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Nomenclature 

Symbol Description Units 

𝜇𝑘 Chemical potential of species k J·kmol-1 

𝜇𝑘0 Standard state chemical potential of species k J·kmol-1 

𝜇�𝑘 Electrochemical potential of species k J·kmol-1 

∆𝜇�𝑟𝑥𝑛 Net electrochemical potential change due to reaction J·kmol-1 

𝐸𝑅0 Standard half-cell potential of reaction R V 

𝐸𝑐𝑒𝑙𝑙0  Standard cell potential V 

𝑎𝑘 Activity of species k none 

𝐶𝑘 Concentration of species k kmol·m-3 

𝑇 Temperature K 

𝜙 Local electric potential V 

𝜙𝑎 Anode electric potential V 

𝜙𝑐 Cathode electric potential V 

𝜙𝑎,𝑖𝑛𝑡 Anode interface electric potential V 

𝜙𝑐,𝑖𝑛𝑡 Cathode interface electric potential V 

𝛥𝜙𝑎 Electric potential difference between the anode and 
anode interface V 

𝛥𝜙𝑐 
Electric potential difference between the cathode and 
cathode interface V 

𝑧𝑘 Charge of species k none 

𝜂𝑎𝑐𝑡,𝑎 Anode activation overpotential V 

𝜂𝑎𝑐𝑡,𝑐 Cathode activation overpotential V 

𝜂𝑜ℎ𝑚𝑖𝑐 Ohmic overpotential V 

𝜂𝑐𝑜𝑛𝑐,𝑎 Anode concentration overpotential V 

𝜂𝑐𝑜𝑛𝑐,𝑐 Cathode concentration overpotential V 

𝑘𝑎 Anodic direction reaction rate constant for charge 
transfer reaction varies 

𝑘𝑐 
Cathodic direction reaction rate constant for charge 
transfer reaction varies 

𝑘𝑓 Forward reaction rate constant for chemical reaction varies 
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𝑘𝑟 Reverse reaction rate constant for chemical reaction varies 

𝑋𝑘 Mole fraction of species k none 

𝑌𝑘 Mass fraction of species k none 

𝑃 Pressure Pa 

𝑣𝑥 x-direction velocity m·s-1 

𝑣𝑦 y-direction velocity m·s-1 

𝜌 Mass density kg·m-3 

𝜌𝑐 Net charge density C·m-3 

𝑛𝑒 Number of electrons exchanged in charge transfer 
reaction none 

𝑎𝑘 Activity of species k none 

𝑅𝑐ℎ𝑃  Residual for mass conservation in the channel; 
associated with pressure kg·s-1 

𝑅𝑚_𝑖
𝑃  Residual for mass conservation at the membrane 

interface; associated with pressure kg·m-2·s-1 

𝑅𝑘,𝑐ℎ
𝑀𝐹  Residual for species conservation in the channel; 

associated with mass fractions kmol·s-1 

𝑅𝑘,𝑚_𝑖
𝑀𝐹  Residual for species conservation at the membrane 

interface; associated with mass fractions kmol·m-2·s-1 

𝑅𝑘,𝑒_𝑖
𝑀𝐹  Residual for species conservation at the electrode 

interface; associated with mass fractions kmol·m-2·s-1 

𝑅𝑐ℎ𝑥𝑀 Residual for x-direction momentum conservation in the 
channel; associated with x-direction velocity m·s-2 

𝑅𝑐ℎ
𝑦𝑀 

Residual for y-direction momentum conservation in the 
channel; associated with y-direction velocity m·s-2 

𝑅𝜙 
Residual for electroneutrality in the channels; 
associated with electric potential  C·m-3 

𝑅𝑘𝑆𝐹 Residual for surface site fraction of species k kmol·m-2·s-1 

𝐽 Mass flux kg·m-2·s-1 

𝐽𝑘 Species (mole) flux kmol·m-2·s-1 

𝜇 Dynamic viscosity Pa·s 

𝑛𝑑,𝑁𝑎+ Electro-osmotic drag coefficient for Na+ in Nafion kmol H2O 
kmol-1 Na+ 
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𝑝𝐻2𝑂 Permeability of Nafion 115 to water m·Pa-1·s-1 

𝑢𝑘 Mobility of species k m2·V-1·s-1 

𝑓 𝐹 𝑅𝑇⁄  V-1 

𝐹 Faraday’s constant; 9.6485×107  C·kmol-1 

𝑅� Ideal gas constant; 8.314×103 J·kmol-1·K-1 

𝐽 Jacobian matrix of the DBFC model  

𝑉̇ Volumetric flow rate m3·s-1 

𝜁 Recirculation volume fraction none 

𝜂𝑟𝑢 Single-pass reactant utilization none 

𝜂𝑐𝑒 Coulombic efficiency (local) none 

𝜂𝑐𝑢 Coulombic utilization none 

𝐼𝑐𝑒𝑙𝑙 Cell current A 

𝑖 Local current density A·m-2 

𝑡 Time varies 

𝑉𝑐𝑒𝑙𝑙 Cell electric potential (𝜙𝑐 − 𝜙𝑎) V 

𝜈𝑘,𝑅 Stoichiometric coefficient for species 𝑘 in reaction 𝑅 none 

𝛽𝑎 ,𝛽𝑐 
Anodic and cathodic direction symmetry factors in 
charge transfer reaction none 

𝛥𝜙′ Equilibrium electrode-solution electric potential 
difference V 

𝐾𝑒𝑞 Reaction equilibrium constant none 

𝑖0 Exchange current density A·m-2 

𝐷𝑘 Binary diffusivity of species 𝑘 m2·s-1 

𝜎 Electrical conductivity S·m-2 

𝑢𝑘 Mobility of species k m2·V-1·s-1 

𝛾𝑘 Activity coefficient for species k None 

𝐼 Ionic strength of electrolyte solution kmol·m-3 

𝜆 Nafion membrane hydration kmol H2O 
kmol-1 SO3

- 
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Chapter 1:  The Unrealized Promise of Direct Borohydride Fuel 

Cells 

 

Direct borohydride fuel cells (DBFCs) generate electrical power by oxidizing 

aqueous BH4
- (borohydride) and reducing aqueous H2O2 or gaseous O2.  Interest in 

DBFCs has grown over the past decade due to several prospective advantages over 

batteries and other fuel cells. However, the technology remains immature and 

challenges have inhibited its use in practical applications.  This chapter describes the 

present understanding of DBFCs, the prospective advantages and remaining 

challenges, and the ways this study aims to advance the technology toward 

practicality. 

 

1.1 Introduction to Direct Borohydride Fuel Cells 

Many different DBFC cell configurations have been tested in the literature. This 

study presents a configuration with electrodes separated from the ionic membrane by 

liquid reactant flow channels. The DBFC cell geometry and dominant 

electrochemical processes in this study are illustrated by Figure 1.1.  DBFC operating 

principles are explained here in the context of this configuration.  Alternative 

configurations are reviewed in a later section.   

The cell used in this study consists of two parallel rectangular flow channels 

which are separated by a cation exchange membrane and bounded by walls.  The 

walls constraining the flows function as current collectors.  The fuel channel carries 
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an aqueous solution containing NaBH4 and NaOH, and in this study, the oxidizer 

channel carries an aqueous solution containing H2O2 and H2SO4.  Each channel wall 

opposite the membrane is coated with an electrocatalyst; BH4
- oxidation takes place at 

the anode (fuel channel wall) and H2O2 reduction takes place at the cathode (oxidizer 

channel wall).  This cell geometry was chosen because it represents a class of DBFCs 

having separated electrodes and membranes.  Such DBFCs have been considered in 

earlier studies [1, 2] because they are simple to fabricate, resist precipitate 

accumulation, expose the full membrane area to the electrolyte solutions and offer the 

possibility that migration will aid reactant transport in the channels.  Furthermore, this 

DBFC can be represented in 2D, as shown in Figure 1.1, provided that the channel 

side walls are inert (electrochemically inactive) and spaced widely enough to have 

negligible effect on the hydrodynamics of the reactant flows.  The 2D representation 

is more straightforward to model. 

 

 

Figure 1.1. Illustration of the DBFC cell configuration examined in this study, 
showing the cell geometry and ideal electrochemical processes taking place. 
 

Electrons provided to the anode by BH4
- oxidation travel through an external 

circuit to the cathode to reduce H2O2, while Na+ ions maintain charge balance in the 
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cell by crossing the membrane from fuel solution to oxidizer solution.  The Na+ ion 

flux through the membrane induces a H2O flux due to electro-osmotic drag.   

The net cell reaction consumes BH4
-, H2O2, OH-, and H+ and forms BO2

- and 

H2O.  Eight electrons are liberated by the anode half-cell reaction (R 1.2) and travel 

through the external circuit to be consumed by the cathode half-cell reaction (R 1.3).  

The standard cell potential for R 1.1 is 𝐸R1.1
0  = 3.01 V. 

 

BH4
−(aq) + 8 OH− + 4 H2O2 + 8 H+ → BO2

−(aq) + 14 H2O R 1.1 

 

BO2
−(aq) + 6 H2O + 8e− ⇋ BH4

−(aq) + 8 OH− 𝐸𝑅1.2
0  = -1.246 V vs. RHE R 1.2 

 

 H2O2 (aq) + 2 H+ + 2 e− ⇌ 2 H2O 𝐸R1.3
0  = 1.763 V vs. RHE R 1.3 

 

The fuel solution includes OH- to provide a reactant for BH4
- oxidation and 

stabilize the BH4
- fuel, which is otherwise consumed by homogenous hydrolysis 

reaction R 1.4 to yield BO2
-. 

 
BH4

− (aq) + 2 H2O → BO2
− (aq) + 4 H2 R 1.4 

 

The rate of R 1.4 depends on pH and temperature; it occurs more rapidly at low pH.  

An empirical rate expression (Eq. 1.1) was developed by Kreevoy and Jacobson [3], 

which predicts the BH4
- half-life (minutes) as a function of pH and temperature (K).  

According to Eq. 1.1, BH4
- can be stored for months in high pH media (pH ≥ 13). 

 
𝑙𝑜𝑔 �𝑡1

2�
� = pH−  (0.034𝑇 − 1.92) Eq. 1.1 
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Similarly, H+ in the oxidizer solution provides a reactant for H2O2 reduction and 

stabilizes the H2O2, which otherwise decomposes via R 1.5. 

 
2 H2O2 (aq) → 2 H2O + O2 R 1.5 

 

While R 1.4 and R 1.5 occur slowly in solutions having appropriate pH, the rates 

are nevertheless accelerated by contact with the anode and cathode catalysts.  

Heterogeneous catalysis of BH4
- hydrolysis and H2O2 decomposition decreases the 

number of electrons per oxidized BH4
- anion to less than 8 and the number of 

electrons per reduced H2O2 molecule to less than 2.  The coulombic efficiency of 

each half cell reaction is often characterized by proximity to the theoretical number of 

electrons transferred; an anode which captures 4 electrons per consumed BH4
- anion 

would have a coulombic efficiency of 50%. 

DBFCs with the cell configuration presented above differ from common low-

temperature fuel cells such as the proton exchange membrane fuel cell (PEMFC) and 

direct methanol fuel cell (DMFC).  These differences stem from the use of aqueous 

electrolytes for the fuel and oxidizer, in contrast to the gaseous reactants in a PEMFC 

and the non-electrolyte aqueous fuel solution in a DMFC.  The catalysts in PEMFCs 

and DMFCs are in contact with the ion-conducting membrane to enable H+ 

participation in the electrochemical reactions, but the catalyst in a DBFC can be 

located elsewhere because the aqueous electrolytes in each channel support ion 

transport.  Channel transport in PEMFCs and DMFCs is governed by convection and 

diffusion, but in a DBFC migration also contributes to (or inhibits) species transport.  
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Finally, slower diffusion in the liquid phase favors development of steeper 

concentration gradients and in a DBFC, accentuating down-the-channel effects on 

cell performance. 

Flow-through DBFC topologies as in Figure 1.1 tend to have low channel 

reactant utilization rates; only a small fraction of the reactants flowing through each 

channel participates in the electrochemical reactions.  The reactants are often 

recirculated to improve the utilization rates, as shown in Figure 1.2.  Concentrated 

reactants are added to the recirculation loops upstream of the cell, and a portion of the 

effluent downstream of the cell is removed as waste.  Since separation of reactants 

and products in the effluent streams is impractical, the cell operating conditions must 

be chosen to minimize the concentration of unreacted fuel in the effluent stream; 

otherwise fuel is lost to the waste tank. 

 

 

Figure 1.2. Schematic of a typical recirculated DBFC system. 
 

Alternatively, the DBFC can be operated as a “flow battery” with a single 

reservoir in each loop.  In the flow battery configuration, the entire contents of each 
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loop reservoir are recirculated until low reactant concentrations or high product 

concentrations inhibit cell performance. 

1.2 DBFC Thermodynamics, Kinetics and Transport 

The operating principle behind DBFCs, as in all fuel cells, is the conversion of 

chemical to electrical energy by electrochemical reactions occurring at the two 

electrodes.  The available work that can be extracted from the chemical reactants in 

an electrochemical cell at a constant temperature and pressure is cast in terms of the 

change of Gibbs free energy ΔG of the global reaction. The chemical potential 𝜇𝑘, 

equal to the intensive Gibbs free energy, is defined as the chemical potential at a 

standard reference state plus a correction for activity 𝑎𝑘 ≠ 1. 

 
𝜇𝑘 = 𝜇𝑘0 + 𝑅𝑇ln𝑎𝑘 Eq. 1.2 

 

When the reactants are charged species, though, electrochemical potential 𝜇�𝑘 is a 

more appropriate description because it includes electrostatic potential energy.  The 

electrochemical potential of species k is given by Eq. 1.3, in which 𝑧𝑘 is the charge of 

species k, 𝐹 is Faraday’s constant and 𝜙 is the electric potential.   

 
𝜇�𝑘 = 𝜇𝑘 + 𝑧𝑘𝐹𝜙 Eq. 1.3 

 

For electrons, the only relevant energy is electrostatic and Eq. 1.3 simplifies to 

𝜇�𝑒 = −𝐹𝜙.  The energy  ∆𝜇�𝑅1.1 made available by the global fuel cell reaction is the 

difference between the electrochemical potentials of the reactants and products.  With 

𝜈𝑘 the stoichiometric coefficients in R 1.1, ∆𝜇�𝑅1.1 can be written as: 
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∆𝜇�𝑅1.1 = �𝜈𝑘,𝑅1.1𝜇�𝑘
𝑘

 Eq. 1.4 

 

Similarly, the energy made available by each of the half-cell reactions is given by 

the difference in electrochemical potential of the half-cell reactants and products.  

Conservation of energy dictates that the total energy from the cell is equal to the sum 

of energies made available by the half-cell reactions. 

 

∆𝜇�𝑅1.1 = ∆𝜇�𝑅1.2 + ∆𝜇�𝑅1.3 Eq. 1.5 

 

The half-cell reactions cannot run independently; they are linked by an 

(effective) electroneutrality constraint and charge conservation.  Electroneutrality is a 

result of the relationship between electric potential and local net charge density 𝜌𝑐 

described by Poisson’s electrostatic equation (Eq. 1.6).  The permittivity of free space 

(𝜀0 = 8.85419 x 10-12 F·m-1) is small, so small deviations from electroneutrality 

produce large electric potential gradients.  The electric potential gradients tend to 

oppose charge stratification and drive charged species back into electrostatic 

equilibrium.   

 

∇2𝜙 = −
𝜌𝑐
𝜀𝜀0

 Eq. 1.6 

 

Significant deviations from 𝜌𝑐 rarely occur outside the electrochemical double layers 

at electrode interfaces, where large values of ∇2𝜙 are found.  Since the electrolyte 

solutions (and membrane) are electrically neutral, the net charge flux at the anode 

must be equal to the net charge flux at the cathode. However, local rates of reaction 
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can differ so long as the integrated rates over the entire area of the two electrodes are 

equal. 

The same principles link cell voltage 𝑉𝑐𝑒𝑙𝑙 to the half-cell potentials Δ𝜙a and 

Δ𝜙c, but before exploring that relationship, it will be helpful to clearly define the 

electric potential in the vicinity of each electrode.  Electrodes in aqueous solution 

having electric potentials other than the point of zero charge (PZC) accumulate a 

layer of adsorbed water molecules due to the polar nature of H2O.  Ions may also 

accumulate near the electrode as their charges interact with the local electric field.  

The result is an accumulation of charge which produces a smooth transition over a 

short (~1 nm to 1 µm) length scale from the electric potential in solution to the 

electric potential of the electrode [4]. 

Half-cell potentials are most often measured with respect to a reference electrode 

(RE), which has rapid reaction kinetics to maintain consistent potential despite 

changes in the local electrochemical environment.  A common RE is the reversible 

hydrogen electrode (RHE), for which the reaction in low pH and neutral aqueous 

solutions is R 1.6.  The standard reduction potential for R 1.6 is defined as 0.00 V. 

 

H2 ⇋ 2 H+ + 2 e− 𝐸𝑅1.6
0  = 0.00 V vs. RHE R 1.6 

 

Ideally the RE is situated in, or in electrochemical communication with, the region 

just outside the electrochemical double layer of the electrode.  Doing so references 

the electrode potential to the electric potential just outside the double layer, and 

makes the electrode potential a measure of the potential drop across the double layer.  

If Δ𝜙a and Δ𝜙c are the electric potential drops across the anode and cathode double 
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layers, and 𝜙𝑎,𝑖𝑛𝑡 and 𝜙𝑐,𝑖𝑛𝑡 are the electric potential in the bulk solution just outide 

of each double layer, then the electrode potentials are: 𝜙𝑎 = Δ𝜙a + 𝜙𝑎,𝑖𝑛𝑡 and 𝜙𝑐 =

Δ𝜙c + 𝜙𝑐,𝑖𝑛𝑡.  The locations of 𝜙𝑎, 𝜙𝑐, Δ𝜙a, Δ𝜙c, 𝜙𝑎,𝑖𝑛𝑡, and 𝜙𝑐,𝑖𝑛𝑡 are shown in 

Figure 1.3, which adopts common conventions showing the change in electric 

potential across each double layer as if it were discontinuous and referencing all 

potentials in the system to the anode. 

 

 

Figure 1.3. Electrode and interface electric potentials in a DBFC.  The orange line 
shows a typical electric potential distribution across the cell.  

 

The relationships between 𝑉𝑐𝑒𝑙𝑙, Δ𝜙a and Δ𝜙c are most evident when the fuel cell 

is in the open circuit state and no current flows between the anode and cathode.  At 

open circuit, R 1.2 and R 1.3 must each be at equilibrium so that no net electrons are 

transferred to/from the electrodes.  Since the reactions are driven by the change in 

electrochemical potential, the equilibrium condition is: 

 

∆𝜇�𝑟𝑥𝑛 = �𝜈𝑘,𝑅𝜇�𝑘,𝑟𝑥𝑛
𝑘

= 0 Eq. 1.7 

 

Anode Fuel Channel

Interface

ϕa

Δϕa

ϕc

Δϕc

CathodeOxidizer Channel

Membrane

El
ec

tr
ic

 P
ot

en
tia

l

0

Interface

Vcellϕint,c

ϕint,a



 10 

 

Substituting Eq. 1.3 for 𝜇�𝑘,𝑟𝑥𝑛 and solving for the interfacial electric potential 

difference yields the Nernst equation (Eq. 1.8).  

 

Δ𝜙′ =
Δ𝜇𝑟𝑥𝑛0

𝑛𝑒𝐹
+
𝑅𝑇
𝑛𝑒𝐹

𝑙𝑛 ��𝑎𝑘
𝜈𝑘� Eq. 1.8 

 

The Nernst equation gives the electric potential difference between the aqueous 

solution and the electrode that will bring the reactants and products into equilibrium.  

Δ𝜙′ is equal to the standard half cell potential of the reaction 𝐸𝑟𝑥𝑛0  under standard 

state conditions (i.e. T = 298 K and 𝑎𝑘=1).  The cell potential 𝑉𝑐𝑒𝑙𝑙 is the difference in 

electric potential between the anode and the cathode:  

 
𝑉𝑐𝑒𝑙𝑙 = 𝜙𝑐 − 𝜙𝑎 Eq. 1.9 

 

Since no net current flows through the cell at open circuit, the electric potentials 

at the electrode interfaces must be equal, because an electric potential gradient would 

drive net charge transfer.  Thus at open circuit, 𝜙𝑎,𝑖𝑛𝑡 = 𝜙𝑐,𝑖𝑛𝑡.  Since the electrode 

potentials are referenced to the interface potentials, this makes the cell potential at 

open circuit equal to the sum of interfacial half-cell potentials, which is why: 

𝐸R1.1
0 = 𝐸R1.2

0 + 𝐸R1.3
0 ,   when    Δ𝜙𝑎 = 𝐸R1.2

0    and    Δ𝜙𝑐 = 𝐸R1.3
0 . 

In the BH4
- / H2O2 DBFC examined in this study, the open circuit cell voltage (OCV) 

is 𝐸R1.1
0 = 1.763 V – (-1.246 V) = 3.01 V. 

Fuel cell chemistries are chosen such that electrons delivered to the anode by the 

anode half-cell reaction have greater 𝜇�𝑒 than electrons recovered from the cathode by 

the cathode half-cell reaction.  When an electrically conductive path having non-zero 
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impedance (load) is provided, electrons are driven from anode to cathode by the 

difference in 𝜇�𝑒, and the change in electron energy along this path is equal to the 

energy absorbed by the load.  As the load impedance is decreased, the electrical 

current and electrochemical reaction rates increase to maintain balance between the 

electrochemical forces driving the reactions at each electrode.  The higher rates of 

reaction incur greater internal cell losses, and the cell becomes less efficient as a 

smaller fraction of ∆𝜇�𝑟𝑥𝑛 is available for the external load.  The redistribution of 

∆𝜇�𝑟𝑥𝑛 in favor of internal cell losses at high current is manifested as a decrease in the 

cell voltage, often referred to as “overpotential”.  The total overpotential is the sum of 

activation, ohmic and concentration overpotentials.  Each overpotential is associated 

with a specific loss mechanism, as discussed in greater detail below.  The cell 

potential at a given operating point is the open circuit cell potential minus all of the 

overpotentials at that operating point: 

 
𝑉𝑐𝑒𝑙𝑙 =  𝐸𝑐𝑒𝑙𝑙0 − 𝜂𝑎𝑐𝑡,𝑎 − 𝜂𝑎𝑐𝑡,𝑐 − 𝜂𝑜ℎ𝑚 − 𝜂𝑐𝑜𝑛𝑐,𝑎 − 𝜂𝑐𝑜𝑛𝑐,𝑐 Eq. 1.10 

 

In general, as 𝑉𝑐𝑒𝑙𝑙 approaches OCV, the overpotentials are smaller and the fuel cell 

converts the reactants’ chemical energy into electrical energy more efficiently.  A 

goal of most fuel cell research is to improve efficiency by decreasing the 

overpotentials.  The sources of overpotential are discussed in detail in the next 

section, but broadly speaking, activation overpotentials can be minimized by 

choosing a more active catalyst, ohmic overpotentials can be minimized by raising 

the conductivity of electrolyte solutions and the membrane, and concentration 

overpotentials can be minimized by improving rates of transport to the electrodes. 



 12 

 

1.2.1 Reaction Rates and the Activation Overpotential 

An Arrhenius rate expression is often used to describe the rates of charge transfer 

reactions such as R 1.2 and R 1.3.  In this case the net rate is the sum of forward and 

reverse rates (see Eq. 1.11).  The direction supplying electrons to the electrode is 

“anodic” and the direction withdrawing electrons from the electrode is “cathodic”.  

The subscripts “a” and “c” in Eq. 1.11 refer to these directions. 

 

𝑟 = 𝑘𝑎�𝑎𝑘,𝑎
𝜐𝑘,𝑎

𝑘

𝑒𝑛𝑒𝛽𝑎𝑓Δ𝜙 − 𝑘𝑐�𝑎𝑘,𝑐
𝜐𝑘,𝑐

𝑘

𝑒−𝑛𝑒𝛽𝑐𝑓Δ𝜙 Eq. 1.11 

 

The pre-exponential terms include rate constants and dependencies on the activities of 

species involved in the reaction.  The exponential terms describe an activation energy 

barrier which depends on the magnitude of Δ𝜙, because the reaction must drive a net 

flux of charge through the double layer for the reaction to proceed.  At the anode for 

example, R 1.2 must drive a net negative charge flux against the electric potential 

gradient in the double layer to the lower potential of the anode, doing work  in the 

process.  At the equilibrium interfacial electric potential difference predicted by the 

Nernst equation Δ𝜙′, the activation energy barrier magnitude is such that the anodic 

and cathodic rates are equal.  For the reaction to run in the anodic direction (as it does 

at the anode of a functioning DBFC) Δ𝜙𝑎 must be less than Δ𝜙′𝑎.  The shift in Δ𝜙𝑎 

required for the reaction to proceed is the activation overpotential at the anode.  In 

general, for both electrodes: 

 
𝜂𝑎𝑐𝑡 = Δ𝜙 − Δ𝜙′ Eq. 1.12 
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The symmetry factors 𝛽 describe the relative slope of the activation energy 

barrier with respect to the reaction coordinate near equilibrium; 𝛽𝑎 = 𝛽𝑐 = 0.5 

implies the barrier is symmetric.  It is often assumed that 𝛽𝑐 = 1 − 𝛽𝑎, i.e. the slope 

from each direction is nearly linear near equilibrium. 

Eq. 1.11 can be recast in terms of overpotential to make the rate depend 

explicitly on the departure of Δ𝜙 from Δ𝜙′ [5].  First, recognize that the ratio of rate 

constants (equilibrium constant 𝐾𝑒𝑞) depends on the magnitude of the activation 

energy barrier when the change in electrochemical potential due to charge transfer is 

zero, i.e. when Δ𝜙 = 0.  Then the activation energy barrier is the change in free 

energy of reaction (Δ𝜇𝑟𝑥𝑛0 ) and the relationship between the anodic and cathodic rate 

constants can be written as in Eq. 1.13. 

 
𝑘𝑎 𝑘𝑐⁄ = 𝐾𝑒𝑞 = 𝑒−Δ𝜇𝑟𝑥𝑛 𝑅𝑇⁄  Eq. 1.13 

 

Then substitute Eq. 1.12 for Δ𝜙 and substitute Eq. 1.13 for 𝑘𝑐 in Eq. 1.11.  The rate 

constants and species dependencies can be collectively multiplied by Faraday’s 

constant to give an exchange current density 𝑖0; the remaining terms give the 

dependence on the overpotential.  The result is the Butler-Volmer equation (Eq. 1.14). 

 

𝑖 = 𝑖0�𝑒𝛽𝑎𝑓𝜂𝑎𝑐𝑡 − 𝑒−(1−𝛽𝑎)𝑓𝜂𝑎𝑐𝑡� Eq. 1.14 
 

The exchange current density is the charge flux in each direction when the reaction is 

in (dynamic) equilibrium; the term in brackets biases the exchange current density in 

the anodic or cathodic direction depending on the value of 𝜂𝑎𝑐𝑡.  When 𝜂𝑎𝑐𝑡 = 0, the 
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anodic and cathodic rates are equal and no net current flows.  The value of 𝑖0 is often 

measured experimentally, but for this derivation it takes the form of Eq. 1.15, in 

which 𝜐𝑒 is the stoichiometric coefficient of the electrons.  It is important to note that 

the exchange current density has additional dependencies on species concentration 

not given explicitly in Eq. 1.15; the change in free energy of reaction Δ𝜇𝑟𝑥𝑛 also 

depends on species concentrations, as shown by Eq. 1.2. 

 

𝑖0 = 𝜐𝑒𝐹𝑘𝑎𝑒𝛽𝑎Δ𝜇𝑟𝑥𝑛 𝑅𝑇⁄ ��𝑎𝑘,𝑐
𝜐𝑘,𝑐

𝑘

�
𝛽𝑎

��𝑎𝑘,𝑎
𝜐𝑘,𝑎

𝑘

�
(1−𝛽𝑎)

 Eq. 1.15 

 

1.2.2 Charge Balance and the Ohmic Overpotential 

As discussed previously, the flow of electrons from anode to cathode must be 

balanced by a net positive ionic current through the cell in the same direction.  The 

ionic current flows in response to electric potential gradients in the cell acting on the 

electric charge of ions; this transport process is called migration.  The migration flux 

of species k is given by Eq. 1.16, where 𝑢𝑘 is the mobility of species k. 

 
𝐽𝑚𝑖𝑔,𝑘 = −𝑧𝑘𝑢𝑘𝐹𝐶𝑘∇𝜙 Eq. 1.16 

 

The mobility is specific to the medium in which migration takes place, because it 

describes the amount of force which must be applied to the migrating ions by the 

electric field to overcome the opposition of interactions with the solvent.  Mobility 

and diffusivity both describe relationships between a transport flux and the “force” 

(due to ∇𝜙 or ∇𝐶) driving it.  As such, they can be related for a given medium by the 
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Nernst-Einstein equation (Eq. 1.17).  Eq. 1.17 can be used to obtain the mobility from 

the diffusivity or vice versa, when one parameter is unavailable. 

 

𝑢𝑘 =
𝐷𝑘
𝑅𝑇

 Eq. 1.17 

 

The linear relationship between ∇𝜙 and 𝐽𝑚𝑖𝑔,𝑘 in Eq. 1.16 is the origin of Ohm’s 

Law in electrolyte solutions.  The net charge flux, or current density, is  

𝑖 = �
𝐽𝑚𝑖𝑔,𝑘

−𝑧𝑘𝐹𝑘

 

which can be re-written as Ohm’s Law (Eq. 1.18) if the conductivity is defined as 

𝜎 = ∑ 𝑢𝑘𝐶𝑘𝑘 . 

𝑖 = 𝜎∇𝜙 Eq. 1.18 
 

The cathode interface potential 𝜙𝑐,𝑖𝑛𝑡 must be lower than the anode interface potential 

𝜙𝑎,𝑖𝑛𝑡 to produce the electric potential gradient necessary to drive the required charge 

flux (Figure 1.3), and that difference is the ohmic overpotential 𝜂𝑜ℎ𝑚 (Eq. 1.19).  The 

ohmic overpotential is manifested as a decrease in cell voltage as the changes in 

𝜙𝑐,𝑖𝑛𝑡 and 𝜙𝑎,𝑖𝑛𝑡 bring 𝜙𝑐 and 𝜙𝑎 closer together.  Together, Eq. 1.18 and Eq. 1.19 

show that the ohmic overpotential is proportional to the current density.  

𝜂𝑜ℎ𝑚 = 𝜙𝑖𝑛𝑡,𝑎 − 𝜙𝑖𝑛𝑡,𝑐 Eq. 1.19 
 

In PEM fuel cells the ohmic overpotential is almost entirely associated with the 

energy required to drive H+ through the membrane.  The DBFC in Figure 1.1 is 

similar in that the Na+ flux through membrane dominates the ohmic overpotential, but 
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differs in that there are also contributions from the ionic resistivities of the fuel and 

oxidizer solutions in the channels.  Ionic fluxes in the channels predominantly support 

the charge balancing Na+ flux, but there are also migration fluxes of other ions 

to/from the electrodes, which support the electrochemical reactions.  For example, the 

electric potential gradient drives cations (such as Na+) toward the membrane as well 

as anions (such as BH4
-) toward the anode.  Driving BH4

- toward the anode lowers the 

concentration and raises the low voltage of the anode. Thus the free energy available 

for electrical work is lowered.  The voltage rise across the liquid reactants in the 

anode is modeled as part of the ohmic overpotential.  The total ohmic overpotential is 

the sum of contributions from the fuel channel (𝜂𝑜ℎ𝑚,𝑓), membrane (𝜂𝑜ℎ𝑚,𝑚) and 

oxidizer channel (𝜂𝑜ℎ𝑚,𝑜). 

1.2.3 Transport and the Concentration Overpotential 

The net flux of each species k in the channels is the sum of contributions due to 

migration (when 𝑧𝑘 ≠ 0), diffusion and advection.  This relationship is shown clearly 

by the Nernst-Plank equation (Eq. 1.20), in which the first term gives the migration 

and diffusion fluxes (driven by the gradient in electrochemical potential) and the 

second term gives the advection flux.  

 
𝐽𝑘 = −𝑢𝑘∇𝜇�𝑘 + 𝑣⃗𝐶𝑘 Eq. 1.20 

 

The diffusion and migration terms can be separated by substituting Eq. 1.3 for 𝜇�𝑘, as 

in Eq. 1.21, and applying the Nernst-Einstein relation (Eq. 1.17) to cast diffusion in 

terms of the binary diffusivity 𝐷𝑘. 
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𝐽𝑘 = −𝐷𝑘∇ ln 𝑎𝑘 − 𝑧𝑘𝑢𝑘𝐹𝐶𝑘∇𝜙 + 𝑣⃗𝐶𝑘 Eq. 1.21 
 

To write the total flux in terms of concentration (a more convenient quantity than 

activity), the activity can be written as the product of concentration and a correction 

for non-ideal effects: 𝑎𝑘 = 𝛾𝑘𝐶𝑘.  The activity coefficient 𝛾𝑘 describes the deviation 

from ideal behavior; when species in solution do not interact, the solution is ideal 

and 𝛾𝑘 = 1.  Recognizing that the activity coefficient is a function of concentration, 

the gradient in the diffusion term can be written as [6]: 

 

𝐽𝑘 = −𝐷𝑘 �1 +
∂ln 𝛾𝑘
∂ln 𝐶𝑘

�∇𝐶𝑘 − 𝑧𝑘𝑢𝑘𝐹𝐶𝑘∇𝜙 + 𝑣⃗𝐶𝑘 Eq. 1.22 

 

When the solution is ideal, the diffusion term simplifies to Fick’s Law, and the 

Nernst-Plank equation becomes Eq. 1.23, which links the net flux of species 𝑘 to the 

driving forces concentration gradient, electric potential gradient and bulk fluid 

velocity. 

 
𝐽𝑘 = −𝐷𝑘∇𝐶𝑘 − 𝑧𝑘𝑢𝑘𝐹𝐶𝑘∇𝜙 + 𝑣⃗𝐶𝑘 Eq. 1.23 

 

On all but very short timescales, and certainly at steady state, the species fluxes 

due to reactions taking place at the electrodes are matched by transport fluxes to/from 

the bulk solution in the channel.  The rates of reaction (as discussed in §1.2.1) depend 

on 𝜙 and 𝐶𝑘 at the electrode interface.  The same is true for the species fluxes to/from 

the electrode interface; Eq. 1.23 shows that 𝐽𝑘 depends on ∇𝐶𝑘 and ∇𝜙.  The necessity 

of matching the reaction fluxes and transport fluxes at the interface dictates the values 

of 𝜙 and 𝐶𝑘 at the interface.  For example, R 1.2 at the anode lowers the local BH4
- 
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literature, but it may be related to the use of Nafion membranes in the Na+ form, 

which are readily available and relatively well understood. 

 

 

Figure 1.6. Schematic illustrations of two DBFC cell topologies.  Left, the catalyst 
layers are on the walls, which act as current collectors.  Right, the catalyst layer is 

porous and located on the membrane.  In both cases the reactant flows are 
perpendicular to the page. 

 

Experiments with acids other than H2SO4 have also been reported; for example, 

de Leon [16] reported experiments with H2O2 in HCl.  Studies examining the affects 

of acid selection on the kinetics of H2O2 reduction have shown that some acid anions 

inhibit R 1.3, likely by adsorbing and blocking catalyst reaction sites [21].  

Specifically, the activity of H2O2 reduction on Pd declines with acid anion in the 

order ClO4
-, SO4

-, Cl- [21].  Acid selection also affects the rate of reaction R 1.5, 

likely also due to adsorption of anions on the catalyst surface.  The rate of catalytic 

H2O2 decomposition has been shown to decrease with acid anion in the order HI, 

HBr, HCl, C2H4O2, H3PO4, H2SO4, HClO4 [22].  H2SO4 is often chosen because it 

offers reasonable rates for R 1.3 and R 1.5, insofar as the choice of acid can affect 

these rates. 
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1.4 Prospective DBFC Benefits and Applications 

Interest in DBFCs has grown due to several desirable features of this technology.  

The reactants can be stored at sufficiently high concentrations to give theoretical 

energy densities greater than state-of-the-art rechargeable batteries1 [25].  The 

aqueous reactant solutions can be stored at ambient temperature and pressure.  The 

theoretical cell voltage for R 1.1 (3.01 V) substantially exceeds theoretical cell 

voltages of H2-O2 fuel cells (1.23 V).  Moreover, the reactant chemical energy can be 

converted directly to electricity without any chemical preprocessing, thereby reducing 

power system complexity and improving reliability. 

With respect to environmental concerns and sustainability, processes for 

reducing BO2
- back to BH4

- have been developed, so the possibility of a “closed” fuel 

cycle exists [26].  These electrochemical processes could be driven by a variety of 

renewable power sources, making the BH4
-/BO2

- couple an energy carrier rather than 

simply a fuel [27].  While the possibility of such a fuel cycle has been demonstrated, 

technological immaturity (inefficiency, suboptimal process design, etc.) and a lack of 

infrastructure remain significant hurdles to practicality. 

While challenges remain, continued progress has prompted interest in DBFCs for 

applications where energy density is important, particularly for air-independent 

propulsion [28, 29], remote sensors and portable electronics. 

                                                 

1 Energy density depends on the assumed reactant concentrations and operating 

conditions.  For example, in the case of 1 M NaBH4 / 8 M NaOH fuel and 4 M H2O2 / 

8 M H2SO4 oxidizer, and assuming the standard cell potential for reaction R 1.1, the 

theoretical energy density on a reactant basis is 322 W·hr·L-1.   
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oxidation of BH4
- on Pt involved at least two steps and the intermediate BH3(OH)-.  

The mechanism is given here as R 1.9 and R 1.10. 

 

BH4
− +  2 OH− ⇌ BH3(OH)− + H2O + 2 e− R 1.9 

 

BH3(OH)− + 6 OH− ⇌ BO2
− + 5 H2O + 6 e− R 1.10 

 

They also reported values of ne < 8 indicating incomplete oxidation, either due to 

BH3(OH)- escaping into solution, or competition with hydrolysis (R 1.4). 

In 1992, Mirkin et al. [48] used fast-scan cyclic voltammetry, scanning electro-

chemical microscopy and simulations of adsorption to conclude that BH4
- oxidation 

on Au begins with a three step electrochemical-chemical-electrochemical (ECE) 

process (R 1.11 to R 1.13).  In the first step, BH4
- adsorbs on the anode and looses an 

electron to become BH4*.  The second step is a fast chemical hydrolysis with OH- 

from solution to form BH3
- and H2O.  BH3

- can escape the surface into the bulk 

solution, or be oxidized to BH3* in the third electrochemical step.  Presumably the 8 

e- complete oxidation of BH4
- to BO2

- involves additional oxidation steps following R 

1.13. 

BH4
− ⇌ BH4

∗ + e− R 1.11 

 

BH4
∗ + OH− ⇌ BH3

− + H2O (fast) R 1.12 

 

BH3
− ⇌ BH3

∗ + e− R 1.13 
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Mirkin suggested that adsorption may be rate controlling, pointing out that a surface 

coverage fraction as small as 𝜃𝐵𝐻4= 10-4 leads to a linear relationship between 𝜃𝐵𝐻4 

and 𝑖, given the measured rate parameters for R 1.11. 

More recently, Chatenet et al. reported several studies [38, 41, 42, 49] of 

mechanisms and rates for BH4
- oxidation on Au.  In [49], voltammographic 

techniques with a rotating disc electrode (RDE) revealed only one peak for BH4
- 

oxidation on Au and 𝑛𝑒≈ 7, suggesting little loss to escaping intermediates such as 

BH3(OH)-, which would be rapidly removed by the RDE hydrodynamics.  He 

concluded that all intermediate species remain adsorbed on the Au electrode, under 

the conditions examined (10-2 M NaBH4 in 1 M NaOH), contradicting the results of 

Mirkin [48].   

In [38], Chatenet fitted rate parameters for an alternative mechanism to 

electrochemical impedance and RDE cyclic voltammetry measurements.  In the new 

mechanism, the rate of BH4
- oxidation on Au was determined by electrochemical 

adsorption of BH4
- competing for surface sites with the electrochemical adsorption of 

OH-.  These adsorption reactions should accelerate at high anode potentials as the 

anions interact with the less-negative electrode, in agreement with experimental 

evidence.  This study suggested potential-dependent adsorption of reactant anions 

may play an important role in determining the reaction pathway and rate of reaction. 

The roles of catalyst layer morphology and transport were explored by Chatenet 

et al. [42] by RDE voltammetry studies with catalyst layers of varying thickness and 

porosity.  Chatenet shows that the coulombic efficiency of BH4
- oxidation increased 

with catalyst layer thickness and porosity, which was attributed to large residence 



 35 

 

times for intermediate species.  The longer residence times raised the rates of 

subsequent adsorption and oxidation, increasing the net number of electrons provided 

by each BH4
- anion. 

Krishnan [50] used rotating ring-disc electrode (RRDE) voltammetry to study 

intermediate species produced in the oxidation of BH4
- on Au.  With BH4

- oxidized at 

the Au disc, intermediate species soluble in water were swept past the ring by the 

RRDE hydrodynamics, where further oxidation steps yielded additional current.  The 

onset of non-zero current density at the ring coincided with the onset of BH4
- 

oxidation at the disc, but the ring potential was negative to the disc potential, 

indicating the oxidation of intermediate species with more negative 𝐸0.  The ring 

potential range showing the greatest current suggested the predominant intermediate 

species was BH3(OH)-.  Spread in the ring electrode current density peak indicated 

the presence (in lower concentration) of other oxidation intermediates with different 

𝐸0, suggesting desorption of other intermediates from the Au disk on the path to  

BO2
-. 

   Concha et al. [43, 51] employed Fourier transform infrared spectroscopy 

(FTIR) to identify intermediate species adsorbed on the Au surface during BH4
- 

oxidation, and measure the relative abundance of each species as a function of 

electrode potential.   In a sweep from -200 to 1400 mV vs. RHE in 1 M NaBH4
- / 1 M 

NaOH, Concha found sequential majority species on the surface in the order expected 

for BH4
- oxidation: BH3, BH2, … BO2.  While BH4

- hydrolysis took place and 

produced BH3 on the surface at potentials below 200 mV vs. RHE, the rate was slow.  

No current was detected below 200 mV vs. RHE.  In the potential range 200 to 500 
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mV vs. RHE, the abundances of BH3 and BH2 rose dramatically, coinciding with the 

appearance of current due to electro-oxidation of B species and increasing hydrolysis 

rate.  Above 500 mV vs. RHE, greater amounts of BH3 on the surface and the 

appearance of B-O bonds suggested to the authors that the complete BH4
- oxidation 

reaction dominated in this potential range.  Concha suggests that the onset of BH4
- 

reactions occurs when the anode potential becomes high enough for BH4
- to 

overcome the electrostatic repulsion of the double layer (activation energy barrier for 

adsorption) to reach the anode.  Once BH4
- reaches the anode, it proceeds through a 

series of oxidation steps.  As the anode potential is raised, the oxidation steps favor 

charge transfer to the anode rather than hydrolysis.  This may be due, in part, to the 

anionic intermediate species having lesser propensity to desorb at less negative anode 

potentials. 

The last study of BH4
- oxidation on Au to be discussed here was reported by 

Rostamikia et al. [36, 37, 52].  Rostamikia used density functional theory (DFT) to 

estimate the free energies of aqueous and surface-adsorbed species involved in BH4
- 

oxidation.  The relative energies were then used to identify thermodynamically 

favorable paths from aqueous BH4
- to final oxidation products.  Several of 

Rostamikia’s conclusions are relevant to this study.  First, BH4
- oxidation on Au 

begins with adsorption of the aqueous species at a rate which depends on the anode 

potential [37] as in R 1.11.  Adsorption is followed by breaking B-H bonds, yielding 

surface adsorbed BHx* species (0 ≤ x ≤ 4) and H*.  The BHx* species either loose 

additional H to form more H* or get hydroxylated by OH- (aq) to form species such 

as BH(OH)2*.  The ultimate product is B(OH)4
-, the hydrated form of BO2

-.  The 
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mechanism proposed by Rostamikia consists of elementary (one e-) charge transfer, 

dehydrogenation and hydroxylation steps, yet DBFC anode reactions are often cast in 

terms of global (multi-electron) R 1.2 and R 1.4.  The relative rates of global R 1.2 

and R 1.4 can be understood in the context of the mechanism proposed by 

Rostamikia, which indicates they depend on the fate of H*.  The surface adsorbed 

hydrogen can undergo one of two reactions to leave the surface [52]: 

 

2 H∗ ⇌ H2(𝑎𝑞) + 2 Au R 1.14 

 
or, 

H∗ + OH−(aq) ⇌ H2O (𝑎𝑞) + Au + e− R 1.15 

 

Several observations can be made regarding R 1.14 and R 1.15: 

• R 1.14 is second order in H* whereas R 1.15 is first order, so higher BH4
- 

concentration (which raises the BH4
- adsorption rate and yields more H*) 

should favor R 1.14 and H2 production. 

• Higher OH- (higher solution pH) should favor R 1.15. 

• Higher (less negative) anode electric potentials should favor electrochemical 

oxidation (R 1.15). 

All of these observations have been noted by published experimental studies, which 

lend credence to the Rostamikia mechanism.  This has implications for the way the 

anode reaction on Au is modeled, because the rate(s) of reaction depend on surface 

fractions 𝜃𝐵𝐻4 and 𝜃𝐻. 
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While BH4
- oxidation on Au yields H2 at all potentials in 1 M NaBH4 / 1 M 

NaOH [41], complete BH4
- oxidation (reaction R 1.2) may be accurate under certain 

combinations of electrocatalyst and operating conditions.  Gardiner and Collat [47] 

suggested that the oxidation of BH4
- on Au favors reaction R 1.2 in strongly alkaline 

conditions and that reaction R 1.4 may be insignificant at pH ≈ 14.  Both Cheng and 

Scott [53] and Liu et al. [54] reported that an important metric for the relative rates of 

R 1.2 and R 1.4 is the ratio 𝐶𝑂𝐻− 𝐶𝐵𝐻4−⁄ ; when 𝐶𝑂𝐻− 𝐶𝐵𝐻4−⁄ > 5, the complete 

borohydride oxidation dominates.  This suggests that sufficiently high OH- 

concentrations can strongly bias the mix of anode reactions in favor of reaction R 1.2. 

1.5.3 The Hydrogen Peroxide Reduction Mechanism on Pd:Ir 

The borohydride oxidation mechanism has received greater attention in the 

DBFC literature, but the mechanism for H2O2 reduction also plays an important role.  

Two pathways for H2O2 reduction on precious metal catalysts have been observed 

[55, 56]; the first “normal” pathway consists of R 1.16 and R 1.17, which together 

consume two electrons from the cathode. 

 

H2O2 + H+ +∗ +e− ⇌ OH∗ + H2O R 1.16 

 

OH∗ + H+ + e− ⇌ ∗ + H2O R 1.17 

 

In the second, autocatalytic pathway, R 1.17 is replaced by R 1.18.  Both pathways 

involve adsorbed OH (OH∗), but the second pathway differs in that H2O2 reduction 

makes more OH∗ available to reduce additional H2O2. 
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H2O2 + OH∗ + H+ + ∗ + e− ⇌  2 OH∗ +  H2O R 1.19 

 

The autocatalytic pathway has been observed on Ag, but not on Pt or Pd [57].  No 

papers examining the mechanism of H2O2 reduction on Pd:Ir alloys could be found, 

however other properties of these alloys suggest that the mechanism for H2O2 

reduction on Pd:Ir also follows the normal pathway.  Adding Ir to the Pd cathode 

catalyst has been shown to decrease the rate of H2O2 decomposition, with a 

concomitant decrease in activity for H2O2 reduction [14, 58].  Greater activity would 

have been expected if Ir induced an autocatalytic effect which Pd does not normally 

exhibit. 

1.5.4 Additional DBFC Electrode Reactions 

R 1.2 (BH4
- electro-oxidation) and R 1.4 (BH4

- hydrolysis) dominate at the 

anode.  R 1.3 (H2O2 electro-reduction) and R 1.5 (H2O2 decomposition) dominate at 

the cathode.  These are not the only reactions which can occur, however.  The 

electrode potentials can reach values which drive reactions involving the solvent 

(H2O) or supporting electrolytes (NaOH or H2SO4).  The simplest way to evaluate the 

possibility of such reactions is often to examine the relevant pH-E (Pourbaix) 

diagram. 

The anode potential at open circuit should be near the standard equilibrium 

potential for BH4
- electro-oxidation (𝐸𝑅1−20  = -1.24 V vs. RHE) if it is the dominant 

charge transfer reaction.  Referring to the Pourbaix diagram for H2O (Figure 1.7), an 

electrode having this potential in a strongly alkaline medium should drive R 1.20, 

which at pH 14 and 𝑎𝐻2 = 1 has 𝐸𝑅1.20
0  = -0.828 V vs. RHE.  The result is a “mixed 
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potential” where the equilibrium potential of the anode depends on the relative rates 

of R 1.2 and R 1.20 and falls in the range 𝐸𝑅1−20 < 𝐸0 < 𝐸𝑅1.20
0  .  Ordinarily R 1.20 is 

written as a dynamic equilibrium with rates in each direction, however Au has little 

propensity for breaking H-H bonds, so the oxidation of H2 (reverse of R 1.20) is 

unlikely. 

 

 

Figure 1.7. Pourbaix diagram showing regions of stability, oxidation and reduction of 
H2O as functions of pH and electrode potential [59]. 

 

2 H2O + 2 e− → H2 + 2 OH− 𝐸𝑅1.20
0  = -0.828 V vs. RHE R 1.20 

 

A similar scenario exists at the cathode, where the standard reduction potential of 

H2O2 in a strongly acidic medium is 𝐸𝑅1−30  = 1.77 V vs. RHE.  Figure 1.7 shows that 

R 1.21 should take place at electrode potentials above 𝐸𝑅1.21
0  = 1.23 V vs. RHE for 

pH = 0 and 𝑎𝑂2 = 1.   
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2 H2O ⇌ O2 + 4 H+ +  4 e− 𝐸𝑅1.21
0  = 1.23 V vs. RHE R 1.21 

 

From a mechanistic point of view however, R 1.21 is properly modeled as the 

summary of R 1.22 and R 1.3, with H2O2 being an intermediate in the O2 reduction 

process at potentials more negative than 𝐸𝑅1.21
0 .  This gives the intermediate H2O2 an 

opportunity for other interactions prior to the second step, which is more realistic. 

 

H2O2 ⇌ O2 + 2 H+ +  2 e− 𝐸𝑅1.22
0  = 0.682 V vs. RHE R 1.22 

 

Additionally H+ reduction (R 1.23) can occur at the cathode.  The use of low pH 

oxidizer solutions provides abundant H+ in solution, which can be reduced to H2 at 

potentials below 𝐸𝑅1.23
0  (see line a in Figure 1.7). 

 

H2 ⇌ 2 H+ +  2 e− 𝐸𝑅1.23
0  = 0.00 V vs. RHE R 1.23 

 

1.5.5 Rates for BH4
- oxidation on Au and H2O2 reduction on Pd:Ir 

At least three efforts to measure the kinetic rate parameters for BH4
- electro-

oxidation have been reported, however the complexity of this reaction introduces 

substantial uncertainty in the results.  Chatenet [49] used linear voltammetry and 

chronometric techniques with an RDE to measure 𝑖0 and 𝑛𝑒 in 0.1 to 1.0 M NaOH 

and 10-2 to 1 M NaBH4 at 25°C.  The result was 𝑖0 = 7.4×10-6 A·cm-2 and 𝑛𝑒 = 7 for 

10-2 M NaBH4 in 1 M NaOH. 

Santos [60] applied chronocoulometric techniques to measuring the exchange 

current density 𝑖0, symmetry factor 𝛽𝑎 and standard rate constant 𝑘𝑎 at an Au disk in 
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2 M NaOH with 𝐶𝐵𝐻4 = 0.03, 0.06, 0.09, 0.12 M.  The result at 25°C was values of 𝛽𝑎 

ranging from 0.07 to 0.13 and values of 𝑖0 ranging from 16.4 mA·cm-2 to 0.46 

mA·cm-2.  Santos obtained values for 𝑘𝑎 by noting that the anodic current at 

equilibrium is equal to 𝑖0 and the number of electrons transferred in the rds is likely 1: 

𝑖0 = 𝑘𝑎𝑛𝑒𝐹𝐶𝐵𝐻4exp (𝛽𝑎𝑛𝑒𝑓𝐸𝑅1.2
0 ) Eq. 1.24 

 

In a second paper [61] describing the same experiments, Santos concluded that in the 

examined range of concentrations at 25°C, the BH4
- electro-oxidation reaction was 

irreversible, diffusion controlled and the rds involved the transfer of one electron. 

Finkelstien et al. studied the rates of both BH4
- oxidation at Au [39] and H2O2 

reduction at Pt [62].  For BH4
- oxidation, Finkelstien reported 𝑘𝑎 = 6.4×10-4 m·s-1 and 

𝛽𝑎 = 0.22 at -0.230 V vs. RHE in 5 mM NaBH4 / 1 M NaOH.  For H2O2 reduction, 

Finkelstien reported 𝑘𝑐 = 8×10-3 m·s-1 and 𝛽𝑎 = 0.45 at 0.6 V vs. RHE in 5 mM H2O2 

/ 0.5 M H2SO4.  The authors did note, however, that the value of 𝑘𝑐 was unphysically 

high and did not provide a rationale as to why. 

Cao [21] studied the kinetics of H2O2 reduction at low pH on Pd nanoparticles 

immobilized on an Au disk.  An exchange current density of 3.8×10-4 mA·cm-2 was 

reported for 30 mM BH4
- in 0.1 M H2SO4 at a temperature of 293 K. 

1.5.6 Transport through Nafion Membranes in DBFCs 

Most reported DBFC experiments have separated the fuel and oxidizer with a 

Nafion cation exchange membrane [20, 25].  Nafion membranes are extruded sheets 

of polytetrafluoroethylene (PTFE) and polysulfonyl fluoride vinyl ether copolymer; 

the PTFE is a backbone for SO3
- functional groups which provide the cation exchange 
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properties.  In the picture expounded by Newman and Weber [63], the cationic 

conductivity of Nafion depends on the presence of pores containing water.  The pores 

are effectively lined by SO3
- groups in the membrane matrix, which balance the 

charge of hydrated cations in the pores.   Anions are excluded from the pores by the 

local negative charge of the pore walls, which establishes a Donnan potential at the 

membrane-solution interface.  Important Nafion transport properties include the 

average number of H2O molecules per SO3
- group (𝜆) and the number of H2O 

molecules in the hydration shell of each cation (𝑛𝑑).  Increases in 𝜆 imply wider or a 

larger number of pores, and correlates with ionic conductivity [64].  The value of 𝑛𝑑 

depends on the cationic species and is known as the “electro-osmotic drag 

coefficient” because it describes the number of water molecules transported through 

the membrane by each cation [65]. 

Transport of cations through Nafion membranes occurs due to diffusion and 

migration, while transport of water occurs due to diffusion and electro-osmotic drag.  

All species are subject to permeation, where a pressure differential across the 

membrane drives a bulk flow through the pores, carrying some or all constituents of 

the higher pressure fluid.  Some transport of anions in response to concentration or 

pressure gradients is possible with anion concentrations lower than 𝐶𝑆𝑂3− in the 

membrane because the Donnan potential at the membrane-solution interface acts as 

an activation energy barrier to entry.  The Donnan potential can be overwhelmed 

when the anion concentration exceeds the concentration of SO3
- groups in the Nafion, 

which then admits anions to the pores. 
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The conductivity of the membrane is related to the mobilities of the charge 

carriers (cations) flowing through it, as shown for aqueous electrolytes in §1.2.2.  The 

ohmic losses observed in DBFC experiments stem in large part from the mobility of 

Na+ in Nafion, which is lower than the mobility of H+ due to its larger hydration shell 

(𝑛𝑑,𝑁𝑎+ > 𝑛𝑑,𝐻+). 

In an operating DBFC, the electric potential gradient in the membrane is oriented 

such that the migration flux of Na+ ions flows from fuel solution to oxidizer solution 

(see Figure 1.8).  This electric potential gradient acts to keep fuel solution anions on 

the fuel side of the membrane and cations in the oxidizer solution on the oxidizer side 

of the membrane.  Studies of BH4
- crossover in DBFCs using Nafion 117 membranes 

have shown that the rate of crossover diminishes with increasing current density 

(electric potential gradient in the membrane) [66]. 

 

 

Figure 1.8.  Illustration of the electric potential profile through the membrane when 
the DBFC is operating (a) and a possible profile at open circuit (b), which would 

encourage crossover of other species. 
 

When the cell is at open circuit, however, the rates of crossover for species other 

than Na+ may rise.  The electric potential gradient across the membrane and rates of 

transport through the membrane at open circuit are dictated by the electrochemical 

Oxidizer ChannelFuel Channel Membrane

Na+

(a)

(b)
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potentials of the species on each side.  Large differences in concentration can provide 

strong driving forces for crossover, and if Δ𝜇�𝑘,𝑚𝑒𝑚 < 0, then species k will cross the 

membrane.  It is possible for steady state at open circuit to include fluxes of charged 

species through the membrane even if the net current into/out of the electrodes is 

zero.  Experiments have suggested that crossover of species such as BH4
- and OH- 

may contribute to open circuit values of lower than 𝐸R1.1
0  by creating a mixed 

potential at the cathode. 

Studies [64, 67] of Nafion membranes in contact with aqueous electrolyte 

solutions containing Na+ and H+ have shown that the cation electronic mobilities and 

electro-osmotic drag coefficient depend on 𝑋𝐻+,𝑚𝑒𝑚 and 𝑋𝑁𝑎+,𝑚𝑒𝑚.  The electronic 

mobilities in Nafion 115 have been described [67] in terms of their mole fractions and 

an interaction parameter 𝑘𝑖𝑛𝑡: 

𝑢𝑁𝑎+,𝑚𝑒𝑚 = 𝑢𝑁𝑎+,𝑚𝑒𝑚
0 �1− 𝑘𝑖𝑛𝑡𝑋𝐻+,𝑚𝑒𝑚� 𝐹⁄  Eq. 1.25 

 
𝑢𝐻+,𝑚𝑒𝑚 = 𝑢𝐻+,𝑚𝑒𝑚

0 �1− 𝑘𝑖𝑛𝑡𝑋𝑁𝑎+,𝑚𝑒𝑚� 𝐹⁄  Eq. 1.26 
 

Faraday’s constant is included in Eq. 1.25 and Eq. 1.26 to convert from electronic 

mobility to standard ion mobility.  The electronic mobilities with only one type of 

cation in the membrane were found in [67] to have the following values: 𝑢𝑁𝑎+,𝑚𝑒𝑚
0  = 

(2.7 ± 0.1) x 10-8 m2·V-1·s-1 and 𝑢𝐻+,𝑚𝑒𝑚
0  = (1.49 ± 0.03) x 10-7 m2·V-1·s-1.  The 

interaction parameter was found to be 𝑘𝑖𝑛𝑡 = 0.20 ± 0.02. 

1.5.7 Mathematical Models of DBFCs and Similar Fuel Cells 

DBFC models have been published prior to this work.  Verma and Basu [68] 

modeled an O2 DBFC consisting of a Nafion membrane in contact with porous 
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catalyst layers and a well mixed volume of fuel.  Mass transport to the cathode was 

governed by Fick’s law (O2 diffusion in air) and transport to the anode was neglected.  

All charge transport processes in the cell were described by a fit to measurements of 

ohmic resistance.  Sanli et al. [69] published a similar model, but with H2O2 as the 

oxidizer and mass transport neglected entirely.  Both [68] and [69] ignore down-the-

channel effects.  Shah et al. [70] published a DBFC model with the most detailed 

treatment of the electrode reactions to date, for a cell topology similar to that of 

PEMFCs (as shown in Figure 1.6, right side).  The cell consisted of a Nafion 

membrane with a porous Pt catalyst layer on each side; the catalyst layers were 

separated from reactant flow channels by porous diffusion layers.  The model predicts 

cell voltage at a given current density by calculating activation and ohmic 

overpotentials explicitly as functions of current density, and then subtracting the 

overpotentials from the open circuit voltage.  Concentration overpotentials were 

included by estimating concentrations near the electrodes.  Species concentrations 

were assumed to be uniform in the flow channels, but transport from the flow 

channels to the catalyst layer was approximated by a Nernst diffusion layer thickness 

correlation.  Down-the-channel effects were not addressed.  The anode reaction 

model included BH4
- adsorption (R 1.24), partial electro-oxidation of BH4

- to yield 4 

e- and H2 (R 1.25) and the complete Tafel-Volmer-Heyrovsky mechanism for H2 

evolution (R 1.26 to R 1.28) .  Mixed potentials at the anode were handled by 

allowing all of the reaction rates to find equilibrium at a common anode potential for 

the specified current density.  Shah found that 𝜃𝐵𝐻4− tended to be quite small (~10-4) 

due to slow adsorption of anions on the negative anode and rapid dehydrogenation of 
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the adsorbed BH4
-.  These modeling results concur with the experimental results of 

Mirkin et al. [48] and Chatenet et al. [44]. 

 
BH4

− + Pt ⇌ BH4
−∗ R 1.24 

 
BH4

−∗ + 4 OH− → BO2
− + 2 H2O + 4 e− + 4 H∗ R 1.25 

 
H2O + e− ⇌ OH− + H∗  (Volmer) R 1.26 

 
H∗ + H2O + e− ⇌ H2 + OH−  (Heyrovsky) R 1.27 

 
2 H∗ ⇌ H2  (Tafel) R 1.28 

 

Byrd and Miley [71] reported a 2D finite element DBFC model used for 

parametric design analysis with respect to the cell geometry.  The modeled DBFC 

consisted of a Nafion membrane coated with catalyst on each side (see Figure 1.6, 

right), with porous electrically conductive diffusion layers in contact with each 

catalyst layer.  The model domain included the membrane, catalyst layer and 

diffusion layers between two channels; i.e. under the “land” of the flow field.  The 

goal was to model transport through the porous diffusion media between the channels 

to evaluate the effects of parameters such as channel spacing and diffusion medium 

porosity.  The Byrd study excluded transport in the channels and migration by 

treating electrolytes (for example, NaOH) as single uncharged species in aqueous 

solution.  Transport in the diffusion media was described by a combination of Fick’s 

Law for diffusion and Darcy’s law for creeping flow through a porous medium.  

Convection and the interactions of ions in solution were ignored.  The membrane was 

treated as an ohmic resistance with H+ flowing from anode to cathode.  The reason for 

charge balancing the cell with H+ was unclear, as Na+ is widely accepted as the 
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An adsorption isotherm permits implicit calculation of adsorption and desorption 

rates by assuming surface species are in equilibrium with the aqueous species, but the 

rates can also be calculated explicitly. At steady state, the net rate of species 𝑘 

addition to the surface must equal the rate of loss, with the net rate being a result of 

adsorption/desorption reactions and surface reactions.  The sum over production and 

consumption rates due to all reactions 𝑞 must therefore be zero, and the residual 

associated with the surface site fraction of each species 𝑘 is given by Eq. 2.21. 

 

𝑅𝑘𝑆𝐹 = �𝑟𝑞𝑣𝑘,𝑞
𝑞

 Eq. 2.21 

 

2.6 Composition Equation of State 

The fuel and oxidizer solutions are incompressible, but an equation of state is 

still needed to relate solution mass density to composition.  A state equation (Eq. 

2.22) relates solution mass density to mass fraction by accounting for the apparent 

molar volume of each solute.  

 

𝜌 =
𝜌𝐻2𝑂

𝑌𝐻2𝑂 + 𝜌𝐻2𝑂 ∑ (𝛿𝑘𝑌𝑘 𝑊𝑘⁄ )𝑘
 Eq. 2.22 

 

The density of pure water, 𝜌𝐻2𝑂, varies with temperature via a polynomial fit to 

empirical data at 100 kPa. 
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Chapter 3: An Analysis of Ideal DBFC Performance 

3.1 Goals and Approach 

While there has been significant work on the electrochemistry of DBFCs, 

practical DBFC cell design and operating spaces have not been explored as 

thoroughly.  Experiments on fundamental kinetics as well as electrode geometry have 

provided insight into what is feasible for DBFCs, but relationships between cell 

design and performance are not understood.  The range of reactant and product 

concentrations along the flow path of a practical cell with substantial reactant 

utilization can have a significant impact on reaction overpotentials and transport 

limitations, and thus overall cell efficiencies and power densities.  Carefully 

constructed numerical models of DBFCs can explore cell configurations and designs 

that provide the highest power densities and the most effective conversion of fuel and 

oxidizer to useful energy (i.e., efficiency).  A model can also provide state 

information that is useful for understanding how the cell operates, but is otherwise 

difficult to measure.  This chapter presents results from a 2-D steady state finite 

volume model which explore how cell geometry and operating conditions impact 

DBFC performance under conditions which favor R 1.2 and R 1.3.   

The modeled system is ideal in that only R 1.2 and R 1.3 take place, and the 

membrane is permeable only to Na+ and water.  Realistically, improved 

electrocatalysts and membranes are unlikely to eliminate R 1.4 and R 1.5, or the 

transport of species other than Na+ through the membrane.  The results presented here 
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represent the performance of an ideal DBFC, which realistic DBFC performance may 

approach as the technology improves. 

The rates of R 1.2 and R 1.3 were written in the form of Eq. 1.11, making use of 

Eq. 1.13 to write them in terms of only one rate constant.  This approach ensured 

thermodynamic consistency, i.e. the net rate would be zero under standard conditions 

(all 𝑎𝑘=1) and electrode potential equal to ∆𝜙′.  The concentrations of species in 

excess (OH- at the anode, H+ at the cathode and H2O at both electrodes) were 

neglected as they have little effect on the rates.  The rates of R 1.2 and R 1.3 are given 

as Eq. 3.1 and Eq. 3.2. 

 
𝑟𝑅1.2 = 𝑘𝑎,𝑅1.2�𝐶𝐵𝐻4−𝑒

𝛽𝑎,𝑅1.2𝑓Δ𝜙 − 𝑒𝑓𝐸𝑅1.2
0

𝐶𝐵𝑂2−𝑒
−�1−𝛽𝑎,𝑅1.2�𝑓Δ𝜙� Eq. 3.1 

 

𝑟𝑅1.3 = 𝑘𝑐,𝑅1.3�𝑒−𝑓𝐸𝑅1.3
0
𝑒𝛽𝑎,𝑅1.3𝑓Δ𝜙 − 𝐶𝐻2𝑂2𝑒

−�1−𝛽𝑎,𝑅1.3�𝑓Δ𝜙� Eq. 3.2 
 

This study consists of a baseline case and 12 alternative cases in which one 

parameter is altered (see Table 3-1) to identify the effects it has on DBFC 

performance.  Many parameters remained the same in all cases (see Table 3-2).  The 

model was run repeatedly for each case for a range of cell voltages.  An initial 

solution at a cell voltage of 3.4 V was calculated, and the cell voltage was 

subsequently decreased in 0.1 V steps until it reached the transport-limited current 

density.  Each run yielded values for all state variables in the model domain and post 

processing provided the mass, momentum and charge fluxes (i.e. current density).  

The state variables and fluxes were used to estimate performance metrics such as 

voltage efficiency, power density and fuel utilization. 
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Baseline values for the channel dimensions, membrane thickness and inlet flow 

rates were based on typical values appearing in published experimental studies.  The 

inlet BH4
- concentrations were chosen to operate in a regime where complete 

borohydride oxidation (R 1.2) is likely to dominate the anode reactions (at cell 

voltages other than open circuit).  Fast forward reaction rate constants (𝑘𝑅1.2,𝑎 at the 

anode and 𝑘𝑅1.3,𝑐 at the cathode) were chosen to model cell performance with an 

advanced electrocatalyst and emphasize the influence of transport on cell 

performance. 

 
Table 3-1. Baseline case and parameter variations 

Parameter Baseline Variations from Baseline 
Anode inlet [NaBH4] 0.3 M 0.1, 0.2, 0.4, 0.5 M 
Channel depth 1 mm 0.50, 0.75 mm 
Membrane thickness 145 µm 1.45, 72.50 µm 
Inlet fuel flow rate 60 mL min-1 15, 30 mL min-1 
Forward reaction rate 
constants 106 m4·mol-1·s-1 100, 103 m4·mol-1·s-1 

   

Table 3-2. Parameters common to all cases 
Parameter Value Parameter Value 

Anode inlet [NaOH] 4.0 M Cathode inlet [H2SO4
 ] 4.0 M 

Anode inlet [NaBO2] 10-6 M Cathode inlet [H2O2] 4.0 M 
Channel width 10 mm Oxidizer inlet flowrate 60  mL·min-1 
Temperature 298 K    

 

3.2 Baseline Case 

The calculated baseline polarization curve is shown in Figure 3.1.  The cell 

voltages in Figure 3.1 are useful in a relative sense because the model neglects fuel 

crossover and competing electrochemical reactions, but the slopes of the polarization 

curve in the linear region at intermediate current densities and in the transport-limited 
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region at the highest current densities are comparable to an actual cell because they 

are largely dictated by known transport parameters.   

 

Figure 3.1. Baseline polarization curve showing activation, ohmic and concentration 
overpotentials. 
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Figure 3.11. Polarization and power density curves for membrane thicknesses of 1.45, 
72.5, and 145 µm.  All other parameters are the same as in the baseline case, which is 
labeled “BL”.  The thickness of fully hydrated Nafion 115 in the Na+ form is 145 µm 

[67]. 
 

3.5 Effects of Fuel Concentration and Flow Rate 

Changes to fuel concentration and flow rate affect cell performance by changing 

concentrations near the electrodes, thereby changing the concentration overpotentials.  

Higher inlet BH4
- concentration provides a larger gradient to drive BH4

- from the bulk 

to the anode, which leads to higher fuel concentration near the anode.  Higher flow 

rate improves convection transport of reactants to the anode and products from the 

anode.  Both scenarios increase power density by decreasing the concentration 

overpotential, increasing current density, or both. 
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Figure 3.12. Average power density vs. cell potential for fuel inlet concentrations 
ranging from 0.1 M to 0.5 M.  All other parameters are the same as in the baseline 
case, labeled “BL”. The bold dashed curve is drawn through the maximum power 

density at each concentration. 
 

Power density is plotted vs. cell voltage for three fuel flow rates in Figure 3.13.  

The power density increases with flow rate at all current densities as the higher rates 

of transport change concentrations near the anode.  The pressure drop in the channel 

increases in proportion to the flow rate, but fuel utilization falls as indicated in Table 

3-5.  Increasing the fuel flow rate by a factor of four increases the pressure drop 

(pumping losses) by a factor of four, but only increases the peak power by 48%. 
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Figure 3.13. Power density vs. cell voltage curves for fuel solution flow rates of 15, 
30 and 60 mL·min-1.  All other parameters are the same as in the baseline case, 

labeled “BL”.  The bold dashed curve is drawn through the maximum power density 
at each flow rate. 

 

Table 3-5. Performance metrics with respect to fuel flow rate with all other 
parameters at the baseline case 

 Fuel Flow Rate [mL·min-1] 
Parameter 15 30 60 
Peak power density [W·cm-2] 0.72 0.88 1.06 
Cell voltage @ peak power density [V] 2.37 2.29 2.21 
Fuel utilization @ peak power density [%] 10.5 6.60 4.14 
Power density @ 2.5 V [W·cm-2] 0.65 0.70 0.73 
Channel pressure drop [Pa] 51.7 104 210 

 

3.6 Insights into DBFC Design from the Ideal Case Analysis 

The results in sections 3.2 to 3.5 can guide DBFC design by showing how 

performance varies with operating conditions and cell design parameters.  For 

conditions in which cell performance is controlled by transport, the assumptions 
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the deposition rates could have varied from the inlet to outlet of the cell as the plating 

solution was depleted.  Electron dispersive x-ray spectroscopy (EDS) was used to 

measure the abundance of Pd and Ir at both ends and the middle of the cathode 

electrocatalyst strip.  The results show a trend of increasing Pd deposition rate from 

inlet to outlet, with the Pd:Ir ratio varying from 1.1:1.0 near the inlet to 1.4:1.0 near 

the outlet.  The abundance of C varies from 13.3% near the inlet to 15.4% near the 

outlet, suggesting the plating solution was becoming depleted and/or a concentration 

boundary layer developed during the deposition process.  Small quantities (< 2.5%) 

of Cl and Na were also evident, and were most likely traces from the plating solution.  

A study by Zhang et al. [86] indicated that Ir exists in this solution (at low pH) 

primarily as [IrCl6]-2, so Cl- may have deposited independently, or as part of the Ir 

deposition process as [IrCl6]-2 reached the surface. 

 

 

Figure 4.10. Example EDS spectrum from end “A” of the cathode electrocatalyst 
strip, showing relative abundances of each species. 
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Figure 4.11. SEM image of the Pd:Ir cathode prior to experiments, showing good 
coverage of the graphite plate. 

 

 
 

Figure 4.12. SEM image of the Pd:Ir cathode prior to experiments, showing surface 
morphology consisting of rounded features. 
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Figure 4.13. SEM image of the Au anode prior to experiments, showing a different 
surface morphology with more texture than in the Pd:Ir cathode.  The cathode image 

is inset with size adjusted to match the anode scale bar. 
 

4.3.3 Cyclic Voltammograms 

The electrochemical characteristics of the two electrodes were evaluated by 

cyclic voltammetry (CV).  A procedure similar to the plating procedure was used to 

measure each CV.  The electrode of interest was assembled in the cell with a blank 

(i.e. graphite only) CE and no membrane, and 0.5 M H2SO4 was pumped through the 

cell from a reservoir by a peristaltic pump.  The H2SO4 was de-aerated by bubbling 

Ar through it while stirring.  The pump and stir plate were halted during 

measurements to minimize electromagnetic interference, but the cell remained 

connected to the reservoir to ensure ionic conductivity between the cell and Ag/AgCl 

RE in the reservoir.  CVs were generated by an Autolab PGSTAT30 potentiostat/ 
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galvanostat with scan rate of 20 mV s-1, after 10 rapid cleaning scans.  The resulting 

CVs are presented in Figure 4.14. 

The Au CV shows the characteristic features found in published Au CVs under 

similar conditions [87].  Integrating the charge under oxide reduction peak (labeled a 

in Figure 4.14; 0.5 V to 1.1 V) and dividing by the charge density of one oxygen 

monolayer (0.42 mC·cm-2 [88]) yields an electrochemical surface area (ECSA) of 

47.1 cm2.  Dividing the ECSA by the 2.5 cm2 geometric surface area yields an anode 

roughness factor of approximately 18.  The DBFC cathode roughness factor was not 

calculated from the area under the oxide peak labeled b, as it was for the anode, 

because the charge density of an oxide monolayer on this alloy is not known. 

 

 
Figure 4.14. Cyclic voltammograms for the Au anode electrocatalyst and Pd:Ir 

cathode electrocatalyst.  Measured in 0.5 M H2SO4 with a scan rate of 20 mV·s-1. 
 

There are few examples of Pd:Ir CVs in the literature; the most similar CVs 

available were reported for various ratios of Pt:Ir in 0.1 M HClO4 by Chen and Chen 



 112 

 

[89].  The Pd:Ir CV in Figure 4.14 most resembles the CVs in [89] for Pt:Ir ratios of 

66:43 and 1:0.  Kjeang [90] reported a CV of a planar Pd electrode deposited on a 

graphite plate in the course of experiments with a microfluidic formic acid fuel cell.  

Unfortunately, the Kjeang CV is nearly featureless, perhaps due to poor deaeration of 

the electrolyte.   

 

4.4 Test Preparation and Procedures 

4.4.1 Reactant Preparation 

All glassware used for reactant preparation and wetted parts in the test stand 

(carboys, valves, etc.) were cleaned with NaHCO3 and 98% H2SO4, and then rinsed 

thoroughly with 18 MΩ water.  The fuel solution was prepared by adding solid NaOH 

(Fisher Scientific) to 18 MΩ water and then adding the desired amount of solid 

NaBH4 (Alfa Aesar).  The oxidizer solution was prepared by diluting 98% H2SO4 

(Fisher Scientific) with 18 MΩ water and then adding the desired amount of 30% wt 

H2O2 solution (Fisher Scientific).  The base and acid were each prepared first so that 

the NaBH4 would not hydrolyze and the H2O2 would not decompose when added.  

Both reactant solutions were prepared less than 30 min prior to each experiment to 

minimize changes in BH4
- and H2O2 concentration due to hydrolysis and 

decomposition.  The reactants were permitted to achieve thermal equilibrium with the 

laboratory environment prior to each test.  Neither reactant solution was deaerated 

prior to the experiments, although the N2 overpressure would have lowered the 

dissolved O2 concentrations slightly.  Au has little activity for O2 reduction, so 

dissolved O2 should not have affected the anode behavior.  Pd:Ir, on the other hand, 
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has high activity for O2 reduction and dissolved O2 may have provided an additional 

source of oxidizer.  The O2 concentration in pure water in equilibrium with 1 atm air 

at 25°C is 2.67×10-4 M [91], or 150 times smaller than the 40 mM H2O2 concentration 

in most of the experiments. 

4.4.2 Measurement and Test Procedures 

For each experiment, the carboys were pressurized to 2.5 psig and then the 

reactant valves were opened.  The cell was permitted to equilibrate at open circuit for 

5 min, and then the MACCOR test script was started.  The test script began with a 5 

min hold at open circuit and then generated a polarization curve by stepping through 

cell potentials from 0.3 V to open circuit.  Each subsequent cell potential was held for 

2.5 min.  The short hold periods (compared to common PEMFC test procedures) were 

found to be sufficient because the cell rapidly approached steady state, as judged by 

observing the cell current.  The period at 0.3 V was longer to ensure the cathode was 

thoroughly reduced and improve consistency among polarization curve 

measurements.  Each test consisted of three successive polarization curves which 

were later used to compile an average curve and standard deviation for each point.  

Current was measured at 1 Hz, and the last 2 min of each hold period were used to 

compile an average cell current for that step. 

The reactant flow rates were measured periodically (twice per experiment) to 

ensure they were consistent among experiments.  The rates were measured by 

directing the flows into 250 mL graduated cylinders and measuring the time to fill 

them.  At 10 mL·min-1 (the flow rate for most of the experiments) the time 

measurement error was insignificant compared to the total time of ~25 min, making 
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the measurement uncertainty depend entirely on the accuracy of the graduated 

cylinders.  Compiling all flow rate measurements gave values of 10.17±0.46 mL·min-

1 for the fuel and 10.05±0.16 mL·min-1 for the oxidizer. 

 

 

Figure 4.15. Polarization curves measured with 20 mM BH4
- / 2 M NaOH fuel and 40 

mM H2O2 / 1 M H2SO4 oxidizer.  One curve was generated by stepping from open 
circuit to 0.3 V, and the other by stepping from 0.3 V to open circuit. 

 

Oxidizing conditions such as high electrode potential or exposure to strong 

oxidizers have been known to oxidize fuel cell electrocatalysts, which decreases their 

catalytic activity.  The Au anode catalyst remained in the reduced state in the strongly 

reducing anode fuel flow, but the Pd:Ir cathode was exposed to H2O2 (a strong 

oxidizer) and expected to take on high electric potential.  To evaluate the influence of 

cathode catalyst oxidation on the results, two polarization curves were measured, one 

stepping from open circuit down to 0.3 V and one stepping from 0.3 V up to open 

circuit.  The two curves are shown in Figure 4.15, where some minor differences are 
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apparent.  The curve stepping from 0.3 V to open circuit has higher current densities 

in the ohmic and activation overpotential regions, as expected for a catalyst layer 

which was more reduced by operating at low electric potential prior to measuring the 

curve. 

Each set of experiments began and ended with a baseline polarization curve to 

show whether or not the cell state (for example, catalyst oxidation state) was 

consistent for the intervening experiments.  The baseline case was 10 mM NaBH4 / 2 

M NaOH fuel and 40 mM H2O2 / 1 M H2SO4 oxidizer.  1:1 stoichiometry (assuming 

the ideal reaction, R 1.1) was chosen for the baseline case so that a change in the 

activity of either electrocatalyst would appear in the polarization curve; otherwise 

changes in an electrode could be masked by an excess of reactant.  

 

 
 

Figure 4.16. Comparison of baseline (10 mM NaBH4 / 2 M NaOH fuel, 40 mM H2O2 
/ 1 M H2SO4 oxidizer) polarization curves, measured before and after 

experiments. 
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Figure 4.16 shows baseline polarization curves measured before and after the 

bulk of experiments discussed in this chapter.  They vary little, showing that the cell 

state was likely consistent throughout the test matrix.  The apparent discrepancy in 

the activation region is the result of adding several points in the “Finish” polarization 

curve to better resolve the curve in that region. 

 

4.5 Results and Discussion 

4.5.1 Measured Polarization Curves and Electrode Potentials 

Five polarization curves were measured with BH4
- concentrations ranging from 1 

to 20 mM, all in 2 M NaOH.  Concentrations in the oxidizer solution were held 

constant at 40 mM H2O2 / 1 M H2SO4.  This BH4
- concentration range was chosen for 

two reasons.  First, BH4
- oxidation is the least understood reaction occurring in the 

cell, with both the mechanism and rate in doubt.  Varying BH4
- concentration was 

expected to probe the anode reaction(s) and show how the relative rates change, 

because BH4
- is likely involved in the rate-determining step.  If for example, the 

anode mechanism consists of R 1.2 and R 1.4, then changing BH4
- concentration 

should change the relative rates of those reactions and the current density.  Variation 

in polarization curves with operating conditions was expected to permit fitting of rate 

parameters to the measurements.  The second reason for choosing this range of BH4
- 

concentrations was to vary the transport limiting species.  1 mM, 2.5 mM and 5 mM 

BH4
- give fuel limited stoichiometries.  10 mM BH4

- gives 1:1 stoichiometry, and 20 

mM BH4
- is oxidizer limited.  Varying the limiting reactant was expected to provide 
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insight into the transport behavior of these species and test the accuracy of transport 

rate prediction by the model. 

The five measured polarization curves are shown in Figure 4.17.  All five curves 

exhibit clear activation overpotential regions between OCV and 1.4 V.  As expected, 

the ohmic overpotential region is most pronounced in the 20 mM BH4
- curve, which 

has the highest current density.   

Several differences between the measured polarization curves and those 

predicted by the ideal DBFC analysis are apparent.  First, OCV is depressed in the 

measured curves by ~1.4 V.  The ideal DBFC analysis presumed that no electrode 

reactions occur at OCV, so that reactant concentrations near the electrodes were equal 

to the bulk concentrations.  The lower measured OCVs can be explained by 

competing reactions consuming reactants near the electrodes, which lowered the local 

concentrations and depressed electrode potentials as predicted by the Nernst equation. 

Furthermore, the real reaction rate constants were likely smaller than the fast values 

assumed for the ideal analysis.  Smaller rate constants lead to larger activation 

overpotentials, because electrode potentials must shift further from equilibrium to 

achieve even small net current density.  Large activation overpotentials near OCV can 

appear to be shifts in OCV as small current densities are masked (appear to be zero 

current density) by effects such as leakage currents and membrane crossover.   

A second difference between the measured polarization curves and those 

predicted by the ideal analysis is the onset of the transport limit.  In the ideal analysis, 

current density suddenly ceased to increase with decreasing cell voltage at the 

transport limit.  The measured 1 mM and 2.5 mM BH4
- concentration curves behave 
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this way, but the 5 mM, 10 mM and 20 mM curves end differently.  The 5 mM and 10 

mM BH4
- concentration curves approach the transport limit gradually with current 

density rising less quickly as the cell voltage is decreased.  The 20 mM BH4
- is 

similar, but in the 0.4-0.6 V range the current density appears to increase more 

quickly as the cell voltage is decreased.  These trends indicate the presence of a 

process which was omitted in the ideal DBFC analysis. 

  

 
 

Figure 4.17. Measured polarization curves with varying BH4
- concentration in 2 M 

NaOH.  In all cases, the oxidizer was 40 mM H2O2 / 1 M H2SO4.  Fuel and oxidizer 
flow rates are both 10 mL·min-1. 

 

A plot of current density vs. BH4
- concentration for each cell voltage (see Figure 

4.18) suggests that the transport limited current density varied linearly with BH4
- 

concentration when 𝐶𝐵𝐻4− ≤ 5 mM.  This is reasonable given that the fuel cell was 

operating with fuel limited stoichiometry when 𝐶𝐵𝐻4− < 10 mM.  The transition from 
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fuel limited to oxidizer limited operation is not dictated by stoichiometry alone, 

however.  The diffusivity of BH4
- (2.42×10-9 m2·s-1) is greater than that of H2O2 

(1.49×10-9 m2·s-1), and the BH4
- flux is aided by migration, so the transition is likely 

to occur at lower BH4
- concentration than 1:1 stoichiometry.  This may explain why 

the highest current density curves (at 0.4 V) in Figure 4.18 change slope between 

BH4
- concentrations of 5 mM and 10 mM. 

 

 
Figure 4.18. Plots of measured current density vs. BH4

- concentration for the 
specified cell voltages. 

 

There are several possible explanations for the gradual decline in current density 

in the higher BH4
- concentration curves.  For example, the shift in concentrations at 

one or both electrode interfaces as the current density increases could lead to a change 

in the relative rates for reactions occurring there.  The shifts in relative rates may 

favor charge transfer reactions (for example, favoring reaction R 1.2 over reaction R 

1.4) and postpone the appearance of a hard transport limit to lower cell voltages. 
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Another possibility is that migration aids transport of the limiting species.  In this 

case, the transport limited region of the polarization curves should have the observed 

shape.  The migration fluxes are proportional to the local electric potential gradient, 

and lower cell voltage may create a larger electric potential difference across the 

channel containing the limiting species.  The result would be a flux of the limiting 

species which varies linearly with cell voltage. 

Finally, a third possibility is that charge transfer reactions which were 

thermodynamically unfavorable at cell voltages above 1.1 V become favorable at 

lower cell voltage.  The anode and cathode potentials were measured with respect to 

Ag/AgCl reference electrodes for the 10 mM and 20 mM BH4
- cases.  The results are 

plotted in Figure 4.19, where the potentials have been corrected to be vs. RHE.  The 

potential of each Ag/AgCl reference electrode was measured vs. a normal hydrogen 

electrode (0.5 M H2SO4 and 𝑃𝐻2= 1 ATM with a Pt mesh electrode) to obtain the 

correct offsets.  Two horizontal dashed lines in Figure 4.19 demarcate the boundaries 

between H+
 stability and reduction in the oxidizer solution (a1) and H2O stability and 

reduction in the fuel solution (a2).  These lines are the same as line (a) in Figure 1.7, 

but in Figure 4.19 the potentials have been adjusted to reflect the concentrations in 

the experiment.   

 



 121 

 

 
 

Figure 4.19. Anode and cathode potentials measured during baseline polarization 
curve, vs. Ag/AgCl reference electrodes and then corrected to RHE. 

 

It is notable that proton reduction at the cathode is expected to begin at 𝑉𝑐𝑒𝑙𝑙 = 

~0.9 V, which is roughly the point at which the slopes of the polarization curves 

change.  Perhaps proton reduction (reaction R 1.23) becomes thermodynamically 

favorable when the cell voltage falls below ~1.1 V and augments the current density 

due to H2O2 reduction (reaction R 1.3). 

In addition to providing a clue as to the processes dictating the current density, 

Figure 4.19 also provides insight into the relative magnitudes of the loss mechanisms 

at each electrode.  At open circuit in the 20 mM BH4
- case, the anode potential is  

-1.220 V vs. RHE and the cathode potential is +0.431 V vs. RHE.  The anode 

potential is reasonable given the standard reduction potential for reaction R 1.2 (-1.24 

V vs. RHE), but the cathode potential is 1.29 V less positive than the reduction 

potential for reaction R 1.3 corrected to local conditions (1.717 V vs. RHE).   The 
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large disparity between the predicted and actual potential of the cathode at open 

circuit suggests other reactions are influencing the cathode overpotential.  The loss of 

cathode potential is the primary reason the measured open circuit voltage (~1.61 V) is 

much lower than the open circuit voltage predicted by thermodynamics (3.01 V).  

Open circuit voltages in the range 1.5 to 1.7 V have been observed in all reported 

DBFC experiments using alkaline NaBH4 and acidic H2O2 reactants. 

As the cell voltage is decreased from open circuit, the anode potential in Figure 

4.19 rises quickly while the cathode potential changes little.  At higher current 

density, the anode potential changes little and the cathode potential becomes less 

positive in proportion to the decrease in cell voltage.  The changes in electrode 

potential from open circuit to high current density show that the majority of activation 

overpotential originates at the anode and the majority of concentration overpotential 

occurs at the cathode.  The greater anode activation overpotential agrees with the 

consensus in the literature that BH4
- oxidation in alkaline media is slower than H2O2 

reduction in acidic media.  The difference in concentration overpotential is not 

surprising given the differences in the transport parameters for BH4
- and H2O2 

discussed previously. 

Measurement of the 1 mM, 2.5 mM and 5 mM BH4
- polarization curves was 

halted at 0.4 V because lower cell voltages produced declining current density, which 

suggested that the load would drive the cell if the voltage were further decreased.  All 

curves plotted in Figure 4.17, and Figure 4.18 were truncated at 0.4 V for 

consistency, yet the 10 mM and 20 mM BH4
- measurements proceeded to 0.3 V.  The 

full 10 mM and 20 mM BH4
- curves are plotted in Figure 4.20, where it is clear that 
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the greater BH4
- concentration in the 20 mM curve led to a sudden increase in current 

density at low cell voltage.  This feature was consistent among all three of the 20 mM 

BH4
- measurements (see the error bars in Figure 4.20) and in the polarization curves 

of Figure 4.15.   

 

 

Figure 4.20. Plots of the entire 10 mM and 20 mM BH4
- polarization curves. 

 

These measurements support the hypothesis that additional reduction reaction 

takes place at the cathode.  It may be reaction R 1.23, which should behave as 

observed when the cathode potential falls below 0.00 V vs. RHE.  The current density 

at cell voltages from 1.1 to 0.6 V may be dictated by the H2O2 transport limit, and 

then at lower voltages, proton reduction begins to supply additional current density.  

Since there is ample BH4
- at the anode which was underutilized at the H2O2 transport 

limit, and ample H+ at the cathode, the current density rises rapidly once H+ reduction 



 124 

 

begins.  The lack of a hard transport limit may be due to the current contributed by H+ 

reduction increasing as the current contributed by H2O2 becomes transport limited. 

A comparison between the 20 mM BH4 polarization curves in Figure 4.15 and 

Figure 4.20 can shed additional light on the transition from H2O2 reduction to H+ 

reduction, by showing how membranes with different histories can influence the 

onset of H+ reduction.    A single membrane was used for all of the setup and model 

calibration experiments; it is labeled “Original Membrane” in Figure 4.21.  A fresh 

membrane was used for the experiment examining the effects of voltage stepping 

direction; it is labeled “Fresh Membrane” in Figure 4.21.   

 

 

Figure 4.21. 20 mM BH4
- polarization curves; “Original Membrane” is replotted here 

from the suite of five model calibration curves and “Fresh Membrane” is replotted 
here from the hysteresis experiment. 

 



 125 

 

The fresh membrane showed a steeper drop in current density at ~21 mA·cm-2, 

whereas the original membrane transitioned more gradually.  Comparing cathode 

potential measurements from the two cases showed that the cathode was more 

negative with the original membrane, presumably because the original membrane had 

been degraded by the setup experiments and therefore incurred a greater ohmic drop.  

The greater membrane ohmic drop pulled the cathode to lower potential at each 

current density, causing the cathode to reach the onset potential for H+ at lower 

current density.  The onset of H+ reduction at lower current density blurred the 

transition from H2O2 reduction to H+ reduction, yielding the gradual transition for the 

original membrane.  This explanation is bolstered by modeling results in Chapter 5 

which predict a H2O2 transport limited current density of ~21 mA·cm-2. 

Polarization data were plotted in the ideal cell analysis of Chapter 3 as cell power 

density vs. cell voltage because it provided a clear picture of the fuel cell operating 

space.  Power curves from the experiments are shown in Figure 4.22, which have 

shapes and trends similar to the ideal case power curves in Figure 3.12.  The ideal and 

measured power curves differ, however, in that peak power shifts to lower cell 

voltage with increasing borohydride concentration in Figure 3.12 and not in Figure 

4.22.  The shift in the ideal case analysis was due to greater ohmic losses at higher 

current density, which depressed the cell voltage.  The trend may be absent in the 

measurements because the measured average current densities were much lower than 

in the ideal case analysis, so the ohmic overpotentials were less evident. 
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Figure 4.22. Measured power curves with varying BH4
- concentration in 2 M NaOH.  

In all cases, the oxidizer was 40 mM H2O2 / 1 M H2SO4.  Fuel and oxidizer flow rates 
were both 10 mL·min-1. 

 

The model calibration polarization curves in Figure 4.17 were measured with 

reactant concentrations lower than those often reported in DBFC experiments.  The 

lower concentrations were chosen to minimize the rates of BH4
- hydrolysis and H2O2 

decomposition, which at high rates can produce large gas volumes.  When the 

reactant flows contain large volume fractions of gas, the incompressible liquid 

assumption breaks down and a multi-phase flow model becomes necessary.  A multi-

phase flow model was beyond the scope of this study.  Omitting multiphase flow in 

early models of new fuel cell chemistries is not unprecedented; early PEMFC models 

neglected liquid water transport and early DMFC models neglected CO2 in the 

aqueous fuel for similar reasons.  The complexity of multi-phase flow was added in 
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advanced PEMFC and DMFC models, and it may be feasible for future DBFC 

modeling. 

Despite the complexities of modeling DBFC performance with higher reactant 

concentrations, one polarization curve was measured with moderate concentrations of 

50 mM NaBH4 / 2 M NaOH fuel and 250 mM H2O2 / 1 M H2SO4.  Figure 4.23 shows 

the polarization and power curves measured for these operating conditions.  This 

polarization curve exhibits the same gradual decline in cell potential with current 

density that appeared in the high borohydride concentration curves of Figure 4.17.  

One feature of the polarization curve in Figure 4.23 which stands out in comparison 

to the polarization curves of Figure 4.17 is an additional change in slope beginning at 

0.5 V cell potential. This change in the curve may be the beginning of a BH4
- 

transport limit. 

 

 
Figure 4.23. Polarization and power curves measured for 50 mM NaBH4 / 2 M NaOH 

fuel and 250 mM H2O2 / 1 M H2SO4 oxidizer.  Both flow rates were  
10 mL·min-1. 
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4.5.2 Gas Production Observations 

The DBFC used to measured polarization curves did not permit direct 

observation of the electrodes during operation, but the electrode potential 

measurements did permit subsequent ex situ experiments which reproduced the 

electrode behavior where it could be observed.  Such experiments were conducted to 

better understand the relationships between cell potential and gas production.  In each 

ex situ experiment, one of the graphite plates from the DBFC was submerged in a 

beaker of solution having the same concentrations as in the cell experiments.  A 

Ag/AgCl reference electrode and a Au counter electrode were also submerged in the 

beaker solution.  The counter electrode had an area more than 10 times the area of the 

electrode on the graphite plate so that the observed behavior would be determined by 

the electrode on the graphite plate.  The graphite plate electric potential was cycled 

through the range observed in the cell experiments by an AutoLab PGSTAT 30 

potentiostat/galvanostat. 

The cell cathode was submerged in 40 mM H2O2 / 1 M H2SO4 and cycled from 

0.4 V to -0.5 V vs. RHE at 0.01 V·s-1.  The open circuit potential in the ex situ 

experiment was 0.426 V, which agrees with the measured cathode potential in the 

assembled cell at open circuit (see Figure 4.19).  At open circuit, rapid gas production 

was observed at the electrode (but not elsewhere on the graphite plate).  A subsequent 

experiment omitting H2O2 from the solution did not exhibit this behavior, confirming 

that H2O2 was involved in gas production, which was likely O2 produced by H2O2 

decomposition.  H2O2 decomposition appeared to cease immediately when the 

graphite plate potential was decreased from open circuit.  Visible gas production 
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(again, only at the electrode) resumed when the potential reached approximately -0.48 

V vs. RHE.  H2 production via reaction R 1.23 was likely the source of gas at low 

potential, because reaction R 1.23 is thermodynamically favorable at potentials more 

negative than ~0.00 V vs. RHE in 1 M H2SO4.  The current density also increased 

substantially when H2 production began, although this observation cannot be used 

quantitatively because the entire plate (not just the electrode) was submerged in 

solution.  These ex situ observations corroborate observations of gas bubbles in the 

oxidizer effluent line, in the polarization curve measurements at open circuit and  

0.3 V cell voltage. 

The same ex situ experiment was carried out with the DBFC anode in a beaker 

containing 20 mM NaBH4 / 2 M NaOH.  The anode was cycled from -1.3 V to -0.7 V 

vs. RHE at 0.01 V·s-1.  The open circuit potential in the ex situ experiment was -1.115 

V vs. RHE, which is similar to the value observed during the polarization curve 

measurements at open circuit (-1.22 V vs. RHE).  The difference may be due to rapid 

gas production observed at open circuit in the beaker experiment.  The gas was 

presumably H2 produced by BH4
- hydrolysis via reaction R 1.4.  Since the solution 

was quiescent in the beaker and flowed in the cell, the concentration of BH4
- near the 

electrode may have fallen further in the ex situ experiment as BH4
- was consumed by 

hydrolysis.  Lower BH4
- concentration would have shifted the equilibrium potential to 

a less negative value, as observed.  The current density and gas production rate in the 

ex situ experiment were observed to increase as the cell potential was made less 

negative.  The greater rate of H2 production at high current density is not an expected 

outcome for the anode mechanism consisting of reactions R 1.2 and R 1.4, but it does 
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agree with mechanisms which assume that H* plays a role in determining the anode 

reaction rates, such as that proposed by Rostamikia [36].  BH4
- should adsorb more 

readily on a less negative anode, raising the surface concentration of BH4
- (𝜃𝐵𝐻4−).  

Other studies have shown that the rate of BH4
- adsorption and surface coverage of H 

should both increase as the anode becomes less negative [36, 70].  As 𝜃𝐵𝐻4−  grows, 

the surface concentration of H* (𝜃𝐻) will also grow due as BH4
-* dehydrogenates.  

Greater 𝜃𝐻 has two results; first, higher current density as OH- from solution reacts 

with H* to form H2O and provide an electron to the anode (reaction R 1.15), and 

second, greater H2 production via reaction the Heyrovsky reaction (R 1.27) and/or the 

Tafel reaction (R 1.28). 

The model calibration experiments did not include quantitative measurements of 

gas production rate, yet several qualitative observations were possible.  On the 

oxidizer side, initial setup experiments were conducted with high (1 M) H2O2 

concentration before lower concentrations were chosen for the model calibration 

experiments.  High H2O2 concentration yielded prodigious gas at open circuit which 

was evident by gas volume fractions of ~1/3 in the oxidizer effluent stream.  The 

lower (40 mM) H2O2 concentration used for the model calibration experiments 

produced fewer bubbles.  On the fuel side, bubbles were evident for all operating 

conditions and inlet BH4
- concentrations.  The gas volume fraction in the fuel effluent 

was clearly larger for higher BH4
- concentration, lower NaOH concentration, and at 

high current density.   
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4.5.3 Other Measurements and Observations 

A Nafion membrane was chosen in part because it resists attack by both acids 

and bases, which is an important property for DBFCs which can have pH gradients of 

~14 across the membrane.  Some researchers have suggested that the pH gradient 

may drive H+ and/or OH- through the membrane if the acid and base concentrations 

are sufficiently high [7, 92], despite the electric potential gradient across the 

membrane opposing entry of either species and the Donnan potential opposing anion 

entry.  The pHs of the fuel and oxidizer solutions were measured before and after 

flowing through the cell to ascertain whether or not significant crossover was taking 

place.  An Orion model 720A pH meter was used to measure the pH of fuel and 

oxidizer before and after flowing through the cell in a baseline polarization curve 

experiment.  The effluent was collected while the cell was at open circuit, which is 

when the orientation of the electric field in the membrane was expected to yield the 

largest crossover rates.  The pH meter was calibrated to a pH 10.0 buffer prior to the 

fuel measurement and a pH 4.0 buffer prior to the oxidizer measurement.  The results 

were pH = 13.795 for fuel before and after flowing through the cell, indicating little 

or no crossover of H+ from the oxidizer solution.  The oxidizer measurements were 

pH = 0.295 before and 0.302 after – an insignificant change given the pH meter 

accuracy.  Thus no crossover induced changes in pH was detected. 

The DBFC model described in Chapter 2 includes the estimation of solution 

mass densities based on the apparent molar volumes of the solutes.  The densities of 

the 50 mM BH4
- / 2 M NaOH fuel and 250 mM H2O2 / 1 M H2SO4 oxidizer solutions 

were measured to provide a basis on which to judge the model accuracy in this 
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regard.  These concentrations were chosen for the density measurements because any 

discrepancy between the measurement and the model should be largest in this case; 

lower concentrations will yield solution densities closer to that of pure water. 

The solution densities were measured by dispensing 5 mL onto a weigh boat with 

a Finnpipette micropipette.  The solution mass was measured by a Denver 

Instruments M-220D microbalance, and then the dispensed volume and mass were 

used to calculate a mass density.  This procedure was repeated 10 times each for 18 

MΩ water, fuel solution and oxidizer solution, all equilibrated to a 23°C laboratory.  

The results are provided in Table 4-2.  The measured value for the density of water 

was 1.2% lower than the value provided by NIST [93].  The discrepancy may be due 

to systematic error (for example, less than 5 mL dispensed) or dissolved gasses in the 

water which the NIST value omits.  The densities predicted by the model for the fuel 

and oxidizer solutions both exceed the measured values by 2.5%.  In these cases as 

well, some or all of the discrepancy could be due to the model neglecting dissolved 

gases, predominantly N2. 

 
Table 4-2. Density measurements and comparison to model predictions for 
fluids at 23°C.  Fuel: 50 mM NaBH4 / 2 M NaOH, Oxidizer: 250 mM H2O2 / 
1 M H2SO4. 
Fluid Measured Predicted NIST Discrepancy 
Water 0.9852 - 0.9975 -1.2% 
Fuel 1.0675 1.0937 - +2.5% 
Oxidizer 1.0486 1.0747 - +2.5% 

 

4.5.4 Conclusions 

Each loss mechanism in the cell corresponds to a different aspect of DBFC 

operation which the model must capture to accurately predict cell performance.  The 
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activation overpotential originates with the electrode reactions, the ohmic 

overpotential is predominantly a result of transport in the membrane and the 

concentration overpotentials arise from transport in the channels.  The polarization 

curves in Figure 4.17 should be a good test of the model because they exhibit all three 

loss mechanisms.  Furthermore, experiments varying the cell stoichiometry should 

test these processes on both the fuel and oxidizer sides of the membrane. 

Figure 4.17 indicates that the transport limiting species was BH4
- when the BH4

- 

concentration was 1 mM and 2.5 mM.  Figure 4.18 and Figure 4.19 suggest that at 

higher concentrations of BH4
- the transport limit shifted to the cathode, and the 

process became more complex.  The current density in these cases approaches the 

transport limit gradually, indicating that migration, a potential dependent charge 

transfer reaction, or the onset of another charge transfer reaction is involved. 

Figure 4.19 also shows that most of the activation overpotential originates at the 

anode, and that the depressed open circuit voltage (compared to the theoretical cell 

voltage) is due to a shift in the cathode potential.  Qualitative observations indicate 

that the rate of cathode O2 production in the model calibration experiments was 

minor, and that H2 production at the anode increased with increasing current density.  

The trend relating H2 production to current density supports anode reaction 

mechanisms in which the anode reactions are related by a shared pool of surface 

adsorbed hydrogen. 

pH measurements support the model assumption that OH- and H+ do not cross 

the membrane, at least for the conditions examined.  The measurements of solution 

mass density indicate that the model predicts the densities of the fuel and oxidizer 
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solutions to < 2.5% error, and some fraction of the error may be attributable to 

dissolved gases which are not included in the model. 

Single-cell experiments yielded valuable insight into the factors dictating DBFC 

performance.  They also provided the measurements necessary for model calibration, 

yet the measurements alone would have been insufficient.  The experiments also 

guided reaction mechanism selection by showing the importance of BH4
- hydrolysis 

at the anode and H2O2 decomposition at the cathode.  These reactions strongly 

influence OCV, transport limit onset, and net current density by competing with the 

charge transfer reactions.  Hydrolysis and decomposition must be included in a 

realistic DBFC analysis.  Furthermore, H+ reduction at the cathode was considered 

when calibrating the model because the experiments indicated it was likely to occur 

and shift the peak power density of the cell to higher current density. 
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Chapter 5: Model-Based Analysis of a Realistic DBFC 

5.1 Goals and Approach 

The ideal DBFC analysis in Chapter 3 revealed some of the trends linking cell 

design and operating conditions to performance, yet the ideal analysis was limited to 

transport-related phenomena by the lack of realistic reaction rates or competing 

electrode reactions.  The transport-related trends provide useful design guidance, but 

the model must capture electrode reactions in a more realistic way if we are to obtain 

a complete picture of DBFC performance. 

The modeled electrode reactions were made more realistic by calibrating the rate 

parameters to measurements from Chapter 4.  The calibration process involved two 

steps: choosing an appropriate reaction mechanism for each electrode based on 

analysis of insight from the literature and the experimental tests, and then fitting the 

uncertain rate parameters to our measurements.  The calibrated model was then used 

to examine the sources of efficiency loss in a realistic DBFC and the ways in which 

these losses depend on cell design and operating conditions.  The goal of this analysis 

was to improve DBFC design by recommending loss mitigation strategies and 

guiding future research efforts.  The DBFC model provided insight which would have 

been difficult to obtain through experiments alone. 

 

5.2 Reaction Mechanism Fits to the Measurements 

Because the measurements in Chapter 4 only provided global cell performance, 

global rate expressions were used to capture the essential features of the complex 
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electrode reactions.  In this effort to fit the data, one anode mechanism and two 

cathode mechanisms were fitted to the measurements.  The anode mechanism 

consisted of R 1.2 (BH4
- oxidation) and R 1.4 (BH4

- hydrolysis).  The first cathode 

mechanism consisted of R 1.3 (H2O2 reduction) and R 1.5 (H2O2 decomposition).  

These mechanisms were selected because they are promulgated widely in the 

literature as capturing the essential features of DBFC electrode reactions.  The fit 

quality was improved by a second cathode mechanism, which added R 1.23 (H+ 

reduction).  R 1.23 was selected because the experiments of Chapter 4 indicated it 

occurs at low cell potential, where the fit from the first mechanism was most in error. 

The DBFC used for experiments in Chapter 4 was designed specifically for 

model calibration, and hence, adapting the model to accurately reflect the real cell 

was straightforward.  Model parameters used for the fitting process included the cell 

geometry and operating conditions listed in Table 5-1. 

 
Table 5-1. Model parameters for fitting process, taken from the experiments in 
Chapter 4.  Both channels shared the same dimensions. 

Geometric  Operating 
Channel Length 50 mm  Fuel Flow Rate 10 mL·min-1 

Channel Depth 0.50 mm  Oxidizer Flow Rate 10 mL·min-1 

Channel Width 5.0 mm  Temperature 23°C 

Membrane Thickness 208 µm [94]  Oxidizer 
Concentrations 

40 mM H2O2 /  
1 M H2SO4 

 

  Several simplifications employed in the ideal DBFC analysis were valid for the 

model calibration.  For example, the model assumed that momentum boundary layers 

were fully developed at the inlets, which was reasonable given that the DBFC 

channels in the experiments extended beyond the catalyst layers with ample length to 

ensure fully developed flow.  As another example, the model assumed channel walls 
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were far apart so that relevant state variables varied in the x- and y-directions only; 

this was reasonable given the 10:1 aspect ratio of the DBFC channels. 

5.2.1 Fitting Approach and Procedure 

Rate parameters and electrode roughnesses were fitted to the measurements for 

each reaction mechanism with the goal of obtaining the “best” fit to the five measured 

polarization curves.  Best can be defined in many ways; in this case it refers to 

minimizing the 2-norm of errors between the measured and predicted current density 

at each cell voltage on the polarization curves. 

An error function was developed which repeatedly called the main DBFC model 

code to calculate the differences between measured and predicted current densities.  

The error function output a vector 𝑒 in which each element was the error between one 

measurement and the corresponding model prediction.  In some cases the model 

predictions were compared to a subset of the measurements, and in other cases the 

model predictions were compared to the entire data set (all five measured polarization 

curves).  The error function was called by the MATLAB function lsqnonlin, which 

used a Newton search approach to minimize ‖𝑒‖.  The “trust region reflective” 

algorithm was chosen because it respects bound constraints on the fitted parameters.  

Fitted reaction rate constants 𝑘 were constrained to the interval (0,∞), symmetry 

factors 𝛽 were constrained to (0,1] and roughness factors ℓ were constrained to [1,30].  

This approach does not guarantee a global minimum ‖𝑒‖; it is possible to find a local 

minimum.  Trial and error showed that the initial guess must produce a polarization 

curve differing from the measurements by less than one order of magnitude, and share 

the same trend as the measurements, or the fitting algorithm may find a local 
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minimum.  At least three widely spaced starting guesses were evaluated in each 

fitting effort, and the fit was not accepted as “final” until all three guesses resulted in 

the same fit, suggesting the fit may be global. 

5.2.2 Fitting the Simplest Reaction Mechanism 

The rates of charge transfer reactions were estimated by Eq. 1.11 with fitting 

parameters 𝑘𝑎 and 𝛽𝑎.  Parameters 𝑛𝑒, 𝛽𝑐 and 𝑘𝑐 in Eq. 1.11 were not fitted.  The 

number of electrons transferred in the rate determining step for each reaction was 

assumed to be 𝑛𝑒 = 1 and the cathodic direction symmetry factors were assumed to 

be 𝛽𝑐 = (1 − 𝛽𝑎).  These are both common assumptions as discussed in Chapter 1.  

The values of 𝑘𝑐 were chosen to ensure thermodynamically consistent rate equations, 

i.e. they would predict zero net rate under standard conditions when the electrode-

interface electric potential difference ∆𝜙 was equal to the equilibrium value 𝐸𝑟𝑥𝑛0 .  

These values were found by setting 𝑎𝑘
𝜐𝑘 = 1, 𝑇 = 298 K, Δ𝜙 = 𝐸𝑟𝑥𝑛0  and 𝑟 = 0 in Eq. 

1.11 and solving for 𝑘𝑐.  This process was repeated for each set of parameters 𝑘𝑎 and 

𝛽𝑎 evaluated by the fitting algorithm, so that thermodynamic consistency was 

maintained despite changes to 𝑘𝑎 and 𝛽𝑎. 

  This approach to establishing thermodynamic consistency can also be cast in 

terms of the reaction equilibrium constant 𝐾𝑒𝑞.  The relationships between 𝑘𝑎, 𝑘𝑐, 𝐾𝑒𝑞 

and Δ𝜇𝑟𝑥𝑛0  were discussed in Chapter 1, where Eq. 1.13 (shown here for convenience) 

related the equilibrium constant to an Arrhenius-type activation energy barrier.  At 

equilibrium under standard conditions, Δ𝜇𝑟𝑥𝑛 = 𝐹𝐸𝑟𝑥𝑛0 , so Eq. 1.13 gives 𝑘𝑐 =

𝑘𝑎𝑒𝑓𝐸𝑟𝑥𝑛
0 . 
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𝑘𝑎 𝑘𝑐⁄ = 𝐾𝑒𝑞 = 𝑒−Δ𝜇𝑟𝑥𝑛 𝑅𝑇⁄  Eq. 1-13 
 

Charge transfer reactions were written in terms of the fitting parameters 𝑘𝑎 and 𝛽𝑎 by 

substituting for 𝑘𝑐and 𝛽𝑐 in Eq. 1.11.  The anode and cathode rate equations (Eq. 5.1 

and Eq. 5.2) omit the concentrations of OH-, H+ and H2O because they are present in 

excess, and therefore have little influence over the rates. 

 
𝑟𝑅1.2 = 𝑘𝑎,𝑅1.2𝐶𝐵𝐻4−𝑒

𝛽𝑎,𝑅1.2𝑓Δ𝜙 − 𝑘𝑎𝑒𝑓𝐸𝑅1.2
0
𝐶𝐵𝑂2−𝑒

−�1−𝛽𝑎,𝑅1.2�𝑓Δ𝜙 Eq. 5.1 
 

𝑟𝑅1.3 = 𝑘𝑎,𝑅1.3𝑒𝛽𝑎,𝑅1.3𝑓Δ𝜙 − 𝑘𝑎𝑒𝑓𝐸𝑅1.3
0
𝐶𝐻2𝑂2𝑒

−�1−𝛽𝑎,𝑅1.3�𝑓Δ𝜙 Eq. 5.2 
 

The rates for chemical reactions occurring at each electrode were estimated by first 

order rate expressions assuming irreversibility: 

 
𝑟𝑅1.4 = 𝑘𝑓,𝑅1.4𝐶𝐵𝐻4−  Eq. 5.3 

 
𝑟𝑅1.5 = 𝑘𝑓,𝑅1.5𝐶𝐻2𝑂2 Eq. 5.4 

 

The rate parameters were initially fitted only to the activation regions of the 

polarization curves because the reaction rates influence these regions most.  This 

approach was expected to strongly couple the fitting errors to the reaction rate 

parameters and drive the fitting algorithm toward a solution quickly.  For the 

purposes of fitting, activation regions were said to encompass cell potentials from 

open circuit to 1.1 V.  The values listed in Table 5-2 gave the best fit.  The measured 

and predicted polarization curves are shown in Figure 5.1. 
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Table 5-2. Fitted reaction rate parameters assuming R 1.2 and R 1.4 at the 
anode and R 1.3 and R 1.5 at the cathode. 

Anode Parameters  Cathode Parameters 
𝑘𝑎,𝑅1.2 9.25×10-3 m·s-1  𝑘𝑐,𝑅1.3 7.54×10-3 m·s-1 
𝛽𝑎,𝑅1.2 0.098  𝛽𝑐,𝑅1.3 0.455 
𝑘𝑓,𝑅1.4 3.09×10-4 m·s-1  𝑘𝑓,𝑅1.5 6.34×10-4 m·s-1 
ℓ𝑎 2.73  ℓ𝑐 4.11 

 

The fitted rate parameters are not directly comparable to the values reported by 

Santos [60] and Finkelstein [39, 62], because these authors reported rates in terms of 

overpotential rather than the electrode-interface potential differences used here.  

Furthermore, Finkelstien calculated overpotentials by assuming the equilibrium 

potential for each reaction was equal to the observed onset potential.  Nevertheless, 

the fitted rate parameters are similar to the reported values.  Finkelstein reported 

𝑘𝑎,𝑅1.2 = 6.2×10-4 m·s-1 and 𝛽𝑎,𝑅1.2 = 0.2 on Au for 5 mM NaBH4 in 1 M NaOH, and 

𝑘𝑐,𝑅1.3 = 8×10-3 m·s-1 and 𝛽𝑐,𝑅1.3 = 0.45 on Pt for 5 mM H2O2 in 0.5 M H2SO4. 

Figure 5.1 shows good agreement between the model and the 1, 2.5 and 5 mM 

BH4
- curves, with R2 values of 0.920, 0.986 and 0.996 respectively.  The activation 

and ohmic overpotential dominated regions of all five curves are well described by 

the model, but discrepancies appear at high current density in the 10 and 20 mM BH4
- 

curves.  Two discrepancies are apparent.  First, the predicted current density for the 

10 mM BH4
- curve is too high in the cell voltage range 0.5 to 1.1 V.  Second, the hard 

transport limit at ~21 mA·cm-2 does not match the gradual decline in current density 

shown by the 10 mM and 20 mM BH4
- curves.    
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Figure 5.1. Comparison between measured and predicted polarization curves, with the 
model fitted to reaction mechanisms consisting of R 1.2 through R 1.4. 

 

The predicted BH4
- and H2O2 concentrations in the 20 mM BH4

- case are plotted 

in Figure 5.2 for a cell voltage of 0.4 V, which shows that the predicted concentration 

of H2O2 approaches zero at the cathode interface.  Thus, the predicted ~21 mA·cm-2 

limiting current density is imposed by H2O2 transport.  This result agrees with 

measurements from Chapter 4 which showed a sudden decrease in cell voltage at ~21 

mA·cm-2 when the stoichiometry was H2O2 limited.  Agreement on the limiting 

current density suggests the model accurately predicts the rate of H2O2 transport to 

the cathode. 

The fitting process was repeated with the entire measured data set, but with little 

improvement in the fit.  Weighting errors more heavily in the cell potential range 

between 0.6 and 1.0 V to emphasize agreement at the onset of the transport limit also 

did not improve the fit. 
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Figure 5.2. Predicted development of BH4
- and H2O2 concentration boundary layers at 

the anode and cathode in the 20 mM BH4
- case.  Solid lines are near the inlet and 

dashed lines are near the outlet. 
 

The electrode potentials may expose the source(s) of disagreement between the 

model and measurements.  Figure 5.3 shows the measured electrode potentials and 

the predicted interfacial potential differences ∆𝜙 at each electrode.  Surprisingly, the 

shapes of the measured and predicted curves are most similar at low cell potential, 

where the polarization curves differ most.  The model predicts that the majority of 

cell voltage loss at open circuit occurs at the cathode and the concentration 

overpotential occurs almost entirely at the cathode, both in accordance with the 

measurements.  The predicted relative rates of reaction between the anode and 

cathode at low current density differ from the measurements, as evidenced by Figure 

5.3, where the predicted slopes of the electrode potential with respect to cell voltage 

near OCV are incorrect.  Near OCV the anode potential should change rapidly (high 

activation overpotential) and the cathode potential should change slowly (low 
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activation overpotential) with respect to the cell voltage.  These differences may 

introduce error when predicting the rates of competing reactions at low current 

density.   

 

 
 

Figure 5.3. Measured electrode potentials vs. RHE and predicted interfacial electrode 
potential differences Δϕ for the 10 mM BH4

- baseline case.  
 

The sources of error near open circuit may be due to phenomena which are 

omitted by the global reaction mechanisms, such as adsorption and surface reactions.  

For example, BH4
- adsorption is understood to be slow and influence the rate of R 1.2 

[36, 70].  The influence of adsorption would be strongest near open circuit where the 

anode is most negative, because the negative anode would discourage adsorption of 

BH4
- anions.  For the purposes of realistic DBFC analysis, the error near OCV was 

judged to be minor and these details were not added to the anode mechanism.  The 

disagreement at low cell voltage could not be overlooked, however, because it 
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influenced the location of the peak power point.  This discrepancy was addressed by 

adding H+ reduction to the cathode reaction mechanism. 

5.2.3 Fitting a Mechanism Including Cathode H+ Reduction 

As discussed in Chapter 4, the measured electrode potentials indicate that H+ 

reduction (R 1.23) is thermodynamically favorable in the 10 mM BH4
- case for cell 

voltages below ~0.85 V and in the 20 mM BH4
- case for cell voltages below ~0.80 V.  

These cell potentials correspond to onset of the erroneous hard transport limit in the 

model predictions.  The correspondence between H+ reduction onset and the predicted 

transport limit suggested that H+ reduction may mitigate the disagreement between 

the measured and predicted 10 mM and 20 mM BH4
- curves at low cell voltage. 

The reaction mechanisms and rate expressions remained the same as in the first 

fitting effort, except for the addition of R 1.23 at the cathode and the corresponding 

rate in Eq. 5.5.  Thermodynamic consistency was established for Eq. 5.5 using the 

same approach as in the first fitting effort.  The second-order dependence on 𝐶𝐻+ and 

𝑛𝑒 = 2 in Eq. 5.5 imply that the rate limiting step for R 1.23 is H+ approaching the 

cathode and accepting an electron, which must occur twice for the reaction to 

proceed.  The concentration of H+ was included in the rate, despite H+ being in 

excess, because it was the only reactant in the rate equation and omitting it would 

have permitted a “runaway” reaction with no H+ present.  While this is unlikely in the 

real cell, it could have caused numerical problems when solving the model. 

 
𝑟𝑅5.1 = 𝑘𝑐,𝑅5.1𝑒−𝑓𝐸𝑅5.1

0
𝐶𝐻+
2 𝑒2𝛽𝑎,𝑅5.1𝑓Δ𝜙 − 𝑘𝑐,𝑅5.1𝐶𝐻2𝑒

−2�1−𝛽𝑎,𝑅5.1�𝑓Δ𝜙 Eq. 5.5 
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Including R 1.23 at the cathode increased the current density at low cell 

potentials, although the fit still deviated from the measurements as shown in Figure 

5.4.  The complete set of fitted rate parameters is given in Table 5-3. 

 

 
 

Figure 5.4. Comparison between measured polarization curves and those predicted by 
the model, assuming R 1.2 through R 1.4 and R 1.23 occur.   

 
 
The large current density at low cell voltage in the 20 mM BH4

- curve reflects the 

lower activation energy barrier to H+ reduction as the cathode becomes less positive.  

A better fit could not be found with the reaction rate for H+ reduction written as in Eq. 

5.1.  One way in which the reaction rate equation for H+ reduction may be lacking is 

the absence of competition for catalyst surface sites.  The mechanism of H2O2 

reduction was discussed in Chapter 1, in which adsorbed OH plays a major role.  The 

onset of significant H+ reduction could be delayed to lower cathode potential by OH* 

occupying sites on the Pd:Ir surface, although this study yielded no direct evidence to 

support this theory. 
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Table 5-3. Fitted reaction rate parameters assuming R 1.2 and R 1.4 at the anode 
and R 1.3, R 1.5 and R 1.23 at the cathode. 

Anode Parameters  Cathode Parameters 
𝑘𝑎,𝑅1.2 9.25×10-3 m·s-1  𝑘𝑐,𝑅1.3 7.54×10-3 m·s-1 
𝛽𝑎,𝑅1.2 0.098  𝛽𝑐,𝑅1.3 0.455 
𝑘𝑓,𝑅1.4 3.09×10-4 m·s-1  𝑘𝑓,𝑅1.5 6.34×10-4 m·s-1 
ℓ𝑎 2.73  𝑘𝑐,𝑅5.1 1.19×10-9 m4·kmol-1·s-1 

   𝛽𝑐,𝑅5.1 0.141 
   ℓ𝑐 4.11 

 

No fuel cell operates over the entire the polarization curve; as discussed in 

Chapters 1 and 3, it is advantageous to operate at current densities up to (but not 

beyond) peak power.  A model can diverge from the measurements beyond peak 

power point and still be useful, so long as it accurately captures the relationships 

between current density and cell potential up to the peak power point.  The measured 

and predicted power densities are shown in Figure 5.5, where all five curves agree 

with the measurements to within 15% between OCV and 1.0 V.  This range of cell 

potentials encompasses nearly all of the desirable operating range of this DBFC. 
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Figure 5.5. Comparison between measured power curves and those predicted by the 
model, assuming R 1.2 through R 1.4 and R 1.23 occur. 

 

5.3 Insights into Realistic DBFC Performance Provided by the Model 

The model fit with H+ reduction is not perfect, but it is sufficient for an analysis 

of realistic DBFC performance, particularly with the goal of identifying trends.  Most 

DBFC experiments reported in the literature have used higher concentrations than 

those in the model calibration experiments of Chapter 4, so the realistic DBFC 

analysis was carried out with respect to a 50 mM BH4
- / 250 mM H2O2 baseline to 

make it more similar to results in the literature.  These concentrations were chosen 

because they constitute the “high concentration” case from Chapter 4, thus the model 

predictions can be compared to measurements, as shown in Figure 5.6.  For the “high 

concentration” operating conditions, the model predicted polarization curve correlates 

to the measured curve with R2 = 0.980.  These concentrations yield a stoichiometry of 

approximately 1:1 in terms of transport rates to the electrodes, so the analysis should 
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reveal losses on both sides of the cell.  Furthermore, this stoichiometry avoids H+ 

reduction (which occurs in strongly oxidizer limited scenarios), keeping the results in 

a regime where the model accurately predicts cell performance. 

 

 

Figure 5.6. Comparison between measured and predicted polarization curves for the 
50 mM BH4

- / 250 mM H2O2 case with 10 mL min-1 flow rates. 
 

5.3.1 Realistic DBFC Performance 

The major difference between ideal and realistic DBFC operation is loss of 

reactants to BH4
- hydrolysis and H2O2 decomposition.  The predicted concentrations 

of H2 and O2 produced by these reactions are plotted in Figure 5.7 for the baseline 

case at 1.1 V cell.  The rates of gas production and current density are plotted in 

Figure 5.8 with respect to position in the channel.  The higher rate of H2 production at 

the anode and greater diffusivity of H2 in water leads to a larger concentration 

boundary layer as shown by Figure 5.7 (note the different concentration scales in this 



 149 

 

figure).  The gas production rates and current density show the same trends of 

diminishing magnitude with distance from the inlet, with each having substantially 

greater values near the inlet.  These trends are the result of higher reactant 

concentrations at the inlet end of the electrode-solution interface, which drive charge 

transfer and chemical loss reactions more quickly there. 

 

 

 

Figure 5.7. Predicted H2 (a) and O2 (b) concentrations in the channels for the baseline 
case at 1.1 V cell.  Concentration units are mol·L-1. 

 

The predicted gas production rates are realistic because they depend on the fitted 

reaction rate parameters and transport of aqueous species, for which the diffusion, 

migration and advection fluxes can be estimated accurately.  The predicted rates of H2 

and O2 transport in the channel, however, are likely in error because the predicted 
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concentrations exceed the saturation limits for these species in water.  The saturation 

limit of H2 in pure water at 298 K is 7.8×10-4 M, and the saturation limit of O2 in 1 M 

H2SO4 is 9.3×10-4 M [91].  Concentrations above these limits imply that bubbles will 

form, as observed in the experiments.  The model does not include multiphase flows 

of liquid and gas bubbles (for reasons discussed in Chapter 2), and so the model 

predictions of gas concentration are useful only as an indicator of likely bubble 

generation locations.  Most bubble formation should take place near the inlets due to 

the high concentrations and preponderance of gas production there; this insight could 

be useful for the design of graded catalyst structures which discourage bubble 

adhesion near the inlets and emphasize reactant access to the catalyst at points further 

from the inlet. 

 

 

Figure 5.8. Predicted current density and H2 and O2 production rate distributions with 
respect to position in the channel, for the baseline case at 1.1 V cell. 

 



 151 

 

The rate of gas production is only one metric for judging the impact of competing 

electrode reactions.  Coulombic efficiency 𝜂𝑐𝑒 is the fraction of reactant reaching the 

electrode that participates in charge transfer reactions.  Higher coulombic efficiency 

implies that fewer electrons are being lost to competing reactions.  For example, 

complete electro-reduction of every BH4
- anion reaching the anode would give an 

anode coulombic efficiency of 100%.  Local coulombic efficiency at each electrode 

was calculated as the ratio of predicted current density 𝑖 to the current density 

possible if all of the electrochemically active species 𝑘 arriving at the electrode were 

consumed in charge transfer reactions (Eq. 5.6).  Predicted coulombic efficiencies at 

each electrode are plotted in Figure 5.9 with respect to channel (x-) position.   

 

𝜂𝑐𝑒(𝑥) =
𝑖(𝑥)

𝐽𝑘(𝑥) 𝜐𝑒 𝜐𝑘⁄
 Eq. 5.6 

 

 
 

Figure 5.9.  Predicted coulombic efficiencies at the anode and cathode with respect to 
distance from the channel inlets, for the baseline case at 1.1 V cell. 



 152 

 

Figure 5.9 shows that for these operating conditions, the cathode delivers 

electrons to arriving H2O2 more efficiently than the anode extracts electrons from 

arriving BH4
-.  The cathode reduces electrochemically more than half of the arriving 

H2O2 and decomposes the rest to O2 and H2O.  The anode electro-oxidizes less than 

40% of the arriving BH4
-.  The coulombic efficiencies of both electrodes increase 

with distance from the inlets; since concentrations at the electrode interfaces fall and 

overpotentials grow with distance from the inlets.  Figure 5.9 shows that these 

changes must favor charge transfer reactions.  The low overall coulombic efficiencies 

and variation with channel position suggest that a priority for future research should 

be to shift the relative rates of reaction in favor of charge transfer reactions.  One way 

to accomplish this shift is through novel catalyst materials and morphologies [42], but 

another is to operate the cell in a regime favoring charge transfer reactions. 

Cell voltage strongly influences DBFC behavior and therefore presents an 

opportunity to tailor cell operation to more efficiently convert reactant chemical 

energy into electricity.  In the parlance of the controls community, cell voltage is a 

powerful lever with which to adjust cell operation.  The coulombic efficiencies of the 

anode and cathode are plotted with respect to cell potential in Figure 5.10, which 

shows that lower cell potentials raise the coulombic efficiencies of both electrodes.  

In effect, lower cell potential decreases the activation energy barriers to charge 

transfer reactions at both electrodes as the anode becomes less negative and the 

cathode less positive.  The rates of charge transfer reactions increase, but because the 

rates of chemical hydrolysis and decomposition in the mechanism of section §5.2.3 

do not depend on the electrode potentials, their rates decline as they compete with the 



 153 

 

charge transfer reactions for reactants at the electrode interfaces.  The net result is a 

shift in favor of the charge transfer reactions. 

Power density is included in Figure 5.10 to show the relationship between 

coulombic efficiency and the desirable operating envelope of the fuel cell.  Since cell 

potential falls with increasing power density, the coulombic efficiency rises with 

increasing power density.  Gains in coulombic efficiency beyond the peak power 

point are undesirable, however, because they coincide with falling thermodynamic 

efficiency and are accompanied by greater total reactant fluxes to the electrodes.  

Beyond the peak power point, overall efficiency losses and greater reactant 

consumption rates offset any gains in coulombic efficiency, thus the maximum 

desirable coulombic efficiencies are those at peak power. 

 

 
Figure 5.10. Predicted power density and coulombic efficiency for 50mM BH4

- / 
250mM H2O2 with 10 mL·min-1 flow rates. 
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The ideal DBFC analysis in Chapter 3 showed that low single-pass fuel 

utilization is a challenge to DBFC practicality, and pointed to recirculation as a 

prospective solution.  The extent to which the reactant solutions must be recirculated 

was evaluated in Chapter 3 with respect to the reactant utilization rates, assuming that 

all reactant consumption was due to charge transfer reactions.  When competing 

reactions take place, the efficacy of recirculation is best described by the coulombic 

utilization 𝜂𝑐𝑢, which is the fraction of reactant entering the cell that is consumed in a 

charge transfer reaction.  The coulombic utilization was calculated as the ratio of the 

total cell current 𝐼 to the current that would be available if all electro-active species 𝑘 

entering the cell were consumed in charge transfer reactions.   Coulombic utilization 

is equivalently the product of reactant utilization 𝜂𝑟𝑢 and average coulombic 

efficiency over the whole channel (see Eq. 5.7). 

 

𝜂𝑐𝑢 =
𝐼

𝐶𝑘𝑉̇ 𝜐𝑒 𝜐𝑘⁄
= 𝜂𝑟𝑢𝜂̅𝑐𝑒 Eq. 5.7 

 

The coulombic utilization in the baseline case is plotted with respect to cell 

potential in Figure 5.11.  The coulombic utilizations are reversed in comparison to the 

coulombic efficiencies; despite having a higher coulombic efficiency, the lower 

diffusivity of H2O2 leads to overall lower coulombic utilization in comparison to the 

anode.  The slow rates of reactant transport through aqueous solution lead to low 

coulombic utilizations (< 4%) for both sides of the cell under these operating 

conditions. 
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Figure 5.11. Plots of cell power density and coulombic utilization with respect to cell 

potential.  Predictions for 50mM BH4
-/250mM H2O2 with 10 mL·min-1 flow rates. 

 
 
The losses and inefficiencies due to competing reactions are manifested in two 

ways: loss of reactants (and the chemical energy therein) to gas production, and lower 

cell potential via the Nernst equation (Eq. 1.8) as reactant concentrations near the 

electrodes are depressed.  Cell potentials predicted by the calibrated model using the 

full reaction mechanisms are clearly lower than those predicted by the model with 

BH4
- hydrolysis (reaction R 1.4) and H2O2 decomposition (R 1.5) turned off, as 

shown in Figure 5.12.  Both curves in Figure 5.12 are plotted at 100 mA·cm-2 current 

density to make ohmic losses in the membrane comparable, with the two curves 

having the same electric potential gradients across the membrane.  The power density 

in the full mechanism case is 80 mW·cm-2, whereas the power density in the case 

without hydrolysis or decomposition is nearly twice as high at 152 mW·cm-2.  If the 

current density in the case without hydrolysis or decomposition were decreased to 0 

mW·cm-2, the resulting electric potential profile would be the ideal case at OCV. 
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Figure 5.12. Electric potential profiles across the cell predicted by the calibrated 
model, at the midpoint (25 mm from the inlets), for the baseline case at 100 mA·cm-2 
current density.  The two curves compare results with R 1.4 and R 1.5 turned on and 

off. 
 

One measure of the efficiency with which a DBFC extracts electrical energy from the 

reactants is the effective energy conversion efficiency.  If the cell thermodynamic 

efficiency is expressed as the ratio of actual cell potential to theoretical OCV, then the 

effective energy conversion efficiency 𝜂𝑒𝑓𝑓 is given by Eq. 5.8. 

 

𝜂𝑒𝑓𝑓 = 𝜂𝑐𝑒
𝑉𝑐𝑒𝑙𝑙
𝐸𝑅1.1
0  Eq. 5.8 

 

The effective energy conversion efficiency shows a peak near the peak power point, 

indicating that (for this DBFC, in the baseline operating conditions) the most energy 

that can be extracted from a limited reactant supply by operating the cell at peak 

power.  This is due to the opposing trends for thermodynamic efficiency and 

coulombic efficiency, and is in contrast to fuel cells which do not suffer from 
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parasitic side reactions, such as the PEMFC.  The most efficient operating point for a 

PEMFC is near OCV, because thermodynamic efficiency is greatest near OCV.   

 

 

Figure 5.13. Effective conversion efficiencies for fuel and oxidizer in the baseline 
case, plotted with power density for comparison of the peak locations. 

 
 

The overall peak efficiency operating point for a real PEMFC system is displaced 

from OCV by the minimum power consumed by the balance of plant (pumps, etc.), 

and the same should be true for a real DBFC.  The overall peak efficiency for a 

DBFC system is likely shifted to lower net power output by the balance of plant load.  

For this reason, the DBFC model developed in this study was designed so that it 

could easily be subsumed into a larger system model for system-level analysis.   
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5.3.1 Influence of Fuel Flow Rate on Realistic Performance 

The ideal DBFC analysis showed that raising the fuel or oxidizer flow rate 

improved performance by increasing the rates of convection mass transport in the 

channels.  The same is true for the realistic DBFC, but with a caveat.  The higher 

rates of reactant transport to the electrodes that come with higher flow rates also lead 

to higher rates of gas production.  The influence of fuel flow rate on concentration 

boundary layer development is shown in Figure 5.14, where the BH4
- concentration 

boundary layer at 10 mL·min-1 fuel flow rate is compact and the boundary layer at 1 

mL·min-1 is beginning to envelop the entire channel.  The compact boundary layer is 

the result of convection augmenting the rate of diffusion mass transport to the anode. 

 

 

 

Figure 5.14. Predicted BH4
- concentration in the fuel channel for 10 mL·min-1 (a) and 

1 mL·min-1 (b) flow rates, for the baseline case at 1.1 V.  Both plots share the same 
color map, with concentrations in mol·L-1. 

(b) 

(a) 
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The power density is plotted with respect to fuel flow rate in Figure 5.15, which 

shows the same trend of increasing peak power with flow rate that was found for the 

ideal case (Figure 3.13).  The peak power point in the realistic DBFC does not shift to 

lower cell potentials with increasing flow rate as obviously as it did in the ideal 

analysis, however.  The peak power point shifted in the ideal analysis because 

increasing fuel flow rates enabled higher current densities, which incurred greater 

ohmic losses in the membrane.  In the realistic analysis, the current density at peak 

power density does not increase as quickly with fuel flow rate because coulombic 

efficiency and coulombic utilization at peak power density fall with increasing fuel 

flow rate, restraining the increase in current density.  These trends are illustrated in 

Figure 5.16. 

 

 

Figure 5.15. Predicted power density for fuel flow rates from 1-15 mL·min-1, oxidizer 
flow rate of 10 mL·min-1 and 50mM BH4

-/250mM H2O2. 
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Figure 5.16. Predicted coulombic efficiency (a) and coulombic utilization (b) for fuel 
flow rates from 1-15 mL·min-1, oxidizer flow rate of 10 mL·min-1,  

and 50mM BH4
- / 250mM H2O2. 

 

The black line in Figure 5.16(a) traces the peaks of the power density curves, 

showing how greater power density is accompanied by a lower upper bound on the 

(a) 

(b) 
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coulombic efficiency.  As the fuel flows more quickly, BH4
- concentration at the 

anode interface rises in response to more facile transport from the bulk.  The higher 

BH4
- concentration favors hydrolysis, so the coulombic efficiency falls.  The convex 

black curve approaches the horizontal axis as the fuel flow rate is lowered, until it 

intercepts the axis at zero flow rate.  The maximum theoretical coulombic efficiency 

achievable for these operating conditions is ~73% and occurs in the zero flow rate 

case, in which diffusion and migration alone dictate the rates of transport to the 

anode.  The power density shows a different relationship with coulombic utilization, 

with a concave black curve linking peak power points in Figure 5.16(b).  The 

coulombic utilization at peak power increases as the flow rate and power density 

decreases. 

5.3.2 Influence of Fuel BH4
- Concentration on Realistic Performance 

The influence of inlet concentration on realistic DBFC performance was 

examined with respect to the concentration of BH4
-.  Changing the inlet concentration 

revealed a relationship between power density and coulombic efficiency which 

mirrors that of the fuel flow rate (see Figure 5.17(a)).  The similarity between the 

effects of fuel flow rate and BH4
- concentration is unsurprising given that increases in 

either parameter shift the relative rates of reaction at the anode in favor of H2 

production by increasing BH4
- concentration at the anode interface.  The coulombic 

utilization trend with respect to BH4
- concentration (see Figure 5.17(b)) differs from 

the trend with respect to flow rate.  Slower flow rates increase residence times in the 

DBFC while diffusion and migration continue to transport BH4
- to the anode, leading 

to the asymptotic approach to 100% utilization at zero peak power density seen in 
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Figure 5.15.  Lower inlet concentrations decrease the rate of transport by all three 

processes (migration, diffusion and convection), leading to a theoretical upper bound 

of ~4.75% coulombic utilization at zero inlet concentration in Figure 5.17(b). 

 

 

 
 

(a) 

(b) 
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Figure 5.17. Predicted coulombic efficiency and utilization for BH4
- concentrations 

from 10 – 70 mM, flow rates of 10 mL·min-1 and 250mM H2O2 / 1 M H2SO4 
oxidizer. 

 

5.3.3 Conclusions from the Realistic DBFC Analysis 

The performance of a real DBFC is related to cell design and operating 

parameters in complex ways.  Many trends are the same as in the ideal analysis, but 

with performance degraded by losses to BH4
- hydrolysis and H2O2 decomposition.  

The trends are, in general, the same at the anode and cathode although the relative 

magnitudes differ.  At the anode, for example, the peak power density increases with 

BH4
- inlet concentration as it did in the ideal analysis, but differs in key ways.   

With the side reactions included, power is delivered at lower cell potential due to 

competition with hydrolysis decreasing the BH4
- concentration at the anode interface, 

which shifts the anode equilibrium potential according to the Nernst equation, 

increasing the activation overpotential necessary for a given current density.  

Furthermore, greater ion fluxes to/from the anode are required to support the 

combination of charge transfer and hydrolysis reactions, which incur greater ohmic 

losses in the fuel solution.  Similarly, greater current density is required to achieve a 

given power density at the lower potential, which incurs greater ohmic losses in the 

membrane.  Together, these effects decrease the thermodynamic efficiency of the cell. 

Also with the side reactions, coulombic utilization is less than 100%, and 

substantially so for most operating conditions.  Losses to competing reactions can cut 

the effective energy density of a system to half, or less, than the ideal case scenario.  

Recirculation still improves the overall coulombic utilization, but losses to hydrolysis 

will continue to consume a fraction of reactants with each pass through the cell. 
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Several promising strategies for mitigating the effects of hydrolysis and 

decomposition on the performance of DBFCs were revealed by the realistic DBFC 

analysis.  Among these are operating at low cell potential and with low reactant 

concentration at the electrode interfaces; both strategies favor charge transfer 

reactions over hydrolysis and decomposition, shifting the relative reaction rates and 

improving the coulombic efficiency and utilization.  There are several ways to 

achieve these favorable operating conditions, including lower reactant flow rates, 

lower inlet concentrations and higher recirculation fractions.  Each change to the cell 

operating conditions has implications not only for the coulombic fuel utilization, but 

for the thermodynamic efficiency of the cell and the ability of a given system to 

satisfy design requirements for power output and total useful energy capacity.  A 

more complete design trade analysis would examine the total effective conversion 

efficiency with respect to power density to choose a cell geometry and set of 

operating conditions that meet the requirements of a particular application. 
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Chapter 6: Conclusions 

 The four goals of this work outlined in Chapter 1 were all part of an underlying 

theme: applying cell-level models and experiments to the problem of understanding 

DBFC performance so that it can be improved.  This approach has been applied to 

other fuel cell technologies with great success; the PEMFC is a prominent example.  

DBFC technology is still in its infancy compared to more mature technologies like 

the PEMFC.  This relative immaturity has two implications for cell-level DBFC 

modeling and experimental studies.  First, the small body of prior work provides an 

open field for substantially improving our understanding of DBFC performance.  

Second, modeling and experimental tools remain underdeveloped.  The purpose of 

this study was to lay some of the groundwork for modeling DBFCs (Chapter 2), show 

how the models can be used to analyze design trends (Chapter 3), and show how the 

interplay of DBFC modeling and cell experiments could provide improved 

understanding of DBFC performance and guide design decisions (Chapters 4 and 5). 

 

6.1 Factors Governing DBFC Performance 

The combination of modeling and experiments in this study yielded a greater 

understanding of DBFC performance, and how it might be improved.  Broadly 

speaking, the parameters dictating DBFC fall into two categories: transport and 

electrode reaction related phenomena. 
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6.1.1 Influence of Transport on Performance 

As the modeling results of Chapters 3 and 5 showed, rapid development of 

compact concentration boundary layers in both channels make power density depend 

heavily on inlet reactant concentration.  The compact nature of the concentration 

boundary layers and slow growth rate at points far from the inlet may be due, in part, 

to migration contributing to transport in the bulk.  The slow broadening of the 

concentration boundary layers makes the average power density (for a given set of 

operating conditions) relatively insensitive to channel length.  Peak power output can 

be increased by higher reactant concentrations and/or solution flow rate, because 

these boundary layers factor so prominently in determining peak power. 

All three transport processes (diffusion, migration and advection) contribute to 

the transport of reactants and products in the channels.  Diffusion and advection 

(together, convection) dominate transport near the electrodes.  In the bulk, migration 

of Na+ is crucial for charge balancing the cell and in general, reactant transport is 

dominated by migration and advection.  Advection fluxes in the y-direction due to 

water crossing through the membrane can be significant, and the interaction of this 

advection flux with a membrane impermeable to some species can influence the 

concentrations of all species near the membrane due to the electroneutrality condition.  

Specifically, the y-direction advection flux coupled with a membrane impermeable to 

anions will lead to depressed anion concentrations near the membrane, which depress 

the cation concentrations as well.  In the ideal case analysis, the cell incurred a small 

(1%) efficiency loss due to these concentration gradients.   
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Ohmic losses in the channels are small compared to losses in the membrane, 

where the lower mobility of Na+ ions limits conductivity compared other cations, 

such as H+.  The membrane ohmic overpotential was small in this study compared to 

the activation overpotentials at the electrodes (particularly so for the larger cathode 

activation overpotential), but it was still a significant source of loss.  For example, the 

baseline case of the realistic DBFC analysis at 1.1 V cell potential showed the 

membrane ohmic losses were 3.5% of total potential loss compared to the theoretical 

3.01 V cell potential.  The importance of membrane ohmic loss increases with current 

density, so it would become more significant in systems using higher reactant 

concentrations and/or higher flow rates to achieve higher current density.  Channel 

ohmic losses are negligible for any reasonable combination of reactant and supporting 

electrolyte concentrations (≤ 2 M) and channel depth (≤ 1 mm).  Also, for reasonable 

concentrations of OH- and H+, crossover of these species through the membrane is 

negligible at cell potentials less than OCV.  With higher concentrations, crossover of 

OH- and H+ may occur at open circuit and depress OCV, but remains unlikely to have 

a significant impact on cell performance at lower cell potentials, for which the electric 

potential gradient in the membrane opposes crossover. 

Reactant stoichiometry was shown to affect DBFC behavior by altering the 

relative rates at which the anode and cathode potentials change with increasing 

current density.  Fuel (BH4
-) limited cases showed consistent trends of increasing 

current density with increasing BH4
- concentration as the higher concentration drove 

larger BH4
- fluxes to the anode.  The limiting current density in these cases was 

roughly proportional to the BH4
- concentration.  Oxidizer (H2O2) limited cases 
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showed that shifting most of the concentration overpotential to the cathode could 

cause its potential to fall far enough for additional charge transfer reactions (H+ 

reduction) to become thermodynamically favorable.  The onset of additional charge 

transfer reactions showed that changes to stoichiometry could change cell behavior at 

high current density in ways which deviate from the proportionality dictated by 

convection transport. 

6.1.2 Influence of Electrode Reactions on Performance 

Electrode reaction rates influence DBFC performance in two ways.  First, the 

activation and concentration (manifested through the activation) overpotentials are 

the largest factors determining the relationship between the cell potential and current 

density.  In the baseline case of the realistic DBFC analysis at 1.1 V cell potential, the 

total anode and cathode overpotentials (𝜂𝑎𝑐𝑡 + 𝜂𝑐𝑜𝑛𝑐) constituted 20% and 75% of 

total potential losses, respectively.  Second, the coulombic efficiency is determined 

by the relative rates of the desired charge transfer reactions and competing chemical 

reactions.  These relative reaction rates also play a role in the coulombic utilization. 

The rate of H2 production at the anode tends to be greater than the rate of O2 

production at the cathode, yet H2 production has less effect on the anode overpotential 

than O2 does on the cathode.  The reasons involve transport and stoichiometry.  BH4
- 

has higher diffusivity than H2O2 and is augmented by migration, so the concentration 

overpotential at the anode tends to be lower.  Furthermore, each BH4
- anion to arrive 

at the anode can yield up to 8 e-, so the coulombic efficiency at the anode can fall to 

25% and still balance the cathode current density for a given molar consumption flux 
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at both electrodes.  Even a small decrease in the cathode coulombic efficiency forces 

a large increase in the cathode overpotential to match the current density of the anode. 

At the anode, Au does not favor complete BH4
- oxidation as claimed in many 

publications, although the rate of H2 production may be less than that of more active 

catalysts such as Pt.  Qualitative observations in ex situ experiments showed that the 

rate of H2 production increased with anode potential, likely due to higher rates of 

anion adsorption as the anode became less negative.  Despite the higher net rate of H2 

production, model results showed that the relative rates of BH4
- oxidation and H2 

production favored BH4
- oxidation (higher coulombic efficiency) at less negative 

anode potentials. 

At the cathode, large overpotentials cause the electrode potential to fall rapidly 

with increasing current density, and it can reach potentials sufficiently low for H+ 

reduction to occur.  The onset of a second charge transfer reaction at low potential 

can delay the transport limit to lower cell potentials and increase the peak power 

density of the cell.  In general, however, most H+ reduction occurs at points on the 

power density curve which are undesirable from an efficiency perspective.  Bubble 

production was observed at open circuit (O2) and at low cathode potential (H2) in cell 

and ex situ experiments.  Few bubbles were observed at intermediate cathode 

potentials. 

6.1.3 Recommendations for Improved DBFC Performance 

In terms of cell design and operation, long shallow channels are preferable to 

improve both coulombic utilization and efficiency.  As demonstrated by Figure 5.13, 

the highest overall conversion efficiency is obtained close to peak power density for 
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this DBFC, rather than near OCV as is common for many fuel cells.  Flow rate and 

inlet reactant concentrations can be adjusted to maintain operation near peak power as 

the load varies.  If reactant storage volume is limited, the total energy capacity of the 

system may be greatest with a low fuel:oxidizer storage ratio, so that the cell can 

operate with more excess oxidizer to mitigate activation and concentration losses at 

the cathode and raise the overall conversion efficiency.  Similarly, operating the cell 

with an oxidizer flow rate greater than the fuel flow rate to compensate for slower 

transport of H2O2 may be a good compromise between cell thermodynamic efficiency 

and parasitic power consumption by the recirculation pumps. 

Due to the low reactant utilization rates, even for channels as thin as 0.5 mm 

deep, recirculation will be necessary for any practical DBFC.  With recirculation, 

some fluid must be rejected downstream of the cell to accommodate the addition of 

new reactants; the rate of reactant loss to this process will be mitigated by operating 

the cell with low average reactant concentrations. 

The high rate of water crossover through the membrane introduces an important 

caveat to the recommendation to run near peak power.  Water crosses the membrane 

predominantly due to electro-osmotic drag, making the crossover rate proportional to 

the current density.  Depending on the system topology and design constraints for a 

given application, it may be preferable to operate the cell close to OCV in order to 

produce sufficient power with the smallest possible current density, thereby 

minimizing the water crossover rate. 

The present study analyzed a cell with catalyst layers on planar electrodes 

separated from the membrane.  This topology was chosen because it was 
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straightforward to model and because of advantages such as simplicity of design, few 

processing steps in the fabrication process, and migration aiding reactant transport.  

This cell topology is not necessarily the best for all applications, however.  Cells in 

which the flow channels are filled with a porous solid catalytic medium may offer 

better performance by removing concentration boundary layer development as an 

impediment to higher current density (power density) operation.  Concentration 

gradients would still develop, but forcing the reactant solutions through a porous 

medium would improve rates of transport from the bulk to the surface by distributing 

those gradients over a larger surface area.  Furthermore, the larger catalytic surface 

area could lessen the need for recirculation by improving coulombic utilization rates. 

 

6.2 Prospects for Practical DBFCs 

The high theoretical energy density and air independence of NaBH4 / H2O2 

DBFCs continue to make this technology attractive for portable power and undersea 

applications, yet the technology remains too immature to be practical.  The greatest 

obstacles to implementation continue to be losses to competing electrode reactions, 

water crossover through the membrane, ohmic losses in the membrane and activation 

losses at the cathode.  The strategies for mitigating these problems recommended by 

this study can help to improve DBFC performance, but more progress must be made 

before DBFCs can be practical.  The modeling tools developed in this study should be 

useful for investigating possible solutions, such as catalysts with higher activity and 

selectivity, membranes with higher conductivity and system configurations which 

minimize water crossover. 
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6.3 The Utility and Limits of (Present) DBFC Models 

The ability of this model to predict performance characteristics such as power 

density and efficiency makes it a valuable tool for system design.  It can be used in 

several ways, including: 

 
(a) Optimizing for one or more steady-state performance metrics in a given 

system by choosing appropriate operating conditions. 

(b) Providing insight into difficult to measure system parameters, such as the rate 

of hydrolysis down the channel, to inform cell design decisions. 

(c) Guiding development of control strategies which optimize one or more 

performance metrics over a range of operating conditions.   

 

If the model is sufficiently accurate, it can be used to develop a reduced state 

estimator for a model predictive control strategy.  Such an approach may be well 

suited to DBFCs because the complex relationships between operating conditions and 

performance complicate the selection of operating conditions, and because the 

variables of greatest interest for control (such as coulombic utilization) can be 

difficult to measure in real time. 

This study showed that models must accommodate down-the-channel variations 

in transport and reaction rates in order to accurately predict cell performance.  The 

finite volume approach worked well for this system and provided a flexible and 

robust means to solving the transport equations for the channel and membrane.  The 

generalized reaction rate estimation functions readily accommodated both chemical 

and charge transfer reactions when the appropriate rate parameters were provided. 
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The largest challenge to DBFC model development is identifying electrode 

reactions with sufficient detail to adequately describe the system under study.  The 

global reaction rates fitted to the measurements in this study were adequate, but 

discrepancies remained.  To produce high fidelity performance predictions for system 

design, it may be necessary to incorporate more complex reaction rate models.  A 

framework for incorporating surface species and adsorption reactions was laid out in 

Chapter 2, but was not adopted here in part because the rate parameters for such a 

mechanism are not readily available.  While progress has been made, measurement of 

rate parameters for such a complex microkinetic rate mechanism continues to be a 

challenge for reactions as complex as BH4
- oxidation. 

 

6.4 Products of this Study 

The products of this study include modeling tools for DBFC analysis and 

calibration, calibrated reaction rate mechanisms for Au and Pd:Ir, experimental 

results from a DBFC with geometry that is amenable to modeling, and experimental 

data which can be used to calibrate future iterations of this model or other models.  

Beyond these concrete products, however, is an improved understanding of the 

factors dictating DBFC performance. 

In terms of disseminating the conclusions of this study, one paper describing the 

model development and ideal DBFC analysis was accepted to the Journal of Power 

sources [95].  Talks on this work were delivered at three conferences: the 2012 Fuel 

Cell Seminar, the 2013 ASME Fuel Cell Science and Technology Conference and the 
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2013 NRL Chemistry Division Symposium.  A second paper describing the 

experiments, model calibration and realistic DBFC analysis is in preparation. 

 

6.5 Recommendations for Future Work 

Future work could take several paths.  The present model could be modified to 

include an anode reaction mechanism involving adsorption and surface species to 

better capture the shift in anode reaction rates with electrode potential, and the 

possibility of intermediates escaping prior to complete oxidation.  Such a more 

detailed mechanism will be feasible if the relevant rate parameters become available.  

High concentration reactants could be investigated to understand whether or not the 

underlying dynamics governing DBFC performance change when the electrolyte 

solutions become strongly non-ideal.  Such a high concentration investigation would 

have to adopt a method for estimating activity coefficients, with the Pitzer equations 

being the best choice if the necessary species properties are available. 

The model could be modified to accommodate multiphase flows and bubble 

nucleation at the catalyst layers.  Adding these details could reveal the relationships 

between gas production rate and performance degradation when bubbles occlude the 

electro-catalysts.  The transport features of the model could be modified to fill the 

channels with a catalytic porous medium and compare the performance of that cell 

topology to the cell examined in this study. 

As discussed in Chapter 5, the model was designed to fit into a system-level 

DBFC model.  A major feature of such a model would be recirculating flows, which 

could be established by assigning the outlet flow conditions (concentrations and flow 
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rate) to the inlet boundary conditions, with appropriate adjustments to simulate waste 

removal and reactant injection.  This study examined steady state DBFC 

performance, which was reasonable given the relatively slow dynamics of the cell.  A 

transient system-level analysis may be desirable to investigate cell interactions with 

varying operating conditions such as flow rate and inlet concentration.  The present 

model is well suited to this purpose, because the governing equations were written 

such that the residuals are time derivatives of the associated state variables.  The 

model could straightforwardly be adapted to work with a time integrating solver for 

transient analysis. 
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Chapter 7: Appendices 

7.1 DBFC Model Code 

%% SUMMARY: DBFC_MAIN  
% Purpose: Call the scripts and functions to set up the model, solve it and display the results. Author: 
% Rick Stroman 
  
%% NOTES  
% 
% To change the way the code runs, modify the global variables Geometry, Model, Flags, Scales, Fuel and 
% Oxidizer in the script DBFC_USER_INPUT. This is the ONLY place these global variables are created 
% and/or changed... elswhere they are ONLY READ, NOT ALTERED. Nothing else should be changed from one run 
% to another, unless you want to change the model. 
  
%% CODING CONVENTIONS  
% 
%   (1) Script and function names are in "ALL_CAPS" 
% 
%   (2) Vectors, structures and matrices have first letter "Capitalized" 
% 
%   (3) Scalars are all lower "case" 
% 
%   (4) Top level functions and script names begin with DBFC_ , sub-functions begin with FUNC_ and 
%   sub-scripts begin with SCRIPT_ . 
% 
%   (5) Major sections of code are broken into MATLAB cells and labeled with comments in all caps, and 
%   subsections have comment headings with ordinary text. 
% 
%   (6) Quantities restricted to one discretization start are stored in structures beginning with the 
%   discretization name; for example, Asln.mass_density.  Fluxes among discretizations are stored in 
%   structures starting with the flux direction, followed by the flux type and flux name. For example, 
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%   Yfluxes.mass.asln is the y-direction mass flux leaving discretization asln. Numerical indexes 
%   following either type of variable are ordered (x-discretization, y-discretization, species number). 
% 
%   (7) Abbreviations and acronyms 
% 
%       DCS: Discretization Coordinate System.  This includes ghost cells for boundary conditions and is 
%       denoted x_d and y_d. x_d = 2, y_r = 2 is the corner real cell adjacent to the inlet and 
%       electrode. x_r = Geometry.x_d_num + 1 and y_r = Geometry.y_d_num + 1 is the corner real cell 
%       adjacent to the outlet and membrane. 
% 
%       RCS: Real Coordinate System.  This does not include ghost cells and is denoted x_r and y_r. x_r = 
%       1, y_r = 1 is the corner cell adjacent to the inlet and electrode.  x_r = Geometry.x_d_num and 
%       y_r = Geometry.y_d_num is the corner cell adjacent to the outlet and membrane. 
% 
%       DBFC: Direct Borohydride Fuel Cell 
  
%% 1. SET UP THE WORKSPACE 
  
close all; clc; clear all; 
  
global BC Scales Geometry Pointer Solver total_cathode_current Grid_size 
  
%% 2. SET UP THE MODEL  
     
% Set user configurable options such as cell geometry, model properties, solver parameters, etc. This is 
% the only place where model functionality is changed from one run to the next. 
DBFC_USER_INPUT; 
  
% Set up the MATLAB workspace 
DBFC_CONFIGURE_WORKSPACE 
  
% Define physical constants and species properties. 
DBFC_CONSTANTS_AND_PROPERTIES; 
  
% Calculate additional parameters from the user input, outside of the solver to be more efficient. 
DBFC_PROCESS_USER_INPUT 
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% List the reactions included, with stoichiometric and rate parameters for each.  Store all of the 
% stoichiometric and rate parameters in structures expected by the reaction rate function. 
DBFC_SETUP_REACTION_RATES 
  
% Create pointers, names, scales and constraints vectors.  Generate a Jacobian pattern, mass matrix and 
% populate the initial state vector. 
DBFC_INITIALIZE 
     
%% 3. SOLVE THE MODEL  
  
voltage_num_tot = length(Cathode_electric_potential); 
  
% Solve model for each cell voltage specified in Cathode_electric_potential 
for voltage_index = 1:voltage_num_tot 
   
  % SET THE CELL VOLTAGE AND CALL THE REQUESTED SOLVER TO SOLVE THE MODEL 
  BC.cathode.elec_pot = Cathode_electric_potential(voltage_index); 
   
  % CALL THE SOLVER TO FIND STEADY STATE SOLUTION AT THIS CELL VOLTAGE 
  DBFC_KINSOL 
   
  % IF GENERATING A POLARIZATION CURVE, RUN THE REST OF THE VOLTAGES 
   
  if voltage_num_tot > 1 
    % If we are running more than one cell voltage, do this stuff after the first one... 
     
    % Store the current density from this voltage in an array so we can plot the pol curve later 
    current_density(voltage_index) = -total_cathode_current / (sum(Geometry.y_flux_area)); 
    anode_delta_phi(voltage_index) = 0 - mean(SV_steady_state(Pointer.a_int.elec_pot)); 
    cathode_delta_phi(voltage_index) = Cathode_electric_potential(voltage_index) ... 
                                     - mean(SV_steady_state(Pointer.c_int.elec_pot)); 
     
    DBFC_RESULTS_OUTPUT 
     
    total_BH4_consumed(voltage_index) = total_BH4_to_anode; 
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    total_H2O2_consumed(voltage_index) = total_H2O2_to_cathode; 
     
    % Display status in the command window 
    disp(' ') 
    disp(['Point number ', num2str(voltage_index), ' of ', num2str(voltage_num_tot), ' is complete.']) 
    disp(['Cell voltage is: ' num2str(BC.cathode.elec_pot),  ' V']) 
    disp(['Total cell current is: ' num2str(total_cathode_current) ' A']) 
    disp(['Average cell current density is: ' num2str(current_density(voltage_index)) ' A/m^2']) 
     
    % SAVE WORKSPACE TO A .mat FILE 
    if Flags.setup.save_inter_output 
      % If saving the workspace after each cell voltage: 
      c = clock; 
      filename_id = strcat(num2str(c(1)), '-', num2str(c(2)), '-', num2str(c(3)), '-', ... 
        num2str(c(4)), 'h-', num2str(c(5)), 'm-', num2str(c(6)),'s', '_', ... 
        num2str(BC.cathode.elec_pot), 'V'); 
      filename = strcat('Inter_Results_', filename_id, '.mat'); 
      save(filename); disp(['Results were saved in file: ' filename]) 
      clear c filename_id filename 
    end 
     
    if Flags.setup.reuse_previous_soln && ... 
        voltage_index < voltage_num_tot 
       
      % Change the strategy to be pure Newton search, in case LineSearch was used to get the simulation 
      % started 
      Solver.kinsol.strategy = 'None'; 
       
      % Configure the solution from the previous voltage to be the initial guess for the next voltage 
      if Flags.setup.adjust_V_prev_soln 
        % Adjust the solution from the previous voltage to form the initial guess for the next point 
        V_cell_old = Cathode_electric_potential(voltage_index); 
        V_cell_new = Cathode_electric_potential(voltage_index+1); 
        SV_initial = FUNC_ADJUST_SOLN_VOLTAGE( SV_steady_state, V_cell_old, V_cell_new, Scales, ... 
          Pointer, Geometry, Grid_size ); 
      else 
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        % Use the solution from the previous voltage as-is 
        SV_initial = SV_steady_state; 
      end 
    end 
     
  end 
   
  % Loop to walk down the polarization curve, one cell voltage at a time 
end 
  
%% 4. SUMMARIZE SIMULATION 
  
% Stop the clock and display end message. 
elapsed_time = toc; disp(' '); 
disp(['Simulation complete.  Total time for solver to run was ' num2str(elapsed_time) ' s.' ]) 
  
%% 5. ANALYZE AND DISPLAY THE RESULTS 
  
% Plots output for a single solution 
if voltage_index == 1 
  DBFC_RESULTS_OUTPUT 
end 
  
if voltage_index > 1 && ~pol_curve_compare 
  figure(1); 
  plot( 0.1*current_density, Cathode_electric_potential, 'r-o') 
  title('Calculated Polarization Curve'); xlabel('Current Density [mA/cm^2]'); ylabel('Cell Voltage [V]') 
end 
  
if voltage_index > 1 && pol_curve_compare 
  figure(1); 
   
  measured_current_densities = [ 0.00; 0.62;  0.92; 1.63; 2.77; 5.26; 9.67; 16.63; 47.00; 69.93; ... 
    81.56;  90.84; 100.73;  109.67; 118.40; 126.42; 128.87; 131.34 ]; % Exp54H in mA/cm^2 
   
  figure(1); 
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  plot( 0.1*current_density, Cathode_electric_potential, 'r-o', measured_current_densities, ... 
    Cathode_electric_potential, 'b-s') 
  title('Calculated and Measured Polarization Curves'); xlabel('Current Density [mA/cm^2]');  
  ylabel('Cell Voltage [V]') 
  legend('Calculated', 'Measured') 
   
  figure(2); 
  plot( 0.1*current_density, anode_delta_phi, 'b-o', 0.1*current_density, cathode_delta_phi, 'r-o', ... 
    0.1*current_density, Cathode_electric_potential, 'g-o') 
  title('Electrode Potentials wrt Interface'); xlabel('Current Density [mA/cm^2]');  
  ylabel('Potential [V]') 
  legend('Anode', 'Cathode' ,'Cell') 
   
  figure(3); 
  plot( Cathode_electric_potential, anode_delta_phi, 'b-o', Cathode_electric_potential, ... 
    cathode_delta_phi, 'r-o') 
  title('Electrode Potentials wrt Interface'); xlabel('Cell Voltage [V]'); ylabel('Potential [V]') 
  legend('Anode', 'Cathode') 
   
end 
  
if Flags.setup.save_final_output 
  c = clock; 
  filename_identifier = strcat(num2str(c(1)), '-', num2str(c(2)), '-', num2str(c(3)), '-', ... 
    num2str(c(4)), 'h-', num2str(c(5)), 'm-', num2str(c(6)), 's'); 
  filename = strcat('Results_', filename_identifier, '.mat'); 
  save(filename); disp(['Results were saved in file: ' filename]) 
end 
% Purpose: Set user defined model parameters such as cell geometry, voltage, etc. Author: Rick Stroman 
  
%% DECLARE MODEL-WIDE GLOBAL VARIABLES  
  
global Flags Geometry Pointer BC Initial Tolerances Solver Grid_size Species 
  
disp('Reading user inputs...'); 
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%% 1. MODEL OPTIONS  
  
% SOLUTION APPROACH 
  
Flags.setup.parallel = 0;   
% [ 1 = run in parallel, 0 = run serially ] 
Flags.setup.MEX      = 1;   
% [ 1 = run MEX file to calc properties and fluxes, 0 = run MATLAB code ] 
  
% SOLUTION AND RESIDUAL SCALES 
  
Flags.setup.rescale_init_guess = 0;      
% [ 0 = Leave the initial guess as-is, 1 = Adjust Scales.SV so that the initial guess is all ones ] 
                                         
Flags.setup.rescale_init_resid = 0;      
% [ 0 = Leave the initial residuals as-is, 1 = Adjust Scales.dSV so the initial residuals are all ones ] 
% SOURCES FOR THE INITIAL GUESS 
                                         
Flags.setup.new_SV_initial  = 1;         
% [ 1 = Initialize to the standard guess, 0 = Initialize to a guess from a solution file 
%  NOTE: This flag determines which guess is initialized. If Flags.setup.reuse_SV_steady_state = 0 below, 
%  then it is also used for subsequent points] 
  
Flags.setup.reuse_previous_soln = 1;     
% [ 0 = Use the guess from the Initialization for all voltages, 1 = Use the guess from the Initialization 
% for the first voltage, 
%       then reuse solutions for subsequent voltages. ] 
  
Flags.setup.adjust_V_prev_soln = 0;      
% [ 0 = Use the previous solution as-is for the initial guess, 1 = Adjust the voltages in the previous 
% solution to be closer to 
%   the voltages in the case for which it is the initial guess. NOTE: Only applicable when using a 
%   previous solution,either from 
%  file or from a previous voltage in a pol curve ] 
                                         
Flags.setup.randomize_SV = 0; 
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% MODEL CONFIGURATION 
  
Flags.model.scale_cells_x   = 'lin';  
% ['off' or 'lin' or 'log'  for logarithmic, must use even numbers of cells ... makes cells smaller near 
% inlets and walls ] 
Flags.model.scale_cells_y   = 'lin';  
% ['off' or 'lin' or 'log'  for logarithmic, must use even numbers of cells ... makes cells smaller near 
% inlets and walls ] 
Flags.model.solution_ideality = 1 ;  
% [ 1 = ideal, 0 = non-ideal ] 
Flags.model.y.migration  = 1;  
% [1 : include y-direction migration in transport calculations in the electrolyte] 
Flags.model.y.diffusion  = 1;  
% [1 : include y-direction diffusion in transport calculations in the electrolyte] 
Flags.model.x.migration  = 1;  
% [1 : include x-direction migration in transport calculations in the electrolyte] 
Flags.model.x.diffusion  = 1;  
% [1 : include y-direction diffusion in transport calculations in the electrolyte] 
Flags.model.m.migration  = 1;  
% [1 : include migration in membrane transport] 
Flags.model.m.diffusion  = 1;  
% [1 : include diffusion in membrane transport] 
Flags.model.m.permeation = 1;  
% [1 : include permeation in membrane transport] 
Flags.model.m.EOD        = 1;  
% [1 : include electro-osmotic drag (of water) in membrane transport] 
Flags.model.electroneutrality = 1;  
% [1 : solve for electric potential in channel using electroneutrality 
%  0 : solve for electric potential in channel using poisson electrostatic equation] 
  
% KINSOL SETUP 
  
% kinsol options 
Solver.kinsol.display_iter      = 1; 
Solver.kinsol.verbose           = false; 
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Solver.kinsol.func_norm_tol     = 1e-3;  
% Stopping tolerance on the residual 2-norm 
Solver.kinsol.scaled_step_tol   = 1e-15;  
% Stopping tolerance (minimum) step size 
Solver.kinsol.linear_solver     = 'Band';  
% 'Dense' 'Band' or 'GMRES' 'TFQMR' 'BiCGStab' 
%     Solver.kinsol.KrylovMaxDim      = 10; Solver.kinsol.MaxNumRestarts    = 2; 
Solver.kinsol.MaxNumSetups      = 50; 
Solver.kinsol.strategy          = 'None'; % 'LineSearch' or 'None' 
Solver.kinsol.MaxNewtonStep     = 1e9;  % Default is 1e3 
Solver.kinsol.MaxNumBetaFails   = 50;   % Default is 10 
Solver.kinsol.MaxNumIter        = 500; % Default is 200 
  
% Jacobian options 
Solver.Jacobian.Jpattern_flag       = 'none';   
% [ 'random', 'load', 'analytic', 'ones', 'empirical' 'specified' or 'none' ] 
Solver.Jacobian.JAC_bandwidth_flag  = 'user';    
% [ 'user' = user supplied upper and lower Jabobian bandwidths 'Jpattern' = determine from Jacobian pat] 
Solver.Jacobian.rtrn_dense_JAC_flag = 0;  % [ 0 or 1 ] 
Solver.Jacobian.function            = 'FUNC_JACOBIAN_NUMJAC';  
% External function for calculating the Jacobian, if that option is used. 
Solver.Jacobian.upper_bandwidth     = 359;  
Solver.Jacobian.lower_bandwidth     = 359; 
  
%% 2. FUNCTION SCALES  
  
% Scales for the solution vector... initially divide SV by these factors to get a value of order 1. 
% Converting back to the real value inside the function is a multiplication, which is fast. 
Solver.SV_scale.mass_frac_anode   = [ 1e-3 1e-5 1e-3 1e-1 1e-2 1e-2 ]; % Fuel.Mass_fractions 
Solver.SV_scale.mass_frac_cathode = [ 1e-3 1e-6 1e-1 1e-3 1e-5 1e-3 1e-1  ]; % Oxidizer.Mass_fractions 
Solver.SV_scale.x_vel             = 1e-2;   
Solver.SV_scale.y_vel             = 1e-4; 
Solver.SV_scale.press             = 1; 
Solver.SV_scale.elec_pot          = 1; 
  
% Scales for the residuals... these are what we multiply by inside the function to get values which have 
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% a similar magnitude near the solution. 
Solver.dSV_scale.electroneutrality      = 1e1*1e0; 
Solver.dSV_scale.species_cons_a         = 1e4 * [ 1e1 1e1 1e1 1e0 1e1 1e1 ]; 
Solver.dSV_scale.species_cons_c         = 1e4 * [ 1e1 1e1 1e0 1e1 1e1 1e1 1e1 ]; 
Solver.dSV_scale.x_momentum_cons        = 1e0; 
Solver.dSV_scale.y_momentum_cons        = 1e0; 
Solver.dSV_scale.mass_cons              = 1e0; 
Solver.dSV_scale.species_flux_balance_a = 1e4 * [ 1e1 1e1 1e1 1e0 1e1 1e1 ]; 
Solver.dSV_scale.species_flux_balance_c = 1e4 * [ 1e1 1e1 1e0 1e1 1e1 1e1 1e1 ]; 
Solver.dSV_scale.mass_flux_balance      = 1e0; 
  
%% 3. PLOTTING AND DISPLAY OPTIONS  
  
Flags.setup.display_initial_state = 0;  
% [1 = display initial state of system before starting the solver] 
Flags.setup.display_final_state   = 0;  
% [1 = display final state of system after the steady state solver is finished] 
Flags.setup.display_aspect_ratios = 0;  
% [1 = display aspect ratios of channel discretizations] 
Flags.setup.plot_curr_density     = 0;  
% [1 = display current density down the channel for anode and cathode at each iteration. 0 = don't 
% display the current density at each iteration] 
  
Flags.setup.display_Jpattern = 0; % [1: display the Jacobian pattern] 
Flags.plots.grids            = 0; % [1: plot the channel grids] 
  
% If this is a steady state simulation, plot the following: 
Flags.plots.anode      = 0; 
Flags.plots.cathode    = 0; 
Flags.plots.whole_cell = 1; 
  
Flags.plots.contour      = 0; 
Flags.plots.profiles     = 0; 
Flags.plots.image        = 0; 
Flags.plots.yfluxes_mass = 0; 
Flags.plots.yfluxes_mole = 0; 
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Flags.plots.xfluxes_mass = 0; 
Flags.plots.xfluxes_mole = 0; 
  
Flags.plots.error      = 0; 
  
pol_curve_compare = 1; 
display_output_text = 1; 
  
%% 4. READING AND WRITING FILES  
  
% If using a previously stored Jacobian pattern, load it from the following file. 
if strcmp(Solver.Jacobian.Jpattern_flag, 'load') 
  Solver.Jacobian.j_pattern_filename = 'Jacobian_pattern_x60_y_15.mat'; 
end 
  
% If using a previously stored solution vector, load it from the following file. 
if ~Flags.setup.new_SV_initial 
  Solver.SV_initial_filename = 'Inter_Results_2013-10-22-16h-48m-57.296s_1.6197V.mat'; 
   
  % File at voltage previous to the initial filename.  Used to calculate the rate at which state 
  % variables change with respect to cell voltage, to generate a better initial guess than just starting 
  % at the last good solution. 
  Solver.SV_previous_filename = 'Results_2013-8-1-9h-43m-58.491s.mat'; 
end 
  
% Configure whether or not the calculated Jacobian and Jacobian pattern are saved to files 
Flags.setup.save_Jacobian = 1; 
Flags.setup.save_JAC_pat  = 1; 
  
Flags.setup.save_final_output = 1;  
% [1 = save the final workspace] 
Flags.setup.save_inter_output = 1;  
% [1 = save the workspace after solving for each cell voltage] 
  
%% 5. CELL GEOMETRY 
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% Channel and membrane dimensions 
Geometry.channel_length   = 5.000e-2; % m [Length of channels] 
Geometry.channel_width    = 5.000e-3; % m [Width of channels] 
Geometry.channel_height   = 5.00e-4;  % m [Depth of channels] 
Geometry.mem_thick        = 208e-6;   % m [Membrane thickness] 
  
% Discretization of the model domain 
Grid_size.y_d_num = 15;  % [Number of y-direction discretizations] 
Grid_size.x_d_num = 50; % [Number of x-direction discretizations] 
  
% For linear scaling 
Geometry.x_d_min = 0.25/3;  
% [Size of the smallest x-discretization with respect to the average.] 
Geometry.y_d_min = 0.1;  
% [Size of the smallest y-discretization with respect to the average.] 
  
% For exponential scaling 
Geometry.x_d_min_log = 1e-6; % m [Size of the smallest x-discretization.] 
Geometry.y_d_min_log = 1e-5; % m [Size of the smallest y-discretization.] 
  
%% 6. OPERATING PARAMETERS (DIRECLET BOUNDARY CONDITIONS) 
  
% Anode side boundary conditions 
BC.anode.elec_pot          = 0; % V   [Electric potential of  anode] 
BC.anode.x_vel_electrode   = 0; % m/s [x-direction vel at electrodes] 
BC.anode.x_vel_membrane    = 0; % m/s [x-direction vel at membrane] 
BC.anode.y_vel_electrode   = 0; % m/s [y-direction vel at  electrode] 
BC.anode.y_vel_inlet       = 0; % m/s [y-direction vel at  inlet] 
BC.anode.press_outlet      = 0; % Pa  [Pressure at inlet] 
  
% Cathode side boundary conditions 
BC.cathode.x_vel_electrode = 0; % m/s [x-direction vel at electrodes] 
BC.cathode.x_vel_membrane  = 0; % m/s [x-direction vel at membrane] 
BC.cathode.y_vel_electrode = 0; % m/s [y-direction vel at electrode] 
BC.cathode.y_vel_inlet     = 0; % m/s [y-direction vel at  inlet] 
BC.cathode.press_outlet    = 0; % Pa  [Pressure at the inlet] 
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% List of cell voltages to evaluate.  If there is more than one, then a polarization curve is generated 
% by solving teh model for each voltage sequentially. 
Cathode_electric_potential = [ 1.6197 1.525 1.5 1.475 1.45 1.4 1.35 1.3 1.2 1.1 1.0 0.9 0.8 0.7 ... 
  0.6 0.5 0.4 0.3 ]; % Exp54H 
  
% Mean solution velocity at the inlet 
anode_mean_inlet_velocity   = 1.6666e-7 / (Geometry.channel_width*Geometry.channel_height);  
% m/s [Mean inlet flow rate of fuel solution] 
cathode_mean_inlet_velocity = 1.6666e-7 / (Geometry.channel_width*Geometry.channel_height);  
% m/s [Mean inlet flow rate of oxidizer solution] 
  
% The species mass fraction boundary conditions at the inlets are calculated from the fuel and oxidizer 
% concentrations (set below). The inlet velocity boundary conditions are determined from the mean inlet 
% velocities. 
  
%% 7. MODEL PROPERTIES 
  
% Note about the structure names in this section.  Typically one would make the top level catagories the 
% largest and further subdivide for each subcatagory to minimize the number of fields in a structure. 
% Here, the goal is to have structures in the form Model.discretization.property so that all of the 
% properties of a particular discretization can be easily passed into a function... If they were 
% organized as Model.property.discretization, this would be much more complicated. 
  
% Species included in each phase.  Note that the membrane species list elements which appear on both the 
% anode and cathode; if a species appears on both sides, its flux throught the membrane will be 
% calculated.  Species should be in alphanumeric order. 
Species.fuel.list     =  'BH4'; 'BO2'; 'H2'; 'H2O';  'Na'; 'OH'  }; % 'BH3OH'; 
Species.oxidizer.list =  'H';   'H2'; 'H2O'; 'H2O2'; 'Na'; 'O2'; 'SO4' }; 
Species.membrane.list =  'H2O'; 'Na' };  
%intersect(Model.anode.species_list, Model.cathode.species_list); 
  
% Store the total number of species in each list 
Species.fuel.num     = length(Species.fuel.list); 
Species.oxidizer.num = length(Species.oxidizer.list); 
Species.membrane.num = length(Species.membrane.list); 
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%% 8. SET UP SPECIES POINTERS 
  
% Use the species lists to create pointers for the anode and cathode, which have different species. The 
% relative positions of the species are the same as in the lists. 
  
% Create the anode species pointers 
for s_i = 1 : Species.fuel.num 
  Pointer.anode.species.(char(Species.fuel.list(s_i))) = s_i; 
end 
  
% Create the cathode species pointers 
for s_i = 1 : Species.oxidizer.num 
  Pointer.cathode.species.(char(Species.oxidizer.list(s_i))) = s_i; 
end 
  
% Create the membrane species pointers 
for s_i = 1 : Species.membrane.num 
  Pointer.membrane.species.(char(Species.membrane.list(s_i))) = s_i; 
end 
  
%% 9. FUEL PROPERTIES 
  
% Include the mole densities (molarities) of each solute species. Do not include the solvent, which is 
% assumed to be water. 
  
Fuel_mole_density.BH4   = 50E-3;  % M [Molarity of NaBH4]  
Fuel_mole_density.BO2   = 1.0E-6;  % M [Molarity of NaOH] 
Fuel_mole_density.OH    = 2.0E+0;  % M [Molarity of NaBO2]  
Fuel_mole_density.H2    = 1.0E-6;  % M [Molarity of H2] 
  
% Ensure the solution is electrically neutral 
Fuel_mole_density.Na = Fuel_mole_density.BH4 + Fuel_mole_density.BO2 + Fuel_mole_density.OH; 
  
%% 10. OXIDIZER PROPERTIES 
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% Include the mole densities (molarities) of each ionic species.  Do not include the solvent, which is 
% assumed to be water. 
  
Oxidizer_mole_density.H2O2 = 250E-3; % M [Molarity of H2O2] 
Oxidizer_mole_density.Na   = 1.0E-6; % M [Molarity of Na+] 
Oxidizer_mole_density.SO4  = 1.0E+0; % M [Molarity of SO4]  
Oxidizer_mole_density.O2   = 2.67E-4; % M [Molarity of O2] 
Oxidizer_mole_density.H2   = 1e-6; % M 
  
% Ensure the solution is electrically neutral 
Oxidizer_mole_density.H = 2 * Oxidizer_mole_density.SO4 - Oxidizer_mole_density.Na; 
  
%% 11. INITIAL STATE 
  
if Flags.setup.new_SV_initial == 1 
   
  % Concentrations in the channel are initialy set to those of the inlet anode and cathode flows. To help 
  % the solver find a solution, the code in this section 1. sets the electric potential in the channels, 
  % imposing gradients 2. sets the mass fractions at the electrode and membrane interfaces 3. sets the 
  % initial guess for the inlet pressure, and imposes a gradient from inlet to outlet. 
   
  Initial.a_int_elec_pot_in    = 1.24;  
  Initial.a_int_elec_pot_out   = 1.24;  
  Initial.m_int_a_elec_pot_in  = 1.24;  
  Initial.m_int_a_elec_pot_out = 1.24;  
  Initial.m_int_c_elec_pot_in  = 1.25; 
  Initial.m_int_c_elec_pot_out = 1.25;  
  Initial.c_int_elec_pot_in    = 1.247;  
  Initial.c_int_elec_pot_out   = 1.247;  
   
  Initial.a_int_mass_fracs   = [ (0.000067977539050 - 4e-5)   (0.000000039211998  + 4e-5) ... 
    0.000000001846454   0.926555707330665  0.042220459212564 0.031155814859269]; 
  Initial.m_int_a_mass_fracs = [ (0.000067977539050 - 0e-5)   (0.000000039211998  + 0e-5) ... 
    0.000000001846454   0.926555707330665 0.042220459212564   0.031155814859269]; 
  Initial.m_int_c_mass_fracs = [ 0.001876408651602   0.000000001876410   0.908382204023011  ... 
    0.000316613634117 0.000000021399202  0.000007952577700  0.089416797837959]; 
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  Initial.c_int_mass_fracs   = [ 0.001876408651602   0.000000001876410   0.908382204023011 0   ... 
    0.000000021399202   0.000007952577700   0.089416797837959]; 
   
  % Set the initial guess for pressure at the inlet 
  Initial.inlet_press = 250; % Pa 
   
  % Set the initial guess for pressure at the membrane interfaces 
  Initial.m_int_a.press = BC.anode.press_outlet; % Pa 
  Initial.m_int_c.press = BC.cathode.press_outlet; % Pa 
   
  Initial.anode_press   =  1e-3;  
  % Pa superimposed on the dominant gradient in the x-direction 
  Initial.cathode_press = -1e-3;  
  % Pa superimposed on the dominant gradient in the x-direction 
   
  Initial.m_int_a_y_velocity = 1E-6; % m/s 
  Initial.m_int_c_y_velocity = -1E-6; % m/s 
   
end 
  
%% 12. ERROR TOLERANCES 
  
% These are used to check the initial solution vector and the final solution. 
Tolerances.mole_fractions = 1E-5;  
% unitless [Permitted deviation from sum(X_k) = 1] 
Tolerances.mass_fractions = 1E-5;  
% unitless [Permitted deviation from sum(Y_k) = 1] 
Tolerances.non_neutrality = 1E-7;  
% C/m^3    [Permitted deviation from charge density = 0] 
Tolerances.mass_conservation   = 5E-3;  
% [Percent error for a control volume around the whole stack, ... 
Tolerances.charge_conservation = 5E-4;  
  
%% 14. CLEAR UNNECESSARY VARIABLES FROM THE WORKSPACE 
  
clear Fuel.NaBH4_molarity Fuel.NaOH_molarity Fuel.NaBO2_molarity Oxidizer.H2O2_molarity ... 
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  Oxidizer.HCl_molarity s_i smallest_x smallest_y 
  
%% REFERENCES 
  
% [1] DuPont Nafion materials specification sheet downloaded from DuPont website [2] Craig Urian 
% experiments with PdIr coated plates 
  
 
 
 
 
%% SUMMARY: DBFC_CONSTANTS_AND_PROPERTIES 
% Purpose: Store universal constants and material properties which do not change. 
% Author: Rick Stroman 
% Date: 1 December 2011 
  
%% DECLARE MODEL-WIDE GLOBAL VARIABLES 
  
global Constants Properties Species 
  
%% CONSTANTS 
  
disp('Defining physical constants...') 
  
Constants.e_charge    = 1.60218e-19; % C              [Charge on an electron. Ref 5, back cover] 
Constants.e           = 2.71828;     % unitless       [Base of natural logarithm] 
Constants.faraday     = 9.64853e7;   % C / kmol       [Coulombs of charge in 1 kmol of electons. Ref 5] 
Constants.avogadro    = 6.02214e26;  % number / kmol  [Avogadro's number. Ref 5, back cover] 
Constants.ideal_gas   = 8.31447e3;   % J / (K * kmol) [Ideal gas constant. Ref 5, back cover] 
Constants.boltzman    = 1.38065e-23; % J / K          [Boltzmann's constant. Ref 5, back cover] 
Constants.pi          = 3.14159;     % unitless       [Ratio of circle circumfrence to diameter. Ref ?] 
Constants.DH_A        = 1.2555;      %                [D-H constant value for water at 1 ATM and 300 K.] 
Constants.DH_B        = 0.3965E10;   %                [D-H constant value for water at 1 ATM and 300 K.] 
Constants.permittivity = 8.854187817620e-8; % F/m     [Permittivity of free space] 
Constants.H2O_permeability = 80; 
Constants.temperature = 23+273.15;   % K 
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%% SPECIES PROPERTIES 
  
disp('Defining species thermodynamic and electrochemical properties...') 
  
% MOLAR MASS 
  
Properties.molar_mass.Na    = 22.98976928;   % kg/kmol [Ref 9] 
Properties.molar_mass.H     = 1.00794;       % kg/kmol [Ref 9] 
Properties.molar_mass.OH    = 17.0073;       % kg/kmol [Ref 9] 
Properties.molar_mass.BH4   = 14.843;        % kg/kmol [Ref 9] 
Properties.molar_mass.Cl    = 35.453;        % kg/kmol [Ref 9] 
Properties.molar_mass.BO2   = 42.810;        % kg/kmol [Ref 9] 
Properties.molar_mass.H2O2  = 34.0147;       % kg/kmol [Ref 9] 
Properties.molar_mass.H2O   = 18.0153;       % kg/kmol [Ref 9] 
Properties.molar_mass.BH3OH = 30.8424;       % kg/kmol [sum of BH4 and O, Ref 9] 
Properties.molar_mass.H2    = 2.01588;       % kg/kmol [Ref 9] 
Properties.molar_mass.O2    = 31.9988;       % kg/kmol [Ref 9] 
Properties.molar_mass.SO4   = 96.063;        % kg/kmol [Ref 9] 
  
% ELECTRIC CHARGE 
  
Properties.electric_charge.Na    = +1; 
Properties.electric_charge.H     = +1; 
Properties.electric_charge.OH    = -1; 
Properties.electric_charge.BH4   = -1; 
Properties.electric_charge.Cl    = -1; 
Properties.electric_charge.BO2   = -1; 
Properties.electric_charge.H2O2  = 0; 
Properties.electric_charge.H2O   = 0; 
Properties.electric_charge.e     = -1; 
Properties.electric_charge.BH3OH = -1; 
Properties.electric_charge.H2    = 0; 
Properties.electric_charge.O2    = 0; 
Properties.electric_charge.SO4   = -2; 
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% STANDARD APARENT MOLAR VOLUME AT INFINITE DILUTION 
  
% Assuming T = 25 deg C and P = 1 bar. 
Properties.apparent_volume.Na    = -1.11E-3; % m^3/kmol [Ref 1, Table 8.13, page 536] 
Properties.apparent_volume.H     = 0;        % m^3/kmol [Ref 1, Table 8.13, page 536... defined] 
Properties.apparent_volume.OH    = -4.18E-3; % m^3/kmol [Ref 1, Table 8.13, page 536] 
Properties.apparent_volume.BH4   = (-14.5E-3)/3; % m^3/kmol [GUESS --- VALUE NEEDED] 
Properties.apparent_volume.Cl    = 17.79E-3; % m^3/kmol [Ref 1, Table 8.13, page 536] 
Properties.apparent_volume.BO2   = -14.5E-3; % m^3/kmol [Ref 1, Table 8.13, page 536] 
Properties.apparent_volume.H2O2  = 22.17e-3;  % m^3/kmol [Ref 10, page 2--] 
Properties.apparent_volume.H2O   = 0;        % m^3/kmol [Water is the solvent... 0 works out OK] 
Properties.apparent_volume.BH3OH = 0;        % m^3/kmol [GUESS --- VALUE NEEDED] 
Properties.apparent_volume.H2    = 2.52E-2;  % m^3/kmol [Ref 1, Table 9.14, page 653] 
Properties.apparent_volume.O2    = 3.038E-2; % m^3/kmol [Ref 1, Table 9.14, page 653] 
Properties.apparent_volume.SO4   = 24.8e-3;  % m^3/kmol [Ref 16] 
  
% SPECIES DIFFUSIVITIES IN WATER 
  
% Diffusivities of each species in H2O, most at infinite dilution and 25 deg C. 
Properties.diffusivity_in_water.Na    = 1.334E-9; % m^2/s 
%[Diffusivity of Na+  in H2O at infinite dilution and 25 deg C. Ref 6 Table 11.1] 
Properties.diffusivity_in_water.H     = 9.312E-9; % m^2/s 
%[Diffusivity of H+   in H2O at infinite dilution and 25 deg C. Ref 6 Table 11.1] 
Properties.diffusivity_in_water.OH    = 5.260E-9; % m^2/s 
%[Diffusivity of OH-  in H2O at infinite dilution and 25 deg C. Ref 6 Table 11.1] 
Properties.diffusivity_in_water.BH4   = 1.5*2.42E-9;  % m^2/s 
%[Diffusivity of BH4- in H2O and 2M NaOH at 25 deg C.           Ref 4 page F19] 
Properties.diffusivity_in_water.Cl    = 2.032E-9; % m^2/s 
%[Diffusivity of Cl-  in H2O at infinite dilution and 25 deg C. Ref 6 Table 11.1] 
Properties.diffusivity_in_water.BO2   = 8.14E-10; % m^2/s 
%[Diffusivity of BO2- in H2O at infinite dilution and 25 deg C. Ref 14] 
Properties.diffusivity_in_water.H2O2  = 1.61E-9;  % m^2/s 
%[Diffusivity of H2O2 in H2O from ref 18... at 25 deg C ] 
Properties.diffusivity_in_water.H2O   = 0       ; % m^2/s 
%[H2O diffusion balances solute diffusion... this value is irrelevent, but keeps things from blowing up] 
Properties.diffusivity_in_water.BH3OH = 7.48E-10; % m^2/s 
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%[Diffusivity in 0.02 M DMAB and 1 M NaOH at 20 deg C.  Ref 12] 
Properties.diffusivity_in_water.H2    = 4.5E-9;   % m^2/s [Diffusivity of H2 in H2O Ref 17] 
Properties.diffusivity_in_water.O2    = 1.97E-9;  % m^2/s [Diffusivity of O2 in H2O Ref 17] 
Properties.diffusivity_in_water.SO4   = 6.25e-10; % m^2/s [Diffusivity of SO4-2 in water .  Ref 15] 
  
%% MEMBRANE PROPERTIES 
  
Properties.membrane.electro_drag    = 9.2;     % unitless 
%[Mole H2O transported per mole Na+, for fully hydrated (lambda = 18) membane in Na+ form. Ref 8] 
Properties.membrane.Na_mobility     = 2.7E-8;  % m^2 / (V s) 
%[Mobility of Na+ in a fully hydrated Nafion 115 membrane where X_Na = 1.0.  Ref 8] 
Properties.membrane.H_mobility      = 1.49E-7; % m^2 / (V s) 
%[Mobility of H+ in a fully hydrated Nafion 115 membrane where X_H = 1.0.  Ref 8] 
Properties.membrane.SO3_density     = 1.13;    % kmol/m^3 
%[Density of sulfonic acid groups in fully hydrated Nafion 115.  Ref 8] 
Properties.membrane.k               = 0.20;    % unitless 
%[Na+ and H+ mobility interaction factor in fully hydrated Nafion 115, Ref 8] 
Properties.membrane.hydration       = 18.4;    % H2O per SO3- 
%[Number of water molecules per sulfonic acid group in the membrane at full hydration in the Na+ form in 
%Nafion 115, Ref 8] 
Properties.membrane.H2O_diffusivity = 3.5E-10; % m^2/s         
Properties.membrane.permeability    = 1.7e-14;   % m Pa^-1 s^-1 
%[Filtration coefficient for water through Nafion 125 at 20 deg C in 3 M NaCl, Ref 13] 
  
%% SOLVENT PROPERTIES 
  
% Need to do this twice becuase of the way Properties is passed into functions... 
Properties.anode.density_water   = FUNC_WATER_DENSITY(Constants.temperature); 
Properties.cathode.density_water = FUNC_WATER_DENSITY(Constants.temperature); 
  
%% STORE SPECIES PROPERTIES IN VECTORS TO SIMPLIFY USE OF PROPERTIES IN LOOPS OVER ALL SPECIES 
  
for species_position = 1 : Species.fuel.num 
  species_name = char(Species.fuel.list(species_position)); 
  Properties.anode.Molar_mass(species_position,1)       = Properties.molar_mass.(species_name); 
  Properties.anode.Electric_charge(species_position,1)  = Properties.electric_charge.(species_name); 
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  Properties.anode.Ionic_diameter(species_position,1)   = Properties.ionic_diameter.(species_name); 
  Properties.anode.Apparent_volume(species_position,1)  = Properties.apparent_volume.(species_name); 
  Properties.anode.Diffusivities(species_position,1)    = Properties.diffusivity_in_water.(species_name); 
end 
  
for species_position = 1 : Species.oxidizer.num 
  species_name = char(Species.oxidizer.list(species_position)); 
  Properties.cathode.Molar_mass(species_position,1)       = Properties.molar_mass.(species_name); 
  Properties.cathode.Electric_charge(species_position,1)  = Properties.electric_charge.(species_name); 
  Properties.cathode.Ionic_diameter(species_position,1)   = Properties.ionic_diameter.(species_name); 
  Properties.cathode.Apparent_volume(species_position,1)  = Properties.apparent_volume.(species_name); 
  Properties.cathode.Diffusivities(species_position,1)    = ... 
                                                          Properties.diffusivity_in_water.(species_name); 
end 
  
for species_position = 1 : Species.membrane.num 
  species_name = char(Species.membrane.list(species_position)); 
  Properties.membrane.Molar_mass(species_position,1)      = Properties.molar_mass.(species_name); 
  Properties.membrane.Electric_charge(species_position,1) = Properties.electric_charge.(species_name); 
end 
  
%% CALCULATE 1 / SEVERAL PROPERTIES HERE INSTEAD OF IN THE MAIN FUNCTION BECAUSE DIVISION IS SLOW 
  
Properties.anode.one_over_molar_mass   = 1 ./ Properties.anode.Molar_mass; 
Properties.cathode.one_over_molar_mass = 1 ./ Properties.cathode.Molar_mass; 
Properties.anode.Appar_vol_over_Molar_mass   = (Properties.anode.Apparent_volume   ... 
                                             ./ Properties.anode.Molar_mass)'; 
Properties.cathode.Appar_vol_over_Molar_mass = (Properties.cathode.Apparent_volume ... 
                                             ./ Properties.cathode.Molar_mass)'; 
  
%% CALCULATE TRANSPOSES OF SEVERAL PROPERTIES HERE BECAUSE DIVISION IS SLOW 
  
Properties.anode.Molar_mass_T   = Properties.anode.Molar_mass'; 
Properties.cathode.Molar_mass_T = Properties.cathode.Molar_mass'; 
  
Properties.anode.Electric_charge_T   = Properties.anode.Electric_charge'; 
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Properties.cathode.Electric_charge_T = Properties.cathode.Electric_charge'; 
  
Constants.FoRT = Constants.faraday / (Constants.ideal_gas * Constants.temperature); 
Constants.RToF = 1/Constants.FoRT; 
  
%% CLEAR UNNECESSARY VARIABLES FROM THE WORKSPACE 
  
clear species species_position 
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%% SUMMARY: DBFC_SETUP_REACTION_RATES 
% Purpose: Read user provided stoichiometric and rate parameters for the Arxn taking place at the RDE. 
% Collect those stoichiometric and rate parameters into the structures expected by the reaction rate 
% function in the model. Author: Rick Stroman 
  
%% NOTES 
  
% 1. ALL species must be given a stoichiometry and concentration dependence (both forward and reverse). 
% If a species doesn't participate, set its stoichiometry to zero.  If a species which doesn't exist in 
% the model is given a value or a species which exists isn't given a value, the model will throw an 
% error.  Assign a stoichiometric coefficient to the electrons, though they are excluded when the 
% "Reaction_stoich" vector is built so it does not cause problems calculating the mass fluxes. 
  
%% 1. SETUP GLOBAL VARIABLES 
  
global Arxn Crxn Constants Pointer Species 
  
%% 2. ANODE REACTION RATES 
  
% Overall anode parameters 
Arxn.param.area_ratio = 2.73; % unitless [Ratio electrochemical/geometric surface area] 
  
% ----------------------------------------------------------------------------------------------% 
% Reaction #1...  1 BH4- + 8 OH- <--> 1 BO2- + 6 H2O + 8 e- 
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% ----------------------------------------------------------------------------------------------% 
  
Arxn.rxn(1).active = 1; 
  
% Species stochiometries 
Arxn.rxn(1).stoich.BH4 = -1; 
Arxn.rxn(1).stoich.BO2 = 1; 
Arxn.rxn(1).stoich.e   = 8; 
Arxn.rxn(1).stoich.H2  = 0; 
Arxn.rxn(1).stoich.H2O = 6; 
Arxn.rxn(1).stoich.Na  = 0; 
Arxn.rxn(1).stoich.OH  = -8; 
  
% Rate constants, electron transfer coefficients and standard half-cell potential. 
Arxn.rxn(1).k_f    = 1.25*0.00704; % m^4 / (kmol s) [Anodic direction reaction rate constant] 
Arxn.rxn(1).beta_f = 0.098;        % unitless [Anodic charge transfer coefficient] 
Arxn.rxn(1).phi_0  = -1.240;       % V        [Standard half-cell potential] 
Arxn.rxn(1).e_rds  = 1;            % unitless [Number of electrons transferred in rate determining step] 
  
Arxn.rxn(1).beta_r = 1 - Arxn.rxn(1).beta_f;  % unitless [Cathodic charge transfer coefficient] 
Arxn.rxn(1).k_r    = Arxn.rxn(1).k_f * exp( Arxn.rxn(1).e_rds * Constants.faraday / ... 
                                    (Constants.ideal_gas * Constants.temperature) * Arxn.rxn(1).phi_0 ); 
  
% Concentration dependencies (assumed to be first order) for the cathodic and anodic directions 
Arxn.rxn(1).conc_dependence_f = [ Pointer.anode.species.BH4 ]; 
Arxn.rxn(1).conc_dependence_r = [ Pointer.anode.species.BO2 ]; 
  
% ----------------------------------------------------------------------------------------------% 
% Reaction #2...  1 H2 + 2 OH- <--> 2 H2O + 2 e- 
% ----------------------------------------------------------------------------------------------% 
  
Arxn.rxn(2).active = 0; 
  
% Species stoichiometries 
Arxn.rxn(2).stoich.BH4 = 0; 
Arxn.rxn(2).stoich.BO2 = 0; 
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Arxn.rxn(2).stoich.e   = 2; 
Arxn.rxn(2).stoich.H2  = -1; 
Arxn.rxn(2).stoich.H2O = 2; 
Arxn.rxn(2).stoich.Na  = 0; 
Arxn.rxn(2).stoich.OH  = -2; 
  
% Rate constants, electron transfer coefficients and standard half-cell potential. 
Arxn.rxn(2).k_r    = 1.0e-15; %          [Cathodic direction reaction rate constant] 
Arxn.rxn(2).beta_r = 0.5000;  % unitless [Cathodic charge transfer coefficient] 
Arxn.rxn(2).phi_0  = -0.828;  % V        [Standard half-cell potential] 
Arxn.rxn(2).e_rds  = 1;       % unitless [Number of electrons transferred in the rate determining step] 
  
Arxn.rxn(2).beta_f = 1 - Arxn.rxn(2).beta_r;  % unitless [Cathodic charge transfer coefficient] 
Arxn.rxn(2).k_f    = Arxn.rxn(2).k_r / exp( Arxn.rxn(2).e_rds * Constants.faraday / ... 
                                    (Constants.ideal_gas * Constants.temperature) * Arxn.rxn(2).phi_0 ); 
  
% Concentration dependencies (assumed to be first order) for the forward and reverse rates 
Arxn.rxn(2).conc_dependence_f = [ Pointer.anode.species.H2 Pointer.anode.species.OH ]; 
Arxn.rxn(2).conc_dependence_r = [ ]; 
  
% ----------------------------------------------------------------------------------------------% 
% Reaction #3... BH4- + 2 H2O -->  BO2- + 4 H2 
% ----------------------------------------------------------------------------------------------% 
  
Arxn.rxn(3).active = 0; 
  
% Species stoichiometries 
Arxn.rxn(3).stoich.BH4 = -1; 
Arxn.rxn(3).stoich.BO2 = 1; 
Arxn.rxn(3).stoich.e   = 0; 
Arxn.rxn(3).stoich.H2  = 4; 
Arxn.rxn(3).stoich.H2O = -2; 
Arxn.rxn(3).stoich.Na  = 0; 
Arxn.rxn(3).stoich.OH  = 0; 
  
% Rate constants, electron transfer coefficients and standard half-cell potential. 
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Arxn.rxn(3).k_f    = 1.5*2.06e-4;  % [Anodic direction reaction rate constant] 
Arxn.rxn(3).beta_f = 0; % unitless [Anodic charge transfer coefficient] 
Arxn.rxn(3).phi_0  = 0; % V        [Standard half-cell potential] 
Arxn.rxn(3).e_rds  = 0; % unitless [Number of e- transferred in the rate determining step] 
  
Arxn.rxn(3).beta_r = 0; 
Arxn.rxn(3).k_r    = 0; 
  
% Concentration dependencies (assumed to be first order) for the forward and reverse rates 
Arxn.rxn(3).conc_dependence_f = [ Pointer.anode.species.BH4 ]; 
Arxn.rxn(3).conc_dependence_r = [ ]; 
  
%% 3. CATHODE REACTION RATES 
  
% Overall anode parameters 
  
Crxn.param.area_ratio = 4.11; % unitless [Ratio electrochemical/geometric surface area] 1.0 
  
% ----------------------------------------------------------------------------------------------% 
% Reaction #1...   2 H2O <-->  1 H2O2 + 2 H+ + 2e- 
% ----------------------------------------------------------------------------------------------% 
  
Crxn.rxn(1).active = 1; 
  
% Species stoichiometries 
Crxn.rxn(1).stoich.e    = 2; 
Crxn.rxn(1).stoich.H    = 2; 
Crxn.rxn(1).stoich.H2O  = -2; 
Crxn.rxn(1).stoich.H2O2 = 1; 
Crxn.rxn(1).stoich.Na   = 0; 
Crxn.rxn(1).stoich.O2   = 0; 
Crxn.rxn(1).stoich.SO4  = 0; 
Crxn.rxn(1).stoich.H2   = 0; 
  
% Rate constants, electron transfer coefficients and standard half-cell potential. 
Crxn.rxn(1).k_r    = 7.54e-3;   % m^4 / (kmol s) [Cathodic direction reaction rate constant] 
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Crxn.rxn(1).beta_r = 0.455;     % unitless [Cathodic charge transfer coefficient] 
Crxn.rxn(1).phi_0  = 1.763;     % V        [Standard half-cell potential] 
Crxn.rxn(1).e_rds  = 1;         % unitless [Number of electrons transferred in the rate dermining step] 
  
Crxn.rxn(1).beta_f = 1 - Crxn.rxn(1).beta_r;  % unitless [Cathodic charge transfer coefficient] 
Crxn.rxn(1).k_f    = Crxn.rxn(1).k_r / ( exp( Crxn.rxn(1).e_rds * Constants.faraday / ... 
                                  (Constants.ideal_gas * Constants.temperature) * Crxn.rxn(1).phi_0 ) ); 
  
% Concentration dependencies (assumed to be first order) for the forward and reverse rates 
Crxn.rxn(1).conc_dependence_r = [ Pointer.cathode.species.H2O2 Pointer.cathode.species.H ... 
                                                                             Pointer.cathode.species.H]; 
Crxn.rxn(1).conc_dependence_f = [ ]; 
  
% ----------------------------------------------------------------------------------------------% 
% Reaction #2...  1 H2O2 <--> 1 O2 + 2 H+ + 2e- 
% ----------------------------------------------------------------------------------------------% 
  
Crxn.rxn(2).active = 0; 
  
% Species stoichiometries 
Crxn.rxn(2).stoich.e    = 2; 
Crxn.rxn(2).stoich.H    = 2; 
Crxn.rxn(2).stoich.H2O  = 0; 
Crxn.rxn(2).stoich.H2O2 = -1; 
Crxn.rxn(2).stoich.Na   = 0; 
Crxn.rxn(2).stoich.O2   = 1; 
Crxn.rxn(2).stoich.SO4  = 0; 
Crxn.rxn(2).stoich.H2   = 0; 
  
% Rate constants, electron transfer coefficients and standard half-cell potential. 
Crxn.rxn(2).k_f    = 1e-6;   % m^4 / (kmol s) (Abruna on Au, 5 mM BH4 in NaOH)%2.7397e-2;  
Crxn.rxn(2).beta_f = 0.5;    % unitless [Anodic charge transfer coefficient] 
Crxn.rxn(2).phi_0  = 0.695;  % V        [Standard half-cell potential] 
Crxn.rxn(2).e_rds  = 1;      % unitless [Number of electrons transferred in rate dermining step] 
  
Crxn.rxn(2).beta_r = 1 - Crxn.rxn(2).beta_f;  % unitless [Cathodic charge transfer coefficient] 
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Crxn.rxn(2).k_r    = Crxn.rxn(2).k_f * exp( Crxn.rxn(2).e_rds * Constants.faraday / ... 
                                    (Constants.ideal_gas * Constants.temperature) * Crxn.rxn(2).phi_0 ); 
  
% Concentration dependencies (assumed to be first order) for the forward and reverse rates 
Crxn.rxn(2).conc_dependence_r = [ Pointer.cathode.species.O2; Pointer.cathode.species.H ]; 
Crxn.rxn(2).conc_dependence_f = [ Pointer.cathode.species.H2O2 ]; 
  
% ----------------------------------------------------------------------------------------------% 
% Reaction #3...  2 H2O2 --> 2 H2O + O2 
% ----------------------------------------------------------------------------------------------% 
  
Crxn.rxn(3).active = 0; 
  
% Species stoichiometries 
Crxn.rxn(3).stoich.e    = 0; 
Crxn.rxn(3).stoich.H    = 0; 
Crxn.rxn(3).stoich.H2O  = 2; 
Crxn.rxn(3).stoich.H2O2 = -2; 
Crxn.rxn(3).stoich.Na   = 0; 
Crxn.rxn(3).stoich.O2   = 1; 
Crxn.rxn(3).stoich.SO4  = 0; 
Crxn.rxn(3).stoich.H2   = 0; 
  
% Rate constants, electron transfer coefficients and standard half-cell potential. 
Crxn.rxn(3).k_r    = 0;   %          [Cathodic direction reaction rate constant] Pt: 8e-3 
Crxn.rxn(3).beta_r = 0;   % unitless [Cathodic charge transfer coefficient]  0.50 Pt: 0.45 
Crxn.rxn(3).phi_0  = 0;   % V        [Standard half-cell potential] 
Crxn.rxn(3).e_rds  = 0;   % unitless [Number of electrons transferred in the rate determining step] 
  
Crxn.rxn(3).beta_f = 0;   % unitless [Cathodic charge transfer coefficient] 
Crxn.rxn(3).k_f    = 6.34E-4; % [Forward direction reaction rate constant] 
  
% Concentration dependencies (assumed to be first order) for the forward and reverse rates 
Crxn.rxn(3).conc_dependence_r = [ Pointer.cathode.species.O2 ]; 
Crxn.rxn(3).conc_dependence_f = [ Pointer.cathode.species.H2O2 ]; 
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% ----------------------------------------------------------------------------------------------% 
% Reaction #4...  1 H2 <--> 2 H+ + 2 e- 
% ----------------------------------------------------------------------------------------------% 
  
Crxn.rxn(4).active = 1; 
  
% Species stoichiometries 
Crxn.rxn(4).stoich.e    = 2; 
Crxn.rxn(4).stoich.H    = 2; 
Crxn.rxn(4).stoich.H2O  = 0; 
Crxn.rxn(4).stoich.H2O2 = 0; 
Crxn.rxn(4).stoich.Na   = 0; 
Crxn.rxn(4).stoich.O2   = 0; 
Crxn.rxn(4).stoich.SO4  = 0; 
Crxn.rxn(4).stoich.H2   = -1; 
  
% Rate constants, electron transfer coefficients and standard half-cell potential. 
Crxn.rxn(4).k_r    = 0.5*2.37e-09; %          [Cathodic direction reaction rate constant] 
Crxn.rxn(4).beta_r = .8*0.1764;    % unitless [Cathodic charge transfer coefficient] 
Crxn.rxn(4).phi_0  = 0.000;        % V        [Standard half-cell potential] 
Crxn.rxn(4).e_rds  = 2;            % unitless [Number of electrons transferred in rate determining step] 
  
Crxn.rxn(4).beta_f = 1 - Crxn.rxn(4).beta_r;  % unitless [Cathodic charge transfer coefficient] 
Crxn.rxn(4).k_f    = Crxn.rxn(4).k_r / exp( Crxn.rxn(4).e_rds * Constants.faraday / ... 
                                    (Constants.ideal_gas * Constants.temperature) * Crxn.rxn(4).phi_0 ); 
  
% Concentration dependencies (assumed to be first order) for the forward and reverse rates 
Crxn.rxn(4).conc_dependence_r = [ Pointer.cathode.species.H Pointer.cathode.species.H]; 
Crxn.rxn(4).conc_dependence_f = [ Pointer.cathode.species.H2 ]; 
  
%% 4. PROCESS THE REACTION RATE PARAMETERS 
  
% Store the stoichiometric coefficients in a vector with species organized in the same order as in the 
% species list. 
  
for r_i = 1:length(Arxn.rxn) 
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  Arxn.rxn(r_i).Reaction_stoich = zeros(1,Species.fuel.num); 
   
  for s_i = 1:Species.fuel.num 
    Arxn.rxn(r_i).Reaction_stoich(1,s_i) = Arxn.rxn(r_i).stoich.(char(Species.fuel.list(s_i))); 
  end 
   
end 
  
for r_i = 1:length(Crxn.rxn) 
   
  Crxn.rxn(r_i).Reaction_stoich = zeros(1,Species.oxidizer.num); 
   
  for s_i = 1:Species.oxidizer.num 
    Crxn.rxn(r_i).Reaction_stoich(1,s_i) = Crxn.rxn(r_i).stoich.(char(Species.oxidizer.list(s_i))); 
  end 
   
end 
 
  
  
 
%% SUMMARY: DBFC_INITIALIZE 
% Purpose: Create the solution vector with the initial values at which the solver will start. 
% Author: Rick Stroman 
  
%% 1. DECLARE MODEL-WIDE GLOBAL VARIABLES AND DISPLAY STATUS MESSAGE 
  
global Model Pointer Names Scales Units BC Initial SV_fail SV_fail_lg Geometry Flags Solver ... 
       Jacobian Grid_size Species 
  
%% 1. PRINT SOME KEY PARTS OF THE SETUP 
  
disp(' ') 
disp('SELECTED MODEL INPUT PARAMETERS') 
disp('-----------------------------------------------') 
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disp(['Number of x-discretizations: ' num2str(Grid_size.x_d_num)]) 
disp(['Number of y-discretizations: ' num2str(Grid_size.y_d_num)]) 
disp(' '); 
disp(['Channel height: ', num2str(Geometry.channel_height), ' m']) 
disp(['Channel width: ', num2str(Geometry.channel_width), ' m']) 
disp(['Channel length: ', num2str(Geometry.channel_length), ' m']) 
disp(['Membrane thickness: ', num2str(Geometry.mem_thick), ' m']) 
disp(' '); 
disp(['Model Temperature: ', num2str(Constants.temperature), ' K']) 
disp(' ') 
disp('Anode concentrations:') 
disp(['[BH4-]: ', num2str(Fuel_mole_density.BH4), ' M']) 
disp(['[BO2-]: ', num2str(Fuel_mole_density.BO2), ' M']) 
disp(['[OH-]: ', num2str(Fuel_mole_density.OH), ' M']) 
disp(['[Na+]: ', num2str(Fuel_mole_density.Na), ' M']) 
disp(' ') 
disp('Cathode concentrations:') 
disp(['[H2O2]: ', num2str(Oxidizer_mole_density.H2O2), ' M']) 
disp(['[SO4-]: ', num2str(Oxidizer_mole_density.SO4), ' M']) 
disp(['[H+]: ', num2str(Oxidizer_mole_density.H), ' M']) 
disp(['[Na+]: ', num2str(Oxidizer_mole_density.Na), ' M']) 
disp(' ') 
disp(['Fuel inlet flow rate: ', num2str(anode_flowrate_inlet),  ' m^3 / s']) 
disp(['Oxidizer inlet flow rate: ', num2str(cathode_flowrate_inlet), ' m^3 / s']) 
disp(' ') 
disp(['Fuel inlet velocity: ', num2str(anode_mean_inlet_velocity), ' m/s']) 
disp(['Oxidizer inlet velocity: ', num2str(cathode_mean_inlet_velocity), ' m/s']) 
disp(' ') 
fprintf('%-32s %-3e\n', 'Anode anodic rate constant:     ', Arxn.rxn(1).k_f) 
fprintf('%-32s %-3e\n', 'Cathode cathodic rate constant: ', Crxn.rxn(1).k_r) 
disp(' ') 
disp(['Cell potential(s): ', num2str(Cathode_electric_potential), ' V']) 
disp(' ') 
if Flags.setup.new_SV_initial == 1; 
  disp('Starting simulation with the standard guess') 
else 
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  disp(['Starting simulation with solution file (' Solver.SV_initial_filename ')']) 
end 
disp('-----------------------------------------------') 
disp(' ') 
  
disp(' ') 
disp('Initializing the model...') 
  
%% 2. ESTABLISH POINTERS, NAMES, SCALES CONSTRAINTS AND UNITS 
  
disp('Creating pointers, state variable names, units, and scales...') 
  
% Initialize the counter that tracks which element in the solution vector is being operated on. 
SV_position = 1; 
  
% Initialize the variables containing the number of state variables in each part of the cell. 
Grid_size.anode.state_vars_num    = 0; 
Grid_size.cathode.state_vars_num  = 0; 
Grid_size.membrane.state_vars_num = 0; 
  
for x_d = 1 : Grid_size.x_d_num 
   
  x_d_string = strcat('(', num2str(x_d), ')'); 
   
  % -----------------------------------------------------------% 
  % y-Discretization "a_int".  Anode electrolyte solution 
  % -----------------------------------------------------------% 
   
  % Electric Potential 
  Pointer.a_int.elec_pot(x_d)                   = SV_position; 
  Names{Pointer.a_int.elec_pot(x_d),1}          = strcat('A_int.elec_pot', x_d_string); 
  Scales.SV(Pointer.a_int.elec_pot(x_d),1)      = Solver.SV_scale.elec_pot; 
  Scales.dSV(Pointer.a_int.elec_pot(x_d),1)     = Solver.dSV_scale.electroneutrality; 
  Units{Pointer.a_int.elec_pot(x_d),1}          = 'V'; 
  Solver.kinsol.Constraints(Pointer.a_int.elec_pot(x_d),1) = 0;   % 0 --> none, 1 -->  >= 0, 2 --> >0 
  Grid_size.anode.state_vars_num                = Grid_size.anode.state_vars_num + 1; 
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  SV_position                                   = SV_position + 1; 
   
  % Mass Fractions 
  Pointer.a_int.mass_fracs(x_d) = SV_position; 
  for species = 1 : Species.fuel.num 
    Names{Pointer.a_int.mass_fracs(x_d) + species - 1,1} = strcat('A_int.mass_fr.' , ... 
      char(Species.fuel.list(species)), x_d_string ); 
  end 
  Pointer_range.a_int = Pointer.a_int.mass_fracs(x_d) :  
    Pointer.a_int.mass_fracs(x_d) + Species.fuel.num - 1; 
  Scales.SV(Pointer_range.a_int,1)          = Solver.SV_scale.mass_frac_anode;  % Scale for mass fracs 
  Scales.dSV(Pointer_range.a_int,1)         = Solver.dSV_scale.species_flux_balance_a; 
  Units(Pointer_range.a_int,1)              = {'none'};      
  Solver.kinsol.Constraints(Pointer_range.a_int,1) = 1;  % 0 --> none, 1 -->  >= 0, 2 --> >0 
  Grid_size.anode.state_vars_num            = Grid_size.anode.state_vars_num + Species.fuel.num; 
  SV_position                               = SV_position + Species.fuel.num; 
   
  % -----------------------------------------------------------% 
  % y-Discretization "asln".  Anode electrolyte solution 
  % -----------------------------------------------------------% 
   
  for y_d = 1 : Grid_size.y_d_num 
     
    x_y = strcat('(',num2str(x_d),',',num2str(y_d),')'); 
     
    % Electric Potential 
    Pointer.asln.elec_pot(x_d,y_d)                   = SV_position; 
    Names{Pointer.asln.elec_pot(x_d,y_d),1}          = strcat('Asln.elec_pot',x_y); 
    Scales.SV(Pointer.asln.elec_pot(x_d,y_d),1)      = Solver.SV_scale.elec_pot; 
    Scales.dSV(Pointer.asln.elec_pot(x_d,y_d),1)     = Solver.dSV_scale.electroneutrality; 
    Units{Pointer.asln.elec_pot(x_d,y_d),1}          = 'V'; 
    Solver.kinsol.Constraints(Pointer.asln.elec_pot(x_d,y_d),1)    = 0;   % 0 --> none, 1 -->  >= 0 
    Grid_size.anode.state_vars_num                   = Grid_size.anode.state_vars_num + 1; 
    SV_position                                      = SV_position + 1; 
     
    % Mass Fractions 
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    Pointer.asln.mass_fracs(x_d,y_d) = SV_position; 
    for species = 1 : Species.fuel.num 
      Names{Pointer.asln.mass_fracs(x_d,y_d) + species - 1,1} = ... 
        strcat('Asln.mass_fr.' , char(Species.fuel.list(species)), x_y ); 
    end 
    Pointer_range.asln = Pointer.asln.mass_fracs(x_d,y_d) : ... 
      Pointer.asln.mass_fracs(x_d,y_d) + Species.fuel.num - 1; 
    Scales.SV(Pointer_range.asln,1)      = Solver.SV_scale.mass_frac_anode; % Scale for mass fractions 
    Scales.dSV(Pointer_range.asln,1)     = Solver.dSV_scale.species_cons_a; 
    Units(Pointer_range.asln,1)          = {'none'};      % Mass fraction is unitless 
    Solver.kinsol.Constraints(Pointer_range.asln,1)    = 0;             % 0 --> none, 1 -->  >= 0 
    Grid_size.anode.state_vars_num       = Grid_size.anode.state_vars_num + Species.fuel.num; 
    SV_position                          = SV_position + Species.fuel.num; 
     
    % x-Velocity 
    Pointer.asln.x_vel(x_d,y_d)                   = SV_position; 
    Names{Pointer.asln.x_vel(x_d,y_d),1}          = strcat('Asln.x_velocity',x_y); 
    Scales.SV(Pointer.asln.x_vel(x_d,y_d),1)      = Solver.SV_scale.x_vel; 
    Scales.dSV(Pointer.asln.x_vel(x_d,y_d),1)     = Solver.dSV_scale.x_momentum_cons; 
    Units{Pointer.asln.x_vel(x_d,y_d),1}          = 'm/s'; 
    Solver.kinsol.Constraints(Pointer.asln.x_vel(x_d,y_d),1)    = 0; % None 
    Grid_size.anode.state_vars_num                = Grid_size.anode.state_vars_num + 1; 
    SV_position                                   = SV_position + 1; 
     
    % y-Velocity 
    Pointer.asln.y_vel(x_d,y_d)                   = SV_position; 
    Names{Pointer.asln.y_vel(x_d,y_d),1}          = strcat('Asln.y_velocity',x_y); 
    Scales.SV(Pointer.asln.y_vel(x_d,y_d),1)      = Solver.SV_scale.y_vel; 
    Scales.dSV(Pointer.asln.y_vel(x_d,y_d),1)     = Solver.dSV_scale.y_momentum_cons; 
    Units{Pointer.asln.y_vel(x_d,y_d),1}          = 'm/s'; 
    Solver.kinsol.Constraints(Pointer.asln.y_vel(x_d,y_d),1)    = 0; % None 
    Mass_matrix_diag(Pointer.asln.y_vel(x_d,y_d)) = 1; % Differential (residual is d v_y / dt) 
    Grid_size.anode.state_vars_num                = Grid_size.anode.state_vars_num + 1; 
    SV_position                                   = SV_position + 1; 
     
    % Pressure 
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    Pointer.asln.press(x_d,y_d)                   = SV_position; 
    Names{Pointer.asln.press(x_d,y_d),1}          = strcat('Asln.pressure',x_y); 
    Scales.SV(Pointer.asln.press(x_d,y_d),1)      = Solver.SV_scale.press; 
    Scales.dSV(Pointer.asln.press(x_d,y_d),1)     = Solver.dSV_scale.mass_cons; 
    Units{Pointer.asln.press(x_d,y_d),1}          = 'Pa'; 
    Solver.kinsol.Constraints(Pointer.asln.press(x_d,y_d),1)    = 0; % None 
    Grid_size.anode.state_vars_num                = Grid_size.anode.state_vars_num + 1; 
    SV_position                                   = SV_position + 1; 
     
  end 
   
  % -----------------------------------------------------------% 
  % y-Discretization "m_int_a".  Anode electrolyte solution/membrane interface 
  % -----------------------------------------------------------% 
   
  % Electric Potential 
  Pointer.m_int_a.elec_pot(x_d)                   = SV_position; 
  Names{Pointer.m_int_a.elec_pot(x_d),1}          = strcat('M_int_a.elec_pot', x_d_string); 
  Scales.SV(Pointer.m_int_a.elec_pot(x_d),1)      = Solver.SV_scale.elec_pot; 
  Scales.dSV(Pointer.m_int_a.elec_pot(x_d),1)     = Solver.dSV_scale.electroneutrality; 
  Units{Pointer.m_int_a.elec_pot(x_d),1}          = 'V'; 
  Solver.kinsol.Constraints(Pointer.m_int_a.elec_pot(x_d),1)    = 0; % None 
  Grid_size.anode.state_vars_num                  = Grid_size.anode.state_vars_num + 1; 
  SV_position                                     = SV_position + 1; 
   
  % Mass Fractions 
  Pointer.m_int_a.mass_fracs(x_d) = SV_position; 
  for species = 1 : Species.fuel.num 
    Names{Pointer.m_int_a.mass_fracs(x_d) + species - 1,1} = ... 
      strcat('M_int_a.mass_fr.' , char(Species.fuel.list(species)), x_d_string); 
  end 
  Pointer_range.m_int_a = Pointer.m_int_a.mass_fracs(x_d) : ... 
    Pointer.m_int_a.mass_fracs(x_d) + Species.fuel.num - 1; 
  Scales.SV(Pointer_range.m_int_a,1)      = Solver.SV_scale.mass_frac_anode;  % Scale for mass fractions 
  Scales.dSV(Pointer_range.m_int_a,1)     = Solver.dSV_scale.species_flux_balance_a; 
  Units(Pointer_range.m_int_a,1)          = {'none'};      % Mass fraction is unitless 
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  Solver.kinsol.Constraints(Pointer_range.m_int_a,1)    = 0;             % 0 --> none, 1 -->  >= 0 
  Grid_size.anode.state_vars_num          = Grid_size.anode.state_vars_num + Species.fuel.num; 
  SV_position                             = SV_position + Species.fuel.num; 
   
  % Pressure 
  Pointer.m_int_a.press(x_d)                   = SV_position; 
  Names{Pointer.m_int_a.press(x_d),1}          = strcat('M_int_a.pressure', x_d_string); 
  Scales.SV(Pointer.m_int_a.press(x_d),1)      = Solver.SV_scale.press; 
  Scales.dSV(Pointer.m_int_a.press(x_d),1)     = Solver.dSV_scale.mass_flux_balance; 
  Units{Pointer.m_int_a.press(x_d),1}          = 'Pa'; 
  Solver.kinsol.Constraints(Pointer.m_int_a.press(x_d),1)    = 0; % 0 --> none, 1 -->  >= 0, 2 --> >0 
  Grid_size.anode.state_vars_num               = Grid_size.anode.state_vars_num + 1; 
  SV_position                                  = SV_position + 1; 
   
  % -----------------------------------------------------------% 
  % y-Discretization "m_int_c".  Cathode electrolyte solution/membrane interface 
  % -----------------------------------------------------------% 
   
  % Electric Potential 
  Pointer.m_int_c.elec_pot(x_d)                   = SV_position; 
  Names{Pointer.m_int_c.elec_pot(x_d),1}          = strcat('M_int_c.elec_pot', x_d_string); 
  Scales.SV(Pointer.m_int_c.elec_pot(x_d),1)      = Solver.SV_scale.elec_pot; 
  Scales.dSV(Pointer.m_int_c.elec_pot(x_d),1)     = Solver.dSV_scale.electroneutrality; 
  Units{Pointer.m_int_c.elec_pot(x_d),1}          = 'V'; 
  Solver.kinsol.Constraints(Pointer.m_int_c.elec_pot(x_d),1)    = 0; % 0 --> none, 1 -->  >= 0, 2 --> >0 
  Grid_size.cathode.state_vars_num                = Grid_size.cathode.state_vars_num + 1; 
  SV_position                                     = SV_position + 1; 
   
  % Mass Fractions 
  Pointer.m_int_c.mass_fracs(x_d) = SV_position; 
  for species = 1 : Species.oxidizer.num 
    Names{Pointer.m_int_c.mass_fracs(x_d) + species - 1,1} = ... 
      strcat('M_int_c.mass_fr.' , char(Species.oxidizer.list(species)), x_d_string); 
  end 
  Pointer_range.m_int_c = Pointer.m_int_c.mass_fracs(x_d) : ... 
    Pointer.m_int_c.mass_fracs(x_d) + Species.oxidizer.num - 1; 
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  Scales.SV(Pointer_range.m_int_c,1)      = Solver.SV_scale.mass_frac_cathode; % Scale for mass fractions 
  Scales.dSV(Pointer_range.m_int_c,1)     = Solver.dSV_scale.species_flux_balance_c; 
  Units(Pointer_range.m_int_c,1)          = {'none'};      % Mass fraction is unitless 
  Solver.kinsol.Constraints(Pointer_range.m_int_c,1)    = 0;   % 0 --> none, 1 -->  >= 0, 2 --> >0 
  Grid_size.cathode.state_vars_num        = Grid_size.cathode.state_vars_num + Species.oxidizer.num; 
  SV_position                             = SV_position + Species.oxidizer.num; 
   
  % Pressure 
  Pointer.m_int_c.press(x_d)                   = SV_position; 
  Names{Pointer.m_int_c.press(x_d),1}          = strcat('M_int_c.pressure', x_d_string); 
  Scales.SV(Pointer.m_int_c.press(x_d),1)      = Solver.SV_scale.press; 
  Scales.dSV(Pointer.m_int_c.press(x_d),1)     = Solver.dSV_scale.mass_flux_balance; 
  Units{Pointer.m_int_c.press(x_d),1}          = 'Pa'; 
  Solver.kinsol.Constraints(Pointer.m_int_c.press(x_d),1)    = 0; % None 
  Grid_size.cathode.state_vars_num             = Grid_size.cathode.state_vars_num + 1; 
  SV_position                                  = SV_position + 1; 
   
  % -----------------------------------------------------------% 
  % y-Discretization "csln".  Cathode electrolyte solution 
  % -----------------------------------------------------------% 
   
  for y_d = 1 : Grid_size.y_d_num 
     
    x_y = strcat('(',num2str(x_d),',',num2str(y_d),')'); 
     
    % Electric Potential 
    Pointer.csln.elec_pot(x_d,y_d)                   = SV_position; 
    Names{Pointer.csln.elec_pot(x_d,y_d),1}          = strcat('Csln.elec_pot',x_y); 
    Scales.SV(Pointer.csln.elec_pot(x_d,y_d),1)      = Solver.SV_scale.elec_pot; 
    Scales.dSV(Pointer.csln.elec_pot(x_d,y_d),1)     = Solver.dSV_scale.electroneutrality; 
    Units{Pointer.csln.elec_pot(x_d,y_d),1}          = 'V'; 
    Solver.kinsol.Constraints(Pointer.csln.elec_pot(x_d,y_d),1)    = 0; 
    Grid_size.cathode.state_vars_num                     = Grid_size.cathode.state_vars_num + 1; 
    SV_position                                      = SV_position + 1; 
     
    % Mass Fractions 
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    Pointer.csln.mass_fracs(x_d,y_d) = SV_position; 
    for species = 1 : Species.oxidizer.num 
      Names{Pointer.csln.mass_fracs(x_d,y_d) + species - 1,1} = ... 
        strcat('Csln.mass_fr.' , char(Species.oxidizer.list(species)), x_y ); 
    end 
    Pointer_range.csln = Pointer.csln.mass_fracs(x_d,y_d) : ... 
      Pointer.csln.mass_fracs(x_d,y_d) + Species.oxidizer.num - 1; 
    Scales.SV(Pointer_range.csln,1)      = Solver.SV_scale.mass_frac_cathode; % Scale for mass fractions 
    Scales.dSV(Pointer_range.csln,1)     = Solver.dSV_scale.species_cons_c; 
    Units(Pointer_range.csln,1)          = {'none'};      % Mass fraction is unitless 
    Solver.kinsol.Constraints(Pointer_range.csln,1)    = 0;    % 0 --> none, 1 -->  >= 0, 2 --> >0 
    Grid_size.cathode.state_vars_num     = Grid_size.cathode.state_vars_num + Species.oxidizer.num; 
    SV_position                          = SV_position + Species.oxidizer.num; 
     
    % x-Velocity 
    Pointer.csln.x_vel(x_d,y_d)                   = SV_position; 
    Names{Pointer.csln.x_vel(x_d,y_d),1}          = strcat('Csln.x_velocity',x_y); 
    Scales.SV(Pointer.csln.x_vel(x_d,y_d),1)      = Solver.SV_scale.x_vel; 
    Scales.dSV(Pointer.csln.x_vel(x_d,y_d),1)     = Solver.dSV_scale.x_momentum_cons; 
    Units{Pointer.csln.x_vel(x_d,y_d),1}          = 'm/s'; 
    Solver.kinsol.Constraints(Pointer.csln.x_vel(x_d,y_d),1)    = 0; 
    Grid_size.cathode.state_vars_num              = Grid_size.cathode.state_vars_num + 1; 
    SV_position                                   = SV_position + 1; 
     
    % y-Velocity 
    Pointer.csln.y_vel(x_d,y_d)                   = SV_position; 
    Names{Pointer.csln.y_vel(x_d,y_d),1}          = strcat('Csln.y_velocity',x_y); 
    Scales.SV(Pointer.csln.y_vel(x_d,y_d),1)      = Solver.SV_scale.y_vel; 
    Scales.dSV(Pointer.csln.y_vel(x_d,y_d),1)     = Solver.dSV_scale.y_momentum_cons; 
    Units{Pointer.csln.y_vel(x_d,y_d),1}          = 'm/s'; 
    Solver.kinsol.Constraints(Pointer.csln.y_vel(x_d,y_d),1)    = 0; 
    Grid_size.cathode.state_vars_num              = Grid_size.cathode.state_vars_num + 1; 
    SV_position                                   = SV_position + 1; 
     
    % Pressure 
    Pointer.csln.press(x_d,y_d)                   = SV_position; 
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    Names{Pointer.csln.press(x_d,y_d),1}          = strcat('Csln.pressure',x_y); 
    Scales.SV(Pointer.csln.press(x_d,y_d),1)      = Solver.SV_scale.press; 
    Scales.dSV(Pointer.csln.press(x_d,y_d),1)     = Solver.dSV_scale.mass_cons; 
    Units{Pointer.csln.press(x_d,y_d),1}          = 'Pa'; 
    Solver.kinsol.Constraints(Pointer.csln.press(x_d,y_d),1)    = 0; 
    Grid_size.cathode.state_vars_num              = Grid_size.cathode.state_vars_num + 1; 
    SV_position                                   = SV_position + 1; 
     
  end 
   
  % -----------------------------------------------------------% 
  % y-Discretization "c_int".  Cathode electrolyte solution 
  % -----------------------------------------------------------% 
   
  % Electric Potential 
  Pointer.c_int.elec_pot(x_d)                   = SV_position; 
  Names{Pointer.c_int.elec_pot(x_d),1}          = strcat('C_int.elec_potent', x_d_string); 
  Scales.SV(Pointer.c_int.elec_pot(x_d),1)      = Solver.SV_scale.elec_pot; 
  Scales.dSV(Pointer.c_int.elec_pot(x_d),1)     = Solver.dSV_scale.electroneutrality; 
  Units{Pointer.c_int.elec_pot(x_d),1}          = 'V'; 
  Solver.kinsol.Constraints(Pointer.c_int.elec_pot(x_d),1)    = 0; % 0 --> none, 1 -->  >= 0, 2 --> >0 
  Grid_size.cathode.state_vars_num              = Grid_size.cathode.state_vars_num + 1; 
  SV_position                                   = SV_position + 1; 
   
  % Mass Fractions 
  Pointer.c_int.mass_fracs(x_d) = SV_position; 
  for species = 1 : Species.oxidizer.num 
    Names{Pointer.c_int.mass_fracs(x_d) + species - 1,1} = ... 
      strcat('C_int.mass_fr.' , char(Species.oxidizer.list(species)), x_d_string ); 
  end 
  Pointer_range.c_int = Pointer.c_int.mass_fracs(x_d) : ... 
    Pointer.c_int.mass_fracs(x_d) + Species.oxidizer.num - 1; 
  Scales.SV(Pointer_range.c_int,1)      = Solver.SV_scale.mass_frac_cathode; % Scale for mass fractions 
  Scales.dSV(Pointer_range.c_int,1)     = Solver.dSV_scale.species_flux_balance_c; 
  Units(Pointer_range.c_int,1)          = {'none'};      % Mass fraction is unitless 
  Solver.kinsol.Constraints(Pointer_range.c_int,1)    = 1;  % 0 --> none, 1 -->  >= 0, 2 --> >0 
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  Grid_size.cathode.state_vars_num          = Grid_size.cathode.state_vars_num + Species.oxidizer.num; 
  SV_position                           = SV_position + Species.oxidizer.num; 
   
end 
  
% Sum the number of state variables in the anode, membrane and cathode 
Grid_size.state_vars_num = Grid_size.anode.state_vars_num + Grid_size.cathode.state_vars_num; 
  
%% 3. CREATE THE UNSCALED SOLUTION VECTOR AND ALLOCATE A CONTIGUOUS BLOCK OF MEMORY FOR IT 
  
% Allocate space for all of the state variables in an x-discretization, for all x-discretizations, plus 
% one for the cell voltage or the cell current, depending on which the user chooses. 
SV_initial_unsc = zeros(Grid_size.state_vars_num, 1); 
  
%% 4. POPULATE THE INITIAL SOLUTION VECTOR 
  
if Flags.setup.new_SV_initial 
   
  % Change the strategy to be LineSearch, which works much better from the standard guess 
  Solver.kinsol.strategy = 'LineSearch'; 
   
  % For the initial condition, we'll assume that the anode flow is the same as the fuel flow and the 
  % cathode flow is the same as the oxidixer flow.  The following loop steps along the channel, one 
  % x-discretization at a time, filling in the solution vector as it goes. The outer loop steps down the 
  % channel and the inner loop steps through all of the species. It uses the pointers defined above to 
  % fill in the state variables for each discretization.  For differential variables, these are the 
  % initial conditions and for agebraic variables they are initial guesses. 
   
  disp('Populating the initial state vector...') 
   
  % Find the slope with which the electric potential changes from the inlet to the outlet along each 
  % interface, given the inlet and outlet values specified by the user. 
  slope_a_int   = ( Initial.a_int_elec_pot_out   - Initial.a_int_elec_pot_in )  /Geometry.channel_length; 
  slope_m_int_a = ( Initial.m_int_a_elec_pot_out - Initial.m_int_a_elec_pot_in )/Geometry.channel_length; 
  slope_m_int_c = ( Initial.m_int_c_elec_pot_out - Initial.m_int_c_elec_pot_in )/Geometry.channel_length; 
  slope_c_int   = ( Initial.c_int_elec_pot_out   - Initial.c_int_elec_pot_in )  /Geometry.channel_length; 
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  for x_d = 1 : Grid_size.x_d_num 
     
    % ELECTRODE INTERFACE CELLS 
     
    % Electric Potential 
    SV_initial_unsc(Pointer.a_int.elec_pot(x_d)) = Initial.a_int_elec_pot_in + ... 
      slope_a_int * Geometry.x_d_location(x_d+1); 
    SV_initial_unsc(Pointer.c_int.elec_pot(x_d)) = Initial.c_int_elec_pot_in + ... 
      slope_c_int * Geometry.x_d_location(x_d+1); 
     
    % Mass Fractions 
    SV_initial_unsc(Pointer.a_int.mass_fracs(x_d) + (1:Species.fuel.num  ) - 1)     = ... 
                                                                                Fuel.Mass_fractions;    
    SV_initial_unsc(Pointer.c_int.mass_fracs(x_d) + (1:Species.oxidizer.num  ) - 1) = ... 
                                                                                Oxidizer.Mass_fractions;  
     
    % MEMBRANE INTERFACE CELLS 
     
    % Electric Potential 
    SV_initial_unsc(Pointer.m_int_a.elec_pot(x_d)) = Initial.m_int_a_elec_pot_in + ... 
                                                          slope_m_int_a * Geometry.x_d_location(x_d+1); 
    SV_initial_unsc(Pointer.m_int_c.elec_pot(x_d)) = Initial.m_int_c_elec_pot_in + ... 
                                                          slope_m_int_c * Geometry.x_d_location(x_d+1); 
     
    % Mass Fractions 
    SV_initial_unsc(Pointer.m_int_a.mass_fracs(x_d) + (1:Species.fuel.num  ) - 1)   = ... 
                                                                            Initial.m_int_a_mass_fracs;  
    SV_initial_unsc(Pointer.m_int_c.mass_fracs(x_d) + (1:Species.oxidizer.num) - 1) = ... 
                                                                            Initial.m_int_c_mass_fracs; 
     
    % BULK SOLUTION CELLS 
     
    % x-Velocity... assume all points down the channel have the same fully developed velocity profile as 
    % at the inlet. 
    SV_initial_unsc(Pointer.asln.x_vel(x_d,:)) = BC.anode.x_vel_inlet(2:Grid_size.y_d_num+1); 
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    SV_initial_unsc(Pointer.csln.x_vel(x_d,:)) = BC.cathode.x_vel_inlet(2:Grid_size.y_d_num+1); 
     
    % y-Velocity... establish linear gradeints in the bulk with expected direction 
    SV_initial_unsc(Pointer.asln.y_vel(x_d,:)) = linspace(0, Initial.m_int_a_y_velocity, ... 
                                                          Grid_size.y_d_num); 
    SV_initial_unsc(Pointer.csln.y_vel(x_d,:)) = linspace(0, Initial.m_int_c_y_velocity, ... 
                                                          Grid_size.y_d_num); 
     
    % Electric potential 
     
    % Calculate the slope at which the electric field changes from electrode to membrane in each channel, 
    % at each point down the channel, to accomodate the changing values of the potential at the electrode 
    % and membrane interfaces. 
    anode_slope(x_d)   = (SV_initial_unsc(Pointer.m_int_a.elec_pot(x_d)) - ... 
      SV_initial_unsc(Pointer.a_int.elec_pot(x_d))) / Geometry.channel_height; 
    cathode_slope(x_d) = (SV_initial_unsc(Pointer.m_int_c.elec_pot(x_d)) - ... 
    SV_initial_unsc(Pointer.c_int.elec_pot(x_d))) / Geometry.channel_height; 
     
    % We're already in an x_d loop.... so for each value of x_d, the following loop fills in the values 
    % of the electric potential in the bulk electrolyte between the electrode and membrane. 
    for y_d = 1 : Grid_size.y_d_num 
       
      % Electric Potential... establish linear gradients in the bulk with expected direction 
      SV_initial_unsc(Pointer.asln.elec_pot(x_d,y_d)) = SV_initial_unsc(Pointer.a_int.elec_pot(x_d)) ... 
                                                    + Geometry.y_d_location(y_d+1) * anode_slope(x_d); 
      SV_initial_unsc(Pointer.csln.elec_pot(x_d,y_d)) = SV_initial_unsc(Pointer.c_int.elec_pot(x_d)) ... 
                                                    + Geometry.y_d_location(y_d+1) * cathode_slope(x_d); 
       
      % Mass Fractions 
      SV_initial_unsc(Pointer.asln.mass_fracs(x_d,y_d) + (1:Species.fuel.num  ) - 1)   = ... 
                                                                  BC.anode.Mass_fractions_inlet(1,1,:); 
      SV_initial_unsc(Pointer.csln.mass_fracs(x_d,y_d) + (1:Species.oxidizer.num) - 1) = ... 
                                                                  BC.cathode.Mass_fractions_inlet(1,1,:); 
       
    end 
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    clear anode_slope cathode_slope 
     
    % Pressure 
     
    % Establish the x-direction pressure gradient 
    anode_slope   = (BC.anode.press_outlet - Initial.inlet_press)   / Geometry.channel_length; 
    cathode_slope = (BC.cathode.press_outlet - Initial.inlet_press) / Geometry.channel_length; 
     
    SV_initial_unsc(Pointer.asln.press(x_d,:)) = Initial.inlet_press + ... 
                                                            Geometry.x_d_location(x_d+1) * anode_slope; 
    SV_initial_unsc(Pointer.csln.press(x_d,:)) = Initial.inlet_press + ... 
                                                          Geometry.x_d_location(x_d+1) * cathode_slope; 
     
    % Establish the y-direction pressure gradient by superimposing it over the x-direction gradient. 
    SV_initial_unsc(Pointer.asln.press(x_d,:)) = SV_initial_unsc(Pointer.asln.press(x_d,:)) + ... 
                        (linspace(Initial.anode_press,   Initial.m_int_a.press, Grid_size.y_d_num))'; 
    SV_initial_unsc(Pointer.csln.press(x_d,:)) = SV_initial_unsc(Pointer.csln.press(x_d,:)) + ... 
                        (linspace(Initial.cathode_press, Initial.m_int_c.press, Grid_size.y_d_num))'; 
     
    SV_initial_unsc(Pointer.m_int_a.press(x_d)) = ... 
                                            SV_initial_unsc(Pointer.asln.press(x_d,Grid_size.y_d_num-1)); 
    SV_initial_unsc(Pointer.m_int_c.press(x_d)) = ... 
                                            SV_initial_unsc(Pointer.csln.press(x_d,Grid_size.y_d_num-1)); 
  end 
   
  % Scale the initial state vector 
  SV_initial = SV_initial_unsc ./ Scales.SV; 
   
else 
   
  % LOAD THE INITIAL SOLUTION VECTOR FROM A FILE SPECIFIED IN DBFC_USER_INPUT 
   
  % Store the present boundary conditions and scales in a temporary variable so they are not lost when 
  % the file is imported 
  BC_temp = BC; 
  Scales_temp = Scales; 
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  % Import the solution vector and some other data from the file 
  load(Solver.SV_initial_filename, 'SV_steady_state', 'dSV_steady_state', 'Scales', 'BC') 
   
  % Change the strategy to be pure Newton search 
  Solver.kinsol.strategy = 'None'; 
   
  % Adjust the voltage field in the old solution to be closer to that of the solution we are looking for. 
  if Flags.setup.adjust_V_prev_soln 
    V_cell_old = BC.cathode.elec_pot; 
    V_cell_new = Cathode_electric_potential(1); 
    SV_initial = FUNC_ADJUST_SOLN_VOLTAGE( SV_steady_state, V_cell_old, V_cell_new, Scales, ... 
                                                                        Pointer, Geometry, Grid_size ); 
    SV_initial_unsc = SV_initial .* Scales.SV; 
  else 
    SV_initial = SV_steady_state; 
    SV_initial_unsc = SV_initial .* Scales.SV; 
  end 
   
  % Recover the boundary conditions and scales for this run. 
  BC = BC_temp; 
  Scales = Scales_temp; 
   
end 
  
%% 5. RESET SCALES, IF DESIRED 
  
if Flags.setup.rescale_init_guess % Adjust Scales.SV and the intial guess so the initial guess is all 1s 
  State_initial = SV_initial .* Scales.SV;  Scales.SV = State_initial; 
  SV_initial = ones(length(SV_initial),1); 
  SV_initial_unsc = SV_initial .* Scales.SV;  % For printing the unscaled values below 
end 
  
%% 6. INITIALIZE THE GLOBAL VARIABLES STORING THE LAST SOLUTION VECTORS BEFORE THE SOLVER FAILS FOR DEBUG 
  
SV_fail_lg = SV_initial; 
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SV_fail    = SV_initial; 
  
%% 7. CLEANUP BY CLEARING SOME VARIABLES THAT ARE NO LONGER NEEDED 
  
% Cell arrays cannot be coded into MEX files, so remove the fields in Model containing species names. 
Species.fuel = rmfield(Species.fuel, 'list'); 
Species.oxidizer = rmfield(Species.oxidizer, 'list'); 
Species.membrane = rmfield(Species.membrane, 'list'); 
  
%% 8. CALL THE MAIN FUNCTION ONCE TO COMPUTE THE INITIAL RESIDUAL VALUES 
  
Jacobian.JAC_pat_exists = 0;  Jacobian.bandwidth_exists = 0; 
  
% Set the cell voltage to be the first value in the list in DBFC_USER_INPUT 
BC.cathode.elec_pot = Cathode_electric_potential(1); 
  
% Find out what the residuals values are at the initial guess.  This if statement avoids an error due to 
% calling the kinsol statistics function before it is initialized, which would happen if we called 
% DBFC_FUNCTION before initializing kinsol with Solver.kinsol.display_iter = 1. 
  
if Solver.kinsol.display_iter == 1 
  Solver.kinsol.display_iter = 0;    function_start_time = toc; 
  dSV_initial = DBFC_FUNCTION(SV_initial); 
  Solver.kinsol.display_iter = 1; 
else 
  function_start_time = toc; 
  dSV_initial = DBFC_FUNCTION(SV_initial); 
end 
  
function_end_time = toc; 
disp(['The function evaluation took: ' num2str(function_end_time - function_start_time) 'sec.']) 
  
%% 9. RESCALE THE INITIAL RESIDUALS, IF DESIRED 
  
if Flags.setup.rescale_init_resid 
  Residuals_initial = dSV_initial ./ Scales.dSV; 
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  Residuals_initial(Residuals_initial==0) = eps; % For initial residuals of zero...  
  Scales.dSV = Residuals_initial.^-1; 
end 
  
%% 10. DISPLAY THE INITIAL SYSTEM STATE 
  
if Flags.setup.display_initial_state 
   
  disp(' ') 
  disp('The initial state of the system is ... ') 
  disp(' ') 
   
  l_i = 0; 
   
  for x_d = 1 : Grid_size.x_d_num 
     
    disp(['x-Discretization ' num2str(x_d)]) 
    disp('---------------------------------------------------------------------------------------------') 
    fprintf('%-8s %-26s %-8s %-18s %-22s %-13s\n', 'Index', 'State Var Name', 'Units', ... 
      'Initial Val.', 'Init. Scaled Val.', 'Init. Resids.') 
    disp('---------------------------------------------------------------------------------------------') 
     
    for y_d = 1 : Grid_size.anode.state_vars_num / Grid_size.x_d_num; 
       
      l_i = l_i + 1; 
      fprintf('%-7u\t %-24s\t %-5s\t %-16E\t %-16f\t %-13E\n' , l_i, char(Names(l_i)), ... 
        char(Units(l_i)), SV_initial_unsc(l_i), SV_initial(l_i), dSV_initial(l_i) ) 
       
    end 
     
    disp('-------------------------------------Membrane---------------------------------------------') 
     
    for y_d = 1 : Grid_size.cathode.state_vars_num / Grid_size.x_d_num; 
       
      l_i = l_i + 1; 
      fprintf('%-7u\t %-24s\t %-5s\t %-16E\t %-16f\t %-13E\n' , l_i, char(Names(l_i)), ... 
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        char(Units(l_i)), SV_initial_unsc(l_i), SV_initial(l_i), dSV_initial(l_i) ) 
       
    end 
     
  end 
   
  disp(' ') 
   
end 
  
disp(['There are ' num2str(Grid_size.state_vars_num) ' state variables total.']) 
  
%% 8. CREATE OR LOAD THE JACOBIAN PATTERN AND SOME OF ITS CHARACTERISTICS 
  
% Initially, no Jacobian pattern exists 
Solver.Jacobian.JAC_pat_exists = 0;    Solver.Jacobian.bandwidth_exists = 0; 
  
% Start a clock for Jacobian calculations 
jacobian_start_time = toc; 
  
% Create a variable that is very useful in this cell 
length_SV_initial = length(SV_initial); 
  
% Either generate the Jacobian pattern, upper bandwidth and lower bandwidth using one of several methods, 
% or load the Jacobian pattern from a file. 
switch Solver.Jacobian.Jpattern_flag 
   
  case 'load'  % Load the Jacobian pattern from a file, with the filename specified in the input file 
     
    disp('Loading the Jacobian pattern from file...'); 
    load(j_pattern_filename, 'Jacobian_pattern'); 
    Model.JAC_pattern = Jacobian_pattern; clear Jacobian_pattern 
    %[Model.JAC_upper_bandwidth, Model.JAC_lower_bandwidth] = FUNC_MATRIX_BANDWIDTH(Model.JAC_pattern); 
    Jacobian.JAC_pat_exists = 1; % Flags.bandwidth_exists = 1; 
    time.JAC_pattern_construction = toc - jacobian_start_time; 
    disp(['Jacobian pattern is loaded.  Load time was ' num2str(time.JAC_pattern_construction) 's.']); 
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  case 'random' % Calculate the Jacobian pattern using repeated random perturbations to the function 
     
    disp('Generating a new Jacobian pattern...'); 
    Model.JAC_pattern = FUNC_JPAT_RANDOM_ASSEMBLE(length_SV_initial); 
    [Model.JAC_upper_bandwidth, Model.JAC_lower_bandwidth] = FUNC_MATRIX_BANDWIDTH(Model.JAC_pattern); 
    Jacobian.JAC_pat_exists = 1; Jacobian.bandwidth_exists = 1; 
    time.JAC_pattern_construction = toc - jacobian_start_time; 
    disp(' '); 
    disp(['Jacobian pattern is complete.  Generating time was ' ... 
      num2str(time.JAC_pattern_construction) 's.']); 
     
  case 'analytic'  % Calculate the Jacobian pattern using knowledge of the problem structure 
     
    disp('Constructing analytical Jacobian pattern...'); 
     
    % Calculate the Jacobian pattern 
    Model.JAC_pattern = FUNC_JPAT_ANALYTIC(length_SV_initial, Species, Grid_size); 
     
    % Find the upper and lower bandwidths of the Jacobian pattern for 
    % the banded solver 
    [Model.JAC_upper_bandwidth, Model.JAC_lower_bandwidth] = FUNC_MATRIX_BANDWIDTH(Model.JAC_pattern); 
     
    % Set flag indicating that the Jacobian pattern exists for future calls to the Jacobian calculation 
    % functions 
    Jacobian.JAC_pat_exists = 1; Jacobian.bandwidth_exists = 1; 
     
    % Calcuate and display the time to generate the Jacobian and Jacobian pattern 
    time.JAC_pattern_construction = toc - jacobian_start_time; 
     
    % Display completion message. 
    disp(['Jacobian pattern is complete.  Construction time was ' ... 
      num2str(time.JAC_pattern_construction) 's.']) 
     
  % Calculate the Jacobian pattern by calculating the Jacobian at the initial guess, then finding the 
  % non-zero elements 
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  case 'empirical'  
     
    disp('Constructing empirical Jacobian pattern...'); 
     
    % Set the Jacobian function to return a sparse matrix 
    Solver.Jacobian.rtrn_dense_JAC = 0; 
     
    % Calculate the Jacobian at the initial guess 
    [Jacobian_sparse, flag] = FUNC_JACOBIAN_NUMJAC( SV_initial, dSV_initial); 
    %[Jacobian_sparse, flag] = FUNC_JACOBIAN_STROMAN(SV_initial, dSV_initial); 
     
    % Find the sparsity pattern of the Jacobian and store it as the Jacobian pattern 
    Solver.Jacobian.JAC_pattern = spones(Jacobian_sparse); 
     
    % Find the upper and lower bandwidths of the sparse Jacobian for the banded solver 
    [Solver.Jacobian.upper_bandwidth, Solver.Jacobian.lower_bandwidth] = ... 
                                                                  FUNC_MATRIX_BANDWIDTH(Jacobian_sparse); 
     
    % Save the Jacobian and Jacobian pattern to files for reuse later 
    Jacobian_pattern_temp = Solver.Jacobian.JAC_pattern; 
    save(strcat('Jacobian_pattern_xd',num2str(Grid_size.x_d_num), '_yd', ... 
      num2str(Grid_size.y_d_num),'.mat'), 'Jacobian_pattern_temp'); 
    save(strcat('Jacobian_xd',num2str(Grid_size.x_d_num), '_yd', ... 
      num2str(Grid_size.y_d_num),'.mat'), 'Jacobian_sparse'); 
    clear Jacobian_pattern_temp Jacobian_sparse  % Don't need either of these... free up some memory 
     
    % Set flag indicating Jacobian pattern exists for future calls to the Jacobian calculation functions 
    Solver.Jacobian.JAC_pat_exists = 1; Solver.Jacobian.bandwidth_exists = 1; 
     
    % Calcuate and display the time to generate the Jacobian and Jacobian pattern 
    time.JAC_pattern_construction = toc - jacobian_start_time; 
     
    % Display completion message. 
    disp(['Jacobian pattern complete.  Construction time: ' num2str(time.JAC_pattern_construction) 's.']) 
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  case 'ones'  % Jacobian pattern is all ones... calculate the whole Jacobian on each iteration 
     
    Solver.Jacobian.JAC_pattern = ones(length_SV_initial); 
    Solver.Jacobian.JAC_pat_exists = 1; 
    time.JAC_pattern_construction = toc - jacobian_start_time; 
    disp(['Created Jacobian pattern of all ones.  Construction time: ' ... 
      num2str(time.JAC_pattern_construction) 's.']); 
   
  % Jacobian pattern is filled area between upper and lower bandwidths specified by the user   
  case 'specified'   
     
    disp('Constructing Jacobian pattern with user specified bandwidths...'); 
     
    Solver.Jacobian.JAC_pattern = sparse([],[],[],length_SV_initial,length_SV_initial, ... 
      (Solver.Jacobian.lower_bandwidth+Solver.Jacobian.upper_bandwidth) * length_SV_initial); 
     
    for row_index = 1:length(SV_initial); 
       
      lower_bound = max(row_index - Solver.Jacobian.lower_bandwidth, 1); 
      upper_bound = min(row_index + Solver.Jacobian.bandwidth, length(SV_initial)); 
       
      Solver.Jacobian.JAC_pattern(row_index, lower_bound:upper_bound) = 1; 
       
    end 
     
    % Calcuate and display the time to generate the Jacobian and Jacobian pattern 
    time.JAC_pattern_construction = toc - jacobian_start_time; 
     
    % Display completion message. 
    disp(['Jacobian pattern complete.  Construction time: ' num2str(time.JAC_pattern_construction) 's.']) 
     
     
  case 'none'  % No Jacobian pattern is requested 
    disp('No Jacobian pattern requested or generated') 
  otherwise  % Error handling 
    error('Unexpected source for the Jacobian pattern.') 
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end 
  
% Set the Jacobian matrix bandwidth if supplied by the user 
  
if Jacobian.bandwidth_exists 
  disp('Upper and lower Jacobian bandwidths calculated from Jacobian or Jacobian pattern') 
else if strcmp(Solver.Jacobian.JAC_bandwidth_flag, 'user') 
    Solver.Jacobian.JAC_upper_bandwidth = Solver.Jacobian.upper_bandwidth; 
    Solver.Jacobian.JAC_lower_bandwidth = Solver.Jacobian.lower_bandwidth; 
    disp('Using user supplied upper and lower Jacobian banwidths') 
     end 
   
end 
  
%% 8. CLEAR UNNECESSARY VARIABLES FROM THE WORKSPACE AND DISPLAY STATUS MESSAGE 
  
clear x_d y_d x_y x_d_string loop_index species_index i j loop_index l_i r_i s_i column_range_high ... 
  column_range_low Pointer_range position_index_anode position_index_cathode species position_offset ... 
  previous_SV_initial_path conc_f conc_r SV_position jacobian_start_time function_end_time .... 
  function_start_time 
  
 
%% SUMMARY: DBFC_KINSOL  
% Purpose: Call kinsol to solve the model. 
% Author: Rick Stroman 
  
%% NOTES  
% 
% (1) Results are stored in SV_steady_state (the solution vector), and dSV_steady_state (the time 
% derivatives and residuals) which is the system state at infinite time, given constant user input 
% parameters. 
  
%% SETUP THE SOLVER  
  
global num_nonlin_iter Model Flags Solver 
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switch Solver.kinsol.linear_solver 
     
    case 'Dense' 
         
        Flags.return_dense_Jacobian = 1; 
         
        options = KINSetOptions(... 
            'Verbose',          Solver.kinsol.verbose, ... 
            'FuncNormTol',      Solver.kinsol.func_norm_tol, ... 
            'ScaledStepTol',    Solver.kinsol.scaled_step_tol, ... 
            'LinearSolver',     Solver.kinsol.linear_solver,... 
            'JacobianFn',       'FUNC_CALC_JACOBIAN'); 
         
    case 'Band' 
         
        options = KINSetOptions(... 
            'Verbose',          Solver.kinsol.verbose, ... 
            'FuncNormTol',      Solver.kinsol.func_norm_tol, ... 
            'ScaledStepTol',    Solver.kinsol.scaled_step_tol, ... 
            'LinearSolver',     Solver.kinsol.linear_solver, ... 
            'MaxNewtonStep',    Solver.kinsol.MaxNewtonStep, ... 
            'LowerBwidth',      Solver.Jacobian.lower_bandwidth, ... 
            'UpperBwidth',      Solver.Jacobian.upper_bandwidth, ... 
            'Constraints',      Solver.kinsol.Constraints, ... 
            'MaxNumBetaFails',  Solver.kinsol.MaxNumBetaFails, ... 
            'MaxNewtonStep',    Solver.kinsol.MaxNewtonStep, ... 
            'MaxNumSetups',     Solver.kinsol.MaxNumSetups, ... 
            'MaxNumIter',       Solver.kinsol.MaxNumIter);  
     
 
end 
  
% Globalization strategy 
strategy = Solver.kinsol.strategy; % Strategy for the linear solver 
  
% Set number of equations, and scaling on the solution variables and function 
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num_eqns = length(SV_initial); 
yscale   = ones(num_eqns,1); % If ones, the model uses Scale.SV to scale the input 
fscale   = ones(num_eqns,1); % If ones, the model uses Scale.dSV to scale the residuals 
  
% Initialize the solver 
KINInit(@DBFC_FUNCTION, num_eqns, options); 
  
disp(' ') 
disp(strcat('Steady-state simulation using KINSOL and the linear solver solver...')); 
  
%% SOLVE THE MODEL  
  
% Set counter value for outputing solver status during solve process 
num_nonlin_iter = 0; 
  
% Header for residuals printed from function 
disp(' '); 
fprintf('%-15s  %-18s %-17s %-12s \n', 'Non-lin. Iter.', 'Func Evals', 'Resid 2-Norm', 'Time (min)') 
disp('-------------------------------------------------------------------') 
  
Init_resid_norm = norm(DBFC_FUNCTION(SV_initial)); 
  
fprintf('%-15.0f  %-20.3e %-20.3e %-20.3f \n', 0, 1, Init_resid_norm, toc/60) 
  
% Call the solver 
[termination_status, SV_steady_state] = KINSol(SV_initial, strategy, yscale, fscale); 
dSV_steady_state                      = DBFC_FUNCTION(SV_steady_state); 
  
% HANDLE AND REPORT THE SOLVER OUTPUT 
  
disp(' ') 
  
switch termination_status 
     
    case 0 
        disp('KINSol succeeded') 
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    case 1 
        disp('The initial y0 already satisfies the stopping criterion given above') 
    case 2 
        disp('Stopping tolerance on scaled step length satisfied') 
    case -1 
        disp('An error occurred (see printed error message)') 
end 
  
KINSOL_status_structure = KINGetStats; 
  
disp(' ') 
disp('Status output from KINSol:') 
disp('------------------------------------------------') 
disp(KINSOL_status_structure) 
disp('------------------------------------------------') 
disp(' ') 
  
%% CLEANUP  
  
KINFree; % Release the memory that was allocated for KinSol 
  
  
  
  
 function [d_SV, error_flag ] = DBFC_FUNCTION(SV) 
  
%% SUMMARY: DBFC_FUNCTION  
  
% Purpose: This function accepts a guess at the solution vector and computes the time rates of change for 
% differential variables and the residuals for algebraic variables. 
% Author: Rick Stroman 
  
%% NOTES  
% 
% (1) SV contains either the inital state of the system, or the state at the conclusion of the 
% previous time step. 
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% 
% (2) d_SV contains the time rate of change of each differential state variable and the residual for each 
% algebraic variable, at the present time step.  The purpose of this function is to compute d_SV for the 
% solver... when a steady state solver is used, d_SV is driven to zero, and when a transient (ODE) solver 
% is used, the values of d_SV associated with differential equations are integrated to find the system 
% state at each time step and the values associated with algebraic equations are driven to zero. 
% 
% (3) Acronyms 
% SCB: Scalar Cell Boundary 
% VCB: Velocity Cell Boundary 
% ASLN: Anode SoLutioN 
% CSLN: Cathode SoLutioN 
% SV: State Vector 
  
%% 1. DECLARE MODEL-WIDE GLOBAL VARIABLES  
  
global Properties Scales Geometry Pointer Flags Constants BC Arxn Crxn SV_fail SV_fail_lg ... 
       num_nonlin_iter Names Solver total_cathode_current Grid_size Species 
  
% These lines are used for debug... they are global variables I can look at after the code bombs. 
SV_fail_lg = SV_fail; % Value of SV from the last good iteration 
SV_fail = SV;         % Value of SV at which the code bombed 
  
%% 2. PREALLOCATE MEMORY FOR RESIDUALS  
  
% % Allocate memory for the residuals and time derivatives, and initialize them 
d_SV = zeros(length(SV),1); 
  
%% 3. READ THE PRESENT SYSTEM STATE OUT OF SV  
  
[ State.A_int, State.Asln, State.M_int_a, State.M_int_c, State.Csln, State.C_int, State.C ] = ... 
  FUNC_READ_SOLUTION_VECTOR(SV, Scales, Pointer, Grid_size, Species, BC); 
  
% Adjust electric potential guesses that effect reaction rates if they are large enough to cause 
% overflow problems in the reaction rate estimation function. 
if any(abs(State.A_int.elec_pot) > 2) 
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    State.A_int.elec_pot = 4 * sign(State.A_int.elec_pot) + ... 
      1e-2 * sign(State.A_int.elec_pot) .* (abs(State.A_int.elec_pot)-8); 
end 
  
if any(abs(State.C_int.elec_pot) > 4) 
    State.C_int.elec_pot = 4 * sign(State.C_int.elec_pot) + ... 
      1e-2 * sign(State.C_int.elec_pot) .* (abs(State.C_int.elec_pot)-8); 
end 
  
if any(abs(State.C.elec_pot) > 4) 
    State.C.elec_pot = 4 * sign(State.C.elec_pot) + ... 
      1e-2 * sign(State.C.elec_pot) .* (abs(State.C.elec_pot)-8); 
end 
  
%% 4. CREATE GHOST CELLS AROUND THE BULK ELECTROLYTE SOLUTION  
  
% The output of each function below is overwrites the original data in the specified structure. 
  
[State.Asln] = FUNC_CREATE_GHOST_CELLS(State.Asln, Grid_size); 
[State.Csln] = FUNC_CREATE_GHOST_CELLS(State.Csln, Grid_size); 
  
%% 5. ASSIGN BOUNDARY CONDITIONS AND INTERFACE VALUES TO GHOST CELLS  
  
% The output of this function overwrites the original data in the specified structure. 
[State.Asln, State.Csln] = FUNC_ASSIGN_BCS_AND_INTERFACES(State.A_int, State.Asln, State.M_int_a, ... 
  State.M_int_c, State.Csln, State.C_int, Grid_size, BC); 
  
%% 6. CALCULATE THE SOLUTION PROPERTIES AND FLUXES  
  
if Flags.setup.MEX 
     
    [State, Yfluxes, Xfluxes, Membrane_mass_flux, SCB, VCB] = ... 
        FUNC_PROP_AND_FLUX_CALCS_mex(State, Pointer, Flags, Geometry, Properties, Constants); 
     
    Yfluxes.mass.arxn = FUNC_ANODE_REACTION_FLUXES(BC.anode.elec_pot, State.A_int, Arxn, ... 
      Properties.anode, Grid_size, Species.fuel, Constants); 
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    Yfluxes.mass.crxn = FUNC_REACTION_FLUXES(State.C.elec_pot, State.C_int, Crxn, ... 
      Properties.cathode, Grid_size, Species.oxidizer, Constants); 
     
else 
     
    [State, Yfluxes, Xfluxes, Membrane_mass_flux, SCB, VCB] = ... 
        FUNC_PROP_AND_FLUX_CALCS(State, Pointer, Flags, Geometry, Grid_size, Species, Properties, ... 
        Constants); 
     
    Yfluxes.mass.arxn = FUNC_ANODE_REACTION_FLUXES(BC.anode.elec_pot, State.A_int, Arxn, ... 
      Properties.anode, Grid_size, Species.fuel, Constants); 
    Yfluxes.mass.crxn = FUNC_REACTION_FLUXES(State.C.elec_pot, State.C_int, Crxn, ... 
      Properties.cathode, Grid_size, Species.oxidizer, Constants); 
     
end 
  
anode_species_range   = 1 : Species.fuel.num; 
cathode_species_range = 1 : Species.oxidizer.num; 
  
for x_d = 1 : Grid_size.x_d_num 
     
    % Compute reaction mole fluxes [kmol/(m^2 s)] 
    Yfluxes.mole.arxn(x_d,anode_species_range)   = ... 
      Yfluxes.mass.arxn(x_d,1:length(Properties.anode.one_over_molar_mass))   ... 
      .* Properties.anode.one_over_molar_mass'; 
    Yfluxes.mole.crxn(x_d,cathode_species_range) = ... 
      Yfluxes.mass.crxn(x_d,1:length(Properties.cathode.one_over_molar_mass)) ... 
    .* Properties.cathode.one_over_molar_mass'; 
     
    % Compute the reaction charge fluxes [C/(m^2 s)] 
    Yfluxes.charge.arxn(x_d,1)  = ... 
      Constants.faraday * Properties.anode.Electric_charge_T   * Yfluxes.mole.arxn(x_d,:)'; 
    Yfluxes.charge.crxn(x_d,1)  = ... 
      Constants.faraday * Properties.cathode.Electric_charge_T * Yfluxes.mole.crxn(x_d,:)'; 
     
end 
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%% 7. CALCULATE THE RESIDUALS  
  
if Flags.setup.MEX 
     
    [d_SV] = FUNC_RESIDUALS_mex(State, Yfluxes, Xfluxes, Membrane_mass_flux, SCB, VCB, ... 
                                Pointer, Flags, Geometry, Properties, Constants); %Grid_size, Species,  
                                  
else 
     
    [d_SV] = FUNC_RESIDUALS(State, Yfluxes, Xfluxes, Membrane_mass_flux, SCB, VCB, ... 
                                Pointer, Flags, Geometry, Grid_size, Species, Properties, Constants); 
                              
end 
  
%% 8. CALCULATE THE TOTAL CELL CURRENT  
  
% It isn't strictly necessary to do this here.... the current density at each electrode is calculated 
% again in postprocessing.  This was used at one point for some debugging. 
  
% Initialize the cathode current at each x-discretization 
cathode_current = zeros(Grid_size.x_d_num,1); 
  
% CALCULATE THE LOCAL CURRENT DENSITY AT THE CATHODE 
  
for x_d = 2 : Grid_size.x_d_num + 1 % Run through all real cells between the inlet and outlet in the DCS 
  
    x_r = x_d - 1; % Corresponding position in the RCS 
    cathode_current(x_r) = Geometry.y_flux_area(x_d) * Yfluxes.charge.crxn(x_r); 
     
end 
  
total_cathode_current = sum(cathode_current); 
  
%% 9. SCALE THE RESIDUALS BEFORE RETURNING THEM FROM THE FUNCTION  
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d_SV = d_SV .* Scales.dSV; 
  
%% 10. ERROR HANDLING  
  
% The variable error_flag is only used by the Sundials solvers... 
  
% Check residuals for NaN or Inf... 
if isfinite(d_SV)  % If the values are all real and finite, tell the solver everything is OK 
     
    error_flag = 0;  
  
else  
  % If there is residual which is NaN or Inf, throw an error and tell the solver there is an 
  % unrecoverable error (error_flag < 0) 
     
    disp(' '); disp('DBFC_FUNCTION has returned one or more NaN or Inf'); disp(' '); 
    error_flag = -1; 
     
    % Display which variables are associated with the NaNs 
    disp('The following variables are associated with NaN:') 
    Names(find(isnan(d_SV))) 
    disp(' ') 
     
    % Display which variables are associated with the Infs 
    disp('The following variables are associated with Inf:') 
    Names(find(isinf(d_SV))) 
  
end    
  
%% 11. KINSOL OUTPUT  
  
% If the solver is Kinsol AND we want to display iterative output 
if Solver.kinsol.display_iter 
     
    Solver_statistics = KINGetStats; 
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    if Solver_statistics.nni > num_nonlin_iter 
         
        % If the number of nonlinear iterations has increased, print the 
        % present statistics to the command window 
        num_nonlin_iter = Solver_statistics.nni;         
        fprintf('%-15.0f  %-20.3e %-20.3e %-20.3f \n', num_nonlin_iter, Solver_statistics.nfe, ... 
          Solver_statistics.fnorm, toc/60) 
         
        if Flags.setup.plot_curr_density 
            figure(100+num_nonlin_iter); 
            plot(Geometry.x_d_location(2:Grid_size.x_d_num+1), Yfluxes.charge.arxn, 'b-o', ... 
                Geometry.x_d_location(2:Grid_size.x_d_num+1), -Yfluxes.charge.crxn, 'r-o') 
            title('Local anode and cathode current densities for present iteration') 
            xlabel('Distance from inlet [m]') 
            ylabel('Local Current Density [A/m^2]') 
            legend('Anode Current Density', 'Cathode Current Density') 
        end 
         
    end 
     
end 
      
end 
function [ A_int, Asln, M_int_a, M_int_c, Csln, C_int, C ] = ... 
                    FUNC_READ_SOLUTION_VECTOR(SV, Scales, Pointer, Grid_size, Species, BC) 
  
 
 
%% SUMMARY: FUNC_READ_SOLUTION_VECTOR  
% Purpose: This function reads the values out of a solution vector and assigns them to variables 
% with nicer names which are indexed by x- and y-discretization, not position in the vector. 
% Author: Rick Stroman 
  
%% NOTES  
  
% (1) This code was put in a separate script so that multiple functions and scripts can call it when 
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%     they want to access the solution vector.  When called by a function (such as DBFC_FUNCTION), 
%     the results of this script dissapear with all the rest of that function once it is complete. 
% 
% (2) For this script to work propery, the solution vector must called SV.  Any solution vector with 
%     the correct format can be used, including SV_initial, SV (an intermediate solution), 
%     SV_steady_state or one timestep in SM_transient.  Scaling is included, so the new variables 
%     should have the correct (real world) units. 
% 
% (3) In each variable produced by this script, the x-discretizations appear in columns (inlet at 
%     top, outlet at bottom), y-discretizations appear in rows (anode at left, cathode at right) and 
%     species are listed in the third dimension. 
% 
%   For interfaces: 
% 
%       x 1, species 1        x 1, species 2        x 1, species 3 
%       x 2, species 1        x 2, species 2        x 2, species 3 
%       x 3, species 1        x 3, species 2        x 3, species 3 
%       x 4, species 1        x 4, species 2        x 4, species 3 
% 
% 
%   For electrolyte solution: 
% 
%                   species 3       species 3       species 2 
%               species 2       species 2       species 2 
%           species 1       species 1       species 1 
%       x 1, y 1        x 1, y 2        x 1, y 3 
%       x 2, y 1        x 2, y 2        x 2, y 3 
%       x 3, y 1        x 3, y 2        x 3, y 3 
%       x 4, y 1        x 4, y 2        x 4, y 3 
% 
% (4) The some variables are extracted without a loop, some with only the x index and some with both 
%     x and y indexes.  The amount of looping has been minimized as much as possible to speed up the 
%     code. 
  
%% 1. INITIALIZE VARIABLES TO SPEED UP LOOPS AND ENSURE THE CORRECT DIMENSIONS 
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% Without this step, there would be some ambiguity in the variables which get updated outside of loops if 
% either channel dimension is set to 1... by initializing them, we avoid that problem. 
  
% Interfaces 
  
A_int.elec_pot = zeros(Grid_size.x_d_num, 1); 
C_int.elec_pot = zeros(Grid_size.x_d_num, 1); 
  
M_int_a.elec_pot = zeros(Grid_size.x_d_num, 1); 
M_int_c.elec_pot = zeros(Grid_size.x_d_num, 1); 
  
A_int.Mass_fracs = zeros(Grid_size.x_d_num, Species.fuel.num); 
C_int.Mass_fracs = zeros(Grid_size.x_d_num, Species.oxidizer.num); 
  
M_int_a.Mass_fracs = zeros(Grid_size.x_d_num, Species.fuel.num); 
M_int_c.Mass_fracs = zeros(Grid_size.x_d_num, Species.oxidizer.num); 
  
M_int_a.press = zeros(Grid_size.x_d_num, 1); 
M_int_c.press = zeros(Grid_size.x_d_num, 1); 
  
% M_int_a.y_vel = zeros(Geometry.x_d_num, 1); 
% M_int_c.y_vel = zeros(Geometry.x_d_num, 1); 
  
% Electrolyte solution 
  
Asln.elec_pot = zeros(Grid_size.x_d_num, Grid_size.y_d_num); 
Csln.elec_pot = zeros(Grid_size.x_d_num, Grid_size.y_d_num); 
  
Asln.Mass_fracs = zeros(Grid_size.x_d_num, Grid_size.y_d_num, Species.fuel.num); 
Csln.Mass_fracs = zeros(Grid_size.x_d_num, Grid_size.y_d_num, Species.oxidizer.num); 
  
Asln.x_vel = zeros(Grid_size.x_d_num, Grid_size.y_d_num); 
Csln.x_vel = zeros(Grid_size.x_d_num, Grid_size.y_d_num); 
  
Asln.y_vel = zeros(Grid_size.x_d_num, Grid_size.y_d_num); 
Csln.y_vel = zeros(Grid_size.x_d_num, Grid_size.y_d_num); 
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Asln.press = zeros(Grid_size.x_d_num, Grid_size.y_d_num); 
Csln.press = zeros(Grid_size.x_d_num, Grid_size.y_d_num); 
  
%% 2. EXTRACT STATE VARIABLES FROM THE SOLUTION VECTOR AND STORE THEM IN LOCAL VARIABLES  
  
% Unscale the solution vector 
SV_unsc = SV .* Scales.SV; 
  
% ELECTRODE INTERFACE CELLS 
% Electric Potential 
A_int.elec_pot(:,1) = SV_unsc(Pointer.a_int.elec_pot(:)); 
C_int.elec_pot(:,1) = SV_unsc(Pointer.c_int.elec_pot(:)); 
  
  
% MEMBRANE INTERFACE CELLS 
  
% Electric Potential 
M_int_a.elec_pot(:,1) = SV_unsc(Pointer.m_int_a.elec_pot(:)); 
M_int_c.elec_pot(:,1) = SV_unsc(Pointer.m_int_c.elec_pot(:)); 
  
M_int_a.press(:,1) = SV_unsc(Pointer.m_int_a.press(:)); 
M_int_c.press(:,1) = SV_unsc(Pointer.m_int_c.press(:)); 
  
% M_int_a.y_vel(:,1) = SV_unsc(Pointer.m_int_a.y_vel(:)); 
% M_int_c.y_vel(:,1) = SV_unsc(Pointer.m_int_c.y_vel(:)); 
  
% ELECTROLYTE SOLUTION CELLS 
  
% Electric Potential 
Asln.elec_pot(:,:) = SV_unsc(Pointer.asln.elec_pot(:,:)); 
Csln.elec_pot(:,:) = SV_unsc(Pointer.csln.elec_pot(:,:)); 
  
% Velocities 
Asln.x_vel(:,:) = SV_unsc(Pointer.asln.x_vel(:,:)); 
Asln.y_vel(:,:) = SV_unsc(Pointer.asln.y_vel(:,:)); 
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Csln.x_vel(:,:) = SV_unsc(Pointer.csln.x_vel(:,:)); 
Csln.y_vel(:,:) = SV_unsc(Pointer.csln.y_vel(:,:)); 
  
% Pressures 
Asln.press(:,:) = SV_unsc(Pointer.asln.press(:,:)); 
Csln.press(:,:) = SV_unsc(Pointer.csln.press(:,:)); 
  
C.elec_pot = BC.cathode.elec_pot; 
  
% Unfortunately some variables must be updated in loops becuse two " : " operators in one set of 
% indexes is ambiguous. 
for x_d = 1 : Grid_size.x_d_num 
     
    % ELECTRODE INTERFACE CELLS 
     
    % Mass Fractions 
    A_int.Mass_fracs(x_d,:) = SV_unsc(Pointer.a_int.mass_fracs(x_d) + (1:Species.fuel.num    ) - 1); 
    C_int.Mass_fracs(x_d,:) = SV_unsc(Pointer.c_int.mass_fracs(x_d) + (1:Species.oxidizer.num) - 1); 
  
    % MEMBRANE INTERFACE CELLS 
  
    % Mass Fractions 
    M_int_a.Mass_fracs(x_d,:) = SV_unsc(Pointer.m_int_a.mass_fracs(x_d) + (1:Species.fuel.num    ) - 1); 
    M_int_c.Mass_fracs(x_d,:) = SV_unsc(Pointer.m_int_c.mass_fracs(x_d) + (1:Species.oxidizer.num) - 1); 
     
    % ELECTROLYTE SOLUTION CELLS 
     
    for y_d = 1 : Grid_size.y_d_num 
         
        % Mass Fractions 
        Asln.Mass_fracs(x_d,y_d,:) = SV_unsc(Pointer.asln.mass_fracs(x_d,y_d) : ... 
          (Pointer.asln.mass_fracs(x_d,y_d) + Species.fuel.num    ) - 1); 
        Csln.Mass_fracs(x_d,y_d,:) = SV_unsc(Pointer.csln.mass_fracs(x_d,y_d) : ... 
          (Pointer.csln.mass_fracs(x_d,y_d) + Species.oxidizer.num) - 1); 
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    end 
     
end 
  
end 
                
 
 
 
function [Sln] = FUNC_CREATE_GHOST_CELLS( Sln, Grid_size ) 
  
%% SUMMARY: CREATE_GHOST_CELLS  
% Purpose: This script shifts the matrices containing state variables in the electrolyte solution by 
% one cell in the x- and y-directions, then adds a ring of ghost cells around the perimeter wherever 
% boundary conditions will be specified.  Cells in the ring are all assigned the value 
% placeholder_value. 
% Author: Rick Stroman 
% Date: 15 February 2011 
  
%% NOTES  
  
% 1. Ghost cells around the species mass fractions matrices are assigned values, but there are only 
% boundary conditions at the inlets.  At other locations the ghost cells are simply making it 
% possible to calculate solution properties in the ghost cells, which are used to calculate some 
% fluxes which form boundary conditions. 
  
% 2. Ghost cells are initially assigned the value initial_value.  A value is chosen which is not 
% used in a boundary condition or state variable to make it easy to evaluate whether or not the 
% boundary conditions and interface values have been applied correctly when looking at the matrices. 
  
%% 1. SETUP THE NECESSARY VARIABLES  
  
channel_x_range = 2:Grid_size.x_d_num+1; 
channel_y_range = 2:Grid_size.y_d_num+1; 
x_d_ub = Grid_size.x_d_num + 2;  % Total num cells is the number of real cells plus one ghost at each end 
y_d_ub = Grid_size.y_d_num + 2;  % Total num cells is the number of real cells plus one ghost at each end 
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placeholder_value = 0; 
  
%% 2. CREATE ELECTRIC POTENTIAL GHOST CELLS  
  
% We need ghost cells for electric potential along each boundary so we can evaluate the migration fluxes 
% and electric body forces.  Both are written using center differences, so to evaluate these quantities 
% in the boundary cells, we need a ghost cell to compute the derivatives.  Alternatively, one can look at 
% what the model is doing as determining the time rate of change in the amount of species k in a 
% differntial volume due to migration, which involves a second derivative (analagously to Fick's Second 
% Law for diffusion) and hence two boundary conditions are required in each direction. 
  
% Shift 
Sln.elec_pot(channel_x_range, channel_y_range) = Sln.elec_pot; 
  
% Create ghost cells 
Sln.elec_pot(1,:)       = placeholder_value; % Inlet 
Sln.elec_pot(x_d_ub,:)  = placeholder_value; % Outlet 
Sln.elec_pot(:,1)       = placeholder_value; % (an - sol interface) or (mem-cat solution interface) 
Sln.elec_pot(:, y_d_ub) = placeholder_value; % (anode sol - mem interface) or (sol - cat interface) 
  
%% 3. CREATE MASS FRACTION GHOST CELLS  
  
% We need ghost cells for mass fraction along each boundary so we can evaluate the diffusion fluxes. The 
% diffusion flux is written using a center difference, so calculating the diffusion flux in boundary 
% cells requires a ghost cell for the derivatives.  Alternatively, one can look at what the model is 
% ultimately doing: evaluating Fick's Second Law, which gives the time rate of change of species k in a 
% differential volume and contains a second derivative, hence we need two boundary conditions in each 
% direction. 
  
% Shift 
Sln.Mass_fracs(channel_x_range, channel_y_range, :) = Sln.Mass_fracs; 
  
% Create ghost cells 
Sln.Mass_fracs(1,:,:)        = placeholder_value; % Inlet 
Sln.Mass_fracs(x_d_ub,:,:)   = placeholder_value; % Outlet 
Sln.Mass_fracs(:,1,:)        = placeholder_value; % (an - sol interface) or (mem-cat solution interface) 
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Sln.Mass_fracs(:, y_d_ub, :) = placeholder_value; % (anode sol - mem interface) or (sol - cat interface) 
  
%% 4. CREATE x-VELOCITY GHOST CELLS  
  
% The x-velocity has a first derivative in the x-direction for the advection terms, and a second 
% derivative in the y-direction for the shear stress terms.  Hence we need only one boundary condition in 
% the x-direction and two in the y-direction.  We've chosen to specify the velocity at the inlet and the 
% electrode and membrane interfaces so they are Dirichlet boundary conditions. The inlet was chosen over 
% the outlet so the equations can be formulated as upwind differences, which is more stable for advection 
% than center or downwind differencing. 
  
% Shift 
Sln.x_vel(channel_x_range, channel_y_range) = Sln.x_vel; 
  
% Create ghost cells 
Sln.x_vel(1,:)      = placeholder_value; % Inlet 
Sln.x_vel(x_d_ub,:) = placeholder_value; % Outlet 
Sln.x_vel(:,1)      = placeholder_value; % (an - sol interface) or (mem-cat solution interface) 
Sln.x_vel(:,y_d_ub) = placeholder_value; % (anode sol - mem interface) or (sol - cat interface) 
  
%% 5. CREATE y-VELOCITY GHOST CELLS  
  
% The y-velocity has a first derivative in the y-direction for the advection terms, and a second 
% derivative in the x-direction for the shear stress terms.  Hence we need only one boundary condition in 
% the y-direction and two in the x-direction.  We've chosen to specify the velocity at the inlets, 
% outlets and the (anode-solution interface) on the anode side or the (membrane-cathode solution 
% interface) on the cathode side, so they are Dirichlet boundary conditions.  The (anode-solution 
% interface) and (membrane-cathode solution interface) were chosen so the advection terms could be 
% formulated as upwind differences. 
  
% Shift 
Sln.y_vel(channel_x_range, channel_y_range) = Sln.y_vel; 
  
% Create ghost cells 
Sln.y_vel(1,:)       = placeholder_value; % Inlet 
Sln.y_vel(x_d_ub,:)  = placeholder_value; % Outlet 
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Sln.y_vel(:,1)       = placeholder_value; % Electrode interface 
% Sln.y_vel(:, y_d_ub) = placeholder_value; % Membrane interface 
  
%% 6. CREATE PRESSURE GHOST CELLS  
  
% There is only a first derivative of pressure in each direction, so we only need one boundary condition. 
% We've chosen to specify the pressure at the inlet to be consistant with the upwind differencing 
% formulations of the equations.  The pressure gradient is specified at both electrodes where the 
% y-direction velocity must be zero due to mass conservation... nothing passes through or is stored on 
% the surface.  Both the electrode and membrane interface are given ghost cells here just to keep the 
% code consistant and allow us to use the same ghost cell generating function for both the anode and 
% cathode... one set of ghost cells for each channel is ignored in the rest of the code. 
  
% Shift 
Sln.press(channel_x_range, channel_y_range) = Sln.press; 
  
% Create ghost cells 
Sln.press(1,:)       = placeholder_value;  % Inlet (but these ghost cells are never used!) 
Sln.press(x_d_ub,:)  = placeholder_value;  % Outlet 
Sln.press(:,1)       = placeholder_value;  % Electrode interface 
Sln.press(:, y_d_ub) = placeholder_value;  % Membrane interface 
  
end 
 
 
 
 
 
function [Asln, Csln] = FUNC_ASSIGN_BCS_AND_INTERFACES(A_int, Asln, M_int_a, M_int_c, Csln, C_int, ... 
                                                                                        Grid_size, BC) 
  
%% SUMMARY: FUNC_ASSIGN_BCS_AND_INTERFACES 
% Purpose: This function applies the boundary conditions to the model domain and copies state variables 
% from the anode, cathode and membrane interfaces into the bulk electrolyte ghost cells. 
% Author: Rick Stroman 
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%% NOTES 
  
% 1. Boundary conditions are assigned to ghost cells at the inlet, anode and cathode interfaces. 
  
% 2. State variables from the anode, cathode and membrane interfaces are copied into the ghost cells 
% around the bulk electrolyte solution to simplify the flux calculations (eliminates special flux 
% equations for the interfaces) and to simplify plotting the results (same reason). 
  
%% 1. SET UP THE NECESSARY VARIABLES 
  
x_d_range_chanl = 2:Grid_size.x_d_num+1;  % Range of x_d values excluding ghost cells 
y_d_range_chanl = 2:Grid_size.y_d_num+1;  % Range of y_d values excluding ghost cells 
x_d_ub = Grid_size.x_d_num + 2;           % Largest value of x_d (ghost cell at outlet) 
y_d_ub = Grid_size.y_d_num + 2;           % Largest value of y_d (ghost cells at anode 
% solution-membrane interface and at the cathode 
% solution-cathode interface) 
  
%% 2. APPLY DIRICHLET AND NEWMAN BOUNDARY CONDITIONS 
% Flux boundary conditions at the electrodes and membrane are applied in DBFC_FUNCTION when the 
% consevation equations are evaluated.  Voltage boundary conditions for the electrodes are also applied 
% in DBFC_FUNCTION when Kirchoff's Law is applied to electrode discretizations. 
  
% BC's AT INLET 
  
% Electric field at inlet is zero  (Newmann) E = d phi / dx = 0 
Asln.elec_pot(1,y_d_range_chanl) = Asln.elec_pot(2,y_d_range_chanl); 
Csln.elec_pot(1,y_d_range_chanl) = Csln.elec_pot(2,y_d_range_chanl); 
  
% Inlet y-velocity - (Newman) 
Asln.y_vel(1,y_d_range_chanl) = Asln.y_vel(2,y_d_range_chanl); 
Csln.y_vel(1,y_d_range_chanl) = Csln.y_vel(2,y_d_range_chanl); 
  
% Mass fractions in inlet flows (Dirichlet) 
for y_d = y_d_range_chanl 
  Asln.Mass_fracs(1,y_d,:) = BC.anode.Mass_fractions_inlet(1,1,:); 
  Csln.Mass_fracs(1,y_d,:) = BC.cathode.Mass_fractions_inlet(1,1,:); 
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end 
  
% Inlet x-velocity - user specified (Dirichlet) 
Asln.x_vel(1,y_d_range_chanl) = BC.anode.x_vel_inlet(y_d_range_chanl); 
Csln.x_vel(1,y_d_range_chanl) = BC.cathode.x_vel_inlet(y_d_range_chanl); 
  
% BC'S AT OUTLET 
  
% Electric field at outlet is zero (Newmann) E = d phi / dx = 0 
Asln.elec_pot(x_d_ub,y_d_range_chanl) = Asln.elec_pot(x_d_ub-1,y_d_range_chanl); 
Csln.elec_pot(x_d_ub,y_d_range_chanl) = Csln.elec_pot(x_d_ub-1,y_d_range_chanl); 
  
% Mass fractions in outlet flows... gradient is zero (Newman) 
for y_d = y_d_range_chanl 
  Asln.Mass_fracs(x_d_ub,y_d,:) = Asln.Mass_fracs(x_d_ub-1,y_d,:); 
  Csln.Mass_fracs(x_d_ub,y_d,:) = Csln.Mass_fracs(x_d_ub-1,y_d,:); 
end 
  
% Exit x-velocity - assume fully developed, i.e. dv_x/dx = 0 (Newman) 
Asln.x_vel(x_d_ub,y_d_range_chanl) = Asln.x_vel(x_d_ub-1,y_d_range_chanl); 
Csln.x_vel(x_d_ub,y_d_range_chanl) = Csln.x_vel(x_d_ub-1,y_d_range_chanl); 
  
% Exit y-velocity - assume fully developed, i.e. dv_y/dx = 0 (Newman) 
Asln.y_vel(x_d_ub,y_d_range_chanl) = Asln.y_vel(x_d_ub-1,y_d_range_chanl); 
Csln.y_vel(x_d_ub,y_d_range_chanl) = Csln.y_vel(x_d_ub-1,y_d_range_chanl); 
  
% Outlet pressure (Dirichlet) 
Asln.press(x_d_ub,:) = BC.anode.press_outlet; 
Csln.press(x_d_ub,:) = BC.cathode.press_outlet; 
  
% BC's AT ELECTRODES AND MEMBRANE 
  
% No-slip condition at electrodes (Dirichlet) 
Asln.x_vel(:,1) = BC.anode.x_vel_electrode; 
Csln.x_vel(:,1) = BC.cathode.x_vel_electrode; 
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% No-slip condition at membrane (Dirichlet) 
Asln.x_vel(:,y_d_ub) = BC.anode.x_vel_membrane; 
Csln.x_vel(:,y_d_ub) = BC.cathode.x_vel_membrane; 
  
% y-velocity is zero at the electrodes because there is no net mass flux (Dirichlet) 
Asln.y_vel(:,1) = BC.anode.y_vel_electrode; 
Csln.y_vel(:,1) = BC.cathode.y_vel_electrode; 
  
% No pressure gradient in y-direction at electrodes (Newmann) 
Asln.press(x_d_range_chanl,1) = Asln.press(x_d_range_chanl,2); 
Csln.press(x_d_range_chanl,1) = Csln.press(x_d_range_chanl,2); 
  
%% 3. ASSIGN INTERFACE VALUES TO BULK SOLUTION SCALARS IN GHOST CELLS 
  
% Note that the interfaces have no values for velocity or pressure, since they are all handled by 
% boundary conditions above.  Only the electric potential and mass fractions are relevent. 
  
% ELECTRIC POTENTIAL 
Asln.elec_pot(x_d_range_chanl,1)      = A_int.elec_pot(:); 
Asln.elec_pot(x_d_range_chanl,y_d_ub) = M_int_a.elec_pot(:); 
Csln.elec_pot(x_d_range_chanl,1)      = C_int.elec_pot(:); 
Csln.elec_pot(x_d_range_chanl,y_d_ub) = M_int_c.elec_pot(:); 
  
% PRESSURE 
Asln.press(x_d_range_chanl,y_d_ub) = M_int_a.press(:); 
Csln.press(x_d_range_chanl,y_d_ub) = M_int_c.press(:); 
  
% Need a loop here because more than one index range is ambiguous 
for x_d = x_d_range_chanl 
   
  % The x_d-1 accounts for the lack of ghost cells in the interface discretizations, so thier 
  % x-discretization indices are shifted by -1 with respect to those of the bulk solution. 
   
  % MASS FRACTIONS 
  Asln.Mass_fracs(x_d, 1, :)      = A_int.Mass_fracs(x_d-1, :); 
  Asln.Mass_fracs(x_d, y_d_ub, :) = M_int_a.Mass_fracs(x_d-1, :); 
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  Csln.Mass_fracs(x_d, 1, :)      = C_int.Mass_fracs(x_d-1, :); 
  Csln.Mass_fracs(x_d, y_d_ub, :) = M_int_c.Mass_fracs(x_d-1, :); 
   
end 
  
end 
 
 
function [State_out, Yfluxes, Xfluxes, Membrane_mass_flux, SCB, VCB] = ... 
        FUNC_PROP_AND_FLUX_CALCS(State, Pointer, Flags, Geometry, Grid_size, Species, Properties, ... 
        Constants) %#codegen 
  
    % 1. CALCULATE SOLUTION PROPERTIES IN THE CHANNELS (BULK) AND INTERFACES 
     
    % The output of each function below is added to an existing structure as several new fields. 
     
    [State_out.Asln] = FUNC_PROPERTIES_BULK(State.Asln, Grid_size, Species.fuel,     ... 
      Properties.anode,   Pointer.anode,   Flags, Constants); 
    [State_out.Csln] = FUNC_PROPERTIES_BULK(State.Csln, Grid_size, Species.oxidizer, ... 
    Properties.cathode, Pointer.cathode, Flags, Constants); 
     
    % Calculate properties of electrolyte solution at the interfaces. 
    [State_out.A_int]   = FUNC_PROPERTIES_INTERFACES(State.A_int,   Grid_size, Species.fuel,     ... 
      Properties.anode,   Pointer.anode,   Flags, Constants); 
    [State_out.M_int_a] = FUNC_PROPERTIES_INTERFACES(State.M_int_a, Grid_size, Species.fuel,     ... 
      Properties.anode,   Pointer.anode,   Flags, Constants); 
    [State_out.M_int_c] = FUNC_PROPERTIES_INTERFACES(State.M_int_c, Grid_size, Species.oxidizer, ... 
      Properties.cathode, Pointer.cathode, Flags, Constants); 
    [State_out.C_int]   = FUNC_PROPERTIES_INTERFACES(State.C_int,   Grid_size, Species.oxidizer, ... 
      Properties.cathode, Pointer.cathode, Flags, Constants); 
     
    State_out.C = State.C; 
     
    % 2. CALCULATE FLUXES ACROSS SCALAR CELL BOUNDARIES DUE TO MIGRATION, DIFFUSION AND ELECTRODE RXNS 
     
    Yfluxes = FUNC_Y_DIFF_MIG_REACT_FLUXES(State_out.Asln, State_out.M_int_a, State_out.M_int_c, ... 
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      State_out.Csln,  Geometry, Grid_size, Species, Properties, Pointer, Constants, Flags ); 
     
    Xfluxes = FUNC_X_DIFF_MIG_FLUXES(State_out.Asln, State_out.Csln, Geometry, Grid_size, Species, ... 
      Properties, Pointer, Constants, Flags); 
     
    % 3. CALCULATE THE MEMBRANE MASS FLUXES 
     
    Membrane_mass_flux.am = sum(Yfluxes.mass.am,2)'; % kg/(m^2 s) 
    Membrane_mass_flux.cm = -sum(Yfluxes.mass.cm,2)'; % kg/(m^2 s)  
    % NOTE: Negative sign accounts for change in coordinate system 
     
    % 4. CALCULATE VALUES AT SCALAR CELL BOUNDARIES 
     
    % The mass and species conservation equations ensure those properties are conserved over the scalar 
    % cells.  To evaluate the equations, we need to know the mass density, mass fractions, and total mass 
    % fluxes at the scalar cell boundaries.  The FUNC_SCB_VALUES function calculates the properties by 
    % linear interpolation between cell centers (accounting for different cell sizes) and the mass fluxes 
    % are the sum of advection, diffusion and migration mass fluxes at the boundaries.  The last levels 
    % in each structure are .x and .y, which signify whether the values cell boundaries in the 
    % x-direction or y-direction. 
     
    [SCB.asln.mass_flux, SCB.asln.mass_density, SCB.asln.Mass_fracs, SCB.asln.charge_density] = ... 
        FUNC_SCB_VALUES( State_out.Asln, Xfluxes.mass.asln, Yfluxes.mass.asln, Geometry, Grid_size, ... 
        Species.fuel ); 
    [SCB.csln.mass_flux, SCB.csln.mass_density, SCB.csln.Mass_fracs, SCB.csln.charge_density] = ... 
        FUNC_SCB_VALUES( State_out.Csln, Xfluxes.mass.csln, Yfluxes.mass.csln, Geometry, Grid_size, ... 
        Species.oxidizer ); 
     
    % 5. CALCULATE VALUES AT VELOCITY CELL BOUNDARIES 
     
   [VCB_x_asln_x_vel, VCB_y_asln_y_vel] = FUNC_VCB_VALUES( State_out.Asln, Grid_size ); 
   [VCB_x_csln_x_vel, VCB_y_csln_y_vel] = FUNC_VCB_VALUES( State_out.Csln, Grid_size ); 
     
    VCB.x.asln.x_vel = VCB_x_asln_x_vel; 
    VCB.x.csln.x_vel = VCB_x_csln_x_vel; 
    VCB.y.asln.y_vel = VCB_y_asln_y_vel; 
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    VCB.y.csln.y_vel = VCB_y_csln_y_vel;   
    
end 
 
 
 
function [Sln] = FUNC_PROPERTIES_BULK(Sln, Grid_size, Species, Properties, Pointer, Flags, Constants)                  
  
%% SUMMARY: DBFC_PROPERTIES_BULK  
% Purpose: This script calculates the electrolyte solution properties, given the state variables in the 
% solution vector SV. 
% Author: Rick Stroman 
  
%% 1. PRE-ALLOCATE MEMORY FOR MATRICES CREATED IN THIS FUNCTION TO SPEED UP THE CODE  
  
% These bounds are chosen so that the properties matrices have the same size as the state variable 
% matrices, to simplify calculations later. 
x_d_ub = Grid_size.x_d_num + 2; 
y_d_ub = Grid_size.y_d_num + 2; 
  
% Initialize mass density 
Sln.mass_density  = zeros(x_d_ub, y_d_ub); 
  
% Initialize mole fractions 
Sln.Mole_fracs = zeros(x_d_ub, y_d_ub, Species.num); 
  
% Initialize mole densities (concentrations) 
Sln.Mole_densities = zeros(x_d_ub, y_d_ub, Species.num); 
  
% Initialize ionic strength 
Sln.ionic_strength = zeros(x_d_ub, y_d_ub); 
  
% Initialize activity coefficients (note the are initialized to an ideal solution... all ones) 
Sln.Act_coeffs = ones(x_d_ub, y_d_ub, Species.num); 
  
% Initialize the net charge density of solution 
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Sln.charge_density = zeros(x_d_ub, y_d_ub); 
  
% Use these column vectors to change the dimensions of Mass_fracs and Mole_densities inside the loop 
% instead of using squeeze, which is very expensive. 
Mass_fracs     = zeros(Species.num, 1); 
Mole_densities = zeros(Species.num, 1); 
  
%% 2. CALCULATE ELECTROLYTE PROPERTIES  
  
for x_d = 1 : Grid_size.x_d_num + 2   
  % Include the inlet ghost cells, which have been assigned BC mass fractions, but ignore the outlet 
  % ghost cells, in which solution properties are never needed. 
     
    for y_d = 1 : Grid_size.y_d_num + 2   
      % Include the anode and cathode interfaces and both membrane interfaces. 
        Mass_fracs(:) = Sln.Mass_fracs(x_d,y_d,:); 
         
        % DENSITY AND CONCENTRATION RELATED PROPERTIES 
         
        % Mass density - [kg/m^3] 
        Sln.mass_density(x_d,y_d) = FUNC_SOLUTION_MASS_DENSITY(Mass_fracs, Properties, Pointer); 
         
        % Species mole fractions - [unitless] 
        Sln.Mole_fracs(x_d,y_d,:) = FUNC_MASS_TO_MOLE_FRACTIONS(Mass_fracs, Properties.Molar_mass, ... 
          Species); 
  
        % Species mole densities - [kmol/m^3] 
        Sln.Mole_densities(x_d,y_d,:) = FUNC_SPECIES_MOLE_DENSITIES(Sln.mass_density(x_d,y_d), ... 
          Mass_fracs, Properties.Molar_mass); 
        Mole_densities(:) = Sln.Mole_densities(x_d, y_d, :);  % Making it a vector for local use this  
                                                              % way because squeeze is very expensive 
         
        % ELECTROLYTE RELATED PROPERTIES 
         
        if ~Flags.model.solution_ideality 
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            % Ionic strength - [kmol/m^3] 
            Sln.ionic_strength(x_d,y_d) = 0.5 * Mole_densities' * Properties.Electric_charge.^2; 
             
            % Activity coefficients - [unitless 
            % Sln.Act_coeffs(x_d,y_d,:) = FUNC_DEBYE_HUCKEL(Sln.ionic_strength(x_d,y_d), Properties, ... 
            % Constants); 
            Sln.Act_coeffs(x_d,y_d,:) = FUNC_H2O2_Act_Coeffs(Species, Sln.Mole_fracs(x_d, y_d, :), ... 
              Constants); 
             
        end  % If we don't model the non-ideality of the solution, the activity coefficients keep ... 
             % their initialized values... 1. 
         
        % Calculate the net charge density in each phase for each x-discretization - [C/m^3] 
        Sln.charge_density(x_d,y_d) = Constants.faraday * Properties.Electric_charge_T * Mole_densities; 
  
    end 
     
end 
  
end 
  
   
 
function [Int] = FUNC_PROPERTIES_INTERFACES(Int, Grid_size, Species, Properties, Pointer, Flags, ... 
  Constants) %#codegen 
  
%% SUMMARY: DBFC_PROPERTIES_INTERFACES  
% Purpose: This script calculates the electrolyte solution properties at the electrode and membrane 
% interfaces, from the mass fractions and/or mole fractions. 
% Author: Rick Stroman 
  
% Initialize mass density 
Int.mass_density  = zeros(1,Grid_size.x_d_num); 
  
% Initialize mole fractions 
Int.Mole_fracs = zeros(Grid_size.x_d_num, Species.num); 
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% Initialize mole densities (concentrations) 
Int.Mole_densities = zeros(Grid_size.x_d_num, Species.num); 
  
% Initialize ionic strength 
Int.ionic_strength = zeros(1,Grid_size.x_d_num); 
  
% Initialize activity coefficients (note the are initialized to an ideal solution... all ones) 
Int.Act_coeffs = ones(Grid_size.x_d_num, Species.num); 
 % Initialize the net charge density of solution 
Int.charge_density = zeros(1,Grid_size.x_d_num); 
  
%% 1. CALCULATE PROPERTIES AT INTERFACES 
  
Mass_fracs = Int.Mass_fracs'; 
  
for x_d = 1:Grid_size.x_d_num 
            
    % Species mole fractions - [unitless] 
    Int.Mole_fracs(x_d,:) = FUNC_MASS_TO_MOLE_FRACTIONS(Mass_fracs(:,x_d), Properties.Molar_mass, ... 
      Species); 
     
    % Mass density - [kg/m^3] 
    Int.mass_density(x_d) = FUNC_SOLUTION_MASS_DENSITY(Mass_fracs(:,x_d), Properties, Pointer); 
     
    % Species mole densities - [unitless] 
    Int.Mole_densities(x_d,:) = FUNC_SPECIES_MOLE_DENSITIES(Int.mass_density(x_d), Mass_fracs(:,x_d), ... 
      Properties.Molar_mass); 
     
    if ~Flags.model.solution_ideality 
         
        % Ionic strength - [kmol/m^3] 
        Int.ionic_strength(x_d) = 0.5 * Int.Mole_densities(x_d,:) * Properties.Electric_charge.^2; 
         
        % Activity coefficients - [unitless] 
        %Int.Act_coeffs(x_d,:) = FUNC_DEBYE_HUCKEL(Int.ionic_strength(x_d), Properties, Constants); 
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        Int.Act_coeffs(x_d,:) = FUNC_H2O2_Act_Coeffs(Species, Int.Mole_fracs(x_d,:), Constants); 
     
    end 
     
    % Calculate the net charge density in each phase for each x-discretization - [C/m^3] 
    Int.charge_density(x_d) = Constants.faraday * Int.Mole_densities(x_d,:) * Properties.Electric_charge; 
     
end 
end 
 
 
 
function Yfluxes = FUNC_Y_DIFF_MIG_REACT_FLUXES(Asln, M_int_a, M_int_c, Csln, ... 
                          Geometry, Grid_size, Species, Properties, Pointer, Constants, Flags) %#codegen 
  
%% SUMMARY: FUNC_DIFF_MIG_REACT_FLUXES  
% Purpose: This script calculates the y-direction fluxes due to diffusion, migration and (at the 
% electrode surfaces) reactions. 
% Author: Rick Stroman 
% Date: 28 October 2011 
  
%% NOTES  
% 
% 1. Indexing scheme: Same as for velocity in the electrolyte solution, where each flux is indexed by 
% x_discretization, y_discretization and then species.  Fluxes are assumed to be at the same locations as 
% the y-velocity in the electrolyte solution.  Fluxes with the index .asln(:,1,:) and 
% .csln(:,Grid_size.y_d_num+2,:) are ghost cells for the electrolyte solution, but here are treated as 
% the fluxes from the electrode interfaces to the bulk solution.  The same goes for 
% .asln(:,Grid_size.y_d_num+2,:) and .csln(:,1,:), which are fluxes into and out of the membrane 
% interfaces, respectively. 
% 
% 2. Flux structures with .asln and .csln fields are in the electrolyte solution or interfaces. Flux 
% structures with fields .arxn and .crxn are fluxes to/from the electrodes due to reactions at the 
% surfaces.  The field .m referrs to the flux through the membrane.  The fields .arxn, .crxn and .m have 
% no y-index. 
% 
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% 3. I tried to vectorize the loops, but MATLAB wouldn't let me put the results from the flux calcs back 
% into the flux matrices... whenever a flux matrix has a singleton dimension, it ignores it, even if it 
% changes from one operation to the next... so I would have to calculate ALL of the fluxes at once and 
% stuff them back into the matrix.  This is probably possible, but will take some more thought. 
  
%% 1. SET RANGES AND PRE-ALLOCATE MEMORY FOR VECTORS CHANGED IN LOOPS TO SPEED UP THE CODE  
  
% Initialize mass fluxes 
Yfluxes.mass.asln = zeros(Grid_size.x_d_num, Grid_size.y_d_num + 1, Species.fuel.num); 
Yfluxes.mass.csln = zeros(Grid_size.x_d_num, Grid_size.y_d_num + 1, Species.oxidizer.num); 
Yfluxes.mass.arxn = zeros(Grid_size.x_d_num, Species.fuel.num); 
Yfluxes.mass.crxn = zeros(Grid_size.x_d_num, Species.oxidizer.num); 
Yfluxes.mass.am   = zeros(Grid_size.x_d_num, Species.fuel.num); 
Yfluxes.mass.cm   = zeros(Grid_size.x_d_num, Species.oxidizer.num); 
Yfluxes.mass_diff.asln = zeros(Grid_size.x_d_num, Grid_size.y_d_num + 1, Species.fuel.num); 
Yfluxes.mass_diff.csln = zeros(Grid_size.x_d_num, Grid_size.y_d_num + 1, Species.oxidizer.num); 
Yfluxes.mass_mig.asln  = zeros(Grid_size.x_d_num, Grid_size.y_d_num + 1, Species.fuel.num); 
Yfluxes.mass_mig.csln  = zeros(Grid_size.x_d_num, Grid_size.y_d_num + 1, Species.oxidizer.num); 
  
% Initialize mole fluxes 
Yfluxes.mole.asln = zeros(Grid_size.x_d_num, Grid_size.y_d_num + 1, Species.fuel.num); 
Yfluxes.mole.csln = zeros(Grid_size.x_d_num, Grid_size.y_d_num + 1, Species.oxidizer.num); 
Yfluxes.mole.arxn = zeros(Grid_size.x_d_num, Species.fuel.num); 
Yfluxes.mole.crxn = zeros(Grid_size.x_d_num, Species.oxidizer.num); 
Yfluxes.mole.am   = zeros(Grid_size.x_d_num, Species.fuel.num); 
Yfluxes.mole.cm   = zeros(Grid_size.x_d_num, Species.oxidizer.num); 
Yfluxes.mole.mem_mig_Na  = zeros(Grid_size.x_d_num, 1); 
Yfluxes.mole.mem_diff_Na = zeros(Grid_size.x_d_num, 1); 
Yfluxes.mole_diff.asln = zeros(Grid_size.x_d_num, Grid_size.y_d_num + 1, Species.fuel.num); 
Yfluxes.mole_diff.csln = zeros(Grid_size.x_d_num, Grid_size.y_d_num + 1, Species.oxidizer.num); 
Yfluxes.mole_mig.asln  = zeros(Grid_size.x_d_num, Grid_size.y_d_num + 1, Species.fuel.num); 
Yfluxes.mole_mig.csln  = zeros(Grid_size.x_d_num, Grid_size.y_d_num + 1, Species.oxidizer.num); 
  
Mole_fluxes_to_interface_a = zeros(Grid_size.x_d_num,Species.fuel.num); 
Mole_fluxes_to_interface_c = zeros(Grid_size.x_d_num,Species.oxidizer.num); 
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% Initialize charge fluxes 
Yfluxes.charge.asln = zeros(Grid_size.x_d_num, Grid_size.y_d_num + 1); 
Yfluxes.charge.csln = zeros(Grid_size.x_d_num, Grid_size.y_d_num + 1); 
Yfluxes.charge.arxn = zeros(Grid_size.x_d_num, 1); 
Yfluxes.charge.crxn = zeros(Grid_size.x_d_num, 1); 
Yfluxes.charge.m    = zeros(Grid_size.x_d_num, 1); 
Yfluxes.charge.am   = zeros(Grid_size.x_d_num, 1); 
Yfluxes.charge.cm   = zeros(Grid_size.x_d_num, 1); 
  
% Create column vectors used locally to avoid having to call squeeze, which is expensive. 
Act_coeffs_a_1 = ones(Species.fuel.num, 1); 
Act_coeffs_a_2 = ones(Species.fuel.num, 1); 
Mole_densities_a_1 = ones(Species.fuel.num, 1); 
Mole_densities_a_2 = ones(Species.fuel.num, 1); 
  
Act_coeffs_c_1 = ones(Species.oxidizer.num, 1); 
Act_coeffs_c_2 = ones(Species.oxidizer.num, 1); 
Mole_densities_c_1 = ones(Species.oxidizer.num, 1); 
Mole_densities_c_2 = ones(Species.oxidizer.num, 1); 
  
Yfluxes_mass_asln = ones(Species.fuel.num, 1); 
Yfluxes_mass_csln = ones(Species.oxidizer.num, 1); 
Yfluxes_mole_asln = ones(Species.fuel.num, 1); 
Yfluxes_mole_csln = ones(Species.oxidizer.num, 1); 
  
anode_species_range   = 1 : Species.fuel.num; 
cathode_species_range = 1 : Species.oxidizer.num; 
mem_species_range     = 1 : Species.membrane.num; 
  
%% 2. MASS FLUXES IN THE BULK ELECTROLYTE SOLUTION [kg/(m^2 s)]  
  
for x_d = 2 : Grid_size.x_d_num + 1  % Step through indexes of real fluid cells in the x-direction. 
   
  for y_d = 1 : Grid_size.y_d_num + 1 
     
    % Step through the bulk in the direction from anode to cathode, one y-discretization at a time. Note 
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    % that we need the fluxes into and out of each cell, so the total number of fluxes is the number of 
    % cells plus 1.  Each flux is assumed to be entering the cell of the same index... i.e. flux y_d = 3 
    % is entering cell y_d = 3.  This indexing scheme was chosen because I can't have an index of 0. 
     
    % y_d = 1 is the flux out of the electrode-solution interface and into the first fluid cell ( cell 
    % (:,1) ).  It is calculated using properties at the interface and in the first fluid cell. This is 
    % the flux which the solver equates to the reaction flux to solve for mass fractions at the 
    % electrode-solution interface. 
     
    % y_d = 2 is the flux out of the first fluid cell nearest the electrode. 
     
    % y_d = Grid_size.y_d_num is the flux into the fluid cell nearest the membrane. 
     
    % y_d = Grid_size.y_d_num + 1 is the flux out of the fluid cell nearest the membrane, and into the 
    % solution-membrane interface.  It is calculated using properties in the last fluid cell and at the 
    % solution-membrane interface.  The solver will find the species mass fractions at the interface by 
    % equating this flux with the membrane flux. 
     
    % ANODE SIDE 
     
    % Copy the relevent portions of 3D matrices into vectors to avoid using the squeeze function 
    Act_coeffs_a_1(anode_species_range,1) = Asln.Act_coeffs(x_d,y_d,    anode_species_range); 
    Act_coeffs_a_2(anode_species_range,1) = Asln.Act_coeffs(x_d,y_d + 1,anode_species_range); 
    Mole_densities_a_1(anode_species_range,1) = Asln.Mole_densities(x_d,y_d,    anode_species_range); 
    Mole_densities_a_2(anode_species_range,1) = Asln.Mole_densities(x_d,y_d + 1,anode_species_range); 
     
    % Calculate the anode side mass fluxes in the y-direction due to diffusion and migration 
    [ Yfluxes.mass.asln(x_d-1,y_d,anode_species_range),      ... 
      Yfluxes.mass_diff.asln(x_d-1,y_d,anode_species_range), ... 
      Yfluxes.mass_mig.asln(x_d-1,y_d,anode_species_range),  ... 
      Yfluxes.mole_diff.asln(x_d-1,y_d,anode_species_range), ... 
      Yfluxes.mole_mig.asln(x_d-1,y_d,anode_species_range) ] = FUNC_ELECTROLYTE_MASS_FLUXES( ... 
          Act_coeffs_a_1,           ... 
          Act_coeffs_a_2,           ... 
          Mole_densities_a_1,       ... 
          Mole_densities_a_2,       ... 
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          Asln.elec_pot(x_d,y_d  ), ... 
          Asln.elec_pot(x_d,y_d+1), ... 
          Geometry.y_d_size(y_d  ), ... 
          Geometry.y_d_size(y_d+1), ... 
          Properties.anode,         ... 
          Pointer.anode,            ... 
          Constants,                ... 
          Species.fuel,             ... 
          Flags.model.y); 
     
    % CATHODE SIDE 
     
    % Copy the relevent portions of 3D matrices into vectors to avoid using the squeeze function 
    Act_coeffs_c_1(cathode_species_range,1) = Csln.Act_coeffs(x_d,y_d,    cathode_species_range,1); 
    Act_coeffs_c_2(cathode_species_range,1) = Csln.Act_coeffs(x_d,y_d + 1,cathode_species_range,1); 
    Mole_densities_c_1(cathode_species_range,1) = Csln.Mole_densities(x_d,y_d,    ... 
                                                                              cathode_species_range,1); 
    Mole_densities_c_2(cathode_species_range,1) = Csln.Mole_densities(x_d,y_d + 1,... 
                                                                              cathode_species_range,1); 
     
    % Calculate the cathode side mass fluxes in the y-direction due to diffusion and migration 
    [ Yfluxes.mass.csln(x_d-1,y_d,cathode_species_range,1),      ... 
      Yfluxes.mass_diff.csln(x_d-1,y_d,cathode_species_range,1), ... 
      Yfluxes.mass_mig.csln(x_d-1,y_d,cathode_species_range,1),  ... 
      Yfluxes.mole_diff.csln(x_d-1,y_d,cathode_species_range,1), ... 
      Yfluxes.mole_mig.csln(x_d-1,y_d,cathode_species_range,1) ]  = FUNC_ELECTROLYTE_MASS_FLUXES( ... 
          Act_coeffs_c_1,            ... 
          Act_coeffs_c_2,            ... 
          Mole_densities_c_1,        ... 
          Mole_densities_c_2,        ... 
          Csln.elec_pot(x_d, y_d),   ... 
          Csln.elec_pot(x_d, y_d+1), ... 
          Geometry.y_d_size(y_d  ),  ... 
          Geometry.y_d_size(y_d+1),  ... 
          Properties.cathode,        ... 
          Pointer.cathode,           ... 
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          Constants,                 ... 
          Species.oxidizer,          ... 
          Flags.model.y); 
  end 
   
end 
  
%% 3. COMPUTE MOLE AND CHARGE FLUXES IN THE BULK FROM THE MASS FLUXES IN THE BULK 
  
for x_d = 1 : Grid_size.x_d_num 
   
  for y_d = 1 : Grid_size.y_d_num + 1 
     
    % ELECTROLYTE SOLUTION AND INTERFACES 
     
    % Copy the species mass fluxes into local variables to avoid using the squeeze function 
    Yfluxes_mass_asln(anode_species_range,1)   = Yfluxes.mass.asln(x_d,y_d,anode_species_range); 
    Yfluxes_mass_csln(cathode_species_range,1) = Yfluxes.mass.csln(x_d,y_d,cathode_species_range); 
     
    % Compute the electrolyte mole fluxes [kmol/(m^2 s)] 
    Yfluxes.mole.asln(x_d,y_d,anode_species_range)   = Yfluxes_mass_asln ... 
                                         .* Properties.anode.one_over_molar_mass(anode_species_range); 
    Yfluxes.mole.csln(x_d,y_d,cathode_species_range) = Yfluxes_mass_csln ... 
                                     .* Properties.cathode.one_over_molar_mass(cathode_species_range); 
     
    % Copy the species mole fluxes into local variables to avoid using the squeeze function 
    Yfluxes_mole_asln(anode_species_range,1) = Yfluxes.mole.asln(x_d,y_d,anode_species_range); 
    Yfluxes_mole_csln(cathode_species_range,1) = Yfluxes.mole.csln(x_d,y_d,cathode_species_range); 
     
    % Compute the electrolyte charge fluxes [C/(m^2 s)] 
    Yfluxes.charge.asln(x_d,y_d) = Constants.faraday * Properties.anode.Electric_charge_T   * ... 
                                                                                  Yfluxes_mole_asln; 
    Yfluxes.charge.csln(x_d,y_d) = Constants.faraday * Properties.cathode.Electric_charge_T * ... 
                                                                                  Yfluxes_mole_csln; 
     
  end 
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end 
  
%% 4. MASS FLUXES THROUGH THE MEMBRANE [kg/(m^2 s)] 
% Note that this function calculates the mass fluxes for the whole length of the channel at once. 
% The matrices returned from this function have the indices (x_d, species). 
  
[ Yfluxes.mass.am, Yfluxes.mass.cm, Yfluxes.mole.mem_mig_Na, Yfluxes.mole.mem_diff_Na ] = ... 
  FUNC_MEMBRANE_MASS_FLUXES( ... % Membrane flux with anode and cathode species orders 
  M_int_a               , M_int_c,     ... 
  Geometry.mem_thick    , Properties,  ... 
  Constants             , Species,     ... 
  Pointer               , Flags,       ... 
  Grid_size); 
  
%% 5. COMPUTE MOLE AND CHARGE FLUXES AT THE MEMBRANE AND ELECTRODES FROM THE MASS FLUXES 
  
for x_d = 1 : Grid_size.x_d_num 
   
  % REACTIONS AND MEMBRANE - no y-index dependence 
   
  % Compute membrane mole fluxes [kmol/(m^2 s)] 
  Yfluxes.mole.am(x_d,anode_species_range)   = ... 
    Yfluxes.mass.am(x_d,1:length(Properties.anode.one_over_molar_mass)) ... 
                                                            .* Properties.anode.one_over_molar_mass'; 
  Yfluxes.mole.cm(x_d,cathode_species_range) = ... 
    Yfluxes.mass.cm(x_d,1:length(Properties.cathode.one_over_molar_mass)) ... 
                                                            .* Properties.cathode.one_over_molar_mass'; 
   
  % Compute the membrane charge flux [C/(m^2 s)] 
  Yfluxes.charge.am(x_d,1) = ... 
    Constants.faraday * Properties.anode.Electric_charge'   * Yfluxes.mole.am(x_d,:)'; 
  Yfluxes.charge.cm(x_d,1) = ... 
    Constants.faraday * Properties.cathode.Electric_charge' * Yfluxes.mole.cm(x_d,:)'; 
   
End 
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function Xfluxes = FUNC_X_DIFF_MIG_FLUXES(Asln, Csln, Geometry, Grid_size, Species, ... 
                                          Properties, Pointer, Constants, Flags) %#codegen 
  
%% SUMMARY: FUNC_X_DIFF_MIG_FLUXES  
% Purpose: This script calculates the x-direction fluxes due to diffusion and migration. 
% Author: Rick Stroman 
  
%% NOTES  
% 
% 1. Indexing scheme: Each flux is indexed by x_discretization, y_discretization and then species. 
% x-direction fluxes are assumed to be at the same locations as the x-velocity in the electrolyte 
% solution, namely at the boundaries between x-discretizations. 
% 
% 2. Some discretizations are ghost cells, which store the values at interfaces.  They are used here 
% to calculate the fluxes to or from the interfaces on the bulk electrolyte side of the interface. 
%   .asln(:,1,:)                  --- anode interface 
%   .asln(:,Grid_size.y_d_num+2,:) --- anode side membrane interface 
%   .asln(1,:,:)                  --- anode inlet 
%   .asln(Grid_size.x_d_num+2,:,:) --- anode outlet 
%   .csln(:,1,:)                  --- cathode side membrane interface 
%   .csln(:,Grid_size.y_d_num+2,:) --- cathode interface 
%   .csln(1,:,:)                  --- cathode inlet 
%   .csln(Grid_size.x_d_num+2,:,:) --- cathode outlet 
% 
% 3. Flux directions: x-fluxes are positive in the direction from inlet to outlet, and y-fluxes are 
% positive in the direction from anode to cathode. 
% 
% 4. Flux structures with .asln and .csln fields are in the electrolyte solution. Flux structures with 
% fields .arxn and .crxn are fluxes to/from the electrodes due to reactions at the surfaces.  The field 
% .m referrs to the flux through the membrane.  The fields .arxn, .crxn and .m have no y-index, because 
% they are linear in the x-direction. 
% 
% 5. I tried to vectorize the loops, but MATLAB wouldn't let me put the results from the flux calcs back 
% into the flux matrices... whenever a flux matrix has a singleton dimension, it ignores it, even if it 
% changes from one operation to the next... so I would have to calculate ALL of the fluxes at once and 
% stuff them back into the matrix.  This is probably possible, but will take some more thought. 
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%% 1. SET RANGES AND PRE-ALLOCATE MEMORY FOR VECTORS CHANGED IN LOOPS TO SPEED UP THE CODE  
  
% Initialize mass fluxes 
Xfluxes.mass.asln = zeros(Grid_size.x_d_num + 1, Grid_size.y_d_num, Species.fuel.num); 
Xfluxes.mass.csln = zeros(Grid_size.x_d_num + 1, Grid_size.y_d_num, Species.oxidizer.num); 
Xfluxes.mass_diff.asln = zeros(Grid_size.x_d_num + 1, Grid_size.y_d_num, Species.fuel.num); 
Xfluxes.mass_diff.csln = zeros(Grid_size.x_d_num + 1, Grid_size.y_d_num, Species.oxidizer.num); 
Xfluxes.mass_mig.asln = zeros(Grid_size.x_d_num + 1, Grid_size.y_d_num, Species.fuel.num); 
Xfluxes.mass_mig.csln = zeros(Grid_size.x_d_num + 1, Grid_size.y_d_num, Species.oxidizer.num); 
  
% Initialize mole fluxes 
Xfluxes.mole.asln = zeros(Grid_size.x_d_num + 1, Grid_size.y_d_num, Species.fuel.num); 
Xfluxes.mole.csln = zeros(Grid_size.x_d_num + 1, Grid_size.y_d_num, Species.oxidizer.num); 
Xfluxes.mole_diff.asln = zeros(Grid_size.x_d_num + 1, Grid_size.y_d_num, Species.fuel.num); 
Xfluxes.mole_diff.csln = zeros(Grid_size.x_d_num + 1, Grid_size.y_d_num, Species.oxidizer.num); 
Xfluxes.mole_mig.asln = zeros(Grid_size.x_d_num + 1, Grid_size.y_d_num, Species.fuel.num); 
Xfluxes.mole_mig.csln = zeros(Grid_size.x_d_num + 1, Grid_size.y_d_num, Species.oxidizer.num); 
  
% Initialize charge fluxes 
Xfluxes.charge.asln = zeros(Grid_size.x_d_num + 1, Grid_size.y_d_num); 
Xfluxes.charge.csln = zeros(Grid_size.x_d_num + 1, Grid_size.y_d_num); 
  
% Create column vectors used locally to avoid having to call squeeze, which is expensive. 
Act_coeffs_a_1 = ones(Species.fuel.num, 1); 
Act_coeffs_a_2 = ones(Species.fuel.num, 1); 
Mole_densities_a_1 = ones(Species.fuel.num, 1); 
Mole_densities_a_2 = ones(Species.fuel.num, 1); 
  
Act_coeffs_c_1 = ones(Species.oxidizer.num, 1); 
Act_coeffs_c_2 = ones(Species.oxidizer.num, 1); 
Mole_densities_c_1 = ones(Species.oxidizer.num, 1); 
Mole_densities_c_2 = ones(Species.oxidizer.num, 1); 
  
Xfluxes_mass_asln = ones(Species.fuel.num, 1); 
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Xfluxes_mass_csln = ones(Species.oxidizer.num, 1); 
Xfluxes_mole_asln = ones(Species.fuel.num, 1); 
Xfluxes_mole_csln = ones(Species.oxidizer.num, 1); 
  
%% 2. MASS FLUXES IN THE BULK ELECTROLYTE SOLUTION [kg/(m^2 s)]  
  
% Step down the channel from the inlet to the outlet, one x-discretization at a time.  The index x_d 
% steps through the indeces of the real discretizations (not including the ghost cells at each end). Note 
% that we need the fluxes into and out of each cell, so the total number of fluxes is the number of cells 
% plus 1.  Each flux is assumed to be entering the cell of the same index... i.e. flux x_d = 3 is 
% entering cell x_d = 3.  This indexing scheme was chosen because I can't have an index of 0. 
  
% x_d = 1 is the flux from the inlet into the first fluid cell.  It is calculated using properties 
% at the inlet and in the first fluid cell. 
% x_d = 2 is the flux out of the first fluid cell nearest the inlet. 
% x_d = Grid_size.x_d_num is the flux into the last fluid cell near the outlet. 
% x_d = Grid_size.x_d_num + 1 is the flux out of the fluid cell nearest the outlet.  It is calculated 
% using properties in the last fluid cell. 
     
for x_d = 2 : Grid_size.x_d_num + 1 % Step through the x-direction fluxes.  Neglect x_d = 1 to eliminate  
                                   % unrealistic fluxes at inlet which don't obey charge neutrality  
                                   % upstream of the model domain. 
  
    for y_d = 2 : Grid_size.y_d_num + 1 % Step through the y-direction indexes of real fluid cells 
         
        % Mass fluxes of each species 
         
        Act_coeffs_a_1(:) = Asln.Act_coeffs(x_d,y_d,:); 
        Act_coeffs_a_2(:) = Asln.Act_coeffs(x_d+1,y_d,:); 
        Mole_densities_a_1(:) = Asln.Mole_densities(x_d,y_d,:); 
        Mole_densities_a_2(:) = Asln.Mole_densities(x_d+1,y_d,:); 
         
        [Xfluxes.mass.asln(x_d,y_d-1,:), ... 
         Xfluxes.mass_diff.asln(x_d,y_d-1,:), ... 
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         Xfluxes.mass_mig.asln(x_d,y_d-1,:),  ... 
         Xfluxes.mole_diff.asln(x_d,y_d-1,:), ... 
         Xfluxes.mole_mig.asln(x_d,y_d-1,:) ] = FUNC_ELECTROLYTE_MASS_FLUXES( ... 
                                        Act_coeffs_a_1,        ... 
                                        Act_coeffs_a_2,      ... 
                                        Mole_densities_a_1,    ... 
                                        Mole_densities_a_2,  ... 
                                        Asln.elec_pot(x_d,y_d),                     ... 
                                        Asln.elec_pot(x_d+1,y_d),                   ... 
                                        Geometry.x_d_size(x_d),                     ... 
                                        Geometry.x_d_size(x_d+1),                   ... 
                                        Properties.anode,                           ... 
                                        Pointer.anode,                              ... 
                                        Constants,                                  ... 
                                        Species.fuel,                               ... 
                                        Flags.model.x); 
  
     
        % Mass fluxes of each species 
         
        Act_coeffs_c_1(:) = Csln.Act_coeffs(x_d,y_d,:); 
        Act_coeffs_c_2(:) = Csln.Act_coeffs(x_d+1,  y_d,:); 
        Mole_densities_c_1(:) = Csln.Mole_densities(x_d,y_d,:); 
        Mole_densities_c_2(:) = Csln.Mole_densities(x_d+1  ,y_d,:); 
         
        [Xfluxes.mass.csln(x_d,y_d-1,:), ... 
         Xfluxes.mass_diff.csln(x_d,y_d-1,:), ... 
         Xfluxes.mass_mig.csln(x_d,y_d-1,:),  ... 
         Xfluxes.mole_diff.csln(x_d,y_d-1,:), ... 
         Xfluxes.mole_mig.csln(x_d,y_d-1,:) ] = FUNC_ELECTROLYTE_MASS_FLUXES( ... 
                                        Act_coeffs_c_1,          ... 
                                        Act_coeffs_c_2,      ... 
                                        Mole_densities_c_1,      ... 
                                        Mole_densities_c_2,  ... 
                                        Csln.elec_pot(x_d,y_d),                         ... 
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                                        Csln.elec_pot(x_d+1,  y_d),                     ... 
                                        Geometry.x_d_size(x_d),                         ... 
                                        Geometry.x_d_size(x_d+1),                       ... 
                                        Properties.cathode,                             ... 
                                        Pointer.cathode,                                ... 
                                        Constants,                                      ... 
                                        Species.oxidizer,                               ... 
                                        Flags.model.x); 
    end 
  
end 
  
%% 3. COMPUTE MOLE AND CHARGE FLUXES FROM THE MASS FLUXES  
      
for x_d = 1 : Grid_size.x_d_num + 1 
            
    for y_d = 1 : Grid_size.y_d_num 
  
        % ELECTROLYTE SOLUTION AND INTERFACES 
         
        Xfluxes_mass_asln(:) = Xfluxes.mass.asln(x_d,y_d,:); 
        Xfluxes_mass_csln(:) = Xfluxes.mass.csln(x_d,y_d,:); 
         
        % Compute the electrolyte mole fluxes [kmol/(m^2 s)] 
        Xfluxes.mole.asln(x_d,y_d,:) = ... 
          Xfluxes_mass_asln(length(Properties.anode.one_over_molar_mass)) ... 
          .* Properties.anode.one_over_molar_mass; 
        Xfluxes.mole.csln(x_d,y_d,:) = ... 
          Xfluxes_mass_csln(length(Properties.cathode.one_over_molar_mass)) ... 
          .* Properties.cathode.one_over_molar_mass; 
                         
        Xfluxes_mole_asln(:) = Xfluxes.mole.asln(x_d,y_d,:); 
        Xfluxes_mole_csln(:) = Xfluxes.mole.csln(x_d,y_d,:); 
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        % Compute the electrolyte charge fluxes [C/(m^2 s)] 
        Xfluxes.charge.asln(x_d,y_d) = Constants.faraday * Properties.anode.Electric_charge_T   ... 
          * Xfluxes_mole_asln; 
        Xfluxes.charge.csln(x_d,y_d) = Constants.faraday * Properties.cathode.Electric_charge_T ... 
          * Xfluxes_mole_csln; 
         
    end 
     
end 
  
 
function [Mass_fluxes, Mass_fluxes_diffusion, Mass_fluxes_migration, Mole_fluxes_diffusion, ... 
  Mole_fluxes_migration] = FUNC_ELECTROLYTE_MASS_FLUXES( ... 
    Act_coeffs_1 , Act_coeffs_2,  Mole_densities_1, Mole_densities_2, Elec_pot_1, Elec_pot_2, ... 
    cell_y_size_1, cell_y_size_2, Properties , Pointer,  Constants , Species, Flags) %#codegen        
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%% SUMMARY: FUNC_ELECTROLYTE_MASS_FLUXES  
% Purpose: Compute the mass fluxes in the electrolyte solution, in the y-direction, due to diffusion and 
% migration.  This function adresses one pair of cells (one flux) per call. 
% Author: Rick Stroman 
  
%% NOTES  
% 
% (1) Mass fluxes are returned in units kg/(m^2 s) assuming the inputs to the function are: 
%     temperature in K, mole density in kmol/m^3, electric potential in V, binary diffusivity in m^2/s, 
%     molar transport coefficient in m/s and distances between discretizaiton centers in m. Activity 
%     coefficients have  no units. 
% 
% (2) This function accounts for transport due to activity and electric potential gradients. 
% 
% (3) The molar flux of water is that which balances the diffusion of solutes; note that because it 
%     is neutral, there is no water migration flux. 
% 
% (4) The "1" and "2" notation comes from the assumption that positive fluxes are directed from 
%     the anode to the cathode, and the positive y direction is from anode to cathode.  The gradient is 
%     calculated as (property_2 - property_1) / (location_2 - location_1), where 1 is closer to the anode 
%     than 2.  Note that the fluxes calculated in this function flow in the direction opposite the 
%     gradient, so there are minus signs in front of the gradient terms. 
% 
%    --------------------------- 
%    |                         |                       
%    |                         |                       
%    |          * Properties_2 |                      
%    |                         |                       
%    |           ^ Flux        |                      
%    |           |             |                       
%    ------------|-------------- 
%    |           |             |          |             
%    |                         |          |             
%    |          * Properties_1 |          |    cell_y_size_1        
%    |                         |          |             
%    |                         |          |            
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%    |                         |          |             
%    ---------------------------           
% 
% (5) The squeeze function applied to the electrolyte solution properties produces a matrix which is 
% indexed (x_d, s_i), so that is the format of Act_coeffs and Mole_densities 
  
%% 1. CALCULATE LOCALLY USEFUL QUANTITIES  
  
Activities_1 = zeros(Species.num,1); 
Activities_2 = zeros(Species.num,1); 
  
% Calculate activities of all species in (:,y_1,:) and (:,y_2,:) 
Activities_1 = Act_coeffs_1 .* Mole_densities_1; 
Activities_2 = Act_coeffs_2 .* Mole_densities_2; 
  
% Calculate the distance between the centers of the two cells defining the flux across thier boundary. 
one_over_delta_y = 2 / (cell_y_size_1 + cell_y_size_2); 
  
% Calculate the mole density of each species at the boundary between cells, assuming a linear gradient. 
% Same process as above. 
Boundary_Mole_densities = Mole_densities_2 - ... 
                          0.5 * cell_y_size_2 * (Mole_densities_2 - Mole_densities_1) * one_over_delta_y;                
                                                     
%% 2. CALCULATE THE DIFFUSION FLUX OF EACH SPECIES FROM Y-DISCRETIZATION "1" TO Y-DISCRETIZATION "2" 
  
% Molar flux due to diffusion in response to the activity gradient (this is a vector).  See Ref [1] pg 
% 29. Sign check: When Activities_1 > Acitivities_2, then the flux should be positive.  Example: when the 
% activity in asln_a > asln, then the flow should be from asln_a to asln. 
Mole_fluxes_diffusion = Flags.diffusion * Properties.Diffusivities .* -(Activities_2 - Activities_1) ... 
                                                                    * one_over_delta_y;  % kmol/(m^2 s) 
%Mole_fluxes_diffusion = Flags.diffusion * Properties.Diffusivities .* -(Mole_densities_2 - 
Mole_densities_1) * one_over_delta_y;  % kmol/(m^2 s) 
  
% The water flux cannot be calculated accurately using Fick's law because the concentration is enormous 
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% compared to everything else, and changes slightly from one cell to the next.  Zero out the erroneous 
% mole flux of water.  Calculate the mass flux of water in step #4 and stick it into the mass flux vector 
% then. 
Mole_fluxes_diffusion(Pointer.species.H2O,1) = 0;   
  
% Calculate the mass fluxes of non-water species 
Mass_fluxes_diffusion = Mole_fluxes_diffusion(1:Species.num,1) .* Properties.Molar_mass; % kg/(m^2 s) 
  
% The net diffusion mass flux must be zero to conserve momentum, so we use water to balance the mass 
% fluxes of everything else.  Solutes go one way, and water goes the other way to keep the momentum 
% fluxes balanced. 
  
% We want sum(Y_k * rho * v_k) = 0 and mass_flux_diffusion_H2O = sum(mass_flux_diffusion_k) where  
% k ~= 0 
  
% Replace the erroneous water diffusion mass flux with the opposite of the total solute mass flux 
Mass_fluxes_diffusion(Pointer.species.H2O,1) = - Properties.Molar_mass_T * Mole_fluxes_diffusion; 
  
% Use the water mass flux to find the water mole flux 
Mole_fluxes_diffusion(Pointer.species.H2O,1) = Mass_fluxes_diffusion(Pointer.species.H2O,1) ... 
                                                          / Properties.Molar_mass(Pointer.species.H2O); 
  
%% 3. CALCULATE THE MIGRATION FLUX OF EACH SPECIES FROM Y-DISCRETIZATION "1" TO Y-DISCRETIZATION "2" 
  
% Molar fluxes due to migration in response to the electric potential gradient (this is a vector). See 
% Ref [1] pg 29.  Note that z_i * F / (R * T) gives the mobility due to the Nernst - Einstein relation, 
% and the mobility is the terminal velocity of an ion in solution in response to a force of 1 N... or 
% alternatively, in response to a an electric field (potential gradient) of 1 V.  See Ref [1] pg 66 and 
% Ref [2] pg 11 and 283.  The complete equation for migration is discussed in Ref [2] chapter 11 
% "Infinitely dilute solutions". 
Mole_fluxes_migration = Properties.Diffusivities * Constants.FoRT         ...  
                      .* Properties.Electric_charge .* Boundary_Mole_densities ...  
                      * -(Elec_pot_2 - Elec_pot_1) * one_over_delta_y;                                             
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% Calculate the mass fluxes due to migration 
Mass_fluxes_migration = Mole_fluxes_migration .* Properties.Molar_mass; % kg/(m^2 s) 
        
%% 4. CALCULATE THE TOTAL FLUX OF EACH SPECIES FROM Y-DISCRETIZATION "1" TO Y-DISCRETIZATION "2" 
  
Mass_fluxes = Mass_fluxes_diffusion + Mass_fluxes_migration; % kg/(m^2 s) 
  
end 
 
 
  
  
function [Mass_fluxes_a, Mass_fluxes_c, mig_mole_flux_Na, dif_mole_flux_Na] = ... 
  FUNC_MEMBRANE_MASS_FLUXES( M_int_a  , M_int_c,  thickness_m, Properties,... 
                             Constants, Species, Pointer, Flags, Grid_size) %#codegen 
  
%% SUMMARY: FUNC_MEMBRANE_MASS_FLUXES  
% Purpose: Compute the molar fluxes of each species through the membrane. 
% Author: Rick Stroman 
  
%% NOTES  
% 
% (1) Mass fluxes are returned in units kg/(m^2 s) assuming the inputs to the function are: 
%     temperature in K, molar density in kmol/m^3, electric potential in V, binary diffusivity in m^2/s 
%     and molar transport coefficient in m/s.  Mole fractions and activity coefficients have no units. 
% 
% (2) At present the only species considered are Na+ and H2O.  The rate of Na+ transport is 
%     calculated from the membrane conductivity and potential gradient.  The rate of H2O transport is 
%     calculated by assuming all of the H2O flux is due to electroosmotic drag. 
% 
% (3) Positive fluxes are directed from the anode to the cathode, and the positive direction is from 
%     anode to cathode. 
  
%% 1. CALCULATE THE DIFFUSION AND MIGRATION MASS FLUXES THROUGH THE MEMBRANE  
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% Set the cation mole fractions... if we allow H+, these will be solved for and become inputs to the 
% function. 
M.Mole_fracs.Na = 1; 
M.Mole_fracs.H  = 0; 
  
% Calculate the cation mobilities using equations from [3].  Note that they have F built-in, so there is 
% no need to include it in the migration and diffusion equations! 
u_Na = Properties.membrane.Na_mobility * (1 - Properties.membrane.k * M.Mole_fracs.H ); 
u_H  = Properties.membrane.H_mobility  * (1 - Properties.membrane.k * M.Mole_fracs.Na); 
  
% Calculate the electric potential and concentration gradients. 
elec_grad = (M_int_c.elec_pot - M_int_a.elec_pot) / thickness_m; 
conc_grad = (M_int_c.Mole_densities(:,Species.membrane.loc_cathode) - ... 
                                                M_int_a.Mole_densities(:,Species.membrane.loc_anode)); 
  
% Migration fluxes 
mig_mole_flux_Na = ... 
  -Properties.electric_charge.Na * u_Na * M.Mole_fracs.Na * Properties.membrane.SO3_density * elec_grad; 
mig_mole_flux_H  = ... 
-Properties.electric_charge.H  * u_H  * M.Mole_fracs.H  * Properties.membrane.SO3_density * elec_grad; 
  
% Diffusion fluxes 
dif_mole_flux_Na  = -u_Na / Constants.faraday * Constants.ideal_gas * Constants.temperature ... 
  * conc_grad(:,Pointer.membrane.species.Na); 
dif_mole_flux_H2O = -Properties.membrane.H2O_diffusivity * conc_grad(:,Pointer.membrane.species.H2O); 
%dif_mole_flux_H  = -u_H  / Constants.faraday * Constants.ideal_gas * Constants.temperature * ... 
% conc_grad(:,Pointer.membrane.species.H); 
dif_mole_flux_H = 0;  % kludge, because H+ isn't in the list of membrane species, so there is  
                      % no pointer for it. 
  
% Total mass fluxes of ions 
mass_flux_Na = ( Flags.model.m.migration * mig_mole_flux_Na + ... 
  Flags.model.m.diffusion * dif_mole_flux_Na ) * Properties.molar_mass.Na; 
mass_flux_H  = ( Flags.model.m.migration * mig_mole_flux_H  + ... 
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  Flags.model.m.diffusion * dif_mole_flux_H  ) * Properties.molar_mass.H; 
  
%% 2. CALCULATE THE ELECTRO-OSMOTIC DRAG MASS FLUX OF H2O THROUGH THE MEMBRANE  
  
% Electro-osmotic drag flux of H2O 
EOD_mole_flux_H2O = mig_mole_flux_Na * Properties.membrane.electro_drag; 
  
%% 3. CALCULATE THE PERMEATION MASS FLUX OF H2O THROUGH THE MEMBRANE 
  
if mean(M_int_a.press) > mean(M_int_c.press) 
    water_mass_density = M_int_a.mass_density * M_int_a.Mass_fracs(:,Pointer.anode.species.H2O); 
else 
    water_mass_density = M_int_c.mass_density * M_int_c.Mass_fracs(:,Pointer.cathode.species.H2O); 
end 
  
permeation_mass_flux_H2O = -Properties.membrane.permeability * ... 
  (M_int_c.press - M_int_a.press) * water_mass_density; 
  
%% 4. TOTAL MASS FLUX OF H2O THROUGH THE MEMBRANE 
  
% Total mass flux of H2O 
mass_flux_H2O = ( Flags.model.m.diffusion * dif_mole_flux_H2O + Flags.model.m.EOD * EOD_mole_flux_H2O ) ... 
                      * Properties.molar_mass.H2O + Flags.model.m.permeation * permeation_mass_flux_H2O; 
  
%% 4. RECAST MEMBRANE MASS FLUX VECTOR INTO MASS FLUX VECTORS WITH THE ANODE AND CATHODE SPECIES ORDERS 
  
% Create a vector containing the water and Na+ mass fluxes 
Mass_fluxes_m = [mass_flux_H2O mass_flux_Na]; 
  
Mass_fluxes_a = zeros(Grid_size.x_d_num, Species.fuel.num,1); 
Mass_fluxes_c = zeros(Grid_size.x_d_num, Species.oxidizer.num,1); 
  
% Mass fluxes based on the anode and cathode species pointers 
% The negative sign in front of the cathode mass flux indicates that the mass fluxes as calculated above 
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% are positive when flowing into the membrane from the anode side in the anode coordinate system, but 
% that same mass flux flows out of the membrane and into the cathode side, which is negative in the 
% cathode coordinate system. 
Mass_fluxes_a(:, Species.membrane.loc_anode)   = Mass_fluxes_m; % kg/(m^2 s) 
Mass_fluxes_c(:, Species.membrane.loc_cathode) = -Mass_fluxes_m; % kg/(m^2 s) 
  
end 
  
  
  
  
 
function [mass_flux mass_density Mass_fracs charge_density] = ... 
                        FUNC_SCB_VALUES( Sln, Xfluxes_mass, Yfluxes_mass, Geometry, Grid_size, Species ) 
  
%% SUMMARY: FUNC_SCB_VALUES 
% Purpose: This function calculates the mass density, mass fractions, charge density and total mass 
% fluxes at the scalar cell boundaries for use in the continuity, N-S and species conservation equations. 
% Author: Rick Stroman 
  
%% NOTES: 
  
% The mass and species conservation equations ensure those properties are conserved over the scalar 
% cells.  To evaluate the equations, we need to know the mass density, mass fractions, and total mass 
% fluxes at the scalar cell boundaries.  The FUNC_SCB_VALUES function calculates the properties by linear 
% interpolation between cell centers (accounting for different cell sizes).  The mass fluxes are the sum 
% of advection, diffusion and migration mass fluxes at the boundaries.  The lowest levels in each 
% structure are .x and .y, which signify whether the values are at cell boundaries in the x-direction or 
% y-direction. 
  
%% 1. INITIALIZE VARIABLES STORING THE BOUNDARY PROPERTIES AND FLUXES 
  
mass_density.x = zeros(Grid_size.x_d_num + 1, Grid_size.y_d_num    ); 
mass_density.y = zeros(Grid_size.x_d_num    , Grid_size.y_d_num + 1); 
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mass_flux.x = zeros(Grid_size.x_d_num + 1, Grid_size.y_d_num    ); 
mass_flux.y = zeros(Grid_size.x_d_num    , Grid_size.y_d_num + 1); 
  
Mass_fracs.x = zeros(Grid_size.x_d_num + 1,   Grid_size.y_d_num, Species.num); 
Mass_fracs.y = zeros(Grid_size.x_d_num, Grid_size.y_d_num + 1,     Species.num); 
  
charge_density.x = zeros(Grid_size.x_d_num + 1, Grid_size.y_d_num    ); 
charge_density.y = zeros(Grid_size.x_d_num    , Grid_size.y_d_num + 1); 
  
%% 2. CALCULATE PROPERTIES AT THE SCALAR CELL BOUNDARIES  
  
% Calculate the value at each cell boundary as the linear average of the values in the two adjacent cell 
% centers, weighted to account for the boundary not necessarily being halfway between the centers. 
  
% PROPERTIES AT THE x-DIRECTION SCALAR CELL BOUNDARIES 
  
% Calculate the value at each cell boundary, starting with the inlet and ending with the outlet. The 
% values at the inlet and outlet are the average between a ghost cell and a real cell.  This excludes the 
% ghost cells along the electrode and membrane. 
  
for x_d = 1 : Grid_size.x_d_num + 1  
     
    % Distance between scalar cell centers in the x-direction 
    one_over_x_step = 1 / ( Geometry.x_d_size(x_d) + Geometry.x_d_size(x_d+1) ); 
     
    for y_d = 2 : Grid_size.y_d_num + 1  
         
        % Note that a 1/2 that appears in both the numerator and denominator of the gradients below 
        % has been dropped... 
        mass_density.x(x_d,y_d-1) = Sln.mass_density(x_d,y_d) ... 
                                  + Geometry.x_d_size(x_d) * ( Sln.mass_density(x_d+1,y_d) - ... 
                                  Sln.mass_density(x_d,y_d) ) * one_over_x_step; 
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        charge_density.x(x_d,y_d-1) = Sln.charge_density(x_d,y_d) ... 
                                  + Geometry.x_d_size(x_d) * ( Sln.charge_density(x_d+1,y_d) - ... 
                                  Sln.charge_density(x_d,y_d) ) * one_over_x_step; 
                               
        for s_i = 1 : Species.num 
             
            Mass_fracs.x(x_d,y_d-1,s_i) = Sln.Mass_fracs(x_d,y_d,s_i) ... 
                                        + Geometry.x_d_size(x_d) * ( Sln.Mass_fracs(x_d+1,y_d,s_i) - ... 
                                        Sln.Mass_fracs(x_d,y_d,s_i) ) * one_over_x_step; 
         
        end 
        
    end 
end 
  
% PROPERTIES AT THE y-DIRECTION SCALAR CELL BOUNDARIES 
  
% Calculate the value at each cell boundary, starting with the electrode interface and ending at the 
% membrane interface.  The values at the electrode and membrane interfaces are averages of a ghost cell 
% and a real cell.  This excludes the ghost cells along the inlet and outlet. 
  
for x_d = 2 : Grid_size.x_d_num + 1  
    for y_d = 1 : Grid_size.y_d_num + 1  
  
        % Distance between scalar cell centers in the y-direction 
        one_over_y_step = 1 / ( Geometry.y_d_size(y_d) + Geometry.y_d_size(y_d+1) ); 
     
        mass_density.y(x_d-1,y_d) = Sln.mass_density(x_d,y_d) ... 
                                  + Geometry.y_d_size(y_d) * ( Sln.mass_density(x_d,y_d+1) ... 
                                  - Sln.mass_density(x_d,y_d) ) * one_over_y_step; 
  
        charge_density.y(x_d-1,y_d) = Sln.charge_density(x_d,y_d) ... 
                                  + Geometry.y_d_size(y_d) * ( Sln.charge_density(x_d,y_d+1) ... 
                                  - Sln.charge_density(x_d,y_d) ) * one_over_y_step; 
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        for s_i = 1 : Species.num 
             
            Mass_fracs.y(x_d-1,y_d,s_i) = Sln.Mass_fracs(x_d,y_d,s_i) ... 
                                        + Geometry.y_d_size(y_d) * ( Sln.Mass_fracs(x_d,y_d+1,s_i) ... 
                                        - Sln.Mass_fracs(x_d,y_d,s_i) ) * one_over_y_step; 
         
        end 
   
    end 
end 
  
%% 3. CALCULATE MASS FLUXES AT THE SCALAR CELL BOUNDARIES 
  
% Sum the advection (rho*v), diffusion and migration mass fluxes.  The sums of diffusion and migration 
% are stored in the Xfluxes and Yfluxes arrays, having been calculated beforehand by another function. 
  
% MASS FLUXES AT THE SCALAR CELL BOUNDARIES IN THE x-DIRECTION 
  
for x_d = 1 : Grid_size.x_d_num + 1 % Includes fluxes at inlet and exit 
    for y_d = 2 : Grid_size.y_d_num + 1 
        mass_flux.x(x_d,y_d-1) = mass_density.x(x_d,y_d-1) * Sln.x_vel(x_d,y_d) ... 
                               + sum( Xfluxes_mass(x_d,y_d-1,:) ); 
    end 
end 
  
% MASS FLUXES AT THE SCALAR CELL BOUNDARIES IN THE y-DIRECTION 
  
for x_d = 2 : Grid_size.x_d_num + 1  
    for y_d = 1 : Grid_size.y_d_num + 1  
        mass_flux.y(x_d-1,y_d) = mass_density.y(x_d-1,y_d) * Sln.y_vel(x_d,y_d) ... 
                               + sum( Yfluxes_mass(x_d-1,y_d,:) );          
    end 
end 
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end 
   
  
  
 
function [x_dir_x_vel, y_dir_y_vel] = FUNC_VCB_VALUES( Sln, Grid_size ) 
  
%% SUMMARY: FUNC_VCB_VALUES  
% Purpose: Calculate the velocities at the boundaries of the velocity cells as a linear average of 
% the velocities in the adjacent cell centers. 
% Author: Rick Stroman 
  
%% 1. INITIALIZE VARIABLES 
  
x_dir_x_vel = zeros(Grid_size.x_d_num + 1, Grid_size.y_d_num); 
y_dir_y_vel = zeros(Grid_size.x_d_num + 1, Grid_size.y_d_num); 
  
%% 2. CALCULATE PROPERTIES AT THE BOUNDARIES  
  
for x_d = 2 : Grid_size.x_d_num + 2 % The additional two cells are guard cells for BC's 
     
    for y_d = 2 : Grid_size.y_d_num + 1 % The additional two cells are guard cells for BC's 
         
        x_r = x_d - 1;  y_r = y_d - 1; 
         
        x_dir_x_vel(x_r,y_r) = 0.5 * ( Sln.x_vel(x_d,y_d) + Sln.x_vel(x_d-1,y_d) ); 
        y_dir_y_vel(x_r,y_r) = 0.5 * ( Sln.y_vel(x_d,y_d) + Sln.y_vel(x_d,y_d-1) ); 
           
    end 
     
end 
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function [Mass_fluxes, delta_phi] = FUNC_REACTION_FLUXES( phi_e, Interface, Srxn, Properties, ... 
                                                                      Grid_size, Species, Constants) 
  
%% SUMMARY: FUNC_REACTION_FLUXES 
% Purpose: Compute the mass fluxes of species from electrode. 
% Author: Rick Stroman 
  
%% NOTES: 
  
% (1) Mass fluxes are returned in units kg/(m^2 s) assuming the temperature is in K, mole density in 
%     kmol/m^3, and electric potential in V. 
% 
% (2) The rate expression for each reaction follows the form laid out in references [1] pg 210 and 
% [2] page 2388.  For the chemical reactions, there are simply forward and reverse reaction rate 
% constants and concentration dependencies.  For the charge transfer (electrochemical) reactions, 
% there are also activation energy barriers created by the electric potential difference between the 
% electrode and solution. 
% 
% (4) The electric potential of the electrode and interface are passed into this function as vectors 
%     covering the whole length of the channel, so the function returns a matrix of species mass fluxes, 
%     one species indexed vector for each x-discretization. 
% 
% (5) The electron transfer reactions must be reversible to correctly predict the open circuit 
%     voltage of the cell... even if the reverse reaction has a very, very slow rate and the overall 
%     reaction is nearly irreversible. 
  
%% 1. SET UP AND INITIALIZE SOME NECESSARY SHARED PARAMETERS 
  
x_d_range     = 1 : Grid_size.x_d_num; 
species_range = 1 : Species.num; 
  
% Initialize the mass and mole fluxes of each species from the electrode to the interface 
Mole_fluxes = zeros(Grid_size.x_d_num , Species.num); 
Mass_fluxes = zeros(Grid_size.x_d_num , Species.num); 
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reaction_rate = zeros(Grid_size.x_d_num, 4); 
  
% Make a vector containing the electrode potential at each point in x-direction 
phi_e = phi_e * ones(Grid_size.x_d_num,1); 
  
% Calculate the potential drop across the electrode-solution interface 
delta_phi = phi_e - Interface.elec_pot; 
  
%% 2. CALCULATE THE RATES AND FLUXES 
  
for r_i = 1:length(Srxn.rxn) % Cycle through all of the reactions, one at a time 
   
  % Create the concentration dependence terms for the anodic and cathode directions, if the are specified 
  % by the user.  Otherwise the default dependence is 1, i.e. no dependence. 
   
  if ~isempty(Srxn.rxn(r_i).conc_dependence_r) 
    Conc_dependence_r = prod(Interface.Mole_densities(x_d_range,Srxn.rxn(r_i).conc_dependence_r),2); 
  else 
    Conc_dependence_r = ones(Grid_size.x_d_num , 1); 
  end 
   
  if ~isempty(Srxn.rxn(r_i).conc_dependence_f) 
    Conc_dependence_f = prod(Interface.Mole_densities(x_d_range,Srxn.rxn(r_i).conc_dependence_f),2); 
  else 
    Conc_dependence_f = ones(Grid_size.x_d_num , 1); 
  end 
   
  rate_f = Srxn.rxn(r_i).k_f * Conc_dependence_f(x_d_range,1) .* exp( Srxn.rxn(r_i).e_rds * ... 
    Srxn.rxn(r_i).beta_f * Constants.FoRT * delta_phi(x_d_range,1)); 
  rate_r = Srxn.rxn(r_i).k_r * Conc_dependence_r(x_d_range,1) .* exp(-Srxn.rxn(r_i).e_rds * ... 
    Srxn.rxn(r_i).beta_r * Constants.FoRT * delta_phi(x_d_range,1)); 
   
  reaction_rate = rate_f - rate_r; 
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  % TOTAL REACTION MOLE FLUXES TO THE SURFACE 
   
  % Calculate the mole fluxes at each location down the channel and add them to the values from previous 
  % reactions to give the total so far. 
   
  Mole_fluxes(x_d_range,species_range) = Mole_fluxes(x_d_range,species_range) ... 
    + Srxn.rxn(r_i).active * reaction_rate(x_d_range,1) * Srxn.rxn(r_i).Reaction_stoich; % kmol/(m^2 s) 
   
end 
  
%% 4. ACCOUNT FOR ROUGHNESS OF CATALYST SURFACE 
  
Mole_fluxes = Srxn.param.area_ratio * Mole_fluxes; 
  
%% 5. CONVERT THE TOTAL MOLE FLUXES INTO MASS FLUXES FOR OUTPUT FROM THE FUNCTION 
  
for x_d = 1:Grid_size.x_d_num 
  Mass_fluxes(x_d,species_range) = Mole_fluxes(x_d,species_range)' .* Properties.Molar_mass; % kg/(m^2 s) 
end 
  
%% REFERENCES 
% [1] Newman, J. S. and K. E. Thomas-Alyea (2004). Electrochemical systems. Hoboken, N.J., J. Wiley. 
% [2] Kee, R. J., H. Y. Zhu, et al. (2005). "Solid-oxide fuel cells with hydrocarbon fuels." 
% Proceedings of the Combustion Institute 30: 2379-2404. 
  
end 
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function [d_SV] = FUNC_RESIDUALS(State, Yfluxes, Xfluxes, Membrane_mass_flux, SCB, VCB, ... 
                    Pointer, Flags, Geometry, Grid_size, Species, Properties, Constants) %#codegen 
    
d_SV = zeros(Grid_size.state_vars_num,1); 
          
% Renaming the variables isn't very efficient, but the code below would be almost 
% unreadable with the extra text. 
A_int   = State.A_int; 
Asln    = State.Asln; 
M_int_a = State.M_int_a; 
M_int_c = State.M_int_c; 
Csln    = State.Csln; 
C_int   = State.C_int; 
                         
%% 1. SOLVE FOR PRESSURE USING CONTINUITY  
  
% CONTINUITY - SOLVE RESIDUALS ASSOCIATED WITH PRESSURE  del dot (rho*v) = - d_rho/d_t ------------- 
  
% Note that this section uses "real" indices x_r and y_r which exclude ghost cells, because it balances 
% mass over real cells and does not need the ghost cells.  The fluxes between ghost cells and real cells 
% at the periphery were calculated beforehand and are included in SCB. 
  
for x_r = 1 : Grid_size.x_d_num 
   
  for y_r = 1 : Grid_size.y_d_num 
     
    % NOTE: Written as d rho / dt = - ( d J_x / dx + d J_y / dy ) where J is the total mass flux 
    % (advection, migration and diffusion).  Example: For the first x-discretization, we want the mass 
    % fluxes in and out in the x-direction, which are at x_d = 1 and x_d = 2.  Since x_d starts at x_d = 
    % 2, this is what we get below. 
     
    % Continuity in the bulk cells 
     
    % Asln 
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    d_SV(Pointer.asln.press(x_r,y_r)) = ... % This is d rho / d t 
      ( ... 
      ... % x-direction mass flux due to advection, migration and diffusion (out) - (in) 
      - ( SCB.asln.mass_flux.x(x_r+1,y_r) - SCB.asln.mass_flux.x(x_r,y_r) ) / Geometry.x_d_size(x_r+1)... 
      ... % y-direction mass flux due to advection, migration and diffusion (upwind) (out)-(in) 
      - ( SCB.asln.mass_flux.y(x_r,y_r+1) - SCB.asln.mass_flux.y(x_r,y_r) ) / Geometry.y_d_size(y_r+1) ); 
     
    % Csln 
    d_SV(Pointer.csln.press(x_r,y_r)) = ... % This is d rho / d t 
      ( ... 
      ... % x-direction mass flux due to advection, migration and diffusion (out) - (in) 
      - ( SCB.csln.mass_flux.x(x_r+1,y_r) - SCB.csln.mass_flux.x(x_r,y_r) ) / Geometry.x_d_size(x_r+1)... 
      ... % y-direction mass flux due to advection, migration and diffusion (upwind) (out)-(in) 
      - ( SCB.csln.mass_flux.y(x_r,y_r+1) - SCB.csln.mass_flux.y(x_r,y_r) ) / Geometry.y_d_size(y_r+1) ); 
     
  end 
   
  % Continuity at the membrane interfaces 
   
  % Anode solution-membrane interface. 
  % (total advection mass flux in) + (total migration + diffusion mass fluxes in)  
  %                                                                 - (total membrane mass flux out) = 0 
  d_SV(Pointer.m_int_a.press(x_r)) = SCB.asln.mass_flux.y(x_r,Grid_size.y_d_num+1) ... 
                                   - Membrane_mass_flux.am(x_r); 
   
  % Membrane - cathode solution interface. 
  % (total membrane mass flux in) - (total advection mass flux out)  
                                                        % -  (migration + diffusion mass fluxes out) = 0 
  % Note that in this coordinate system the membrane flux is negative, because it is leaving the membrane! 
  d_SV(Pointer.m_int_c.press(x_r)) = SCB.csln.mass_flux.y(x_r,Grid_size.y_d_num+1) ... 
                                   - Membrane_mass_flux.cm(x_r); 
   
end 
  
% Store d_rho/dt for each bulk cell in a local variable for use later in the momentum and species 
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% conservation equations.   First initialize these local variables to zero.  Include extra rows and 
% columns of zeros at the edges for the membrane interface ghost cells and outlet ghost cells... this way 
% when d_rho/dt is found at the centers of the velocity cells near the edge of the model domain, there is 
% a second value for the average and the code won't crash. 
  
d_rho_dt.asln = zeros(Grid_size.x_d_num+1,Grid_size.y_d_num); 
d_rho_dt.csln = zeros(Grid_size.x_d_num+1,Grid_size.y_d_num); 
  
d_rho_dt.asln(1:Grid_size.x_d_num,:) = d_SV(Pointer.asln.press(:,:)); 
d_rho_dt.csln(1:Grid_size.x_d_num,:) = d_SV(Pointer.csln.press(:,:)); 
  
% Make d_rho_dt in the ghost cells at outlet the same as the last of the real cells. 
d_rho_dt.asln(Grid_size.x_d_num+1,:) = d_SV(Pointer.asln.press(Grid_size.x_d_num,:)); 
d_rho_dt.csln(Grid_size.x_d_num+1,:) = d_SV(Pointer.csln.press(Grid_size.x_d_num,:)); 
  
%% 2. SOLVE FOR VELOCITY USING THE 2D N-S EQUATIONS  
  
% The 2D Navier-Stokes equation is evaluated over each velocity cell to solve for the velocity in 
% that cell. 
  
% CALCULATE THE SHEAR STRESS DERIVATIVES IN EACH REAL CELL 
  
% Start by initializing the shear stress derivatives 
d2_vx_d2_x_asln  = zeros(Grid_size.x_d_num, Grid_size.y_d_num); 
d2_vx_d2_x_csln  = zeros(Grid_size.x_d_num, Grid_size.y_d_num); 
d2_vx_d2_y_asln  = zeros(Grid_size.x_d_num, Grid_size.y_d_num); 
d2_vx_d2_y_csln  = zeros(Grid_size.x_d_num, Grid_size.y_d_num); 
  
d2_vy_d2_y_asln  = zeros(Grid_size.x_d_num, Grid_size.y_d_num); 
d2_vy_d2_y_csln  = zeros(Grid_size.x_d_num, Grid_size.y_d_num); 
d2_vy_d2_x_asln  = zeros(Grid_size.x_d_num, Grid_size.y_d_num); 
d2_vy_d2_x_csln  = zeros(Grid_size.x_d_num, Grid_size.y_d_num); 
  
% Evaluate the shear stress derivatives 
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  DBFC_SETUP_REACTION_RATES 
  DBFC_INITIALIZE 
   
  Measured_current_density_loop = Measured_currents{:,curve_index} ... 
    / (1000*Geometry.channel_length*Geometry.channel_width); 
   
  % Solve the model for each cell voltage specified in Cathode_electric_potential 
  for voltage_index = 1:length(Voltages_loop); 
     
    % SET THE CELL VOLTAGE AND CALL THE REQUESTED SOLVER TO SOLVE THE MODEL 
     
    BC.cathode.elec_pot = Voltages_loop(voltage_index); 
     
    disp('-----------------------------') 
    disp(['Solving point number: ' num2str(voltage_index) '...']) 
    DBFC_KINSOL 
     
    % Store the current density from this voltage in an array to return from this function 
    Calculated_current_density_loop(voltage_index,1) = -total_cathode_current ... 
      / (Geometry.channel_length*Geometry.channel_width); 
     
    % Display status in the command window so we know what is going on 
    disp(['Point number ', num2str(voltage_index), ' of ', num2str(length(Voltages_loop)), ... 
      ' is complete.']) 
    disp(['Cell voltage is: ' num2str(BC.cathode.elec_pot), ' V']) 
    disp(['Total cell current is: ' num2str(total_cathode_current) ' A']) 
    disp(['Average cell current density is: ' ... 
      num2str(Calculated_current_density_loop(voltage_index)) ' A/m^2']) 
    disp(['Time since start of calibration: ' num2str(toc/60) ' min']); 
    disp('-----------------------------') 
     
    if Flags.setup.reuse_previous_soln && voltage_index < length(Voltages_loop) 
       
      % Configure the solution from the previous voltage to be the initial guess for the next voltage 
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      if Flags.setup.adjust_V_prev_soln 
        % Adjust the solution from the previous voltage to form the initial guess for the next point 
        V_cell_old = Cathode_electric_potential(voltage_index); 
        V_cell_new = Cathode_electric_potential(voltage_index+1); 
        SV_initial = FUNC_ADJUST_SOLN_VOLTAGE( SV_steady_state, V_cell_old, V_cell_new, ... 
          Scales, Pointer, Geometry ); 
      else 
        % Use the solution from the previous voltage as-is 
        SV_initial = SV_steady_state; 
      end 
       
    end 
     
  end % Loop to walk down the polarization curve, one cell voltage at a time 
   
  % Plot error between current density predicted by the present set of fitted 
  % parameters and the literature values 
  figure(curve_index); 
  hold on; 
  plot(Measured_current_density_loop, Voltages_loop , 'b-s', Calculated_current_density_loop, ... 
    Voltages_loop, 'r-o') 
  ylabel('Cell Voltage [V]') 
  xlabel('Current Density [A/m^2]') 
  legend('Measured', 'Calculated') 
  title('Fit Results') 
  hold off; 
   
  Calculated_current_densities = vertcat(Calculated_current_densities, Calculated_current_density_loop); 
  Measured_current_densities   = vertcat(Measured_current_densities, Measured_current_density_loop'); 
   
  clear Voltages_loop Measured_current_density_loop Calculated_current_density_loop 
   
end 
  
%% PREPARE THE ERRORS FOR OUTPUT  
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Errors =  error_scales .* (Calculated_current_densities - Measured_current_densities); 
Errors_recent = Errors; 
  
disp(' ') 
disp(['2-norm of fit residuals is: ' num2str(norm(Errors_recent))]) 
disp(' ') 
  
if Flags.setup.save_final_output 
  c = clock; 
  filename_identifier = strcat(num2str(c(1)), '-', num2str(c(2)), '-', num2str(c(3)), '-', ... 
    num2str(c(4)), 'h-', num2str(c(5)), 'm-', num2str(c(6)), 's'); 
  filename = strcat('Results_', filename_identifier, '.mat'); 
  save(filename); disp(' '); disp(['Results were saved in file: ' filename]); disp(' '); 
end 
  
end 
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