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Because new products enter the market rapidly, estimating their reliability is challenging due to 

insufficient historical data.  User survey data about similar devices (e.g., older versions of the new 

device) can be used as the prior information in a Bayesian analysis integrated with evidence in the 

form of product returns, reliability tests, and other reliability data sources to improve reliability 

estimation and test specification of the new product.  User surveys are usually designed for 

purposes other than reliability estimation.  Therefore, extracting reliability information from these 

surveys may be tricky or impossible.  Even when possible, the extracted reliability information 

contains significant uncertainties.  

This dissertation introduces the critical elements of a reliability-informed user survey and offers 

methods for collecting them.  A generic and flexible mathematical approach is then proposed.  This 

approach uses the survey and reliability test data of similar products, for example, an older 



  

generation of the same product as prior knowledge.  Then it combines them through a formal 

Bayesian analysis with the reliability test data to estimate the life distribution of the new product. 

The approach models continuous life distributions for products exposed to many damage-induced 

cycles.  It proposes discrete life distribution models for products whose failures occur within 

several damaging cycles.  The actual cycles for various applicable damaging stress profiles are 

converted into the equivalent (pseudo) cycles under a reference stress profile.  When damage-

induced cycles are estimated from user surveys, they may involve biases, as is the nature of most 

nontechnical users’ responses.  This bias is minimized using an approach based on the Kullback-

Leibler divergence method.  The survey data and other evidence from similar products are then 

combined with the test data of the new product to estimate the parameters of the reliability model 

of the new product.   

The dissertation developed approaches to design reliability test specifications for a new product 

with unknown failure modes.  The number of samples, stress levels, and the number of cycles for 

the accelerated life test are determined based on the manufacturer’s requirements, including the 

desired warranty time, the desired reliability with some confidence level at the warranty time, and 

the maximum number of samples.  The actual use conditions (i.e., actual stress profiles and usage 

cycles) are grouped using clustering techniques.  The centers of clusters are then used to design 

frequency-accelerated or stress-accelerated reliability tests.  

The application of the proposed reliability estimation approach and the test specification design 

approach is illustrated and used to validate the proposed algorithms using the simulated datasets 

for a hypothetical handheld electronic device with the failure mode of cracking caused by 

accidental drops. 



  

The proposed approaches can adequately estimate the reliability model and design test 

specifications for a wide range of consumer products. These approaches require reliability data 

about an existing product that is similar to the new product, however. 
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Chapter 1: Introduction 
 

This chapter briefly explains the motivation, objectives, research approach, 

conclusions, and dissertation outline. A road graph also shows different elements of the 

dissertation and their relationship. 

1.1. Motivation 

Assessing the reliability of a new consumer product is challenging because the 

reliability depends on numerous use conditions that are hard to predict and replicate in 

reliability laboratories. As a result, laboratory test data usually come from a narrower 

spectrum of use conditions than the actual use conditions and may not be fully 

representative of the product. Therefore, a reliability estimate solely based on 

laboratory test data may be inaccurate and have significant uncertainties. To some 

extent, using field reliability data of a similar product (such as the older generation of 

the new product) as prior information in Bayesian analysis can reduce the uncertainties.  

The primary sources of field reliability data are warranty data and user survey data. 

Collecting warranty data is costly and time consuming. Also, warranty data represents 

the subpopulation of the failed or returned devices, which might have a smaller portion 

of right-censored units than the entire population and thus underestimate the reliability. 

Moreover, warranty data is not always available or may not contain the applicable use 

conditions. Even if the warranty data and the applicable use conditions are available, 

they cover a narrow period (i.e., the warranty time) and do not contain information 

about the entire useful life of the devices. 
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In contrast, collecting user survey data is quick and cost-effective. Also, user survey 

data can better than the warranty data represent the entire population of the devices. 

Moreover, a user survey can be designed to collect the applicable use conditions over 

the entire lifetime of the devices.   

Designing such a user survey and using user survey data for estimating the reliability 

model of a product has not been thoroughly investigated in the past. This issue 

constitutes the first motivation of the present dissertation.  

Consumer products are used under various use conditions. Each use condition 

partially damages the device and reduces its reliability. Previous studies measured 

accumulated damage in reliability tests and proposed empirical models that fitted the 

collected test data [1, 2]. Empirically-based physics of failure (damage-based) models 

are not practical for estimating reliability using user survey data. This is because users 

usually cannot adequately express and assess the true magnitude of damage as some 

damages are invisible or hard to approximate. For instance, users cannot identify or 

estimate the amount of damage (e.g., corrosion) on many everyday devices such as cell 

phones or dishwashers. However, users most likely know the conditions (i.e., stress 

events) that caused damage (e.g., corrosion). For instance, users know their 

geographical location, the number of times they spilled a liquid on their cell phones, 

the number of times they soaked their cell phones in a liquid, or the number of times 

they used their dishwashers in a typical month.  Therefore, a stress-based model is 

needed to estimate a product's reliability using user survey data. A novel physics of 

failure model based on surveyed applied stresses can be developed considering all 
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applicable use conditions of a device. This issue constitutes the second motivation of 

the present dissertation.  

1.2. Objectives 

This dissertation describes research that supports three objectives as listed below.  

1.  The first objective is to design a reliability-informed user survey that collects 

essential data for estimating a consumer product’s reliability model.  

2. The second objective is to develop a stress-based reliability model that (1) 

considers all actual use conditions, (2) works with different reliability data 

sources such as user surveys and reliability tests, (3) removes bias from user 

survey responses, and (4) uses multiple and diverse data sources to reduce the 

uncertainties of reliability.  

3. The third objective is to design test specifications for a new product with 

unknown failure modes using user survey data of a similar product. 

1.3. Research Approach 

Designing a reliability-informed user survey requires identifying what should be 

collected (i.e., critical elements) and how. This dissertation determines the critical 

elements based on the definition of reliability. A broad literature review is then 

conducted to understand how to collect the critical elements.  

An approach is developed that estimates the new product’s reliability model using 

the user survey data about the similar product and reliability test data about the similar 

and new product. The approach assumes products with many cycles to failure. 

Therefore, a continuous lifetime distribution is considered. Also, it is assumed that the 
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user survey data about the similar product is biased because the user responses are 

uncertain. The bias in user responses is measured by (1) calculating the KL-divergence 

distance between the lifetime distributions of the surveyed and tested devices from the 

similar product and (2) minimizing the distance using the gradient descent algorithm. 

Only 30% of the surveyed and tested similar devices are used to estimate the bias value. 

The remaining 70% is saved to build a prior joint distribution for the parameters of the 

new product’s reliability model. The lifetimes of the remaining 70% of the surveyed 

devices are multiplied by the estimated bias value to remove bias. Then, a 3-step 

sequential Bayesian analysis estimates the reliability model’s parameters. In the first 

step, the primary joint posterior distribution of the parameters is estimated using the 

Bayesian analysis and kernel density estimation (KDE) method. This step assumes 

weakly informative prior distributions and uses the bias-removed user survey data as 

the likelihood data. In the second step, the primary joint posterior distribution is used 

as the prior distribution, and the remaining 70% of the test data about the similar 

product builds the likelihood. Then, the intermediate joint posterior distribution is 

estimated. In the third step, the intermediate joint posterior distribution and the test data 

about the new product are used as the prior distribution and likelihood data. The final 

joint posterior distribution is then estimated. Finally, the mean reliability model and its 

uncertainty region are calculated. 

A discrete life distribution estimates reliability when the new product has a few 

damage cycles to failure. Some discrete lifetime distributions may have a summation 

term that its upper bound is unknown. The unknown value is calculated using the MLE 

and gradient descent algorithm. Then, the KL-divergence method removes bias from 
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user responses, and the 3-step sequential Bayesian analysis estimates the reliability 

model’s parameters. 

For designing reliability test specifications for the new product, first, the user survey 

data about the similar product is clustered through a clustering method (e.g., K-means, 

Gaussian mixture model (GMM), and SI-cycle graph). Then, a stress-accelerated and 

a frequency-accelerated test are designed. The frequency-accelerated test directly uses 

the clustered use conditions (i.e., clustered stresses and usage times). In contrast, the 

stress-accelerated test uses a stress-life model to increase the clustered stresses and 

decrease the clustered usage times such that the amount of damage at each cluster 

remains similar to the original clustered use conditions. The number of samples for 

both tests is determined using a binomial distribution and based on the manufacturer's 

constraints, including the maximum test duration, the maximum number of failures, 

and a reliability target with a specified confidence level at the desired time. The details 

of the above approaches will be discussed in Chapters 3-6. 

1.4.  Research Summary 

A well-designed user survey reflects actual use conditions in the field and provides 

valuable information for supplementing a new product’s life testing and reliability 

analysis. Using a similar product's user survey data helps to establish appropriate prior 

information in a Bayesian reliability estimation. The proposed reliability estimation 

approach makes an accurate assessment of the reliability model of the new product due 

to each failure mode.  

This dissertation designs a reliability estimation approach that applies to products 

with a few or many damage cycles to failure. It is shown that a discrete lifetime 
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distribution would perform better than a continuous distribution in estimating the 

reliability model of a product experiencing a failure mode only after a few damage 

cycles.  

The user survey data and information about a similar product is a rich source of 

reliability data for designing test specifications of a new product. The designed test 

reveals the new product's most common failure modes. Taking mitigation actions 

against the observed failure modes improves the new product’s reliability. The 

proposed methods in this dissertation are generic and can be applied to a wide range of 

consumer products such as electronics, appliances, automotive, and handheld devices. 

1.5.  Outline of the Dissertation 

This dissertation divides into seven chapters. Chapter 1 (the current chapter) 

introduces the dissertation's overall structure and discusses the motivations, objectives, 

and research approaches. Chapter 2 reviews the previous survey studies and reliability 

estimation methods. Chapter 3 introduces the critical elements of a reliability-informed 

user survey and provides recommendations for designing the survey. Chapter 4 

explains the reliability estimation approach applied to products with many damage 

cycles to failure. The approach considers a continuous lifetime distribution. The 

application of the approach is illustrated using simulated survey and test datasets. 

Chapter 5 proposes a method for estimating the reliability model of a new product that 

experiences only a few damage cycles to failure. Chapter 6 designs test specifications 

for a new product with unknown failure modes using user survey data of a similar 

product. Finally, Chapter 7 concludes the research and recommends possible future 

directions for this work. The outline of the dissertation is shown in Figure 1.1. 
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Figure 1.1 Outline of the dissertation. 

• Introduction

• Describes motivation, objective, contribution, road 
map, and results of the dissertation.

Chapter 1

• Literature Review

• Reviews user survey studies, application of continuous 
and discrte distributions in reliability engineering, and 
methods for estimating reliability.

Chapter 2

• Designing a reliability-informed user survey

• Identifies the critical data for estimating the reliability 
model of a conosumer product and provides 
suggestions for collecting them using a user survey.

Chapter 3

• Estimating the Reliability Model of a New Consumer 
Product Assuming a Continuous Life Distribution

• Discuses treating product user bias in surveys through 
the KL divergence method and gradient descent 
algorithm and estimates parameters of the reliability 
model of a new product with a few cycles to failure 
using a sequential Bayesian analysis. A continuous 
lifetime distribution is assumed.

Chapter 4

• Estimating the Reliability Model of a New Consumer 
Product Assuming a Discrete Life Distribution

• The approach of Chapter 4 is extended to estimate the 
reliability model of a new product with a high number 
of cycles to failure. A discret lifetime distribution is 
assumed. The distribution may have a summation term 
with an unknown upper bound. The parameters of the 
upper bound are estimated through the Gradient 
Descent algorithm and MLE method.

Chapter 5

• Designing Test Specification of a New Consumer 
Product

• Clusters stress levels and usage times or cycles of 
similar products in use to plan a frequency-accelerated 
and a stress-accelerated reliability test. The plan 
assures the amount of damage during the tests is equal 
to the amount of damage during actual usage.

Chapter 6

• Summary and Conclusions

• Summarizes and concludes the dissertation.
Chapter 7
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Chapter 2: Literature Review 
 

This chapter reviews relevant literature to the topic of this dissertation, including (1) 

user survey literature, (2) methods for estimating the reliability model of a product 

having a small or large number of damage cycles (i.e., the usage cycles that cause 

damage), (3) test planning studies. The chapter helps to understand the state of art 

reliability estimation approaches and the research gap.  

2.2. User Survey Studies 

A broad range of studies has been conducted using user survey research 

summarized in four groups. The first group focuses on data collection methods (e.g., 

email surveys, postal questionnaires, face-to-face interviews, and telephonic 

interviews). Taylor-Powell and Marshall [3] suggested considering the effect of the 

anticipated response rate, ability to follow up, speed of data collection, and availability 

of sampling frame in deciding the mode of delivery. Kelley et al. [4] investigated the 

advantages and disadvantages of postal, face-to-face, and telephone interviews. They 

found that the postal response rate was low (about 20%), depending on the content and 

length of the survey. Therefore, a large sample is needed for the postal survey. The 
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face-to-face interview had a higher response rate than the postal survey. However, it 

was costly and time-consuming. The telephone interview was quicker and cheaper than 

the face-to-face survey but had a higher level of refusal. Nayak and Narayan [5] 

investigated the strengths and weaknesses of online surveys. They found that preparing 

the questionnaire, collecting data, storing data, and visualizing data in online surveys 

were more straightforward than the other methods. Besides, running an online survey 

was cheaper and quicker. However, sampling, maintenance of confidentially, and 

ethical issues were problematic when the survey was online. Pratama [6] created an 

online-based user data collection application for mobile devices using the bootstrap 

platform. The application provided a solution for companies, researchers, and 

individuals who wanted to conduct a survey. Users created an account in the application 

and responded to the questionnaire. The user data was stored on a hosting server. 

The second group of survey studies discusses designing a user survey. This group 

investigates how to ask questions in a survey and how to arrange them. Some common 

suggestions given in these studies are as follows [4, 7, 8, 9, 10, 3]: 

1. Identify the purpose of the survey and the information that needs to be collected. 

2. Use one or a few warm-up questions to prepare the respondents for the following 

questions in the survey.  

3. Avoid unnecessary, lengthy, ambiguous, technical, and threatening questions. 

4. Use shared vocabulary in the questions. 

5. Ask one question at a time. 

The third group of survey studies investigates the methods of evaluating survey 

validity and reliability [11, 12]. Validity refers to the extent to which a survey measures 
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what it is intended to measure. Deniz and Alsaffar [13] gave the same survey to two 

groups of respondents, one group known to have higher knowledge about the concept 

surveyed. They used the correlation between the two groups of responses as a metric 

that assessed the validity of the survey [13]. A survey is reliable if it produces the same 

result on repeated trials.  Roberta and Twycross [14] evaluated survey reliability using 

test reliability, alternate-form reliability, and internal consistency reliability. With the 

test-retest method, the same questionnaire was carried out on the same respondents at 

different times, and the obtained scores were compared. A high correlation between the 

scores showed that the questionnaire was reliable. The alternate-form reliability 

measured the agreement between two or more research instruments, such as two 

differently worded surveys that measured the same attribute or construct. The internal 

consistency reliability measured the reliability of a survey by asking questions about 

the same thing in different ways.  

The fourth group of survey studies focuses on uncertainty quantification and bias 

detection of the responses [15]. The uncertainties are either aleatory or epistemic. The 

aleatory uncertainties which are due to inherent variability or randomness in a system 

are irremovable and irreducible. The epistemic uncertainties are due to a lack of human 

knowledge and could be reduced by obtaining more information about systems [16, 

17]. Survey data has epistemic uncertainties that arise from different sources. Studies 

have grouped the epistemic uncertainties in various ways [18, 19]. In one way, 

uncertainties are grouped into sampling errors and non-sampling errors. Sampling error 

results from using a sample from a population rather than analyzing the entire 

population. The sampling error will be reduced if more data is used. Non-sampling 
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errors arise from the design, data collection, and processing methods. Unlike the 

sampling errors, the uncertainties stemming from the non-sampling error increase with 

the sample size. The non-sampling errors are the specification, coverage, nonresponse, 

unit-level measurements, and processing errors [20, 21, 19].  

Specification errors appear when survey questions cannot or do not perfectly 

measure the concept they plan to measure. The main reason is that people have different 

subjective views that cause miscommunication between the interviewee and the 

interviewer. The Multitrait-multimethod (MTMM) developed by Campbell and Fiske 

[22] can be used to understand if the survey questions could measure the concept they 

plan to measure. MTMM repeatedly measures different traits (constructs) using 

different methods and builds the MTMM matrix using the measurements of those 

methods. The MTMM matrix is used to understand the quality of the measures. It is 

expected to see a high correlation between similar traits and a weak correlation between 

dissimilar traits. If this expectation is not satisfied, the questionnaire will fail to measure 

what it is supposed to measure. In such a case, the sources of invalidity need to be 

recognized, and appropriate steps must be taken to improve the data quality [23, 24].  

Coverage error appears when the samples are clustered and do not cover the entire 

population. To reduce coverage errors, the interviewees must be diverse (i.e., be 

selected from different age groups, genders, and geographical locations) [21]. 

Non-sampling errors are divided into total non-sampling errors and item non-

sampling errors. The total non-sampling errors occur when the customers fail to 

respond to all questions, while the item non-sampling errors happen when the 

customers do not respond to several questions. Non-response errors can be decreased 
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through non-theoretical and theoretical approaches. Response rate could be non-

theoretically increased using radio or television announcements, preparing the 

questionnaire in some common languages, and giving incentive material or financial 

[21, 19]. It is suggested to provide the incentives only if the customers fail to respond 

to the questionnaire after two- or three-times direct requests.  The total non-response 

error could be theoretically decreased using weighting adjustment methods. Through 

the weighting adjustment methods, the weights of the respondents are increased to 

compensate for the non-respondents. Weighting adjustments overall, weighting class 

adjustment, population weighting adjustment, and sample weighting adjustment are 

some versions of weighting adjustment methods. The item non-sampling error could 

be decreased using imputation. Imputation is the process of assigning values to miss 

responses using the auxiliary information that is obtained from the sample units. Mean 

imputation, random imputation, hot-deck imputation, and regression imputation are 

some examples of imputation methods [25]. 

Unit-level measurement error results from possible differences between what is 

measured and the actual values for the sample units. This issue happens when 

interviewees want to please or hide information from the interviewees. In addition, 

when questionnaires are poorly designed, the interviewees misunderstand the questions 

and provide incorrect answers. The interviewees should be assured that telling the truth 

does not penalize them [19]. 

Processing errors are recording-, checking-, coding-, and survey data preparing-

related errors. Making correct design decisions, trying different analytical methods, and 

selecting the highest accuracy method can reduce processing errors. When the non-
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sampling errors are addressed, more data collection can further reduce the input data 

uncertainties [19]. 

Garthwaite et al. [23] used elicitation techniques to quantify uncertainties in 

surveyed people’s responses. Elicitation is a process by which a person’s knowledge 

and beliefs about one or several uncertain quantities are formulated into a (joint) 

probability distribution of the quantities. Elicitation is used to specify the prior 

distribution for the Bayesian analysis, which is then combined with the likelihood 

distribution (obtained from other data sources) to derive the posterior distribution or 

formulate uncertainties about inputs to a mathematical model or a decision problem.  

Another topic that has gained attention in the survey studies is identifying and 

reducing inaccurate responses (biases). Studies show that people may rely on heuristics 

such as representativeness, availability, adjustment-and-anchoring when responding to 

the survey questions [23, 26]. These heuristics may create inaccurate responses in the 

survey data. Representativeness occurs when people answer the questions in the form 

of “what is the probability that objects A belongs to class B?” in answering this type of 

question, people typically evaluate the probability by the degree to which A is 

representative of B. At the same time, this approach leads to bias because similarity is 

not influenced by the factors that should affect judgments of probability [23, 26]. The 

availability issue occurs when people assess an event’s frequency (or likelihood) by 

relying on the number of instances or occurrences that can be recalled. In some 

situations, people may be asked to estimate by adjusting a given initial value. Studies 

show that the adjustments are insufficient [23, 26].  
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A few studies used user surveys to collect product reliability information. Yang et 

al. [27] used a set of 22 checkboxes, open-answers, and ranking questions to gather 

information about the reliability issues of power electronic converters in the field, their 

most fragile components, the most applicable stresses, failure costs, and failure causes. 

To design the questions, they focused on the factors that affect power electronic system 

reliability, such as application category, operating range, stress level, duty time, and 

maintenance. For the checkbox questions, they allowed respondents to select more than 

one box and used the weighted average of the selected choices for analyzing the 

responses.  Cochrane et al. [28] used a set of 55 questions to collect reliability 

information about the operation, maintenance, spare parts, availability, and 

performance of convertor stations worldwide. They, however, did not discuss the 

details of their survey design and data collection. Tollefson et al. [29] designed a user 

survey to collect information about the customer costs (monetary loss) associated with 

power interruptions, the number of failures experienced in the last two years, and the 

applicable stresses (e.g., the type of heating system (electrical, nonelectrical, or a 

combination)). They mailed the surveys to the users and, in total, got a 30% response 

rate. They used the collected data associated with money loss in industrial and 

commercial applications to quantify the average cost of electricity interruption from 2 

seconds to 1 day. 

In summary, the knowledge obtained from the previous survey studies is helpful 

but insufficient for designing and analyzing a reliability-informed user survey that can 

be used for estimating reliability and preparing test specifications. Assessing a 

product’s reliability requires several types of essential data (called “critical elements”) 
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to be collected in the user survey.  This dissertation introduces the critical elements of 

a reliability-informed user survey.  

2.2.  Estimating Reliability Using a Parametric Distribution 

Bayesian and MLE are the two most widely used methods for estimating reliability. 

The Bayesian approach has received increasing application and acceptance for 

estimating reliability when multiple data sources are available [30]. Pan [31] used the 

Bayesian method and a calibration factor to integrate field data and accelerated life test 

(ALT) data. Field data is the most reliable source of data to build the reliability models 

under the use condition. Collecting field data is often time-consuming. As a result, the 

existing field data is usually limited. A common approach to deal with this issue is to 

run a set of ALTs, build a stress-life model, and extrapolate the product’s failure 

characteristics to the use level. The ALT, however, cannot perfectly simulate the 

accurate stress profile experienced by the units. Therefore, the stress-life model 

obtained from the ALT results is an approximation with many uncertainties. Pan [31] 

integrated field and ALT data to reduce the uncertainties. The proposed approach by 

Pan utilized a (known) calibration factor to bridge the reliability estimate from ALT to 

the actual reliability of the product in the field. 

The Bayesian method is also used when abundant expert knowledge is available, 

but other reliability data sources (e.g., reliability test results or field data) are limited. 

Guo et al. [30] used a Bayesian modeling method (BMM) to estimate a system’s 

reliability by integrating various sources of expert knowledge and reliability test data 

at subsystem and system levels. They used linear and geometric pooling methods to 

incorporate multiple experts’ prior information. They used the BMM to update the 
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subsystem prior reliability distribution by integrating the system and subsystem prior 

reliability distributions. The BMM also evaluated the posterior reliability distribution 

by integrating the updated prior distribution and the reliability test data.  

Wang et al. [32] used evolving, insufficient, and subjective datasets to predict 

system reliability. They integrated probability encoding methods with the Bayesian 

updating technique to elicit subjective data from users, model them with statistical 

distributions, and update the uncertainty distributions with evolving subjective 

datasets. However, they ignored the users’ biases. They also did not consider the 

applicable stress profiles and used a binomial distribution to update the probability of 

failure. They illustrated their approach using conjugate distributions and did not 

address integrating dependent datasets through the Bayesian analysis.  

 

Yuan et al. [33] combined historical degradation data and expert experience as the 

prior information and accelerated degradation test data as the observation in Bayesian 

analysis to estimate the reliability model of a product. Li et al. [1] developed a damage-

based reliability estimation method that considered the effect of catastrophic and 

nonfatal failure. They used uncertainty analysis theory for multi-state systems and 

assumed that state transmission time is an uncertain variable. They estimated the 

reliability of a system by calculating the state probability and the states of the system. 

They verified the accuracy of their method using the Monte Carlo Simulation (MCS) 

method. The problem with the damage-based reliability methods is that users usually 

cannot adequately express the magnitude of damage as some damages are invisible or 

hard to assess accurately. Thus, the damage-based methods cannot be used for 

analyzing user survey data. 
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2..2.1. Application of Continuous and Discrete 

Distributions in Estimating the Reliability Model of a 

Product 

Another topic that has gained attention in reliability engineering is the application 

of continuous and discrete distributions in estimating the reliability model of a product. 

A continuous distribution is applicable when the random variable representing life is 

continuous (e.g., expressed in calendar time), or the product undergoes many damage-

accumulating usage cycles (e.g., hundreds of cycles of a device dropping on a hard 

floor). On the other hand, when the performance of a product is measured occasionally 

(e.g., every week or every month), or the product undergoes a few damage cycles before 

failing, a discrete distribution can more accurately estimate the life distribution or 

reliability model [34, 35].  

The Weibull distribution is a well-known lifetime distribution that is widely used 

in reliability engineering for estimating the reliability model of a product. The Weibull 

distribution is available in continuous and discrete forms.  

Two-parameters (2P) and 3-parameters (3P) Weibull distributions are the most 

common forms of continuous Weibull distribution. The continuous Weibull 

distribution for some certain parameter values is related to other distributions like 

exponential and Rayleigh distribution [36]. Some studies extended the continuous 

Weibull distribution. For instance, Dan et al. [37] proposed a 4-parameters continuous 

Weibull distribution and estimated the distribution of its parameters in a Bayesian 

analysis that assumed Gamma prior distributions. Wang and Zhou [38] proposed a 2P-
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Weibull segmented model for failure modeling and used least-squares Hough transform 

algorithm to estimate its parameters.  

Three types of discrete Weibull distributions have been proposed: (1) type I has a 

reliability function that mimics the reliability function of a continuous Weibull 

distribution, (2) type II has a hazard function that mimics the hazard function of a 

continuous Weibull distribution, and (3) the type III is more generic and does not follow 

any function of a continuous Weibull distribution [39].  

Various extensions of discrete Weibull distributions have also been introduced, and 

different methods for estimating their parameters have been suggested. For instance, 

Jia et al. [40] proposed a discrete extended Weibull distribution and used MLE for 

estimating its parameters. Barbiero [34] proposed three methods, including the method 

of proportion, MLE, and the method of moments for estimating the parameters of a 

discrete Weibull type III distribution.  

The above studies assumed that the product is used under a fixed stress level, and 

the number of use cycles (damage producing cycles) is equivalent to the number of 

times the stress is applied to the product. This dissertation argues that consumer 

products are used under varying stress levels, and the concept of equivalent cycles 

should be used to calculate the number of cumulatively damaging usage cycles under 

a reference stress condition. Moreover, neither of the above studies used user survey 

data to estimate a product's reliability model. This dissertation applies the concept of 

equivalent cycles and uses user survey data for estimating reliability. 

2.2. Reliability Test Planning 
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The last topic that is reviewed in Chapter 2 is reliability test planning. 

Manufacturers assess the reliability of their products using laboratory tests to 

understand whether they meet or exceed their minimum reliability requirement. A 

reliability test follows specifications including sample size, test conditions (i.e., stress 

levels and their frequencies of occurrence), the analytical procedures for assessing 

reliability, and the acceptance criteria (e.g., numerical limits) that are used to evaluate 

the reliability of a product. The product is accepted for mass production if the sample's 

test results are within the acceptance criteria. Otherwise, a root cause analysis is needed 

to understand the reason for the poor test results [41, 42].  

Yang [43] divided the reliability demonstration test methods into the bogey test (or 

zero-failure test), life test, and degradation test. In a bogey test, the sample size, test 

time, and level of stresses are predetermined; and the target reliability is achieved if no 

units fail during the test. Yang [43] argued that the quantitative reliability could not be 

estimated if any samples failed in a bogey test. Life test methods include sequential life 

tests (e.g., step-stress test) and conventional life tests (e.g., failure terminated test). In 

a life test, the reliability estimate is based on the number of failures. A degradation test 

is performed on a product with performance characteristics that degrade over time, 

which leads to failure. Reliability can be estimated by measuring the performance 

characteristics at different times during testing.  

Yang [43] developed a degradation model that modeled the product’s performance 

characteristics with the Weibull distribution and estimated the model's parameters 

using Maximum Likelihood Estimation (MLE). He also estimated the test cost as a 
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function of test time, number of samples, and cost of measurement. He estimated the 

number of samples and the test time by minimizing the cost function. 

Gerokostopoulos et al. [44] overviewed the methods for determining the sample 

size for a reliability test. These methods were divided into (1) methods that use the 

theory of confidence interval (known as the estimation approach) and (2) methods that 

control the type I and type II errors (known as the risk control approach).  

Gerokostopoulos et al. [46] determined the sample size using (1) the confidence 

interval theory and (2) the risk control approach. In the first method, they assumed a 

Weibull distribution and calculated the ratio between the reliability model's upper and 

lower bound as a function of the number of samples. Then, they estimated the number 

of samples by assuming a numeral ratio. The second method determined the number of 

samples by controlling type I risk (i.e., the probability that the product meets the 

reliability requirement but does not pass the demonstration test) and type II risk (i.e., 

the probability that the product does not meet the reliability requirement but passes the 

demonstration test). 

In an ALT, the stresses are selected by (1) determining the most critical failure 

modes of the product, (2) finding the relevant stresses to the failure modes (i.e., agents 

of failure), and (3) selecting several stress levels that higher than the use stress such 

that the maximum stress remains below the destructive limit of the product. This 

strategy allows fitting a reliability model more confidently to the failure data. 

Gerokostopoulos et al. [44] discussed four methods for determining stress levels: the 

two levels statistically optimum plan, the three levels best standard plan, the three levels 

best compromise plan, and the three levels best equal expected number failing plan. 
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Some studies used immature test specifications that were arbitrarily selected 

without considering the actual use conditions. Yang et al. [45] designed an accelerated 

degradation test for predicting the reliability of smart electricity meters (SEMs) using 

a mix of analytical methods and arbitrary choices for stress levels.  Chang et al. [46] 

converted field use data of automotive headlamps to a laboratory bench test 

specification using the theory of fatigue damage equivalence between time domain and 

frequency domain data but arbitrarily selected the number of samples.  

A product may have several potential failure modes. However, only a few of them 

may be observed by users. This is because some failure modes require specific stress 

levels or usage cycles that are out of the range of the actual use conditions. Addressing 

those failures is time-consuming, expensive, and unnecessary. Planning a reliability 

test based on the actual use conditions of similar products in use avoids addressing 

unnecessary failure modes. To the best of the author’s knowledge, such a reliability test 

planning has not been developed yet. This dissertation plans the reliability test based 

on the actual use conditions of similar products collected through a user survey. 
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Chapter 3: Designing a Reliability-Informed User 

Survey1 
 

This chapter provides a guideline for designing a reliability-informed user survey 

that collects the necessary information for estimating the reliability model of a 

consumer product. Then, a reliability-informed user survey is designed for a handheld 

electronic product with the failure mode of “cracking” caused by accidental drops.   

One who designs a reliability-informed user survey should ensure that the survey 

collects the critical elements needed for estimating the reliability model. The critical 

elements are determined based on the definition of reliability which is the probability 

that a product performs its intended function adequately for a specified time under a 

specified use condition [47]. Therefore, five critical elements should be collected to 

estimate reliability, as shown in Figure 3.1.  

The first element (i.e., usage time) is how long or how much the product has been used 

in calendar time or the number of cycles. The second element describes the actual 

stresses that the product has undergone. Stress is referred to a usage profile that causes 

damage to the device. The applied stresses could be mechanical (e.g., drop, twist, 

 
1 This chapter is a modified version of the paper about designing a reliability-informed user 

survey [69]: N. Shafiei, J. W. Herrmann, A. Krive, G. Sethi and M. Modarres, "Designing 

Reliability-Informed User surveys," in European Safety and Reliability (ESREL), Angres, 

2021.  
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bend), electrical (e.g., battery overcharging or discharging), thermal (e.g., battery 

overheating), and chemical (e.g., corrosive attacks). 

 

Figure 3.1 The critical elements of a reliability-informed user survey. 

 

The third element describes stress adjustment factors which are the conditions or 

activities that increase or decrease the impact and damage from the applied stress or 

enhance stress absorption. For instance, when “drop” is the applicable stress of a 

device, the surface type on which the device is dropped, the human activity during a 

drop, and the height of drop are possible stress adjustors. The environmental conditions 

(e.g., temperature and humidity) are also stress adjustments. The fourth element 

describes the failure modes that have been observed.  The fifth element describes when 

failures (if any) occurred.  A product may have several failure modes and, 

consequently, several failure times.  

The details of these five critical elements depend upon the product and the reliability 

analysis that will be performed.  For instance, if the product is used continuously in a 
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well-understood environment (i.e., under a stress-controlled condition) until it suffers 

a catastrophic failure, the reliability analysis may be considered a simple time-to-failure 

model. Then, the fifth element should describe the total time the product operated until 

it failed. If no failure has been observed, the first critical element is used as the 

suspension time, and the device’s failure mode is considered right-censored during data 

analysis.  The other elements are not as essential because they should not vary. 

Suppose the product is used occasionally in various circumstances and has numerous 

failure modes. In that case, however, the reliability analysis may consider multiple 

models for each failure mode. Each one may consider a Cox hazard model or another 

approach that considers multiple stress factors that influence the time to failure.  In this 

case, many more details about the critical elements are required.   

Regarding the first element, the survey may ask about the calendar time or the 

number of cycles.  If the survey asks about the calendar time, it should ask for the time 

the product has been in use (not merely owned).  If the survey asks about the number 

of cycles, it may be helpful to ask for two values: the time that the product has been in 

use and the frequency at which the product has been used during that time (e.g., the 

number of times per day, week, or month that the product is used). 

It may be necessary to ask about combinations of the second and third elements (e.g., 

drops from different heights on different surfaces during different activities). Suppose 

the reliability analysis requires data about how many times different stresses and stress 

adjustors have occurred. In that case, it may be helpful to ask about the frequency of 

such events and then multiply it by the usage time (from the first element).   



 

 

25 

 

An appropriate survey should ask the users to build their applicable stress profile(s) 

(i.e., a combination of stresses and stress adjustors) rather than asking about the 

relevant stresses and stress adjustors in separate questions. This is desired because a 

device might have experienced several stress profiles. If those profiles' stresses and 

stress adjustors are collected using individual questions, their relationship will be lost 

(i.e., it will not be clear which sets of stress adjustors are relevant).  

Although the process of designing the actual survey is outside of the scope of this 

study, two key questions are needed to collect the stress profiles and their frequency of 

use. The first question should request information about the use conditions (stress 

profiles). Offering predefined choices for the applicable stresses and stress adjustors 

simplifies the equation and let the user select relevant stresses and stress adjustors. For 

instance, in an impact-prone handheld device where “drop” is the applicable stress, the 

following simple question collects the applicable stress profile(s): “Please select the 

conditions under which you dropped your device in the last month.” The survey can 

offer predefined stress adjustors and multiple choices for each stress adjustor for this 

question, such as the following:  

• Height of drop: (a) knee height, (b) waist height, (c) chest height, (d) head or 

higher height.  

• Surface type: (a) soft surface (e.g., grass, thick carpet), (b) semi-soft surface 

(e.g., thin carpet, workout mats), (c) semi-hard surface (e.g., laminate, 

hardwood), (d) hard surface (e.g., asphalt, concrete).  

• Activity type: (a) benign (e.g., standing, walking), (b) harsh (e.g., running, 

exercising, playing).  
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Then the user should select one item of each stress adjustor at a time. The approach 

explained above avoids using failure and reliability engineering jargon like stress 

adjustors and stress profiles in the body of the question.  

The next class of questions should be designed to collect the frequency of occurrence 

of the stress profile. For instance, “please select the number of times the above 

condition occurred in the last month.” Again, the user may select the relevant number 

among several predefined ranges or enter a number in response. The two questions may 

be repeated to collect more stress profiles. 

For the fourth element, the survey should precisely define the failure modes as the 

manner of failure. The loss of certain functions, cracks, scores, and scratches are 

examples of failure modes. The failure modes should be those that the product’s user 

can observe. Selection of failure modes follows by questions such as: “After using your 

device at the above condition, have you observed any problem in your device?” 

Providing multiple choices (i.e., some probable failure modes) for this question should 

help users understand the meaning of the “problem” and remember the observed failure 

modes. 

For collecting the failure times, the survey might ask, “After how long (e.g., months) 

of use the device did you first observe this problem?”. Regarding the usage time, the 

survey might ask for two values in separate questions: (1) the calendar time (e.g., 

number of months) that the product has been in use and (2) the frequency at which a 

common stress profile is applied to the device (e.g., the duration or the number of times 

that a stress profile occurs in a typical month). The usage time is then calculated by 

multiplying the ownership times (in months) by the frequencies (in terms of 1/month).  
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Although the fifth element will usually be an essential factor, a difficulty can arise 

in cases where a failure does not prevent one from using the product.  For example, one 

can use a phone or tablet even if the screen has some cracks.  If the reliability analysis 

requires the time until the first crack, the survey should ask for this explicitly; the time 

the product has been in use will not suffice.  If the product has multiple failure modes, 

the survey should ask about the times each failure mode occurred.  It is also essential 

to ask which failure modes have not yet been observed if this censored data is needed 

for the reliability analysis. 

Although it is easier for the person completing the survey to answer a question if the 

available responses are broad ranges (e.g., “1 to 5 times every day” or “2 to 3 months”), 

such imprecise data yield imprecise results from the reliability analysis.  Thus, one 

would prefer to ask for a specific number (e.g., “How many times a day do you use this 

product?”).  A challenge with that question is that the answer may vary over time (e.g., 

the product is used five times on some days and only once on other days).  If that is 

sufficient, one can modify the question to ask about the average. 

 

3.1. Case Study 

 

Below is an example of a user survey that collects the five critical elements for 

estimating the reliability model of an electronic product that the user accidentally drops.  

 

1. For how many months have you used your device? 

2. Have you ever observed any problem with your device? 

Scratch  Crack   Battery does not hold the charge Battery caught fire 
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Speakers malfunction I have not observed any problem Others (please 

specify) 

3. After how many months of using the device did you observe this problem 

first? 

4. Please select the condition where you drop your device in a typical month. It 

includes (a) the height of the drop, (b) the type of surface that the product hits 

when it is dropped, and (c) the type of activity that you are performing when 

the product is dropped.  

(a) Height: 

• Knee height 

• Waist height 

• Chest height 

• Head or higher height 

 

(b) Surface: 

• Soft (e.g., grass, thick carpet) 

• Semi-soft (e.g., thin carpet, exercising flooring) 

• Semi-hard (e.g., laminate, hardwood) 

• Hard (e.g., asphalt, concrete) 

 

(c) Activity: 

• Benign (e.g., inserting or removing the device from the case or ears, 

standing, walking) 
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• Harsh (e.g., running, exercising, playing) 

 

5. How many times under the above condition do you drop your device in a 

typical month? 

More than once a day  once a day  1-6 times a week 

1-3 times in a month  less than once a month 

6. Do you have another condition where you drop your device in a typical 

month? Yes No 
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3.2. Conclusions 

 

A well-designed user survey can provide valuable data for conducting a reliability 

analysis of a new product based on how users use the product in the field without 

waiting for returned products.  Chapter 3 discussed the challenges of designing a 

reliability-informed user survey.  A fundamental principle is that the survey should 

collect the data needed for reliability analysis.  Because different products will need 

different types of reliability analysis, the user survey should be designed with the 

analysis in mind (instead of adopting a reliability analysis technique to deal with the 

survey data). 

Five critical elements that a survey should collect were identified.  These elements 

are the length of ownership time, failure modes, frequency and size of normal and 

accidental user-applied stresses, stress adjustors (i.e., the conditions or activities that 

increase or decrease the stress magnitude or absorption), and failure time/cycles.  

A well-designed reliability-informed user survey requires collaboration among 

multiple groups in a product development organization, including reliability engineers, 

marketing analysts, and survey design experts. The user surveys containing information 

about the critical elements could be used to estimate the life distribution of products.  
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Chapter 4: Estimating the Reliability Model of a New 

Consumer Product Assuming a Continuous Life 

Distribution2 
 

This chapter develops a novel mathematical approach for estimating the reliability 

model of a new product with a large number of damage cycles to failure using the 

combined user survey data and reliability test data of a similar product, and the 

reliability test data of the new product. The application of the approach is demonstrated 

using a simulated dataset for an electronic device with the failure mode of cracking 

caused by accidental drops. 

Determining the reliability of a consumer product using user survey data is not 

straightforward. A product may experience various use-stress profiles. The product's 

damage depends on the applicable stress profile(s). Suppose only the calendar time (or 

 
2 This is a reproduction of the papers about estimating the reliability model of a consumer 

product using user survey data and reliability test data [62, 54]:  

N. Shafiei, J. W. Herrmann, A. Krive and M. Modarres, "Estimating the Reliability of 

Consumer Electronics from User Survey Data and Test Data," in Reliability and 

Maintainability Symposium (RAMS), Tuscon, USA, 2022.  

N. Shafiei, J. W. Herrman, A. Krive, M. Nikiforov, G. Sethi and M. Modarres, "Analyzing 

Product Reliability Using User Survey Data and Reliability Test Data," IEEE Transactions on 

Reliability, 2022. 
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frequency of use in terms of (mean) number of cycles) is used for reliability assessment 

(i.e., a simple time-to-failure analysis). In that case, the effect of different stress profiles 

will be disregarded. Some studies have proposed damage-based approaches that 

estimated reliability by accumulating damage over the product’s usage time [1, 2]. The 

problem with the damage-based methods is that users usually cannot adequately 

express the magnitude of damage as some damages are invisible or hard to assess 

accurately.  For instance, users cannot estimate the crack length or the amount of 

corrosion on an internal component of their electronic devices. Instead of the magnitude 

of damage, the users can easily express the applied stress profiles. Although users may 

not know about the extent of the damage, they are likely to tell the approximate 

frequency and intensity of the stresses that caused the damage. For example, users can 

estimate how many times or the conditions under which their devices were dropped, 

overheated, underheated, or soaked over a recent time. This chapter proposes a stress-

based reliability estimation approach as the applicable stress profiles can be collected 

from user surveys. The proposed approach is generic and can estimate the reliability of 

a wide range of consumer products such as consumer electronics, appliances, handheld 

devices, and automobile components. 

The approach is divided into three steps:  

1. Calculating the equivalent cycles of the devices. 

2. Estimating the bias about the equivalent cycles. 

3. Estimating the parameters of the reliability model.  

Details about these steps are given in the following. 

 



 

 

33 

 

4.1. Calculating the Equivalent Cycles of the Devices 

 

The concept of equivalent cycles is introduced to consider the effect of actual stress 

profiles in the reliability assessment. In their lifetimes, devices experience different 

stress profiles and the number (or mean number) of cycles or times the stress profiles 

are applied. The number of times a stress profile is repeated in a device’s lifetime is 

referred to as a stress block that causes partial but cumulative damage that reduces the 

device’s life. The number of times that the application of a reference stress block 

produces the same amount of damage as the actual stress blocks experienced is referred 

to as the equivalent (pseudo) time. Figure 4.1 schematically shows the concept of 

equivalent cycles. Assume a user drops his handheld electronic device various times 

under various stress profiles (that means the user drops the device under various stress 

blocks). The equivalent cycles are the number of cycles under the reference stress 

profile that causes the same damage as the actual cycles under actual stress profiles 

(i.e., actual stress blocks). 

 

 
Figure 4.1. Actual cycles vs. equivalent cycles. 

 

The process of calculating the equivalent cycles is shown in Figure 4.2. Converting 

the actual cycles into the equivalent cycles through the stress-life model of the product 

requires quantitative stresses and stress adjustors. Nevertheless, surveys usually collect 
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subjective data. Therefore, it is proposed to linearly or non-linearly score each actual 

usage cycle's stresses, s, and stress adjustors, 𝑠𝑎, on a numeric scale in the range, such 

as (0, 1) or (0, 100). The sensitivity of the reliability estimates to these scores will be 

discussed later in Chapter 4.6. 

 The s and 𝑠𝑎 values should then be combined through mathematical forms such as 

linear, log-linear, multiplicative, additive, or quadratic stress-index (SI) models to find 

a unique SI value for each usage cycle, as shown in Eq. (4-1) to Eq. (4-6).  

  

 

Let the S.I. function shown in Eq. (4-1) relates the dependent variable, 𝑆𝐼𝑖, 

representing the stress index of the i-th product to the independent variables vector of 

applicable stresses, 𝑠̅𝑖, the vector of applicable stress adjustors, 𝑠̅𝑎𝑖
, and the vector of 

stress weights, 𝑤̅𝑖.  For the additive S.I. model, the sum of the stresses and stress 
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Figure 4.2. The process of calculating the equivalent cycles. 
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adjustors’ weights is constant as shown in Eq (4-2), where c is a preselected value (e.g., 

1 or 100), J and K are the numbers of stresses and stress adjustors in the model, 

respectively.  

Equation (4-3) is the additive model that combines the stresses and stress adjustors. 

Alternatively, log-linear Eq. (4-4), multiplicative Eq. (4-5), or quadratic Eq. (4-6) 

models may be used. In Eq. (4-3) to Eq. (4-6), 𝑠𝑖𝑗 is the j-th stress value of the i-th 

device and 𝑤𝑖𝑗 is its corresponding weight, and 𝑠𝑎𝑖𝑘
 is the k-th stress adjustor value of 

the i-th device and 𝑤𝑎𝑖𝑘
 is its corresponding weight. A decision on the function's choice 

depends on the data's nature and can be made judgmentally or formally optimized. The 

sensitivity of the reliability model to this function is discussed in Chapter 4.6.                                               

𝑆𝐼𝑖 = 𝑓(𝑠̅𝑖, 𝑠̅𝑎𝑖|𝑤̅𝑖 , 𝑤̅𝑎𝑖
)  (4-1) 

∑ 𝑤𝑖 + ∑ 𝑤𝑎𝑖
= c

𝐾

𝑘=1

𝐽

𝑗=1

 

 (4-2) 

𝑆𝐼𝑖=∑ 𝑤𝑖𝑗𝑠𝑖𝑗 + ∑ 𝑤𝑎𝑖𝑘
𝑠𝑎𝑖𝑘

𝐾
𝑘=1

𝐽
𝑗=1   (4-3) 

𝑆𝐼𝑖=∑ 𝑤𝑖𝑗𝑙𝑜𝑔 (𝑠𝑖𝑗) + 𝐽
𝑗=1 ∑ 𝑤𝑎𝑖𝑘

𝑙𝑜𝑔 (𝑠𝑎𝑖𝑘
)𝐾

𝑘=1   (4-4) 

𝑆𝐼𝑖 = ∏ 𝑠𝑖𝑗

𝐽

𝑗=1
× ∏ 𝑠𝑎𝑖𝑘

𝐾

𝑘=1
 

 (4-5) 

SI𝑖=∑ 𝑤𝑖𝑗𝑠𝑖𝑗
2𝐽

𝑗=1 + ∑ 𝑤𝑎𝑖𝑘
𝑠𝑎𝑖𝑘

2𝐾
𝑘=1   (4-6) 

 

A stress-life model is then selected that converts the S.I. values into time (including 

cycles or the mean number of cycles). The general form of the stress-life model is 

shown in Eq. (4-7), where g is the stress-life function, 𝑆𝐼𝑖 is the stress index of the i-th 

product, and 𝜃̅ is the vector of model parameters.  Possible stress-life models are linear, 
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log-linear, exponential (e.g., Cox cumulative hazard model), and inverse power law 

(IPL). A combination of these models is also possible. Selecting a model depends on 

the nature of the data, the device, and the type of stresses applied.  

𝑡𝑖 = 𝑔(𝑆𝐼𝑖, 𝜃̅)     (4-7) 

Afterward, the actual usage times under various stress profiles are converted to 

equivalent times under the reference stress profile. This is done by finding the ratio 

between the actual usage times and equivalent times. Thus, the equivalent times are 

obtained from Eq. (4-8). The calculated equivalent cycles at this step are parametric 

because they contain the unknown parameters of the stress-life model. These 

parameters are later estimated through our proposed approach. 

 

ν𝑖=𝑡𝑖  
𝑔ቀ𝑆𝐼𝑟𝑒𝑓𝑖

,𝜃̅ቁ

𝑔൫𝑆𝐼𝑖,𝜃̅൯
    (4-8) 

 

4.2. Estimating the Bias about the Equivalent Cycles 

 

When the equivalent cycles of the surveyed devices are calculated, the results are 

biased (inaccurate) because users’ responses to the applied stresses, stress adjustors, 

and the number of usage cycles are biased. To measure the amount of bias in user 

responses, the lifetime distribution of a similar product (e.g., an older version of the 

new product) is estimated the first time using its user survey data and the second time 

using its reliability test data. The reliability test data is assumed to represent true life 

because the test conditions are recorded in the laboratory. Thus, the difference between 

the two life distributions is because of the bias in the survey responses, and if the bias 

is removed, the distributions will become similar. It is assumed that if all equivalent 
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cycles in the life distribution of the surveyed devices are multiplied by ψ (i.e., the bias 

value), the shifted distribution will be close to the life distribution of the tested devices. 

This is schematically shown in Figure 4.3.   

 

Subchapter 4.2 proposes a mathematical approach to measure and reduce bias. First, 

the similar product's test data and survey data are randomly split into two parts (x % in 

part 1 and 100-x % in part 2), as shown in Figure 4.4. Then, the first part of the test data 

and the first part of the survey data are used to estimate the bias in the survey responses.  

Since the selected stress-life model (i.e., 𝑔(𝑆𝐼𝑖|𝜃̅)) in chapter 4.1 is uncertain, an 

error term (i.e., ɛ(0|𝜎, 𝜂)) in the form of a probability density function (PDF) with the 

zero mean and the standard deviation 𝜎 is added to the model. Therefore, the model 

output is the PDF of time-to-failure (i.e., life distribution). This is mathematically 

shown in Eq. (4-9), where 𝑝(𝜈, 𝑆𝐼|𝛺̅) is the PDF of time, 𝛺̅ is the vector of time 

function parameters and error PDF parameters (i.e., 𝛺̅ = [𝜃̅, 𝜎, 𝜂̅, 𝑤̅] ), 𝑔(𝑆𝐼|𝜃̅) is the 

stress-life model, and ɛ(0|𝜎, 𝜂̅) is the error. To make the scatter about the origin, the 

error is changed to ɛ(𝑔൫𝑆𝐼𝑟𝑒𝑓|𝜃̅൯|𝜎, 𝜂) and the PDF of time is expressed by Eq. (4-10). 

The PDF has unknown parameters that should be estimated through the maximum 

Equivalent cycles 
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The shifted life distribution 
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Figure 4.3. The process of removing bias from user responses. 
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likelihood estimation (MLE) or Bayesian method. It is assumed that the PDF follows a 

known family of distributions such as Weibull, Normal, and exponential. 

 

𝑝(𝜈, 𝑆𝐼|𝛺̅) = 𝑔(𝑆𝐼|𝜃̅) + ɛ(0|𝜎, 𝜂) (4-9) 

𝑝൫𝜈, 𝑆𝐼𝑟𝑒𝑓|𝛺̅൯ = ɛ(𝑔൫𝑆𝐼𝑟𝑒𝑓|𝜃̅൯|𝜎, 𝜂) (4-10) 

 

Then, the likelihood function of the selected distribution is built, as shown in Eq. (4-

11) and Eq. (4-12), where 𝐹𝑡𝑠 and 𝐹𝑠𝑠 are the number of failures of the tested and 

surveyed similar devices, 𝐶𝑡𝑠 and 𝐶𝑠𝑠 are the number of censoring among the tested and 

surveyed similar devices, 𝑝(𝜈𝑡𝑠𝑓
, 𝑆𝐼𝑟𝑒𝑓|𝛺̅𝑡𝑠), and 𝑝(𝜈𝑠𝑠𝑓

, 𝑆𝐼𝑟𝑒𝑓|𝛺̅𝑠𝑠) are the PDFs of 

the selected distribution for the tested and surveyed similar devices, 𝑅(𝜈𝑡𝑠𝑐
, 𝑆𝐼𝑟𝑒𝑓|𝛺̅𝑡𝑠), 

and 𝑅(𝜈𝑠𝑠𝑐
, 𝑆𝐼𝑟𝑒𝑓|𝛺̅𝑠𝑠) are their corresponding reliability functions, 𝛺̅𝑡𝑠 and 𝛺̅𝑠𝑠 are the 

vectors of time function parameters and error PDF parameters (i.e., 𝛺̅𝑡𝑠  =

[𝜃̅𝑡𝑠 , 𝜎𝑡𝑠 , 𝜂̅𝑡𝑠, 𝑤̅𝑡𝑠] and 𝛺̅𝑠 = [𝜃̅𝑠𝑠 , 𝜎𝑠𝑠 , 𝜂̅𝑠𝑠, 𝑤̅𝑠𝑠] ]), 𝜈𝑡𝑠𝑓
 and 𝜈𝑠𝑠𝑓

 are the equivalent 

failure times of the tested and surveyed similar devices, and 𝜈𝑡𝑠𝑟
 and 𝜈𝑠𝑠𝑟

 are the 

equivalent censoring times of the tested and surveyed similar devices, respectively. The 

point estimates of the parameters of the likelihood functions are inferred from the MLE 

or Bayesian analysis. In the Bayesian analysis, the point estimates are the mean values 

of the posterior distributions obtained from Eq. (4-13) and Eq. (4-14). The 𝜋𝑡𝑠𝑖
 and 

𝜋𝑠𝑠𝑖
 in Eq. (4-13) and Eq. (4-14) show the posterior distributions of 𝛺̅𝑡 and 𝛺̅𝑠 for the 

i-th tested and surveyed similar devices, respectively. 
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𝐿𝑡𝑠=∏ 𝑝 ቀ𝜈𝑡𝑠𝑓
, 𝑆𝐼𝑟𝑒𝑓|𝛺̅𝑡𝑠ቁ

𝐹𝑡
𝑓=1 ∏ 𝑅(𝜈𝑡𝑠𝑐

, 𝑆𝐼𝑟𝑒𝑓|𝛺̅𝑡𝑠)
𝐶𝑡
𝑐=1  (4-11) 

𝐿𝑠𝑠=∏ 𝑝 ቀ𝜈𝑠𝑠𝑓
, 𝑆𝐼𝑟𝑒𝑓|𝛺̅𝑠𝑠ቁ

𝐹𝑠
𝑓=1 ∏ 𝑅(𝜈𝑠𝑠𝑐

, 𝑆𝐼𝑟𝑒𝑓|𝛺̅𝑠𝑠)
𝐶𝑠
𝑐=1  (4-12) 

𝜋𝑡𝑖
൫𝛺̅𝑡𝑠|𝜈𝑡𝑠𝑖

, 𝑆𝐼𝑟𝑒𝑓൯ =
𝐿ቀ𝜈𝑡𝑠𝑖

, 𝑆𝐼𝑟𝑒𝑓|𝛺̅𝑡𝑠ቁ 𝜋0(𝛺̅𝑡𝑠)

𝑝(𝜈𝑡𝑖,𝑆𝐼𝑟𝑒𝑓)
  (4-13) 

𝜋𝑠𝑖
൫𝛺̅𝑠𝑠|𝜈𝑠𝑠𝑖

, 𝑆𝐼𝑟𝑒𝑓൯
 𝐿ቀ𝜈𝑠𝑠𝑖

, 𝑆𝐼𝑟𝑒𝑓|𝛺̅𝑠𝑠ቁ 𝜋0(𝛺̅𝑠𝑠)

𝑝൫𝜈𝑠𝑠,𝑆𝐼𝑟𝑒𝑓൯
    (4-14) 

 

It is assumed that the difference between the PDF distributions estimated using the 

test data and the PDF distributions estimated using the survey data is because of the 

bias in the survey responses. To account for the bias, the equivalent times, or mean 

cycles (𝜈) of the first part of the surveyed similar devices are multiplied by an unknown 

correction parameter 𝜓. The diversion between the tested and surveyed devices' PDFs 

is then used as an objective function to determine 𝜓. The KL divergence method, as 

shown in Eq. (4-15), is used to measure the distance between the PDF of the tested 

similar devices (roughly representing true failure behavior) and surveyed similar 

devices. The KL divergence is a distance or similarity measure between two probability 

distributions. The KL distance is then minimized through optimization techniques (e.g., 

gradient descent algorithm) to estimate 𝜓. The process of estimating the 𝜓 value is 

shown at the top box in Figure 4.4. 

 

∆= ∫ 𝜋𝑡൫𝜈|𝑆𝐼𝑟𝑒𝑓, 𝛺̅𝑡𝑠൯
∞

0
. 𝑙𝑜𝑔 [

𝜋𝑡ቀ𝜈|𝑆𝐼𝑟𝑒𝑓, 𝛺̅𝑡𝑠ቁ

𝜋𝑠ቀ𝜓𝜈|𝑆𝐼𝑟𝑒𝑓 , 𝛺̅𝑠𝑠ቁ
] 𝑑𝜈, 𝜈 >0     (4-15) 
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4.3. Estimating the Parameters of the Reliability Model of the New 

Product 

 

The parameters of the reliability model of the new product are estimated using the 

second part of the survey and test data about the similar product and the entire test data 

about the new product. However, first, the bias in the survey responses should be 

removed from the survey data. The process of estimating the parameters of the 

reliability model is shown at the bottom of Figure 4.4. 

First, the equivalent times of the second part of the surveyed and tested devices are 

calculated using the approach discussed in Chapter 4.1. To reduce the bias, the 

parametric equivalent times of the surveyed devices are multiplied by 𝜓, which now is 

a known value. The equivalent time is a function of one or multiple PDF model 

parameters which are yet unknown.  

A 3-step sequential Bayesian analysis then estimates the parameters of the PDF 

model (and consequently the parameters of the reliability or unreliability model) of the 

new product. The sequential Bayesian analysis is composed of a sequence of Bayesian 

analyses. Each analysis uses one of the reliability data sources to build the likelihood 

function and considers the joint posterior distribution estimated in the previous step as 

the prior distribution of the current step. However, the first Bayesian analysis uses user-

defined (informative or non-informative) priors. The joint posterior distributions of the 

parameters are estimated using the kernel density estimate (KDE) method, which is a 

non-parametric way to estimate the (joint) PDF of a (or multiple) random variable(s). 

Finally, the test data of the new product is used to build the likelihood function of the 
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last Bayesian analysis. It means that the reliability data of the old products sequentially 

contribute to constructing the prior distribution for the Bayesian analysis of the new 

product.  

 

Figure 4.4. The Reliability estimation process. 

The proposed approach considers a single failure mode. Suppose the reliability in the 

presence of multiple failure modes is sought. In this case, the approach is applied to 

each failure mode separately, and the total reliability is measured as the events that the 

system is reliable under all failure modes. Thus, one should multiply the reliability 

models of all failure modes and estimate the total reliability model. The process of 
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estimating the reliability model in the presence of multiple failure modes is shown in 

Figure 4.5. 

 

Figure 4.5. The process of estimating the reliability model in the presence of multiple failure modes. 

 

4.4. Case Study 

 

Chapter 4.4 illustrates the application of the proposed reliability estimation approach 

using a simulated ALT dataset for a new consumer electronic product with the failure 

mode of cracking caused by accidental drops, a simulated user survey dataset for a 

similar product (older version of the new product) with the same failure mode, and a 

simulated ALT dataset for the similar product. The stress for this product is “drop”, 

and the relevant stress adjustors are (a) the height of the drop, (b) the type of surface 

that the product hits when it is dropped, and (c) the type of activity that the user is 

performing when the product is dropped. Weather conditions are not considered 

significant stress adjustors for this device. Chapters 4.4.1 and 4.4.2 describe steps in 

simulating the user survey and test datasets for similar and new products. 
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4.4.1. The Simulated User Survey Dataset for the Similar 

Product 

 

A user survey dataset was simulated for a hypothetical handheld product. It was 

assumed that this product was the older version of a new product. The dataset simulates 

the information typically collected in actual user surveys, which usually give multiple-

choice questions instead of asking for precise values. Each (simulated) respondent 

chooses one or multiple stress profiles. Each stress profile contains a drop height, a 

surface type, and an activity type from discrete choices in the simulated survey. Each 

drop height is in the set {knee height, waist heigh, chest height, head or higher height}. 

Each surface type is in the set {soft (e.g., thick carpet / rug / mat, grass), semi-soft (e.g., 

thin carpet / rug / mat, exercise flooring), semi-hard (e.g., hardwood, laminate, packed 

earth), hard (e.g., concrete, asphalt, tile, brick)}. Each activity type is in the set {benign 

(e.g., standing, walking), harsh (e.g., running, playing sports)}. 

The survey dataset was simulated as follows: In step 1, it was assumed that the user’s 

age affected the characteristics of the drop (e.g., height) and generated a sample of 500 

users, containing 24 %, 63 %, and 13 % of young (age < 18 years), middle-aged (age 

in the range 18 to 64 years), and senior (age > 64 years) users, respectively. These 

fractions are consistent with the U.S. population age groups [48]. The males and 

females were not distinguished because the mean height of males and females was used 

for each age group, assuming that the surface and activity types are the same for males 

and females. 

In the second step, eight common stress profiles were assumed, including (1) knee 

height-semisoft surface-benign activity, (2) knee height -hard surface -harsh activity, 

(3) waist height -semihard surface benign activity, (4) waist height -hard surface -harsh 
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activity, (5) chest height -semisoft surface -benign activity, (6) chest height -semihard 

surface -harsh activity, (7) head height -soft surface -hard activity, and (8) head height 

-semihard surface -harsh activity. A user in the dataset dropped the device under one 

or more of these stress profiles during ownership.  

In the third step, the stress adjustors between 0 and 10 were sampled from normal 

distributions, 𝒩, with the means and standard deviations shown in Table 4-1. Harsher 

stress adjustors had higher scores. The height scores in Table 4-1 were determined as 

follows. Because the middle-aged group had the highest heights, first, the heights of 

this group were scored. It was assumed that the mean score of the middle-aged group's 

knee, waist, chest, and head height were 2.50, 5.00, 7.50, and 9.60, respectively. Then, 

the mean heights of the other age groups were calculated by multiplying the mean 

heights of the middle-aged group by the ratio between the height of the intended age 

group and the middle-aged group. The ratio was determined using the published 

anthropometric data [49, 50, 51].  For instance, assuming that the ratio between the 

height of the young and middle-aged group is 0.936, the mean knee height of the young 

group becomes 2.50× 0.936= 2.34. The standard deviation of 0.10 was selected for the 

head height of the middle-aged group because it resulted in distribution with the upper 

bound of 9.90 (assuming a six-sigma region) that was close but less than 10. The 

standard deviation of the other age groups was arbitrarily selected as 0.20.  
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Table 4-1 Scores of the stress adjustors 

Stress Adjustor Young Middle 

-Aged 

Senior 

Knee Height 𝒩(2.34, 0.2) 𝒩(2.50, 0.2) 𝒩(2.45, 0.2) 

Waist Height 𝒩(4.67, 0.2) 𝒩(5.00, 0.2) 𝒩(4.90, 0.2) 

Chest Height 𝒩(7.01, 0.2) 𝒩(7.50, 0.2) 𝒩(7.35, 0.2) 

Head Height 𝒩(8.97, 0.2) 𝒩(9.60, 0.1) 𝒩(9.40, 0.2) 

Soft Surface 𝒩(2.50, 0.2) 𝒩(2.50, 0.2) 𝒩(2.50, 0.2) 

Semisoft Surf. 𝒩(5.00, 0.2) 𝒩(5.00, 0.2) 𝒩(5.00, 0.2) 

Semihard Surf. 𝒩(7.50, 0.2) 𝒩(7.50, 0.2) 𝒩(7.50, 0.2) 

Hard Surface 𝒩(9.60, 0.1) 𝒩(9.60, 0.1) 𝒩(9.60, 0.1) 

Benign Act 𝒩(5.00, 0.2) 𝒩(5.00, 0.2) 𝒩(5.00, 0.2) 

Harsh Act 𝒩(9.60, 0.1) 𝒩(9.60, 0.1) 𝒩(9.60, 0.1) 

 

Normal distributions allowed us to scatter the scores and generate different but close 

stress adjustor values for users in the same age group. The distributions of the drop 

height scores varied among the age groups, but the other distributions were the same. 

Step 4 randomly assigned properties including age, ownership time, stress profiles 

(i.e., drop height, surface type, and activity type during the drop), and stress adjustors’ 

bias to the users. The process of assigning the properties is shown in Fig. 3. First, an 

age group was selected. For each user in the age group, an ownership time from 𝒲 

(1.3, 2) was randomly selected, where 𝒲 is the Weibull distribution. The ownership 

times (in years) were rounded to their nearest integers. Also, a stress adjustor’s bias 

was selected randomly from 𝒩 (0.9, 0.05) for each user, where 𝒩 represents the 

normal distribution. Then, a random stress profile from the eight common stress 

profiles was assumed for each year of ownership time. It was assumed that the values 

generated for the stress adjustors were accurate. As the survey data is biased, the 

accurate stress adjustors are multiplied by the random bias values associated with the 
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users. The bias values of the three stress adjustors were the same and constant during 

the ownership time but varied by the user. 

A multiplicative S.I. model, as shown in Eq. (4-16), was then used to combine the 

stress adjustors and obtain an S.I. value (0< SI< 103) for each stress profile. 

 

     𝑆𝐼 = ∏ 𝑠𝑖

3

𝑖=1
 (4-16) 

 

Step 5 selected a drop from the head or above height on a hard surface during a harsh 

activity as the reference stress profile. The S.I. value for the reference stress profile was 

𝑆𝐼𝑟𝑒𝑓=103. 

Step 6 assumed that the underlying stress-life model of a similar product was known, 

as shown in Eq. (4-17), where SI is the stress-index value and N illustrates the mean 

number of cycles. The drop numbers in the user survey dataset (still not assigned) were 

viewed as the mean number of drops since the user responses were assumed to express 

their average number of drops. Thus, as the mean value, the number of cycles (drops) 

and the number of equivalent cycles can be assumed to follow the continuous Weibull 

PDF model in Eq. (4-18), where 𝒲 illustrates the Weibull function, 𝜈𝑠𝑠 shows the 

distribution of the mean of equivalent cycles of the surveyed similar devices, 𝛼𝑠𝑠 is the 

scale parameter that follows the stress-life model, and β is the shape parameter. If the 

number of cycles is discretely modeled, the discrete PDFs (such as the discrete Weibull 

types I- III) may be used [34, 52].  
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𝑁 = 1800. 𝑆𝐼−0.5 (4-17) 

𝜈𝑠𝑠 = 𝒲 (𝛼𝑠𝑠 = 1800(103)−0.5 = 56.92, β=1.5) (4-18) 

 

In step 7, the (parametric) mean number of equivalent cycles under the reference 

stress profile was calculated for each stress profile of the users using (4-19), where 

𝜈𝑠𝑠𝑖,𝑦
 is the mean equivalent cycle, 𝑑𝑖,𝑦 is the actual mean number of drops, and 𝑆𝐼𝑖,𝑦 

is the stress-index value of the y-th stress profile of the i-th user. Equation (4-19) was 

obtained from Eq. (4-8), knowing that the mean number of cycles followed the IPL 

model. The number of drops in Eq. (4-19) has not been determined yet, so the numerical 

equivalent cycles are still unknown. 

                  𝜈𝑠𝑠𝑖,𝑦
= 𝑑𝑖,𝑦(

𝑆𝐼𝑖,𝑦

103 )0.5 (4-19) 

Step 8 assigned numerical equivalent cycles and failure statuses (i.e., failed or right-

censored) using the random censoring algorithm proposed in [16]. First, a random 

probability of failure was drawn from Uniform (0,1), and its corresponding cycles were 

calculated from Eq. (4-20), where 𝑝𝑟𝑠𝑠𝑖
 is the random probability and 𝑡𝑖 is the 

corresponding cycle. Then a random cycle (i.e., 𝑐𝑖) was drawn from Uniform (0, 

C=100), where C is an arbitrary value that controls the number of failed and right-

censored units. If 𝑐𝑖 > 𝑡𝑖, the total number of equivalent cycles during the ownership 

time of the user was selected as 𝑡𝑖 and the device was considered as failed. Otherwise, 

the total number of equivalent cycles was 𝑐𝑖 and the device was right-censored. Two 

hundred fifty-nine failed and 241 right-censored devices were simulated using this 

approach. 
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                   𝑝𝑟𝑠𝑠𝑖
= 1 − 𝑒−(

𝑡𝑖
56.92

)1.5

 (4-20) 

 

Step 9 assigned the number of drops under the use stress profiles during each year of 

ownership. The total number of equivalent cycles calculated in step 8 was randomly 

divided into x parts, where x was the integer of the ownership time. The number of 

drops during each year of ownership was then calculated using Eq. (4-19).   

Step 10 made the number of drops biased by multiplying them by the random values 

selected from 𝒩 (0.85, 0.1), where 𝒩 represents the normal distribution. The bias 

value varied among the users but was the same during the ownership time of the users. 

Also, the bias of the number of drops was different from the bias of the stress adjustors. 

 

For Each Year of Ownership, 

Randomly Pick a Stress 

Profile.  

Select an Age Group. 

  

Select a User in the Age 

Group. 

Bias the Stress Adjustors 

and the Frequency of 

Occurrence. 

For the User, Randomly Assign:  
1. An Ownership Time 

2. A Stress Adjustors’ Bias 

Is there Another 

Year of Ownership 
Time? 

No Yes 

Is there Another 

Age Group? 

No Are All the Age 

Groups Processed? 

Yes 

No 

Yes 

End 

Start 

Unbiased 

Data  

Biased Data (User Survey Data) 

Figure 4.6 The process of assigning properties to users in the simulated user survey dataset. 
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4.4.2. The Simulated Test Dataset of the Similar Product 

 

Also, a failure-terminated test dataset was generated for the similar product.  This 

dataset, which resembles the information collected in a laboratory during the reliability 

test, includes the drop height, surface type, activity type, and the number of drops until 

failure or censoring.  

 In the first step, it was assumed that the number of failed and right-censored devices 

were 𝑛𝑓𝑠 = 80, and 𝑛𝑐𝑠 = 20, respectively. The total number of tested devices was 

thus 𝑛𝑡𝑠= 100 units. The test was stopped when the number of failures reached 80 units. 

The second step assumed that the reliability test was performed at three conditions: 

(1) a drop from 0.5 m on a hard surface (e.g., concrete, asphalt, tile, brick) during a 

harsh activity (i.e., an action with an initial velocity or acceleration), (2) a drop from 1 

m on a hard surface during a harsh activity, and (3) a drop from 2 m on a hard surface 

during a harsh activity. It was assumed that 0.5 m, 1 m, and 2 m were equivalent to a 

user's knee height, waist height, and head or higher height in the middle-aged group of 

the simulated user survey dataset. Identical scores were given to the quantitative heights 

in the test dataset as the subjective heights in the survey dataset. The scores for surface 

and activity in the test dataset were the same as those in the user survey dataset. As 

shown in Eq. (4-16), a multiplicative S.I. model was then used to combine the stress 

adjustors.  

The third step defined the reference stress profile as a drop from 2 m on a hard surface 

during a harsh activity. This profile is equivalent to the reference stress profile selected 
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for the user survey dataset. The SI value for the reference stress profile was 𝑆𝐼𝑟𝑒𝑓 =

103.  

The fourth step assumed that the relationship between the S.I. value and the number 

of usage cycles was described by the same IPL stress-life model used for the user 

survey dataset, as shown in Eq. (4-17). Also, it is assumed that the equivalent cycles 

(𝜈𝑡𝑠) of the tested similar devices follow the same Weibull distribution used for the user 

survey dataset, as shown in Eq. (4-18). 

It was assumed that the failures occurred at different usage cycles due to the 

randomness in the manufacturing process and material properties. In step 5, the random 

number of usage cycles was generated. First, a random probability of failure (𝑝𝑟𝑖) was 

assigned to each failed device using Uniform (0, 1). Second, the numbers of equivalent 

cycles under the reference stress profile were calculated using Eq. (4-21). Third, the 

number of usage cycles was calculated using Eq. (4-22), where 𝑑𝑖 is the number of 

drops of the i-th device, 𝑆𝐼𝑖 is the stress-index value of the stress profile under which 

the i-th device was tested, and 𝜈𝑡𝑠𝑖
 is the number of equivalent cycles for the i-th device. 

 

𝜈𝑡𝑠𝑖
= exp [

1

1.5
𝐿𝑛 (𝐿𝑛 ቀ

1

1−𝑝𝑟𝑖
ቁ)+ln (56.92)] (4-21) 

𝑑𝑖= 𝜈𝑡𝑠𝑖
(

𝑆𝐼𝑖

103)−0.5 (4-22) 

 

Steps 6 to 8 determine the number of drops and failure status of the right-censored 

devices. First, step 6 used the highest equivalent cycle of the failed devices as the 

censoring equivalent cycle. Next, in step 7, the numbers of drops of the 20 right-
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censored units were estimated using Eq. (4-22). Finally, in step 8, the status of “right-

censored” was considered for the censored units.  

4.4.3.  The Simulated Test Dataset of the New Product 

 

It was assumed that the new product was the latest version of the similar product and 

its failure mode (i.e., cracking) was delayed. It means that the distribution of the 

equivalent cycles of the new devices had the same shape parameter as the similar 

devices, but its scale parameter was larger. Therefore, through the same algorithm used 

for simulating the test dataset of the similar product, a dataset with the shape parameter 

of 𝛽=1.5 and the scale parameter of 𝛼𝑡𝑛 = 2200(103)−0.5 = 69.57 was generated. The 

distribution of the equivalent cycles of the new devices is shown in Eq. (4-23), where 

𝒲 represents the Weibull function, 𝜈𝑛𝑡 is the equivalent cycles, 𝛼𝑡𝑛 is the scale 

parameter, and 𝛽 is the shape parameter. The number of failed and right-censored in 

this dataset are 𝑛𝑓𝑛 = 80, and 𝑛𝑐𝑛 = 20, respectively. 

𝜈𝑡𝑛 = 𝒲 (𝛼𝑡𝑛 = 2200(103)−0.5 = 69.57, 𝛽=1.5) (4-23) 

 

4.4.4. Reliability Analysis Using the Simulated User Survey 

and Test Datasets 

 

The reliability model of the hypothetical new product was estimated using the 

process discussed in Chapters 4.1 To 4.3. First, the scored stress adjustors were 

combined through the multiplicative S.I. model. An IPL stress-life model with 

unknown parameters was then assumed, as shown in Eq. (4-24), where N illustrates the 

mean number of cycles, SI is the stress-index value, and A and n are the model's 
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unknown parameters. Next, the IPL model was used to find the relationship between 

the mean number of cycles under the use stress profile and the mean number of 

equivalent cycles under a reference stress profile, as shown in  Eq. (4-25), where 𝜈𝑖 is 

the mean number of equivalent cycles under the reference stress profile, 𝑑𝑖 is the mean 

number of drops under the actual use profile, 𝑆𝐼𝑖 is the stress-index value of the actual 

use profile, 𝑆𝐼𝑟𝑒𝑓 is the reference stress index, and n is an unknown parameter. Finally, 

the reference stress profile was assumed as a drop from the head or higher height (2 m) 

on a hard surface during a harsh activity (𝑆𝐼𝑟𝑒𝑓 = 103). The mean equivalent cycles of 

the surveyed and tested devices were then estimated using Eq. (4-25).  

            𝑁 = 𝐴. 𝑆𝐼−𝑛  (4-24) 

            𝜈𝑖= 𝑑𝑖(
𝑆𝐼𝑖

𝑆𝐼𝑟𝑒𝑓
)𝑛  (4-25) 

It was assumed that the mean equivalent cycles followed a Weibull distribution 

model, as shown in Eq. (4-26). In Eq. (4-26) 𝒲 illustrated the Weibull model,  𝛼 is the 

scale parameter that wathe IPL stress-life model replaced, 𝐴 and n are the parameters 

of the stress-life models, and 𝛽 is the shape parameter. Then, 30% of the surveyed 

devices and 30% of the tested similar devices were separately used in two MLE 

analyses to estimate the parameters of their Weibull distribution models. The point 

estimates of the parameters for the survey dataset were 𝐴𝑠=1300, 𝑛𝑠=0.5, and 𝛽𝑠 = 1.48, 

and for the test dataset were 𝐴𝑡=1799.99, 𝑛𝑡=0.5, 𝛽𝑡=1.4. 

 

                   𝜈~ 𝒲 (𝛼 = 𝐴(𝑆𝐼𝑟𝑒𝑓)−𝑛, 𝛽) (4-26) 

 



 

 

53 

 

It was assumed that the difference between the Weibull distributions (i.e., point 

estimates of the parameters) of the survey dataset and test dataset was because of the 

bias in the survey data. If the bias were removed, the user survey and test data would 

follow the same life distribution model. The mean equivalent cycles of the surveyed 

similar devices were thus multiplied by an unknown value (bias parameter shown by 

𝜓) to correct this bias. The 𝜓 was estimated by minimizing the KL divergence value 

between the life distribution of the surveyed similar devices and the life distribution of 

the tested similar devices, as shown in Eq. (4-27), where 𝜋 shows the life distribution 

of the tested similar devices, f is the life distribution of the surveyed similar devices, 

𝑆𝐼𝑟𝑒𝑓 is the reference stress index, 𝛼𝑡 and 𝛽𝑡 are the scale parameter and the shape 

parameter of the life distribution of the tested devices, 𝛼𝑠 and 𝛽𝑠 are the scale parameter 

and the shape parameter of the life distribution of the surveyed devices, 𝐴𝑡 , 𝐴𝑠, 𝑛𝑡 and 

𝑛𝑠 are the parameters of the stress-life model, and 𝜈 is the mean number of cycles which 

is a positive value. This analysis resulted in 𝜓 = 0.82. then the mean equivalent cycles 

of the remaining 70% of the surveyed devices were multiplied by 0.82 to correct the 

bias. 

              ∆= ∫ 𝜋൫𝜈|𝛼𝑡 = 𝐴𝑡𝑆𝐼𝑟𝑒𝑓
−𝑛𝑡 , 𝛽𝑡൯

∞

0
 

                . log [
𝜋(𝜈|𝛼𝑡=𝐴𝑡𝑆𝐼𝑟𝑒𝑓

−𝑛𝑡 ,𝛽𝑡)

𝑓(𝛹𝜈|𝛼𝑠=𝐴𝑠𝑆𝐼𝑟𝑒𝑓
−𝑛𝑠 ,𝛽𝑠)

] 𝑑𝜈, 𝜈 > 0 

 (4-27) 

The bias-corrected user survey data, the remaining 70% of the test data about the 

similar product, and the test data about the new product were used in a 3-steps 

sequential Bayesian analysis to estimate the parameters of the life distribution model. 

The first step assumed Normal prior distributions for the reliability model’s parameters. 
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The mean values of the Normal distributions were approximated using the MLE 

method, and their standard deviations (std) were half-normal distributions with hyper 

priors (i.e., std) equal to 1/10th of the MLE estimates. The bias-corrected survey data 

of similar devices were also used as the likelihood data (observation). Next, the primary 

joint posterior distribution was estimated using the KDE method. It was used as the 

prior distribution of the second Bayesian analysis. In the second Bayesian analysis, the 

remaining 70 % of the test data of the similar device was used as the likelihood data. 

The intermediate joint posterior distribution estimated in this step was used as the prior 

distribution of the third Bayesian analysis. In the third Bayesian analysis, the test data 

about the new product was used to build the likelihood function, and the final joint 

posterior distribution of the parameters was estimated. Figure 4.7 shows the parameters' 

primary, intermediate, and final posterior distributions. Although the joint distribution 

of the parameters was estimated, for illustration purposes in Figure 4.7, the distributions 

of the parameters were plotted independently. One thousand realizations from the 

estimated final joint posterior distribution of the parameters were then generated and 

used to quantify the uncertainty of the estimated reliability.  
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Figure 4.7. Primary, intermediate, and final posterior distributions of the parameters of the reliability 

model. 

 

Figure 4.8 illustrates the estimated unreliability models (in blue) and the true 

unreliability model (in black). The true model is the original model from which the test 

data of the new product was generated. As shown in Figure 4.8, the true model is within 

the uncertainty region of the estimated unreliability models. The model in Figure 4.8 is 

called the “main model” and is used in Subchapter 4.4.5. 

4.4.5.  Sensitivity and Uncertainty Analysis 

 

In estimating the reliability model in this example, the stress adjustors were 

arbitrarily scored, an S.I. model was arbitrarily selected, and a reference stress profile 
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was arbitrarily selected. Subchapter 4.4.5 describes the sensitivity of the results to 

changes in these parameters. Three analyses were performed: (1) the linear scores used 

in Subchapters 4.4.1 to 4.4.3 were replaced by the non-linear (squared) scores (2) an 

additive S.I. model replaced the multiplicative S.I. model used in Subchapter 4.4.1 to 

4.4.3, and (3) the reference stress profile used in Subchapter 4.4.1 to 4.4.3 was replaced 

by a drop from the head or above height (2 m) on a hard surface during a benign 

activity.  

To compare the results of the three analyses with the main model, the parameters of 

their stress-life model were selected such that their true Weibull life distribution models 

remained the same as the true model in Figure 4.8. The proposed approach (that was 

used to find Figure 4.8) was then used to estimate the reliability models of the three 

cases. Figure 4.9 to Figure 4.11 show the uncertainty regions of the estimated reliability 

models in blue and the true reliability models in black. In all cases, the true model is 

within the uncertainty region of the estimated reliability models.  

The uncertainties of the estimated reliability models stem from two sources: (1) the 

aleatory uncertainties that result from inherent variability (e.g., the natural variability 

in materials) that are irremovable and irreducible, and (2) the epistemic uncertainties 

due to insufficient human knowledge, analyzing a sample rather than the population, 

and processing errors (e.g., recording, coding, and data preparing-related errors, model 

selection). The epistemic uncertainties can be reduced by obtaining more information 

about the product [17, 16].  

To compare the uncertainty regions of Figure 4.8 and Figure 4.9 to Figure 4.11, the 

difference between the maximum % failure and minimum % failure at every 20 
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equivalent cycles (0 < equivalent cycles < 400) was used as the comparison metric. The 

differences are shown in Figure 4.12. The curves labeled “non-linear scoring”, 

“additive S.I. model”, and “reference stress profile” in Figure 4.12 are the curves 

related to Figure 4.9 to Figure 4.11, respectively. According to Figure 4.12, the main 

model (i.e., the reliability model with linear scoring) has less uncertainty than the model 

with non-linear scoring. As the uncertainty due to linear and non-linear scorings 

depends on the nature of the product and its applicable stresses and stress adjustors, the 

reliability analyzer may try both linear and non-linear scorings and select the one that 

shows less uncertainty for the intended application. 

 

 

 
Figure 4.8. The estimated reliability models and the true reliability model. 
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Figure 4.12 illustrates that when a multiplicative S.I. model is used (i.e., the main 

model), the uncertainty region of the reliability models is narrower than the additive 

S.I. model.  This is because the additive model has several unknown parameters (i.e., 

the weights of the applicable stresses and stress adjustors), and their estimates introduce 

additional uncertainties in the reliability model.  

The predicted reliability model is less sensitive to the selected reference stress profile 

than the S.I. model and scorings, as shown in Figure 4.12. As the model with linear 

scoring and multiplicative S.I. model shows less uncertainty than the models in Figure 

4.9 to Figure 4.11, it was used as the most representative model in this study. 

 

 
Figure 4.9. The estimated reliability models using non-linear scores for the stress adjustors. 
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Figure 4.10. The estimated reliability models using the additive stress-index model. 

 
Figure 4.11. The estimated reliability models using a drop from the head or higher (2 m) height on a 

hard surface during a benign activity as the reference stress profile. 



 

 

60 

 

 

 
Figure 4.12. Comparing the uncertainty regions of the models with different parameter selections using 

the difference between maximum and minimum % failure as the comparison criterion. 

This study used a computer with Intel(R) Core (TM) i7-9700K CPU and 32 GB RAM. 

The computational time for the multiplicative S.I model, non-linear scoring, and 

reference stress profile analyses was about 17 minutes, and for the additive S.I. model 

analysis was about 35 minutes. 

The reliability model of the new product was also analyzed through a simple Bayesian 

analysis that used the ALT data of the new product as the observation and did not 

consider the historical data of the similar product. Figure 4.13 compares the reliability 

models estimated by the ALT data of the new product with the main model (i.e., the 

reliability models estimated using the ALT data of the new device, ALT data of the 

similar device, and unbiased survey data of the similar device in a sequential Bayesian 

analysis). The figure illustrates that the main model has less uncertainty. 

The estimated reliability model in Figure 4.8 can be used to understand the % failure 

(and consequently reliability) and its associated uncertainty at a given time. For 
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instance, we can find the % failure with 90% confidence after one year of warranty or 

four years when the product becomes obsolete, assuming that one year is equivalent to 

20 cycles under the reference stress profile), as shown in Figure 4.14, or we can find 

the time-to-failure at given reliability (e.g., 95% reliability). 

 

 

 
Figure 4.13. The reliability models estimated by the ALT data of the new product in Bayesian analysis 

and the reliability models estimated by the ALT data of the new device and the historical data of the 

similar device in sequential Bayesian analysis. 
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Figure 4.14. Distribution of % failure after 1 and 4 years, estimated using the main model. 

 

 

 

 

4.4.6. Conclusions 

Chapter 4 discussed designing and applying a user survey that collects critical data 

for estimating the reliability model of a consumer product. A stress-based reliability 

estimation approach was developed that approximated the reliability model of a new 

product using the reliability test data of a new product and the user survey data and 

reliability test data from an older version of the same or similar product. The bias in 

the user survey responses was estimated and removed using the Kullback-Leibler 

divergence method. The joint posterior distribution of the new product’s reliability 

model parameters was then estimated in sequential Bayesian analysis.  
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A case study simulated the reliability data of a new hypothetical product and a similar 

product from the known reliability models. It was shown that the true reliability model 

of the new product was within the uncertainty region of the estimated reliability models 

of the new product.  

Chapter 4 showed that a user survey could be a cost-effective and quick way to collect 

field data to estimate a product’s reliability. Besides using the user survey data of a 

similar product as appropriate prior information in a Bayesian reliability estimation, 

the paper showed that the proposed approach could make an accurate assessment of the 

reliability of the new product due to a single failure mode.  The proposed approach is 

generic and can estimate the reliability model of a wide range of consumer products. If 

the product experiences a small number of cycles to failure in its lifetime (e.g., a laptop 

that may break after a few drops), discrete forms of life distributions for estimating the 

reliability model would be more appropriate. The application of the discrete life models 

is shown in Chapter 5. 
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Chapter 5: Estimating the Reliability Model of a New 

Consumer Product Assuming a Discrete Life 

Distribution3 

This chapter develops a novel mathematical approach for estimating a new product's 

reliability model with few damage cycles to failure. The application of the proposed 

approach is shown, and the results are validated using the simulated datasets for an 

electronic device with the failure mode of cracking caused by accidental drops. 

The reliability of a product is the probability that a product performs its intended 

function adequately for a specified time under specified use conditions [47]. The 

reliability of a product, thus, depends on its usage time, applied stresses (i.e., agents 

that cause damage to the product), and stress adjustors (i.e., conditions that increase or 

decrease the stress magnitude or absorption). 

 
3 This chapter is a reproduction of the papers about applying user survey data and accelerated 

test data to estimate reliability of new consumer products using a discrete life distribution 

model [71, 70]: 

[52]  N. Shafiei, J. W. Herrman and M. Modarres, "Applying User Surveys and Accelerated 

Tests Data to Estimate Reliability of New Consumer Products Using a Discrete Life 

Distribution Model," IEEE Access, 2022 June 29.  

[53]  N. Shafiei, J. W. Herrmann and M. Modarres, "Estimating the Reliability Model of a 

New Consumer Product Assuming a Discrete Life Distribution," in RAMS (under 

review), Florida, 2022. 
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Some previous studies used damage-based reliability estimation approaches to 

consider the effect of various stress and stress adjustors in reliability analysis [33, 53, 

1]. These methods apply to reliability test or sensor data that are costly to collect. 

Our previous studies [54, 55] developed a stress-based reliability estimation approach 

that utilized user survey data as a cost-effective source for estimating reliability.  

That approach assumed a continuous lifetime distribution and, through Bayesian 

analysis, estimated the reliability model of a consumer product. In addition, the concept 

of the equivalent cycle was defined to consider the effect of various stresses and stress 

adjustors.  

A continuous distribution is applicable when the random variable representing life is 

continuous (e.g., expressed in calendar time), or the product undergoes many damage-

accumulating usage cycles (e.g., hundreds of cycles of a device dropping on a hard 

floor). When the performance of a product is measured occasionally (e.g., every week 

or every month), or the product undergoes a few damage cycles, a discrete distribution 

can more accurately estimate the reliability model [34, 35].  

This chapter extends the approach of the previous chapter for discrete lifetime 

distributions. Some discrete life distributions have a summation term whose upper 

bound can be expressed as an unknown equivalent cycle. Such upper bounds make 

reliability estimation through a Bayesian or Maximum Likelihood Estimation (MLE) 

method (i.e., a method for estimating the parameters of a parametric distribution) very 

difficult. The discrete Weibull distribution type III has this issue. Ideally, a method for 

selecting the best distribution should be used in reliability analysis. However, to 

demonstrate the proposed generic approach in this chapter, the case study considers the 
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discrete Weibull type III distribution as a complicated discrete distribution with the 

summation term. 

The Weibull distribution is a well-known lifetime distribution that is widely used in 

reliability engineering. The Weibull distribution is available in continuous and discrete 

forms. Three types of discrete Weibull distributions have been proposed: (1) type I has 

a reliability function that mimics the reliability function of a continuous Weibull 

distribution, (2) type II has a hazard function that mimics the hazard function of a 

continuous Weibull distribution, and (3) type III is more generic and does not follow 

any function of a continuous Weibull distribution [39].  

Various extensions of discrete Weibull distributions have also been introduced, and 

different methods for estimating their parameters have been suggested. For instance, 

Jia et al. [40] proposed a discrete extended Weibull distribution and used MLE for 

estimating its parameters. Barbiero [34] proposed three methods, including the method 

of proportion, MLE, and the method of moments for estimating the parameters of a 

discrete Weibull type III distribution. The above studies assumed that the product is 

used under a fixed stress level, and the number of damage cycles is equivalent to the 

number of times the stress is applied to the product. On the other hand, the approach 

presented in this chapter assumes that consumer products are used under varying stress 

levels, and the concept of equivalent cycles is used to calculate the number of 

cumulatively damaging usage cycles under a reference stress condition. As discussed 

earlier, when using the idea of equivalent cycles, the upper bound of the summation 

term becomes an unknown value that is hard to estimate.  
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This chapter considers a consumer product that is used under various stress 

conditions, and its failure time is expected to occur within a few applied stress cycles 

(loads). Thus, the discrete forms of lifetime distributions are proposed for estimating 

the reliability model. The reliability estimation approach developed in our previous 

studies [6, 7] is generic and can be used with a discrete lifetime distribution, but the 

Bayesian method alone may not be enough to estimate the reliability model's 

parameters, and further elaboration is needed. 

The reliability model of a discrete distribution (such as the Weibull Type III) might 

have a summation term with a time variable as an upper bound [34, 39]. In the reliability 

estimation approach proposed in our previous studies [54, 55], this upper bound 

becomes an equivalent cycle, which is a function of one or more unknown parameters. 

This makes calculating the summation term and consequently estimating the 

parameters difficult. Therefore, this study suggests initializing the upper bound and 

updating it using MLE and a gradient descent algorithm until the upper bound has 

converged. The upper bound is then fixed, and Bayesian analysis is used to estimate 

the parameters of the reliability model as discussed in previous studies. 

This chapter also presents a case study that shows the application of the proposed 

approach using simulated survey and test datasets for a consumer product with the 

failure mode of cracking caused by accidental drops. It is assumed that the equivalent 

cycles of the devices follow a discrete Weibull distribution type III. Then, the 

parameters of the reliability model are estimated using the proposed approach. The 

final reliability model of the product is compared with the reliability model estimated 

in the previous study using the continuous Weibull distribution [54].  
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This chapter is organized as follows: Subchapter 4.1 explains the reliability estimation 

approach assuming a discrete lifetime distribution. Subchapter 4.2 presents the case 

study.  Finally, Subchapter 4.3 concludes this chapter. 

 

5.1. The Reliability Estimation Approach 

 

This subchapter describes the proposed approach for estimating the reliability model 

of a new consumer product with a few life cycles using reliability test data of the new 

product coupled with user survey data and reliability test data of a similar product (e.g., 

the older versions of the new product). The current approach extends the approach 

proposed in Chapter 4 by assuming a discrete lifetime distribution [55]. The outline of 

the approach is shown in Figure 4.4. The approach has three steps: (1) calculating the 

equivalent cycles, (2) removing bias from the survey responses, and (3) estimating the 

parameters of the reliability model of the new product using a sequential Bayesian 

approach. The first two steps were discussed in Subchapter 4.1 and Subchapter 4.2. 

Chapter 5.2 describes the third step. 

5.2. Estimating The Parameters of The Reliability Model of The 

New Product 

The new product's reliability model parameters are estimated using a sequential 

Bayesian analysis [10]. The analysis involves three steps, as shown in the box at the 

bottom of Figure 4.4. All steps assume a parametric discrete life distribution for the 

equivalent cycles. 

In the first step, non-informative or weakly-informative prior distributions are 

selected for the parameters of the reliability model. Next, the equivalent cycles of the 
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second portion of the surveyed devices are multiplied by ψ, which now is a known 

value. This removes the bias from the equivalent cycles. The adjusted (bias-removed) 

equivalent cycles are then used as observations (i.e., likelihood data) in the first 

Bayesian analysis. The primary joint posterior distribution of the parameters is then 

estimated.  

In the second step, the primary joint posterior distribution is used as the prior 

distribution for the second Bayesian analysis. Then, the equivalent cycles of the second 

portion of the tested similar devices are used as observations, and the intermediate joint 

posterior distribution is estimated.  

In the third step, the intermediate posterior distribution is used as the prior 

distribution, and the equivalent cycles of the new device are used as the observation. 

Finally, the final joint posterior distribution of the parameters is estimated in the 

Bayesian analysis and used to approximate the reliability model of the new product. 

When assuming continuous life distributions, Bayesian analysis is straightforward. 

However, for some discrete life distributions, the analysis is complicated. For instance, 

in the probability mass function (pmf) of a discrete Weibull distribution type III, shown 

in (5-6) [53], the upper limit of the summation is a time value, which, in our approach, 

becomes an equivalent cycle that depends upon the unknown parameters of the stress-

life model, which are unknown. This makes calculating the summation term and 

completing the Bayesian analysis difficult. In the following, a method is proposed to 

deal with this difficulty. 

𝑓(𝑡) = ቀ1 − 𝑒−𝑐(𝑡+1)𝛽
ቁ 𝑒−𝑐 ∑ 𝑗𝛽𝑡

𝑗=1     (5-6) 
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 The proposed method utilizes a gradient descent algorithm to fix the upper bound of 

the summation term. Gradient descent is an optimization technique used to estimate the 

parameters of a linear model by minimizing its cost function [56]. The cost function 

measures the difference between a variable's predicted and true value, and these 

differences are used to update the estimates in each iteration. For example, consider a 

linear model with the slope of W and the intercept of b (i.e., 𝑦(𝑥) = 𝑊. 𝑥 + 𝑏). The 

gradient descent estimates for W and b are shown by Eq. (5-7) and Eq. (5-8), 

respectively, where l indicates the number of iterations in the gradient descent 

technique, 𝛼 is the learning rate, 𝑥𝑖 and 𝑦(𝑥𝑖) are the variables of the model, 𝑦𝑡𝑖
 is the 

true value of 𝑦(𝑥𝑖), and W and b are the parameters [56]. 

𝑊𝑙+1 =  𝑊𝑙 +  𝛼.
∑ (𝑦(𝑥𝑖)−𝑦𝑡𝑖)𝑥𝑖

𝑚
𝑖=1

𝑚
    (5-7) 

        𝑏𝑙+1 =  𝑏𝑙 +  𝛼.
∑ (𝑦(𝑥𝑖)−𝑦𝑡𝑖)𝑚

𝑖=1

2𝑚
                    (5-8) 

The approach linearizes the equivalent cycle equation, initializes the linearized 

equation parameters, and updates the parameters using Eq. (5-7) and Eq. (5-8). Each 

iteration calculates the upper-bound of the summation term of Eq. (5-6) using the latest 

gradient descent estimates and, through the MLE method, estimates the true value of 

𝑦(𝑥𝑖) (i.e., 𝑦𝑡𝑖
). This process continues until the upper bound has converged. Then the 

upper bound is fixed, and the other parameters of Eq. (5-6) are estimated in the 

sequential Bayesian analysis. The outline of the process of estimating the upper bound 

is shown in Figure 5.1. 
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Figure 5.1. The process of estimating the upper bound of the summation term in the discrete life 

distribution. 

 

5.3. Case Study 

This subchapter shows the application of the proposed reliability estimation approach 

using simulated reliability data for an electronic product (e.g., a laptop) with the failure 

mode of cracking caused by a few (e.g., 10 to 20) accidental drops. The approach for 

simulating the test data of the new and old products and the survey data of the old 

product is explained. Then, the proposed reliability estimation approach is used to 

estimate the reliability model of the new product. 

5.3.1. The Simulated Datasets 
 

An accelerated life test (ALT) dataset for the older version of the new product. This 

dataset has 100 samples (80 failed and 20 were right-censored). It includes information 

about the applicable stress (i.e., drop), stress adjustors (i.e., drop height, surface type, 

and the severity of drop), and the number of cycles to failure or right-censoring. This 

simulated ALT dataset is based on the following assumptions:  

1. During the reliability test, samples were dropped from 0.5 m, 1 m, 1.5 m, and 2 m 

heights on a hard surface during strenuous or harsh activity. 
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2. Stress and stress adjustors were scored and combined through a multiplicative SI 

model. The scores for heights were 25, 50, 75, and 100, for the hard surface was 100 

and for harsh and strenuous activity was 100. 

3. The stress-life model was a known inverse power law (IPL), as shown in Eq. (5-9) 

[57], where N illustrates the number of cycles, SI is the stress-index value, A is 285, 

and n is 0.5. 

𝑁 = 𝐴 𝑆𝐼−𝑛      (5-9) 

4. The reference stress profile was a drop from 2 m on a hard surface during a harsh 

activity. 

5. The life distribution was a known discrete Weibull distribution type III, as shown 

in Eq. (5-6), where c=0.05 for the old product, c=0.01 for the new product, and β=0.5. 

Figure 5.2 shows the process of simulating the ALT dataset for the old product. The 

same approach was used for the new product, but it was assumed that the new product 

was a better version of the old product and that its failure had been terminated (i.e., has 

greater cycles to failure).  
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Figure 5.2. The process of simulating ALT data. 

 

Also, a user survey dataset was simulated for the old product. The survey dataset 

considered 500 users from different age groups with different heights, activities, and 

biases in the frequency of drops and the applicable stress profiles. This dataset is based 

on the following assumptions: 

1. User dropped their devices under one or several stress profiles. For example, 1) 

knee height-semisoft surface- benign activity, 2) knee height- hard surface- harsh 

activity, 3) waist height- semihard surface- benign activity, 4) waist height- hard 

surface- harsh activity, 5) chest height- semisoft surface- benign activity, 6) chest 

height- semihard surface- harsh activity, 7) head height- soft surface- hard activity, 8) 

head height- semihard surface- harsh activity. 
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2. Stress and stress adjustors were scored and combined through a multiplicative SI 

model. The scores for knee, waist, chest, and head or higher heights were 25, 50, 75, 

and 100 for soft, semi-soft, semi-hard, and hard surfaces were 25, 50, 75, 100, and for 

benign and harsh activity were 50 and 100, respectively. 

3. The stress-life model was a known inverse power law (IPL), as shown in (9), where 

N illustrates the number of cycles and SI is the stress-index value, A is 285, and n is 

0.5. 

4. The reference stress profile was a drop from the head or higher height on a hard 

surface during a harsh activity. 

5. The survey data was initially generated from the discrete Weibull life distribution 

shown in Eq. (5-6). Then, the SI value and number of drops in the dataset were 

multiplied by random values taken from a N (0.80, 0.1) distribution to bias the dataset. 

Taking random values from the normal distribution made it possible to assign different 

bias values to the users’ responses (for the stress profile (SI value) and the number of 

drops). This bias value of each user remained constant during the ownership time. The 

process of simulating the user survey data is shown in Figure 5.3. 

5.3.2. Estimating the reliability model of the new product 
 

This subchapter assumes that the old and new products' stress-life model, life 

distribution, and reliability model are unknown. Therefore, the simulated datasets and 

the developed reliability estimation approach were used to estimate the reliability 

model of the new product. As discussed earlier, estimating the reliability model of the 

new product has three steps.  
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Figure 5.3. The process of simulating user survey data. 

 

In the first step, the equivalent cycles of all surveyed and tested devices were 

calculated parametrically. For this purpose, the stress adjustors of the users’ stress 

profiles were linearly scored and combined through a multiplicative SI model to 

calculate the 𝑆𝐼𝑢𝑠𝑒 values of the devices. Also, the reference stress profile was selected 

as a drop from the head or higher height on a hard surface during a harsh activity. Its 

SI value was calculated through the multiplicative SI model (𝑆𝐼𝑟𝑒𝑓=1000). Because 

drop was mechanical stress (leading to damage), an IPL stress-life model was assumed. 

The ratio between the number of equivalent drops and the actual number of drops was 
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calculated. This resulted in Eq. (5-10), where ν𝑖 is the equivalent cycle of the i-th 

device, d𝑖 is the actual number of drops of the i-th device, 𝑆𝐼𝑖𝑢𝑠𝑒
 is the SI value of the 

i-th device, and 𝑆𝐼𝑟𝑒𝑓 is the SI value of the reference stress profile equal to 1000. 

ν𝑖 = d𝑖.(
𝑆𝐼𝑖𝑢𝑠𝑒

𝑆𝐼𝑟𝑒𝑓
)𝑛     (5-10) 

In the second step, the bias from users’ responses was removed. The survey and the 

test dataset of the similar product were split into two parts (30% in the first part and 

70% in the second part [58]) and used the first portion of the two datasets to estimate 

the survey data bias. The parameters of the life distribution (i.e., the distribution of the 

equivalent cycles) of the tested and surveyed devices were estimated in an MLE 

analysis. The estimated parameters for the tested similar devices were 𝛽𝑡𝑠= 0.43, 𝑐𝑡𝑠= 

0.046, 𝑛𝑡𝑠= 0.50 and for the surveyed, similar devices were 𝛽𝑠𝑠= 0.5, 𝑐𝑠𝑠= 0.071, 𝑛𝑠𝑠= 

0.49. All equivalent cycles of the surveyed devices were then multiplied by an unknown 

number (i.e., 𝜆) to shift their life distribution. The distance between the shifted life 

distribution of the surveyed devices and the life distribution of the tested devices was 

then calculated using the KL divergence method, Eq. (5-5), and minimized through the 

gradient descent algorithm. This resulted in the bias value of 𝜆 =1.32, which was close 

to the inverse of the average bias originally introduced to the survey dataset (𝜓 =1.397). 

According to Eq. (5-12) and because the bias values for d𝑖 and 𝑆𝐼𝑖𝑢𝑠𝑒
 were randomly 

selected from 𝒩 (0.80, 0.1), the original mean bias value was 0.80 × 0.800.5, which is 

approximately equal to 0.716, and its inverse is 1.397. To validate the estimated 𝜆 

value, all equivalent cycles of the surveyed devices were multiplied by 1.32. The 

original value of n (n = 0.5) Was used to estimate the numerical value of the equivalent 
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cycles. Then, the reliability of the devices in the bias-reduced surveyed dataset was 

estimated using the Kaplan-Meier method and was compared with the true reliability 

model. As shown in Figure 5.4, the bias-reduced survey dataset follows the true 

reliability model (i.e., the solid black line). This provides evidence that the KL 

divergence method can remove the bias from users’ responses. The estimated bias value 

was then multiplied by the equivalent cycles of the second portion of the surveyed 

devices to remove its bias. 

In the third step, the second portion of the survey data (bias-reduced), the second 

portion of the similar device's test data, and the new device's entire test data were used 

in a sequential Bayesian analysis to estimate the reliability model of the new product. 

It was assumed that the equivalent cycles of all datasets followed discrete Weibull 

distribution type III. The likelihood of the discrete Weibull distribution type III for an 

incomplete dataset (i.e., a dataset containing failed and right-censored devices) is 

shown in Eq. (5-11), where c and β are the distribution parameters,  𝜈𝑖 represents the 

equivalent cycles of the i-th device, r is the number of failed devices, and m is the total 

number of devices.  

L (c, β; T) = ∏ 𝑒
−𝑐 ∑ 𝑗𝛽 𝜈𝑖

𝑗=1𝑟
𝑖=1 [1-𝑒−𝑐( 𝜈𝑖+1)𝛽

]. ∏ 𝑒
−𝑐 ∑ 𝑗𝛽 𝜈𝑖

𝑗=1𝑚
𝑖=𝑟+1    (5-11) 

As discussed earlier, the upper bound of the summation term in the likelihood 

function was unknown and needed to be estimated before performing the Bayesian 

analysis. The 𝜈𝑖 in the upper-bound of the summation and 𝜈𝑖 in the exponential term of 

the likelihood function were distinguished; the 𝜈𝑖 in the upper-bound was replaced by 

𝜈𝑔𝑖
𝑙, where subscript g stands for guess, l shows the number of iterations, and i 

represents the device’s number. The process of estimating 𝜈𝑔𝑖
𝑙 is shown in Figure 5.5.  
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This process had five steps. First, the equation of the equivalent cycles was linearized. 

Second, an initial guess for the parameter of the equivalent cycle was made. This 

parameter is shown by 𝑛𝑔
𝑙 in Figure 5.5. 

 

 
Figure 5.4. True reliability model, biased survey data, and bias-reduced survey data. 

 

Third, the equivalent cycles of devices were calculated using Eq. (5-12), where 𝑑𝑖 

shows the actual number of drops for the i-th devices, 𝑆𝐼𝑖 is the SI value for the i-th 

device, 𝑆𝐼𝑟𝑒𝑓 is the reference SI value, and 𝑛𝑔
𝑙 is the estimated parameter of the model 

after l iterations. Fourth, 𝜈𝑔𝑖
𝑙 was put in the upper bound of the summation term and the 

other parameters of the likelihood function were estimated through the MLE method. 

It was assumed that the MLE estimates were the true values of the parameters. 

In the fifth step, ∆𝑛𝑙 was calculated through the gradient descent algorithm, a learning 

rate of 0.1 was selected, and the value of 𝑛𝑔
𝑙 was updated. The new value of 𝑛𝑔

𝑙 was 

plugged into Eq. (5-12) again and the process of updating 𝑛𝑔
𝑙 was continued until 

Bias-reduced survey data 

True Model 

Biased survey data 
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convergence. Then, the value of n and consequently the upper bound was fixed, and 

sequential Bayesian analysis was performed to estimate the joint distribution of the 

parameters of the reliability model of the new product. 

𝜈𝑔𝑖
𝑙 = 𝑟𝑜𝑢𝑛𝑑(𝑑𝑖. (

𝑆𝐼𝑖

𝑆𝐼𝑟𝑒𝑓
)𝑛𝑔

𝑙
) (5-12) 

 

Figure 5.5. The process of estimating the upper bound of the summation term of the likelihood 

function of the discrete Weibull type III. 
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The sequential Bayesian analysis consisted of three regular Bayesian analyses. The 

first Bayesian analysis assumed weakly informative prior distributions for the 

parameters of the reliability model. These distributions were Normal distributions with 

the mean values estimated by the MLE method and standard deviations that were half-

normal distributions with a mean of zero and standard deviation of 10% of the MLE 

estimates. The second part of the bias-reduced survey data was used as the observation 

in the first Bayesian analysis, and the primary posterior distributions of the parameters 

were estimated. The kernel density estimation (KDE) method was used for non-

parametrically estimating the joint distribution of the parameters [59, 60]. In the second 

Bayesian analysis, the primary joint posterior distribution of the parameters was used 

as a prior distribution. The second portion of the test data is about a similar product 

used as the likelihood data. The intermediate posterior distributions of the parameters 

were estimated, and the corresponding joint distribution was approximated using the 

KDE method. Finally, the third Bayesian analysis used the intermediate joint posterior 

distribution as the prior distribution and the test data of the new product as observation 

and estimated the final posterior distributions of the parameters. Figure 5.6 shows the 

estimated reliability, mean, and true reliability models. The true reliability model is 

within the uncertainty region of the estimated models, and it is very close to the mean 

reliability model. Therefore, the proposed reliability estimation approach could 

adequately estimate the true reliability model. 

The sensitivity of the estimated reliability model to the selected reference stress 

profile was evaluated. First, the reference stress profile was changed to a drop from a 

person’s head or higher height on a hard surface during a benign (regular) activity. 
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Then the new product's reliability model was estimated. No noticeable change was 

observed in the estimated reliability model.  

 

 

Figure 5.6. The estimated reliability models (discrete distribution analysis) and the True reliability 

model. 

 

Also, the sensitivity of the reliability model to the selected SI model was evaluated. 

An additive SI model replaced the multiplicative SI model, and the proposed approach 

estimated the reliability model. The true model still was reasonably inside the region 

of the estimated reliability models. However, the maximum difference between the true 

reliability model and the mean reliability model over time was about 0.1 higher than 

the maximum difference obtained using the multiplicative SI model. This was because 

the additive SI model had three more parameters (the weights of the three stress 

adjustors) than the multiplicative SI model, which resulted in more uncertainties. 

Also, the reliability model of the new product was estimated using the previous 

approach, which assumes a continuous Weibull distribution [54]. Figure 5.7 shows the 
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result of the continuous analysis, which used the same survey and test datasets. The 

difference between the continuous mean reliability model and the true reliability model 

and the difference between the discrete mean reliability model and the true reliability 

model over equivalent cycles are shown in Figure 5.8. As shown in Figure 5.8, the 

maximum difference between the discrete mean reliability model and the true model is 

2.5%. This difference is more than three times lower than the maximum difference 

between the continuous mean and true reliability models. Therefore, the discrete life 

distribution model resulted in a better reliability estimate and is a better model for 

products with few cycles to failure.  

This study assumed a single failure mode for the hypothetical product. In the presence 

of multiple failure modes, the proposed approach should be used to estimate the 

reliability model of each failure mode. Then, the total reliability model is measured as 

the events that the system is reliable under all failure modes. Thus, one should multiply 

the reliability models of all failure modes and estimate the total reliability model.   
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Figure 5.7. The estimated reliability models (continuous distribution analysis) and the True reliability 

model. 

5.4. Conclusion 

Previous studies used the concept of equivalent cycles. They estimated the reliability 

model of a new consumer product with large cycles to failure through a continuous 

lifetime distribution model using user survey data and reliability test data. This chapter 

introduced and applied the concept of equivalent cycles and developed a mathematical 

method to estimate the reliability model of a new product with a few cycles to failure 

through a discrete lifetime distribution model using user survey data and reliability test 

data.  

This chapter showed that a user survey could be a cost-effective and quick way to 

collect field data for estimating the reliability model of a product having a few cycles 

to failure. Besides, it was shown that using a discrete life distribution can more 

accurately estimate the reliability model of a product having a few discrete cycles to 

failure than using a continuous distribution. However, the discrete distribution analysis 
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is computationally more involved because it requires additional steps related to the 

gradient descent algorithm and MLE.  

The case study assumed a single failure mode. In the presence of multiple failure 

modes, one should multiply the reliability models of all failure modes and estimate the 

total reliability model. However, this case was not investigated in this study. This 

chapter suggested using x% of the survey and test data of a similar product for 

estimating the bias value and the remaining 1-x% for building prior distributions for 

the parameters of the reliability model of the new product. However, determining the 

value of x is out of the scope of this study. The value should be determined through an 

optimization analysis in the future. The proposed approach is generic and can estimate 

the reliability model of a wide range of consumer products such as laptops and 

monitors. 

 

 

 
Figure 5.8. The Difference between the continuous mean reliability model and the true reliability 

model, and the difference between the discrete mean reliability model and the true reliability model 

over equivalent cycles. 
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Chapter 6:  Designing Test Specification of a New 

Consumer Product 

This chapter describes a procedure for designing test specifications for a new 

product with unknown failure modes. The proposed test design method is an extension 

of the bogey test [43], but this approach can estimate the reliability and its confidence 

intervals even if failures occur.  The approach determines the sample size, stress levels, 

and their frequencies for reliability testing based on the target reliability, confidence 

level, manufacturer’s constraints, including test duration and maximum sample size, 

and the actual use conditions of similar products collected by user survey. The 

similarity between the reliability of the new product and similar products depends on 

the extent to which the new product maintains a similar structure, material(s), and 

components [61]. 

The proposed test design approach uses some of the rules explained in our previous 

works like scoring the stress and stress adjustors and combining them through an 

additive or multiplicative stress-index (S.I.) model [62]. Although data about known 

failure modes was used in the previous chapters, the approach proposed here does not 
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consider a specific failure mode for the product. However, the stress, stress adjustors, 

and frequencies of drops are similar to the previous chapters. 

This study designed two test specifications: (1) a frequency-accelerated test and (2) 

a stress-accelerated test. For both tests, the number of samples is determined by 

assuming a binomial distribution; and the use stress profiles of similar products are 

grouped through a multiplicative S.I. model as proposed in [62]. The multiplicative S.I. 

model multiplies the quantitative stress and stress adjustors of a stress profile together 

and delivers an S.I. value for each applicable stress profile. The S.I. values and the use 

frequencies of similar products are grouped using clustering methods. For the 

frequency-accelerated test, the grouped use frequencies are converted to the test 

frequencies and are applied to the samples during the test. In the stress-accelerated test, 

the grouped use conditions are replaced by some accelerated stress profiles, and their 

frequencies are determined using a known stress-life model. The accelerated stress 

profiles are applied to the samples during the test. 

The rest of this chapter proceeds as follows. Chapter 6.1 summarizes the use 

conditions (S.I. values and their frequencies) using three clustering methods. Chapter 

6.2 describes creating a table of all possible stress profiles and their S.I. values. Chapter 

6.3 presents the method for designing the test specification for a frequency-accelerated 

and a stress-accelerated test. Chapter 6.4 illustrates the application of the approach 

using a simulated dataset for an electronic device that users accidentally drop. Chapter 

6.5 concludes the chapter. 
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6.1. Summarize Use Stress Profiles 

Our proposed approach utilizes the use conditions (i.e., the way owners are 

expected to use the product that leads to possible damaging stresses) of similar devices 

collected by user surveys to determine the test specification. As users may have many 

different use conditions, summarizing them into a small number of use condition 

groups will simplify the reliability test plan.  Three clustering methods for this step are 

considered: (1) K-means clustering, (2) Gaussian mixture model (GMM), and (3) SI-

cycle graph to group and summarize the use conditions.   

The input data is a set of data points, where each data point has two values: (1) an 

S.I. (stress-index) value for one stress profile and (2) the frequency of occurrence (how 

frequently a user’s device experienced that stress profile). The S.I. value is obtained 

through an additive or a multiplicative S.I. model which combines all scored stresses 

and stress adjustors of a stress profile [62].  The clustering approach yields a set of 

clusters, and the centroids of the clusters are taken as the grouped use conditions. (That 

is, each cluster has one grouped use condition.)  

6.1.1. K-Means Clustering 

K-means is a clustering method that allows finding groups of similar use conditions. 

K-means is computationally very efficient compared to the other clustering algorithm, 

but it does not have any mechanism to handle the uncertainties [63, 64]. The K-means 

algorithm performs clustering as follows. It first specifies K centroids and initializes 

their coordinates randomly. Then, it calculates the distance between the data points and 

the centroids to assign the data points to their nearest centroids. Finally, it updates the 
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coordinates of each centroid to the mean of the data points in the centroid’s cluster. The 

elbow graph which plots the distortion (i.e., the average of the squared distances from 

the cluster centers) or inertia (i.e., the sum of squared distances of samples to their 

closest cluster center) versus the possible number of clusters is then used to assign K 

[63]. The centroids (geometric means) of the K clusters are the grouped use conditions. 

6.1.2. Gaussian Mixture Model 

The GMM is a clustering technique that uses a probabilistic assignment of data 

points to clusters and unlike the K-means algorithm considers uncertainties in 

clustering. The GMM algorithm performs clustering as follows. First, it specifies K 

multivariate Gaussian models (clusters) and randomly initializes their means and 

variances. Then, it calculates each data point's probability density function (PDF) using 

the existing Gaussian models and assigns the data point to the cluster with the highest 

PDF value. Finally, it updates the mean and variance of each cluster to the mean and 

variance of all data points assigned to that cluster. The trend of the Akaike information 

criterion (AIC) or Bayesian information criterion (BIC) over the number of clusters are 

then used to determine the number of groups, K, representing the number of 

multivariate models in the GMM. The optimum K is on the elbow of the graph. The 

centroids of the K clusters are known as the grouped use conditions. 

6.1.3. SI-Cycle Graph 

The SI-cycle graph is a two-dimensional graph that shows the S.I. values on one 

axis and the frequencies of the S.I. values (i.e., frequencies of the stress profiles) on the 

other axis. The area on the plot is divided into N equal elements. Each element contains 
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some data points. The number and shape of the elements are updated based on the 

optimized number of clusters (K) obtained by the K-means and GMM algorithm. The 

N-K elements with the least number of data points on the graph (scarcely occupied 

elements) are combined with their nearest neighbors. The nearest neighbor is the 

element with the closest boundary to the data points of the scarcely occupied element. 

This combination reduces the number of elements to K. The centroids of the K clusters 

are known as the grouped use conditions. 

6.2. Table of Possible Stress Profiles and S.I. values 

Each cluster’s centroid is associated with an S.I. value and the frequency of its 

occurrence. These are called S.I. values and frequencies the “group S.I. values” and 

“grouped frequencies.”  The next step in our approach creates a table of all possible 

stress profiles and their corresponding S.I. values. Then, each group S.I. value is 

compared with the entries in the table, and the stress profile associated with the next 

higher S.I. value in the table is known as the “grouped stress profile.”  Thus, this step 

“translates” each group S.I. value to an appropriate stress profile that can be used to 

specify conditions for the reliability test. 

6.3. Design Test Specifications 

This subchapter designs test specifications for a new product with unknown failure 

modes. A frequency-accelerated and a stress-accelerated reliability test are proposed. 

Details about the tests and approaches for assigning their specification are discussed in 

subchapters 6.4.1 and 6.4.2. 
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6.3.1. Design Test Specifications for a Frequency-

Accelerated Reliability Test 

A frequency-accelerated reliability test applies the group usage stress profiles to the 

device but accelerates the group use frequencies. The test specification is determined 

based on the manufacturer’s reliability requirements, including the desired warranty 

time, reliability level, confidence level, maximum number of units for the test, and test 

duration. The use conditions of similar devices are also needed to determine the test 

stress profiles and their frequencies of occurrence.  

The procedure of designing test specifications for a frequency-accelerated test is 

shown in Figure 6.1. The various use conditions are grouped into K conditions using 

the clustering methods discussed in subchapter 6.1 and their associated stress profiles 

are estimated using the table of possible stress profiles and S.I. values introduced in 

subchapter 6.2. If the manufacturer desires to run the test under a smaller number of 

stress profiles than K, it may replace some of the stress profiles with the harsher profiles 

in the list of K profiles. This results in a rigorous reliability estimate. When the grouped 

stress profiles are determined, their corresponding frequencies of occurrence are 

multiplied by the ratio between the usage time window that the use frequency was 

calculated from it (e.g., 1 year) and the test duration (e.g., 1 week) to determine the 

frequencies of the stress profiles during the test (i.e., test frequencies). This is 

mathematically shown in Eq. (6-1). 
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                                  Test frequency ቀ
time(or cycle)

test duration
ቁ =

             usage frequency × (
time (or cycle)

usage time window
) ×

usage time window

test duration
 

Eq. (6-1) 

The number of test samples is determined using Eq. (6-2), where m is the number 

of samples, 𝑅𝑙 is the lower-bound reliability determined by the manufacturer, 1-α is the 

confidence level, and l is the desired maximum number of failures when the test is 

complete [65]. 

                   1-α=∑
𝑚!

𝑖!(𝑚−𝑖)!
(1 − 𝑅𝑙)

𝑖𝑙
𝑖=0 𝑅𝑙

(𝑚−𝑖) Eq. (6-2) 

The reliability test is performed on m samples under the K (or smaller) stress 

profiles with the test frequencies. The test outcome is the number of failed (f) and right-

censored (r) samples. If the number of failures is more significant than l, the actual 

reliability is less than the target reliability of the manufacturer. The point estimate of 

reliability is obtained from Eq. (6-3) where 𝑅̂ is the point estimate of reliability, f is the 

number of failed samples when the test is complete, and m is the number of tested 

samples. The lower-bound reliability is calculated using the regularized incomplete 

Beta function, as shown in Eq. (6-4), where 𝑅𝑙 is the lower-bound reliability, 𝐼𝑅 is the 

regularized incomplete Beta function, m is the total number of tested samples, f is the 

number of failed samples, and 1 − 𝛼 is the confidence level. 

                    𝑅̂ = 1 −
𝑓

𝑚
   Eq. (6-3) 
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                             𝑅𝑙= 𝐼𝑅(𝑚 − 𝑓,  𝑓 + 1) ≤ 𝛼 Eq. (6-4) 

 

 

 

 

6.3.2. Design Test Specifications for a Stress-Accelerated 

Reliability Test 

The stress-accelerated reliability test is performed at stress levels higher than the 

use stress levels. This test requires an additional input compared to the frequency-

accelerated test which is the underlying stress-life model of the class of products. To 

run the test, the manufacturer selects some harsher stress profiles (i.e., accelerated 

stress profiles) than the grouped stress profiles. The stress-life model is then used to 

convert the frequency of the grouped stress profiles into the frequency of the 

accelerated stress profiles. 

Manufacturer’s 

reliability 

requirements 

Cluster the use 

conditions 

Estimated the stress 

profiles of the 

clusters 

Determine the 

frequencies of test 

Determine the 

number of test 

samples 

Use conditions 

Run the test 

Outcome of the test 

Figure 6.1 procedure of designing test specification for a frequency-

accelerated test. 
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The procedure of designing test specifications for a stress-accelerated test is shown 

in Figure 6.2. Similar to the frequency-accelerated test, the use conditions are grouped 

using the clustering methods discussed in Subchapter 6.1. The centroids of the clusters 

show the group S.I. values and the grouped frequencies. The grouped stress profiles are 

determined using the table of possible stress profiles and S.I. values introduced in 

Subchapter 6.2. The manufacturer then selects several accelerated stress profiles which 

are harsher than the grouped stress profiles. The grouped frequencies are converted into 

the equivalent frequencies (frequencies of the accelerated stress profiles) using the 

underlying stress-life model, as shown in Eq. (6-5), where P is the cumulative density 

function (CDF), 𝑡𝑠 is the grouped frequency, 𝑆𝐼𝑠 is the S.I. value of the grouped stress 

profile, 𝜈𝑎 is the accelerated frequency, and 𝑆𝐼𝑎 is the S.I. value of the accelerated stress 

profile. The accelerated frequencies are then converted into the test frequencies using 

Eq. (6-6). 

              𝑃(𝑡𝑠, 𝑆𝐼𝑠) = 𝑃(𝜈𝑎, 𝑆𝐼𝑎) Eq. (6-5) 

        Test frequency ቀ
time(or cycle)

test duration
ቁ 

                  = accelerated frequency × (
time (or cycle)

accelerated time window
) 

                   ×
accelerated time window

test duration
 

Eq. (6-6) 

The number of samples for the stress-accelerated test (m) is determined using Eq. 

(6-2). Then, the stress-accelerated test is performed on m samples with their associated 

test frequencies under the accelerated stress profiles. The outcome of the test is the 
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number of failed (f) and right-censored (r) units. The point estimate reliability and the 

lower-bound reliability are estimated using Eq. (6-3) and Eq. (6-4). 

 

 

 

 

6.4. Case Study 

This subchapter illustrates the application of the proposed approach using a 

simulated user survey dataset for an electronic device that users accidentally drop. For 

this product, the applied stress is a drop during use. Three stress adjustors that can 

describe the relevant quantitative stress levels are (a) the drop height, (b) the type of 

surface on which the device dropped, and (c) the type of user’s activity when the drop 

occurred. Weather conditions are not considered a significant stress adjustor for this 

product [62]. The process of simulating the user survey dataset is explained in detail in 

Manufacturer’s 

reliability 

requirements 

Cluster the use conditions 

Estimated the stress 

profiles of the clusters 

Define some 

accelerated stress 

profiles 

Determine the 

number of test 

samples 

Use conditions 

Run the test 

Outcome of the test 

Convert the frequencies of 

the clusters’ stress profiles 

into the frequencies of the 

accelerated stress profiles Stress-life model 

Determine the frequencies 

of test 

Figure 6.2 procedure of designing test specification for a stress-accelerated 

test. 
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our previous study [62]. The dataset contains 1000 users (24% young, 63% middle-

aged, and 13% senior users). The fraction of age groups and the height of users in the 

groups are consistent with the US population data [48, 49, 50, 51]. The users dropped 

their devices under various use conditions (i.e., stress profiles) many times during their 

ownership. The ownership times were randomly drawn from a discrete distribution that 

contained 400 ownership times of 1 year, 300 ownership times of 2 years, 200 

ownership times of 3 years, and 100 ownership times of 4 years. 

The qualitative drop heights in the user survey were knee height, waist height, chest 

height, and head or higher height; the qualitative surface types were soft, semi-soft, 

semi-hard, and hard surface; and the qualitative activities were benign and harsh 

activity. The stress adjustors were scored between 0 and 100 using the method 

explained in [62]. The quantitative stress adjustors were combined through a 

multiplicative S.I. model, as shown in Eq. (6-7), to estimate an S.I. value for each stress 

profile. 

                𝑆𝐼 = ∏ 𝑠𝑖

3

𝑖=1
 

Eq. (6-7) 

6.4.1. Summarized Use Conditions 

The use conditions were grouped using K-means clustering, GMM, and SI-cycle 

graph. For K-means clustering, the elbow graph, as shown in Figure 6.3 (a), along with 

the Kneedle algorithm [66] was used to determine the best number of clusters. The 

elbow graph shows the trend of distortion versus the number of clusters. The best 

number of clusters is at the elbow graph's knee point, and the Kneedle algorithm 
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estimates the location of the knee point. Using this method, the best number of clusters 

was estimated as 4. Then, using the K-means algorithm the use conditions were divided 

into 4 clusters, as shown in Figure 6.3 (b). The centroids of the clusters (i.e., the 

geometric mean of the S.I. values and frequencies) represent the grouped use 

conditions. 

For GMM, the BIC (or AIC) trend versus the number of clusters, as shown in Figure 

6.4 (a), along with the Kneedle algorithm, was used to determine the best number of 

clusters. This analysis resulted in 4 clusters. The GMM was then used to divide the data 

into 4 clusters, as shown in Figure 6.4 (b). Each cluster in Figure 6.4 (b) has three shaded 

parts which show the six-sigma region of the cluster’s Gaussian mixture distribution. 

For the SI-cycle graph, first, the data were arbitrarily divided into 9 identical 

regions, as shown in Figure 6.5 (a). This resulted in four scarcely occupied regions (i.e., 

regions 2, 3, 6, and 9 in Figure 6.5 (a)). These regions were combined with their nearest 

neighbors and the number of regions was reduced from 9 to 4, as shown in Figure 6.5 

(b). The final number of clusters is consistent with the number of clusters for the K-

means and GMM algorithm. 
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Figure 6.3 (a) the elbow graph, (b) the result of clustering using the K-means algorithm. 

 

(b) 

(a) 
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Figure 6.4 (a) trend of BIC and AIC vs. the number of clusters, (b) the result of clustering using the 

GMM algorithm.   

 

(a) 

(b) 



 

 

99 

 

 

 
Figure 6.5. (a) SI-cycle graph with arbitrary divisions, (b) SI-cycle graph with 4 

clusters. 

Figure 6.6 compares the grouped use conditions (the centroids of the clusters) 

obtained by the three methods. The centroids were put into 4 groups which are shown 

(a) 

9 

1 2 3 

4 

7 

6 
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by black ellipses in the figure. In 3 out of the four groups (i.e., groups 1, 2, and 3), the 

centroids estimated by the GMM had the lowest S.I. values. Besides, in all four groups, 

the GMM resulted in the smallest number of drops per year. Therefore, the grouped use 

conditions obtained by GMM are optimistic.  In 3 out of the four groups (i.e., groups 

1, 2, and 3), the centroids estimated by the SI-cycle graph had the highest S.I. values 

and number of drops per year. Thus, the SI-cycle graph results in pessimistic grouped 

use conditions. The grouped use conditions obtained by K-means are moderate because 

the S.I. value or/and the number of drops estimated by K-means clustering are usually 

between the values estimated by the other two methods. 

 
Figure 6.6 The grouped use conditions estimated by K-means clustering, GMM, and SI-cycle graph. 

The pessimistic grouped use conditions obtained by the SI-cycle graph were used 

to infer the group use stress profiles because they resulted in the most rigorous 

reliability estimate. In order to infer the grouped stress profiles, the table of all possible 

stress profiles and their S.I. values was built, as shown in Table 6-1. Because there were 

four height choices (i.e., knee, waist, chest, and head or higher), four surface choices 

1 

2 

3 

4 
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(i.e., soft, semi-soft, semi-hard, and hard), and two activity choices (i.e., benign, and 

harsh) in the user survey, in total there were 32 different possible combinations of them 

(൫4
1
൯ × ൫4

1
൯ × ൫2

1
൯ = 32).  Each combination is a possible stress profile that a user in the 

field may observe. The list of all 32 combinations is shown in Table 6-1. To calculate 

the S.I. values in the table, the scores for knee, waist, chest, and head (or higher) height 

were assumed as 25, 50, 75, 100, for soft, semi-soft, semi-hard, and hard surfaces were 

assumed as 25, 50, 75, 100, and for benign and harsh activity were assumed as 50 and 

100. The height scores are consistent with the scores used for the middle-aged group in 

the user survey dataset. As the middle-aged group has the highest scores in the dataset, 

these scores result in a rigorous reliability estimate. The scores associated with the 

stress adjustors of the 32 stress profiles were combined through a multiplicative S.I 

model, Eq. (6-7), to find the S.I. values in Table 6-1. Table 6-1 shows some stress 

profiles with similar S.I. values. It is assumed that the device is equally damaged under 

the stress profiles with the same S.I. value. 
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Table 6-1 Table of all possible stress profiles and their SI values. 

Stress Profile  S.I. Value Stress Profile  S.I. Value 

Knee- soft- benign 31,250 Waist- hard- benign 250,000 

Knee- semisoft- benign 62,500 Waist- semisoft- harsh 250,000 

Knee- soft- harsh 62,500 Head- semisoft- benign 250,000 

Waist- soft- benign 62,500 Head- soft- harsh 250,000 

Knee- semihard- 

benign 
93,750 Chest- semihard- benign 281,250 

Chest- soft- benign 93,750 Chest- hard- benign 375,000 

Knee- hard- benign 125,000 Chest- semisoft- harsh 375,000 

Knee- semisoft- harsh 125,000 Head- semihard- benign 375,000 

Waist- semisoft- 

benign 
125,000 Waist- semihard- harsh 375,500 

Waist- soft- harsh 125,000 Head- hard- benign 500,000 

Head- soft- benign 125,000 Head- semisoft- harsh 500,000 

Knee- semihard- harsh 187,500 Waist- hard- harsh 510,000 

Waist- semihard- 

benign 
187,500 Chest- semihard- harsh 562,500 

Chest- semisoft- 

benign 
187,500 Chest- hard- harsh 750,000 

Chest- soft- harsh 187,500 
Head (or higher)- semihard- 

harsh 
750,000 

Knee- hard- harsh 250,000 Head (or higher)- hard- harsh 1,000,000 

Each group S.I. value was compared with all S.I. values in Table 6-1 and selected 

the stress profile with the next higher S.I. value as the grouped stress profile. For 

instance, in Figure 6.7, the next higher S.I. value to the S.I. value of centroid 1 was 

562,500 which belonged to a drop from chest height on a semihard surface during a 

harsh activity. The other grouped stress profiles were estimated using the same scenario 

and were listed in Table 6-2.  
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Table 6-2 The grouped stress profiles. 

Centroid No. 

in Figure 6.7 
Grouped stress profile 

Grouped 

Frequency of Use 

1 Chest- semihard- harsh 6 drops in 1 year 

2 Chest- hard- benign 

Chest- semisoft- harsh 

Head- semihard- benign 

Waist- semihard- harsh 

6 drops in 1 year 

3 Knee- hard- benign 

Knee- semisoft- harsh 

Waist- semisoft- benign 

Waist- soft- harsh 

Head- soft- benign 

6 drops in 1 year 

4 Knee- hard- benign 

Knee- semisoft- harsh 

Waist- semisoft- benign 

Waist- soft- harsh 

Head- soft- benign 

49 drops in 1 year 

  

Figure 6.7 The grouped use conditions and all possible S.I. values. 

In the cases where the next higher S.I. value belongs to several stress profiles, each 

can be selected as the grouped stress profile because it is assumed that the device is 

Chest- semihard- harsh 

1 

2 

3 
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equally damaged under all those stress profiles. The grouped stress profiles along with 

the grouped frequencies are used in Subchapter 6.4.2 and Subchapter 6.4.3 to design 

the test specification for a frequency-accelerated and a stress-accelerated test. 

6.4.2. Design Test Specifications for a Frequency-

Accelerated Reliability Test 

A frequency-accelerated test requires three elements which are (1) the group use 

stress profiles, (2) the test frequencies, and (3) the number of test samples (or the 

allowed number of failures if the manufacturer has decided the maximum number of 

samples). The first element was determined in Subchapter 6.4.1 and listed in Table 6-2. 

The test frequencies were calculated using Eq. (6-1) and by assuming the test duration 

of 1 week. These frequencies are 6, 6, 6, and 49 drops in one week for the grouped 

stress profile 1 to 4 listed in Table 6-2, respectively. 

It was assumed that the manufacturer wanted to achieve at least 95% reliability with 

90% confidence after one year of warranty, and the maximum number of test samples 

was 100. The allowed number of failures was estimated as two samples by substituting 

these values in Eq. (6-2). If the number of failures after completing the frequency-

accelerated test is less than 2, the product meets the target reliability. Otherwise, a root 

cause analysis is needed to understand and resolve the reason for out-of-specification. 

For instance, if the number of failures is 3, the point estimate of reliability is 97% and 

the lower-bound reliability is 93.44% which is less than the minimum desired reliability 

of the manufacturer. Therefore, a root cause analysis should be conducted to understand 

the reason for out-of-specification and appropriate actions should be performed to 

improve the product’s reliability. 
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6.4.3. Design Test Specifications for a Stress-Accelerated 

Reliability Test 

A stress-accelerated test requires three elements which are (1) the accelerated stress 

profiles, (2) the equivalent frequencies (i.e., the frequencies of the accelerated stress 

profiles), and (3) the number of test samples (or the allowed number of failures if the 

manufacturer has decided the maximum number of samples). The accelerated stress 

profiles are harsher than the grouped stress profiles and are decided by the 

manufacturer. For instance, the accelerated stress profiles for this case study can be the 

profiles shown in  

Table 6-3. These accelerated stress profiles have at least one harsher stress adjustor 

than their corresponding grouped stress profiles listed in Table 6-2.  

The next step is calculating the equivalent frequencies for the accelerated stress 

profiles such that the accelerated test conditions cause the same amount of damage as 

the grouped use conditions. The underlying stress-life model of the class of products is 

needed to calculate the equivalent frequencies. An inverse power law (IPL) stress-life 

model with known parameters was assumed. This model is shown in Eq. (6-8), where 

N and SI represent the frequency of drops and the S.I. value, respectively. Equation (6-

9) was obtained by the ratio between the frequency of an accelerated stress profile and 

the frequency of a grouped stress profile where ν and 𝑆𝐼𝑎 are the equivalent frequency 

and the S.I. value of the accelerated stress profile, and d and 𝑆𝐼𝑎 are the frequency and 

the S.I. value of the grouped stress profile. The 𝑆𝐼𝑎 and 𝑆𝐼𝑠 were calculated using Eq. 

(6-7). These frequencies are smaller than the grouped frequencies and thus reduce the 

testing time. The test frequencies were estimated using Eq. (6-66) and are listed in  
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Table 6-3. The allowed number of failures, the point estimate reliability, and the 

lower-bound reliability for the stress-accelerated test are estimated using the same 

equations, and the same scenario explained for the frequency-accelerated test. 

                                  𝑁 = 300. 𝑆𝐼−1.2 Eq. (6-8) 

                           ν = 𝑑. (
𝑆𝐼𝑠

𝑆𝐼𝑎
)1.2 Eq. (6-9) 

 

Table 6-3 The test conditions of the stress-accelerated test. 

Centroid No. 

in Figure 6.7 

and Table 6-2 

Accelerated Stress 

Profile 
Test Frequency  

1 Head- hard- harsh 3 drops in 1 week 

2 Head- hard- benign 4 drops in 1 week 

3 Chest- hard- harsh 1 drop in 1 week 

4 Chest- hard- benign 13 drops in 1 week 

6.5. Conclusions 

This chapter showed that the reliability test specification of a new product with 

unknown failure modes could be designed based on the usage conditions of similar 

products collected using a reliability-informed user survey. A test specification based 

on the user data reveals the failure modes observed in the field. The user survey is a 

cost-effective and quick way to collect the use conditions. A frequency-accelerated and 

a stress-accelerated test were proposed. The test stress profiles, their frequencies, and 

the allowed number of failures were determined based on the manufacturer’s reliability 

requirements including the warranty time, desired reliability, confidence level, test 

duration, and the maximum number of samples. The various use conditions collected 
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by the user survey data were grouped through the K-means clustering, GMM, and SI-

cycle graph and were used to determine the test frequencies and the test stress profiles. 

The stress-accelerated test required an additional input compared to the frequency-

accelerated test but delivered a shorter testing time. Designing test specifications was 

illustrated using a simulated dataset for an electronic device that users in the field 

accidentally dropped. Our case study showed that the SI-cycle graph resulted in the 

most pessimistic grouped use conditions and thus delivered the most rigorous test 

specification and reliability estimate. 
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Chapter 7: Summary and Conclusions 
 

Chapter 7 summarizes the dissertation and research contributions and recommends 

future works.  

7.1. Summary of contributions 

1. This dissertation identified the critical elements of a reliability-informed user 

survey and offered recommendations for designing the survey. 

2. The concept of “equivalent damage cycles” was introduced. It considered the effect 

of all applicable damage cycles in reliability analysis and reduced the uncertainty 

of the estimated reliability. 

3. This research introduced a novel formal approach for applying the user survey data 

in a reliability estimation analysis. The approach estimated the reliability model of 

a new product (with no field experience) using user survey data and reliability test 

data of a similar product (e.g., an older version of the new product) and the 

reliability test data of the new product. A continuous lifetime distribution was 

assumed for products with large damage cycles to failure. The actual number of 

cycles under various use conditions was converted into the equivalent number of 
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cycles under a reference use condition. Then, the bias in user responses was reduced 

by (1) measuring the difference between the lifetime distributions of surveyed and 

tested devices of the similar product through the KL divergence method, (2) 

minimizing the difference using an optimization technique such as gradient descent 

algorithm to estimate the bias value, and (3) multiplying all equivalent cycles of the 

surveyed devices by the bias value. Then, the approach estimated the reliability 

model's parameters through a sequential Bayesian analysis.  

4. The research extended survey and test-based reliability estimation for products with 

several damage cycles to failure. The extension relied on discrete forms of 

parametric distributions to describe such a product's lifetime distribution.  

5. The introduction of a novel approach for designing test specifications for a new 

product with unknown failure modes was proposed. 

7.2. Conclusions 

1. This dissertation showed that user survey data could be a cost-effective and 

quick way to collect field data for estimating the reliability model of a consumer 

product. 

2.  Users usually cannot describe the damage on their devices as some damages 

are hidden or hard to approximate; however, users roughly know the conditions 

(stresses) that caused the damage. Therefore, a stress-based model is needed to 

estimate the reliability model of a consumer product using user survey data.  

3. Stresses, stress adjustors, usage times, failure times, and failure modes were 

determined as the critical elements of a reliability-informed user survey. 
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4. The biases in user responses can be reduced or removed through the KL 

divergence method. 

5. This study showed that using user survey data of a similar product as prior 

information in a Bayesian analysis could reduce the uncertainty of the estimated 

reliability of the new product.  

6. A continuous distribution should estimate the reliability of a product with large 

cycles to failure. In contrast, a discrete distribution estimates the reliability 

model of a product with a few cycles to failure. 

7. Designing a reliability test plan based on user survey data of a similar product 

in use reveals the most common failure modes of the new product. It saves time 

and money by disregarding the failure modes that do not happen during the 

actual use conditions. 

8. The developed reliability estimation approach was applied to the real test and 

user survey datasets collected by Amazon lab 126 for some electronic handheld 

devices. The results of the simulated datasets were consistent with the results 

of the real datasets. Due to confidentiality reasons, this dissertation only 

presented the results of the simulated datasets. 

9. The developed reliability estimation approach is applicable when the reliability 

data about a similar product (with a small variation from the new product) is 

available. The reliability data about the products with drastic variations from 

the new product cannot be used as prior information. 
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7.3. Future Works 

This subchapter proposes several future works to expand this research. 

1. This dissertation estimated the reliability model of a new product and its 

uncertainty using the reliability test data of the new product and the user survey 

data and reliability test data of a similar product. However, the sample size was 

not optimized in this study. Increasing the sample size reduces the uncertainty 

of the estimated reliability but increases the manufacturer’s cost associated with 

testing more samples and surveying more users. Finding the best trade-off 

between the sample size and accuracy regarding the manufacturer’s 

requirement could be a possible research direction to improve the current study. 

Previous studies that determined the samples size based on the manufacturer’s 

requirement (e.g., the ratio or the difference between the upper-bound and 

lower-bound of the reliability model at a given time like the warranty time) and 

found the best trade-off between the sample size and accuracy could be a start 

point [44, 67]. 

2. In Chapter 5, a test and a user survey dataset were simulated for a product with 

a few damage cycles to failure. The reliability model was then estimated using 

a continuous and a discrete lifetime distribution. It was shown that the discrete 

lifetime distribution better estimated the reliability model of the product. A 

future study can simulate datasets with many damage cycles to failure and 

compare the reliability models estimated by a discrete and a continuous lifetime 

distribution.  
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3. Another potential future work can be preparing a lookup table that quantifies 

the amount of bias in user survey responses for different classes of products and 

different types of stresses. Many manufacturers can use the lookup table 

because the bias in user responses is independent of the manufacturer. Previous 

studies showed that the bias in user responses depends on the event's importance 

and the occurrence frequency. For instance, a user may accurately recall the 

events when she/he spilled a liquid on her/his cell phone in the past month. In 

another world, the user may accurately remember the number of spills, the type 

of liquid (e.g., water, coffee, soda), and the rough temperature of the liquid. 

However, the user may not accurately remember the number of times she/he 

pressed the volume button of the cell phone or the applicable pressures. The 

bias about these events does not depend on the device’s manufacturer. 

Therefore, research can be performed to classify different products and stresses 

into several levels. Then, a generic lookup table that illustrates the bias values 

of different stress levels and products can be prepared using real-world 

reliability test datasets, user survey datasets, and the proposed bias estimation 

approach.  

4. This study used continuous Weibull distribution and discrete type III Weibull 

distribution to illustrate the application of the proposed reliability estimation 

approach. Other lifetime distributions such as Normal, lognormal, and 

exponential distribution can be used to demonstrate the approach's generality. 

5. This study selected the scoring and stress-life models through a sensitivity 

analysis. However, model selection methods such as BIC and AIC can be used 
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as comparison metrics to select the best combination of the scoring, lifetime 

distribution, and stress-life models. These methods use the model's log-

likelihood, the number of parameters in the model, and the data size to score 

various model combinations and select the combination that best fits the data. 

6. This study assumed that the similar product is an older version of the new 

product. However, sometimes an older version of the new product does not 

exist. Determining a similarity index that describes how much a new product is 

similar to the existing products allows using the reliability data of other 

products to build a (weighted) prior distribution for Bayesian analysis of the 

new product. 

7. The case studies used normal distributions for simulating variation in the 

(scored) stress adjustors. However, using normal distributions rarely may 

generate random scores outside of the valid score range. Using beta distribution 

with parameters that are close to a symmetric bell shape model avoids this 

problem.  
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Appendix A 

This appendix presents the examples of the python codes developed to obtain the 

results of this dissertation. 

Appendix A.1: Python Code for Estimating the Reliability Model Using 

Continuous Distribution 

This section presents an example of the python code developed to obtain the results 

provided in Chapter 4 of this dissertation. 

# Import libraries: 

import warnings 

import pandas as pd 

import arviz as az 

import matplotlib as mpl 

import matplotlib.pyplot as plt 

import numpy as np 

import pymc3 as pm 

import theano.tensor as tt 

from pymc3 import Model, Normal, Slice, sample 

from pymc3.distributions import Interpolated 

from scipy import stats 

from theano.compile.ops import as_op 

from google.colab import files 

uploaded = files.upload() 

import io 

# Import Data: 

DF= pd.read_csv(io.BytesIO(uploaded['Survey1_1_15_22(1800-1.5-0.5)_multiplicative.csv'])) 

df1 = pd.read_csv(io.BytesIO(uploaded['Test1(A1800_B1.5_n0.5)_1_13_2022.csv'])) 

df2 = pd.read_csv(io.BytesIO(uploaded['Test2(A2200_B1.5_n0.5)_1_13_2022.csv'])) 

DF1= pd.read_csv(io.BytesIO(uploaded['DF1.csv'])) 

DF2 = pd.read_csv(io.BytesIO(uploaded['DF2.csv'])) 

DF3 = pd.read_csv(io.BytesIO(uploaded['DF3.csv'])) 

DF4 = pd.read_csv(io.BytesIO(uploaded['DF4.csv'])) 

 

# Define the kernel density function: 

def from_posterior (param, samples): 

    smin, smax = np.min(samples), np.max(samples) 

    width = smax - smin 

    x = np.linspace(smin, smax, 100) 
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    y = stats.gaussian_kde(samples)(x) 

    x = np.concatenate([[x[0] - 3 * width], x, [x[-1] + 3 * width]]) 

    y = np.concatenate([[0], y, [0]]) 

    return Interpolated(param, x, y) 

 

#Collect first half of the survey data about the similar device  

scale_value=1 

ns1 = round (DF1['biased drops'],2) # ns1 is the no. of drops 

SIs=round (DF1['SIs']/scale_value,2) # SIs is the SI value of the first portion of the surveyed 

devices 

 

# Build the log-likelihood using the first portion of surveyed devices:  

def logp (SIs, ns1): 

    summ1 = 0 

    for i in range(0, len(DF1)):  

        SI=1000 

        print(i) 

        F=DF1['failure'][i] # Collect the failure status (healthy/failed) of the first portion of surveyed. 

devices 

        nu=(ns1[i])*(SIs[i]/SI)**n # Calculate the equivalent cycles. 

        PDF = (B*nu**(B-1))/(A*SI**-n)**B # PDF is used to build the log-likelihood function. 

        R = np.exp(-(nu/(A*SI**-n))**B) # R is used to build the log-likelihood function. 

        logLik = (np.log ((PDF**F)*R)) # Log-likelihood function 

        summ1 += logLik # Sum of the logLik. 

    return (summ1) 

 

# Bayesian estimation using the first portion of the surveyed devices: 

with pm.Model() as model_ss1: 

  

    MuB = 1.49 

    SigmaB= pm.HalfNormal ("SigmaB", 0.15) 

    B = pm.Normal ('B', mu=MuB, sigma=SigmaB) 

    MuA = 1299.82 

    SigmaA= pm.HalfNormal ("SigmaA", 130) 

    A = pm.Normal('A', mu=MuA, sigma=SigmaA) 

    Mun =0.5 

    Sigman= pm.HalfNormal("Sigman", 0.05) 

    n = pm.Normal('n', mu=Mun, sigma=Sigman)  

    y = pm.DensityDist ('y', logp, observed={'SIs': SIs.values.astype (int), 'ns1': ns1.values.astype 

(int)}) 

    trace_ss1 = pm.sample (1000, tune=1000, chains = 2, target_accept=0.99) 

    print ('The code is running') 

    Bi = pm.summary (trace_ss1, var_names=['B'])['mean'][0] 

    Ai = pm.summary (trace_ss1, var_names=['A'])['mean'][0] 

    ni = pm.summary (trace_ss1, var_names=['n'])['mean'][0] 
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    az.plot_trace (trace_ss1, var_names=['B','A','n']) 

    print(str('[B, A, n]=[')+str(Bi)+str(',')+str(Ai)+str(',')+str(ni)+str('])')) 

 

#Collect the first portion of test data about the similar product:  

SI=1000 

scale_value=1 

nts1 = round (DF3['No. of drops_test_SI1'],2) # number of drops 

SIts1=round (DF3['st1_SI1']*DF3['st2_SI1']*DF3['st3_SI1']/scale_value,2) # SI value 

 

# Build the log-likelihood using the first portion of test data about the similar product:  

def logp2(SIts1, nts1, SI): 

    summ1 = 0 

    for i in range (0, len(DF3)):  

        print(i) 

        F1=DF3['failure'][i]   

        nu=nts1[i]*(SIts1[i]/SI)**n 

        PDF = (B*nu**(B-1))/(A*SI**-n)**B 

        R = np.exp(-(nu/(A*SI**-n))**B) 

        logLik = (np.log ((PDF**F1)*R)) 

        summ1 += logLik 

    return(summ1) 

 

# Bayesian estimation using the first portion of test data about the similar product: 

with pm.Model() as model_ts1: 

    MuB =1.6 

    SigmaB= pm.HalfNormal("SigmaB", 0.16) 

    B = pm.Normal('B', mu=MuB, sigma=SigmaB) # Prior distribution of beta 

    MuA =1789.99 

    SigmaA= pm.HalfNormal("SigmaA", 179)  

    A = pm.Normal('A', mu=MuA, sigma=SigmaA) # Prior distribution of A 

    Mun = 0.52 

    Sigman= pm.HalfNormal("Sigman", 0.052) 

    n = pm.Normal('n', mu=Mun, sigma=Sigman) # Prior distribution of n 

    y = pm.DensityDist('y', logp2, observed={ 'SI': SI,'SIts1': SIts1.values.astype(int), 'nts1': nts1.va

lues.astype(int)}) 

    trace_ts1 = pm.sample(1000, tune=1000, target_accept=0.99,chains = 2) 

    print ('The code is running') 

    Bi = pm.summary(trace_ts1, var_names=['B'])['mean'][0] 

    Ai = pm.summary(trace_ts1, var_names=['A'])['mean'][0] 

    ni = pm.summary(trace_ts1, var_names=['n'])['mean'][0] 

    az.plot_trace(trace_ts1, var_names=['B','A','n']) 

    print (str('[B, A, n]=[')+str(Bi)+str(',')+str(Ai)+str(',')+str(ni)+str('])')) 

 

#%% Kullback-Leibler Analysis: 
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################################################################# 

 X is the number of cycles of the tested units. Therefore, the equivalent cycles of the surveyed unit

s shoud be taken to the power of (or multiplied by) 1/Sai to follow the life distribution of the teste

d units. 

################################################################# 

# Estimate the bias value through the KL divergence analysis: 

from scipy.optimize import minimize 

import tensorflow.compat.v1 as tf 

tf.disable_v2_behavior()  

font=14 

plt.style.use('seaborn-white') 

SI=1000 

learning_rate = 0.001; 

epochs = 100 

Sai=tf.Variable(np.ones(1)) 

[betas, As, ns]=[1.57,1299.99,0.51]; # These parameters were estimated using the first portion of 

the surveyed devices. 

alphas=As*(SI**-ns) # Calculate the scale parameter of the Weibull distribution using the survey 

data 

[betat,At,nt]=[1.4,1799.99,0.5]; # These parameters were estimated using the first portion of the 

tested devices from the similar product. 

alphat=At*(SI**-nt) # Calculate the scale parameter of the Weibull distribution using the test data 

Time=300 

x=np.arange(1,Time,(Time-1)/(m)) 

Sai = tf.Variable(0.5, trainable=True) 

p=(betat*(x**(betat-1))/(alphat**betat))*np.exp(-(x/alphat)**betat).reshape(1, -1) 

qqq=(betas*((x*Sai)**(betas-1))/(alphas**betas))*tf.exp(-((x*Sai)/alphas)**betas) 

q=tf.reshape (qqq, [1, m]) 

kl_divergence = p * tf.log(p / q) # Calculate the KL distance 

loss = kl_divergence 

optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(abs(kl_divergence)) # 

Minimize the KL distance through the gradient descent algorithm to estimate the bias value. 

with tf.Session () as sess: 

    sess.run(tf.global_variables_initializer()) 

    for i in range (500): 

        print(sess.run ([Sai])) # This line prints the estimated bias value at each iteration 

        sess.run (optimizer) 

 

#Removing bias from the second portion of the survey data and building the log-likelihood 

function using the unbiased survey data: 

SI=1000 

scale_value=1 

ns11 = DF2['biased drops'] 

SIs11=DF2['SIs']/scale_value 
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def logp1(SIs11, ns11, SI): 

    summ1 = 0 

    for i in range (0, len(DF2)):  

        print(i) 

        F=DF2['failure'][i] 

        nu=ns11[i]*(SIs11[i]/SI)**n # Calculate the equivalent cycles using the original users’ data. 

        nu=nu*1.351 # Remove bias from the equivalent cycles by multiplying the equivalent cycles 

by the estimated bias value. 

        PDF = (B*nu**(B-1))/(A*SI**-n)**B 

        R = np.exp(-(nu/(A*SI**-n))**B) 

        logLik = (np.log ((PDF**F)*R)) 

        summ1 += logLik # Sum of the log-likelihood function 

    return(summ1) 

 

# Estimating the primary posterior distribution (first step of the sequential Bayesian analysis): 

with pm.Model() as model_ss2: 

    MuB = 1.49 

    SigmaB= pm.HalfNormal("SigmaB", 0.15) 

    B = pm.Normal('B', mu=MuB, sigma=SigmaB) # Prior distribution of beta 

    MuA = 1299.82 

    SigmaA= pm.HalfNormal("SigmaA", 130) 

    A = pm.Normal('A', mu=MuA, sigma=SigmaA) # Prior distribution of A 

    Mun =0.5 

    Sigman= pm.HalfNormal("Sigman", 0.05) 

    n = pm.Normal('n', mu=Mun, sigma=Sigman) # Prior distribution of n 

    y = pm.DensityDist('y', logp1, observed={ 'SI': SI,'SIs11': SIs11.values.astype(int), 'ns11': ns11.

values.astype(int)}) 

    trace_ss2 = pm.sample(1000, tune=2000, chains = 2, target_accept=0.99) 

    print ('The code is running') 

    Bi = pm.summary(trace_ss2, var_names=['B'])['mean'][0] # Primary posterior distribution of 

beta 

    Ai = pm.summary(trace_ss2, var_names=['A'])['mean'][0] # Primary posterior distribution of A 

    ni = pm.summary(trace_ss2, var_names=['n'])['mean'][0] # Primary posterior distribution of n 

    az.plot_trace(trace_ss2, var_names=['B','A','n']) 

    print(Bi, Ai, ni) 

 

#Collect the second Part of the test data about the similar product 

nts2 = round (DF4['No. of drops_test_SI1'],2) 

SIts2=round (DF4['st1_SI1']*DF4['st2_SI1']*DF4['st3_SI1']/scale_value,2) 

 

# Build the log-likelihood using the second portion of the test data about the similar product: 

def logp3(SIts2, nts2): 

    summ1 = 0 
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    for i in range(0, len(DF4)):  

        print(i) 

        SI=1000 

        F11=DF4['failure'][i]   

        nu=nts2[i]*(SIts2[i]/SI)**n 

        PDF = (B*nu**(B-1))/(A*SI**-n)**B 

        R = np.exp(-(nu/(A*SI**-n))**B) 

        logLik = (np.log ((PDF**F11)*R)) 

        summ1 += logLik 

    return(summ1) 

traces = [trace_ss2] 

model = Model () 

 

# Estimating the intermediate posterior distribution using the second portion of test data about the 

similar product as the likelihood data (second step of the sequential Bayesian analysis): 

with model: 

    B = from_posterior ("B", trace_ss2["B"]) # Priors of B, A, and n are the posterior 

distributions of the previous step. 

    A = from_posterior ("A", trace_ss2["A"])  

    n = from_posterior ("n", trace_ss2["n"])  

    y = pm.DensityDist ('y', logp3, observed={'SIts2': SIts2.values.astype 

(int), 'nts2': nts2.values.astype (int)}) 

    trace_ts2 = pm.sample (1000, tune=3000, chains = 2, target_accept = 

0.99, start = {'A': 1800, 'n': 0.5, 'B': 1.5})  

    traces.append(trace_ts2) 

    az.plot_trace(trace_ts2, var_names=['B','A','n']) 

    Bii = pm.summary(trace_ts2, var_names=['B'])['mean'][0] # Intermediate posterior distribution 

of beta 

    Aii = pm.summary(trace_ts2, var_names=['A'])['mean'][0] # Intermediate posterior distribution 

of A 

    nii = pm.summary(trace_ts2, var_names=['n'])['mean'][0] # Intermediate posterior distribution 

of n 

    print(Bii, Aii, nii) 

 

# Collect test data about the new device: 

scale_value=1 

SI=1000 

ntn = round(df2['No. of drops_test_SI1'],2) 

SItn=round(df2['st1_SI1']*df2['st2_SI1']*df2['st3_SI1']/scale_value,2) 

 

# Build the log-likelihood using the test data about the new product: 

def logp4(SItn,ntn): 

    # Resave the initial parameter guesses 
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    summ1 = 0 

    for i in range(0,len(df2)):  

        print(i) 

        SI=1000 

        F11=df2['failure'][i]         

        nu=ntn[i]*(SItn[i]/SI)**n 

        PDF = (B*nu**(B-1))/(A*SI**-n)**B 

        R = np.exp(-(nu/(A*SI**-n))**B) 

        logLik = np.log ((PDF**F11)*R) 

        summ1 += logLik 

    return(summ1) 

traces = [trace_ts2] 

model = Model() 

 

# Estimating the final posterior distribution using the test data about the new product as the 

likelihood data (third step of the sequential Bayesian analysis): 

with model: 

    # Priors are posteriors from previous iteration 

    B = from_posterior("B", trace_ts2["B"]) 

    A = from_posterior("A", trace_ts2["A"]) 

    n = from_posterior("n", trace_ts2["n"]) 

    y = pm.DensityDist('y', logp4, observed={ 'SItn': SItn.values.astype(int), 'ntn': ntn.values.astype

(int)}) 

    trace_tn = pm.sample(1000, tune=3000, target_accept=0.999, chains = 2) 

    traces.append(trace_ts2) 

    az.plot_trace(trace_tn, var_names=['B','A','n']) 

    Bii = pm.summary(trace_tn, var_names=['B'])['mean'][0] #Final posterior distribution of beta 

    Aii = pm.summary(trace_tn, var_names=['A'])['mean'][0] #Final posterior distribution of A 

    nii = pm.summary(trace_tn, var_names=['n'])['mean'][0] #Final posterior distribution of n 

    print(Bii, Aii, nii) 

 

A.2: Python Code for Estimating the Reliability Model Using Discrete 

Distribution 

This section presents an example of the python code developed to obtain the results 

provided in Chapter 5 of this dissertation. 

# Import libraries: 

import warnings 

import pandas as pd 

import arviz as az 

import matplotlib as mpl 
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import matplotlib.pyplot as plt 

import numpy as np 

import pymc3 as pm 

import theano.tensor as tt 

from pymc3 import Model, Normal, Slice, sample 

from pymc3.distributions import Interpolated 

from scipy import stats 

from theano.compile.ops import as_op 

from google.colab import files 

uploaded = files.upload() 

import io 

from scipy.optimize import minimize 

import math 

 

 

# Import data: 

DF= pd.read_csv (io.BytesIO(uploaded['Survey_4_4_22(C0.05-B0.5_n0.5).csv'])) 

df1 = pd.read_csv (io.BytesIO(uploaded['Test1_4_4_2022(c0.05).csv'])) 

df2 = pd.read_csv (io.BytesIO(uploaded['Test2_4_4_2022(c0.025).csv'])) 

DF1= pd.read_csv (io.BytesIO(uploaded['DF1_4_4.csv'])) 

DF2 = pd.read_csv (io.BytesIO(uploaded['DF2_4_4.csv'])) 

DF3 = pd.read_csv (io.BytesIO(uploaded['DF3_4_4.csv'])) 

DF4 = pd.read_csv (io.BytesIO(uploaded['DF4_4_4.csv'])) 

 

#Define the kernel density function: 

def from_posterior (param, samples): 

    smin, smax = np.min(samples), np.max(samples) 

    width = smax - smin 

    x = np.linspace(smin, smax, 100) 

    y = stats.gaussian_kde(samples)(x) 

    x = np.concatenate([[x[0] - 3 * width], x, [x[-1] + 3 * width]]) 

    y = np.concatenate([[0], y, [0]]) 

    return Interpolated(param, x, y) 

 

SIs11=DF2['SIs'] 

ns11 = DF2['biased drops'] 

SIref = 1000 

 

Delta_n = [] 

N0 = [] 

Fun0 = [] 

ni = 0.05  

lam = 0.1 
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delta_n = 0 

iterations = 10 

F=DF2['failure'] 

 

# Define the -log-likelihood function: 

def regressLL(params): 

    b = params [0] 

    c = params [1] 

    n = params [2]    

    summ1 = 0. 

    summ2 = 0. 

    Nu0 = [None]*len(DF2) 

    for i in range (0, len(DF2)): 

        Nu0[i] = ((ns11[i]*(SIs11[i]/SIref)**n0)).astype(int) 

        for j in range (1, Nu0[i]): 

            summ1 += j**b 

        summ2 += ((np.log(1-np.exp(-c*((((ns11[i]*(SIs11[i]/SIref)**n))+1)**b)))))*F[i] 

    logLik = -c*summ1+summ2 

    return(-logLik) 

 

# Gradient descent algorithm to estimate n: 

for k in range (1, iterations): 

    n0 = ni+lam*delta_n 

    start_pos = [0.5, 0.5, 0.6] 

    bnds = [(0.4, 0.8), (0.4, 0.8), (0.5, 0.7)] 

    results = minimize (regressLL, start_pos,bounds=bnds) 

    ni = results.x[2] 

    print(ni) 

    delta_n = 0. 

    for i in range(0, len(DF2)): 

        Nu_p = ((DF2['biased drops'][i]*(DF2['SIs'][i]/SIref)**ni)).astype(int) # Calculate the 

equivalent cycle. 

        if Nu_p == 0: 

            Nu_p = 1 

        delta_n += ((np.log (DF2['biased drops'][i]*(DF2['SIs'][i]/SIref)**n0)-

np.log(Nu_p))*(np.log(DF2['SIs'][i])-np.log(1000))) 

    delta_n = delta_n/len(DF2) 

    n0 = ni+lam*delta_n # update the n value 

    Delta_n.append(delta_n) 

    N0.append(n0) 

    Fun0.append(results.fun) 

plt.rc("figure", figsize=[8, 6]) 

font = 20 

csfont = {'fontname': 'Times New Roman'} 

plt.plot(range(1, iterations), N0) 
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plt.ylabel('n', fontsize=font, **csfont) 

plt.xlabel('Number of iterations', fontsize=font, **csfont) 

plt.xticks(fontsize=20, rotation=0, **csfont) 

plt.yticks(fontsize=20, rotation=0, **csfont) 

plt.title('Gradient Descent', fontsize=font, **csfont) 

plt.axhline(y=0.49, color='red',linestyle='--',label="True Value ", linewidth=3) 

plt.show() 

SI=1000 

scale_value=1 

 

#Collect the second portion of the survey data: 

DF2=DF2[DF2['biased drops']>1] 

DF2.reset_index(drop=True, inplace=True) 

ns11 = DF2['biased drops'] 

SIs11=DF2['SIs']/scale_value 

 

#Build the log-likelihood using the second portion of the survey data after removing its bias. 

def logp1(SIs11, ns11, SI): 

    summ1 = 0 

    for i in range(0,len(DF2)):  

        print(i) 

        F=DF2['failure'][i] 

        nu=ns11[i]*(SIs11[i]/SI)**n 

        nu=nu*1.35 # 1.35 is the inverse of the bias value. 

        PDF = (B*(nu**(B-1)))/((A*SI**-n)**B) 

        R = np.exp(-(nu/(A*SI**-n))**B) 

        logLik = np.log ((PDF**F)*R) 

        summ1 += logLik 

    return(summ1) 

 

#Bayesian analysis using the bias-removed survey data (first step of the sequential Bayesian 

analysis): 

with pm.Model() as model_ss2: 

    MuB =1.6  

    SigmaB= pm.HalfNormal("SigmaB",0.16)  

    B = pm.Normal('B', mu=MuB, sigma=SigmaB) #prior distribution of beta 

    MuA = 192  

    SigmaA= pm.HalfNormal("SigmaA", 19.2)  

    A = pm.Normal('A', mu=MuA, sigma=SigmaA) #prior distribution of A 

    n=0.4 # n=0.4 was obtained using the gradient descent algorithm. 

    y = pm.DensityDist ('y', logp1, observed={ 'SI': SI,'SIs11': SIs11.values.astype 

(int), 'ns11': ns11.values.astype (int)}) 

    trace_ss2 = pm.sample (1000, tune=1000, chains = 2, target_accept=0.99, cores=1) 

    print ('The code is running') 
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    Bi = pm.summary(trace_ss2, var_names=['B'])['mean'][0] #primary posterior distribution of 

Beta 

    Ai = pm.summary(trace_ss2, var_names=['A'])['mean'][0] #primary posterior distribution of A 

    az.plot_trace(trace_ss2, var_names=['B','A']) 

    print(Bi, Ai) 

 

# Collect the test data about the similar product: 

DF4=DF4[DF4['No. of drops_test_SI1']>0.5] 

DF4.reset_index (drop=True, inplace=True) 

nts2 = round (DF4['No. of drops_test_SI1'],2) 

SIts2=round (DF4['st1_SI1']*DF4['st2_SI1']*DF4['st3_SI1']/scale_value, 2) 

 

#Build the log-likelihood using the second portion of test data about the similar product. 

def logp3(SIts2,nts2): 

    summ1 = 0 

    for i in range(0,len(DF4)):  

        print(i) 

        SI=1000 

        F11=DF4['failure'][i]   

        nu=nts2[i]*(SIts2[i]/SI)**n 

        PDF = (B*nu**(B-1))/(A*SI**-n)**B 

        R = np.exp(-(nu/(A*SI**-n))**B) 

        logLik = (np.log ((PDF**F11)*R)) 

        summ1 += logLik 

    return(summ1) 

traces = [trace_ts2] 

model = Model() 

 

#Bayesian analysis using the second portion of the test data about the similar product (second step 

of the sequential Bayesian analysis): 

with model: 

    B = from_posterior("B", trace_ts2["B"]) 

    A = from_posterior("A", trace_ts2["A"]) 

    n=0.4 # n=0.4 was obtained using the gradient descent algorithm. 

    y = pm.DensityDist ('y', logp4, observed= {'SItn': SItn.values.astype 

(int),  'ntn': ntn.values.astype(int)}) 

    trace_tn = pm.sample (1000, tune=1000, chains = 2, target_accept=0.99) 

    traces.append(trace_tn) 

    az.plot_trace(trace_tn, var_names=['B','A']) 

    Bii = pm.summary(trace_tn, var_names=['B'])['mean'][0] # Final posterior of beta 

    Aii = pm.summary(trace_tn, var_names=['A'])['mean'][0] # Final posterior of A 

    print(Bii, Aii) 

 

# Collect the test data about the new product: 

scale_value=1 



 

 

125 

 

SI=1000 

df2=df2[df2['No. of drops_test_SI1']>0.5] 

df2.reset_index(drop=True, inplace=True) 

ntn = round(df2['No. of drops_test_SI1'],2) 

SItn=round(df2['st1_SI1']*df2['st2_SI1']*df2['st3_SI1']/scale_value,2) 

 

Build the log-likelihood using the test data about the new product: 

def logp4(SItn,ntn): 

    summ1 = 0 

    for i in range(0,len(df2)):  

        print(i) 

        SI=1000 

        F11=df2['failure'][i]   

        nu=ntn[i]*(SItn[i]/SI)**n 

        PDF = (B*nu**(B-1))/(A*SI**-n)**B 

        R = np.exp(-(nu/(A*SI**-n))**B) 

        logLik = (np.log ((PDF**F11)*R)) 

        summ1 += logLik 

    return(summ1) 

traces = [trace_ts2] 

model = Model() 

 

# Bayesian analysis using the test data of the new product (third step of the sequential Bayesian 

analysis): 

with model: 

    B = from_posterior ("B", trace_ts2["B"]) 

    A = from_posterior ("A", trace_ts2["A"]) 

    n=0.4 

    y = pm.DensityDist('y', logp4, observed={'SItn': SItn.values.astype(int), 'ntn': ntn.values.astype

(int)}) 

    trace_tn = pm.sample(1000, tune=1000,chains = 2,target_accept=0.99) 

    traces.append(trace_tn) 

    az.plot_trace(trace_tn, var_names=['B','A']) 

    Bii = pm.summary(trace_tn, var_names=['B'])['mean'][0] 

    Aii = pm.summary(trace_tn, var_names=['A'])['mean'][0] 

    print(Bii, Aii) 
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Glossary 

 

Stress An agent that causes damage to the product. 

Stress adjustor A variable that increases or decreases the stress magnitude or 

stress absorption.  

Stress profile A combination of stresses and stress adjustors. 

Stress block A given stress profile when repeated multiple times. 

Reliability The probability that a product or system performs its intended 

function adequately for a specified duration under specified 

use conditions [68]. 

Critical Elements The essential data needed for estimating the reliability model 

of a consumer product. 

New Product A product that is under development and has not been 

introduced to the market yet. 

Similar Product A product whose features, dimensions, and materials are 

close to the new product. 

Damage Cycle A usage cycle that causes partial cumulative damage that 

when reaches a threshold, the devices will fail.  
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