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In this dissertation, I use computational techniques especially molecular dynamics (MD)

and machine learning to study important biological processes. MD simulations can effec-

tively be used to understand and investigate biologically relevant systems with lengths and

timescales that are otherwise inaccessible to experimental techniques. These include but

are not limited to thermodynamics and kinetics of protein folding, protein-ligand binding

free energies, interaction of proteins with membranes, and designing new therapeutics for

diseases with rational design strategies. The first chapter includes a detailed description of

the computational methods including MD, Markov state modeling and deep learning. In the

second chapter, we studied membrane active peptides using MD simulation and machine

learning. Two cell penetrating peptides MPG and Hst5 were simulated in the presence

of membrane. We showed that MPG enters the model membrane through its N-terminal

hydrophobic residues while Hst5 remains attached to the phosphate layer. Formation of

helical conformation for MPG helps its deeper insertion into membrane. Natural language

processing (NLP) and deep generative modeling using a variational attention based vari-

ational autoencoder (VAE) was used to generate novel antimicrobial peptides. These in



silico generated peptides have a high quality with similar physicochemical properties to

real antimicrobial peptides. In the third chapter, we studied kinetics of protein folding us-

ing Markov state models and machine learning. We studied the kinetics of misfolding in

b2-microglobulin using MSM analysis which gave us insights about the metastable states

of b2m where the outer strands are unfolded and the hydrophobic core gets exposed to

solvent and is highly amyloidogenic. In the next part of this chapter, we propose a machine

learning model Gaussian mixture variational autoencoder (GMVAE) for simultaneous di-

mensionality reduction and clustering of MD simulations. The last part of this chapter

is about a novel machine learning model GraphVAMPNet which uses graph neural net-

works and variational approach to markov processes for kinetic modeling of protein fold-

ing. In the last chapter, we study two membrane proteins, spike protein of SARS-COV-2

and EAG potassium channel using MD simulations. Binding free energy calculations using

MMPBSA showed a higher binding affinity of receptor binding domain in SARS-COV-2

to its receptor ACE2 than SARS-COV which is one of the major reason for its higher in-

fection rate. Hotspots of interaction were also identified at the interface. Glycans on the

spike protein shield the spike from antibodies. Our MD simulation on the full length spike

showed that glycan dynamics gives the spike protein an effective shield. However, breaches

were found in the RBD at the open state for therapeutics using network analysis. In the last

section, we study ligand binding to the PAS domain of EAG potassium channel and show

that a residue Tyr71 blocks the binding pocket. Ligand binding inhibits the current through

EAG channel.
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Chapter 1: Introduction

1.1 Molecular dynamics

Proteins are responsible for nearly all biological processes that is essential for life.

They metabolize nutrients, regulate genetics, recognize pathogens and sense the outside

world. This is remarkable considering proteins are linear polymers of 20 building blocks

called amino acids. Functionality of proteins depends on spatial and temporal structure

of the protein. However, a 3D shape of protein is not the only determinant of protein

function. Conformational �exibility is an inherent property of all proteins and it is essen-

tial for the function of many proteins such as transport proteins, signal transduction pro-

teins, cellular recognition and numerous enzymes.[345] Allosteric proteins, such as GPCR

perform large scale conformational changes upon binding of ligand to their binding site

which induces large conformational changes and a cascade of intracellular response.[219]

There are numerous experimental techniques to study protein dynamics, such as Nuclear

Magnetic Resonance (NMR)[141], �uorescence resonance energy transfer (FRET)[183],

atomic microscopes and optical tweezers[126]. Despite the numerous amount of experi-

mental techniques to study dynamics of proteins, there are spatio-temporal limitations to

the time and length scale of the conformational space these method could achieve. More-

over, details about the pathway of different conformations remains unknown. On the other

hand, molecular dynamics (MD) have been named a computational microscope[163], giv-

ing us detailed microscopic interactions that play major roles in folding, ligand binding
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and other biological problems. In fact the Nobel Prize for Chemistry in 2013 was awarded

to Martin Karplus, Michael Levitt, and Arieh Warshall for their pioneering work of MD

methodology for biomolecular systems. In short, in MD the interactions between particles

whose positions are denoted as the 3D Cartesian coordinates of individual atoms, are com-

puted. The motion of each particle is de�ned by the potential energy whose derivative are

calculated to obtain forces between particles which is then used to solve the Newton's equa-

tions of motion. Solving these together in consecutive steps generates a trajectory of the

dynamics of the system under study. All-atom MD using classical force-�elds allowed the

study of dynamics in small molecules such as small peptides to large protein systems such

as virus capsids.[38, 187] The accuracy of a MD simulation depends on two factors: First is

the empirical force-�eld used for parameters of interaction between particles in the system.

The other is the simulation time which should be long enough to overcome the local energy

barriers which lead to quasi-ergodicity. One straightforward way is to run long simulations

using supercomputers.[273] Enhanced sampling approaches are also developed to sample

conformational space in a more ef�cient manner. The subsequent subsections give a broad

overview of basic concepts and techniques in MD simulation.

1.1.1 Force Fields

A force �eld describes the parameters of interaction between particles in the system.

Empirical force �elds represent biomolecules at atomistic resolution. These additive poten-

tial energy functions consist of large number of force-�eld parameters which are obtained

from empirical and quantum mechanical studies on small-molecules. Some commonly

used force�elsd are CHARMM , AMBER and GROMOS.[115] These force-�elds may

involve different terms and de�nitions of the potential energy function. For example the

CHARMM force�eld takes the form:
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V(R) = å
bonds

Kb(b� b0)2 + å
angles

Kq (q � q0)2 å
dihedrals

Kc (1+ cos(nc � d))+

å
UB

(S� S0)2 + å
impropers

Kimp(f � f 0)2+

å
non� bond

e[(
Rmini j

r i j
)12 � (

Rmini j

r i j
)6] +

qiq j

e1r i j
(1.1)

In the above equationV(R) is the total energy in CHARMM force�eld. First term three

is the potential energy for bonds, angles and torsions respectively. Following terms are

Urey-Bradley, improper dihedrals, non-bonded van der Waals and electrostatic terms.

1.1.2 Hamiltonian equations of motion

For a system of N particles, the Hamiltonian of a system is the sum of potential and

kinetic energies:

H(q1; :::;qn; p1; :::; pn) =
1
2

n

å
n= 1

p2
i

mi
+ U(q1; :::;qm) (1.2)

wheremi is the mass,qi is the coordinate andpi is the momenta of particlei. The

Hamiltonian equations of motion are given by:

�qi =
¶H
¶ pi

=
pi

mi
(1.3)

�pi = �
¶H
¶qi

= �
¶U
¶qi

= Fi (1.4)

qi andpi are time derivatives andFi is the net force on particlei. Solving these equations

leads to the trajectory of all particles in the system. If the system is isolated, the total

3



energy of the system is conserved and¶H=¶t = 0 and all microstates are visited with

equal probability. However, if an external heat bath is coupled with the system, there will

be energy exchange between the system and the bath which corresponds to a canonical

ensemble. In this situation, the phase space is explored with probability:

P(q; p) � e� H(q;p)
kBT (1.5)

In a canonical ensemble, the temperature of the system and the number of particles of

the system are conserved. In NPT canonical ensemble the pressure of the system remains

constant while in NVT ensemble, the volume of the system is kept constant.

1.1.3 Integrators

Numerical integration methods are needed to �nd an approximate solution of the or-

dinary differential equations given a timestep and initial positions and velocities of the

atoms in the system. Some of the most widely used numerical integrators are Verlet

algorithm[109] and Leapfrog.[140] Verlet integrator uses two Taylor series expansions to

derive the positions:

q(t + dt) = 2q(t) � q(t � dt)+ dt2q̈(t) + O(dt4) (1.6)

velocities are calculated by �rst-order central difference

�q(t) =
1

2dt
[q(t + dt) � q(t � dt)] + O(dt2) (1.7)

Leapfrog integrator improves the Verlet integrator by computing velocities at timet +
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1=(2dt) and positions at timet + dt.

q(t +
1
2

dt) = �q(t �
1
2

dt)+
dt
m

F(t) (1.8)

q(t + dt) = q(t)+ dt �q(t +
1
2

dt) (1.9)

In this way, the velocities and positions are updated with an offset of a half-timestep.

Velocities at time t are computed as :

�q(t) =
1
2

[ �q(t +
1
2

dt)+ �q(t �
1
2

dt)] (1.10)

this algorithm is more ef�cient and time-reversible.

1.1.4 Periodic boundary conditions

It is not computationally feasible to simulate a real system with a mole of molecules

(1023 atoms) but periodic boundary conditions allow us to extend the simulations box and

the unit cell is embedded in an in�nite space.[343] An illustration of PBC is shown in

Figure 1.1

1.1.5 Cutoff methods

Calculation of nonbonded forces is usually the most time-consuming part of MD simu-

lations. Most interactions such as van der Waals decay with increasing radiusr and thus we

can use a spherical cutoffrc and only compute the forces within this cutoff. Three different

cutoff methods exist in MD simulations: truncation, shifting and switching.[232, 227] In

the truncation method if the distance is more than the cutoffrc, the forces are truncated to

zero. However, this scheme is problematic and causes a discontinuity atrc. In the shifting
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Figure 1.1: Periodic boundary conditions.

method, the potential is shifted linearly such that the force is zero at the cutoffrc.

USF(r) =

8
>><

>>:

Uvdw(r) � (r � rc)ÑUvdw(rc) � Uvdw r � rc

0 r > rc

(1.11)

Another approach is to switch off potential within a distance cutoff by applying a

switching function to the potential function. This method can be applied to the electrostatic

potential and forces. Long range electrostatic interactions are applied using the particle

mesh ewald (PME) summation scheme.[94]

1.1.6 Thermostat

In MD simulation, the temperature of the system is maintained constant in NPT or NVT

ensemble by coupling the system to a thermostat with �xed temperature. There are several

thermostats to employ in MD simulation:

I) Berendsen Thermostat: Berendsen algorithm[168] (known as weak coupling scheme)

generates the temperature �uctuations by multiplying the velocities by factorl in a differ-
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ent form:

l =

s

1+
dt
t T

(
T0

T(t)
� 1) (1.12)

wheret T is the coupling parameter which determines the degree of coupling between

the system and the bath anddt is the timestep of simulation. Ift T � dt then the system is

weakly coupled to thermostat. This method is used for systems that are far from equilibrium

(equilibration step). This method suffers from problems due to suppression of �uctuations

of kinetic energy which is not consistent with canonical ensemble.

II) Velocity rescaling thermostat: This thermostat is similar to Berendsen thermostat

but produces the right canonical ensemble.[39]. In this thermostat the velocities of each

particle at each timestep, or everynTC steps is scaled by a time-dependent factorl as :

l = [ 1+
nTCDt

t T
f

T0

T(t � 1
2Dt)

� 1g]1=2 (1.13)

The parameterst T is similar to the time constant of temperature couplingt as :

t =
2CV t T

Nd fk
(1.14)

CV is the total heat capacity of the system,k is the Boltmann's constant andNd f is the

total number of degrees of freedom of the system. This thermostat modi�es the kinetic

energy byDEk = ( l � 1)2Ek. Velocity rescaling thermostat can be viewed as a Berend-

sen thermostat with an additional stochastic term that ensures the correct kinetic energy

distribution.[39]

III) Langevin thermostat : This thermostat can be viewed as a heat-bath with small

�uid particles with Brownian motion that can affect the diffusive behavior of molecules in

the system. In this method two terms are added to the Hamiltonian equations: �rst is the
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viscous drag force� gpi which acts opposite to direction of momentum.[72] Second is a

random noiseRi(t) due to stochastic collisions with solvent molecule:

dpi = �
¶H
¶qi

dt � gpidt + Ri(t)dt (1.15)

gi is the friction coef�cient or coupling constant which measures the degree of coupling.

Ri is the random collision and has the amplitude
p

2gmikBT̄dWi=dt whereWi is the vec-

tor of independent Wiener processes (Brownian motions) term with zero mean value and

covariance of< Ri(t)Rj (t + t ) > = 2gmikBTd(t )di j . Random forces are uncorrelated in

time and between particles. With this thermostat the system not only couples globally to

a heat batch but also is subject to random noise. Langevin thermstat produces a canonical

ensemble when converged, but the parameterg affects the diffusive behavior considerably.

1.1.7 Barostats

In MD simulation and NPT ensemble the pressure of the system is maintained constant

by coupling the system to a barostat. The pressure of a system in a cubic box of �nite size

can be derived from viral theorem as :

Wtot = � 3NkBT = � 3PV + F (1.16)

Wtot is the total work done by the system, V is the box volume,� 3PV is the external

virial due to the interactions between the particles and the wall andF is the inner virial for

particle-particle interactionsF = å N
i Fiqi . The pressure is obtained from :

P =
1

3V
(3NkBT +

N

å
i

Fi :qi) (1.17)

Scaling the inter-particle interactions is used in Berendsen barostat to control the pres-
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sure of the system. In this scheme the volume of simulation cells is scaled by a rescaling

factorh .

h (t) = 1�
dt
t P

g(P0 � P(t)) (1.18)

dt is the timestep,t P is the relaxation time constant of barostat andg is isothermal

compressiblity andP0 is the temperature of barostat. In a simulation with isotropic scaling,

coordinates and box vector are scaled byh 1=3. Berendsen barostat is useful in equilibrat-

ing systems to get them to desired pressure but it does not provide the correct thermody-

namic ensemble. Parinello-Rahman barostat is an extended-ensemble pressure coupling

algorithm[196] where the simulation is carried out with both isotropic and anisotropic con-

ditions and pressure �uctuations are captured correctly. This barostat is desirable for pro-

duction runs.

1.1.8 Enhanced sampling methods

Despite the success of MD to study biological processes, there are still limitations in the

timescale that can be reached. Inadequate sampling of conformational states, in turn limits

the full understanding of the functional properties of the system under study. Large scale

conformational changes usually are complicated and time consuming processes and are

commonly beyond the capabilities of standard MD and enhanced sampling techniques are

often required. Several enhanced sampling techniques speci�cally replica exchange molec-

ular dynamics and metadynamics are used in this dissertation and are described shortly

below.[19]

Replica exchange simulation (REMD)In REMD, simulations are performed with

different temperatures and exchanges of coordinates between simulations at different tem-

peratures are performed to enhance sampling of con�gurational space. An illustration of

REMD is shown in �gure 1.2.
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Figure 1.2: Illustration of replica exchange molecular dynamics (REMD) where multiple simula-
tions with different temperatures are run in parallel and exchanges happen between these replicas.

Replica exchange solute tempering (REST)In REMD the number of required repli-

cas scales with square root of the number of degrees of freedom in the system. This means

even for a small system, tens of replicas would be needed to maintain an acceptable accep-

tance ratio.[287] One can rede�ne the Hamiltonian in each replica to only consider a small

subset of the system for parallel tempering. In REST1 [186] the potential energy of the sys-

tem is decomposed into three parts: protein-intramolecular interactions (Epp), interaction

between protein and water molecules in the solvation shell (Epw) and interaction between

water molecules (Eww). The potential energyEm of replica at temperatureTm is de�ned as:

Em(X) = Epp(X) =
b0 + bm

2bm
Epw(X)+

b0

bm
Eww(X) (1.19)

X is the coordinates of entire system andbm = 1BT andb0 = 1=k0T. In REST2 the potential

energy is de�ned as:

Em(X) =
bm

b0
Epp(X)+

s
bm

b0
Epw(X)+ Eww(X) (1.20)

In REST1 different replicas have different temperatures, however, in REST2 [314] the tem-

perature is constant for all replicas and all simulations arrive at the �nal ensemble distribu-

tion for temperatureTm. The scaling is performed on bonded and non-bonded interactions
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in the potential function. For a system with M replicas with an effective temperatureTm in

replica m the equilibrium distribution is:

Pm(Xm) =
e� bmEm(Xm)

Z
(1.21)

where Z is the partition function. The acceptance ratio in REST2 of exchange between

replicas m and n is based on the ratio of transition probabilities that satisfy the detailed

balance:

Pi! f

Pf ! i
=

Pn(Xm)Pm(Xn)
Pm(Xm)Pn(Xn)

= e� Dnm (1.22)

Dnm = ( bm � bn)[Epp(Xn) � Epp(Xm) +

p
b0p

bn +
p

bm
(Epw(Xn) � Epw(Xm))] (1.23)

Applying a metropolis criterion for the exchange results in :

Pi! f (r) =

8
>><

>>:

1 Dnm � 0

exp(� Dnm) Dnm > 0
(1.24)

REST2 have been used for conformational sampling of proteins and protein membrane

interaction in multiple applications.[146, 129, 313]

Metadynamics: In metadyanmics simulation, an external history dependent bias po-

tential in the space of a few CVs that capture the slowest motions in the system is added

to the Hamiltonian of the system which allows to escape from current conformation and

sample other parts of the conformational space.[9, 10] An illustration of metadynamics

simulation is shown in �gure 1.3. The biasing potential is constructed as a sum of Gaussian
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Figure 1.3: An illustration of metadynamics simulation technique

kernels deposited along the collective variabless(q)

V(s;t) = å
kt < t

W(kt )exp(� å
i= 1

d
(si � si(q(kt ))) 2

2s 2
i

) (1.25)

In the formula W is the Gaussian height,t is the Gaussian deposition stride,si is theith

collective variable,d is teh number ofCVsands i is the Gaussian width ofith CV.

The biasing potential forces the system away from any local minimum into visiting new

regions of phase space. In the long time limit, all the CVs spaces are �lled evenly and bias

potential converges to the minus free energy as a function of the CVs.

V(s;t ! ¥ ) = � F(s)+ C (1.26)

F(s) is the free energy as a function of CVs. The parameterst , W, s i determine the

shape of Gaussians which in�uence the accuracy of sampling and the constructed FES.[10]

If the Gaussians are large (large W), broad (larges i) and deposited quickly (shortt ), the

sampling will take shorter time at the cost of large error for construction of FES and also

the conformations in shallow energy basins are hardly sampled. On the other hand, small

slowly deposited Gaussians results in higher accuracy for FES but require more simulation

time for convergence. One drawback of standard metadynamics is that Gaussian kernels of
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constant height are added in the entire simulation. This results in pushing the system to ex-

plore high free energy regions and the free energy calculated from bias potential �uctuates

around real value.

Well Tempered metadynamics:

The objective of well-tempered metadynamics is to effectively sample the con�gura-

tional space which is de�ned by a few CVs to obtain a converged FES. IN WT-metad[27]

the height of Gaussians decreases with time:

W(kt ) = W0exp(�
V(s(q(kt )) ;kt )

kBDT
(1.27)

In this formula,W0 is the initial Gaussian height,DT is the parameter that regulates

the extent of free energy exploration.DT = 0 corresponds to standard MD simulation and

DT ! ¥ corresponds to standard metadyanmcis.[9] In WT-MetaD bias-factor is de�ned as

the ratio of temperature of CVs(T + DT) and temperature of system T:

As the simulation proceeds, the Gaussian height has an inverse relation to the Gaussian

added and decreases with time.

g =
T + DT

T
(1.28)

The bias potential in this case is :

V(s;t) = kBDTln(1+
wN(s;t)

kBDT
(1.29)

wherew = W0=t is the initial deposition rate and N is the histogram of variable CV

s(x) from biased simulation. In the long time limit, the free energy can be obtained from:

V(s;t ! ¥ ) = �
DT

T + DT
F(s)+ C(t) (1.30)
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The FES at �nite time is estimated from:

F̃(s;t) =
� T + DT

DT
V(s;t) (1.31)

Well-tempered metadynamics have been used in numerous studies for conformational

sampling of proteins, protein ligand binding and allosteric activation of proteins.

1.2 Kinetic modeling and Markov State Models

Markov state models (MSMs) are a class of kinetic models for modeling long timescale

of molecular systems. The dynamics of the system in MSM is modeled as a series of

memoryless probabilistic jumps between a set of states. A powerful feature of MSM is the

transition probability matrixpi j (t ) which is probability that a trajectory is at statej after a

lagtimet that it was found in statei.[59]

pi j (t ) = Prob[xt+ t ; j jxt ; i] (1.32)

Assuming the molecular dynamics process is Markovian in spaceW and the stationary

probability distribution is computed as :

m(x) = Z� 1e� bH(x) (1.33)

H is the hamiltonian andZ =
R

dxexp(� bH(x)) is the partition function andb = ( kBT)� 1

wherekB is the Boltzmann constant and T is the temperature. Furthermore, the processxt

is reversible andpi j (t ) ful�lls the detailed balance condition:

mi pi j = mj p ji (1.34)
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Eigen-decomposition of the transition matrix gives us important information about

equilibrium and dynamical properties of the system. Eigenvectors corresponding to each

eigenvalue have n elements that correspond to n states. The highest eigenvaluel 1 = 1

and its corresponding eigenfunction represents the equilibrium distributionm(x). All other

eigenvalues are less than 1 and describe decaying processes (positive eigenvalues) or oscil-

lating (negative eigenvalues which does not have physical meaning). Positive eigenvalues

are then converted to physically meaningful timescales using a lagtimet which is used to

build the transition matrix.[30]

There are many choices of how to perform MSM such as how many states should be

chosen. The variational principle (VAC)[215] enables objective comparison among differ-

ent choices of Markov models with the same lagtime. The variational principle of confor-

mational dynamics is analogous to the variational principle in quantum mechanics, stating

that the true eigenfunctions can be best approximated through a Markov model given the

estimated timescales are maximized. the variational principle of conformational dynamics

states that given a set ofn orthogonal functions of conformatinoal spaceW, their autocorre-

lation at timet gives lower bounds to the true eigenvaluesl 1; :::; l n of the Markov operator.

This meansl true(t ) � l (t ) which implies that the timescales are always underestimated

when using MSM. This allows the formation of a variational optimization approach to �nd

best approximate eigenvalues and eigenfunctions of the true Markov model.

If the simulation data are realized of an ergodic and time-reversible Markov process in

phase spaceW, the time evolution of probability distributionpt(x) can be formulated as a

set of relaxation processes.

pt+ t (x) =
¥

å
i= 1

e� t
ti m(x)y i(x) < y i ; pt > (1.35)

ti are the relaxation times in a decreasing order,y i are the eigenfunctions of transition ma-
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trix with eigenvaluesl i(x) = e� t
ti . Themdominant eigenfunctionsy 1; :::;y m are the slow-

est collective variables that characterize the dynamics on large timescalest � tm+ 1. The

eigenvalues and eigenfunctions of Markov model can be computed by a constrained opti-

mization problem which is named the variational approach to conformational dynamics.[215]

This maximizes the following equation.

Rm = max
f1;:::; fm

å m
i= 1Em[ fi(xt) fi(xt+ t )]

Em[ fi(xt)2] = 1

Em[ fi(xt) f j (xt)] = 0 ( f or i 6= j) (1.36)

In the equations above,Em is the expected value ofXt sampled from a stationary dis-

tribution andRm is the Rayleigh trace. Therefore, the variational approach states that the

eigenvalues are always underestimated and variational principle is used to maximize the

eigenvalues of the Markov operator. Eigenfunctions of the Markov operator are approxi-

mated by a linear combination of basis functions or feature functionsX = ( X1; :::;Xm)T and

the eigenfunctions are computed as :

fi(x) =
m

å
j= 1

bii c j (x) = bT
i c (x) (1.37)

Expansion coef�cientsbi and eigenvalues of the Markov model can be computed by solving

a generalized eigenvalue problem:

C(t )B = C(0)BL̂ (1.38)

C(0) andC(t ) are the autocorrelation with zero lagtime and time-lagged covariance ma-
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trices of basis functions andL is the diagonal matrix of eigenvaluesL̂ = diag( ˆl 1; :::; ˆl m)

andB = ( b1; :::;bm). Inserting these coef�cients would result in approximation of eigen-

functionsP(t ) = C(0)� 1C(t ) is the transition matrix of the MSM. The lagtimet should be

long enough to ensure the dynamics is Markovian and short enough to �nd the dynamics

that wer are interested. The implied timescalesti is an approximation of the decorrelation

time of ith process and is computed from the eigenvalues of the MSM transition rate matrix

as :

ti = �
t

lnjl i(t )j
(1.39)

The implied timescales (ITS) can be used to choose a lagtime by choosing one that

makes the ITS constant. Once we choose the lagtime we can check whether a transition

probability matrixP(t ) is Markovian by Chapman-Kolomogorov test:

P(kt ) = Pk(t ) (1.40)

The validated transition matrix is then decomposed into eigenvalues and eigenvectors.

The highest eigenvlaue is alwaysl 1(t ) = 1 corresponding to eigenvector of the stationary

distributionp with the property:

pTP(t ) = pT (1.41)

All other eigenvaluesl i> 1 are real with norm less than 1 and are relatedto characteristic to

implied timescales of dynamical processes within the system.
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1.2.1 MSM construction from MD simulations

In the last 20 years, researchers have constructed a pipeline for construction and valida-

tion of a Markov state model from molecular dynamics trajectories that involves multiple

steps described below.

I) Feature selection:In order to build a Markov model of long-timescale kinetics, one

must �rst choose a few features or collective variables that are important for the system un-

der study. These features could include but not limited to distances, torsions and Cartesian

coordinates. Variational approach to Markov processes provides a score (VAMP-2) which

allows comparison of different features and choosing the best set of features based on a

cross-validated VAMP-2 score.[262]

II) Dimensionality reduction: Featurization of the molecular system leads to high

dimensional space. Discretizing a very high dimensional space by clustering is inef�cient

and could lead to low-quality discretizations that does not accurately describe the dynamics

of the system. Therefore, usually we �rst reduce the dimensionality by a linear coordinate

transformation. In this transformation, we look for a set of basis vectorsU = [ u1; :::;um]

whereui is a collective coordinate withmi components. After the transformationy(t) =

UTx(t) are the new coordinates. Common linear dimensionality reduction methods are

PCA and TICA. PCA transforms data into orthogonal basis which are uncorrelated and

retains the variance of the dataset. However, this does not describe the molecular kinetics.

We are interested in preserving the slow motions rather than high-amplitude motions as

in PCA. For example, consider a small peptide which is highly �exible at its termini and

undergoes a rare event concerted torsion at its center. We are interested in the kinetics of

this rare-event rather than the high-variance �uctuations at the termini. TICA is a form

of variational approach to conformational kinetics (VAC) and is the optimal method for

�nding the �ow reaction coordinates and the relaxation timescales. TICA is similar to
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PCA but uses a time-lagged correlation matrixC(t ), whereCi j (t ) = < x̃i(t)x̃ j (t) > t . A

generalized eigenvalue problem:

C(t )ui = C(0)l i(t )ui (1.42)

is solved and the new coordinates are now uncorrelated under the lagtimet . The kinetic

variance under transformation can be de�ned asKVm = å m
i= 1 l 2

i
TKV whereTKV = å i= 1 l 2

i is

the total kinetic variance which roughly measure the total number of slow processes.

III) Clustering : State decomposition happens at the clustering step. The features in

the TICA space are grouped into a set of clusters using a clustering algorithm. Kmeans

clustering is usually used as the method of choice in this step.

VI) Building the transition rate matrix : After the clustering, the state space is dis-

cretized into discrete trajectoriess(t) jumping betweenn microstates wheren is the number

of clusters. Conditional transition probability between microstates at timet is de�ned as:

Pi j (t ) = P(s(t + t ) = jjs(t) = i) (1.43)

A Markov model predicts the kinetics at longer timescales using the Markov property:

P(s(t + t ) = jjs(t) = i) = [ Pk(t )] i j (1.44)

The MSM also predicts the equilibrium probabilityP = pi in terms of stationary vector

PT = PTP(t ). In order to compute the error bars of the timescales, a Bayesian MSM

samples from posterior distributionP (P(t )jC(t )) � P Pn
i; j= 1P

ci j (t )
i j whereci j (t ) is the

number of transitions computed betweeni and j over lagtimet . The lagtimet must be

picked such that the relaxation timesti(t ) = � t
ln l i(t ) are approximately constant within

statistical error for longer times. The model is validated using Chapman-Kolmogrov (CK)
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test where the model estimated at lagtimet must be able to predict estimates performed at

longer timescaleskt which can be written as:

P(kt ) = Pk(t ) (1.45)

V) Coarse-graining MSM: Often it is desirable to describe the molecular process in

a few states that contains the essential structural, thermodynamic and kinetic information.

However, the number of microstates generated during clustering in building an MSM is

usually in the range of hundreds to thousands. On the other hand, a coarse-grained model

is important to compute information such as mean �rst passage times (MPFT) from one

set of states to another. A fuzzy assignment in which each microstatei has a assignment

probability to macrostateI has been proposed[156, 341] to preserve the slow kinetics in the

coarse-grained kinetic model wheremiI = P(macro� I jmicro� i). The membership prob-

abilities are computed by a linear combination of �rstm eigenvectors of the observation

matrix by PCCA++ method[245] which exactly preserves the relaxation kinetics of the m

slowest processes.

1.3 Machine Learning

Introduction to Neural networks: Machine learning (ML) involves using computa-

tional methods to learn from the data without any explicit programming. ML is being used

in nearly all the �elds of science and has made important and notable breakthroughs. Deep

learning is a sub�eld of ML and is concerned with algorithms which loosely mimic the

human brain and are called deep neural networks (DNNs). A classical application of ML

is in image classi�cation where the model tries to associate a label to each image using the

features in the pixel data. The underlying idea is that there is a explicit relation between

the set of pixels and the associated label which the model tries to learn. The same idea
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can be extended to the molecular space where a full description of atomic or molecular

features dictates its chemical properties. ML techniques have been used in many aspects

of molecular simulation such as enhanced sampling[21, 244], force�eld optimization[179?

] and kinetic modeling [194] and etc. Machine learning techniques could be grouped in

multiple categories:

Supervised learning: In supervised learning, the model is provided with the inputs and

the labels for all input samples and the task is usually �nding the desired properties (labels)

of any given input. The model after proper training is able to predict the target (label) of

unseen samples. Most common supervised learning tasks are regression and classi�cation

tasks.

Unsupervised Learning: Unlike supervised learning in unsupervised learning the data

will not contain labels and the task is to identify patterns or similarities/differences within

the data. Clustering for example is an unsupervised learning problem. Methods such as

K-means clustering fall in this category. Another important task in unsupervised learning

is dimensionality reduction where the goal is to �nd a reduced dimension of the data that

carries most of the important or relevant information.

Reinforcement Learning: This type of machine learning is different from other cat-

egories as an agent takes action in the environment and the goal is maximizing a reward

function. The agent learns to take actions which gives reward and avoid the ones that have

a negative reward or a punishment. In this type of machine learning there is no training

data (labeled or unlabeled) and the agent self improves through trial and error.

1.3.1 Arti�cial Neural network

The structure of analytic neural networks is inspired by neural connections in the brain.

Neural networks consist of multiple layers of simpler units. A ”perceptron” is the simplest
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Figure 1.4: Representation of a perceptron

neural network with a single layer.[249]. In a perceptron, the model takes single or multiple

inputs and computes a weighted sum of the input and �nally applies a non-linear activation

function to compute a single output. This is shown in �gure 1.4.

y = f (å
i

xiwi + b) (1.46)

In the above equationxi are inputs,wi are the weights andb is a bias term. f is a

nonlinearity function. The nonlinearity is also called activation function. There are many

different activation functions that are commonly used in machine learning such as ReLU,

tanh, Sigmoid and can be used depending on the task and the type of network.

A Feed-forward Neural network (FFNN) (�gure 1.5) is a collection of multiple percep-

trons stacked together. A FFNN is also called a multi-layer perceptron (MLP). Universal

approximation theorem[133] states that a MLP containing as little as one hidden layer with

a �nite number of neurons can approximate any continuous function under mild assump-

tions on the activation functions used.

Cost functions: Training a neural network involves minimizing a loss or cost function

which usually measures the discrepancy between actual values and the values that are out-

put of the network. Some types of cost functions are mean squared error or a categorical

cross entropy loss for classi�cation tasks.
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Figure 1.5: Illustration of a multilayer perceptron with 4 hidden layers and 1 output

backward propagation: During training a deep neural network, we need to update the

weights and biases of the network(w;b). The question remains how to compute the gradient

of loss functionGwith respect to the parameters of the inner layers on the network. This is

done by backpropagation algorithm where a chain rule is used to compute gradient of inner

layers. In this approach, we calculate numerically the derivative of the cost function with

respect to weightwi j in layerl using a chain rule. The derivative of the lossGis taken with

respect to the net input to outer nodeui , then using chain rule with respect to parameters

we want to optimize. this can be written as:

¶G
¶wi j

=
¶G
¶ui

¶ui

¶wi j
= di

¶
¶wi j

[bi + å
j0

wi j 0y j0] = diy j (1.47)

Same can be written for the bias parameters.

gradient descent: Once we have the gradients of the loss with respect to model param-

eters we can minimize the loss. Ifq denotes all the parameters of the neural network, given

the initial parameters of the network, the most basic gradient descent scheme updates them

as:
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Figure 1.6: Gradient descent algorithm. Image credit: Science magazine

qk+ 1 = qk � hÑqkG(qk) (1.48)

Whereh is the learning rate, controls the size of the step for training. This is considered

a hyperparameter during training. The minus sign in the equation ensures the parameters

are updated to minimize the loss. Other variants of gradient descent algorithm are proposed

such as stochastic gradient descent (SGD) where at each epoch of training a mini-batch of

data is used for error computation. Other types include Adam optimization and RMSProp

which are variants of SGD using momentum techniques to speed up the training and avoid

getting stuck in local minima.

1.3.2 Convolutional neural networks

This is a specialized architecture of neural network for grid-structured data with strong

spatial dependencies. This architecture is increasingly being used for one-dimensional

time-series data, two-dimensional images and three-dimensional video data.[110] In convo-

lutional neural networks (CNNs) we use different kernels (or �lters) on the data which are

just matrices that learn features such as edges or lines from the data. These basic features

are then used to build more complicated shapes and patterns. The convolution operation
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Figure 1.7: Convolutional neural networks for handwritten digits.

is a simple dot product, where a �lter (kernel) is moved across the image. A 2D convo-

lution involves length, width and depth parameters where the length and width describe

the convolutional kernel and depth relates to the number of input channels. For example,

images used with RGB color values have a depth of 3. The use of convolutional kernel,

also gives a translational invariance to the model where features are detected regardless of

their locations in the input image.

1.3.3 Recurrent neural networks

Feedforward neural networks fail to capture the sequential behavior of data where the

order is of importance. These include protein sequences or time series of MD simulation

trajectories. Recurrent neural networks (RNNs) are particularly useful when dealing with

sequential data. In RNNs data are provided in a sequential manner and the networks uses

the inputs from the previous timesteps to make prediction or any decision making at the

current timestep. A RNN is shown in �gure 1.8 where a single RNN is unrolled to show

the information processing at each timestep through multiple copies of the network.[267]

In the RNN in �gure 1.8,xt is th input at each timestept, yt is the output of each
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Figure 1.8: Unrolling a RNN

timestep andht is the hidden state att which is calculated as:

ht = f (Uxt + Wht� 1) (1.49)

wheref is a non-linear activation function such as tanh or ReLU.U and W are weight

matrices learned during training. In an RNN the weights are shared across all timesteps

which greatly reduces the model complexity. Training a RNN involves a special type of

backpropagation called backpropagation through time.

LSTM networks: Vanilla RNNs suffer from vanishing gradient problem, which causes

the model to forget long-term dependencies in data. In order to circumvent this issue,

several extensions to RNNs were proposed such as long short term memory (LSTM)[130]

and Gated recurrent units (GRU).[58]

Long short term memory (�gure 1.9) can be used to solve some of the problems with

RNNs such as 1) long-term dependency in RNN and 2) vanishing gradient and exploding

gradient in RNNs. A LSTM[130] consists of a cell, an input gate, an output gate and a

forget gate. The cells are to store information, whereas the gates manipulate them. In

LSTM, information is selectively allowed through a gate unit, using a sigmoid function.

Forget gate: The �rst step is deciding what information to discard from the cell state.
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Figure 1.9: Illustration of Long short term memory unit

This forget gate takesht� 1 andxt as input and outputs a value between 0 and 1 for each cell

stateCt� 1

ft = s (Wf [ht� 1;xt ] + bf ) (1.50)

whereht� 1 represents the output of previous cell andxt is the input of current cell and

s is the sigmoid function.

Input gate: this step decides how much new info will be added to the cell state. First

a sigmoid layer determines which information needs to be updated and then atanhlayer is

applied.

it = s (Wi [ht� 1;xt ] + bi) (1.51)

C̃t = tanh(Wc[ht� 1;xt ] + bc) (1.52)

Ct = ft � Ct� 1 + it � C̃t (1.53)
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Output gate: Here we �st use a sigmoid to determine which part of the cell state will

be exported, then process the cell state using a tanh function.

ot = s (Wo:[ht� 1;xt ] + bo) (1.54)

ht = ot � tanh(Ct) (1.55)

1.3.4 Variational Autoencoders

Autoencoders are a special type of neural networks designed to ef�ciently compress and

encode data and then learn back from the reduced encoded representation by reconstructing

the original representation as closely as possible. Therefore, they are used to reduce the

dimensionality of the input data. In a simple autoencoder the encoder maps the data into

a low dimensional space and the decoder maps it back to the original dimension. The loss

function is de�ned as the accuracy of reconstruction of the data with respect to the original

data. A simple autoencoder is also called a deterministic autoencoder.

Variational autoencoders combine autoencoders with variational inference and enable

the model to learn a meaningful latent representation of data. Variational inference is based

on the Bayes rule. The Bayes rule can be written as :

p(ZjX) =
p(X;Z)
p(X)

(1.56)

X refers to the observed data andZ is the latent variable.p(Z) is known as prior distribu-

tion, p(XjZ) is the likelihood of the observation ofX given the latent codeZ. The inference

problem in Bayesian statistics deals with computing the posteriorp(ZjX). The denomina-

tor in the above equation is the marginal distribution of data also called evidence, which

28



can be computed by marginalizing out the latent variables. However, in many cases the ev-

idence is intractable and cannot be computed in closed form. On the other hand, vairational

inference deals with approximate inference to �nd an approximate distribution that is close

to the true posterior. Kullback-Leibler (KL) divergence measures the difference between

two distributions and this KL is used to approximate the true posterior. KL between two

probability distributionsP andQ is de�ned as:

KL(PjjQ) = å
i

P(i) log
P(i)
Q(i)

(1.57)

We try to �nd a distributionq(Z) that minimizes the KL divergence with respect to the true

posteriorp(ZjX). The KL in this case can be written as:

KL(q(Z)jj p(ZjX)) = Eq(Z)[log
q(Z)

p(ZjX)
] (1.58)

= Eq(Z)[logq(Z)] � Eq(Z)[logp(Z;X)+ Eq(Z)[logp(X)] (1.59)

one can rearrange the above equation to obtain:

Eq(Z)[log
p(Z;X)
q(Z)

]+ KL(q(Z)jj p(ZjX)) = logp(X) (1.60)

ELBO(q)+ KL(q(Z)jj p(ZjX)) = logp(X) (1.61)

the term on the right of above equation is called evidencelogp(X) and the �rst term

is called evidence lower bound (ELBO) since KL is always positive we have logp(X) �

ELBO(q) and ELBO acts as the lower bound for the evidence. The objective of minimizing

KL is equivalent to maximizing the variational lower bound ELBO. The ELBO term in
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Figure 1.10: Variational autoencoder with encoder, decoder and a gaussian latent space

equation can be rewritten as:

ELBO(q) = Eq(Z)[logp(XjZ)] � KL(q(Z)jj p(Z)) (1.62)

The �rst term in equation above is the expected log-likelihood of the data or data recon-

struction loss and the second term refers to the negative KL divergence between approxi-

mate posteriorq(Z) and the priorp(Z)

In variational autoencoders, neural networks can be used to represent the inference

network (encoder)qf (ZjX) and the generative network (decoder) parameterized by param-

etersq aspq (XjZ). The network can be optimized by maximizing the ELBO as described

previously. For a continuous latent variable, prior is usually chosen as a GaussianN(0; I ).

In this case KL has the following closed form solution:

KL(N(m;s )jN(0; I )) =
1
2

(1+ log((s )2) � s 2 � m2) (1.63)

wherem ands are the mean and variances of the prior distribution that are learned by

the network during training. KL divergence can be viewed as a regularizer of the network

where the latent space is forced to a pre-de�ned distribution. This latent space can be used

to generate novel data such as images and texts. A representation of variational autoencoder
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is given in �gure 1.10.

1.3.5 Graph neural networks

Many data can be represented as graph data structure such as the structure of molecules,

proteins or social networks. Graph neural networks are increasingly being used in many

areas such as protein structure prediction, drug design, etc. A graphG is de�ned as

G = ( V;E;A) where V is the set of nodes, E is the set of edges and A is the adjacency

matrix. Graph convolutional networks (GCN) were introduced by Kipf et al.[152] which

rely on message passing between neighbors in a graph. Each node has a feature vectors

that represents its message and messages are passed between neighbors during each graph

convolution layer or message passing. Multiple types of GCN can be formulated based

on how the messaged are passed between nodes and edges. In a simple GCN, where only

nodes have feature vectors, the GCN layer can be de�ned as:

H l+ 1 = s (D̂� 1=2ÂD̂� 1=2H(l )W(l )) (1.64)

whereH(l ) is the features of previous nodes,W(l ) is the weight parameters.̂A is the

adjacency with including self connections.̂A = A+ I. The messages are averaged over

neighbors using the matrix̂D which is the diagonal matrix, whereDii is the number of

connections of nodei ands denotes a nonlinear activation function.

1.4 Dissertation overview

In chapter 2, I study the membrane active peptides using molecular dynamics and ma-

chine learning. In the �rst section of this chapter, I study two different cell penetrating

peptides (MPG and HST5) and their interaction with membrane using MD simulations.
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In the second part of this chapter, I develop a deep learning model called attention based

variational autoencoder to generate new antimicrobial peptides and test the ef�ciency of

the model for generating effective peptide sequences. Third chapter deals with Markov

state models and kinetic modeling of biomolecules. This chapter is divided into three sec-

tions. In the �rst part, I study conformational dynamics ofb2-microglobulin using MD

simulations and Markov state modeling to �nd metastable states that contribute to amyloid

formation. In the second section, I explore a machine learning model called gaussian mix-

ture variational autoencoder (GMVAE) for dimensionality reduction and clustering of MD

trajectories of protein folding and show that the latent space from GMVAE can be used for

building a Markov model. The last part of this chapter introduces a novel neural network

approach to replace the pipeline of building a Markov model called GraphVAMPNet where

we used graph neural network as feature representation for protein folding trajectories.

Chapter 4 of this dissertation is about membrane proteins spike protein of SARS-COV-2

and the EAG potassium channel. In the �rst section of this chapter, I study the interaction

of spike protein with its receptor and the hot spots of interaction. In the second section

I study the dynamics of glycans in the spike protein of SARS-COV-2 and its impact on

shielding the protein from antibodies. In the last section, I study the inhibition of EAG

channel by small molecule drugs through MD simulation, docking and binding free energy

calculations. Chapter 5 concludes the work presented in the dissertation and gives future

directions for continuing some of the projects.
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Chapter 2: Machine learning and MD for membrane active peptides

2.1 Molecular dynamics of cell penetrating peptide interaction with model

membranes

Membrane active peptides (MAPs) are peptides with activity toward membrane either

by translocation (cell penetrating peptides, CPPs) or even by disruption of the membrane

(Antimicrobial peptides, AMPs).[32] CPPs which are mostly short cationic or amphipathic,

have the ability to enter cells without large extent disruption of the membrane. [241] How

effective a pharmaceutical treatment is, often is related to its membrane permeability which

prevents biomolecules from reaching their speci�c intracellular targets. In this context,

CPPs are often used to carry biomolecular cargos with various sizes and shapes inside the

cell.[79, 101] Most CPPs are primary or secondary aphipathic in nature depending on the

position of hydrophobic residues in their sequence. These usually possess a suf�cient num-

ber of positively charged amino acid residues necessary for their adsorption onto the neg-

atively charged lipid membranes. Among various CPPs, MPG and Histatin 5 (Hst5) have

been utilized to deliver proteins, �uorescein labels, and siRNAs into cell and are the focus

of this study.[204, 209] MPG is a short amphipathic peptide with cationic residues in its

C-terminal half and hydrophobic residues in the N-terminal half and was shown to strongly

interact with cell membranes and spontaneously insert into natural membranes.[208] Hst5

is shown to have both antifungal activity and bacterial effects and possess a cell penetration

ability.[86]

33



Figure 2.1: Secondary structure of A) MPG B) Hst5 predicted from PEPFOLD3. Orange and red
spheres show the N-terminus and C-terminus respectively. Peptide secondary structure is colored
based on hydrophobic (white) hydrophilic (green) acidic (red) and basic (blue) residues

Candida albicansare opportunistic pathogens which cause infections for immunocom-

promised patients. Current drugs forCandidacan lead to toxicity [261] or cells can develop

resistance to drugs on excessive use.[99] An essential feature of an effective therapeutic is

the ability to successfully deliver across cell membranes to intracellular targets. CPPs have

been proposed as an alternative treatment strategy. MPG and Histatin 5 (Hst5) have been

used to deliver �uorescent protein cargo, GFP into fungal cells. Both MPG and Hst5 have

previously been used to deliver cargo into cells.[209, 276]MPG has been shown in Karlsson

lab to deliver large biomolecules such as GFP into candida albicans cells through recombi-

nant production of CPP-GFP. The predicted structure (using PEPFold3) and the sequence

of MPG and Hst5 are shown in �gure 2.1.

Translocation of CPPs through cell membranes depends on several aspects which in-

cludes the speci�c sequence, concentration of CPP, cell type, the secondary structure of

CPP and and the cargo for translocation. Understanding the folding of CPPs is a major

step for characterizing their mode of action and is important for their membrane interaction

and ef�cacy of internalization. For instance, the secondary structure of penetratin is highly
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dependent on the experimental conditions such as lipid types, buffer conditions and the

technique used which can takea -helical orb-strand conformations.[90, 189] This struc-

tural polymorphism has been suggested as an important factor for internalization route of

CPPs as one route might be preferred by the peptide over others depending on its sec-

ondary structure.[80] Understanding how CPPs interact with cell membranes and insert

into cells is crucial for designing new CPPs or utilizing CPPs for intracellular delivery of

molecular cargos. Obtaining detailed atomic-level resolution and nano-second timescales

information about interaction of peptides with membrane is dif�cult and costly with exper-

imental techniques. In contrast, MD provides detailed structural and dynamic information

of peptide-membrane systems. Ulmschneider and coworkers [46, 299] used unbiased MD

to rationally tune the functional properties of pore-forming AMPs. Based on their results,

AMPs can assemble in multiple architectures near the membrane and their relative pop-

ulations can provide insights into their mechanism of action. Structural properties and

speci�cally the conformation of CPPs when interacting with cell membranes play a major

role in their cellular uptake mechanisms.[108] Previous studies have shown that there is

a direct impact of peptide conformation that modulates the amphipathicity and membrane

insertion of CPPs.[90, 347]

To better understand the details of interaction between CPPs and the cell membrane,

multiple MD simulations were run for the peptides MPG and HST5. Initially, we used the

highly mobile-membrane mimetic (HMMM) [220] where the lipid dynamics is enhanced

by replacing the acyl tails in the bilayer center by an organic solvent designed to mimic

the membrane interior. This accelerates the membrane insertion process while maintaining

the detailed energetics of peptide-membrane interactions.[15, 220] Simulations included

the peptides without the fusion construct. The membrane model closely mimicked a yeast

plasma membrane with the composition shown in table 1.[206] To avoid bias from starting

secondary structure, Hst5 and MPG were from an extended conformation in the solvent
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Table 2.1: Membrane lipid components for yeast membrane
Lipid type # lipid per lea�et

ERG 60
YOPA 7
DYPC 18
POPE 20
POPI 18
POPS 27

Total lipids per lea�et 150

phase using HMMM model. The concentration of different lipid types can affect the sec-

ondary structure of peptides during interaction with membrane. In order to prevent the

artifact of hydrophobic solvent at the center of HMMM membrane, we also studied the

interaction of MPG with several concentrations of DOPC/DOPG membrane using long-

timescale molecular dynamics.

2.1.1 Simulation methods

Simulations starting from the predicteed secondary structure:In the HMMM sim-

ulations in this study, 1,1-dichloroethane (DCLE) was used as the hydrophobic core of

the membrane. Short tailed lipids were used as headgroups where the composition of

the membrane closely mimicked a Baker's yeast model membrane which is the closest

to C. albicansmembrane[206] and consists of 150 lipids per lea�et. The lipid composi-

tion of the membrane is described in Table 1 along the corresponding number of lipids in

each lea�et. In HMMM, a scaling factor of 1.2 and an acyl tail carbon length of 8 was

used. The scaling factor has the effect of increasing the area per lipid than the fully de-

tailed atomistic model and the shortened acyl chain increases lipid diffusion by exposing

more of the hydrophobic core. All systems were build using CHARMM-GUI HMMM

Builder.[238, 165, 143] The simulations were performed using NAMD simulation engine

and Charmm36 for lipid and membrane parameters.[153] TIP3P model was used for water
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and Na+ and Cl� ions were added to system to neutralize the charges on protein and lipids.

[144] In the HMMM systems, upon insertion of peptide, the system ran under NPAT en-

semble using Langevin thermostat to maintain the temperature at 298K and a constrain to

maintain a constant lateral surface area. Langevin piston was used to maintain the pres-

sure at 1bar.[97] A force switching function of 10 to 12	A was used for van der Waals and

electrostatic interaction.[283] Long range electrostatic interactions were computed with

Particle Mesh Ewald (PME) method.[69] An integration time-step of 2 fs was used for all

simulations using SHAKE algorithm to constrain hydrogen atoms.[252] The HMMM sys-

tems were equilibrated using standard 6 step CHARMM-GUI input parameters for 225 ps.

For the �rst series of simulations, PEPFOLD3 was used to predict the secondary structure

of both peptides which were predicted to bea -helical for both MPG and Hst5. Peptides

were inserted into aqueous phase, with at least 12	A distance relative to the phosphate

plane of nearest lea�et with three different orientations of the peptide with respect to mem-

brane to avoid bias. The main axis of the peptide was aligned either perpendicular or at

a 45 � tilt with respect to membrane plane with either N or C-terminus being closer to

the membrane. The production run lasted for 300 ns at NPAT ensemble after which they

were converted to full-membrane models using CHARMM-GUI HMMM Builder.[238]

Furthermore, MPG systems were simulated for an extra 100 ns under NPT ensemble at

298K. MPG-membrane systems were converted to full-membrane model and equilibrated

with six-step CHARMM-GUI protocol for 225 ps except for the last step which lasted 10

ns. An extra 200 ns full-atomic membrane simulation was performed after conversion for

MPG-membrane systems.

Simulations from extended peptide conformation: The simulations with full mem-

brane model started with an extended conformation of peptide randomly placed at least 12

	A above the nearest lea�et with three different replicates. The systems were equilibrated

using the typical six-step CHARMM-GUI protocol for 225 ps. The production run lasted
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for 1 ms for all systems. The membrane had the same concentration of lipids as described

previously and the simulation parameters are as before for the full-membrane model.

Long timescale simulation of MPG using Anton: In order to study the effect of mem-

brane composition on the secondary structure of MPG during interaction, we simulated

membranes with different compositions of DOPC and DOPG and their interaction with

MPG using Anton2 supercomputer. Production run using Anton2 ran under NVT ensemble

and semi-isotropic pressure. The Anton2 multigrator [182] framework and Nose-Hoover

thermostat [217, 132] and MTK barostat [197] were used with a timestep of 2.5 fs. Short

range electrostatic interactions were calculated with a cutoff of 9	A and long-range elec-

trostatic were computed using u-series approach.[273] The membrane had 100 lipids per

lea�et with different concentrations of DOPC And DOPG. 1)DOPC(100%)-DOPG(0%)

2)DOPC(80%)-DOPG(20%) 3)DOPC(60%)-DOPG(40%) 4)DOPC(40%)-DOPG(60%). An-

ton simulations ran for 11ms for each system.

2.1.2 Results

Simulations starting from predicted peptide secondary structure: For our initial

studies of MPG and Hst5, we used a PEPFOLD3 which predicted both peptides to bea -

helical with a small turn in N-term of MPG. The peptides were placed at least 12	A above

the membrane phosphate plane in 3 different orientations with respect to membrane to

avoid bias. These conformations were parallel and tilted 45� with respect to the membrane

plane. The starting orientations of MPG and HST5 are shown in �gure 2.2. The HMMM

simulations were performed for 300ns. Figure 2.3 shows snapshots of the �rst replicates of

Hst5 and MPG at four different timepoints (0, 50, 100, 300ns) during the simulation with

HMMM model. As shown Hst5 binds to the membrane after 50ns however it fails to enter

the membrane after 300 ns of simulation. On the other hand, MPG inserts into membrane
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Figure 2.2: starting conformations of peptides MPG and Hst-5 with respect to the membrane. A,B,C
for Hst5 and C,D,E for MPG

through its hydrophobic N-terminus after about 50ns of simulation and adopts a vertical

conformation in the membrane after 300ns.

Since MPG showed penetration into membrane, we converted the HMMM to full-

membrane model and simulated for additional 100ns to study its interaction with a full

atomic membrane. After conversion to full-membrane model, MPG maintained its deep

insertion below the phosphate plane which was consistent throughout the additional 100ns

all-atom simulation.To study the translocation of MPG and HST5, we calculated the dis-

tance of each residue during simulation to the phosphate plane of the closest lea�et. (�g-

ure 2.4) MPG shows insertion into membrane after 50 ns through its N-term hydrophobic

residues. On the other hand, HST5 which is highly charged, does not show penetration into

membrane. Heatmap plots of distance for other starting orientations of MPG and Hst5 are

in �gure 2.5. Other initial orientations do not show deep insertion into membrane. In the

second orientation of MPG which faces the membrane from C-terminal charged residues,

the N-term binds to the membrane after 100ns (�gure 2.5C). However, it does not enter

the membrane during the 400ns of simulation. MPG with parallel orientation to membrane

39



Figure 2.3: Translocation of CPPs using HMMM model at various timepoints. Phosphate head-
groups of the membrane are represented as tan spheres and the membrane acyl chains are cyan
lines. Residues on the peptide are colored according to their charge. MPG inserts into membrane
after 300ns

failed to enter the membrane and binds to membrane through its N-term. The interac-

tion energies of all the residues in MPG with membrane were calculated for the last 10ns

of full-membrane model (�gure 2.4) C-term residues have high interaction energies with

membrane which is due to electrostatic interaction of these charged residues with phosphate

headgroups of the membrane. N-term hydrophobic residues such as L3, F4, F7, L8 have fa-

vorable interaction energies with membrane which is due to the hydrophobic interaction of

these residues with membrane core which drives the peptide to penetrate into membrane. In

summary, the preliminary simulations starting froma -helical MPG and Hst5 showed that

MPG can enter the membrane through its hydrophobic N-term, however, HST5 remains

attached to the membrane surface and does not show insertion into membrane.

Simulations starting from extended conformation with HMMM membrane:Structural

properties and speci�cally the conformation of CPPs when interacting with cell membranes

play a major role in their cellular uptake mechanisms.[108] Previous studies have shown

that there is a direct impact of peptide conformation that modulates the amphipathicity and
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Figure 2.4: Insertion of peptides into the model membrane A) Heatmap of distance of residues
in MPG with respect to phosphate plane of hte closest lea�et with respect to simulation time for
orientation 1. B) Heatmap of distance for Hst5 orientation 1. C) Interaction energies of residues
in MPG with membrane from last 10ns of simulation with full-membrane model D) Snapshot of
simulation for MPG at 300ns (red spheres show phosphate groups and grey lines show acyl tail
of the membrane E) Snapshot of simulation for Hst5 at 300ns (showed as sticks are the K and R
residues on Hst5 which are interacting with phosphate plane of the membrane
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