses on benchmarking BC on video games using

demonstration data, showing that there was a gap between the BC performance and human

performance. Zhang et al. [320] focuses on BC performance on video games as well. Both

Toyer et al. [285] and Freire et al. [93] introduce several new tasks in order to benchmark how

algorithms generalize the demonstrator of the demonstration intent to new tasks where different

kinds of distributions shifts exist. Memmesheimer et al. [188] creates new environments where

humans perform daily activities in the real world and uses them for benchmarking. Our work

explicitly investigates the role of sub-sampling in continuous control tasks. Furthermore, we also

evaluate all methods on continuous control, pixel, and structured prediction tasks. Moreover, we

focus on the importance of interleaving BC updates with RL updates.
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6.9.7 Existing Imitation Learning Algorithms Details

Some imitation learning algorithms require access to a reinforcement learning optimizer

in this study. For those that do, we use the PPO reinforcement learning algorithm discussed

in section 6.9.1. Unless otherwise specified, these algorithms use the default PPO values

for continuous control, pixel, and structured prediction mentioned in (section 6.9.4). During

evaluation for all algorithms, we act greedily, either taking the mean if the action space is

continuous and taking the argmax if the action space is discrete (R38).

For continuous control we experiment with clipping the action space when optimizing each

IL objective (see R36) (R39). We warmed start the learning process using a trained behavior

cloning model (R40) for each algorithm across all task categories. For continuous control tasks,

we normalize the learner input using the demonstration data to compute mean and standard

deviation denoted as Fixed in the table below, or we do not apply any normalization to the learner

input (R41) denoted as None.

We experiment with clipping the action space for pixel tasks when optimizing each IL

algorithm objective similar to continuous control tasks. We experiment with applying DrQ data

augmentation before using the input images for training each IL algorithm.

This section discusses the hyperparameters we considered while tuning each IL algorithm

and the default hyperparameters used in the final evaluation. Furthermore, the environments used

in this study for tuning each algorithm can be found in section 6.9.19.
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6.9.8 K-Nearest Neighbor(KNN):

k-nearest neighbors [214, 261] is a nonparametric instance-based learning algorithm that

leverages demonstration data from an expert by strictly comparing the learners current state with

instances seen in the demonstration data. The demonstration data contains state-action pairs

(si, ai) ∈ Dexp. During evaluation, the learner π̂ observes a state st and queries using a distance

metric (e.g. Euclidean distance) to find the k closet states in the expert demonstration data to

state st. The resulting k closest states is denoted by Dkexp = {(si, ai)}ki=1 where |Dkexp| < |Dexp|.

We can define the action resulting from k-nearest neighbors as the following if the actions are

continuous:

π̂(·|st) =
1

k

k∑
i=0

ak

and the following if the actions are discrete:

π̂(·|st) = argmax
a∈|A|

k∑
i=0

δ(a, ai)

where δ is the Kronecker Delta function. There has been recent work in the area of

reinforcement learning to suggest that nonparametric models work in some environments [187].

We perform a random Gaussian projection from 84x84 pixel space to 100-dimensional

vectors for pixel tasks. The Johnson-Lindenstrauss lemma nearly preserves distance when

projecting points from a high-dimensional space into a lower-dimensional space [138]. We

reduce the dimensionality in this manner because computing k-nearest neighbors on high-

dimensional data is expensive, whereas projecting the data down while preserving distance is

much more efficient.
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KNN Hyperparameters:

We use the default hyperparameters in table 6.4 below for our experiments. KNN has two

hyperparameters; the first pertains to the number of neighbors used from the demonstration data

to compute an action to take (R42). The second hyperparameter is applying either DrQ data

augmentation or not applying data augmentation to the pixel input before applying a random

Gaussian project to a lower-dimensional space (R43). For each of the three-task, we optimized

hyperparameters over the following range of values:

• Continuous Control Tasks:

IL Input normalization (R41): {None, Fixed}

• Pixel Tasks:

KNN Data Augmentation (R43): {None, DrQ}

Table 6.4: Default settings used in k-nearest neighbor.

Name Feature Pixel SP

Pybullet Mujoco All All

Sub Full Sub Full

R42 Number of nearest neighbor 1 1 1 1 1 1
R43 KNN Data Augmentation - - - - DrQ -
R41 IL Input normalization None None Fixed Fixed Scale -
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6.9.9 Locally Weight Learning (LWL):

Locally Weighted Learning [11, 131] is a nonparametric instance-Based learning algorithm

that uses data demonstration from an expert similar to k-nearest neighbors. During evaluation

the learner π̂ see a state st and queries using a distance metric (e.g. Euclidean distance) to find

the k closet states in the expert demonstration data to the state st. The resulting k closest states

is denoted by Dkexp = {(si, ai)}ki=1 where |Dkexp| < |Dexp|. We denote the estimation cost of the

learner queried state st as:

c(st) =
k∑
i=0

(π̂(·|st)− ai)2

In LWL, we can either weight the data directly (see equation (6.1)) or weight the error

criterion (see equation (6.2)) used to choose π̂(·|st). For example, if we want to weight the data

directly, we could use kernel function K() such as the Gaussian Kernel K(d) = e−d
2 where d

is some distance metric (e.g., Euclidean distance) to weight the distance of each point to the

queried state st. Then the weights can be used in a weighted average to compute the learner π̂

actions:

π̂t(·|st) =

∑k
i=0 ai ·K(d(si, st))∑k
i=0K(d(si, st))

(6.1)

If we want to weight the error criterion, we could, for example, do distance weighting

error criterion:
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JLWL(π) =
T∑
t=1

Est∼dπt−1
t

[
ck(st)

]
where ck(st) =

k∑
i=0

(πt(·|st)− ai) ·K(d(si, st)))
2 (6.2)

Formally, let π̂t denote the policy learned and executed at time step t after minimizing

the cost function ck in equation (6.2) with respect to the k closest states. At each time step t,

the cost function ck can be minimized using weighted regression where the weight corresponds

to the kernel function k(). The resulting learner policy π̂ is a non-stationary policy defined for

t = 1, . . . , T steps, where π̂t is trained on the state distribution dπt−1

t of the previous policy πt−1

and all the other previous policies remain the same.

Similar to KNN discussed in section 6.9.8, for pixel tasks, we perform a random Gaussian

projection from 84x84 pixel space to 100-dimensional space [138]. We do this to make the LWL

algorithm more computationally efficient.

LWL Hyperparameters:

We use the default hyperparameters in table 6.5 for our experiments. We perform

hyperparameter tuning over the possible kernel K (R47) and kernel bandwidth (R48) used

for each task. The kernels that we consider when running experiments are: Mean kernel, Neural

Episodic Control (Nec) kernel [218], Inverse distance (Id) kernel [11, 306], Bell Kernel (Bell)

[66], and Gaussian kernel (Gaussian) [11, 294]. We also experiment with applying the DrQ data

augmentation to the pixel tasks images before performing a random projection of images to a

lower-dimensional state space(R46). For each of the three-task, we optimized hyperparameters

over the following range of values:

• Continuous Control Tasks:
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LWL Kernel (R47):{Mean, Nec, Id, Bell, Gaussian}

Number of nearest neighbor (R49): {50, 75, 100, 150, 200, 250, 300,

500, 750}

LWL Kernel Bandwidth (R48):{1e-02, 1e-03, 1e-04, 1e-05, 1e-06, 1e-07}

IL Action transformation Tu (R39): {None, Clip}

IL Input normalization (R41): {None, Fixed}

• Pixel Tasks:

LWL Kernel (R47):{Mean, Nec, Id, Bell, Gaussian}

Number of nearest neighbor (R49): {50, 75, 100, 150, 200, 250, 300,

500, 750}

LWL Kernel Bandwidth (R48):{1e-03, 1e-04, 1e-05, 1e-06}

LWL Data Augmentation (R46): {None, DrQ}

• Structured-Prediction Tasks

LWL Kernel (R47):{Mean, Nec, Id, Bell, Gaussian}

Number of nearest neighbor (R49): {50, 75, 100, 150, 200, 250, 300,

500, 750}

LWL Kernel Bandwidth (R48):{1e-02, 1e-03, 1e-04, 1e-05}

Table 6.5: Final settings used in locally weighted learning experiments.

Name Feature Pixel SP

Pybullet Mujoco All All

Sub Full Sub Full

R47 LWL Kernel Id Id Id Id Id Id
R48 LWL Kernel Bandwidth 1e-06 1e-03 1e-04 1e-03 1e-06 1e-03
R49 Number of nearest neighbor 150 250 50 250 500 100
R39 IL Action transformation Tu Clip Clip None None None -
R46 LWL Data Augmentation - - - - DrQ -
R41 IL Input normalization None None Fixed Fixed Scale -
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6.9.10 RL with constant reward: (CR)

Imitation learning techniques that optimize reinforcement learning using a constant reward

function have been successful in prior work SQIL [227] and RED [296]. The authors of SQIL

explicitly optimize a piecewise reward function that is either +1 or 0. Though RED authors do

not explicitly state that they use a constant reward, Arulkumaran and Lillrank [10] showed that

the original RED implementation used hyperparameters that resulted in the optimized reward

function being close to 1.

Finally, DAC [157] showed that having a survival bonus (i.e., per-step positive reward)

encourages the agent to survive longer in certain environments. DAC also showed that having

a strong prior on the reward function may lead to good performance even without expert

demonstration data Dexp. The expert does not provide any demonstration data for this baseline

but instead provides a biased reward function. Combining ideas from SQIL [227], RED[296],

and DAC[157] we introduce a simple imitation learning baseline algorithm that optimizes

reinforcement learning using a constant reward function. This Reinforcement Learning with a

Constant Reward baseline optimizes the following objective:

JCR(π) = E(s,a)∼µπ [r(s, a)]

where the immediate reward r(s, a) > 0 and fixed.

CR Hyperparameters:

We use the default hyperparameters in table 6.6 for our experiments. For the reinforcement

learning with a constant reward baseline, we experiment with different fixed reward values (R50).

132



We also experimented with using DrQ data augmentation (R51) on pixel tasks. For each of the

three-task, we optimized hyperparameters over the following range of values:

• Continuous Control Tasks:

RL Adam learning rate (R74):{1e-03, 3e-04, 1e-04, 1e-05}

Constant reward value (R50):{1e0, 1e-01, 1e-02}

• Pixel Tasks:

RL Adam learning rate (R74):{1e-03, 3e-04, 1e-04}

Constant reward value (R50):{1e0, 1e-01, 5e-01}

CR Data Augmentation (R51): {None, DrQ}

• Structured-Prediction Tasks

RL Adam learning rate (R74):{1e-02, 1e-03, 3e-04, 1e-04}

Constant reward value (R50):{1e0, 1e-01, 1e-02, 5e-01}

Table 6.6: Final settings used in reinforcement learning with constant reward experiments.

Name Feature Pixel SP

Pybullet Mujoco All All

Sub Full Sub Full

R74 RL Adam learning rate 1e-03 1e-03 1e-03 1e-03 1e-03 3e-4
R50 Constant reward value 1e0 1e0 1e0 1e0 1e0 0.5
R51 CR Data Augmentation - - - - DrQ -
R41 IL Input normalization None None Fixed Fixed Scale -
R38 evaluation behavior policy Mean Mean Mean Mean Mean Argmax
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6.9.11 Behavior Cloning (BC):

Behavior Cloning [213] is the standard imitation learning baseline. It uses demonstration

data as supervised learning data to learn a policy π̂ that predicts expert actions a∗ given expert

states s∗, under the expert state-action distribution µπ∗ . At each iteration of training, we collect a

training pair (π(s∗), π∗(s∗)), where π∗(s∗) is the expert action (i.e. class label) for state s∗. Let

`(π(s∗), π∗(s∗)) denote the surrogate loss of executing π in state s∗ with respect to action π∗(s∗).

For theoretical analysis, this surrogate loss can be any convex loss function used for training the

classifier, for example, hinge loss or total variation distance. Often in practice this surrogate loss

can be maximum-likelihood `(π(s∗), π∗(s∗)) = − log π(a∗|s∗) [79, 147, 197]. Formally, using

any standard supervised learning algorithm, we can learn a policy

π̂ = argmin
π∈Π

E(s∗,a∗)∼Dexp [`(π(s∗), π∗(s∗))]

A drawback of this approach is that it ignores the fact that the state-action distribution of the

expert µπ∗ and the learner µπ are different. This is an issue when the learner is unable to mimic the

expert perfectly resulting in classification error ε occurring, i.e. E(s∗,a∗)∼µπ∗ [`(π(s∗), π∗(s∗))] ≤

ε. The subtle problem is that, the sequential decision-making tasks contain inherent feedback-

loops, where past action at−1 affect our learner decision-making at the next time step input state

st. This phenomenon results in an issue known as feedback-drivien covariate shift, where the

states the learner experiences when interactive in an environment diverges from the demonstration

data [142, 213]. This is formalized below:

Theorem 6.9.1 (Theorem 2.1 in Ross and Bagnell [232]). .

Let JBC(π) = E(s∗,a∗)∼µπ∗ [`(π(s∗), π∗(s∗))] ≤ ε be the bounded on-policy training error, where
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` is the 0-1 loss (or an upper bound). We have J(π̂) ≤ J(π∗) + T 2ε

BC Hyperparameters:

We use the default hyperparameters in table 6.7 for our experiments. We perform a

thorough hyperparameter sweep over the BC learning rate (BC learning rate (R52))

and apply early stopping for all experiments (R53). Furthermore, for pixel tasks we experiment

with the DrQ data-augmentation technique [313] (R54).For each of the three-task, we optimized

hyperparameters over the following range of values:

• Continuous Control Tasks:

BC learning rate (R52):{1e-02, 1e-03, 1e-04, 1e-05, 2e-03, 3e-03, 4e-03,

5e-03, 2.5e-02, 2.5e-03, 2.5e-04, 2.4e-05}

IL Action transformation Tu (R39): {None, Clip}

IL Input normalization (R41): {None, fixed}

• Pixel Tasks:

BC learning rate (R52):{1e-04, 2.5e-04, 3e-04, 4e-04, 5e-04}

BC Data Augmentation (R54):{None, DrQ}

• Structured-Prediction Tasks

BC learning rate (R52):{1e-03, 1e-04, 1e-05, 2e-05, 3e-05, 1e-06}

Table 6.7: Default settings used in behavior cloning experiments.

Name Feature Pixel SP

Pybullet Mujoco All All

Sub Full Sub Full

R52 BC learning rate 3e-03 1e-03 2e-03 1e-03 3e-04 1e-03
R39 IL Action transformation Tu Clip Clip None None None -
R53 BC early stopping True True True True True True
R54 BC Data Augmentation - - - - DrQ -
R41 IL Input normalization None None Fixed Fixed Scale -
R38 evaluation behavior policy Mean Mean Mean Mean Mean Argmax
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6.9.12 Generative Adversarial Imitation Learning (GAIL):

General adversarial imitation learning (GAIL) [126] draws connections between Generative

Adversarial Networks (GANs) [107] and Maximum Entropy Inverse Reinforcement Learning

(IRL) [327]. GAIL uses a discriminator denoted by Dθ(s, a) : S × A → [0, 1] to distinguish

between the learner and expert state-action pairs. While the learner is rewarded for deceiving the

discriminator, which is maximized using some reinforcement learning optimization procedure.

The full GAIL objective is the following:

π̂ = argmin
π∈Π

argmax
θ
LGAIL(π, θ) =E(s,a)∼µπ [logDθ(s, a)]

+ E(s∗,a∗)∼µπ∗ [log(1−Dθ(s
∗, a∗))]− λH(π)

whereH(π) is an entropy regularization term. When learning the discriminator Dθ(s, a)

binary classifier, positive examples are samples from the expert π∗ demonstration data Dexp and

negative examples are samples from the π̂ interactions in an environment. A generator gradient

is calculated in the original GAN framework by backpropagating through the discriminator.

However, LGAIL is non-differentiable with respect to π, requiring some reinforcement learning

optimizer. The original GAIL paper proposes to use a reward of r(s, a) = − log(Dθ(s, a)) to

train the policy which we denote as GAIL+. In their codebase5, they also use an alternate reward

of r(s, a) = log(1 − Dθ(s, a)) for certain tasks which we denote as GAIL-. Kostrikov et al.

[157] formalizes and discusses issues regarding this bias in the reward function. We define the

5see section 6.9.19 for links
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performance objective of executing policy π for both reward functions as:

JGAIL+(π) = E(s,a)∼µπ [logDθ(s, a)]

JGAIL-(π) = E(s,a)∼µπ [− log(1−Dθ(s, a))]

GAIL Hyperparameters: 6

We use the default hyperparameters in table 6.8 for our experiments. We follow Orsini et al.

[202]7 for tuning hyperparameters for specific GAIL (R58, R56, R57, R58, R59). We also

experiment with ratio between performing GAIL discriminator updates and PPO RL updates

(R60). Although we apply the DrQ data augmentation (R61) to the discriminator, we follow

DrAC Raileanu et al. [222] policy architecture design because the DrAC experiments use PPO,

whereas DrQ did not. The main difference between DrQ and DrAC besides the data augmentation

scheme, is that DrAC only has a shared encoder that both the actor and critic network can update.

This architecture design choice mimics the same architecture design mentioned for PPO in the

Neural network architecture section in the reinforcement learning background (see section 6.9.3

(R62, R63, R64, R65, R66, R67)). In our experiments we do not consider the absorbing state

issues discussed in Kostrikov et al. [157] because Jena et al. [135] hypothesize that DAC maybe

sample inefficient given that it has to match the state occupancy of the absorbing state (R68).

For each of the three-task, we optimized hyperparameters over the following range of values:

• Continuous Control Tasks:

RL Adam learning rate (R74):{1e-03, 3e-04, 1e-04}
6Official codebase: https://github.com/openai/imitation
7Benchmarks adversarial imitation learning algorithms
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discr. learning rate (R58):{1e-02, 1e-03, 1e-04}

discr. to RL updates ratio (R60):{5, 10, 15}

IL Action transformation Tu (R39): {None, Clip}

IL Input normalization (R41): {None, Fixed}

• Pixel Tasks:

RL Adam learning rate (R74):{1e-03, 3e-04, 1e-04}

discr. learning rate (R58):{1e-02, 1e-03, 1e-04}

discr. to RL updates ratio (R60):{5, 10, 15}

disc. data augmentation (R61): {None, DrQ}

• Structured-Prediction Tasks

RL Adam learning rate (R74):{1e-03, 3e-04, 1e-04}

discr. learning rate (R58):{1e-02, 1e-03, 1e-04}

discr. to RL updates ratio (R60):{5, 10, 15}

Table 6.8: Final settings used in GAIL experiments.

Name Feature Pixel SP

Pybullet Mujoco All All

Sub Full Sub Full

R74 RL Adam learning rate 3e-04 3e-04 3e-04 3e-04 1e-04 3e-04
R68 absorbing state False False False False False False
R56 gradient penalty λ 1.0 1.0 1.0 1.0 1.0 1.0
R57 gradient penalty k 0.0 0.0 0.0 0.0 0.0 0.0
R59 mixup α Rand Rand Rand Rand Rand Rand
R58 discr. learning rate 3e-04 3e-04 3e-04 2.5e-04 1e-04 1e-03
R60 discr. to RL updates ratio 5 5 5 5 5 10
R62 discr. MLP depth 2 2 2 2 - 2
R63 discr. MLP width 64 64 64 64 - 100
R64 discr. activation Tanh Tanh Tanh Tanh Tanh Tanh
R65 discr. cnn layers - - - - 4. -
R66 discr. CNN Initializer Gain - - - - 1. -
R67 discr. MLP Initializer Gain 1. 1. 1. 1. - 1.
R40 BC pretraining True True True True True True
R39 IL Action transformation Tu Clip Clip None None None -
R61 disc. data augmentation - - - - DrQ -
R41 IL Input normalization None None Fixed Fixed Scale -
R38 evaluation behavior policy Mean Mean Mean Mean Mean Argmax
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6.9.13 Adversarial Inverse Reinforcement Learning (AIRL):

Adversarial inverse reinforcement learning (AIRL) [96] is an inverse reinforcement

learning algorithm based on adversarial learning that draws connections between GAIL and

Guided Cost Learning (GCL) [89]. The discriminator Dθ(s, a) used in AIRL is the same

discriminator used in GCL, except that AIRL optimizes this discriminator in an adversarial

manner similar to GAIL. Given expert demonstration data Dexp and a parameterized cost

function cθ(s, a) =
∑T

t=1 cθ(st, at) where cθ(st, at) is the immediate cost function; the expert

true distribution µπ∗ is estimated by the following discriminator [89]:

Dθ(s, a) =
1
Z

exp(−cθ(s, a))
1
Z

exp(−cθ(s, a)) + µπ(s, a)

where 1
Z

is the partition function Z of exp(−cθ(s, a). The learner π̂ is trained to maximize

the reward function r(s, a) = log(1−Dθ(s, a))− logDθ(s, a). Using the full trajectory in the

cost calculation could result in high variance [96], so instead AIRL optimizes an alternative

discriminator based on state-action {(st, at)}Tt=1 pairs:

Dθ(st, at) =
exp(fθ(st, at))

exp(fθ(st, at)) + µπ(st, at)

where fθ is a learned function. Like GAIL, the discriminator Dθ(s, a) takes state-action

pair as input and learns a binary classifier to distinguish between an expert π∗ and the learner π̂

state-action pairs. The learner π̂ produces state-action pairs (st, at) ∼ dπ and is rewarded for

deceiving the discriminator, which is maximized using some reinforcement learning optimizer.

The performance objective of executing policy π using the AIRL discriminator is:
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JAIRL(π) = E(s,a)∼µπ [log(1−Dθ(s, a))− logDθ(s, a)]

We follow Orsini et al. [202]8 for our implementation. In particular, we do not implement

the two modifications to the discriminator proposed by Fu et al. [96]: reward shaping term and

the logit shift (see [96, 202]) because Orsini et al. [202] showed these two modifications do not

provide any improvement. Essentially, our implementation is similar to GAIL, except we use

the AIRL reward function specified above instead of the two GAIL variants.

AIRL Hyperparameters: 9

We use the default hyperparameters in table 6.9 for our experiments. Most of the AIRL

hyperparameters are the same as the GAIL hyperparameters mentioned in section 6.9.12. We

follow Orsini et al. [202] for tuning hyperparameters for AIRL. For each of the three-task, we

optimized hyperparameters over the following range of values:

• Continous control Tasks:

RL Adam learning rate (R74):{1e-03, 3e-04, 1e-04}

discr. learning rate (R58):{1e-02, 1e-03, 1e-04}

discr. to RL updates ratio (R60):{5, 10, 15}

IL Action transformation Tu (R39): {None, clip}

IL Input normalization (R41): {None, fixed}

• Pixel Tasks:
8Benchmarks adversarial imitation learning algorithms
9Official codebase: https://github.com/justinjfu/inverse-rl
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RL Adam learning rate (R74):{1e-03, 3e-04, 1e-04}

discr. learning rate (R58):{1e-02, 1e-03, 1e-04}

discr. to RL updates ratio (R60):{5, 10, 15}

disc. data augmentation (R61): {None, DrQ}

• Structured-Prediction Tasks

RL Adam learning rate (R74):{1e-03, 3e-04, 1e-04}

discr. learning rate (R58):{1e-02, 1e-03, 1e-04}

discr. to RL updates ratio (R60):{5, 10, 15}

Table 6.9: Final settings used in AIRL experiments.

Name Feature Pixel SP

Pybullet Mujoco All All

Sub Full Sub Full

R74 RL Adam learning rate 3e-04 3e-04 3e-04 3e-04 3e-04 1e-04
R68 absorbing state False False False False False False
R56 gradient penalty λ 1.0 1.0 1.0 1.0 1.0 1.0
R57 gradient penalty k 0.0 0.0 0.0 0.0 0.0 0.0
R59 mixup α Rand Rand Rand Rand Rand Rand
R58 discr. learning rate 3e-04 3e-04 3e-04 2.5e-04 1e-04 1e-03
R60 discr. to RL updates ratio 5 5 5 5 5 10
R62 discr. MLP depth 2 2 2 2 - 2
R63 discr. MLP width 64 64 64 64 - 100
R64 discr. activation Tanh Tanh Tanh Tanh Tanh Tanh
R65 discr. cnn layers - - - - 4 -
R66 discr. CNN Initializer Gain - - - - 1. -
R67 discr. MLP Initializer Gain 1. 1. 1. 1. - 1.
R40 BC pretraining True True True True True True
R39 IL Action transformation Tu Clip Clip None None None -
R61 disc. data augmentation - - - - DrQ -
R41 IL Input normalization None None Fixed Fixed Scale -
R38 evaluation behavior policy Mean Mean Mean Mean Mean Argmax
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6.9.14 Random Expert Distillation (RED):

Random expert distillation (RED) [296] combines ideas from Random Network Distillation

[48] and kernel-based support estimation [81, 248], to estimate the support of the expert π∗

using the expert demonstration data Dexp. This support is estimated using a fixed learned reward

function parameterized with θ̂, minimizing the following objective:

LRED(s, a) = min
θ̂

E(s,a)∼µπ
[
||fθ̂(s, a)− fθ(s, a)||22

]

where fθ̂ : S × A → Rk is the predictor network, fθ : S × A → Rk is a fixed randomly

initialized target network and Rk the dimension of the embedding of size. The predictor network

fθ̂ is trained to minimize the expected mean square error by gradient descent. The reward

function is the predicted value of LRED(s, a) which estimates a state-action pair (st, at) ∼ µπ

belonging to the support of expert µπ∗ .Wang et al. [296] uses the the following reward function

r(s, a) = exp(−σ−1(||fθ̂(s, a)− fθ(s, a)||22)) in practice resembling a Gaussian kernel where

σ is the bandwidth. Furthermore, LRED(s, a) is positive, which means that r(s, a) ∈ [0, 1]. We

define the performance objective of RED as:

JRED(π) = E(s,a)∼µπ
[

exp(−σ−1(||fθ̂(s, a)− fθ(s, a)||22))
]

The authors chose the bandwidth σ such that the r(s, a) is close to 1. However, Arulkumaran

and Lillrank [10] expressed issues with achieving this value for a given dataset if the analytically

choice of σ = 0 is not used, which results in a constant 1 reward for all state-action. Furthermore,

Blondé et al. [35] pointed out that the official implementation of RED used per-environment
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hyperparameters instead of environment agnostic hyperparameters. Jena et al. [137] also report

negative results when trying to reproduce RED results in the original paper. In particular, the per-

environment hyperparameters in RED official implementation span several orders of magnitude.

We opt for environment-agnostic hyperparameters for a fair comparison to other algorithms.

RED Hyperparameters: 10

We use the default hyperparameters in table 6.10 for our experiments. For the RED

experiments, we did not experiment with different kernel functions and instead used a Gaussian

kernel, the same as the official implementation(R69). Given that the official implementation has

different bandwidths for each environment, we performed hyperparameter optimization on the

kernel bandwidth (R70). We experiment with the learning rate when minimizing the difference

between the fixed and random initialized network (RED learning rate (R75)) and keep

the number of training epochs fixed (R72). For pixel tasks, we experiment with applying DrQ

data augmentation to images before passing them to both the fixed and random initialized network

for minimizing the difference between them (R73). For each of the three-task, we optimized

hyperparameters over the following range of values:

• Continuous Control Tasks:

RL Adam learning rate (R74):{1e-03, 3e-04, 1e-04}

RED learning rate (R75):{1e-03, 3e-04, 1e-04}

RED Kernel Bandwidth (R70):{1e0, 1e-02, 1e-03, 1e-04, 1e-05, 3e-04}

IL Action transformation Tu (R39): {None, Clip}

IL Input normalization (R41): {None, Fixed}

• Pixel Tasks:
10Official codebase: https://github.com/RuohanW/RED
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RL Adam learning rate (R74):{1e-03, 3e-04, 1e-04}

RED learning rate (R75):{1e-03, 3e-04, 1e-04}

RED Kernel Bandwidth (R70):{1e0, 1e-01, 1e-02, 1e-03, 1e-04}

RED Data Augmentation (R73): {None, DrQ}

• Structured-Prediction Tasks

RL Adam learning rate (R74):{1e-03, 3e-04, 1e-04}

RED learning rate (R75):{1e-03, 3e-04, 1e-04}

RED Kernel Bandwidth (R70):{1e0, 1e-01, 1e-02, 1e-03, 1e-04}

Table 6.10: Default settings used in random expert distillation experiments.

Name Feature Pixel SP

Pybullet Mujoco All All

Sub Full Sub Full

R75 RED learning rate 1e-03 1e-03 1e-03 1e-03 3e-04 3e-04
R69 RED Gaussian Kernel Yes Yes Yes Yes Yes Yes
R70 RED Kernel Bandwidth 1e0 1e-04 1e-03 1e-03 1e-04 1e-03
R72 RND training epoch 1000 1000 1000 1000 1000 1000
R40 BC pretraining True True True True True True
R39 IL Action transformation Tu Clip Clip None None None -
R73 RED Data Augmentation - - - - DrQ -
R41 IL Input normalization None None Fixed Fixed Scale -
R38 evaluation behavior policy Mean Mean Mean Mean Mean Argmax
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6.9.15 Behavior cloning -regularized Generative Adversarial Imitation Learning

(BC-GAIL):

Jena et al. [137] proposed Behavior cloning -regularized generative adversarial imitation

learning (BC-GAIL). The motivation of the work was to combine the benefits of BC being

sample efficient to the environment and the benefit GAIL of being sample efficient to the number

of expert demonstration data. When optimizing the BC term alone, the learner π̂ can mimic the

expert if the state encounters while interacting in an environment are similar to states in the expert

demonstration data. However, suppose the learner π̂ state-action distribution µπ is different from

the expert state-action distribution µπ∗ . In this case, the agent will experience feedback-driven

covariate shift issues. On the other hand, GAIL learns a cost function using the discriminator

that prioritizes the trajectories that are similar to the expert demonstration data, mitigating the

covariate shift issues [126]. Combing the two ideas would provide an algorithm that is sample

efficient to the number of trajectories needed and environment interactions. Formally, the original

GAIL objective is the following:

argmin
πφ∈Π

argmax
θ
LGAIL(φ, θ) = E(s,a)∼µπ [logDθ(s, a)]

+ E(s∗,a∗)∼µπ∗ [log(1−Dθ(s
∗, a∗))]− λH(πφ)

where π is a parameterized policy by φ, Dθ(s, a) : S × A → [0, 1] is a discriminator

parameterized by θ and H(π) is the entropy of the policy. The discriminator trains a binary
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classifier to distinguish between the learner and expert state-action pairs and rewards the learner

for deceiving it. The learner maximizes some reinforcement learning optimizer using this reward

from the discriminator. The gradient of LGAIL(φ, θ) with respect to each component is defined

as:

∇θLGAIL(φ, θ) = E(s,a)∼µπ [∇θ logDθ(s, a)] + E(s∗,a∗)∼µπ∗ [∇θ log(1−Dθ(s
∗, a∗))]

∇φLGAIL(φ, θ) = E(s,a)∼µπ [∇θ logDθ(s, a)]− λH(πφ)

= E(s,a)∼µπ [∇θ log πφ(a|s)Qθ(s, a)]− λH(πφ)

where Qθ(s, a) = E(s,a)∼µπ [logDθ(s, a)] in his original interpretation in Ho and Ermon

[126]. In the literature the output of the discriminator has also been interpreted as a reward

function r(s, a) Kostrikov et al. [157]. The authors of Jena et al. [137] uses interpretation to

construct an advantage function:

Aω,ψ(s, a) = − log(1−Dθ(s, a)) + γEs′∼P (s′|s,a) [Vψ(s′)]− Vψ(s)

where P is the transition function and Vψ is the value network parameterized by ψ. The

policy gradient theorem has high variance [275], so often in practice general advantage estimation

(GAE) [250] is used to reduce variance, which makes Jena et al. [137] interpretation reasonable.

The new gradient of LGAIL(φ, θ) with respect to the parameterized policy πφ is:

∇φLGAIL(φ, θ) = E(s,a)∼µπ [∇θ log πφ(a|s)Aω,ψ(s, a)]− λH(πφ)
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The authors apply importance sampling to the original BC performance objective when

`(π(s∗), π∗(s∗)) = − log π(a∗|s∗) (i.e. maximum-likelihood):

JBC(π) = E(s∗,a∗)∼µπ∗ [− log π(a∗|s∗)]

= −
∑
s∗,a∗

µπ
∗
(s∗, a∗) · log π(a∗|s∗)

= −
∑
s,a

µπ(s, a)

[
µπ
∗
(s, a)

µπ(s, a)
· log π(a|s)

]
(importance-sampling)

= E(s,a)∼µπ

[
µπ
∗
(s, a)

µπ(s, a)
· log π(a|s)

]

where µπ(s, a) is the state-action visitation distribution for state s and action a. Because

we only have access to the expert π∗ via a finite number of samples, they approximate the expert

state-action visitation distribution using a Kronecker delta function:

µπ
∗
(s, a) = δDexp(s, a) =


1 if (s, a) ∈ Dexp

0 otherwise

Their final objective is the following:

JBC-GAIL(π) = E(s,a)∼µπ

[(
α · µ

π∗(s, a)

µπ(s, a)
+ (1− α) · Aω,ψ(s, a)

)
· log π(a|s)

]
= α · E(s,a)∼µπ

[
µπ
∗
(s, a)

µπ(s, a)
· log π(a|s)

]
+ (1− α) · E(s,a)∼µπ [Aω,ψ(s, a) · log π(a|s)]

= α · JBC(π) + (1− α) · JGAIL(π). (using equation (6.9.15))

(6.3)
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where α creates a weighted sum between the BC and GAIL objective. The intuition of

equation (6.3) is that the discriminator base advantage function learns to optimize actions that

have higher Q values. These high Q actions are the ones that potentially will match the expert

state-action pairs, in turn confusing the discriminator even further. However, the issue is that

in order to learn and optimize this Aω,ψ GAIL requires lots of environmental interactions. The

importance sampling provides a similar bonus as used in exploration strategies for exploration

in normal reinforcement learning [245, 246]. The bonus is zero if the expert did not perform

some action a in a state s and 1
µπ(s,a)

otherwise. As the agent starts to mimic the expert better,

the advantage Aω,ψ(s, a) and the bonus decreases to a summed value close to 1.

In practice, we do not use the weight α proposed by the authors to compare to other

techniques that interleave BC updates fairly. The original GAIL paper proposes to use a reward

of r(s, a) = − log(Dθ(s, a)) to train the policy which we denote as BC-GAIL+. In their

codebase11, they also use an alternate reward of r(s, a) = log(1 − Dθ(s, a)) for certain tasks

which we denote as BC-GAIL-. Kostrikov et al. [157] formalized and discussed issues regarding

this bias in the reward function. We define the performance objective of executing policy π for

both reward functions as:

JBC-GAIL+(π) = JBC(π) + E(s,a)∼µπ [logDθ(s, a)]

JBC-GAIL-(π) = JBC(π) + E(s,a)∼µπ [− log(1−Dθ(s, a))]

BC-GAIL Hyperparameters: 12

We use the default hyperparameters in table 6.11 for our experiments. For all parameters

11see section6.9.19 for links
12Official codebase: https://github.com/rohitrango/BC-regularized-GAIL
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for BC-GAIL we combine the hyperparameters used for BC (see section 6.9.11) and GAIL (see

section 6.9.12). For each of the three-task, we optimized hyperparameters over the following

range of values:

• Continous Control Tasks:

RL Adam learning rate (R74):{1e-03, 3e-04, 1e-04}

BC learning rate (R52):{1e-03, 1e-04, 2.5e-04}

discr. learning rate (R58):{1e-02, 1e-03, 1e-04}

IL Action transformation Tu (R39): {None, Clip}

IL Input normalization (R41): {None, Fixed}

• Pixel Tasks:

RL Adam learning rate (R74):{1e-03, 3e-04, 1e-04}

BC learning rate (R52):{1e-03, 1e-04, 2.5e-04}

discr. learning rate (R58):{1e-03, 1e-04}

BC Data Augmentation (R54): {None, DrQ}

disc. data augmentation (R61): {None, DrQ}

• Structured-Prediction Tasks

RL Adam learning rate (R74):{1e-03, 3e-04, 1e-04, 2.5e-04}

BC learning rate (R52):{1e-03, 1e-04}

discr. learning rate (R58):{1e-03, 1e-04}
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Table 6.11: Final settings used in BC-GAIL experiments.

Name Feature Pixel SP

Pybullet Mujoco All All

Sub Full Sub Full

R74 RL Adam learning rate 3e-04 3e-04 1e-03 1e-03 3e-04 3e-04
R68 absorbing state False False False False False False
R56 gradient penalty λ 1.0 1.0 1.0 1.0 1.0 1.0
R57 gradient penalty k 0.0 0.0 0.0 0.0 0.0 0.0
R59 mixup α Rand Rand Rand Rand Rand Rand
R58 discr. learning rate 1e-3 1e-3 1e-3 1e-04 1e-04 1e-03
R60 discr. to RL updates ratio 5 5 5 5 5 5
R62 discr. MLP depth 2 2 2 2 2 2
R63 discr. MLP width 64 64 64 64 512 100
R64 discr. activation Tanh Tanh Tanh Tanh Tanh Tanh
R65 discr. cnn layers - - - - 3 -
R66 discr. CNN Initializer Gain - - - - 1. -
R67 discr. MLP Initializer Gain 1. 1. 1. 1. 1. 1.
R40 BC pretraining True True True True True True
R52 BC learning rate 2.5e-04 2.5e-04 2.5e-04 2.5e-04 2.5e-04 2.5e-04
R54 BC Data Augmentation - - - - DrQ -
R39 IL Action transformation Tu Clip Clip None None None -
R61 disc. data augmentation - - - - DrQ -
R41 IL Input normalization None None Fixed Fixed Scale -
R38 evaluation behavior policy Mean Mean Mean Mean Mean Argmax
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6.9.16 Behavior cloning -regularized Adversarial Inverse Reinforcement

Learning (BC-AIRL):

Behavior cloning -regularized Adversarial Inverse Reinforcement Learning (BC-AIRL)

extends AIRL (see section 6.9.13) to incorporate BC update similar to BC-GAIL

(see section 6.9.12). We follow Orsini et al. [202]13 for our implementation of AIRL. In

particular, AIRL proposed three modifications to GAIL: changing the reward function, adding a

reward shaping term, and a logit shift (see [96, 202]. Orsini et al. [202] showed that the latter two

modifications do not provide any improvement, so we do not include them in our experiments,

so the BC-AIRL only changes the reward function of BC-GAIL. The performance objective of

BC-AIRL is below:

JBC-AIRL(π) = JBC(π) + E(s,a)∼µπ [− log(1−Dθ(s, a, s,
′ )) + log(Dθ(s, a, s,

′ ))]

BC-AIRL Hyperparameters:

We use the default parameters in table 6.12 for our experiments. For all hyperparameters

for BC-AIRL we combine the hyperparameters used for BC (see section 6.9.11) and AIRL (see

section 6.9.13). For each of the three-task, we optimized hyperparameters over the following

range of values:

• Continous Control Tasks:

RL Adam learning rate (R74):{1e-03, 3e-04, 1e-04}
13Benchmarks adversarial imitation learning algorithms

151



BC learning rate (R52):{1e-03, 1e-04, 2.5e-04}

discr. learning rate (R58):{1e-02, 1e-03, 1e-04}

IL Action transformation Tu (R39): {None, Clip}

IL Input normalization (R41): {None, Fixed}

• Pixel Tasks:

RL Adam learning rate (R74):{1e-03, 3e-04, 1e-04}

BC learning rate (R52):{1e-03,1e-04, 2.5e-04}

discr. learning rate (R58):{1e-03, 1e-04}

BC Data Augmentation (R54): {None, DrQ}

disc. data augmentation (R61): {None, DrQ}

• Structured-Prediction Tasks

RL Adam learning rate (R74):{1e-03, 3e-04, 1e-04}

BC learning rate (R52):{1e-03, 1e-04, 2.5e-04}

discr. learning rate (R58):{1e-03, 1e-04}

152



Table 6.12: Final settings used in BC-GAIL experiments.

Name Feature Pixel SP

Pybullet Mujoco All All

Sub Full Sub Full

R74 RL Adam learning rate 3e-04 3e-04 1e-03 1e-03 3e-04 3e-04
R68 absorbing state False False False False False False
R56 gradient penalty λ 1.0 1.0 1.0 1.0 1.0 1.0
R57 gradient penalty k 0.0 0.0 0.0 0.0 0.0 0.0
R59 mixup α Rand Rand Rand Rand Rand Rand
R58 discr. learning rate 1e-03 1e-03 1e-03 1e-04 1e-04 1e-03
R60 discr. to RL updates ratio 5 5 5 5 5 5
R62 discr. MLP depth 2 2 2 2 2 2
R63 discr. MLP width 64 64 64 64 512 100
R64 discr. activation Tanh Tanh Tanh Tanh Tanh -
R65 discr. cnn layers - - - - 3 -
R66 discr. CNN Initializer Gain - - - - 1. -
R67 discr. MLP Initializer Gain 1. 1. 1. 1. 1. -
R40 BC pretraining True True True True True True
R52 BC learning rate 2.5e-04 2.5e-04 2.5e-04 2.5e-04 2.5e-04 2.5e-04
R54 BC Data Augmentation - - - - DrQ -
R39 IL Action transformation Tu Clip Clip None None None -
R61 disc. data augmentation - - - - DrQ -
R41 IL Input normalization None None Fixed Fixed Scale -
R38 evaluation behavior policy Mean Mean Mean Mean Mean Argmax
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6.9.17 Behavior cloning -regularized Random Expert Distillation (BC-RED):

Behavior cloning -regularized Random Expert Distillation (BC-RED) combines ideas from

RED (see section 6.9.14) with interleaving BC updates ideas from DRIL (see chapter 5) and

BC-GAIL (see section 6.9.15). Originally, RED learns a fixed reward function parameterized

by θ̂ to estimate the support of the expert π∗ by minimizing the following objective:

LRED(s, a) = min
θ̂

E(s,a)∼µπ
[
||fθ̂(s, a)− fθ(s, a)||22

]
where the LRED(s, a) can be interpreted as an estimated score of pair (s, a) belonging to

the support of µπ∗ .

Similar to issues pointed out by Jena et al. [137] about GAIL, RED could require lots of

environment interactions to learn using this fixed reward function.

Jena et al. [137] points out that RED could perform suboptimally because the reward

function is fixed and not updated in an online fashion similar to GAIL. Furthermore, the authors

Brantley et al. [44] of DRIL showed a counterexample that emphasized the importance of adding

in the BC cost to the objective when optimizing an estimation score. This counterexample is in

section 6.7. BC-RED builds on these ideas by minimizing the following objective:

JBC-RED(π) = JBC(π) + E(s,a)∼µπ
[
− exp(−σ||fθ(s, a)− fθ̄(s, a)||22)

]
BC-RED Hyperparameters:

We use the default parameters in table 6.13 for our experiments. For all hyperparameters

for BC-RED we combine the hyperparameters used for BC (see section 6.9.11) and RED (see
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section 6.9.14). For each of the three-task, we optimized hyperparameters over the following

range of values:

• Continous control Tasks:

RL Adam learning rate (R74):{1e-03, 3e-04, 1e-04}

BC learning rate (R52):{1e-03, 1e-04, 2.5e-04}

RED Kernel Bandwidth (R70):{1e0, 1e-02, 1e-03, 1e-04, 1e-05, 3e-04}

IL Action transformation Tu (R39): {None, Clip}

IL Input normalization (R41): {None, Fixed}

• Pixel Tasks:

RL Adam learning rate (R74):{1e-03, 3e-04, 1e-04}

BC learning rate (R52):{1e-03, 1e-04, 2.5e-04}

RED Kernel Bandwidth (R70):{1e0, 1e-03, 1e-04}

RED Data Augmentation (R73): {None, DrQ}

• Structured-Prediction Tasks

RL Adam learning rate (R74):{1e-03, 3e-04, 1e-04}

BC learning rate (R52):{1e-03, 1e-04, 1e-05}

RED Kernel Bandwidth (R70):{1e0, 1e-01, 1e-02, 1e-03, 1e-04}
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Table 6.13: Default settings used in BC-RED experiments.

Name Feature Pixel SP

Pybullet Mujoco All All

Sub Full Sub Full

R74 RL Adam learning rate 3e-04 3e-04 3e-04 3e-04 1e-03 1e-03
R75 RED learning rate 1e-03 1e-03 1e-03 1e-03 1e-03 1e-03
R76 BCRED Gaussian Kernel Yes Yes Yes Yes Yes Yes
R77 BCRED Kernel Bandwidth 1e-03 1e0 1e-03 1e-01 1e-04 1e-03
R78 BCRED training epoch 1000 1000 1000 1000 1000 1000
R40 BC pretraining True True True True True True
R52 BC learning rate 1e-03 1e-03 1e-03 1e-03 1e-04 1e-03
R39 IL Action transformation Tu Clip Clip None None None -
R73 RED Data Augmentation - - - - DrQ -
R41 IL Input normalization None None Fixed Fixed Scale -
R38 evaluation behavior policy Mean Mean Mean Mean Mean Argmax
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6.9.18 Behavior cloning -regularized RL with constant reward: (BC-CR)

There has been recent work around optimizing imitation learning with a constant reward

(see section 6.9.10), and separately work on interleaving BC optimizations with optimizing

RL on a reward derived from demonstration data DRIL (see chapter 5) and BC-GAIL (see

section 6.9.15). Jena et al. [137] experimented with training BC-GAIL with a fixed randomly

initialized discriminator and keeping the α term (see section 6.9.15) fixed. Annealing α would

eventually ignore BC and only train using random rewards from the untrained discriminator.

This untrained discriminator BC-GAIL technique performed reasonably well. Jena et al. [137]

state that this is a better baseline than BC because it can learn about state-action pairs not in the

expert demonstration using the random discriminator. Motivated by this observation and recent

techniques that optimize BC and RL, we derive a new simple baseline algorithm, Behavior

cloning -regularized Reinforcement Learning with Constant Reward (BC-CR). This baseline

algorithm builds on observations discussed in section 6.9.10 by interleaving BC optimization

with RL trained with a constant reward. Most imitation learning algorithms improve upon BC

using environment interactions Σ, but there has not been any simple baseline that takes advantage

of both the demonstration data and the environment Σ. This baseline algorithm takes advantage

of both components and optimizes the following objective:

JBC-CR = JBC(π) + E(s,a)∼µπ [1]

BC-CR Hyperparameters:

We use the default parameters in table 6.14 for our experiments. For all hyperparameters

for BC-CR we combine the hyperparameters used for BC (see section 6.9.11) and CR (see
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section 6.9.10). For each of the three-task, we optimized hyperparameters over the following

range of values:

• Continous Control Tasks:

RL Adam learning rate (R74):{1e-03, 3e-04, 1e-04, 1e-05, 1e-06, 1e-07}

BC learning rate (R52):{1e-02, 1e-03, 1e-04, 1e-05, 2e-03, 3e-03, 4e-03,

5e-03}

Constant reward value (R50):{1e0, 1e-01, 1e-02}

IL Action transformation Tu (R39): {None, Clip}

IL Input normalization (R41): {None, Fixed}

• Pixel Tasks:

RL Adam learning rate (R74):{1e-03, 3e-04, 1e-04}

BC learning rate (R52):{1e-03, 1e-04}

Constant reward value (R50):{.01, .05, 1.0}

BC Data Augmentation (R54): {None, DrQ}

• Structured-Prediction Tasks

RL Adam learning rate (R74):{1e-03, 3e-04, 1e-04}

BC learning rate (R52):{1e-03, 2e-03, 1e-04}

Constant reward value (R50):{.01, .01, 1.0}
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Table 6.14: Final settings used in BC-CR experiments.

Name Feature Pixel SP

Pybullet Mujoco All All

Sub Full Sub Full

R79 BC-Constant learning rate 1e-06 3e-04 1e-06 1e-04 1e-03 1e-04
R80 BC-Constant BC learning rate 1e-04 1e-03 1e-03 1e-04 1e-03 1e-04
R50 Constant reward value 1.0 1.0 1.0 1.0 1.0 1.0
R40 BC pretraining True True True True True True
R39 IL Action transformation Tu Clip Clip None None None -
R54 BC Data Augmentation - - - - DrQ -
R41 IL Input normalization None None Fixed Fixed Scale -
R38 evaluation behavior policy Mean Mean Mean Mean Mean Argmax
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6.9.19 Extended Experiment Details

We performed hyperparameter sweeps over the best parameters for PPO recommended

by Andrychowicz et al. [9]. We consider three broad categories of task: continuous control

[51, 70, 283], pixel tasks [279] and structured-prediction tasks [79]. The goal is to evaluate

all algorithms performance agnostics of the underlying category of the task. We chose to

benchmark these tasks because they have been the most widely used task in the past and present

for comparing imitation learning algorithms.

6.9.20 Continuous Control Tasks

We compare all algorithms using 25 tasks for continuous control, both sub-sampling and

full trajectories. We follow Andrychowicz et al. [9]14 for all continuous control hyperparameters

tuning. Continuous control tasks have been used widely in reinforcement learning and imitation

learning. However, not all the algorithms in this study have been evaluated in the same setting.

For example, DRIL [44] used the Pybullet physics engine whereas GAIL [126] used the MuJoCo

physics engine. We evaluate all algorithms across three simulators Box2D [51], Pybullet [70] and

MuJoCo [283] given that agents do not generalize across physics engines [194]15. In particular,

we consider 2 Box2D tasks, 11 Pybullet tasks, and 12 MuJoCo tasks. In both physics engines,

we consider tasks ranging from simple continuous Cartpole to as complex as humanoid flag

runner, where an agent can run and capture various flags as they span onto a map. For all tasks

in both physics engines, we used the default observation of the task without any modifications.

14Benchmarks what matter in on-policy reinforcement learning
15Pybullet Robots are heavier exhibiting different behavior than MuJoCo https://github.com/DLR-RM/rl-

baselines3-zoo/issues/111
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6.9.20.1 Different GAIL reward functions

The code to switch between different GAIL reward functions can be seen at the links

below:

• Strictly positive reward function favoring prolonged episodes (good for tasks

which require survival): https://github.com/openai/imitation/blob/

8a2ed905e2ac54bda0f71e5ee364e90568e6d031/policyopt/imitation.py#

L141-L145

• Strictly negative reward function favoring short episodes (good for goal-

reaching tasks): https://github.com/openai/imitation/blob/

8a2ed905e2ac54bda0f71e5ee364e90568e6d031/policyopt/imitation.

py#L147-L150

6.9.20.2 Discussion of trajectory sub-sampling

The original GAIL paper does not mention sub-sampling, however, the code to perform

subs-sampling in the code repository can be seen here: https://github.com/openai/

imitation/blob/8a2ed905e2ac54bda0f71e5ee364e90568e6d031/scripts/imitate_

mj.py#L30-L40

Other works sometimes mention sub-sampling and sometimes do not. The work of [150]

does not, but they use the GAIL numbers taken directly from the paper, and hence evaluate

the BC baselines using sub-sampled trajectories. The paper [104] explicitly mentions in the

introduction that they sub-sample trajectories by a factor of 20. They also mention that the work

of [96] sub-samples trajectories, but we could not find details one way or the other in that paper.
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The benchmark paper of [202] explicitly mentions that they sub-sample trajectories. The work

of Kostrikov et al. [157] mentions sub-sampling for one experiment, but it is unclear whether

it was applied for all. We recommend that future IL publications explicitly clarify whether

sub-sampling is applied or not.

6.9.21 Pixel Tasks

For pixel task environments, we compare all algorithms using 6 pixel tasks spanning two

toolkits DMC suite and Box2D CarRacing. We apply Data-regularized Q (DrQ) [313] data

augmentation technique on the 84x84 image experience fragments gathered each PPO iteration.

Most algorithms discussed in this study have not been evaluated on any pixel setting except for

DRIL [44], which was evaluated on pixel Atari task. We choose to evaluate all algorithms on

pixel tasks that support GPU acceleration. We do not consider Atari task because Atari does not

support GPU acceleration, it has been shown that the simulator suffers in performance [74]. We

consider a subset of the pixel locomotion DeepMind Control Suite [279] tasks that have been

considered in previous work [159, 220] which are Cartpole swingup, Cheetah run, Finger spin,

Ball in cup and Walker walk. The Box2D simulator supports GPU acceleration as well, so we

include the Car-Racing task as well.

For pixel-based task environment we follow [313] and [222]. During each iteration of

PPO, we typically gather a fixed amount of experience fragments, each consisting of a fixed size.

Then we perform mini-batches updates with these fixed experience fragments. We apply the

data augmentation technique proposed by DrQ [313] on the experience fragments gathered each

iteration. The images that we experiment with are 84 x 84. The DrQ data augmentation works

by padding each side of the image by 4 pixels and then selecting random 84 × 84 crops, yielding
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the original image shifted by ±4 pixels. We follow DrAC[222] architecture design, but apply

DrQ data augmentation. The main difference between DrQ[313] and DrAC[222] architecture

design is that DrAC only has a shared encoder that both the actor and critic networks can update.

6.9.22 Structured Prediction Tasks

IL algorithms such as DAGGER [235], DAGGER [79], SMILe [231], V-DAgger [293]

and LOLS [54] were evaluated on structured prediction NLP task [26, 79]. Structured-prediction

NLP sequence labeling problems can be cast as an MDP [79, 186] where the sentence is parsed

one word at a time in a left-to-right order. The environment state at time step t consists of the

current word and some context consisting of previously predicted labels. We only consider the

immediately predicted label as context. We consider 5 NLP sequence labeling task: Named Entity

Recognition [240], Part of Speech Tagging [259], Keyphrase Extraction [13], Chunking [239],

Super Sense Disambiguation [64] and Semantic Role Labeling [217]. We use the NLPGym

toolkit for modeling all of these task [224]. We use the PPO hyperparameters recommended by

Ramamurthy et al. [224]. Furthermore, we used fastText embeddings [139] for all tasks.
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6.9.23 Extended Experiment Results

In this section, we provide full experiment results for each of the three tasks: continuous

control, pixel, and structured prediction, as well as aggregate results for different numbers of

trajectories that are omitted from the main text due to space constraints.

6.9.24 Continuous Control Tasks

6.9.24.1 PyBullet/Box2D

• We test on the following PyBullet/Box2D environments:

{AntBulletEnv-v0, HumanoidFlagrunHarderBulletEnv-v0,

Walker2DBulletEnv-v0, HalfCheetahBulletEnv-v0,

HopperBulletEnv-v0, CartPoleContinuousBulletEnv-v0,

ReacherBulletEnv-v0, InvertedDoublePendulumBulletEnv-v0,

BipedalWalker-v3, InvertedPendulumSwingupBulletEnv-v0,

LunarLanderContinuous-v2, InvertedPendulumBulletEnv-v0,

Pendulum-v0 HumanoidFlagrunBulletEnv-v0,

MountainCarContinuous-v0}
• We do hyperparameter tuning on the following PyBullet/Box2D environments:

{AntBulletEnv-v0, Walker2DBulletEnv-v0,

HalfCheetahBulletEnv-v0, HopperBulletEnv-v0}
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PyBullet/Box2D Aggregated Results:
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Figure 6.5: Results that are not normalized for continuous control PyBullet/Box2D environments
without sub-sampled trajectories. Scores are normalized between 0 (random performance)
and 1 (expert performance). Bars indicate 95% confidence intervals computed using stratified
bootstrapping. IQM denotes interquartile mean.
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Figure 6.6: Results that are not normalized for continuous control PyBullet/Box2D environments
with sub-sampled trajectories. Scores are normalized between 0 (random performance) and
1 (expert performance). Bars indicate 95% confidence intervals computed using stratified
bootstrapping. IQM denotes interquartile mean.

166



PyBullet/Box2D Environment Results:
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Figure 6.7: Results that are not normalized for continuous control PyBullet/Box2D environments
without sub-sampled trajectories.
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Figure 6.8: Results that are not normalized for continuous control PyBullet/Box2D environments
with sub-sampled trajectories.
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6.9.24.2 MuJoCo

• We test on the following MuJoCo environments:

{Ant-v3, HalfCheetah-v3, Hopper-v3, Humanoid-v3,

HumanoidStandup-v2, InvertedDoublePendulum-v2,

InvertedPendulum-v2, Reacher-v2, Swimmer-v3, Walker2d-v3,

Pusher-v2, Thrower-v2, Striker-v2 }
• We do hyperparameter tuning on the following MuJoCo environments:

{Ant-v3, HalfCheetah-v3, Hopper-v3, Walker2d-v3}

MuJoCo Aggregated Results:
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Figure 6.9: Results that are not normalized for continuous control MuJoCo environments without
sub-sampled trajectories. Scores are normalized between 0 (random performance) and 1 (expert
performance). Bars indicate 95% confidence intervals computed using stratified bootstrapping.
IQM denotes interquartile mean.
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Figure 6.10: Results that are not normalized for continuous control MuJoCo environments with
sub-sampled trajectories. Scores are normalized between 0 (random performance) and 1 (expert
performance). Bars indicate 95% confidence intervals computed using stratified bootstrapping.
IQM denotes interquartile mean.
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MuJoCo Environment Results:
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Figure 6.11: Results that are not normalized for continuous control MuJoCo environments
without sub-sampled trajectories.
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Figure 6.12: Results that are not normalized for continuous control MuJoCo environments with
sub-sampled trajectories.
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6.9.25 Structured Prediction Tasks

6.9.25.1 NLPGym

• We test on the following NLPGym environments:

{Part-of-Speech, Name-Entity-Recognition,

Keyphrase-Extraction, Chunking,

Word-Sense-Disambiguation}
• We do hyperparameter tuning on the following NLPGym environments:

{Part-of-Speech, Name-Entity-Recognition, Chunking}

NLPGym Environment Results:
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Figure 6.13: Results that are not normalized for NLPGym environments.
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6.9.26 Pixel-base Tasks

6.9.26.1 DeepMind Control Suite (DMC)/Box2D

• We test on the following DMC/Box2D environments:

{cheetah-run, walker-walk, CarRacing-v0, cartpole-swingup,

finger-spin ball_in_cup-catch, }
• We do hyperparameter tuning on the following DMC/Box2D environments:

{cheetah-run, walker-walk, CarRacing-v0}

DMC/Box2D Environment Results:
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Figure 6.14: Results that are not normalized for DMC/Box2D environments.
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Part Part 3

Beyond Traditional Imitation Learning
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Chapter 7: Exact Imitation

The previous chapters highlighted key points regarding imitation learning techniques. In

Part 1 we discussed and addressed issues in interactive imitation learning. Although interactive

imitation learning address the covariate shift issue in imitation, these algorithms make a strong

assumption around having an online expert. We attempt to remove this assumption in Part 2 by

introducing a category of algorithms that deal with the covariate shift with an online expert. In

general, these settings assume expert demonstration data or the ability to query an online expert

is not sufficient.

1 This chapter assumes that we have access to expert demonstration data in the form of

expected features, which are the average features seen when an expert interacts with a system.

Note that the demonstration data does not include actions but only state features. We describe

a new representation for decision-theoretic planning, reinforcement learning, and imitation

learning. This representation has many advantages for reinforcement learning. For example,

they can help an agent generalize experiences to new goals. They have been proposed to explain

behavioral and neural data from human and animal learners. They also form a natural bridge

between model-based and model-free reinforcement learning methods: like the former, they

make predictions about future experiences, and like the latter, they allow efficient prediction of

total discounted rewards. The new representation is highly expressive: for example, it lets us

efficiently read off an optimal policy for a new reward function or a policy that imitates a new

demonstration. This chapter focuses on the exact computation of the new representation in small,

1A previous version of this work was presented in [41]
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known environments since even this restricted setting offers plenty of interesting questions.

7.1 Introduction

We describe a new representation for decision-theoretic planning, reinforcement learning,

and imitation learning: the successor feature set. This representation generalizes a number of

previous ideas in the literature, including successor features and POMDP/PSR value functions.

Comparing to these previous representations: successor features assume a fixed policy or list

of policies, while our goal is to reason efficiently about many policies at once; value functions

assume a fixed reward function, while our goal is to reason efficiently about many reward

functions at once.

Roughly, the successor feature set tells us how features of our future observations and

actions depend on our current state and our choice of policy. More specifically, the successor

feature set is a convex set of matrices; each matrix corresponds to a policy π, and describes how

the features we will observe in the future depend on the current state under π.

The successor feature set provides a number of useful capabilities. These include reading

off the optimal value function or policy for a new reward function, predicting the range of

outcomes that we can achieve starting from a given state, and reading off a policy that imitates a

desired state-action visitation distribution.

We describe a convergent dynamic programming algorithm for computing the successor

feature set, generalizing the value iteration algorithm for POMDPs or PSRs. We also give

algorithms for reading off the above-mentioned optimal policies and feature-matching policies

from the successor feature set. Since the exact dynamic programming algorithm can be

prohibitively expensive, we also experiment with randomized numerical approximations.
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In this paper we focus on model-based reasoning about successor feature sets — that is,

we assume access to an accurate world model. We also focus on algorithms that are exact in the

limit of increasing computation. Successor-style representations are of course also extremely

useful for approximate reasoning about large, unknown environments, and we believe that many

of the ideas discussed here can inform that case as well, but we leave that direction for future

work.

To summarize, our contributions are: a new successor-style representation that allows

information to flow among different states, policies, and reward functions; algorithms for working

with this new representation in small, known environments, including a convergent dynamic

programming algorithm and ways to read off optimal policies and feature-matching policies; and

computational experiments that evaluate the strengths and limitations of our new representation

and algorithms.

7.2 Related Work

Successor features, a version of which were first introduced by Dayan [80], provide a

middle ground between model-free and model-based RL [237]. They have been proposed as

neurally plausible explanations of learning [99, 101, 102, 195, 269, 291].

Recently, numerous extensions have been proposed. Most similar to the current work are

methods that generalize to a set of policies or tasks. Barreto et al. [22] achieve transfer learning

by generalizing across tasks with successor features; Barreto et al. [21] use generalized policy

improvement (GPI) over a set of policies. A few methods [38, 184] recently combined universal

value function approximators [243] with GPI to perform multi-task learning, generalizing to a set

of goals by conditioning on a goal representation. Barreto et al. [23] extend policy improvement
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and policy evaluation from single tasks and policies to a list of them, but do not attempt to back

up across policies.

Many authors have trained nonlinear models such as neural networks to predict successor-

style representations, e.g., Hansen et al. [114], Kulkarni et al. [161], Machado et al. [185], Zhang

et al. [319], Zhu et al. [326]. These works are complementary to our goal here, which is to design

and analyze new, more general successor-style representations. We hope our generalizations

eventually inform training methods for large-scale nonlinear models.

At the intersection of successor features and imitation learning, Zhu et al. [326] address

visual semantic planning; Lee et al. [169] address off-policy model-free RL in a batch setting;

and Hsu [129] addresses active imitation learning.

As mentioned above, the individual elements of Φ are related to the work of Lehnert and

Littman [172]. And, we rely on point-based methods [209, 256] to compute Φ.

7.3 Background

Policy Trees

We will need to work with policies for MDPs, POMDPs, and PSRs, handling different

horizons as well as partial observability. For this reason, we will use a general policy representation:

we will view a policy as a mixture of trees, with each tree representing a deterministic,

nonstationary policy. A policy tree’s nodes are labeled with actions, and its edges are labeled

with observations (Fig. 7.1). To execute a policy tree π, we execute π’s root action; then, based

on the resulting observation o, we follow the edge labeled o from the root, leading to a subtree

that we will call π(o). To execute a mixture, we randomize over its elements. If desired we can
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randomize lazily, committing to each decision just before it affects our actions. We will work

with finite, balanced trees, with depth equal to a horizon H; we can reason about infinite-horizon

policies by taking a limit as H →∞.

↑

↑

↑ ↓ ↓

↓

↓ ↓ ↓

↑

↑ ↑ ↓

R

R G B

G

R G B

B

R G B

Figure 7.1: An example of a policy tree with actions ↑, ↓ and observations R,G,B.

7.4 Imitation by Feature Matching

Successor feature sets have many uses, but we will start by motivating them with the goal

of imitation. Often we are given demonstrations of some desired behavior in a dynamical system,

and we would like to imitate that behavior. There are lots of ways to specify this problem,

but one reasonable one is apprenticeship learning [1] or feature matching. In this method, we

define features of states and actions, and ask our learner to match some statistics of the observed

features of our demonstrations.

In more detail, given an MDP, define a vector of features of the current state and action,

f(s, a) ∈ Rd; we call this the one-step or immediate feature vector. We can calculate the observed

discounted features of a demonstration: if we visit states and actions s1, a1, s2, a2, s3, a3, . . .,

then the empirical discounted feature vector is

f(s1, a1) + γf(s2, a2) + γ2f(s3, a3) + . . .
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where γ ∈ [0, 1) is our discount factor. We can average the feature vectors for all of our

demonstrations to get a demonstration or target feature vector φd.

Analogously, for a policy π, we can define the expected discounted feature vector:

φπ = Eπ

[
∞∑
t=1

γt−1f(st, at)

]

We can use a finite horizon H by replacing
∑∞

t=1 with
∑H

t=1 in the definitions of φd and φπ; in

this case we have the option of setting γ = 1.

Given a target feature vector in any of these models, we can ask our learner to design a

policy that matches the target feature vector in expectation. That is, we ask the learner to find a

policy π with

φπ = φd

For example, suppose our world is a simple maze MDP like Fig. 7.2a. Suppose that our one-step

feature vector f(s, a) ∈ [0, 1]3 is the RGB color of the current state in this figure, and that our

discount is γ = 0.75. If our demonstrations spend most of their time toward the left-hand side of

the state space, then our target vector will be something like φd = [0.5, 3, 0.5]T : the green feature

will have the highest expected discounted value. On the other hand, if our demonstrations spend

most of their time toward the bottom-right corner, we might see something like φd = [2, 1, 1]T ,

with the blue feature highest.

7.5 Extension to POMDPs and PSRs

We can generalize the above definitions to models with partial observability as well. This

is not a typical use of successor features: reasoning about partial observability requires a model,
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(a) f of maze MDP. (b) φgo-left with γ = 0.75.

Figure 7.2: Maze environment example.

while successor-style representations are often used in model-free RL. However, as Lehnert

and Littman [172] point out, the state of a PSR is already a prediction about the future, so

incorporating successor features into these models makes sense.

In a POMDP, we have a belief state q ∈ Rk instead of a fully-observed state. We define

the immediate features of q to be the expected features of the latent state:

f(q, a) =
k∑
s=1

q(s)f(s, a)

In a PSR, we similarly allow any feature function that is linear in the predictive state vector

q ∈ Rk:

f(q, a) = Faq

with one matrix Fa ∈ Rd×k for each action a. In either case, define the successor features to be

φπ(q) = Eπ

[
∞∑
t=1

γt−1f(qt, at)

∣∣∣∣ do q1 = q

]
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Interestingly, the function φπ is linear in q. That is, for each π, there exists a matrix Aπ ∈ Rd×k

such that φπ(q) = Aπq. We call Aπ the successor feature matrix for π; it is related to the

parameters of the Linear Successor Feature Model of Lehnert and Littman [172].

We can compute Aπ recursively by working backward in time (upward from the leaves of

a policy tree): for a tree with root action a, the recursion is

Aπ = Fa + γ
∑
o

Aπ(o)Tao

This recursion works by splitting Aπ into contributions from the first step (Fa) and from steps

2 . . . H (rest of RHS). We give a more detailed derivation, as well as a proof of linearity, in the

supplementary material online. All the above works for MDPs as well by taking qt = est , which

lets us keep a uniform notation across MDPs, POMDPs, and PSRs.

It is worth noting the multiple feature representations that contribute to the function φπ(q).

First are the immediate features f(q, a). Second is the PSR state, which can often be thought

of as a feature representation for an underlying “uncompressed” model [119]. Finally, both of

the above feature representations help define the exact value of φπ; we can also approximate φπ

using a third feature representation. Any of these feature representations could be related, or we

could use separate features for all three purposes. We believe that an exploration of the roles

of these different representations would be important and interesting, but we leave it for future

work.
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7.6 Successor Feature Sets

To reason about multiple policies, we can collect together multiple matrices: the successor

feature set at horizon H is defined as the set of all possible successor feature matrices at horizon

H ,

Φ(H) = {Aπ | π a policy with horizon H}

As we will detail below, we can also define an infinite-horizon successor feature set Φ, which is

the limit of Φ(H) as H →∞.

The successor feature set tells us how the future depends on our state and our choice of

policy. It tells us the range of outcomes that are possible: for a state q, each point in Φq tells

us about one policy, and gives us moments of the distribution of future states under that policy.

The extreme points of Φq therefore tell us the limits of what we can achieve. (Here we use the

shorthand of broadcasting: set arguments mean that we perform an operation all possible ways,

substituting one element from each set. E.g., if X, Y are sets, X + Y means Minkowski sum

{x+ y | x ∈ X, y ∈ Y }.)

Note that Φ(H) is a convex, compact set: by linearity of expectation, the feature matrix for

a stochastic policy will be a convex combination of the matrices for its component deterministic

policies. Therefore, Φ(H) will be the convex hull of a finite set of matrices, one for each possible

deterministic policy at horizon H .

Working with multiple policies at once provides a number of benefits: perhaps most

importantly, it lets us define a Bellman backup that builds new policies combinatorially by

combining existing policies at each iteration (Sec. 7.8). That way, we can reason about all

possible policies instead of just a fixed list. Another benefit of Φ is that, as we will see below,
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it can help us compute optimal policies and feature-matching policies efficiently. On the other

hand, because it contains so much information, the set Φ is a complicated object; it can easily

become impractical to work with. We return to this problem in Sec. 7.10.

7.7 Special Cases

In some useful special cases, successor feature matrices and successor feature sets have a

simpler structure that can make them easier to reason about and work with. E.g., in an MDP,

we can split the successor feature matrix into its columns, resulting in one vector per state —

this is the ordinary successor feature vector φπ(s) = Aπes. Similarly, we can split Φ into sets of

successor feature vectors, one at each state, representing the range of achievable futures:

φ(s) = {φπ(s) | π a policy} = Φes

Fig. 7.3 visualizes these projections, along with the Bellman backups described below. Each

projection tells us the discounted total feature vectors that are achievable from the corresponding

state. For example, the top-left plot shows a set with five corners, each corresponding to a policy

that is optimal in this state under a different reward function; the bottom-left corner corresponds

to “always go down,” which is optimal under reward R(s, a) = (−1,−1)f(s, a).

On the other hand, if we only have a single one-step feature (f(q, a) ∈ R), then we can

only represent a 1d family of reward functions. All positive multiples of f are equivalent to one

another, as are all negative multiples. In this case, our recursion effectively reduces to classic

POMDP or PSR value iteration: each element of Φ is now a vector απ ∈ Rk instead of a matrix

Aπ ∈ Rd×k. This α-vector represents the (linear) value function of policy π; the pointwise
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Figure 7.3: Visualization of the successor feature set Φ for a 3 × 3 gridworld MDP with 2d
features. Start state is in yellow. Gray insets show one-step feature vectors, which depend only
on the state, not the action. Each subplot shows one projection Φej (scale is arbitrary, so no axes
are necessary). The red sets illustrate a Bellman backup at the bottom-left state, and the black
arrows illustrate the feature-matching policy there. See text for details.

maximum of all these functions is the (piecewise linear and convex) optimal value function of

the POMDP or PSR.

7.8 Bellman Equations

Each element of the successor feature set is a successor feature matrix for some policy,

and as such, it satisfies the recursion given above. For efficiency, though, we would like to avoid

running Bellman backups separately for too many possible policies. To this end, we can write a

backup operator and Bellman equations that apply to all policies at once, and hence describe the
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entire successor feature set.

The joint backup works by relating horizon-H policies to horizon-(H − 1) policies. Every

horizon-H policy tree can be constructed recursively, by choosing an action to perform at the

root node and a horizon-(H − 1) tree to execute after each possible observation. So, we can

break down any horizon-H policy (including stochastic ones) into a distribution over the initial

action, followed by conditional distributions over horizon-(H − 1) policy trees for each possible

initial observation.

Therefore, if we have the successor feature set Φ(H−1) at horizon H − 1, we can construct

the successor feature set at horizon H in two steps: first, for each possible initial action a, we

construct

Φ(H)
a = Fa + γ

∑
o

Φ(H−1)Tao

This set tells us the successor feature matrices for all horizon-H policies that begin with action a.

Note that only the first action is deterministic: Φ(H−1) lets us assign any conditional distribution

over horizon-(H − 1) policy trees after each possible observation.

Second, since a general horizon-H policy is a distribution over horizon-H policies that

start with different actions, each element of Φ(H) is a convex combination of elements of Φ
(H)
a

for different values of a. That is,

Φ(H) = conv
⋃
a

Φ(H)
a

The recursion bottoms out at horizon 0, where we have

Φ(0) = {0}
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since the discounted sum of a length-0 trajectory is always the zero vector.

Fig. 7.3 shows a simple example of the Bellman backup. Since this is an MDP, Φ is

determined by its projections Φej onto the individual states. The action “up” takes us from the

bottom-left state to the middle-left state. So, we construct Φupebottom-left by shifting and scaling

Φemiddle-left (red sets). The full set Φebottom-left is the convex hull of four sets Φaebottom-left; the other

three are not shown, but for example, taking a = right gives us a shifted and scaled copy of the

set from the bottom-center plot.

The update from Φ(H−1) to Φ(H) is a contraction: see the supplementary material online

for a proof. So, as H → ∞, Φ(H) will approach a limit Φ; this set represents the achievable

successor feature matrices in the infinite-horizon discounted setting. Φ is a fixed point of the

Bellman backup, and therefore satisfies the stationary Bellman equations

Φ = conv
⋃
a

[
Fa + γ

∑
o

ΦTao

]

7.9 Feature Matching and Optimal Planning

Once we have computed the successor feature set, we can return to the feature matching

task described in Section 7.4. Knowing Φ makes feature matching easier: for any target vector

of discounted feature expectations φd, we can efficiently either compute a policy that matches φd

or verify that matching φd is impossible. We detail an algorithm for doing more detail is in the

extended details.

Fig. 7.3 shows the first steps of our feature-matching policy in a simple MDP. At the

bottom-left state, the two arrows show the initial target feature vector (root of the arrows) and the

computed policy (randomize between “up” and “right” according to the size of the arrows). The
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target feature vector at the next step depends on the outcome of randomization: each destination

state shows the corresponding target and the second step of the computed policy.

Algorithm 5 Feature Matching Policy
1: t← 1
2: Initialize φdt to the target vector of expected discounted features.
3: Initialize qt to the initial state of the environment.
4: while not done do
5: Choose actions ait, vectors φit ∈ Φaitqt, and

convex combination weights pit s.t. φdt =
∑`

i=1 pitφit.
Choose an index i according to probabilities pit,
and execute the corresponding action: at ← ait.
Write the corresponding φit as
φit = Fatqt + γ

∑
o φot by choosing

φot ∈ ΦTatoqt for each o.
6:7:8: Receive observation ot, and calculate pt = P (ot | qt, at) = uTTatotqt.
9: qt+1 ← Tatotqt/pt

10: φdt+1 ← φott/pt
11: t← t+ 1
12: end while

We can also use the successor feature set to make optimal planning easier. In particular, if

we are given a new reward function expressed in terms of our features, say R(q, a) = rTf(q, a)

for some coefficient vector r, then we can efficiently compute the optimal value function under

R:

V ∗(q) = max
π

rTφπq = max {rTψq | ψ ∈ Φ}

As a by-product we get an optimal policy: there will always be a matrix ψ that achieves the max

above and satisfies ψ ∈ Φa for some a. Any such a is an optimal action.

7.10 Implementation

An exact representation of Φ can grow faster than exponentially with the horizon. So, in

our experiments below, we work with a straightforward approximate representation. We use two
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tools: first, we store Φao = ΦTao for all a, o instead of storing Φ, since the former sets tend to be

effectively lower-dimensional due to sparsity. Second, analogous to PBVI [209, 256], we fix a

set of directions mi ∈ Rd×k, and retain only the most extreme point of Φao in each direction. Our

approximate backed-up set is then the convex hull of these retained points. Just as in PBVI, we

can efficiently compute backups by passing the max through the Minkowski sum in the Bellman

equation. That is, for each i and each a, o, we solve

arg max 〈mi, φ〉 for φ ∈
⋃
a′ [Fa′ + γ

∑
o′ Φa′o′ ]Tao

by solving, for each i, a, o, a′, o′

arg max 〈mi, φ〉 for φ ∈ Φa′o′Tao

and combining the solutions.

There are a couple of useful variants of this implementation that we can use in stoppable

problems (i.e., problems where we have an emergency-stop or a safety policy; see the supplemental

material for more detail). First, we can update monotonically, i.e., keep the better of the horizon-

H or horizon-(H + 1) successor feature matrices in each direction. Second, we can update

incrementally: we can update any subset of our directions while leaving the others fixed.
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Figure 7.4: Bellman error v. iteration for three simple test domains, varying the amount of
computation per iteration. We show error separately in directions we have optimized over and in
new random directions. Average of 25 random seeds of the direction mi with the highest bellman
error per seed; all error bars are smaller than the line widths. The center panel shows the effect
on Bellman error when we have higher- dimensional feature vectors. The rightmost panel shows
the effect on Bellman error when the agent has less information about the exact state. In both
cases the convergence rate stays similar, but we need more directions mi to adequately sample
the boundary of Φ (i.e., to lower the asymptotic error on new directions).

7.11 More on Special Cases

More on Special Cases

With the above pruning strategy, our dynamic programming iteration generalizes PBVI [210].

PBVI was defined originally for POMDPs, but it extends readily to PSRs as well: we just sample

predictive states instead of belief states. To relate PBVI to our method, we look at a single task,

with reward coefficient vector r. We sample a set of belief states or predictive states qi; these are

the directions that PBVI will use to decide which value functions (α-vectors) to retain. Based on

these, we set the successor feature matrix directions to be mi = rqTi for all i.

Now, when we search within our backed up set Φ(H) for the maximal element in direction

mi, we get some successor feature matrix φ. Because tr(φT rqTi ) is maximal, we know that

tr(qTi φ
T r) = qTi (φT r) is also maximal: that is, φT r is as far as possible in the direction qi. But

φT r is a backed-up value function under the reward r; so, φT r is exactly the value function that

PBVI would retain when maximizing in the direction qi.
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7.12 Experiments: Dynamic Programming

Experiments: Dynamic Programming

We tried our dynamic programming method on several small domains: the classic mountain-

car domain and a random 18× 18 gridworld with full and partial observability. We evaluated

both planning and feature matching; results for the former are discussed in this section, and

an example of the latter is in Fig. 7.3. We give further details of our experimental setup in the

supplementary material online. At a high level, our experiments show that the algorithms behave

as expected, and that they are practical for small domains. They also tell us about limits on

scaling: the tightest of these limits is our ability to represent Φ accurately, governed by the

number of boundary points that we retain for each Φao.

In mountain-car, the agent has two actions: accelerate left and accelerate right. The state

is (position, velocity), in [−1.2, 0.6] × [−0.07, 0.07]. We discretize to a 12 × 12 mesh with

piecewise-constant approximation. Our one-step features are radial basis functions of the state,

with values in [0, 1]. We use 9 RBF centers evenly spaced on a 3× 3 grid. In the MDP gridworld,

the agent has four deterministic actions: up, down, left, and right. The one-step features are

(x, y) coordinates scaled to [−1, 1], similar to Fig. 7.3. In the POMDP gridworld, the actions

are stochastic, and the agent only sees a noisy indicator of state. In all domains, the discount is

γ = 0.9.

Fig. 7.4 shows how Bellman error evolves across iterations of dynamic programming.

Since Φ is a set, we evaluate error by looking at random projections: how far do Φ and the

backup of Φ extend in a given direction? We evaluate directions mi that we optimized for during

backups, as well as new random directions.
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Note that the asymptotes for the new-directions lines are above zero; this persistent error is

due to our limited-size representation of Φ. The error decreases as we increase the number of

boundary points that we store. It is larger in the domains with more features and more uncertainty

(center and right panels), due to the higher-dimensional Aπ matrices and the need to sample

mixed (uncertain) belief states.

7.13 Conclusion

This work introduces successor feature sets, a new representation that generalizes successor

features. Successor feature sets represent and reason about successor feature predictions for

all policies at once, and respect the compositional structure of policies, in contrast to other

approaches that treat each policy separately. The set represents the boundaries of what is

achievable in the future, and how these boundaries depend on our initial state. This information

lets us read off optimal policies or imitate a demonstrated behavior.

We give algorithms for working with successor feature sets, including a dynamic

programming algorithm to compute them, as well as algorithms to read off policies from them.

The dynamic programming update is a contraction mapping, and therefore convergent. We give

both exact and approximate versions of the update. The exact version can be intractable, due to

the so-called “curse of dimensionality” and “curse of history.” The approximate version mitigates

these curses using point-based sampling.

Finally, we present computational experiments. These are limited to relatively small,

known environments; but in these environments, we demonstrate that we can compute successor

feature sets accurately, and that they aid generalization. We also explore how our approximations

scale with environment complexity.
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Overall we believe that our new representation can provide insight on how to reason about

policies in a dynamical system. We know, though, that we have only scratched the surface of

possible strategies for working with this representation, and we hope that our analysis can inform

future work on larger-scale environments.

7.14 Extended Details

7.14.1 Feature matching

In this section we give the algorithm for imitation by feature matching, summarized as

Alg. 5.

Our policy will be nonstationary: that is, its actions will depend on an internal policy state

(defined below) as well as the environment’s current predictive state qt.

Our algorithm updates its target feature vector over time in order to compensate for random

outcomes (the action sampled from the policy and the next state sampled from the transition

distribution). We write φdt for the target at time step t, and initialize φd1 = φd. Updates of this

sort are necessary: we might by chance visit a state where it is impossible to achieve the original

target φd1, but that does not mean that our policy has failed. Instead, the policy guarantees always

to pick a target φdt that is achievable given the state qt at step t, in a way that guarantees that on

average we achieve the original target φd1 from the initial state q1.

To guarantee that the target is always achievable, our policy maintains the invariant that

φdt ∈ Φqt. By the definition of Φ, the discounted feature vectors in Φq are exactly the ones that

are achievable starting from state q, so this invariant is necessary and sufficient to ensure that φdt

is achievable. At the first time step, we test whether φd1 ∈ Φq1. If yes, our invariant is satisfied
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and we can proceed; if no, then we know that we have been given an impossible task. In the latter

case we could raise an error, or we could raise a warning and look for the closest achievable

vector φ ∈ Φq to φd1.

Our actions at step t and our targets at step t+1 will be functions of the current environment

state qt and our current target φdt . As such, φdt is the internal policy state mentioned above.

We pick our actions and targets as follows. According to the Bellman equations, the

successor feature set Φ is equal to the convex hull of the union of Φa over all a. Each matrix

in Φ can therefore be written as a convex combination of action-specific matrices, each one

chosen from one of the sets Φa. That means that each vector in Φqt can be written as a convex

combination of vectors in Φaqt.

Write our target φdt in this way, say φdt =
∑`

i=1 pitφit, by choosing actions ait, vectors

φit ∈ Φaitqt, and weights pit ≥ 0 with
∑

i pit = 1. Then, at the current time step, our algorithm

chooses an index i according to the probabilities pit, and executes the corresponding action ait.

Now let i be the chosen index, and write a = ait for the chosen action. Again according

to the Bellman equations, the point φit is of the form [Fa + γ
∑

o ΦTao]qt. In particular, we can

choose vectors φot ∈ ΦTaoqt for each o such that

φit = Faqt + γ
∑
o

φot

Writing pot = P (o | qt, a) for all o, we can multiply and divide by pot within the sum, and

conclude

φit = Eo[Faqt + γφot/pot]

That is, we can select our target for time step t+ 1 as φdt+1 = φot/pot, where o = ot is our next
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observation. To see why, note that our expected discounted feature vector at time t will remain

the same: the LHS (the current target) is equal to the RHS (the expected one-step contribution

plus discounted future target). And, note that the target at the next time step will always be

feasible, maintaining our invariant: our state at the next time step will be

qt+1 = Taoqt/pot

and we have selected each φot to satisfy φot ∈ ΦTaoqt, so

φot/pot ∈ ΦTaoqt/pot = Φqt+1

So, based on the observation that we receive, we can update our predictive state and target feature

vector according to the equations above, and recurse. (In practice, numerical errors or incomplete

convergence of Φ could lead to an infeasible target; in this case we can project the target back

onto the feasible set, which will result in some error in feature matching.)

Note that there may be more than one way to decompose φdt =
∑`

i=1 pitφit, or more than

one way to decompose φit = Faqt + γ
∑

o φot. If so, we can choose any valid decomposition

arbitrarily.

7.14.2 Convergence of dynamic programming

We will show that the dynamic programming update for Φ given in Section 7.8 is a

contraction, which implies bounds on the convergence rate of dynamic programming. We will

need a few definitions and facts about norms and metrics.
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7.14.2.1 Norms

Given any symmetric, convex, compact set S with nonempty interior, we can construct a

norm by treating S as the unit ball. The norm of a vector x is then the smallest multiple of S that

contains x.

||x||S = inf
x∈cS

c

This is a fully general way to define a norm: any norm can be constructed this way by using its

own unit ball as S. That is, if B = {x | ||x|| ≤ 1}, then

||x|| = ||x||B

We will use the shorthand || · ||p for an Lp-norm: e.g., L1, L2 (Euclidean norm), or L∞ (sup

norm). If we start from an asymmetric set S, we can symmetrize it to get

S̄ = {αs+ (1− α)s′ | s ∈ S, s′ ∈ −S, α ∈ [0, 1]}

(This is the convex hull of S ∪ −S.) Given any norm || · ||, we can construct a dual norm || · ||∗:

||y||∗ = sup
||x||≤1

x · y

This definition guarantees that dual norms satisfy Hölder’s inequality:

x · y ≤ ||x|| ||y||∗
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We will write S∗ for the unit ball of the dual norm || · ||∗S . Taking the dual twice returns to the

original norm: || · ||∗∗S = || · ||S and S∗∗ = S.

Given any two norms || · ||P and || · ||Q and their corresponding unit balls P and Q, the

operator norm of a matrix A is

||A||P,Q = sup
x∈P
||Ax||Q = sup

x∈P,y∈Q∗
yTAx

This definition ensures that Hölder’s inequality extends to operator norms:

||Ax||Q ≤ ||A||P,Q||x||P

The norm of the transpose of a matrix can be expressed in terms of the duals of || · ||P and || · ||Q:

||AT ||Q∗,P ∗ = ||A||P,Q

If P and Q are the same, we will shorten to

||AT ||P ∗ = ||A||P

Given a norm, we can define the Hausdorff metric between sets:

d(X, Y ) = max(d̄(X, Y ), d̄(Y,X))

d̄(X, Y ) = sup
x∈X

inf
y∈Y
||x− y||

If V is any real vector space (such as Rd×k), the Hausdorff metric makes the set of non-empty
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compact subsets of V into a complete metric space. Given a metric, a contraction is a function f

that reduces the metric by a constant factor:

d(f(X), f(Y )) ≤ βd(X, Y )

The factor β ∈ [0, 1) is called the modulus. If β = 1 then f is called a nonexpansion. For a

linear operator A, with metric d(x, y) = ||x − y||P , the modulus is the same as the operator

norm ||A||P,P . The Banach fixed-point theorem guarantees the existence of a fixed point of any

contraction on a complete metric space.

7.14.2.2 Norms for POMDPs and PSRs

We can bound the transition operators Tao for POMDPs and PSRs using operator norms that

correspond to the set of valid states. In POMDPs, valid belief states are probability distributions,

and therefore satisfy ||q||1 ≤ 1. For PSRs, there is no single norm that works for all models.

Instead, for each PSR, we only know that there exists a norm || · ||S̄ such that all valid states are

in the unit ball S̄. (We can get S̄ by symmetrizing the PSR’s set of valid states S.) We will write

|| · ||S̄ in both cases, by taking S to be the probability simplex if our model is a POMDP. Given

these definitions, we are guaranteed that, for each a,

||Ta||S ≤ 1 where Ta =
∑
o

Tao

We also know that each transition operator Tao maps states to unnormalized states: it maps S to

the cone generated by S, i.e., {λs | s ∈ S, λ ≥ 0}.
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7.14.2.3 Convergence: key step

The key step in the proof of convergence is to analyze

∑
o

ΦTao

for a fixed action a. We will show that this operation is a nonexpansion in the Hausdorff metric

based on a particular norm. To build the appropriate norm, we can start from norms for our states

and our features. For states we will use the norm that corresponds to our state space: || · ||S̄ . For

features we can use any norm || · ||F . For elements of Φ we can then use the operator norm for S̄

and F : || · ||F,S̄ . For sets like Φ we can use the Hausdorff metric based on || · ||F,S̄ , which we

will write as just d(·, ·).

For simplicity we will first analyze distance to a point: start by assuming d(Φ, {0}) ≤ k

for some k. Now, for each a,

d(
∑

o ΦTao, {0}) = supψo∈ΦTao ||
∑

o ψo||F,S̄

= supφo∈Φ ||
∑

o φoTao||F,S̄

= supφo∈Φ supf∈F ∗,q∈S̄ f
T
∑

o φoTaoq

where we have written supψo∈ΦTao as shorthand for supψ1∈ΦTa,1 supψ2∈ΦTa,2 . . ., i.e., one supremum

per observation.

Since q is the solution to a linear optimization problem, we can assume it is an extreme

point of the feasible region S̄, which means either q ∈ S or q ∈ −S. Assume q ∈ S; the other

case is symmetric. This lets us replace supq∈S̄ with supq∈S .
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We next want to simplify the supremum over f . We can do this in two steps: first, the

supremum can only increase if we let the choice of f depend on o (which we write as supfo).

Second, Hölder’s inequality tells us that ||φTo fo||S̄∗ ≤ k, since ||fo||F ∗ ≤ 1 and ||φTo ||S̄∗,F ∗ ≤ k.

So, optimizing over kS̄∗ instead of just over vectors of the form φTo fo can again only increase

the supremum. We therefore have

d(
∑

o ΦTao, {0})

≤ supφo∈Φ supq∈S,fo∈F ∗
∑

o f
T
o φoTaoq

≤ supq∈S supro∈kS̄∗
∑

o r
T
o Taoq

We can now solve the optimizations over ro. Note that the normalization vector u is in S̄∗:

u · s = 1 for every s ∈ S, so u · s̄ ∈ [−1, 1] for every s̄ ∈ S̄. And, for any valid state s, no

vector in S̄∗ can have dot product larger than 1 with s, by definition of S̄∗. Taoq is a nonnegative

multiple of a valid state for each o; therefore, ro = ku is an optimal solution for each o, and we

have

d(
∑

o ΦTao, {0}) ≤ supq∈S
∑

o ku
TTaoq

= k supq∈S u
TTaq

= k = d(Φ, {0})

To handle distances to a general set Φ, we need to track a sup inf instead of just a sup. Assume

wlog that

d(
∑

o ΦTao,
∑

o ΨTao) = d̄(
∑

o ΦTao,
∑

o ΨTao)

201



(the other ordering is symmetric). Then

d̄(
∑

o ΦTao,
∑

o ΨTao)

= supφo∈Φ infψo∈Ψ ||
∑

o φoTao −
∑
ψoTao||F,S̄

= supφo∈Φ infψo∈Ψ ||
∑

o(φo − ψo)Tao||F,S̄

The argument proceeds from here exactly as above, since we know that ||φo−ψo||F,S̄ is bounded

by d(Φ,Ψ) for each o.

7.14.2.4 Convergence: rest of the proof

The remaining steps in our dynamic programming update are multiplying by γ, adding

Fa, and taking the convex hull of the union over a. Multiplying the sets by γ changes the

modulus from 1 to γ. Adding the same vector to both sets does not change the modulus. Finally,

convex hull of union also leaves the modulus unchanged: more specifically, if f1, f2, . . . are all

contractions of modulus γ, then the mapping

Φ→ conv
⋃
i

fi(Φ)

is also a contraction of modulus γ. To see why, consider two sets conv∪ifi(Φ) and conv∪ifi(Ψ),

with d(Φ,Ψ) = 1. Consider a point in the former set: it can be written as
∑

j αjφj with each

φj in one of the sets fi(Φ) and the αj a convex combination. For each j, we can find a point in

the corresponding set fi(Ψ) at distance at most γ, since fi is a contraction. Using the triangle

inequality on the convex combination, the final distance is therefore at most γ.
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Putting everything together, we have that the dynamic programming update is a contraction

of modulus γ < 1. From here, the Banach fixed-point theorem guarantees that there exists a

unique fixed point of the update, and that each iteration of dynamic programming brings us

closer to this fixed point by a factor γ, as long as we initialize with a nonempty compact subset

of the set of matrices.

7.14.3 Background on PSRs

Here we describe a mechanical way to define a valid PSR, given some information about a

controlled dynamical system. This method is fully general: if it is possible to express a dynamical

system as a PSR, we can use this method to do so. And, PSRs constructed this way allow a nice

interpretation of the otherwise-opaque PSR state vector. To describe this method, it will help to

define a kind of experiment called a test.

7.14.3.1 Tests

A test τ consists of a sequence of actions Aτ = (a1, a2, . . . , a`) and a function Fτ :

{1 . . . O}` → R. We execute τ by executing a1, a2, . . . , a` starting from some state q. We record

the resulting observations ot, ot+1, . . . , ot+`−1, and feed them as inputs to Fτ ; the output is called

the test outcome. The test value is the expected outcome

τ(q) = E(F (ot, ot+1, . . . , ot+`−1) | qt = q, do Aτ )

A simple test is one where the function Fτ is the indicator of a given sequence of ` observations;

in this case the test value is also called the test success probability. Tests that are not simple are
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compound. Below, we will use tests to construct PSRs. If we use exclusively simple tests, we

will call the result a simple PSR; else it will be a transformed PSR.

We can express compound tests as linear combinations of simple tests: we can break the

expectation into a sum over all possible sequences of ` observations to get

τ(q) =
∑
o1...o`

P (o1 · · · o` | q, do Aτ )F τ (o1, . . . , o`)

and each term in the summation is a fixed multiple of a simple test probability.

In a PSR, for any test τ , it turns out that the function τ(q) is linear: for a simple test with

actions a1 . . . a` and observations o1 . . . o`,

τ(q) = P (o1, . . . , o` | q, do Aτ )

= uTTa`o` · Ta`−1o`−1
· · ·Ta2o2 · Ta1o1q

which is linear in q. For a compound test, the value is linear because it is a linear combination of

simple tests.

In fact, this linearity property is the defining feature of PSRs: a dynamical system can

be described as a PSR exactly when we can define a state vector that makes all test values into

linear functions. That is, we can write down a PSR iff there exist state extraction functions

qt = Qt(a1, o2, a2, o2, . . . , at−1, ot−1) ∈ Rk such that, for all tests τ , there exist prediction vectors

mτ ∈ Rk such that the value of τ is τ(qt) = mτ · qt. There may be many ways to define a state

vector for a given dynamical system; we are interested particularly in minimal state vectors, i.e.,

those with the smallest possible dimension k.

Above, we saw one direction of the equivalence between PSRs and dynamical systems
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satisfying the linearity property: given a PSR, the state update equations define Qt, and the

expression above gives mτ . We will demonstrate the other direction in the next section below, by

constructing a PSR given Qt and mτ .

Given a test τ , an action a, and an observation o, define the one-step extension τao as

follows: let a1, . . . , a` be the sequence of actions for τ , and let F (·) be the statistic for τ . Then

the action sequence for τao is a, a1, . . . , a`, and the statistic for τao is F o(·), defined as

F o(o1, . . . , o`+1) = I(o1 = o)F (o2, . . . , o`+1)

In words, the one-step extension tacks a onto the beginning of the action sequence. It then

applies F (·) on the observation sequence starting at the second time step in the future, but it

either keeps the result or zeros it out, depending on the value of the first observation.

We can relate the value of a one-step extension test τao to the value of the original test τ :

τao(q) = P (o | q, do a)τ(q′)

where q′ = Taoq/u
TTaoq is the state we reach from q after executing a and observing o. (We

can derive this expression by conditioning on whether we receive o or not: with probability

P (o | q,do a) the outcome of τao is as if we executed τ from q′, else the outcome of τao is zero.)

For example, in any PSR, we can define the constant test τ1, which has an empty action

sequence and always has outcome equal to 1. The one-step extensions of this test give the

probabilities of different observations at the current time step:

τao1 (q) = P (o | q, do a)
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7.14.3.2 PSRs and tests

We can use tests to construct a PSR from a dynamical system, and to interpret the resulting

state vector. This interpretation explains the terminology predictive state: our state is equivalent

to a vector of predictions about the future. Crucially, these predictions are for observable

outcomes of experiments that we could actually conduct. This is in contrast to a POMDP’s state,

which may be only partially observable.

In more detail, suppose we have a dynamical system with a minimal state qt that satisfies

the linearity property defined above. That is, suppose we have functions Qt that compute

minimal states qt = Qt(a1, o1, . . . , at−1, ot−1) ∈ Rk, and vectors mτ ∈ Rk that predict test

values τ(qt) = mτ · qt. We will show that each coordinate of qt is a linear combination of test

values, and we will define PSR parameters Tao, u that let us update qt recursively, instead of

having to compute qt from scratch at each time step using the state extraction functions Qt.

Pick k tests τ1 . . . τk, and define q′t ∈ Rk to have coordinates [q′t]i = mτi · qt. Equivalently,

let S be the matrix with rows mτi , and write q′t = Sqt. We say that our set of tests is linearly

independent if their prediction vectors mτi are linearly independent — equivalently, if the matrix

S is invertible. If this happens to be true for τ1 . . . τk, then q′t is another minimal state vector for

our dynamical system: the value of test τ is mτ · qt = mτ · S−1q′t, which is a linear function of

q′t. Furthermore, we have interpreted each coordinate of qt as a linear combination of tests, as

promised: qt = S−1q′t.

It turns out that we can always pick k linearly independent tests. To see why: the empty

list is linearly independent. For any list shorter than k, there will always exist another linearly

independent test that we can add: if not, every possible mτ is a linear combination of our existing
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vectors mτi , meaning that we can express mτ · qt as a linear function of mτi · qt. We could then

define [q′t]i = mτi · qt as before, and get a state vector of dimension smaller than k, contradicting

the minimality of qt.

Now it just remains to show how to update our state vector recursively. We will describe

first how to update q′t, and then how to update the original state vector qt.

For each of the tests τi that make up q′t, consider the one-step extensions τaoi for each a

and o. Write mao
i for the corresponding prediction vectors, so that τaoi (q′t) = mao

i · q′t. And, write

m1 for the prediction vector of the constant test τ1.

We can now define PSR parameters in terms of these prediction vectors: let Tao be the

matrix with rows mao
i ,

[Tao]ij = [mao
i ]j

and define

u = m1

If we now use Tao to update q′t, we get

[Taoq
′
t]i = mao

i · q′t

= τaoi (q′t)

= P (o | q′t, do a)τi(q
′
t+1)

= P (o | q′t, do a)[q′t+1]i

or equivalently

q′t+1 = Taoq
′
t /P (o | q′t, do a)
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which is the correct update for q′t after action a and observation o. And,

u · Taoq′t = u · q′t+1 P (o | q′t, do a)

= m1 · q′t+1 P (o | q′t, do a)

= P (o | q′t, do a)

demonstrating that u correctly computes observation probabilities and lets us normalize our state

vector.

Recapping, if we use the new state vector q′t, each coordinate of our state is a test value,

and we can interpret our parameter matrices in terms of tests. The rows of Tao correspond to

one-step extension tests, and the normalization vector u corresponds to the constant test.

For the original state vector qt, we can make a similar interpretation. Define the one-

step extension of a linear combination of tests by passing the extension through the linear

combination: that is, given a linear combination σ =
∑

i aiτi for coefficients ai and tests τi, the

one-step extension σao is
∑

i aiτ
ao
i . With this definition, the exact same construction of Tao and

u works for our original state vector. That is, each component of qt can be interpreted as a linear

combination of tests; each row of Tao is the prediction vector for a one-step extension of one of

these linear combinations; and u is the prediction vector for the constant test.

7.14.4 Background on policies

We can represent a horizon-H deterministic policy π as a balanced tree of depth H

(Fig. 7.1). We start at the root of the tree. At each node, we execute the corresponding action a,

branch to a child node π(o) depending on the resulting observation o, and repeat.
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We can write a horizon-H stochastic policy as a mixture of horizon-H deterministic

policies — i.e., a convex combination of depth-H trees. To execute a stochastic policy, we

alternate between choosing actions and receiving observations, as follows. To choose an action,

we look at the labels of the root nodes of all of the policy trees in our mixture: the probability

of action a is the total weight of trees whose root label is a. Given the action a, we keep only

the trees with root label a, and renormalize the mixture weights to sum to 1. To incorporate an

observation, we branch to a child node within each tree according to the received observation.

That is, we replace each tree π in our mixture by its child π(o), keeping the same weight. We

write π(a, o) for the resulting mixture after choosing action a and incorporating observation o.

7.14.5 Successor feature matrices

In a POMDP or PSR, we do not want a separate successor feature vector at each state, since

we do not have access to a fully observable state. Instead, the successor feature representation is

a function of the continuous predictive state or belief state q. Here, we show that this function is

linear in q: that is, we can represent it as

φπ(q) = Aπq

for some matrix Aπ ∈ Rd×k that depends on the policy π. We also show how to compute the

successor feature matrix Aπ.

We can show linearity, and at the same time compute Aπ, by induction over the horizon.

In the base case (a horizon of H = 1), our total discounted features are the same as our one-step
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features:

φπ(q) = Eπ[f(q, a)] =
∑
a

P (a | π)Faq

Note that the RHS is a linear function of q, as claimed.

In the inductive case (horizon H > 1), we can split our our expected total discounted

features into contributions from the present and the future:

φπ(qt) = Eπ[f(qt, at) + γφπ(at,ot)(qt+1)]

In the the contribution of future time steps, note both the one-step updated policy π(at, ot) and the

one-step updated predictive state qt+1. Expanding the expectation and substituting our expression

for f(. . .), we get

φπ(qt) =
∑
a,o

P (a | π)P (o | qt, do a)[Faqt + γφπ(a,o)(qt+1)]

We can inductively assume that φπ(a,o) is linear, since π(a, o) is a shorter-horizon policy than

π. That is, we can write φπ(a,o)(q) = Aπ(a,o)q. Substituting this expression, and using qt+1 =

Taoqt /P (o | qt, do a), we see that P (o | qt, do a) cancels:

φπ(qt) =
∑
a

P (a | π)

[
Faqt + γ

∑
o

Aπ(a,o)Taoqt

]

We can observe that the RHS is a linear function of qt, which completes our inductive proof of

linearity.
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Because of linearity, there exists a matrix Aπ such that φπ(q) = Aπq. With this notation,

Aπqt =
∑
a

P (a | π)

[
Faqt + γ

∑
o

Aπ(a,o)Taoqt

]

Because the above equation must hold for any predictive state qt, we get

Aπ =
∑
a

P (a | π)

[
Fa + γ

∑
o

Aπ(a,o)Tao

]

This equation defines Aπ recursively in terms of matrices for shorter-horizon policies. So, we

can compute Aπ by dynamic programming, working backward from horizon 1: we start by

computing the matrices for all 1-step policies that we can get from π by fixing the first H − 1

actions and observations, then combine these to compute the matrices for all 2-step policies that

we can get from π by fixing the first H − 2 actions and observations, and so forth.

For a deterministic policy with root action a, the recursion simplifies to

Aπ = Fa + γ
∑
o

Aπ(o)Tao

We can think of this recursion as working upward from the leaves of a single policy tree.

7.14.6 Implementation and experimental setup

In the following sections we discuss experimental details for computing the successor

feature sets and using them for feature matching.
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7.14.6.1 Successor Feature Sets Implementation

We start by initializing each Φao to the set consisting of the zero matrix with dimension

d×k. We sample a fixed set of directionsmi ∈ Rd×k in a dk-sphere by sampling from a Gaussian

and normalizing. To make computation more regular and GPU-friendly, we pre-allocate |A|

tensors whose dimensions are m̂× d× k; we group the Φao matrices for all o and store them

into the tensors. m̂ corresponds to the max number of boundary points that we store for each

Φao. These tensors allow us efficiently solve

arg max 〈mi, φ〉 for φ ∈
⋃
a′ [Fa′ + γ

∑
o′ Φa′o′ ]Tao

because [Fa′ + γ
∑

o′ Φa′o′ ]Tao becomes a series of matrix multiplications which we can efficiently

compute in parallel using a GPU. We try three different numbers of random projections: 50, 100

and 175. We prune the resulting boundary points to keep only the unique ones.

7.14.6.2 Mountain-Car Implementation

In the mountain-car environment, the one-step features are radial basis functions of the

state with values in [0, 1]. In particular, if we rescale the state space to [−1, 1]× [−1, 1], we set

the 9 RBF centers to be at {−0.8, 0, 0.8} × {−0.8, 0, 0.8}, a 3× 3 grid. The RBF widths in the

rescaled state space are σ = 0.8.

7.14.6.3 Grid POMDP Implementation

In the Grid POMDP environment the agent has 0.05 probability of transitioning to a

random neighboring state, and an 0.05 probability of observing a random neighboring state
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instead of the current state that it is in. We experimented as well with various amounts of noise

(not shown); increasing the noise increases the effective dimensionality of the Φao sets, and we

start to need more and more boundary points. Decreasing the noise makes the POMDP solution

approach the MDP solution.

7.14.6.4 Feature Matching Implementation

To implement step 5 or step 7 in Algorithm 5, we need to solve a small convex program.

The best way to do so depends on the data structures we use to represent Φ and Φa. With our

Φao decomposition, the sets Φa are the convex hull of a finite set of vertices, with the number of

vertices bounded by m̂|O|.

With this representation, for step 5, a reasonable approach is to use the Frank-Wolfe

algorithm to find φit and pit: if we minimize the squared error between the LHS and RHS of the

equation in step 5, the Frank-Wolfe method will naturally produce its output in the form of a

convex combination of vertices of Φaqt.

Note that if we use Frank-Wolfe in step 5, every φit we need to decompose in step 7 will

be a vertex of one of the sets Φaqt. So, a reasonable approach is to annotate the vertices of Φa as

we compute them. Each vertex of Φa will be constructed from some list of vertices of Φao for

different o’s; we can just record which vertices of the sets Φao were used to construct each vertex

of Φa. We can multiply the current state qt into the vertices of Φa and Φao to get vertices of Φaqt

and Φaoqt.

Note that if we use the above approach to decompose φit, on the next time step φdt+1 will

be a vertex of Φqt+1. So, we will not need to run Frank-Wolfe in step 5 on any subsequent time

steps, unless numerical errors or incomplete convergence of the dynamic programming iteration
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Figure 7.5: Example of the behavior of point-based approximation. Two convex sets (top row)
are very similar. If we retain the maximal points (blue circles) in the indicated directions (arrows,
top right), the convex hulls of the two sets of retained points are very different (bottom row).

cause us to drift away from being an exact vertex.

7.14.7 Convergence of point-based approximations

While the exact dynamic programming update is a contraction, the point-based approximate

dynamic programming update might not be. Fig. 7.5 shows why: an arbitrarily small change in a

backed up set can lead to a large change in the point-based approximation of that set. Despite

this fact, in practice we observe rapid convergence of the point-based approximate iteration.

Nonetheless, we can show that a small modification of our point-based approximate

method converges and has bounded error. In particular, we analyze monotone point-based

backups. Our analysis is similar to a corresponding analysis for monotone point-based value

iteration in POMDPs.

For the modification, suppose that we are in a stoppable process: that is, suppose there is

a designated stop action that ends the process, giving us some (possibly bad) terminal reward

that can depend on the current state. In this case we can initialize our dynamic programming

iteration with {φstop}, the singleton set containing the successor feature matrix of the policy that
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always takes the stop action. One common way that stoppable processes arise is if we have an

emergency or safety policy — the equivalent of a big red button that causes our robot to shut

down or retreat to a safe state. If we have an idle action, one that does not change our state but

also does not yield a good reward, then we can use the always-idle policy as our safety policy.

In stoppable problems, with the given initialization, we know that our point-based backup

will compute only achievable successor feature matrices — i.e., only those φ that correspond to

policies that we can always execute. So, we can use monotone backups: we can keep at each

step the better of the existing (horizon H) and the backed up (horizon H + 1) successor feature

matrix in each direction. (We can make the same modification to the exact backup operator as

well: we merge together the current successor feature set Φ(H) with the backed up successor

feature set Φ(H+1), by taking the convex hull of their union. This modification does not affect

the convergence proof or error bound given above.)

We can now analyze the monotone backup. First, note that the point-based backup of any

set is a subset of the exact backup of that set, since we get the point-based backup by dropping

elements of the exact backup. Second, note that both the point-based and the exact backup

operators are monotone with respect to set inclusion: if P ⊆ Q then the backup of P is a

subset of the backup of Q. So, the iterates from either are monotonically increasing. For the

point-based backup, this means that the convex hull of our retained φ matrices at each horizon

always contains the convex hull at shorter horizons.

The exact backup sequence converges to the exact successor feature set, which is therefore

an upper bound on the approximate backup sequence. By the monotone convergence theorem,

this means that the monotone point-based iteration must converge to a subset of the exact

successor feature set.
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We can use this same argument to get a simple error bound: write ΦPB for the convergence

point of the point-based iteration, and write ΦPB+ for its one-step exact backup. Suppose that

these two sets differ by at most ε in Hausdorff metric. Then a standard argument shows that

ΦPB cannot be farther than ε
1−γ from the exact successor feature set. We know that ε can be at

most the size of the exact successor feature set (which is bounded by Rmax

1−γ ), but it may be much

smaller.
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Chapter 8: Constraint Feedback

Imitation learning typically considers the problem of learning to optimize the behavior of

an agent in an unknown environment using demonstration data or an interactive expert. This can

be sufficient for simple tasks, but boiling down the learning goal only using demonstration data

can be challenging for complex tasks. Many critical aspects of the desired behavior are more

naturally expressed as constraints. For instance, the designer may want to limit unsafe actions,

increase the diversity of trajectories to enable exploration, or approximate expert trajectories

when rewards are sparse. Moreover, demonstration data or query an online expert might not be a

natural formalism for stating certain learning objectives, such as safety desires (“avoid dangerous

situations”) or exploration suggestions (“maintain a distribution over visited states that is as close

to uniform as possible”).

In this chapter, we propose an algorithmic scheme that can handle a wide class of

constraints in reinforcement learning and imitation learning tasks, specifically, any constraints

that require expected values of some vector measurements (such as the use of an action) to lie

in a convex set. This captures previously studied constraints (such as safety and proximity to

an expert) and enables new classes of constraints (such as diversity). Our approach comes with

rigorous theoretical guarantees and only relies on solving standard reinforcement learning tasks

approximately. As a result, it can be easily adapted to work with any model-free reinforcement

learning algorithm or model-based reinforcement learning algorithm, or imitation learning

algorithm. Our experiments show that it matches previous algorithms that enforce safety via
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constraints but can also enforce new properties that these algorithms cannot incorporate, such as

diversity.

8.1 Introduction

Reinforcement learning (RL) typically considers the problem of learning to optimize the

behavior of an agent in an unknown environment against a single scalar reward function. For

simple tasks, this can be sufficient, but for complex tasks, boiling down the learning goal into

a single scalar reward can be challenging. Moreover, a scalar reward might not be a natural

formalism for stating certain learning objectives, such as safety desires (“avoid dangerous

situations”) or exploration suggestions (“maintain a distribution over visited states that is as close

to uniform as possible”). In these settings, it is much more natural to define the learning goal in

terms of a vector of measurements over the behavior of the agent, and to learn a policy whose

measurement vector is inside a target set.

We derive an algorithm, approachability-based policy optimization (APPROPO, pronounced

like “apropos”), for solving such problems. Given a Markov decision process with vector-valued

measurements, and a target constraint set, APPROPO learns a stochastic policy whose expected

measurements fall in that target set (akin to Blackwell approachability in single-turn games,

33). We derive our algorithm from a game-theoretic perspective, leveraging recent results in

online convex optimization. APPROPO is implemented as a reduction to any off-the-shelf

reinforcement learning algorithm that can return an approximately optimal policy, and so can be

used in conjunction with the algorithms that are the most appropriate for any given domain.

Our approach builds on prior work for reinforcement learning under constraints, such

as the formalism of constrained Markov decision processes (CMDPs) introduced by Altman
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[7]. In CMDPs, the agent’s goal is to maximize reward while satisfying some linear constraints

over auxiliary costs (akin to our measurements). Altman [7] gave an LP-based approach when

the CMDP is fully known, and more recently, model-free approaches have been developed

for CMDPs in high-dimensional settings. For instance, Achiam et al. [3] constrained policy

optimization (CPO) focuses on safe exploration and seeks to ensure approximate constraint

satisfaction during the learning process. Tessler et al. [280] reward constrained policy optimization

(RCPO) follows a two-timescale primal-dual approach, giving guarantees for the convergence

to a fixed point. Le et al. [166] describe a batch off-policy algorithm with PAC-style guarantees

for CMDPs using a similar game-theoretic formulation to ours.

While all of these works are only applicable to orthant constraints, our algorithm can

work with arbitrary convex constraints. This enables APPROPO to incorporate previously

studied constraint types, such as inequality constraints that represent safety or that keep the

policy’s behavior close to that of an expert [277], as well as constraints like the aforementioned

exploration suggestion, implemented as an entropy constraint on the policy’s state visitation

vector. The entropy of the visitation vector was recently studied as the objective by Hazan et al.

[115], who gave an algorithm capable of maximizing a concave function (e.g., entropy) over such

vectors. However, it is not clear whether their approach can be adapted to the convex constraints

setting studied here.

Our main contributions are: (1) a new algorithm, APPROPO, for solving reinforcement

learning problems with arbitrary convex constraints; (2) a rigorous theoretical analysis that

demonstrates that it can achieve sublinear regret under mild assumptions; and (3) a preliminary

experimental comparison with RCPO [280], showing that our algorithm is competitive with

RCPO on orthant constraints, while also handling a diversity constraint.
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8.2 Background

We begin with a description of our learning setting. A vector-valued Markov decision

process is a tuple M = (S,A, β, Ps, Pz), where S is the set of states, A is the set of actions

and β is the initial-state distribution. Each episode starts by drawing an initial state s0 from the

distribution β. Then in each step i = 1, 2, . . . , the agent observes its current state si and takes

action ai ∈ A causing the environment to move to the next state si+1 ∼ Ps(·|si, ai). The episode

ends after a certain number of steps (called the horizon) or when a terminal state is reached.

However, in our setting, instead of receiving a scalar reward, the agent observes a d-dimensional

measurement vector zi ∈ Rd, which, like si+1, is dependent on both the current state si and

the action ai, that is, zi ∼ Pz(·|si, ai). (Although not explicit in our setting, reward could be

incorporated in the measurement vector.)

Typically, actions are selected according to a (stationary) policy π so that ai ∼ π(si), where

π maps states to distributions over actions. We assume we are working with policies from some

candidate space Π. For simplicity of presentation, we assume this space is finite, though possibly

extremely large. For instance, if S and A are finite, then Π might consist of all deterministic

policies. (Our results hold also when Π is infinite with minor technical adjustments.)

Our aim is to control the MDP so that measurements satisfy some constraints. For

any policy π, we define the long-term measurement Z(π) as the expected sum of discounted

measurements:

Z(π) , E

[
∞∑
i=0

γizi

∣∣∣ π] (8.1)

for some discount factor γ ∈ [0, 1), and where expectation is over the random process described

above (including randomness inherent in π).
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Later, we will also find it useful to consider mixed policies µ, which are distributions

over finitely many stationary policies. The space of all such mixed policies over Π is denoted

∆(Π). To execute a mixed policy µ, before taking any actions, a single policy π is randomly

selected according to µ; then all actions henceforth are chosen from π, for the entire episode.

The long-term measurement of a mixed policy Z(µ) is defined accordingly:

Z(µ) , Eπ∼µ [Z(π)] =
∑
π

µ(π)Z(π). (8.2)

Our learning problem, called the feasibility problem, is specified by a convex target set C.

The goal is to find a mixed policy µ whose long-term measurements lie in the set C:

Feasibility Problem: Find µ ∈ ∆(Π) such that Z(µ) ∈ C. (8.3)

For instance, in our experiments we consider a grid-world environment where the measurements

include the distance traveled, an indicator of hitting a rock, and indicators of visiting various

locations on the grid. The feasibility goal is to achieve at most a certain trajectory length while

keeping the probability of hitting the rock below a threshold for safety reasons, and maintaining

a distribution over visited states close to the uniform distribution to enable exploration. We can

potentially also handle settings where the goal is to maximize one measurement (e.g., “reward”)

subject to others by performing a binary search over the maximum attainable value of the reward

(see §8.3.4).
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8.3 Our Approach: APPROPO

Before giving details of our approach, we overview the main ideas, which, to a large degree,

follow the work of Abernethy et al. [2], who considered the problem of solving two-player games;

we extend these results to solve our feasibility problem (8.3).

Although feasibility is our main focus, we actually solve the stronger problem of finding

a mixed policy µ that minimizes the Euclidean distance between Z(µ) and C, meaning the

Euclidean distance between Z(µ) and its closest point in C. That is, we want to solve

min
µ∈∆(Π)

dist(Z(µ), C) (8.4)

where dist denotes the Euclidean distance between a point and a set.

Our main idea is to take a game-theoretic approach, formulating this problem as a game

and solving it. Specifically, suppose we can express the distance function in Eq. (8.4) as a

maximization of the form

dist(Z(µ), C) = max
λ∈Λ

λ · Z(µ) (8.5)

for some convex, compact set Λ.1 Then Eq. (8.4) becomes

min
µ∈∆(Π)

max
λ∈Λ

λ · Z(µ). (8.6)

This min-max form immediately evokes interpretation as a two-person zero-sum game: the first

player chooses a mixed policy µ, the second player responds with a vector λ, and λ · Z(µ) is the

1Note that the distance between a point and a set is defined as a minimization of the distance function over all
points in the set C, but here we require that it be rewritten as a maximization of a linear function over some other set
Λ. We will show how to achieve this in §8.3.2.
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amount that the first player is then required to pay to the second player. Assuming this game

satisfies certain conditions, the final payout under the optimal play, called the value of the game,

is the same even when the order of the players is reversed:

max
λ∈Λ

min
µ∈∆(Π)

λ · Z(µ). (8.7)

Note that the policy µwe are seeking is the solution of this game, that is, the policy realizing

the minimum in Eq. (8.6). Therefore, to find that policy, we can apply general techniques for

solving a game, namely, to let a no-regret learning algorithm play the game repeatedly against a

best-response player. When played in this way, it can be shown that the averages of their plays

converge to the solution of the game (details in §8.3.1).

In our case, we can use a no-regret algorithm for the λ-player, and best response for the

µ-player. Importantly, in our context, computing best response turns out to be an especially

convenient task. Given λ, best response means finding the mixed policy µ minimizing λ · Z(µ).

As we show below, this can be solved by treating the problem as a standard reinforcement

learning task where in each step i, the agent accrues a scalar reward ri = −λ · zi. We refer to

any algorithm for solving the problem of scalar reward maximization as the best-response oracle.

During the run of our algorithm, we invoke this oracle for different vectors λ corresponding to

different definitions of a scalar reward. Although the oracle is only capable of solving RL tasks

with a scalar reward, our algorithm can leverage this capability to solve the multi-dimensional

feasibility (or distance minimization) problem.

In the remainder of this section, we provide the details of our approach, leading to our

main algorithm and its analysis, and conclude with a discussion of steps for making a practical
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implementation. We begin by discussing game-playing techniques in general, which we then

apply to our setting.

8.3.1 Solving zero-sum games using online learning

At the core of our approach, we use the general technique of Freund and Schapire [94] for

solving a game by repeatedly playing a no-regret online learning algorithm against best response.

For this purpose, we first briefly review the framework of online convex optimization,

which we will soon use for one of the players: At time t = 1, . . . , T , the learner makes a decision

λt ∈ Λ, the environment reveals a convex loss function `t : Λ → R, and the learner incurs

loss `t(λt). The learner seeks to achieve small regret, the gap between its loss and the best in

hindsight:

RegretT ,

[
T∑
t=1

`t(λt)

]
−min

λ∈Λ

[
T∑
t=1

`t(λ)

]
. (8.8)

An online learning algorithm is no-regret if RegretT = o(T ), meaning its average loss approaches

the best in hindsight. An example of such an algorithm is online gradient descent (OGD)

of Zinkevich [328] (see section 8.6.1). If the Euclidean diameter of Λ is at most D, and

||∇`t(λ)|| ≤ G for any t and λ ∈ Λ, then the regret of OGD is at most DG
√
T .

Now consider a two-player zero-sum game in which two players select, respectively, λ ∈ Λ

and u ∈ U , resulting in a payout of g(λ,u) from the u-player to the λ-player. The λ-player

wants to maximize this quantity and the u-player wants to minimize it. Assuming g is concave in

λ and convex in u, if both spaces Λ and U are convex and compact, then the minimax theorem

[199, 264] implies that

max
λ∈Λ

min
u∈U

g(λ,u) = min
u∈U

max
λ∈Λ

g(λ,u). (8.9)

224



This means that the λ-player has an “optimal” strategy which realizes the maximum on the left

and guarantees payoff of at least the value of the game, i.e., the value given by this expression;

a similar statement holds for the u-player.

We can solve this game (find these optimal strategies) by playing it repeatedly. We use

a no-regret online learner as the λ-player. At each time t = 1, . . . , T , the learner chooses

λt ∈ Λ. In response, the u-player, who in this setting is permitted knowledge of λt, selects

ut to minimize the payout, that is, ut = argminu∈U g(λt,u). This is called best response. The

online learning algorithm is then updated by setting its loss function to be `t(λ) = −g(λ,ut).

(See Algorithm 6.) As stated in Theorem 8.3.1, λ and u, the averages of the players’ decisions,

converge to the solution of the game (see section 8.6.2 for the proof).

Algorithm 6 Solving a game with repeated play
1: input concave-convex function g : Λ× U → R, online learning algorithm LEARNER

2: for t = 1 to T do
3: LEARNER makes a decision λt ∈ Λ
4: ut ← argminu∈U g(λt,u)
5: LEARNER observes loss function `t(λ) = −g(λ,ut)
6: end for
7: return λ = 1

T

∑T
t=1 λt and u = 1

T

∑T
t=1 ut

Theorem 8.3.1. Let v be the value of the game in Eq. (8.9) and let RegretT be the regret of the

λ-player. Then for λ and u we have

min
u∈U

g(λ,u) ≥ v − δ and max
λ∈Λ

g(λ,u) ≤ +δ, where δ = 1
T

RegretT . (8.10)

8.3.2 Algorithm and main result

We can now apply this game-playing framework to the approach outlined at the beginning

of this section. First, we show how to write distance as a maximization, as in Eq. (8.5). For
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now, we assume that our target set C is a convex cone, that is, closed under summation and also

multiplication by non-negative scalars (we will remove this assumption in §8.3.3). With this

assumption, we can apply the following lemma (Lemma 13 of 2), in which distance to a convex

cone C ⊆ Rd is written as a maximization over a dual convex cone C◦ called the polar cone:

C◦ , {λ : λ · x ≤ 0 for all x ∈ C}. (8.11)

Lemma 5. For a convex cone C ⊆ Rd and any point x ∈ Rd

dist(x, C) = max
λ∈C◦∩B

λ · x, (8.12)

where B , {x : ||x|| ≤ 1} is the Euclidean ball of radius 1 at the origin.

Thus, Eq. (8.5) is immediately achieved by setting Λ = C◦∩B, so the distance minimization

problem (8.4) can be cast as the min-max problem (8.6). This is a special case of the zero-sum

game (8.9), with U = {Z(µ) : µ ∈ ∆(Π)} and g(λ,u) = λ · u, which can be solved with

Algorithm 6. Note that the set U is convex and compact, because it is a linear transformation of a

convex and compact set ∆(Π).

We will see below that the best responses ut in Algorithm 6 can be expressed as Z(πt) for

some πt ∈ Π, and so Algorithm 6 returns

u =
1

T

T∑
t=1

Z(πt) = Z

(
1

T

T∑
t=1

πt

)
,

which is exactly the long-term measurement vector of the mixed policy µ̄ = 1
T

∑T
t=1 πt. For this
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mixed policy, Theorem 8.3.1 immediately implies

dist(Z(µ̄), C) ≤ min
µ∈∆(Π)

dist(Z(µ), C) + 1
T

RegretT . (8.13)

If the problem is feasible, then minµ∈∆(Π) dist(Z(µ), C) = 0, and since RegretT = o(T ), our

long-term measurement Z(µ̄) converges to the target set and solves the feasibility problem (8.3).

It remains to specify how to implement the no-regret learner for the λ-player and best response

for the u-player. We discuss these next, beginning with the latter.

The best-response player, for a given λ, aims to minimize λ · Z(µ) over mixed policies µ,

but since this objective is linear in the mixture weights µ(π) (see Eq. 8.2), it suffices to minimize

λ · Z(π) over stationary policies π ∈ Π. The key point, as already mentioned, is that this is the

same as finding a policy that maximizes long-term reward in a standard reinforcement learning

task if we define the scalar reward to be ri = −λ · zi. This is because the reward of a policy π is

given by

R(π) , E

[
∞∑
i=0

γiri

∣∣∣ π] = E

[
∞∑
i=0

γi(−λ · zi)
∣∣∣ π] = −λ · E

[
∞∑
i=0

γizi

∣∣∣ π] = −λ · Z(π).

(8.14)

Therefore, maximizing R(π), as in standard RL, is equivalent to minimizing λ · Z(π).

Thus, best response can be implemented using any one of the many well-studied RL

algorithms that maximize a scalar reward. We refer to such an RL algorithm as the best-response

oracle. For robustness, we allow this oracle to return an approximately optimal policy.

Best-response oracle: BESTRESPONSE(λ).

Given λ ∈ Rd, return a policy π ∈ Π that satisfies R(π) ≥ maxπ′∈Π R(π′) − ε0, where

R(π) is the long-term reward of policy π with scalar reward defined as r = −λ · z.
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For the λ-player, we do our analysis using online gradient descent [328], an effective no-

regret learner. For its update, OGD needs the gradient of the loss functions `t(λ) = −λ · Z(πt),

which is just −Z(πt). With access to the MDP, Z(π) can be estimated simply by generating

multiple trajectories using π and averaging the observed measurements. We formalize this by

assuming access to an estimation oracle for estimating Z(π).

Estimation oracle: EST(π).

Given policy π, return ẑ satisfying ‖ẑ− Z(π)‖ ≤ ε1.

OGD also requires projection to the set Λ = C◦ ∩ B. In fact, if we can simply project

onto the target set C, which is more natural, then it is possible to also project onto Λ. Consider

an arbitrary x and denote its projection onto C as ΓC(x). Then the projection of x onto the

polar cone C◦ is ΓC◦(x) = x− ΓC(x) [132]. Given the projection ΓC◦(x) and further projecting

onto B, we obtain ΓΛ(x) = (x− ΓC(x))/max{1, ‖x− ΓC(x)‖} (because Dykstra’s projection

algorithm converges to this point after two steps, 40). Therefore, it suffices to require access to a

projection oracle for C:

Projection oracle: ΓC(x) = argminx′∈C ‖x− x′‖.

Pulling these ideas together and plugging into Algorithm 6, we obtain our main algorithm,

called APPROPO (Algorithm 7), for approachability-based policy optimization. The algorithm

provably yields a mixed policy that approximately minimizes distance to the set C, as shown in

Theorem 8.3.2 (proved in section 8.6.3).

Theorem 8.3.2. Assume that C is a convex cone and for all measurements we have ||z|| ≤ B.

Suppose we run Algorithm 7 for T rounds with η =
(

B
1−γ + ε1

)−1
T−1/2. Then

dist(Z(µ̄), C) ≤ min
µ∈∆(Π)

dist(Z(µ), C) +
(

B
1−γ + ε1

)
T−1/2 + ε0 + 2ε1, (8.15)
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Algorithm 7 APPROPO

1: input projection oracle ΓC(·) for target set C which is a convex cone,
best-response oracle BESTRESPONSE(·), estimation oracle EST(·),
step size η, number of iterations T

2: define Λ , C◦ ∩ B, and its projection operator ΓΛ(x) ,
(x− ΓC(x))/max{1, ‖x− ΓC(x)‖}

3: initialize λ1 arbitrarily in Λ
4: for t = 1 to T do
5: Compute an approximately optimal policy for standard RL with scalar reward r = −λt ·z:

πt ← BESTRESPONSE(λt)
6: Call the estimation oracle to approximate long-term measurement for πt:

ẑt ← EST(πt)
7: Update λt using online gradient descent with the loss function `t(λ) = −λ · ẑt:

λt+1 ← ΓΛ

(
λt + ηẑt

)
8: end for
9: return µ̄, a uniform mixture over π1, . . . , πT

where µ̄ is the mixed policy returned by the algorithm.

When the goal is to solve the feasibility problem (8.3) rather than the stronger distance

minimization (8.4), we can make use of a weaker reinforcement learning oracle, which only

needs to find a policy that is “good enough” in the sense of providing long-term reward above

some threshold:

Positive-response oracle: POSRESPONSE(λ).

Given λ ∈ Rd, return π ∈ Π that satisfies R(π) ≥ −ε0 if maxπ′∈ΠR(π′) ≥ 0 (and

arbitrary π otherwise), where R(π) is the long-term reward of π with scalar reward

r = −λ · z.

When the problem is feasible, it can be shown that there must exist π ∈ Π with R(π) ≥ 0,

and furthermore, that `t(λt) ≥ −(ε0 + ε1) (from Lemma 7 in section 8.6.3). This means, if the

goal is feasibility, we can modify Algorithm 7, replacing BESTRESPONSE with POSRESPONSE,

and adding a test at the end of each iteration to report infeasibility if `t(λt) < −(ε0 + ε1). The

pseudocode is provided in Algorithm 9 in section 8.6.4 along with the proof of the following
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convergence bound:

Theorem 8.3.3. Assume that C is a convex cone and for all measurements we have ||z|| ≤ B.

Suppose we run Algorithm 9 for T rounds with η =
(

B
1−γ + ε1

)−1
T−1/2. Then either the

algorithm reports infeasibility or returns µ̄ such that

dist(Z(µ̄), C) ≤
(

B
1−γ + ε1

)
T−1/2 + ε0 + 2ε1. (8.16)

8.3.3 Removing the cone assumption

Our results so far have assumed the target set C is a convex cone. If instead C is an arbitrary

convex, compact set, we can use the technique of Abernethy et al. [2] and apply our algorithm to

a specific convex cone C̃ constructed from C to obtain a solution with provable guarantees.

In more detail, given a compact, convex target set C ⊆ Rd, we augment every vector in C

with a new coordinate held fixed to some value κ > 0, and then let C̃ be its conic hull. Thus,

C̃ = cone(C × {κ}), where cone(X ) = {αx | x ∈ X , α ≥ 0}. (8.17)

Given our original vector-valued MDP M = (S,A, β, Ps, Pz), we define a new MDP

M ′ = (S,A, β, Ps, P ′z′) with (d + 1)-dimensional measurement z′ ∈ Rd+1, defined (and

generated) by

z′i = zi ⊕ 〈(1− γ)κ〉, zi ∼ Pz(· | si, ai) (8.18)

where ⊕ denotes vector concatenation. Writing long-term measurement for M and M ′ as Z and

Z′ respectively, Z′(π) = Z(π)⊕ 〈κ〉, for any policy π ∈ Π, and similarly for any mixed policy µ.

The main idea is to apply the algorithms described above to the modified MDP M ′ using
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the cone C̃ as target set. For an appropriate choice of κ > 0, we show that the resulting mixed

policy will approximately minimize distance to C for the original MDP M . This is a consequence

of the following lemma, an extension of Lemma 14 of Abernethy et al. [2], which shows that

distances are largely preserved in a controllable way under this construction. The proof is in

section 8.6.5.

Lemma 6. Consider a compact, convex set C in Rd and x ∈ Rd. For any δ > 0, let C̃ =

cone(C × {κ}), where κ = maxx∈C ||x||√
2δ

. Then dist(x, C) ≤ (1 + δ)dist(x⊕ 〈κ〉, C̃).

Corollary 8.3.4. Assume that C is a convex, compact set and for all measurements we have

||z|| ≤ B. Then by putting η =
(
B+κ
1−γ + ε1

)−1
T−1/2 and running Algorithm 7 for T rounds with

M ′ as the MDP and C̃ as the target set, the mixed policy µ̄ returned by the algorithm satisfies

dist(Z(µ̄), C) ≤ (1 + δ)

(
min

µ∈∆(Π)
dist(Z(µ), C) +

(
B+κ
1−γ + ε1

)
T−1/2 + ε0 + 2ε1

)
, (8.19)

where κ = maxx∈C ||x||√
2δ

for an arbitrary δ > 0. Similarly for Algorithm 9, we either have

dist(Z(µ̄), C) ≤ (1 + δ)
((

B+κ
1−γ + ε1

)
T−1/2 + ε0 + 2ε1

)
(8.20)

or the algorithm reports infeasibility.

8.3.4 Practical implementation of the positive response and estimation oracles

We next briefly describe a few techniques for the practical implementation of our algorithm.

As discussed in §8.3.2, when our aim is to solve a feasibility problem, we only need access

to a positive response oracle. In episodic environments, it is straightforward to use any standard
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iterative RL approach as a positive response oracle: As the RL algorithm runs, we track its

accrued rewards, and when the trailing average of the last n trajectory-level rewards goes above

some level −ε, we return the current policy (possibly specified implicitly as a Q-function).2

Furthermore, the average of the measurement vectors z collected over the last n trajectories can

serve as the estimate ẑt of the long-term measurement required by the algorithm, side-stepping

the need for an additional estimation oracle.

The hyperparameters ε and n influence the oracle quality; specifically, assuming that the

rewards are bounded and the overall number of trajectories until the oracle terminates is at most

polynomial in n, we have ε0 = ε − O(
√

(log n)/n) and ε1 = O(
√

(log n)/n). In principle,

we could use Theorem 8.3.3 to select a value T at which to stop; in practice, we run until the

running average of the measurements ẑt gets within a small distance of the target set C. If the

RL algorithm runs for too long without achieving non-negative rewards, we stop and declare

that the underlying problem is “empirically infeasible.” (Actual infeasibility would hold if it is

truly not possible to reach non-negative expected reward.)

An important mechanism to further speed up our algorithm is to maintain a “cache” of all

the policies returned by the positive response oracle so far. Each of the cached policies π is stored

with the estimate of its expected measurement vector ẑ(π) ≈ z̄(π), based on its last n iterations

(as above). In each outer-loop iteration of our algorithm, we first check if the cache contains

a policy that already achieves a reward at least −ε under the new λ; this can be determined

from the cached ẑ(π) since the reward is just a linear function of the measurement vector. If

such a policy is found, we return it, alongside ẑ(π), instead of calling the oracle. Otherwise, we

pick the policy from the cache with the largest reward (below −ε by assumption) and use it to

2This assumes that the last n trajectories accurately estimate the performance of the final iterate. If that is not
the case, the oracle can instead return the mixture of the policies corresponding to the last n iterates.
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Figure 8.1: Left: The Mars rover environment. The agent starts in top-left and needs to reach the
goal in bottom-right while avoiding rocks. Middle, Right: Visitation probabilities of APPROPO
(middle) and APPROPO with a diversity constraints (right) at 12k samples. Both plots based
on a single run.

warm-start the RL algorithm implementing the oracle. The cache can be initialized with a few

random policies (as we do in our experiments), effectively implementing randomized weight

initialization.

The cache interacts well with a straightforward binary-search scheme that can be used

when the goal is to maximize some reward (possibly subject to additional constraints), rather

than only satisfy a set of constraints. The feasibility problems corresponding to iterates of binary

search only differ in the constraint values, but use the same measurements, so the same cache

can be reused across all iterations.

Running time. Note that APPROPO spends the bulk of its running time executing the best-

response oracle. It additionally performs updates of λ, but these tend to be orders of magnitude

cheaper than any per-episode (or per-transition) updates within the oracle. For example, in

our experiments, the dimension of λ is either 2 or 66 (without or with the diversity constraint,

respectively), whereas the policies π trained by the oracle are two-layer networks described by

8,704 floating-point numbers.
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8.4 Experiments

We next evaluate the performance of APPROPO and demonstrate its ability to handle

a variety of constraints. For simplicity, we focus on the feasibility version (Algorithm 9 in

section 8.6.4). We compare APPROPO with the RCPO approach of Tessler et al. [280], which

adapts policy gradient, specifically, asynchronous actor-critic (A2C) [191], to find a fixed point

of the Lagrangian of the constrained policy optimization problem. RCPO maintains and updates

a vector of Lagrange multipliers, which is then used to derive a reward for A2C. The vector

of Lagrange multipliers serves a similar role as our λ, and the overall structure of RCPO is

similar to APPROPO, so RCPO is a natural baseline for a comparison. Unlike APPROPO, RCPO

only allows orthant constraints and it seeks to maximize reward, whereas APPROPO solves the

feasibility problem.

For a fair comparison, APPROPO uses A2C as a positive-response oracle, with the

same hyperparameters as used in RCPO. Online learning in the outer loop of APPROPO was

implemented via online gradient descent with momentum. Both RCPO and APPROPO have

an outer-loop learning rate parameter, which we tuned over a grid of values 10−i with integer i

(see section 8.6.6 for the details). Here, we report the results with the best learning rate for each

method.

We ran our experiments on a small version of the Mars rover grid-world environment,

used previously for the evaluation of RCPO [280]. In this environment, depicted in Figure 8.1

(left), the agent must move from the starting position to the goal without crashing into rocks.

The episode terminates when a rock or the goal is reached, or after 300 steps. The environment

is stochastic: with probability δ = 0.05 the agent’s action is perturbed to a random action. The
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Figure 8.2: Left: The performance of the algorithms as a function of the number of samples
(steps in the environment); showing average and standard deviation over 25 runs. The vertical
axes correspond to the three constraints, with thresholds shown as a dashed line; for reward
(middle) this is a lower bound; for the others it is an upper bound. Right: Each point in the
scatter plot represents the reward and the probability of failure obtained by the policy learnt by
the algorithm at the specified number of samples. The grey region is the target set. Different
points represent different random runs.
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agent receives small negative reward each time step and zero for terminating, with γ = 0.99. We

used the same safety constraint as Tessler et al. [280]: ensure that the (discounted) probability

of hitting a rock is at most a fixed threshold (set to 0.2). RCPO seeks to maximize reward

subject to this constraint. APPROPO solves a feasibility problem with the same safety constraint,

and an additional constraint requiring that the reward be at least −0.17 (this is slightly lower

than the final reward achieved by RCPO). We also experimented with including the exploration

suggestion as a “diversity constraint,” requiring that the Euclidean distance between our visitation

probability vector (across the cells of the grid) and the uniform distribution over the upper-right

triangle cells of the grid (excluding rocks) be at most 0.12.3

In Figure 8.2 (left), we show how the probability of failure, the average reward, and

the distance to the uniform distribution over upper triangle vary as a function of the number

of samples seen by each algorithm. Both variants of our algorithm are able to satisfy the

safety constraints and reach similar reward as RCPO with a similar number of samples (around

8k samples). Furthermore, including the diversity constraint, which RCPO is not capable of

enforcing, allowed our method to reach a more diverse policy as depicted in both Figure 8.2

(bottom-left) and Figure 8.1 (right).

8.5 Conclusion

In this paper, we introduced APPROPO, an algorithm for solving reinforcement learning

problems with arbitrary convex constraints. APPROPO can combine any no-regret online learner

with any standard RL algorithm that optimizes a scalar reward. Theoretically, we showed that

for the specific case of online gradient descent, APPROPO learns to approach the constraint

3This number ensures that APPROPO without the diversity constraint does not satisfy it automatically.
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set at a rate of 1/
√
T , with an additive non-vanishing term that measures the optimality gap

of the reinforcement learner. Experimentally, we demonstrated that APPROPO can be applied

with well-known RL algorithms for discrete domains (like actor-critic), and achieves similar

performance as RCPO [280], while being able to satisfy additional types of constraints. In sum,

this yields a theoretically justified, practical algorithm for solving the approachability problem in

reinforcement learning.
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8.6 Extended Details

8.6.1 Online gradient descent (OGD)

Algorithm 8 Online gradient descent (OGD)

1: input: projection oracle ΓΛ {ΓΛ(λ) = argminλ′∈Λ ‖λ− λ′‖}
2: init: λ1 arbitrarily
3: parameters: step size ηt
4: for t = 1 to T do
5: observe convex loss function `t : Λ→ R
6: λ′t+1 = λt − ηt∇`t(λt)
7: λt+1 = ΓΛ(λ′t+1)
8: end for

Theorem 8.6.1. [328] Assume that for any λ,λ′ ∈ Λ we have ‖λ− λ′‖ ≤ D and also

‖∇`t(λ)‖ ≤ G. Let ηt = η = D
G
√
T

. Then the regret of OGD is

RegretT (OGD) =
T∑
t=1

`t(λt)−min
λ

T∑
t=1

`t(λ) ≤ DG
√
T .

8.6.2 Proof of Theorem 8.3.1

We have that

1

T

T∑
t=1

g(λt,ut) =
1

T

T∑
t=1

min
u∈U

g(λt,u) (8.21)

≤ 1

T
min
u∈U

T∑
t=1

g(λt,u) (8.22)

≤ min
u∈U

g

(
1

T

T∑
t=1

λt,u

)
(8.23)

≤ max
λ∈Λ

min
u∈U

g(λ,u). (8.24)
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equation 8.21 is because the u-player is playing best response so that ut = argminu∈U g(λt,u).

equation 8.22 is because taking the minimum of each term of a sum cannot exceed the minimum

of the sum as a whole. Eqs. (8.23) and (8.24) use the concavity of g with respect to λ, and the

definition of max, respectively. By letting δ = 1
T

RegretT , writing the definition of regret for the

λ-player, and using `t(λ) = −g(λ,ut), we have

1

T

T∑
t=1

g(λt,ut) + δ =
1

T
max
λ∈Λ

T∑
t=1

g(λ,ut) ≥ max
λ∈Λ

g

(
λ,

1

T

T∑
t=1

ut

)
≥ min

u∈U
max
λ∈Λ

g(λ,u),

where the second and third inequalities use convexity of g with respect to u and definition of

min, respectively. Combining yields

min
u∈U

g

(
1

T

T∑
t=1

λt,u

)
≥ min

u∈U
max
λ∈Λ

g(λ,u)− δ,

and also

max
λ∈Λ

g

(
λ,

1

T

T∑
t=1

ut

)
≤ max

λ∈Λ
min
u∈U

g(λ,u) + δ,

completing the proof.

8.6.3 Proof of Theorem 8.3.2

Let v be the value of the game in equation 8.7:

v = min
µ∈∆(Π)

dist(Z(µ), C), (8.25)

and let `t(λ) = −λ · ẑt (i.e., the loss function that OGD observes).
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Lemma 7. For t = 1, 2, . . . , T we have

`t(λt) = −λt · ẑt ≥ −v − (ε0 + ε1).

Proof. By equation 8.5 (which must hold by Lemma 5), and by equation 8.25, there exists

µ∗ ∈ ∆(Π) such that

v = dist(Z(µ∗), C) = max
λ∈Λ

λ · Z(µ∗).

Thus, λt · Z(µ∗) ≤ v since λt ∈ Λ for all t. By our assumed guarantee for the policy πt returned

by the planning oracle, we have

−λt · Z(πt) ≥ −λt · Z(µ∗)− ε0 ≥ −v − ε0.

Now using the error bound of the estimation oracle,

||Z(πt)− ẑt|| ≤ ε1, (8.26)

and the fact that ||λt|| ≤ 1, we have

(−λt · ẑt) + ε1 ≥ −λt · Z(πt).

Combining completes the proof.
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Now we are ready to prove Theorem 8.3.2. Using the definition of mixed policy µ̄ returned

by the algorithm we have

dist(Z(µ̄), C) = dist

(
1

T

T∑
t=1

Z(πt), C

)

= max
λ∈Λ

λ ·

(
1

T

T∑
t=1

Z(πt)

)
(8.27)

=
1

T
max
λ∈Λ

T∑
t=1

λ · Z(πt)

≤ 1

T
max
λ∈Λ

T∑
t=1

λ · ẑt + ε1 (8.28)

= − 1

T
min
λ∈Λ

T∑
t=1

`t(λ) + ε1 (8.29)

≤ − 1

T
min
λ∈Λ

T∑
t=1

`t(λ) + ε1 +
1

T

T∑
t=1

(`t(λt) + ε1 + ε0 + v) (8.30)

= v +

(
− 1

T
min
λ∈Λ

T∑
t=1

`t(λ) +
1

T

T∑
t=1

`t(λt)

)
+ 2ε1 + ε0

= v +
RegretT (OGD)

T
+ 2ε1 + ε0.

Here, equation 8.27 is by equation 8.5. equation 8.28 uses equation 8.26 and the fact that

||λ|| ≤ 1. equation 8.31 uses Lemma 7.

The diameter of decision set Λ = C◦ ∩ B is at most 1. The gradient of the loss function

∇(`t(λ)) = −ẑt has norm at most ||Z(πt)|| + ε1 ≤ B
1−γ + ε1. Therefore, setting η =

(
( B

1−γ +

ε1)
√
T
)−1 based on Theorem 8.6.1, we get

RegretT (OGD)

T
≤
(

B

1− γ
+ ε1

)
T−1/2
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8.6.4 APPROPO for feasibility

Algorithm 9 APPROPO – Feasibility

1: input projection oracle ΓC(·) for target set C which is a convex cone,
positive response oracle PosPlan(·), estimation oracle Est(·),
step size η, number of iterations T

2: define Λ , C◦ ∩ B, and its projection operator ΓΛ(x) ,
(x− ΓC(x))/max{1, ‖x− ΓC(x)‖}

3: initialize λ1 arbitrarily in Λ
4: for t = 1 to T do
5: Call positive response oracle for the standard RL with scalar reward r = −λt · z:

πt ← PosPlan(λt)
6: Call the estimation oracle to approximate long-term measurement for πt:

ẑt ← Est(πt)
7: Update using online gradient descent with the loss function `t(λ) = −λ · ẑt:

λt+1 ← ΓΛ

(
λt + ηẑt

)
8: if `t(λt) < −(ε0 + ε1) then
9: return problem is infeasible

10: end if
11: end for
12: return µ̄, a uniform mixture over π1, . . . , πT

8.6.4.1 Proof of Theorem 8.3.3

Lemma 8. If the problem is feasible, then for t = 1, 2, . . . , T we have

`t(λt) = −λt · ẑt ≥ −(ε0 + ε1).

Proof. If the problem is feasible, then there exists µ∗ such that Z(µ∗) ∈ C. Since allλt ∈ C◦, they

all have non-positive inner product with every point in C including Z(µ∗). Since−λt ·Z(µ∗) ≥ 0,

we can conclude that maxπ∈ΠR(π) = maxπ∈Π−λt · Z(π) ≥ 0. Therefore, by our guarantee for

the positive response oracle,

R(πt) = −λt · Z(π) ≥ −ε0.
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Now using equation 8.26 and the fact that ||λt|| ≤ 1, we have

(−λt · ẑt) + ε1 ≥ −λt · Z(πt).

Combining completes the proof. The proof of Theorem 8.3.3 is similar to that of

Theorem 8.3.2. If the algorithm reports infeasibility then the problem is infeasible as a result of

Lemma 8. Otherwise, we have

1

T

T∑
t=1

(`t(λt) + ε1 + ε0) ≥ 0,

which can be combined with equation 8.29 as before. Continuing this argument as before yields

dist(Z(µ), C) ≤
(

B

1− γ
+ ε1

)
T−1/2 + 2ε1 + ε0,

completing the proof.

8.6.5 Proof of Lemma 6

Let C ′ = C × {κ} and q be the projection of x̃ = x⊕ 〈κ〉 onto C̃ = cone(C ′), i.e.,

q = arg min
y∈C̃
||x̃− y||.

Let r be the last coordinate of q. We prove the lemma in cases based on the value of r (which

cannot be negative by construction).
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Case 1 (r > κ): Since q ∈ cone(C ′) with r > 0, there exists α > 0 and q′ ∈ C ′ so that

q = αq′. Consider the plane defined by the three points x̃,q,q′. Since the origin 0 is on the line

passing through q and q′, it must also be in this plane. Now consider the line that passes through

x̃ and q′. Note that all points on this line have last coordinate equal to κ, and they are all also in

the aforementioned plane. Let v ⊕ 〈κ〉 be the projection of 0 onto this line (v ∈ Rd).

Note that the two triangles ∆(x̃,q,q′) and ∆(0,v ⊕ 〈κ〉,q′) are similar since they are

right triangles with opposite angles at q′. Therefore, by triangle similarity,

||q′||
||v ⊕ 〈κ〉||

=
||x̃− q′||
||x̃− q||

≥ dist(x̃, C ′)
dist(x̃, C̃)

=
dist(x, C)
dist(x̃, C̃)

.

Since q′ ∈ C ′, we have ||q′|| ≤
√

(maxx∈C ||x||)2 + κ2, resulting in

||q′||
||v ⊕ 〈κ〉||

≤
√

(maxx∈C ||x||)2 + κ2

κ
=
√

1 + 2δ ≤ 1 + δ

by the choice of κ given in the lemma. Combining completes the proof for this case.

Case 2 (r = κ): Since q ∈ cone(C ′) with κ as last coordinate, we have q ∈ C ′. Thus,

dist(x, C) = dist(x̃, C ′) ≤ ||x̃− q|| = dist(x̃, C̃)

which completes the proof for this case.

Case 3 (0 < r < κ): The proof for this case is formally identical to that of Case 1, except that,

in this case, the two triangles ∆(x̃,q,q′) and ∆(0,v ⊕ 〈κ〉,q′) are now similar as a result of

being right triangles with a shared angle at q′.
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Case 4 (r = 0): Since q ∈ cone(C ′), q must have been generated by multiplying some α ≥ 0

by some point in C ′. Since all points in C ′ have last coordinate equal to κ > 0, and since r = 0, it

must be the case that α = 0, and thus, q = 0. Let q′ be the projection of x̃ onto C ′. Consider the

plane defined by the three points x̃,q = 0,q′. Let q′′ be the projection of x̃ onto the line passing

through q and q′. Then

||x̃− q′′|| ≤ ||x̃|| = dist(x̃, C̃).

Now consider the line passing through x̃ and q′. Note that all points on this line have last

coordinate equal to κ and are also in the aforementioned plane. Let v ⊕ 〈κ〉 be the projection

of 0 onto this line (v ∈ Rd). Note that the two triangles ∆(x̃,q′′,q′) and ∆(0,v ⊕ 〈κ〉,q′) are

similar since they are right triangles with a shared angle at q′. Therefore, by triangle similarity,

||q′||
||v ⊕ 〈κ〉||

=
||x̃− q′||
||x̃− q′′||

≥ dist(x̃, C ′)
dist(x̃, C̃)

=
dist(x, C)
dist(x̃, C̃)

.

The rest of the proof for this case is exactly as in Case 1.

8.6.6 Additional experimental details

All the models were trained using the following hyperparameters: policy network consists

of 2-layer fully-connected MLP with ReLU activation and 128 hidden units and a A2C learning

rate of 10−2. For APPROPO, the constant κ (§8.3.3) is set to be 20. In the following figures,

the performance of the algorithms has been depicted using different hyperparamters; showing

average and standard deviation over 25 runs,.
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Chapter 9: Conclusion

9.1 Summary of the Thesis

The primary contribution of this thesis was introducing empirically and theoretically

justified algorithms that use an expert-in-the-loop to solve sequential decision and prediction

problems. Furthermore, we draw a connection between modern imitation learning algorithms

and modern structured prediction problems in natural language processing.

Chapter 3 We investigated issues in interactive imitation learning regarding being query-

inefficient to an online expert. The problem in interactive imitation learning is that it assumes

you can query an online expert at every state. We address this issue by considering access

to an additional nosy heuristic labeling function (e.g., rule-based) to reduce expert queries.

We introduce a new algorithm, LEAQI, that takes advantage of this nosy heuristic labeling

function. Our results show compared to interactive imitation learning and naive active, interactive

imitation learning techniques, LEAQI reduces online expert queries the most without reducing

performance.

Chapter 4 We introduced a setting where the query-inefficient issue of interactive imitation

learning is not a problem. In this setting, we study the problem of neural language models

generating sequences in a purely left-to-right, monotonic order; instead of some other arbitrarily

order. We cast learning generation order as an interactive imitation learning problem where the

expert is a computational oracle instead of a human, making querying the expert at every state

more reasonable. Although our models did not perform as well as the monotonic order models,
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we gained insight into the trade-off of different generation orders.

Chapter 5 We introduce an algorithm DRIL to address the covariate shift issue in imitation

learning without querying an online expert at every state. Instead, this algorithm only assumes

that an expert provides demonstration data. This algorithm uses an ensemble of policies trained on

the demonstration data variance as a reward function for reinforcement learning. Our algorithm

DRIL has good empirical performance, and in some cases, provably performs better than naive

imitation learning techniques.

Chapter 6 We extend the ideas of DRIL and perform a large-scale study of modern imitation

learning algorithms. These algorithms learn a reward function offline or online and optimize

this reward function using reinforcement learning. We perform a fair comparison by combining

all of the tricks introduced by various algorithms to all algorithms considered in this large-scale

study. We notice that one of the most important things in this class of algorithms is to interleave

behavior cloning updates. We also related this new category of imitation learning techniques to

modern structured prediction natural language processing algorithms.

Chapter 7 We introduced a framework for performing exact imitation learning. In particular,

we learned a rich embedding space encompassing all possible policies, rewards, and expected

features. This embedding space builds on ideas from success features, POMDP value iteration,

and PSRs. Given how complex the embedding space is, we show the framework’s robustness on

small and medium tabular problems. Once the embedding space is learned, we can look up a

policy in our embedding space and read it off in constant time.

Chapter 8 We presented an algorithm that allows an expert to provide constraints to solve

sequential decision and prediction problems, unlike providing demonstrations or being queried

at every state, some settings where an expert providing constraints is more natural. We provide
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theoretical and empirical results justifying the robustness of our presented algorithm compared

to previous ideas.

9.2 Future Work

This section mentions a few of the possible directions for extending and building upon this

work.

9.3 Imitation learning for Structured-Prediction

Chapter 6 discussed the connection between modern imitation learning algorithms and

the most successful reinforcement/imitation learning algorithms in structure prediction NLP

problems. However, chapter 6 only connects both fields but does not experiment with modern

imitation learning algorithms to solve modern structure prediction for NLP problems.

While this thesis focuses strictly on studying modern imitation learning techniques and

thoroughly investigating what aspects of the algorithms are essential for successfully developing

and implementing them. A significant future step would be combining modern imitation learning

ideas learned in chapter 6 with concepts from algorithms in modern structure prediction NLP

to solve degenerate issues in text generation. Some algorithms, such as GAIL as already been

applied to modern structure prediction NLP problems, as seen in Wu et al. [308], but as seen in

chapter 6, GAIL is not the best performing algorithm. Modern structured prediction for NLP

problems brings a different set of tricks and issues than ideas studied in chapter 6 structured

prediction problems. For example, the models we used to train structured prediction problems in

chapter 6 assumed pretrained embedding and were much smaller in size than typical modern NLP

models. That means training an ensemble of policies in DRIL becomes infeasible because you
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would not have the compute resources to train with multiple copies of a large NLP model. Even

if you had the compute resources to train multiple copies of a large NLP model together, training

time would be incredibility slow. There are more issues when lifting shallow modern imitation

learning techniques to very large NLP models. An important future direction is formalizing the

exposure-bias problems in modern structure-prediction NLP models and understanding what

modern imitation learning algorithms are feasible to run.

9.4 Active Imitation Learning

We introduced an algorithm to reduce online expert queries discussed in chapter 3. Active

imitation learning is the most popular category of algorithms that attempts to solve this issue. In

particular, most of these algorithms apply active learning ideas to interactive imitation learning

algorithms. A future direction is to reduce the amount of demonstration data needed for modern

imitation learning algorithms that use demonstration data and environment interactions, similar to

active imitation learning techniques that mitigate online expert queries. Though simply applying

active learning to these algorithms will not be sufficient because these algorithms learn a reward

function with the data provided, not a policy. This subtle difference means that borrowing ideas

from batch active learning may be more relevant than online active learning ideas seen in current

active imitation learning.

9.5 Imitation learning with Successor Features

As deep learning models continue to learn good features for solving downstream tasks,

having imitation learning algorithms that directly learn from these features will become necessary.

Chapter 7 introduces a framework that learns a complex embedding space for exact imitation.
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The framework assumes that the behavior policy’s expected features are not known in advance.

Instead, we learned the embedding space first, which includes all possible approaches, rewards,

and expected features in a given MDP. But the framework encompasses more information than

needed for simply imitation featuring a particular behavior policy. Instead of imitating any

possible behavior policy, a future direction could be relaxing the framework to imitate one

specific behavior policy when given access to a sample of the behavior policy features in advance.

The future direction is to develop algorithms that match the expected features of a behavior

policy when given access to the behavior policy’s expected features in advance. Furthermore,

by simplifying the problem, the hope is that this new framework would scale beyond tabular

settings.
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