
 xiv

Nomenclature

Symbol Description Units

𝜇𝑘 Chemical potential of species k J·kmol-1

𝜇𝑘0 Standard state chemical potential of species k J·kmol-1

𝜇�𝑘 Electrochemical potential of species k J·kmol-1

∆𝜇�𝑟𝑥𝑛 Net electrochemical potential change due to reaction J·kmol-1

𝐸𝑅0 Standard half-cell potential of reaction R V

𝐸𝑐𝑒𝑙𝑙0 Standard cell potential V

𝑎𝑘 Activity of species k none

𝐶𝑘 Concentration of species k kmol·m-3

𝑇 Temperature K

𝜙 Local electric potential V

𝜙𝑎 Anode electric potential V

𝜙𝑐 Cathode electric potential V

𝜙𝑎,𝑖𝑛𝑡 Anode interface electric potential V

𝜙𝑐,𝑖𝑛𝑡 Cathode interface electric potential V

𝛥𝜙𝑎 Electric potential difference between the anode and
anode interface V

𝛥𝜙𝑐
Electric potential difference between the cathode and
cathode interface V

𝑧𝑘 Charge of species k none

𝜂𝑎𝑐𝑡,𝑎 Anode activation overpotential V

𝜂𝑎𝑐𝑡,𝑐 Cathode activation overpotential V

𝜂𝑜ℎ𝑚𝑖𝑐 Ohmic overpotential V

𝜂𝑐𝑜𝑛𝑐,𝑎 Anode concentration overpotential V

𝜂𝑐𝑜𝑛𝑐,𝑐 Cathode concentration overpotential V

𝑘𝑎 Anodic direction reaction rate constant for charge
transfer reaction varies

𝑘𝑐
Cathodic direction reaction rate constant for charge
transfer reaction varies

𝑘𝑓 Forward reaction rate constant for chemical reaction varies

 xv

𝑘𝑟 Reverse reaction rate constant for chemical reaction varies

𝑋𝑘 Mole fraction of species k none

𝑌𝑘 Mass fraction of species k none

𝑃 Pressure Pa

𝑣𝑥 x-direction velocity m·s-1

𝑣𝑦 y-direction velocity m·s-1

𝜌 Mass density kg·m-3

𝜌𝑐 Net charge density C·m-3

𝑛𝑒 Number of electrons exchanged in charge transfer
reaction none

𝑎𝑘 Activity of species k none

𝑅𝑐ℎ𝑃 Residual for mass conservation in the channel;
associated with pressure kg·s-1

𝑅𝑚_𝑖
𝑃 Residual for mass conservation at the membrane

interface; associated with pressure kg·m-2·s-1

𝑅𝑘,𝑐ℎ
𝑀𝐹 Residual for species conservation in the channel;

associated with mass fractions kmol·s-1

𝑅𝑘,𝑚_𝑖
𝑀𝐹 Residual for species conservation at the membrane

interface; associated with mass fractions kmol·m-2·s-1

𝑅𝑘,𝑒_𝑖
𝑀𝐹 Residual for species conservation at the electrode

interface; associated with mass fractions kmol·m-2·s-1

𝑅𝑐ℎ𝑥𝑀 Residual for x-direction momentum conservation in the
channel; associated with x-direction velocity m·s-2

𝑅𝑐ℎ
𝑦𝑀

Residual for y-direction momentum conservation in the
channel; associated with y-direction velocity m·s-2

𝑅𝜙
Residual for electroneutrality in the channels;
associated with electric potential C·m-3

𝑅𝑘𝑆𝐹 Residual for surface site fraction of species k kmol·m-2·s-1

𝐽 Mass flux kg·m-2·s-1

𝐽𝑘 Species (mole) flux kmol·m-2·s-1

𝜇 Dynamic viscosity Pa·s

𝑛𝑑,𝑁𝑎+ Electro-osmotic drag coefficient for Na+ in Nafion kmol H2O
kmol-1 Na+

 xvi

𝑝𝐻2𝑂 Permeability of Nafion 115 to water m·Pa-1·s-1

𝑢𝑘 Mobility of species k m2·V-1·s-1

𝑓 𝐹 𝑅𝑇⁄ V-1

𝐹 Faraday’s constant; 9.6485×107 C·kmol-1

𝑅� Ideal gas constant; 8.314×103 J·kmol-1·K-1

𝐽 Jacobian matrix of the DBFC model

𝑉̇ Volumetric flow rate m3·s-1

𝜁 Recirculation volume fraction none

𝜂𝑟𝑢 Single-pass reactant utilization none

𝜂𝑐𝑒 Coulombic efficiency (local) none

𝜂𝑐𝑢 Coulombic utilization none

𝐼𝑐𝑒𝑙𝑙 Cell current A

𝑖 Local current density A·m-2

𝑡 Time varies

𝑉𝑐𝑒𝑙𝑙 Cell electric potential (𝜙𝑐 − 𝜙𝑎) V

𝜈𝑘,𝑅 Stoichiometric coefficient for species 𝑘 in reaction 𝑅 none

𝛽𝑎 ,𝛽𝑐
Anodic and cathodic direction symmetry factors in
charge transfer reaction none

𝛥𝜙′ Equilibrium electrode-solution electric potential
difference V

𝐾𝑒𝑞 Reaction equilibrium constant none

𝑖0 Exchange current density A·m-2

𝐷𝑘 Binary diffusivity of species 𝑘 m2·s-1

𝜎 Electrical conductivity S·m-2

𝑢𝑘 Mobility of species k m2·V-1·s-1

𝛾𝑘 Activity coefficient for species k None

𝐼 Ionic strength of electrolyte solution kmol·m-3

𝜆 Nafion membrane hydration kmol H2O
kmol-1 SO3

-

 1

Chapter 1: The Unrealized Promise of Direct Borohydride Fuel

Cells

Direct borohydride fuel cells (DBFCs) generate electrical power by oxidizing

aqueous BH4
- (borohydride) and reducing aqueous H2O2 or gaseous O2. Interest in

DBFCs has grown over the past decade due to several prospective advantages over

batteries and other fuel cells. However, the technology remains immature and

challenges have inhibited its use in practical applications. This chapter describes the

present understanding of DBFCs, the prospective advantages and remaining

challenges, and the ways this study aims to advance the technology toward

practicality.

1.1 Introduction to Direct Borohydride Fuel Cells

Many different DBFC cell configurations have been tested in the literature. This

study presents a configuration with electrodes separated from the ionic membrane by

liquid reactant flow channels. The DBFC cell geometry and dominant

electrochemical processes in this study are illustrated by Figure 1.1. DBFC operating

principles are explained here in the context of this configuration. Alternative

configurations are reviewed in a later section.

The cell used in this study consists of two parallel rectangular flow channels

which are separated by a cation exchange membrane and bounded by walls. The

walls constraining the flows function as current collectors. The fuel channel carries

 2

an aqueous solution containing NaBH4 and NaOH, and in this study, the oxidizer

channel carries an aqueous solution containing H2O2 and H2SO4. Each channel wall

opposite the membrane is coated with an electrocatalyst; BH4
- oxidation takes place at

the anode (fuel channel wall) and H2O2 reduction takes place at the cathode (oxidizer

channel wall). This cell geometry was chosen because it represents a class of DBFCs

having separated electrodes and membranes. Such DBFCs have been considered in

earlier studies [1, 2] because they are simple to fabricate, resist precipitate

accumulation, expose the full membrane area to the electrolyte solutions and offer the

possibility that migration will aid reactant transport in the channels. Furthermore, this

DBFC can be represented in 2D, as shown in Figure 1.1, provided that the channel

side walls are inert (electrochemically inactive) and spaced widely enough to have

negligible effect on the hydrodynamics of the reactant flows. The 2D representation

is more straightforward to model.

Figure 1.1. Illustration of the DBFC cell configuration examined in this study,
showing the cell geometry and ideal electrochemical processes taking place.

Electrons provided to the anode by BH4
- oxidation travel through an external

circuit to the cathode to reduce H2O2, while Na+ ions maintain charge balance in the

 3

cell by crossing the membrane from fuel solution to oxidizer solution. The Na+ ion

flux through the membrane induces a H2O flux due to electro-osmotic drag.

The net cell reaction consumes BH4
-, H2O2, OH-, and H+ and forms BO2

- and

H2O. Eight electrons are liberated by the anode half-cell reaction (R 1.2) and travel

through the external circuit to be consumed by the cathode half-cell reaction (R 1.3).

The standard cell potential for R 1.1 is 𝐸R1.1
0 = 3.01 V.

BH4
−(aq) + 8 OH− + 4 H2O2 + 8 H+ → BO2

−(aq) + 14 H2O R 1.1

BO2
−(aq) + 6 H2O + 8e− ⇋ BH4

−(aq) + 8 OH− 𝐸𝑅1.2
0 = -1.246 V vs. RHE R 1.2

 H2O2 (aq) + 2 H+ + 2 e− ⇌ 2 H2O 𝐸R1.3
0 = 1.763 V vs. RHE R 1.3

The fuel solution includes OH- to provide a reactant for BH4
- oxidation and

stabilize the BH4
- fuel, which is otherwise consumed by homogenous hydrolysis

reaction R 1.4 to yield BO2
-.

BH4

− (aq) + 2 H2O → BO2
− (aq) + 4 H2 R 1.4

The rate of R 1.4 depends on pH and temperature; it occurs more rapidly at low pH.

An empirical rate expression (Eq. 1.1) was developed by Kreevoy and Jacobson [3],

which predicts the BH4
- half-life (minutes) as a function of pH and temperature (K).

According to Eq. 1.1, BH4
- can be stored for months in high pH media (pH ≥ 13).

𝑙𝑜𝑔 �𝑡1

2�
� = pH− (0.034𝑇 − 1.92) Eq. 1.1

 4

Similarly, H+ in the oxidizer solution provides a reactant for H2O2 reduction and

stabilizes the H2O2, which otherwise decomposes via R 1.5.

2 H2O2 (aq) → 2 H2O + O2 R 1.5

While R 1.4 and R 1.5 occur slowly in solutions having appropriate pH, the rates

are nevertheless accelerated by contact with the anode and cathode catalysts.

Heterogeneous catalysis of BH4
- hydrolysis and H2O2 decomposition decreases the

number of electrons per oxidized BH4
- anion to less than 8 and the number of

electrons per reduced H2O2 molecule to less than 2. The coulombic efficiency of

each half cell reaction is often characterized by proximity to the theoretical number of

electrons transferred; an anode which captures 4 electrons per consumed BH4
- anion

would have a coulombic efficiency of 50%.

DBFCs with the cell configuration presented above differ from common low-

temperature fuel cells such as the proton exchange membrane fuel cell (PEMFC) and

direct methanol fuel cell (DMFC). These differences stem from the use of aqueous

electrolytes for the fuel and oxidizer, in contrast to the gaseous reactants in a PEMFC

and the non-electrolyte aqueous fuel solution in a DMFC. The catalysts in PEMFCs

and DMFCs are in contact with the ion-conducting membrane to enable H+

participation in the electrochemical reactions, but the catalyst in a DBFC can be

located elsewhere because the aqueous electrolytes in each channel support ion

transport. Channel transport in PEMFCs and DMFCs is governed by convection and

diffusion, but in a DBFC migration also contributes to (or inhibits) species transport.

 5

Finally, slower diffusion in the liquid phase favors development of steeper

concentration gradients and in a DBFC, accentuating down-the-channel effects on

cell performance.

Flow-through DBFC topologies as in Figure 1.1 tend to have low channel

reactant utilization rates; only a small fraction of the reactants flowing through each

channel participates in the electrochemical reactions. The reactants are often

recirculated to improve the utilization rates, as shown in Figure 1.2. Concentrated

reactants are added to the recirculation loops upstream of the cell, and a portion of the

effluent downstream of the cell is removed as waste. Since separation of reactants

and products in the effluent streams is impractical, the cell operating conditions must

be chosen to minimize the concentration of unreacted fuel in the effluent stream;

otherwise fuel is lost to the waste tank.

Figure 1.2. Schematic of a typical recirculated DBFC system.

Alternatively, the DBFC can be operated as a “flow battery” with a single

reservoir in each loop. In the flow battery configuration, the entire contents of each

 6

loop reservoir are recirculated until low reactant concentrations or high product

concentrations inhibit cell performance.

1.2 DBFC Thermodynamics, Kinetics and Transport

The operating principle behind DBFCs, as in all fuel cells, is the conversion of

chemical to electrical energy by electrochemical reactions occurring at the two

electrodes. The available work that can be extracted from the chemical reactants in

an electrochemical cell at a constant temperature and pressure is cast in terms of the

change of Gibbs free energy ΔG of the global reaction. The chemical potential 𝜇𝑘,

equal to the intensive Gibbs free energy, is defined as the chemical potential at a

standard reference state plus a correction for activity 𝑎𝑘 ≠ 1.

𝜇𝑘 = 𝜇𝑘0 + 𝑅𝑇ln𝑎𝑘 Eq. 1.2

When the reactants are charged species, though, electrochemical potential 𝜇�𝑘 is a

more appropriate description because it includes electrostatic potential energy. The

electrochemical potential of species k is given by Eq. 1.3, in which 𝑧𝑘 is the charge of

species k, 𝐹 is Faraday’s constant and 𝜙 is the electric potential.

𝜇�𝑘 = 𝜇𝑘 + 𝑧𝑘𝐹𝜙 Eq. 1.3

For electrons, the only relevant energy is electrostatic and Eq. 1.3 simplifies to

𝜇�𝑒 = −𝐹𝜙. The energy ∆𝜇�𝑅1.1 made available by the global fuel cell reaction is the

difference between the electrochemical potentials of the reactants and products. With

𝜈𝑘 the stoichiometric coefficients in R 1.1, ∆𝜇�𝑅1.1 can be written as:

 7

∆𝜇�𝑅1.1 = �𝜈𝑘,𝑅1.1𝜇�𝑘
𝑘

 Eq. 1.4

Similarly, the energy made available by each of the half-cell reactions is given by

the difference in electrochemical potential of the half-cell reactants and products.

Conservation of energy dictates that the total energy from the cell is equal to the sum

of energies made available by the half-cell reactions.

∆𝜇�𝑅1.1 = ∆𝜇�𝑅1.2 + ∆𝜇�𝑅1.3 Eq. 1.5

The half-cell reactions cannot run independently; they are linked by an

(effective) electroneutrality constraint and charge conservation. Electroneutrality is a

result of the relationship between electric potential and local net charge density 𝜌𝑐

described by Poisson’s electrostatic equation (Eq. 1.6). The permittivity of free space

(𝜀0 = 8.85419 x 10-12 F·m-1) is small, so small deviations from electroneutrality

produce large electric potential gradients. The electric potential gradients tend to

oppose charge stratification and drive charged species back into electrostatic

equilibrium.

∇2𝜙 = −
𝜌𝑐
𝜀𝜀0

 Eq. 1.6

Significant deviations from 𝜌𝑐 rarely occur outside the electrochemical double layers

at electrode interfaces, where large values of ∇2𝜙 are found. Since the electrolyte

solutions (and membrane) are electrically neutral, the net charge flux at the anode

must be equal to the net charge flux at the cathode. However, local rates of reaction

 8

can differ so long as the integrated rates over the entire area of the two electrodes are

equal.

The same principles link cell voltage 𝑉𝑐𝑒𝑙𝑙 to the half-cell potentials Δ𝜙a and

Δ𝜙c, but before exploring that relationship, it will be helpful to clearly define the

electric potential in the vicinity of each electrode. Electrodes in aqueous solution

having electric potentials other than the point of zero charge (PZC) accumulate a

layer of adsorbed water molecules due to the polar nature of H2O. Ions may also

accumulate near the electrode as their charges interact with the local electric field.

The result is an accumulation of charge which produces a smooth transition over a

short (~1 nm to 1 µm) length scale from the electric potential in solution to the

electric potential of the electrode [4].

Half-cell potentials are most often measured with respect to a reference electrode

(RE), which has rapid reaction kinetics to maintain consistent potential despite

changes in the local electrochemical environment. A common RE is the reversible

hydrogen electrode (RHE), for which the reaction in low pH and neutral aqueous

solutions is R 1.6. The standard reduction potential for R 1.6 is defined as 0.00 V.

H2 ⇋ 2 H+ + 2 e− 𝐸𝑅1.6
0 = 0.00 V vs. RHE R 1.6

Ideally the RE is situated in, or in electrochemical communication with, the region

just outside the electrochemical double layer of the electrode. Doing so references

the electrode potential to the electric potential just outside the double layer, and

makes the electrode potential a measure of the potential drop across the double layer.

If Δ𝜙a and Δ𝜙c are the electric potential drops across the anode and cathode double

 9

layers, and 𝜙𝑎,𝑖𝑛𝑡 and 𝜙𝑐,𝑖𝑛𝑡 are the electric potential in the bulk solution just outide

of each double layer, then the electrode potentials are: 𝜙𝑎 = Δ𝜙a + 𝜙𝑎,𝑖𝑛𝑡 and 𝜙𝑐 =

Δ𝜙c + 𝜙𝑐,𝑖𝑛𝑡. The locations of 𝜙𝑎, 𝜙𝑐, Δ𝜙a, Δ𝜙c, 𝜙𝑎,𝑖𝑛𝑡, and 𝜙𝑐,𝑖𝑛𝑡 are shown in

Figure 1.3, which adopts common conventions showing the change in electric

potential across each double layer as if it were discontinuous and referencing all

potentials in the system to the anode.

Figure 1.3. Electrode and interface electric potentials in a DBFC. The orange line
shows a typical electric potential distribution across the cell.

The relationships between 𝑉𝑐𝑒𝑙𝑙, Δ𝜙a and Δ𝜙c are most evident when the fuel cell

is in the open circuit state and no current flows between the anode and cathode. At

open circuit, R 1.2 and R 1.3 must each be at equilibrium so that no net electrons are

transferred to/from the electrodes. Since the reactions are driven by the change in

electrochemical potential, the equilibrium condition is:

∆𝜇�𝑟𝑥𝑛 = �𝜈𝑘,𝑅𝜇�𝑘,𝑟𝑥𝑛
𝑘

= 0 Eq. 1.7

Anode Fuel Channel

Interface

ϕa

Δϕa

ϕc

Δϕc

CathodeOxidizer Channel

Membrane

El
ec

tr
ic

 P
ot

en
tia

l

0

Interface

Vcellϕint,c

ϕint,a

 10

Substituting Eq. 1.3 for 𝜇�𝑘,𝑟𝑥𝑛 and solving for the interfacial electric potential

difference yields the Nernst equation (Eq. 1.8).

Δ𝜙′ =
Δ𝜇𝑟𝑥𝑛0

𝑛𝑒𝐹
+
𝑅𝑇
𝑛𝑒𝐹

𝑙𝑛 ��𝑎𝑘
𝜈𝑘� Eq. 1.8

The Nernst equation gives the electric potential difference between the aqueous

solution and the electrode that will bring the reactants and products into equilibrium.

Δ𝜙′ is equal to the standard half cell potential of the reaction 𝐸𝑟𝑥𝑛0 under standard

state conditions (i.e. T = 298 K and 𝑎𝑘=1). The cell potential 𝑉𝑐𝑒𝑙𝑙 is the difference in

electric potential between the anode and the cathode:

𝑉𝑐𝑒𝑙𝑙 = 𝜙𝑐 − 𝜙𝑎 Eq. 1.9

Since no net current flows through the cell at open circuit, the electric potentials

at the electrode interfaces must be equal, because an electric potential gradient would

drive net charge transfer. Thus at open circuit, 𝜙𝑎,𝑖𝑛𝑡 = 𝜙𝑐,𝑖𝑛𝑡. Since the electrode

potentials are referenced to the interface potentials, this makes the cell potential at

open circuit equal to the sum of interfacial half-cell potentials, which is why:

𝐸R1.1
0 = 𝐸R1.2

0 + 𝐸R1.3
0 , when Δ𝜙𝑎 = 𝐸R1.2

0 and Δ𝜙𝑐 = 𝐸R1.3
0 .

In the BH4
- / H2O2 DBFC examined in this study, the open circuit cell voltage (OCV)

is 𝐸R1.1
0 = 1.763 V – (-1.246 V) = 3.01 V.

Fuel cell chemistries are chosen such that electrons delivered to the anode by the

anode half-cell reaction have greater 𝜇�𝑒 than electrons recovered from the cathode by

the cathode half-cell reaction. When an electrically conductive path having non-zero

 11

impedance (load) is provided, electrons are driven from anode to cathode by the

difference in 𝜇�𝑒, and the change in electron energy along this path is equal to the

energy absorbed by the load. As the load impedance is decreased, the electrical

current and electrochemical reaction rates increase to maintain balance between the

electrochemical forces driving the reactions at each electrode. The higher rates of

reaction incur greater internal cell losses, and the cell becomes less efficient as a

smaller fraction of ∆𝜇�𝑟𝑥𝑛 is available for the external load. The redistribution of

∆𝜇�𝑟𝑥𝑛 in favor of internal cell losses at high current is manifested as a decrease in the

cell voltage, often referred to as “overpotential”. The total overpotential is the sum of

activation, ohmic and concentration overpotentials. Each overpotential is associated

with a specific loss mechanism, as discussed in greater detail below. The cell

potential at a given operating point is the open circuit cell potential minus all of the

overpotentials at that operating point:

𝑉𝑐𝑒𝑙𝑙 = 𝐸𝑐𝑒𝑙𝑙0 − 𝜂𝑎𝑐𝑡,𝑎 − 𝜂𝑎𝑐𝑡,𝑐 − 𝜂𝑜ℎ𝑚 − 𝜂𝑐𝑜𝑛𝑐,𝑎 − 𝜂𝑐𝑜𝑛𝑐,𝑐 Eq. 1.10

In general, as 𝑉𝑐𝑒𝑙𝑙 approaches OCV, the overpotentials are smaller and the fuel cell

converts the reactants’ chemical energy into electrical energy more efficiently. A

goal of most fuel cell research is to improve efficiency by decreasing the

overpotentials. The sources of overpotential are discussed in detail in the next

section, but broadly speaking, activation overpotentials can be minimized by

choosing a more active catalyst, ohmic overpotentials can be minimized by raising

the conductivity of electrolyte solutions and the membrane, and concentration

overpotentials can be minimized by improving rates of transport to the electrodes.

 12

1.2.1 Reaction Rates and the Activation Overpotential

An Arrhenius rate expression is often used to describe the rates of charge transfer

reactions such as R 1.2 and R 1.3. In this case the net rate is the sum of forward and

reverse rates (see Eq. 1.11). The direction supplying electrons to the electrode is

“anodic” and the direction withdrawing electrons from the electrode is “cathodic”.

The subscripts “a” and “c” in Eq. 1.11 refer to these directions.

𝑟 = 𝑘𝑎�𝑎𝑘,𝑎
𝜐𝑘,𝑎

𝑘

𝑒𝑛𝑒𝛽𝑎𝑓Δ𝜙 − 𝑘𝑐�𝑎𝑘,𝑐
𝜐𝑘,𝑐

𝑘

𝑒−𝑛𝑒𝛽𝑐𝑓Δ𝜙 Eq. 1.11

The pre-exponential terms include rate constants and dependencies on the activities of

species involved in the reaction. The exponential terms describe an activation energy

barrier which depends on the magnitude of Δ𝜙, because the reaction must drive a net

flux of charge through the double layer for the reaction to proceed. At the anode for

example, R 1.2 must drive a net negative charge flux against the electric potential

gradient in the double layer to the lower potential of the anode, doing work in the

process. At the equilibrium interfacial electric potential difference predicted by the

Nernst equation Δ𝜙′, the activation energy barrier magnitude is such that the anodic

and cathodic rates are equal. For the reaction to run in the anodic direction (as it does

at the anode of a functioning DBFC) Δ𝜙𝑎 must be less than Δ𝜙′𝑎. The shift in Δ𝜙𝑎

required for the reaction to proceed is the activation overpotential at the anode. In

general, for both electrodes:

𝜂𝑎𝑐𝑡 = Δ𝜙 − Δ𝜙′ Eq. 1.12

 13

The symmetry factors 𝛽 describe the relative slope of the activation energy

barrier with respect to the reaction coordinate near equilibrium; 𝛽𝑎 = 𝛽𝑐 = 0.5

implies the barrier is symmetric. It is often assumed that 𝛽𝑐 = 1 − 𝛽𝑎, i.e. the slope

from each direction is nearly linear near equilibrium.

Eq. 1.11 can be recast in terms of overpotential to make the rate depend

explicitly on the departure of Δ𝜙 from Δ𝜙′ [5]. First, recognize that the ratio of rate

constants (equilibrium constant 𝐾𝑒𝑞) depends on the magnitude of the activation

energy barrier when the change in electrochemical potential due to charge transfer is

zero, i.e. when Δ𝜙 = 0. Then the activation energy barrier is the change in free

energy of reaction (Δ𝜇𝑟𝑥𝑛0) and the relationship between the anodic and cathodic rate

constants can be written as in Eq. 1.13.

𝑘𝑎 𝑘𝑐⁄ = 𝐾𝑒𝑞 = 𝑒−Δ𝜇𝑟𝑥𝑛 𝑅𝑇⁄ Eq. 1.13

Then substitute Eq. 1.12 for Δ𝜙 and substitute Eq. 1.13 for 𝑘𝑐 in Eq. 1.11. The rate

constants and species dependencies can be collectively multiplied by Faraday’s

constant to give an exchange current density 𝑖0; the remaining terms give the

dependence on the overpotential. The result is the Butler-Volmer equation (Eq. 1.14).

𝑖 = 𝑖0�𝑒𝛽𝑎𝑓𝜂𝑎𝑐𝑡 − 𝑒−(1−𝛽𝑎)𝑓𝜂𝑎𝑐𝑡� Eq. 1.14

The exchange current density is the charge flux in each direction when the reaction is

in (dynamic) equilibrium; the term in brackets biases the exchange current density in

the anodic or cathodic direction depending on the value of 𝜂𝑎𝑐𝑡. When 𝜂𝑎𝑐𝑡 = 0, the

 14

anodic and cathodic rates are equal and no net current flows. The value of 𝑖0 is often

measured experimentally, but for this derivation it takes the form of Eq. 1.15, in

which 𝜐𝑒 is the stoichiometric coefficient of the electrons. It is important to note that

the exchange current density has additional dependencies on species concentration

not given explicitly in Eq. 1.15; the change in free energy of reaction Δ𝜇𝑟𝑥𝑛 also

depends on species concentrations, as shown by Eq. 1.2.

𝑖0 = 𝜐𝑒𝐹𝑘𝑎𝑒𝛽𝑎Δ𝜇𝑟𝑥𝑛 𝑅𝑇⁄ ��𝑎𝑘,𝑐
𝜐𝑘,𝑐

𝑘

�
𝛽𝑎

��𝑎𝑘,𝑎
𝜐𝑘,𝑎

𝑘

�
(1−𝛽𝑎)

 Eq. 1.15

1.2.2 Charge Balance and the Ohmic Overpotential

As discussed previously, the flow of electrons from anode to cathode must be

balanced by a net positive ionic current through the cell in the same direction. The

ionic current flows in response to electric potential gradients in the cell acting on the

electric charge of ions; this transport process is called migration. The migration flux

of species k is given by Eq. 1.16, where 𝑢𝑘 is the mobility of species k.

𝐽𝑚𝑖𝑔,𝑘 = −𝑧𝑘𝑢𝑘𝐹𝐶𝑘∇𝜙 Eq. 1.16

The mobility is specific to the medium in which migration takes place, because it

describes the amount of force which must be applied to the migrating ions by the

electric field to overcome the opposition of interactions with the solvent. Mobility

and diffusivity both describe relationships between a transport flux and the “force”

(due to ∇𝜙 or ∇𝐶) driving it. As such, they can be related for a given medium by the

 15

Nernst-Einstein equation (Eq. 1.17). Eq. 1.17 can be used to obtain the mobility from

the diffusivity or vice versa, when one parameter is unavailable.

𝑢𝑘 =
𝐷𝑘
𝑅𝑇

 Eq. 1.17

The linear relationship between ∇𝜙 and 𝐽𝑚𝑖𝑔,𝑘 in Eq. 1.16 is the origin of Ohm’s

Law in electrolyte solutions. The net charge flux, or current density, is

𝑖 = �
𝐽𝑚𝑖𝑔,𝑘

−𝑧𝑘𝐹𝑘

which can be re-written as Ohm’s Law (Eq. 1.18) if the conductivity is defined as

𝜎 = ∑ 𝑢𝑘𝐶𝑘𝑘 .

𝑖 = 𝜎∇𝜙 Eq. 1.18

The cathode interface potential 𝜙𝑐,𝑖𝑛𝑡 must be lower than the anode interface potential

𝜙𝑎,𝑖𝑛𝑡 to produce the electric potential gradient necessary to drive the required charge

flux (Figure 1.3), and that difference is the ohmic overpotential 𝜂𝑜ℎ𝑚 (Eq. 1.19). The

ohmic overpotential is manifested as a decrease in cell voltage as the changes in

𝜙𝑐,𝑖𝑛𝑡 and 𝜙𝑎,𝑖𝑛𝑡 bring 𝜙𝑐 and 𝜙𝑎 closer together. Together, Eq. 1.18 and Eq. 1.19

show that the ohmic overpotential is proportional to the current density.

𝜂𝑜ℎ𝑚 = 𝜙𝑖𝑛𝑡,𝑎 − 𝜙𝑖𝑛𝑡,𝑐 Eq. 1.19

In PEM fuel cells the ohmic overpotential is almost entirely associated with the

energy required to drive H+ through the membrane. The DBFC in Figure 1.1 is

similar in that the Na+ flux through membrane dominates the ohmic overpotential, but

 16

differs in that there are also contributions from the ionic resistivities of the fuel and

oxidizer solutions in the channels. Ionic fluxes in the channels predominantly support

the charge balancing Na+ flux, but there are also migration fluxes of other ions

to/from the electrodes, which support the electrochemical reactions. For example, the

electric potential gradient drives cations (such as Na+) toward the membrane as well

as anions (such as BH4
-) toward the anode. Driving BH4

- toward the anode lowers the

concentration and raises the low voltage of the anode. Thus the free energy available

for electrical work is lowered. The voltage rise across the liquid reactants in the

anode is modeled as part of the ohmic overpotential. The total ohmic overpotential is

the sum of contributions from the fuel channel (𝜂𝑜ℎ𝑚,𝑓), membrane (𝜂𝑜ℎ𝑚,𝑚) and

oxidizer channel (𝜂𝑜ℎ𝑚,𝑜).

1.2.3 Transport and the Concentration Overpotential

The net flux of each species k in the channels is the sum of contributions due to

migration (when 𝑧𝑘 ≠ 0), diffusion and advection. This relationship is shown clearly

by the Nernst-Plank equation (Eq. 1.20), in which the first term gives the migration

and diffusion fluxes (driven by the gradient in electrochemical potential) and the

second term gives the advection flux.

𝐽𝑘 = −𝑢𝑘∇𝜇�𝑘 + 𝑣⃗𝐶𝑘 Eq. 1.20

The diffusion and migration terms can be separated by substituting Eq. 1.3 for 𝜇�𝑘, as

in Eq. 1.21, and applying the Nernst-Einstein relation (Eq. 1.17) to cast diffusion in

terms of the binary diffusivity 𝐷𝑘.

 17

𝐽𝑘 = −𝐷𝑘∇ ln 𝑎𝑘 − 𝑧𝑘𝑢𝑘𝐹𝐶𝑘∇𝜙 + 𝑣⃗𝐶𝑘 Eq. 1.21

To write the total flux in terms of concentration (a more convenient quantity than

activity), the activity can be written as the product of concentration and a correction

for non-ideal effects: 𝑎𝑘 = 𝛾𝑘𝐶𝑘. The activity coefficient 𝛾𝑘 describes the deviation

from ideal behavior; when species in solution do not interact, the solution is ideal

and 𝛾𝑘 = 1. Recognizing that the activity coefficient is a function of concentration,

the gradient in the diffusion term can be written as [6]:

𝐽𝑘 = −𝐷𝑘 �1 +
∂ln 𝛾𝑘
∂ln 𝐶𝑘

�∇𝐶𝑘 − 𝑧𝑘𝑢𝑘𝐹𝐶𝑘∇𝜙 + 𝑣⃗𝐶𝑘 Eq. 1.22

When the solution is ideal, the diffusion term simplifies to Fick’s Law, and the

Nernst-Plank equation becomes Eq. 1.23, which links the net flux of species 𝑘 to the

driving forces concentration gradient, electric potential gradient and bulk fluid

velocity.

𝐽𝑘 = −𝐷𝑘∇𝐶𝑘 − 𝑧𝑘𝑢𝑘𝐹𝐶𝑘∇𝜙 + 𝑣⃗𝐶𝑘 Eq. 1.23

On all but very short timescales, and certainly at steady state, the species fluxes

due to reactions taking place at the electrodes are matched by transport fluxes to/from

the bulk solution in the channel. The rates of reaction (as discussed in §1.2.1) depend

on 𝜙 and 𝐶𝑘 at the electrode interface. The same is true for the species fluxes to/from

the electrode interface; Eq. 1.23 shows that 𝐽𝑘 depends on ∇𝐶𝑘 and ∇𝜙. The necessity

of matching the reaction fluxes and transport fluxes at the interface dictates the values

of 𝜙 and 𝐶𝑘 at the interface. For example, R 1.2 at the anode lowers the local BH4
-

 23

literature, but it may be related to the use of Nafion membranes in the Na+ form,

which are readily available and relatively well understood.

Figure 1.6. Schematic illustrations of two DBFC cell topologies. Left, the catalyst
layers are on the walls, which act as current collectors. Right, the catalyst layer is

porous and located on the membrane. In both cases the reactant flows are
perpendicular to the page.

Experiments with acids other than H2SO4 have also been reported; for example,

de Leon [16] reported experiments with H2O2 in HCl. Studies examining the affects

of acid selection on the kinetics of H2O2 reduction have shown that some acid anions

inhibit R 1.3, likely by adsorbing and blocking catalyst reaction sites [21].

Specifically, the activity of H2O2 reduction on Pd declines with acid anion in the

order ClO4
-, SO4

-, Cl- [21]. Acid selection also affects the rate of reaction R 1.5,

likely also due to adsorption of anions on the catalyst surface. The rate of catalytic

H2O2 decomposition has been shown to decrease with acid anion in the order HI,

HBr, HCl, C2H4O2, H3PO4, H2SO4, HClO4 [22]. H2SO4 is often chosen because it

offers reasonable rates for R 1.3 and R 1.5, insofar as the choice of acid can affect

these rates.

 25

1.4 Prospective DBFC Benefits and Applications

Interest in DBFCs has grown due to several desirable features of this technology.

The reactants can be stored at sufficiently high concentrations to give theoretical

energy densities greater than state-of-the-art rechargeable batteries1 [25]. The

aqueous reactant solutions can be stored at ambient temperature and pressure. The

theoretical cell voltage for R 1.1 (3.01 V) substantially exceeds theoretical cell

voltages of H2-O2 fuel cells (1.23 V). Moreover, the reactant chemical energy can be

converted directly to electricity without any chemical preprocessing, thereby reducing

power system complexity and improving reliability.

With respect to environmental concerns and sustainability, processes for

reducing BO2
- back to BH4

- have been developed, so the possibility of a “closed” fuel

cycle exists [26]. These electrochemical processes could be driven by a variety of

renewable power sources, making the BH4
-/BO2

- couple an energy carrier rather than

simply a fuel [27]. While the possibility of such a fuel cycle has been demonstrated,

technological immaturity (inefficiency, suboptimal process design, etc.) and a lack of

infrastructure remain significant hurdles to practicality.

While challenges remain, continued progress has prompted interest in DBFCs for

applications where energy density is important, particularly for air-independent

propulsion [28, 29], remote sensors and portable electronics.

1 Energy density depends on the assumed reactant concentrations and operating

conditions. For example, in the case of 1 M NaBH4 / 8 M NaOH fuel and 4 M H2O2 /

8 M H2SO4 oxidizer, and assuming the standard cell potential for reaction R 1.1, the

theoretical energy density on a reactant basis is 322 W·hr·L-1.

 33

oxidation of BH4
- on Pt involved at least two steps and the intermediate BH3(OH)-.

The mechanism is given here as R 1.9 and R 1.10.

BH4
− + 2 OH− ⇌ BH3(OH)− + H2O + 2 e− R 1.9

BH3(OH)− + 6 OH− ⇌ BO2
− + 5 H2O + 6 e− R 1.10

They also reported values of ne < 8 indicating incomplete oxidation, either due to

BH3(OH)- escaping into solution, or competition with hydrolysis (R 1.4).

In 1992, Mirkin et al. [48] used fast-scan cyclic voltammetry, scanning electro-

chemical microscopy and simulations of adsorption to conclude that BH4
- oxidation

on Au begins with a three step electrochemical-chemical-electrochemical (ECE)

process (R 1.11 to R 1.13). In the first step, BH4
- adsorbs on the anode and looses an

electron to become BH4*. The second step is a fast chemical hydrolysis with OH-

from solution to form BH3
- and H2O. BH3

- can escape the surface into the bulk

solution, or be oxidized to BH3* in the third electrochemical step. Presumably the 8

e- complete oxidation of BH4
- to BO2

- involves additional oxidation steps following R

1.13.

BH4
− ⇌ BH4

∗ + e− R 1.11

BH4
∗ + OH− ⇌ BH3

− + H2O (fast) R 1.12

BH3
− ⇌ BH3

∗ + e− R 1.13

 34

Mirkin suggested that adsorption may be rate controlling, pointing out that a surface

coverage fraction as small as 𝜃𝐵𝐻4= 10-4 leads to a linear relationship between 𝜃𝐵𝐻4

and 𝑖, given the measured rate parameters for R 1.11.

More recently, Chatenet et al. reported several studies [38, 41, 42, 49] of

mechanisms and rates for BH4
- oxidation on Au. In [49], voltammographic

techniques with a rotating disc electrode (RDE) revealed only one peak for BH4
-

oxidation on Au and 𝑛𝑒≈ 7, suggesting little loss to escaping intermediates such as

BH3(OH)-, which would be rapidly removed by the RDE hydrodynamics. He

concluded that all intermediate species remain adsorbed on the Au electrode, under

the conditions examined (10-2 M NaBH4 in 1 M NaOH), contradicting the results of

Mirkin [48].

In [38], Chatenet fitted rate parameters for an alternative mechanism to

electrochemical impedance and RDE cyclic voltammetry measurements. In the new

mechanism, the rate of BH4
- oxidation on Au was determined by electrochemical

adsorption of BH4
- competing for surface sites with the electrochemical adsorption of

OH-. These adsorption reactions should accelerate at high anode potentials as the

anions interact with the less-negative electrode, in agreement with experimental

evidence. This study suggested potential-dependent adsorption of reactant anions

may play an important role in determining the reaction pathway and rate of reaction.

The roles of catalyst layer morphology and transport were explored by Chatenet

et al. [42] by RDE voltammetry studies with catalyst layers of varying thickness and

porosity. Chatenet shows that the coulombic efficiency of BH4
- oxidation increased

with catalyst layer thickness and porosity, which was attributed to large residence

 35

times for intermediate species. The longer residence times raised the rates of

subsequent adsorption and oxidation, increasing the net number of electrons provided

by each BH4
- anion.

Krishnan [50] used rotating ring-disc electrode (RRDE) voltammetry to study

intermediate species produced in the oxidation of BH4
- on Au. With BH4

- oxidized at

the Au disc, intermediate species soluble in water were swept past the ring by the

RRDE hydrodynamics, where further oxidation steps yielded additional current. The

onset of non-zero current density at the ring coincided with the onset of BH4
-

oxidation at the disc, but the ring potential was negative to the disc potential,

indicating the oxidation of intermediate species with more negative 𝐸0. The ring

potential range showing the greatest current suggested the predominant intermediate

species was BH3(OH)-. Spread in the ring electrode current density peak indicated

the presence (in lower concentration) of other oxidation intermediates with different

𝐸0, suggesting desorption of other intermediates from the Au disk on the path to

BO2
-.

 Concha et al. [43, 51] employed Fourier transform infrared spectroscopy

(FTIR) to identify intermediate species adsorbed on the Au surface during BH4
-

oxidation, and measure the relative abundance of each species as a function of

electrode potential. In a sweep from -200 to 1400 mV vs. RHE in 1 M NaBH4
- / 1 M

NaOH, Concha found sequential majority species on the surface in the order expected

for BH4
- oxidation: BH3, BH2, … BO2. While BH4

- hydrolysis took place and

produced BH3 on the surface at potentials below 200 mV vs. RHE, the rate was slow.

No current was detected below 200 mV vs. RHE. In the potential range 200 to 500

 36

mV vs. RHE, the abundances of BH3 and BH2 rose dramatically, coinciding with the

appearance of current due to electro-oxidation of B species and increasing hydrolysis

rate. Above 500 mV vs. RHE, greater amounts of BH3 on the surface and the

appearance of B-O bonds suggested to the authors that the complete BH4
- oxidation

reaction dominated in this potential range. Concha suggests that the onset of BH4
-

reactions occurs when the anode potential becomes high enough for BH4
- to

overcome the electrostatic repulsion of the double layer (activation energy barrier for

adsorption) to reach the anode. Once BH4
- reaches the anode, it proceeds through a

series of oxidation steps. As the anode potential is raised, the oxidation steps favor

charge transfer to the anode rather than hydrolysis. This may be due, in part, to the

anionic intermediate species having lesser propensity to desorb at less negative anode

potentials.

The last study of BH4
- oxidation on Au to be discussed here was reported by

Rostamikia et al. [36, 37, 52]. Rostamikia used density functional theory (DFT) to

estimate the free energies of aqueous and surface-adsorbed species involved in BH4
-

oxidation. The relative energies were then used to identify thermodynamically

favorable paths from aqueous BH4
- to final oxidation products. Several of

Rostamikia’s conclusions are relevant to this study. First, BH4
- oxidation on Au

begins with adsorption of the aqueous species at a rate which depends on the anode

potential [37] as in R 1.11. Adsorption is followed by breaking B-H bonds, yielding

surface adsorbed BHx* species (0 ≤ x ≤ 4) and H*. The BHx* species either loose

additional H to form more H* or get hydroxylated by OH- (aq) to form species such

as BH(OH)2*. The ultimate product is B(OH)4
-, the hydrated form of BO2

-. The

 37

mechanism proposed by Rostamikia consists of elementary (one e-) charge transfer,

dehydrogenation and hydroxylation steps, yet DBFC anode reactions are often cast in

terms of global (multi-electron) R 1.2 and R 1.4. The relative rates of global R 1.2

and R 1.4 can be understood in the context of the mechanism proposed by

Rostamikia, which indicates they depend on the fate of H*. The surface adsorbed

hydrogen can undergo one of two reactions to leave the surface [52]:

2 H∗ ⇌ H2(𝑎𝑞) + 2 Au R 1.14

or,

H∗ + OH−(aq) ⇌ H2O (𝑎𝑞) + Au + e− R 1.15

Several observations can be made regarding R 1.14 and R 1.15:

• R 1.14 is second order in H* whereas R 1.15 is first order, so higher BH4
-

concentration (which raises the BH4
- adsorption rate and yields more H*)

should favor R 1.14 and H2 production.

• Higher OH- (higher solution pH) should favor R 1.15.

• Higher (less negative) anode electric potentials should favor electrochemical

oxidation (R 1.15).

All of these observations have been noted by published experimental studies, which

lend credence to the Rostamikia mechanism. This has implications for the way the

anode reaction on Au is modeled, because the rate(s) of reaction depend on surface

fractions 𝜃𝐵𝐻4 and 𝜃𝐻.

 38

While BH4
- oxidation on Au yields H2 at all potentials in 1 M NaBH4 / 1 M

NaOH [41], complete BH4
- oxidation (reaction R 1.2) may be accurate under certain

combinations of electrocatalyst and operating conditions. Gardiner and Collat [47]

suggested that the oxidation of BH4
- on Au favors reaction R 1.2 in strongly alkaline

conditions and that reaction R 1.4 may be insignificant at pH ≈ 14. Both Cheng and

Scott [53] and Liu et al. [54] reported that an important metric for the relative rates of

R 1.2 and R 1.4 is the ratio 𝐶𝑂𝐻− 𝐶𝐵𝐻4−⁄ ; when 𝐶𝑂𝐻− 𝐶𝐵𝐻4−⁄ > 5, the complete

borohydride oxidation dominates. This suggests that sufficiently high OH-

concentrations can strongly bias the mix of anode reactions in favor of reaction R 1.2.

1.5.3 The Hydrogen Peroxide Reduction Mechanism on Pd:Ir

The borohydride oxidation mechanism has received greater attention in the

DBFC literature, but the mechanism for H2O2 reduction also plays an important role.

Two pathways for H2O2 reduction on precious metal catalysts have been observed

[55, 56]; the first “normal” pathway consists of R 1.16 and R 1.17, which together

consume two electrons from the cathode.

H2O2 + H+ +∗ +e− ⇌ OH∗ + H2O R 1.16

OH∗ + H+ + e− ⇌ ∗ + H2O R 1.17

In the second, autocatalytic pathway, R 1.17 is replaced by R 1.18. Both pathways

involve adsorbed OH (OH∗), but the second pathway differs in that H2O2 reduction

makes more OH∗ available to reduce additional H2O2.

 39

H2O2 + OH∗ + H+ + ∗ + e− ⇌ 2 OH∗ + H2O R 1.19

The autocatalytic pathway has been observed on Ag, but not on Pt or Pd [57]. No

papers examining the mechanism of H2O2 reduction on Pd:Ir alloys could be found,

however other properties of these alloys suggest that the mechanism for H2O2

reduction on Pd:Ir also follows the normal pathway. Adding Ir to the Pd cathode

catalyst has been shown to decrease the rate of H2O2 decomposition, with a

concomitant decrease in activity for H2O2 reduction [14, 58]. Greater activity would

have been expected if Ir induced an autocatalytic effect which Pd does not normally

exhibit.

1.5.4 Additional DBFC Electrode Reactions

R 1.2 (BH4
- electro-oxidation) and R 1.4 (BH4

- hydrolysis) dominate at the

anode. R 1.3 (H2O2 electro-reduction) and R 1.5 (H2O2 decomposition) dominate at

the cathode. These are not the only reactions which can occur, however. The

electrode potentials can reach values which drive reactions involving the solvent

(H2O) or supporting electrolytes (NaOH or H2SO4). The simplest way to evaluate the

possibility of such reactions is often to examine the relevant pH-E (Pourbaix)

diagram.

The anode potential at open circuit should be near the standard equilibrium

potential for BH4
- electro-oxidation (𝐸𝑅1−20 = -1.24 V vs. RHE) if it is the dominant

charge transfer reaction. Referring to the Pourbaix diagram for H2O (Figure 1.7), an

electrode having this potential in a strongly alkaline medium should drive R 1.20,

which at pH 14 and 𝑎𝐻2 = 1 has 𝐸𝑅1.20
0 = -0.828 V vs. RHE. The result is a “mixed

 40

potential” where the equilibrium potential of the anode depends on the relative rates

of R 1.2 and R 1.20 and falls in the range 𝐸𝑅1−20 < 𝐸0 < 𝐸𝑅1.20
0 . Ordinarily R 1.20 is

written as a dynamic equilibrium with rates in each direction, however Au has little

propensity for breaking H-H bonds, so the oxidation of H2 (reverse of R 1.20) is

unlikely.

Figure 1.7. Pourbaix diagram showing regions of stability, oxidation and reduction of
H2O as functions of pH and electrode potential [59].

2 H2O + 2 e− → H2 + 2 OH− 𝐸𝑅1.20
0 = -0.828 V vs. RHE R 1.20

A similar scenario exists at the cathode, where the standard reduction potential of

H2O2 in a strongly acidic medium is 𝐸𝑅1−30 = 1.77 V vs. RHE. Figure 1.7 shows that

R 1.21 should take place at electrode potentials above 𝐸𝑅1.21
0 = 1.23 V vs. RHE for

pH = 0 and 𝑎𝑂2 = 1.

 41

2 H2O ⇌ O2 + 4 H+ + 4 e− 𝐸𝑅1.21
0 = 1.23 V vs. RHE R 1.21

From a mechanistic point of view however, R 1.21 is properly modeled as the

summary of R 1.22 and R 1.3, with H2O2 being an intermediate in the O2 reduction

process at potentials more negative than 𝐸𝑅1.21
0 . This gives the intermediate H2O2 an

opportunity for other interactions prior to the second step, which is more realistic.

H2O2 ⇌ O2 + 2 H+ + 2 e− 𝐸𝑅1.22
0 = 0.682 V vs. RHE R 1.22

Additionally H+ reduction (R 1.23) can occur at the cathode. The use of low pH

oxidizer solutions provides abundant H+ in solution, which can be reduced to H2 at

potentials below 𝐸𝑅1.23
0 (see line a in Figure 1.7).

H2 ⇌ 2 H+ + 2 e− 𝐸𝑅1.23
0 = 0.00 V vs. RHE R 1.23

1.5.5 Rates for BH4
- oxidation on Au and H2O2 reduction on Pd:Ir

At least three efforts to measure the kinetic rate parameters for BH4
- electro-

oxidation have been reported, however the complexity of this reaction introduces

substantial uncertainty in the results. Chatenet [49] used linear voltammetry and

chronometric techniques with an RDE to measure 𝑖0 and 𝑛𝑒 in 0.1 to 1.0 M NaOH

and 10-2 to 1 M NaBH4 at 25°C. The result was 𝑖0 = 7.4×10-6 A·cm-2 and 𝑛𝑒 = 7 for

10-2 M NaBH4 in 1 M NaOH.

Santos [60] applied chronocoulometric techniques to measuring the exchange

current density 𝑖0, symmetry factor 𝛽𝑎 and standard rate constant 𝑘𝑎 at an Au disk in

 42

2 M NaOH with 𝐶𝐵𝐻4 = 0.03, 0.06, 0.09, 0.12 M. The result at 25°C was values of 𝛽𝑎

ranging from 0.07 to 0.13 and values of 𝑖0 ranging from 16.4 mA·cm-2 to 0.46

mA·cm-2. Santos obtained values for 𝑘𝑎 by noting that the anodic current at

equilibrium is equal to 𝑖0 and the number of electrons transferred in the rds is likely 1:

𝑖0 = 𝑘𝑎𝑛𝑒𝐹𝐶𝐵𝐻4exp (𝛽𝑎𝑛𝑒𝑓𝐸𝑅1.2
0) Eq. 1.24

In a second paper [61] describing the same experiments, Santos concluded that in the

examined range of concentrations at 25°C, the BH4
- electro-oxidation reaction was

irreversible, diffusion controlled and the rds involved the transfer of one electron.

Finkelstien et al. studied the rates of both BH4
- oxidation at Au [39] and H2O2

reduction at Pt [62]. For BH4
- oxidation, Finkelstien reported 𝑘𝑎 = 6.4×10-4 m·s-1 and

𝛽𝑎 = 0.22 at -0.230 V vs. RHE in 5 mM NaBH4 / 1 M NaOH. For H2O2 reduction,

Finkelstien reported 𝑘𝑐 = 8×10-3 m·s-1 and 𝛽𝑎 = 0.45 at 0.6 V vs. RHE in 5 mM H2O2

/ 0.5 M H2SO4. The authors did note, however, that the value of 𝑘𝑐 was unphysically

high and did not provide a rationale as to why.

Cao [21] studied the kinetics of H2O2 reduction at low pH on Pd nanoparticles

immobilized on an Au disk. An exchange current density of 3.8×10-4 mA·cm-2 was

reported for 30 mM BH4
- in 0.1 M H2SO4 at a temperature of 293 K.

1.5.6 Transport through Nafion Membranes in DBFCs

Most reported DBFC experiments have separated the fuel and oxidizer with a

Nafion cation exchange membrane [20, 25]. Nafion membranes are extruded sheets

of polytetrafluoroethylene (PTFE) and polysulfonyl fluoride vinyl ether copolymer;

the PTFE is a backbone for SO3
- functional groups which provide the cation exchange

 43

properties. In the picture expounded by Newman and Weber [63], the cationic

conductivity of Nafion depends on the presence of pores containing water. The pores

are effectively lined by SO3
- groups in the membrane matrix, which balance the

charge of hydrated cations in the pores. Anions are excluded from the pores by the

local negative charge of the pore walls, which establishes a Donnan potential at the

membrane-solution interface. Important Nafion transport properties include the

average number of H2O molecules per SO3
- group (𝜆) and the number of H2O

molecules in the hydration shell of each cation (𝑛𝑑). Increases in 𝜆 imply wider or a

larger number of pores, and correlates with ionic conductivity [64]. The value of 𝑛𝑑

depends on the cationic species and is known as the “electro-osmotic drag

coefficient” because it describes the number of water molecules transported through

the membrane by each cation [65].

Transport of cations through Nafion membranes occurs due to diffusion and

migration, while transport of water occurs due to diffusion and electro-osmotic drag.

All species are subject to permeation, where a pressure differential across the

membrane drives a bulk flow through the pores, carrying some or all constituents of

the higher pressure fluid. Some transport of anions in response to concentration or

pressure gradients is possible with anion concentrations lower than 𝐶𝑆𝑂3− in the

membrane because the Donnan potential at the membrane-solution interface acts as

an activation energy barrier to entry. The Donnan potential can be overwhelmed

when the anion concentration exceeds the concentration of SO3
- groups in the Nafion,

which then admits anions to the pores.

 44

The conductivity of the membrane is related to the mobilities of the charge

carriers (cations) flowing through it, as shown for aqueous electrolytes in §1.2.2. The

ohmic losses observed in DBFC experiments stem in large part from the mobility of

Na+ in Nafion, which is lower than the mobility of H+ due to its larger hydration shell

(𝑛𝑑,𝑁𝑎+ > 𝑛𝑑,𝐻+).

In an operating DBFC, the electric potential gradient in the membrane is oriented

such that the migration flux of Na+ ions flows from fuel solution to oxidizer solution

(see Figure 1.8). This electric potential gradient acts to keep fuel solution anions on

the fuel side of the membrane and cations in the oxidizer solution on the oxidizer side

of the membrane. Studies of BH4
- crossover in DBFCs using Nafion 117 membranes

have shown that the rate of crossover diminishes with increasing current density

(electric potential gradient in the membrane) [66].

Figure 1.8. Illustration of the electric potential profile through the membrane when
the DBFC is operating (a) and a possible profile at open circuit (b), which would

encourage crossover of other species.

When the cell is at open circuit, however, the rates of crossover for species other

than Na+ may rise. The electric potential gradient across the membrane and rates of

transport through the membrane at open circuit are dictated by the electrochemical

Oxidizer ChannelFuel Channel Membrane

Na+

(a)

(b)

 45

potentials of the species on each side. Large differences in concentration can provide

strong driving forces for crossover, and if Δ𝜇�𝑘,𝑚𝑒𝑚 < 0, then species k will cross the

membrane. It is possible for steady state at open circuit to include fluxes of charged

species through the membrane even if the net current into/out of the electrodes is

zero. Experiments have suggested that crossover of species such as BH4
- and OH-

may contribute to open circuit values of lower than 𝐸R1.1
0 by creating a mixed

potential at the cathode.

Studies [64, 67] of Nafion membranes in contact with aqueous electrolyte

solutions containing Na+ and H+ have shown that the cation electronic mobilities and

electro-osmotic drag coefficient depend on 𝑋𝐻+,𝑚𝑒𝑚 and 𝑋𝑁𝑎+,𝑚𝑒𝑚. The electronic

mobilities in Nafion 115 have been described [67] in terms of their mole fractions and

an interaction parameter 𝑘𝑖𝑛𝑡:

𝑢𝑁𝑎+,𝑚𝑒𝑚 = 𝑢𝑁𝑎+,𝑚𝑒𝑚
0 �1− 𝑘𝑖𝑛𝑡𝑋𝐻+,𝑚𝑒𝑚� 𝐹⁄ Eq. 1.25

𝑢𝐻+,𝑚𝑒𝑚 = 𝑢𝐻+,𝑚𝑒𝑚

0 �1− 𝑘𝑖𝑛𝑡𝑋𝑁𝑎+,𝑚𝑒𝑚� 𝐹⁄ Eq. 1.26

Faraday’s constant is included in Eq. 1.25 and Eq. 1.26 to convert from electronic

mobility to standard ion mobility. The electronic mobilities with only one type of

cation in the membrane were found in [67] to have the following values: 𝑢𝑁𝑎+,𝑚𝑒𝑚
0 =

(2.7 ± 0.1) x 10-8 m2·V-1·s-1 and 𝑢𝐻+,𝑚𝑒𝑚
0 = (1.49 ± 0.03) x 10-7 m2·V-1·s-1. The

interaction parameter was found to be 𝑘𝑖𝑛𝑡 = 0.20 ± 0.02.

1.5.7 Mathematical Models of DBFCs and Similar Fuel Cells

DBFC models have been published prior to this work. Verma and Basu [68]

modeled an O2 DBFC consisting of a Nafion membrane in contact with porous

 46

catalyst layers and a well mixed volume of fuel. Mass transport to the cathode was

governed by Fick’s law (O2 diffusion in air) and transport to the anode was neglected.

All charge transport processes in the cell were described by a fit to measurements of

ohmic resistance. Sanli et al. [69] published a similar model, but with H2O2 as the

oxidizer and mass transport neglected entirely. Both [68] and [69] ignore down-the-

channel effects. Shah et al. [70] published a DBFC model with the most detailed

treatment of the electrode reactions to date, for a cell topology similar to that of

PEMFCs (as shown in Figure 1.6, right side). The cell consisted of a Nafion

membrane with a porous Pt catalyst layer on each side; the catalyst layers were

separated from reactant flow channels by porous diffusion layers. The model predicts

cell voltage at a given current density by calculating activation and ohmic

overpotentials explicitly as functions of current density, and then subtracting the

overpotentials from the open circuit voltage. Concentration overpotentials were

included by estimating concentrations near the electrodes. Species concentrations

were assumed to be uniform in the flow channels, but transport from the flow

channels to the catalyst layer was approximated by a Nernst diffusion layer thickness

correlation. Down-the-channel effects were not addressed. The anode reaction

model included BH4
- adsorption (R 1.24), partial electro-oxidation of BH4

- to yield 4

e- and H2 (R 1.25) and the complete Tafel-Volmer-Heyrovsky mechanism for H2

evolution (R 1.26 to R 1.28) . Mixed potentials at the anode were handled by

allowing all of the reaction rates to find equilibrium at a common anode potential for

the specified current density. Shah found that 𝜃𝐵𝐻4− tended to be quite small (~10-4)

due to slow adsorption of anions on the negative anode and rapid dehydrogenation of

 47

the adsorbed BH4
-. These modeling results concur with the experimental results of

Mirkin et al. [48] and Chatenet et al. [44].

BH4

− + Pt ⇌ BH4
−∗ R 1.24

BH4

−∗ + 4 OH− → BO2
− + 2 H2O + 4 e− + 4 H∗ R 1.25

H2O + e− ⇌ OH− + H∗ (Volmer) R 1.26

H∗ + H2O + e− ⇌ H2 + OH− (Heyrovsky) R 1.27

2 H∗ ⇌ H2 (Tafel) R 1.28

Byrd and Miley [71] reported a 2D finite element DBFC model used for

parametric design analysis with respect to the cell geometry. The modeled DBFC

consisted of a Nafion membrane coated with catalyst on each side (see Figure 1.6,

right), with porous electrically conductive diffusion layers in contact with each

catalyst layer. The model domain included the membrane, catalyst layer and

diffusion layers between two channels; i.e. under the “land” of the flow field. The

goal was to model transport through the porous diffusion media between the channels

to evaluate the effects of parameters such as channel spacing and diffusion medium

porosity. The Byrd study excluded transport in the channels and migration by

treating electrolytes (for example, NaOH) as single uncharged species in aqueous

solution. Transport in the diffusion media was described by a combination of Fick’s

Law for diffusion and Darcy’s law for creeping flow through a porous medium.

Convection and the interactions of ions in solution were ignored. The membrane was

treated as an ohmic resistance with H+ flowing from anode to cathode. The reason for

charge balancing the cell with H+ was unclear, as Na+ is widely accepted as the

 73

An adsorption isotherm permits implicit calculation of adsorption and desorption

rates by assuming surface species are in equilibrium with the aqueous species, but the

rates can also be calculated explicitly. At steady state, the net rate of species 𝑘

addition to the surface must equal the rate of loss, with the net rate being a result of

adsorption/desorption reactions and surface reactions. The sum over production and

consumption rates due to all reactions 𝑞 must therefore be zero, and the residual

associated with the surface site fraction of each species 𝑘 is given by Eq. 2.21.

𝑅𝑘𝑆𝐹 = �𝑟𝑞𝑣𝑘,𝑞
𝑞

 Eq. 2.21

2.6 Composition Equation of State

The fuel and oxidizer solutions are incompressible, but an equation of state is

still needed to relate solution mass density to composition. A state equation (Eq.

2.22) relates solution mass density to mass fraction by accounting for the apparent

molar volume of each solute.

𝜌 =
𝜌𝐻2𝑂

𝑌𝐻2𝑂 + 𝜌𝐻2𝑂 ∑ (𝛿𝑘𝑌𝑘 𝑊𝑘⁄)𝑘
 Eq. 2.22

The density of pure water, 𝜌𝐻2𝑂, varies with temperature via a polynomial fit to

empirical data at 100 kPa.

 74

Chapter 3: An Analysis of Ideal DBFC Performance

3.1 Goals and Approach

While there has been significant work on the electrochemistry of DBFCs,

practical DBFC cell design and operating spaces have not been explored as

thoroughly. Experiments on fundamental kinetics as well as electrode geometry have

provided insight into what is feasible for DBFCs, but relationships between cell

design and performance are not understood. The range of reactant and product

concentrations along the flow path of a practical cell with substantial reactant

utilization can have a significant impact on reaction overpotentials and transport

limitations, and thus overall cell efficiencies and power densities. Carefully

constructed numerical models of DBFCs can explore cell configurations and designs

that provide the highest power densities and the most effective conversion of fuel and

oxidizer to useful energy (i.e., efficiency). A model can also provide state

information that is useful for understanding how the cell operates, but is otherwise

difficult to measure. This chapter presents results from a 2-D steady state finite

volume model which explore how cell geometry and operating conditions impact

DBFC performance under conditions which favor R 1.2 and R 1.3.

The modeled system is ideal in that only R 1.2 and R 1.3 take place, and the

membrane is permeable only to Na+ and water. Realistically, improved

electrocatalysts and membranes are unlikely to eliminate R 1.4 and R 1.5, or the

transport of species other than Na+ through the membrane. The results presented here

 75

represent the performance of an ideal DBFC, which realistic DBFC performance may

approach as the technology improves.

The rates of R 1.2 and R 1.3 were written in the form of Eq. 1.11, making use of

Eq. 1.13 to write them in terms of only one rate constant. This approach ensured

thermodynamic consistency, i.e. the net rate would be zero under standard conditions

(all 𝑎𝑘=1) and electrode potential equal to ∆𝜙′. The concentrations of species in

excess (OH- at the anode, H+ at the cathode and H2O at both electrodes) were

neglected as they have little effect on the rates. The rates of R 1.2 and R 1.3 are given

as Eq. 3.1 and Eq. 3.2.

𝑟𝑅1.2 = 𝑘𝑎,𝑅1.2�𝐶𝐵𝐻4−𝑒

𝛽𝑎,𝑅1.2𝑓Δ𝜙 − 𝑒𝑓𝐸𝑅1.2
0

𝐶𝐵𝑂2−𝑒
−�1−𝛽𝑎,𝑅1.2�𝑓Δ𝜙� Eq. 3.1

𝑟𝑅1.3 = 𝑘𝑐,𝑅1.3�𝑒−𝑓𝐸𝑅1.3
0
𝑒𝛽𝑎,𝑅1.3𝑓Δ𝜙 − 𝐶𝐻2𝑂2𝑒

−�1−𝛽𝑎,𝑅1.3�𝑓Δ𝜙� Eq. 3.2

This study consists of a baseline case and 12 alternative cases in which one

parameter is altered (see Table 3-1) to identify the effects it has on DBFC

performance. Many parameters remained the same in all cases (see Table 3-2). The

model was run repeatedly for each case for a range of cell voltages. An initial

solution at a cell voltage of 3.4 V was calculated, and the cell voltage was

subsequently decreased in 0.1 V steps until it reached the transport-limited current

density. Each run yielded values for all state variables in the model domain and post

processing provided the mass, momentum and charge fluxes (i.e. current density).

The state variables and fluxes were used to estimate performance metrics such as

voltage efficiency, power density and fuel utilization.

 76

Baseline values for the channel dimensions, membrane thickness and inlet flow

rates were based on typical values appearing in published experimental studies. The

inlet BH4
- concentrations were chosen to operate in a regime where complete

borohydride oxidation (R 1.2) is likely to dominate the anode reactions (at cell

voltages other than open circuit). Fast forward reaction rate constants (𝑘𝑅1.2,𝑎 at the

anode and 𝑘𝑅1.3,𝑐 at the cathode) were chosen to model cell performance with an

advanced electrocatalyst and emphasize the influence of transport on cell

performance.

Table 3-1. Baseline case and parameter variations

Parameter Baseline Variations from Baseline
Anode inlet [NaBH4] 0.3 M 0.1, 0.2, 0.4, 0.5 M
Channel depth 1 mm 0.50, 0.75 mm
Membrane thickness 145 µm 1.45, 72.50 µm
Inlet fuel flow rate 60 mL min-1 15, 30 mL min-1
Forward reaction rate
constants 106 m4·mol-1·s-1 100, 103 m4·mol-1·s-1

Table 3-2. Parameters common to all cases
Parameter Value Parameter Value

Anode inlet [NaOH] 4.0 M Cathode inlet [H2SO4
] 4.0 M

Anode inlet [NaBO2] 10-6 M Cathode inlet [H2O2] 4.0 M
Channel width 10 mm Oxidizer inlet flowrate 60 mL·min-1
Temperature 298 K

3.2 Baseline Case

The calculated baseline polarization curve is shown in Figure 3.1. The cell

voltages in Figure 3.1 are useful in a relative sense because the model neglects fuel

crossover and competing electrochemical reactions, but the slopes of the polarization

curve in the linear region at intermediate current densities and in the transport-limited

 77

region at the highest current densities are comparable to an actual cell because they

are largely dictated by known transport parameters.

Figure 3.1. Baseline polarization curve showing activation, ohmic and concentration
overpotentials.

 89

Figure 3.11. Polarization and power density curves for membrane thicknesses of 1.45,
72.5, and 145 µm. All other parameters are the same as in the baseline case, which is
labeled “BL”. The thickness of fully hydrated Nafion 115 in the Na+ form is 145 µm

[67].

3.5 Effects of Fuel Concentration and Flow Rate

Changes to fuel concentration and flow rate affect cell performance by changing

concentrations near the electrodes, thereby changing the concentration overpotentials.

Higher inlet BH4
- concentration provides a larger gradient to drive BH4

- from the bulk

to the anode, which leads to higher fuel concentration near the anode. Higher flow

rate improves convection transport of reactants to the anode and products from the

anode. Both scenarios increase power density by decreasing the concentration

overpotential, increasing current density, or both.

 91

Figure 3.12. Average power density vs. cell potential for fuel inlet concentrations
ranging from 0.1 M to 0.5 M. All other parameters are the same as in the baseline
case, labeled “BL”. The bold dashed curve is drawn through the maximum power

density at each concentration.

Power density is plotted vs. cell voltage for three fuel flow rates in Figure 3.13.

The power density increases with flow rate at all current densities as the higher rates

of transport change concentrations near the anode. The pressure drop in the channel

increases in proportion to the flow rate, but fuel utilization falls as indicated in Table

3-5. Increasing the fuel flow rate by a factor of four increases the pressure drop

(pumping losses) by a factor of four, but only increases the peak power by 48%.

 92

Figure 3.13. Power density vs. cell voltage curves for fuel solution flow rates of 15,
30 and 60 mL·min-1. All other parameters are the same as in the baseline case,

labeled “BL”. The bold dashed curve is drawn through the maximum power density
at each flow rate.

Table 3-5. Performance metrics with respect to fuel flow rate with all other
parameters at the baseline case

 Fuel Flow Rate [mL·min-1]
Parameter 15 30 60
Peak power density [W·cm-2] 0.72 0.88 1.06
Cell voltage @ peak power density [V] 2.37 2.29 2.21
Fuel utilization @ peak power density [%] 10.5 6.60 4.14
Power density @ 2.5 V [W·cm-2] 0.65 0.70 0.73
Channel pressure drop [Pa] 51.7 104 210

3.6 Insights into DBFC Design from the Ideal Case Analysis

The results in sections 3.2 to 3.5 can guide DBFC design by showing how

performance varies with operating conditions and cell design parameters. For

conditions in which cell performance is controlled by transport, the assumptions

 107

the deposition rates could have varied from the inlet to outlet of the cell as the plating

solution was depleted. Electron dispersive x-ray spectroscopy (EDS) was used to

measure the abundance of Pd and Ir at both ends and the middle of the cathode

electrocatalyst strip. The results show a trend of increasing Pd deposition rate from

inlet to outlet, with the Pd:Ir ratio varying from 1.1:1.0 near the inlet to 1.4:1.0 near

the outlet. The abundance of C varies from 13.3% near the inlet to 15.4% near the

outlet, suggesting the plating solution was becoming depleted and/or a concentration

boundary layer developed during the deposition process. Small quantities (< 2.5%)

of Cl and Na were also evident, and were most likely traces from the plating solution.

A study by Zhang et al. [86] indicated that Ir exists in this solution (at low pH)

primarily as [IrCl6]-2, so Cl- may have deposited independently, or as part of the Ir

deposition process as [IrCl6]-2 reached the surface.

Figure 4.10. Example EDS spectrum from end “A” of the cathode electrocatalyst
strip, showing relative abundances of each species.

 109

Figure 4.11. SEM image of the Pd:Ir cathode prior to experiments, showing good
coverage of the graphite plate.

Figure 4.12. SEM image of the Pd:Ir cathode prior to experiments, showing surface
morphology consisting of rounded features.

 110

Figure 4.13. SEM image of the Au anode prior to experiments, showing a different
surface morphology with more texture than in the Pd:Ir cathode. The cathode image

is inset with size adjusted to match the anode scale bar.

4.3.3 Cyclic Voltammograms

The electrochemical characteristics of the two electrodes were evaluated by

cyclic voltammetry (CV). A procedure similar to the plating procedure was used to

measure each CV. The electrode of interest was assembled in the cell with a blank

(i.e. graphite only) CE and no membrane, and 0.5 M H2SO4 was pumped through the

cell from a reservoir by a peristaltic pump. The H2SO4 was de-aerated by bubbling

Ar through it while stirring. The pump and stir plate were halted during

measurements to minimize electromagnetic interference, but the cell remained

connected to the reservoir to ensure ionic conductivity between the cell and Ag/AgCl

RE in the reservoir. CVs were generated by an Autolab PGSTAT30 potentiostat/

 111

galvanostat with scan rate of 20 mV s-1, after 10 rapid cleaning scans. The resulting

CVs are presented in Figure 4.14.

The Au CV shows the characteristic features found in published Au CVs under

similar conditions [87]. Integrating the charge under oxide reduction peak (labeled a

in Figure 4.14; 0.5 V to 1.1 V) and dividing by the charge density of one oxygen

monolayer (0.42 mC·cm-2 [88]) yields an electrochemical surface area (ECSA) of

47.1 cm2. Dividing the ECSA by the 2.5 cm2 geometric surface area yields an anode

roughness factor of approximately 18. The DBFC cathode roughness factor was not

calculated from the area under the oxide peak labeled b, as it was for the anode,

because the charge density of an oxide monolayer on this alloy is not known.

Figure 4.14. Cyclic voltammograms for the Au anode electrocatalyst and Pd:Ir

cathode electrocatalyst. Measured in 0.5 M H2SO4 with a scan rate of 20 mV·s-1.

There are few examples of Pd:Ir CVs in the literature; the most similar CVs

available were reported for various ratios of Pt:Ir in 0.1 M HClO4 by Chen and Chen

 112

[89]. The Pd:Ir CV in Figure 4.14 most resembles the CVs in [89] for Pt:Ir ratios of

66:43 and 1:0. Kjeang [90] reported a CV of a planar Pd electrode deposited on a

graphite plate in the course of experiments with a microfluidic formic acid fuel cell.

Unfortunately, the Kjeang CV is nearly featureless, perhaps due to poor deaeration of

the electrolyte.

4.4 Test Preparation and Procedures

4.4.1 Reactant Preparation

All glassware used for reactant preparation and wetted parts in the test stand

(carboys, valves, etc.) were cleaned with NaHCO3 and 98% H2SO4, and then rinsed

thoroughly with 18 MΩ water. The fuel solution was prepared by adding solid NaOH

(Fisher Scientific) to 18 MΩ water and then adding the desired amount of solid

NaBH4 (Alfa Aesar). The oxidizer solution was prepared by diluting 98% H2SO4

(Fisher Scientific) with 18 MΩ water and then adding the desired amount of 30% wt

H2O2 solution (Fisher Scientific). The base and acid were each prepared first so that

the NaBH4 would not hydrolyze and the H2O2 would not decompose when added.

Both reactant solutions were prepared less than 30 min prior to each experiment to

minimize changes in BH4
- and H2O2 concentration due to hydrolysis and

decomposition. The reactants were permitted to achieve thermal equilibrium with the

laboratory environment prior to each test. Neither reactant solution was deaerated

prior to the experiments, although the N2 overpressure would have lowered the

dissolved O2 concentrations slightly. Au has little activity for O2 reduction, so

dissolved O2 should not have affected the anode behavior. Pd:Ir, on the other hand,

 113

has high activity for O2 reduction and dissolved O2 may have provided an additional

source of oxidizer. The O2 concentration in pure water in equilibrium with 1 atm air

at 25°C is 2.67×10-4 M [91], or 150 times smaller than the 40 mM H2O2 concentration

in most of the experiments.

4.4.2 Measurement and Test Procedures

For each experiment, the carboys were pressurized to 2.5 psig and then the

reactant valves were opened. The cell was permitted to equilibrate at open circuit for

5 min, and then the MACCOR test script was started. The test script began with a 5

min hold at open circuit and then generated a polarization curve by stepping through

cell potentials from 0.3 V to open circuit. Each subsequent cell potential was held for

2.5 min. The short hold periods (compared to common PEMFC test procedures) were

found to be sufficient because the cell rapidly approached steady state, as judged by

observing the cell current. The period at 0.3 V was longer to ensure the cathode was

thoroughly reduced and improve consistency among polarization curve

measurements. Each test consisted of three successive polarization curves which

were later used to compile an average curve and standard deviation for each point.

Current was measured at 1 Hz, and the last 2 min of each hold period were used to

compile an average cell current for that step.

The reactant flow rates were measured periodically (twice per experiment) to

ensure they were consistent among experiments. The rates were measured by

directing the flows into 250 mL graduated cylinders and measuring the time to fill

them. At 10 mL·min-1 (the flow rate for most of the experiments) the time

measurement error was insignificant compared to the total time of ~25 min, making

 114

the measurement uncertainty depend entirely on the accuracy of the graduated

cylinders. Compiling all flow rate measurements gave values of 10.17±0.46 mL·min-

1 for the fuel and 10.05±0.16 mL·min-1 for the oxidizer.

Figure 4.15. Polarization curves measured with 20 mM BH4
- / 2 M NaOH fuel and 40

mM H2O2 / 1 M H2SO4 oxidizer. One curve was generated by stepping from open
circuit to 0.3 V, and the other by stepping from 0.3 V to open circuit.

Oxidizing conditions such as high electrode potential or exposure to strong

oxidizers have been known to oxidize fuel cell electrocatalysts, which decreases their

catalytic activity. The Au anode catalyst remained in the reduced state in the strongly

reducing anode fuel flow, but the Pd:Ir cathode was exposed to H2O2 (a strong

oxidizer) and expected to take on high electric potential. To evaluate the influence of

cathode catalyst oxidation on the results, two polarization curves were measured, one

stepping from open circuit down to 0.3 V and one stepping from 0.3 V up to open

circuit. The two curves are shown in Figure 4.15, where some minor differences are

 115

apparent. The curve stepping from 0.3 V to open circuit has higher current densities

in the ohmic and activation overpotential regions, as expected for a catalyst layer

which was more reduced by operating at low electric potential prior to measuring the

curve.

Each set of experiments began and ended with a baseline polarization curve to

show whether or not the cell state (for example, catalyst oxidation state) was

consistent for the intervening experiments. The baseline case was 10 mM NaBH4 / 2

M NaOH fuel and 40 mM H2O2 / 1 M H2SO4 oxidizer. 1:1 stoichiometry (assuming

the ideal reaction, R 1.1) was chosen for the baseline case so that a change in the

activity of either electrocatalyst would appear in the polarization curve; otherwise

changes in an electrode could be masked by an excess of reactant.

Figure 4.16. Comparison of baseline (10 mM NaBH4 / 2 M NaOH fuel, 40 mM H2O2
/ 1 M H2SO4 oxidizer) polarization curves, measured before and after

experiments.

 116

Figure 4.16 shows baseline polarization curves measured before and after the

bulk of experiments discussed in this chapter. They vary little, showing that the cell

state was likely consistent throughout the test matrix. The apparent discrepancy in

the activation region is the result of adding several points in the “Finish” polarization

curve to better resolve the curve in that region.

4.5 Results and Discussion

4.5.1 Measured Polarization Curves and Electrode Potentials

Five polarization curves were measured with BH4
- concentrations ranging from 1

to 20 mM, all in 2 M NaOH. Concentrations in the oxidizer solution were held

constant at 40 mM H2O2 / 1 M H2SO4. This BH4
- concentration range was chosen for

two reasons. First, BH4
- oxidation is the least understood reaction occurring in the

cell, with both the mechanism and rate in doubt. Varying BH4
- concentration was

expected to probe the anode reaction(s) and show how the relative rates change,

because BH4
- is likely involved in the rate-determining step. If for example, the

anode mechanism consists of R 1.2 and R 1.4, then changing BH4
- concentration

should change the relative rates of those reactions and the current density. Variation

in polarization curves with operating conditions was expected to permit fitting of rate

parameters to the measurements. The second reason for choosing this range of BH4
-

concentrations was to vary the transport limiting species. 1 mM, 2.5 mM and 5 mM

BH4
- give fuel limited stoichiometries. 10 mM BH4

- gives 1:1 stoichiometry, and 20

mM BH4
- is oxidizer limited. Varying the limiting reactant was expected to provide

 117

insight into the transport behavior of these species and test the accuracy of transport

rate prediction by the model.

The five measured polarization curves are shown in Figure 4.17. All five curves

exhibit clear activation overpotential regions between OCV and 1.4 V. As expected,

the ohmic overpotential region is most pronounced in the 20 mM BH4
- curve, which

has the highest current density.

Several differences between the measured polarization curves and those

predicted by the ideal DBFC analysis are apparent. First, OCV is depressed in the

measured curves by ~1.4 V. The ideal DBFC analysis presumed that no electrode

reactions occur at OCV, so that reactant concentrations near the electrodes were equal

to the bulk concentrations. The lower measured OCVs can be explained by

competing reactions consuming reactants near the electrodes, which lowered the local

concentrations and depressed electrode potentials as predicted by the Nernst equation.

Furthermore, the real reaction rate constants were likely smaller than the fast values

assumed for the ideal analysis. Smaller rate constants lead to larger activation

overpotentials, because electrode potentials must shift further from equilibrium to

achieve even small net current density. Large activation overpotentials near OCV can

appear to be shifts in OCV as small current densities are masked (appear to be zero

current density) by effects such as leakage currents and membrane crossover.

A second difference between the measured polarization curves and those

predicted by the ideal analysis is the onset of the transport limit. In the ideal analysis,

current density suddenly ceased to increase with decreasing cell voltage at the

transport limit. The measured 1 mM and 2.5 mM BH4
- concentration curves behave

 118

this way, but the 5 mM, 10 mM and 20 mM curves end differently. The 5 mM and 10

mM BH4
- concentration curves approach the transport limit gradually with current

density rising less quickly as the cell voltage is decreased. The 20 mM BH4
- is

similar, but in the 0.4-0.6 V range the current density appears to increase more

quickly as the cell voltage is decreased. These trends indicate the presence of a

process which was omitted in the ideal DBFC analysis.

Figure 4.17. Measured polarization curves with varying BH4
- concentration in 2 M

NaOH. In all cases, the oxidizer was 40 mM H2O2 / 1 M H2SO4. Fuel and oxidizer
flow rates are both 10 mL·min-1.

A plot of current density vs. BH4
- concentration for each cell voltage (see Figure

4.18) suggests that the transport limited current density varied linearly with BH4
-

concentration when 𝐶𝐵𝐻4− ≤ 5 mM. This is reasonable given that the fuel cell was

operating with fuel limited stoichiometry when 𝐶𝐵𝐻4− < 10 mM. The transition from

 119

fuel limited to oxidizer limited operation is not dictated by stoichiometry alone,

however. The diffusivity of BH4
- (2.42×10-9 m2·s-1) is greater than that of H2O2

(1.49×10-9 m2·s-1), and the BH4
- flux is aided by migration, so the transition is likely

to occur at lower BH4
- concentration than 1:1 stoichiometry. This may explain why

the highest current density curves (at 0.4 V) in Figure 4.18 change slope between

BH4
- concentrations of 5 mM and 10 mM.

Figure 4.18. Plots of measured current density vs. BH4

- concentration for the
specified cell voltages.

There are several possible explanations for the gradual decline in current density

in the higher BH4
- concentration curves. For example, the shift in concentrations at

one or both electrode interfaces as the current density increases could lead to a change

in the relative rates for reactions occurring there. The shifts in relative rates may

favor charge transfer reactions (for example, favoring reaction R 1.2 over reaction R

1.4) and postpone the appearance of a hard transport limit to lower cell voltages.

 120

Another possibility is that migration aids transport of the limiting species. In this

case, the transport limited region of the polarization curves should have the observed

shape. The migration fluxes are proportional to the local electric potential gradient,

and lower cell voltage may create a larger electric potential difference across the

channel containing the limiting species. The result would be a flux of the limiting

species which varies linearly with cell voltage.

Finally, a third possibility is that charge transfer reactions which were

thermodynamically unfavorable at cell voltages above 1.1 V become favorable at

lower cell voltage. The anode and cathode potentials were measured with respect to

Ag/AgCl reference electrodes for the 10 mM and 20 mM BH4
- cases. The results are

plotted in Figure 4.19, where the potentials have been corrected to be vs. RHE. The

potential of each Ag/AgCl reference electrode was measured vs. a normal hydrogen

electrode (0.5 M H2SO4 and 𝑃𝐻2= 1 ATM with a Pt mesh electrode) to obtain the

correct offsets. Two horizontal dashed lines in Figure 4.19 demarcate the boundaries

between H+
 stability and reduction in the oxidizer solution (a1) and H2O stability and

reduction in the fuel solution (a2). These lines are the same as line (a) in Figure 1.7,

but in Figure 4.19 the potentials have been adjusted to reflect the concentrations in

the experiment.

 121

Figure 4.19. Anode and cathode potentials measured during baseline polarization
curve, vs. Ag/AgCl reference electrodes and then corrected to RHE.

It is notable that proton reduction at the cathode is expected to begin at 𝑉𝑐𝑒𝑙𝑙 =

~0.9 V, which is roughly the point at which the slopes of the polarization curves

change. Perhaps proton reduction (reaction R 1.23) becomes thermodynamically

favorable when the cell voltage falls below ~1.1 V and augments the current density

due to H2O2 reduction (reaction R 1.3).

In addition to providing a clue as to the processes dictating the current density,

Figure 4.19 also provides insight into the relative magnitudes of the loss mechanisms

at each electrode. At open circuit in the 20 mM BH4
- case, the anode potential is

-1.220 V vs. RHE and the cathode potential is +0.431 V vs. RHE. The anode

potential is reasonable given the standard reduction potential for reaction R 1.2 (-1.24

V vs. RHE), but the cathode potential is 1.29 V less positive than the reduction

potential for reaction R 1.3 corrected to local conditions (1.717 V vs. RHE). The

 122

large disparity between the predicted and actual potential of the cathode at open

circuit suggests other reactions are influencing the cathode overpotential. The loss of

cathode potential is the primary reason the measured open circuit voltage (~1.61 V) is

much lower than the open circuit voltage predicted by thermodynamics (3.01 V).

Open circuit voltages in the range 1.5 to 1.7 V have been observed in all reported

DBFC experiments using alkaline NaBH4 and acidic H2O2 reactants.

As the cell voltage is decreased from open circuit, the anode potential in Figure

4.19 rises quickly while the cathode potential changes little. At higher current

density, the anode potential changes little and the cathode potential becomes less

positive in proportion to the decrease in cell voltage. The changes in electrode

potential from open circuit to high current density show that the majority of activation

overpotential originates at the anode and the majority of concentration overpotential

occurs at the cathode. The greater anode activation overpotential agrees with the

consensus in the literature that BH4
- oxidation in alkaline media is slower than H2O2

reduction in acidic media. The difference in concentration overpotential is not

surprising given the differences in the transport parameters for BH4
- and H2O2

discussed previously.

Measurement of the 1 mM, 2.5 mM and 5 mM BH4
- polarization curves was

halted at 0.4 V because lower cell voltages produced declining current density, which

suggested that the load would drive the cell if the voltage were further decreased. All

curves plotted in Figure 4.17, and Figure 4.18 were truncated at 0.4 V for

consistency, yet the 10 mM and 20 mM BH4
- measurements proceeded to 0.3 V. The

full 10 mM and 20 mM BH4
- curves are plotted in Figure 4.20, where it is clear that

 123

the greater BH4
- concentration in the 20 mM curve led to a sudden increase in current

density at low cell voltage. This feature was consistent among all three of the 20 mM

BH4
- measurements (see the error bars in Figure 4.20) and in the polarization curves

of Figure 4.15.

Figure 4.20. Plots of the entire 10 mM and 20 mM BH4
- polarization curves.

These measurements support the hypothesis that additional reduction reaction

takes place at the cathode. It may be reaction R 1.23, which should behave as

observed when the cathode potential falls below 0.00 V vs. RHE. The current density

at cell voltages from 1.1 to 0.6 V may be dictated by the H2O2 transport limit, and

then at lower voltages, proton reduction begins to supply additional current density.

Since there is ample BH4
- at the anode which was underutilized at the H2O2 transport

limit, and ample H+ at the cathode, the current density rises rapidly once H+ reduction

 124

begins. The lack of a hard transport limit may be due to the current contributed by H+

reduction increasing as the current contributed by H2O2 becomes transport limited.

A comparison between the 20 mM BH4 polarization curves in Figure 4.15 and

Figure 4.20 can shed additional light on the transition from H2O2 reduction to H+

reduction, by showing how membranes with different histories can influence the

onset of H+ reduction. A single membrane was used for all of the setup and model

calibration experiments; it is labeled “Original Membrane” in Figure 4.21. A fresh

membrane was used for the experiment examining the effects of voltage stepping

direction; it is labeled “Fresh Membrane” in Figure 4.21.

Figure 4.21. 20 mM BH4
- polarization curves; “Original Membrane” is replotted here

from the suite of five model calibration curves and “Fresh Membrane” is replotted
here from the hysteresis experiment.

 125

The fresh membrane showed a steeper drop in current density at ~21 mA·cm-2,

whereas the original membrane transitioned more gradually. Comparing cathode

potential measurements from the two cases showed that the cathode was more

negative with the original membrane, presumably because the original membrane had

been degraded by the setup experiments and therefore incurred a greater ohmic drop.

The greater membrane ohmic drop pulled the cathode to lower potential at each

current density, causing the cathode to reach the onset potential for H+ at lower

current density. The onset of H+ reduction at lower current density blurred the

transition from H2O2 reduction to H+ reduction, yielding the gradual transition for the

original membrane. This explanation is bolstered by modeling results in Chapter 5

which predict a H2O2 transport limited current density of ~21 mA·cm-2.

Polarization data were plotted in the ideal cell analysis of Chapter 3 as cell power

density vs. cell voltage because it provided a clear picture of the fuel cell operating

space. Power curves from the experiments are shown in Figure 4.22, which have

shapes and trends similar to the ideal case power curves in Figure 3.12. The ideal and

measured power curves differ, however, in that peak power shifts to lower cell

voltage with increasing borohydride concentration in Figure 3.12 and not in Figure

4.22. The shift in the ideal case analysis was due to greater ohmic losses at higher

current density, which depressed the cell voltage. The trend may be absent in the

measurements because the measured average current densities were much lower than

in the ideal case analysis, so the ohmic overpotentials were less evident.

 126

Figure 4.22. Measured power curves with varying BH4
- concentration in 2 M NaOH.

In all cases, the oxidizer was 40 mM H2O2 / 1 M H2SO4. Fuel and oxidizer flow rates
were both 10 mL·min-1.

The model calibration polarization curves in Figure 4.17 were measured with

reactant concentrations lower than those often reported in DBFC experiments. The

lower concentrations were chosen to minimize the rates of BH4
- hydrolysis and H2O2

decomposition, which at high rates can produce large gas volumes. When the

reactant flows contain large volume fractions of gas, the incompressible liquid

assumption breaks down and a multi-phase flow model becomes necessary. A multi-

phase flow model was beyond the scope of this study. Omitting multiphase flow in

early models of new fuel cell chemistries is not unprecedented; early PEMFC models

neglected liquid water transport and early DMFC models neglected CO2 in the

aqueous fuel for similar reasons. The complexity of multi-phase flow was added in

 127

advanced PEMFC and DMFC models, and it may be feasible for future DBFC

modeling.

Despite the complexities of modeling DBFC performance with higher reactant

concentrations, one polarization curve was measured with moderate concentrations of

50 mM NaBH4 / 2 M NaOH fuel and 250 mM H2O2 / 1 M H2SO4. Figure 4.23 shows

the polarization and power curves measured for these operating conditions. This

polarization curve exhibits the same gradual decline in cell potential with current

density that appeared in the high borohydride concentration curves of Figure 4.17.

One feature of the polarization curve in Figure 4.23 which stands out in comparison

to the polarization curves of Figure 4.17 is an additional change in slope beginning at

0.5 V cell potential. This change in the curve may be the beginning of a BH4
-

transport limit.

Figure 4.23. Polarization and power curves measured for 50 mM NaBH4 / 2 M NaOH

fuel and 250 mM H2O2 / 1 M H2SO4 oxidizer. Both flow rates were
10 mL·min-1.

 128

4.5.2 Gas Production Observations

The DBFC used to measured polarization curves did not permit direct

observation of the electrodes during operation, but the electrode potential

measurements did permit subsequent ex situ experiments which reproduced the

electrode behavior where it could be observed. Such experiments were conducted to

better understand the relationships between cell potential and gas production. In each

ex situ experiment, one of the graphite plates from the DBFC was submerged in a

beaker of solution having the same concentrations as in the cell experiments. A

Ag/AgCl reference electrode and a Au counter electrode were also submerged in the

beaker solution. The counter electrode had an area more than 10 times the area of the

electrode on the graphite plate so that the observed behavior would be determined by

the electrode on the graphite plate. The graphite plate electric potential was cycled

through the range observed in the cell experiments by an AutoLab PGSTAT 30

potentiostat/galvanostat.

The cell cathode was submerged in 40 mM H2O2 / 1 M H2SO4 and cycled from

0.4 V to -0.5 V vs. RHE at 0.01 V·s-1. The open circuit potential in the ex situ

experiment was 0.426 V, which agrees with the measured cathode potential in the

assembled cell at open circuit (see Figure 4.19). At open circuit, rapid gas production

was observed at the electrode (but not elsewhere on the graphite plate). A subsequent

experiment omitting H2O2 from the solution did not exhibit this behavior, confirming

that H2O2 was involved in gas production, which was likely O2 produced by H2O2

decomposition. H2O2 decomposition appeared to cease immediately when the

graphite plate potential was decreased from open circuit. Visible gas production

 129

(again, only at the electrode) resumed when the potential reached approximately -0.48

V vs. RHE. H2 production via reaction R 1.23 was likely the source of gas at low

potential, because reaction R 1.23 is thermodynamically favorable at potentials more

negative than ~0.00 V vs. RHE in 1 M H2SO4. The current density also increased

substantially when H2 production began, although this observation cannot be used

quantitatively because the entire plate (not just the electrode) was submerged in

solution. These ex situ observations corroborate observations of gas bubbles in the

oxidizer effluent line, in the polarization curve measurements at open circuit and

0.3 V cell voltage.

The same ex situ experiment was carried out with the DBFC anode in a beaker

containing 20 mM NaBH4 / 2 M NaOH. The anode was cycled from -1.3 V to -0.7 V

vs. RHE at 0.01 V·s-1. The open circuit potential in the ex situ experiment was -1.115

V vs. RHE, which is similar to the value observed during the polarization curve

measurements at open circuit (-1.22 V vs. RHE). The difference may be due to rapid

gas production observed at open circuit in the beaker experiment. The gas was

presumably H2 produced by BH4
- hydrolysis via reaction R 1.4. Since the solution

was quiescent in the beaker and flowed in the cell, the concentration of BH4
- near the

electrode may have fallen further in the ex situ experiment as BH4
- was consumed by

hydrolysis. Lower BH4
- concentration would have shifted the equilibrium potential to

a less negative value, as observed. The current density and gas production rate in the

ex situ experiment were observed to increase as the cell potential was made less

negative. The greater rate of H2 production at high current density is not an expected

outcome for the anode mechanism consisting of reactions R 1.2 and R 1.4, but it does

 130

agree with mechanisms which assume that H* plays a role in determining the anode

reaction rates, such as that proposed by Rostamikia [36]. BH4
- should adsorb more

readily on a less negative anode, raising the surface concentration of BH4
- (𝜃𝐵𝐻4−).

Other studies have shown that the rate of BH4
- adsorption and surface coverage of H

should both increase as the anode becomes less negative [36, 70]. As 𝜃𝐵𝐻4− grows,

the surface concentration of H* (𝜃𝐻) will also grow due as BH4
-* dehydrogenates.

Greater 𝜃𝐻 has two results; first, higher current density as OH- from solution reacts

with H* to form H2O and provide an electron to the anode (reaction R 1.15), and

second, greater H2 production via reaction the Heyrovsky reaction (R 1.27) and/or the

Tafel reaction (R 1.28).

The model calibration experiments did not include quantitative measurements of

gas production rate, yet several qualitative observations were possible. On the

oxidizer side, initial setup experiments were conducted with high (1 M) H2O2

concentration before lower concentrations were chosen for the model calibration

experiments. High H2O2 concentration yielded prodigious gas at open circuit which

was evident by gas volume fractions of ~1/3 in the oxidizer effluent stream. The

lower (40 mM) H2O2 concentration used for the model calibration experiments

produced fewer bubbles. On the fuel side, bubbles were evident for all operating

conditions and inlet BH4
- concentrations. The gas volume fraction in the fuel effluent

was clearly larger for higher BH4
- concentration, lower NaOH concentration, and at

high current density.

 131

4.5.3 Other Measurements and Observations

A Nafion membrane was chosen in part because it resists attack by both acids

and bases, which is an important property for DBFCs which can have pH gradients of

~14 across the membrane. Some researchers have suggested that the pH gradient

may drive H+ and/or OH- through the membrane if the acid and base concentrations

are sufficiently high [7, 92], despite the electric potential gradient across the

membrane opposing entry of either species and the Donnan potential opposing anion

entry. The pHs of the fuel and oxidizer solutions were measured before and after

flowing through the cell to ascertain whether or not significant crossover was taking

place. An Orion model 720A pH meter was used to measure the pH of fuel and

oxidizer before and after flowing through the cell in a baseline polarization curve

experiment. The effluent was collected while the cell was at open circuit, which is

when the orientation of the electric field in the membrane was expected to yield the

largest crossover rates. The pH meter was calibrated to a pH 10.0 buffer prior to the

fuel measurement and a pH 4.0 buffer prior to the oxidizer measurement. The results

were pH = 13.795 for fuel before and after flowing through the cell, indicating little

or no crossover of H+ from the oxidizer solution. The oxidizer measurements were

pH = 0.295 before and 0.302 after – an insignificant change given the pH meter

accuracy. Thus no crossover induced changes in pH was detected.

The DBFC model described in Chapter 2 includes the estimation of solution

mass densities based on the apparent molar volumes of the solutes. The densities of

the 50 mM BH4
- / 2 M NaOH fuel and 250 mM H2O2 / 1 M H2SO4 oxidizer solutions

were measured to provide a basis on which to judge the model accuracy in this

 132

regard. These concentrations were chosen for the density measurements because any

discrepancy between the measurement and the model should be largest in this case;

lower concentrations will yield solution densities closer to that of pure water.

The solution densities were measured by dispensing 5 mL onto a weigh boat with

a Finnpipette micropipette. The solution mass was measured by a Denver

Instruments M-220D microbalance, and then the dispensed volume and mass were

used to calculate a mass density. This procedure was repeated 10 times each for 18

MΩ water, fuel solution and oxidizer solution, all equilibrated to a 23°C laboratory.

The results are provided in Table 4-2. The measured value for the density of water

was 1.2% lower than the value provided by NIST [93]. The discrepancy may be due

to systematic error (for example, less than 5 mL dispensed) or dissolved gasses in the

water which the NIST value omits. The densities predicted by the model for the fuel

and oxidizer solutions both exceed the measured values by 2.5%. In these cases as

well, some or all of the discrepancy could be due to the model neglecting dissolved

gases, predominantly N2.

Table 4-2. Density measurements and comparison to model predictions for
fluids at 23°C. Fuel: 50 mM NaBH4 / 2 M NaOH, Oxidizer: 250 mM H2O2 /
1 M H2SO4.
Fluid Measured Predicted NIST Discrepancy
Water 0.9852 - 0.9975 -1.2%
Fuel 1.0675 1.0937 - +2.5%
Oxidizer 1.0486 1.0747 - +2.5%

4.5.4 Conclusions

Each loss mechanism in the cell corresponds to a different aspect of DBFC

operation which the model must capture to accurately predict cell performance. The

 133

activation overpotential originates with the electrode reactions, the ohmic

overpotential is predominantly a result of transport in the membrane and the

concentration overpotentials arise from transport in the channels. The polarization

curves in Figure 4.17 should be a good test of the model because they exhibit all three

loss mechanisms. Furthermore, experiments varying the cell stoichiometry should

test these processes on both the fuel and oxidizer sides of the membrane.

Figure 4.17 indicates that the transport limiting species was BH4
- when the BH4

-

concentration was 1 mM and 2.5 mM. Figure 4.18 and Figure 4.19 suggest that at

higher concentrations of BH4
- the transport limit shifted to the cathode, and the

process became more complex. The current density in these cases approaches the

transport limit gradually, indicating that migration, a potential dependent charge

transfer reaction, or the onset of another charge transfer reaction is involved.

Figure 4.19 also shows that most of the activation overpotential originates at the

anode, and that the depressed open circuit voltage (compared to the theoretical cell

voltage) is due to a shift in the cathode potential. Qualitative observations indicate

that the rate of cathode O2 production in the model calibration experiments was

minor, and that H2 production at the anode increased with increasing current density.

The trend relating H2 production to current density supports anode reaction

mechanisms in which the anode reactions are related by a shared pool of surface

adsorbed hydrogen.

pH measurements support the model assumption that OH- and H+ do not cross

the membrane, at least for the conditions examined. The measurements of solution

mass density indicate that the model predicts the densities of the fuel and oxidizer

 134

solutions to < 2.5% error, and some fraction of the error may be attributable to

dissolved gases which are not included in the model.

Single-cell experiments yielded valuable insight into the factors dictating DBFC

performance. They also provided the measurements necessary for model calibration,

yet the measurements alone would have been insufficient. The experiments also

guided reaction mechanism selection by showing the importance of BH4
- hydrolysis

at the anode and H2O2 decomposition at the cathode. These reactions strongly

influence OCV, transport limit onset, and net current density by competing with the

charge transfer reactions. Hydrolysis and decomposition must be included in a

realistic DBFC analysis. Furthermore, H+ reduction at the cathode was considered

when calibrating the model because the experiments indicated it was likely to occur

and shift the peak power density of the cell to higher current density.

 135

Chapter 5: Model-Based Analysis of a Realistic DBFC

5.1 Goals and Approach

The ideal DBFC analysis in Chapter 3 revealed some of the trends linking cell

design and operating conditions to performance, yet the ideal analysis was limited to

transport-related phenomena by the lack of realistic reaction rates or competing

electrode reactions. The transport-related trends provide useful design guidance, but

the model must capture electrode reactions in a more realistic way if we are to obtain

a complete picture of DBFC performance.

The modeled electrode reactions were made more realistic by calibrating the rate

parameters to measurements from Chapter 4. The calibration process involved two

steps: choosing an appropriate reaction mechanism for each electrode based on

analysis of insight from the literature and the experimental tests, and then fitting the

uncertain rate parameters to our measurements. The calibrated model was then used

to examine the sources of efficiency loss in a realistic DBFC and the ways in which

these losses depend on cell design and operating conditions. The goal of this analysis

was to improve DBFC design by recommending loss mitigation strategies and

guiding future research efforts. The DBFC model provided insight which would have

been difficult to obtain through experiments alone.

5.2 Reaction Mechanism Fits to the Measurements

Because the measurements in Chapter 4 only provided global cell performance,

global rate expressions were used to capture the essential features of the complex

 136

electrode reactions. In this effort to fit the data, one anode mechanism and two

cathode mechanisms were fitted to the measurements. The anode mechanism

consisted of R 1.2 (BH4
- oxidation) and R 1.4 (BH4

- hydrolysis). The first cathode

mechanism consisted of R 1.3 (H2O2 reduction) and R 1.5 (H2O2 decomposition).

These mechanisms were selected because they are promulgated widely in the

literature as capturing the essential features of DBFC electrode reactions. The fit

quality was improved by a second cathode mechanism, which added R 1.23 (H+

reduction). R 1.23 was selected because the experiments of Chapter 4 indicated it

occurs at low cell potential, where the fit from the first mechanism was most in error.

The DBFC used for experiments in Chapter 4 was designed specifically for

model calibration, and hence, adapting the model to accurately reflect the real cell

was straightforward. Model parameters used for the fitting process included the cell

geometry and operating conditions listed in Table 5-1.

Table 5-1. Model parameters for fitting process, taken from the experiments in
Chapter 4. Both channels shared the same dimensions.

Geometric Operating
Channel Length 50 mm Fuel Flow Rate 10 mL·min-1

Channel Depth 0.50 mm Oxidizer Flow Rate 10 mL·min-1

Channel Width 5.0 mm Temperature 23°C

Membrane Thickness 208 µm [94] Oxidizer
Concentrations

40 mM H2O2 /
1 M H2SO4

 Several simplifications employed in the ideal DBFC analysis were valid for the

model calibration. For example, the model assumed that momentum boundary layers

were fully developed at the inlets, which was reasonable given that the DBFC

channels in the experiments extended beyond the catalyst layers with ample length to

ensure fully developed flow. As another example, the model assumed channel walls

 137

were far apart so that relevant state variables varied in the x- and y-directions only;

this was reasonable given the 10:1 aspect ratio of the DBFC channels.

5.2.1 Fitting Approach and Procedure

Rate parameters and electrode roughnesses were fitted to the measurements for

each reaction mechanism with the goal of obtaining the “best” fit to the five measured

polarization curves. Best can be defined in many ways; in this case it refers to

minimizing the 2-norm of errors between the measured and predicted current density

at each cell voltage on the polarization curves.

An error function was developed which repeatedly called the main DBFC model

code to calculate the differences between measured and predicted current densities.

The error function output a vector 𝑒 in which each element was the error between one

measurement and the corresponding model prediction. In some cases the model

predictions were compared to a subset of the measurements, and in other cases the

model predictions were compared to the entire data set (all five measured polarization

curves). The error function was called by the MATLAB function lsqnonlin, which

used a Newton search approach to minimize ‖𝑒‖. The “trust region reflective”

algorithm was chosen because it respects bound constraints on the fitted parameters.

Fitted reaction rate constants 𝑘 were constrained to the interval (0,∞), symmetry

factors 𝛽 were constrained to (0,1] and roughness factors ℓ were constrained to [1,30].

This approach does not guarantee a global minimum ‖𝑒‖; it is possible to find a local

minimum. Trial and error showed that the initial guess must produce a polarization

curve differing from the measurements by less than one order of magnitude, and share

the same trend as the measurements, or the fitting algorithm may find a local

 138

minimum. At least three widely spaced starting guesses were evaluated in each

fitting effort, and the fit was not accepted as “final” until all three guesses resulted in

the same fit, suggesting the fit may be global.

5.2.2 Fitting the Simplest Reaction Mechanism

The rates of charge transfer reactions were estimated by Eq. 1.11 with fitting

parameters 𝑘𝑎 and 𝛽𝑎. Parameters 𝑛𝑒, 𝛽𝑐 and 𝑘𝑐 in Eq. 1.11 were not fitted. The

number of electrons transferred in the rate determining step for each reaction was

assumed to be 𝑛𝑒 = 1 and the cathodic direction symmetry factors were assumed to

be 𝛽𝑐 = (1 − 𝛽𝑎). These are both common assumptions as discussed in Chapter 1.

The values of 𝑘𝑐 were chosen to ensure thermodynamically consistent rate equations,

i.e. they would predict zero net rate under standard conditions when the electrode-

interface electric potential difference ∆𝜙 was equal to the equilibrium value 𝐸𝑟𝑥𝑛0 .

These values were found by setting 𝑎𝑘
𝜐𝑘 = 1, 𝑇 = 298 K, Δ𝜙 = 𝐸𝑟𝑥𝑛0 and 𝑟 = 0 in Eq.

1.11 and solving for 𝑘𝑐. This process was repeated for each set of parameters 𝑘𝑎 and

𝛽𝑎 evaluated by the fitting algorithm, so that thermodynamic consistency was

maintained despite changes to 𝑘𝑎 and 𝛽𝑎.

 This approach to establishing thermodynamic consistency can also be cast in

terms of the reaction equilibrium constant 𝐾𝑒𝑞. The relationships between 𝑘𝑎, 𝑘𝑐, 𝐾𝑒𝑞

and Δ𝜇𝑟𝑥𝑛0 were discussed in Chapter 1, where Eq. 1.13 (shown here for convenience)

related the equilibrium constant to an Arrhenius-type activation energy barrier. At

equilibrium under standard conditions, Δ𝜇𝑟𝑥𝑛 = 𝐹𝐸𝑟𝑥𝑛0 , so Eq. 1.13 gives 𝑘𝑐 =

𝑘𝑎𝑒𝑓𝐸𝑟𝑥𝑛
0 .

 139

𝑘𝑎 𝑘𝑐⁄ = 𝐾𝑒𝑞 = 𝑒−Δ𝜇𝑟𝑥𝑛 𝑅𝑇⁄ Eq. 1-13

Charge transfer reactions were written in terms of the fitting parameters 𝑘𝑎 and 𝛽𝑎 by

substituting for 𝑘𝑐and 𝛽𝑐 in Eq. 1.11. The anode and cathode rate equations (Eq. 5.1

and Eq. 5.2) omit the concentrations of OH-, H+ and H2O because they are present in

excess, and therefore have little influence over the rates.

𝑟𝑅1.2 = 𝑘𝑎,𝑅1.2𝐶𝐵𝐻4−𝑒

𝛽𝑎,𝑅1.2𝑓Δ𝜙 − 𝑘𝑎𝑒𝑓𝐸𝑅1.2
0
𝐶𝐵𝑂2−𝑒

−�1−𝛽𝑎,𝑅1.2�𝑓Δ𝜙 Eq. 5.1

𝑟𝑅1.3 = 𝑘𝑎,𝑅1.3𝑒𝛽𝑎,𝑅1.3𝑓Δ𝜙 − 𝑘𝑎𝑒𝑓𝐸𝑅1.3
0
𝐶𝐻2𝑂2𝑒

−�1−𝛽𝑎,𝑅1.3�𝑓Δ𝜙 Eq. 5.2

The rates for chemical reactions occurring at each electrode were estimated by first

order rate expressions assuming irreversibility:

𝑟𝑅1.4 = 𝑘𝑓,𝑅1.4𝐶𝐵𝐻4− Eq. 5.3

𝑟𝑅1.5 = 𝑘𝑓,𝑅1.5𝐶𝐻2𝑂2 Eq. 5.4

The rate parameters were initially fitted only to the activation regions of the

polarization curves because the reaction rates influence these regions most. This

approach was expected to strongly couple the fitting errors to the reaction rate

parameters and drive the fitting algorithm toward a solution quickly. For the

purposes of fitting, activation regions were said to encompass cell potentials from

open circuit to 1.1 V. The values listed in Table 5-2 gave the best fit. The measured

and predicted polarization curves are shown in Figure 5.1.

 140

Table 5-2. Fitted reaction rate parameters assuming R 1.2 and R 1.4 at the
anode and R 1.3 and R 1.5 at the cathode.

Anode Parameters Cathode Parameters
𝑘𝑎,𝑅1.2 9.25×10-3 m·s-1 𝑘𝑐,𝑅1.3 7.54×10-3 m·s-1
𝛽𝑎,𝑅1.2 0.098 𝛽𝑐,𝑅1.3 0.455
𝑘𝑓,𝑅1.4 3.09×10-4 m·s-1 𝑘𝑓,𝑅1.5 6.34×10-4 m·s-1
ℓ𝑎 2.73 ℓ𝑐 4.11

The fitted rate parameters are not directly comparable to the values reported by

Santos [60] and Finkelstein [39, 62], because these authors reported rates in terms of

overpotential rather than the electrode-interface potential differences used here.

Furthermore, Finkelstien calculated overpotentials by assuming the equilibrium

potential for each reaction was equal to the observed onset potential. Nevertheless,

the fitted rate parameters are similar to the reported values. Finkelstein reported

𝑘𝑎,𝑅1.2 = 6.2×10-4 m·s-1 and 𝛽𝑎,𝑅1.2 = 0.2 on Au for 5 mM NaBH4 in 1 M NaOH, and

𝑘𝑐,𝑅1.3 = 8×10-3 m·s-1 and 𝛽𝑐,𝑅1.3 = 0.45 on Pt for 5 mM H2O2 in 0.5 M H2SO4.

Figure 5.1 shows good agreement between the model and the 1, 2.5 and 5 mM

BH4
- curves, with R2 values of 0.920, 0.986 and 0.996 respectively. The activation

and ohmic overpotential dominated regions of all five curves are well described by

the model, but discrepancies appear at high current density in the 10 and 20 mM BH4
-

curves. Two discrepancies are apparent. First, the predicted current density for the

10 mM BH4
- curve is too high in the cell voltage range 0.5 to 1.1 V. Second, the hard

transport limit at ~21 mA·cm-2 does not match the gradual decline in current density

shown by the 10 mM and 20 mM BH4
- curves.

 141

Figure 5.1. Comparison between measured and predicted polarization curves, with the
model fitted to reaction mechanisms consisting of R 1.2 through R 1.4.

The predicted BH4
- and H2O2 concentrations in the 20 mM BH4

- case are plotted

in Figure 5.2 for a cell voltage of 0.4 V, which shows that the predicted concentration

of H2O2 approaches zero at the cathode interface. Thus, the predicted ~21 mA·cm-2

limiting current density is imposed by H2O2 transport. This result agrees with

measurements from Chapter 4 which showed a sudden decrease in cell voltage at ~21

mA·cm-2 when the stoichiometry was H2O2 limited. Agreement on the limiting

current density suggests the model accurately predicts the rate of H2O2 transport to

the cathode.

The fitting process was repeated with the entire measured data set, but with little

improvement in the fit. Weighting errors more heavily in the cell potential range

between 0.6 and 1.0 V to emphasize agreement at the onset of the transport limit also

did not improve the fit.

 142

Figure 5.2. Predicted development of BH4
- and H2O2 concentration boundary layers at

the anode and cathode in the 20 mM BH4
- case. Solid lines are near the inlet and

dashed lines are near the outlet.

The electrode potentials may expose the source(s) of disagreement between the

model and measurements. Figure 5.3 shows the measured electrode potentials and

the predicted interfacial potential differences ∆𝜙 at each electrode. Surprisingly, the

shapes of the measured and predicted curves are most similar at low cell potential,

where the polarization curves differ most. The model predicts that the majority of

cell voltage loss at open circuit occurs at the cathode and the concentration

overpotential occurs almost entirely at the cathode, both in accordance with the

measurements. The predicted relative rates of reaction between the anode and

cathode at low current density differ from the measurements, as evidenced by Figure

5.3, where the predicted slopes of the electrode potential with respect to cell voltage

near OCV are incorrect. Near OCV the anode potential should change rapidly (high

activation overpotential) and the cathode potential should change slowly (low

 143

activation overpotential) with respect to the cell voltage. These differences may

introduce error when predicting the rates of competing reactions at low current

density.

Figure 5.3. Measured electrode potentials vs. RHE and predicted interfacial electrode
potential differences Δϕ for the 10 mM BH4

- baseline case.

The sources of error near open circuit may be due to phenomena which are

omitted by the global reaction mechanisms, such as adsorption and surface reactions.

For example, BH4
- adsorption is understood to be slow and influence the rate of R 1.2

[36, 70]. The influence of adsorption would be strongest near open circuit where the

anode is most negative, because the negative anode would discourage adsorption of

BH4
- anions. For the purposes of realistic DBFC analysis, the error near OCV was

judged to be minor and these details were not added to the anode mechanism. The

disagreement at low cell voltage could not be overlooked, however, because it

 144

influenced the location of the peak power point. This discrepancy was addressed by

adding H+ reduction to the cathode reaction mechanism.

5.2.3 Fitting a Mechanism Including Cathode H+ Reduction

As discussed in Chapter 4, the measured electrode potentials indicate that H+

reduction (R 1.23) is thermodynamically favorable in the 10 mM BH4
- case for cell

voltages below ~0.85 V and in the 20 mM BH4
- case for cell voltages below ~0.80 V.

These cell potentials correspond to onset of the erroneous hard transport limit in the

model predictions. The correspondence between H+ reduction onset and the predicted

transport limit suggested that H+ reduction may mitigate the disagreement between

the measured and predicted 10 mM and 20 mM BH4
- curves at low cell voltage.

The reaction mechanisms and rate expressions remained the same as in the first

fitting effort, except for the addition of R 1.23 at the cathode and the corresponding

rate in Eq. 5.5. Thermodynamic consistency was established for Eq. 5.5 using the

same approach as in the first fitting effort. The second-order dependence on 𝐶𝐻+ and

𝑛𝑒 = 2 in Eq. 5.5 imply that the rate limiting step for R 1.23 is H+ approaching the

cathode and accepting an electron, which must occur twice for the reaction to

proceed. The concentration of H+ was included in the rate, despite H+ being in

excess, because it was the only reactant in the rate equation and omitting it would

have permitted a “runaway” reaction with no H+ present. While this is unlikely in the

real cell, it could have caused numerical problems when solving the model.

𝑟𝑅5.1 = 𝑘𝑐,𝑅5.1𝑒−𝑓𝐸𝑅5.1

0
𝐶𝐻+
2 𝑒2𝛽𝑎,𝑅5.1𝑓Δ𝜙 − 𝑘𝑐,𝑅5.1𝐶𝐻2𝑒

−2�1−𝛽𝑎,𝑅5.1�𝑓Δ𝜙 Eq. 5.5

 145

Including R 1.23 at the cathode increased the current density at low cell

potentials, although the fit still deviated from the measurements as shown in Figure

5.4. The complete set of fitted rate parameters is given in Table 5-3.

Figure 5.4. Comparison between measured polarization curves and those predicted by
the model, assuming R 1.2 through R 1.4 and R 1.23 occur.

The large current density at low cell voltage in the 20 mM BH4

- curve reflects the

lower activation energy barrier to H+ reduction as the cathode becomes less positive.

A better fit could not be found with the reaction rate for H+ reduction written as in Eq.

5.1. One way in which the reaction rate equation for H+ reduction may be lacking is

the absence of competition for catalyst surface sites. The mechanism of H2O2

reduction was discussed in Chapter 1, in which adsorbed OH plays a major role. The

onset of significant H+ reduction could be delayed to lower cathode potential by OH*

occupying sites on the Pd:Ir surface, although this study yielded no direct evidence to

support this theory.

 146

Table 5-3. Fitted reaction rate parameters assuming R 1.2 and R 1.4 at the anode
and R 1.3, R 1.5 and R 1.23 at the cathode.

Anode Parameters Cathode Parameters
𝑘𝑎,𝑅1.2 9.25×10-3 m·s-1 𝑘𝑐,𝑅1.3 7.54×10-3 m·s-1
𝛽𝑎,𝑅1.2 0.098 𝛽𝑐,𝑅1.3 0.455
𝑘𝑓,𝑅1.4 3.09×10-4 m·s-1 𝑘𝑓,𝑅1.5 6.34×10-4 m·s-1
ℓ𝑎 2.73 𝑘𝑐,𝑅5.1 1.19×10-9 m4·kmol-1·s-1

 𝛽𝑐,𝑅5.1 0.141
 ℓ𝑐 4.11

No fuel cell operates over the entire the polarization curve; as discussed in

Chapters 1 and 3, it is advantageous to operate at current densities up to (but not

beyond) peak power. A model can diverge from the measurements beyond peak

power point and still be useful, so long as it accurately captures the relationships

between current density and cell potential up to the peak power point. The measured

and predicted power densities are shown in Figure 5.5, where all five curves agree

with the measurements to within 15% between OCV and 1.0 V. This range of cell

potentials encompasses nearly all of the desirable operating range of this DBFC.

 147

Figure 5.5. Comparison between measured power curves and those predicted by the
model, assuming R 1.2 through R 1.4 and R 1.23 occur.

5.3 Insights into Realistic DBFC Performance Provided by the Model

The model fit with H+ reduction is not perfect, but it is sufficient for an analysis

of realistic DBFC performance, particularly with the goal of identifying trends. Most

DBFC experiments reported in the literature have used higher concentrations than

those in the model calibration experiments of Chapter 4, so the realistic DBFC

analysis was carried out with respect to a 50 mM BH4
- / 250 mM H2O2 baseline to

make it more similar to results in the literature. These concentrations were chosen

because they constitute the “high concentration” case from Chapter 4, thus the model

predictions can be compared to measurements, as shown in Figure 5.6. For the “high

concentration” operating conditions, the model predicted polarization curve correlates

to the measured curve with R2 = 0.980. These concentrations yield a stoichiometry of

approximately 1:1 in terms of transport rates to the electrodes, so the analysis should

 148

reveal losses on both sides of the cell. Furthermore, this stoichiometry avoids H+

reduction (which occurs in strongly oxidizer limited scenarios), keeping the results in

a regime where the model accurately predicts cell performance.

Figure 5.6. Comparison between measured and predicted polarization curves for the
50 mM BH4

- / 250 mM H2O2 case with 10 mL min-1 flow rates.

5.3.1 Realistic DBFC Performance

The major difference between ideal and realistic DBFC operation is loss of

reactants to BH4
- hydrolysis and H2O2 decomposition. The predicted concentrations

of H2 and O2 produced by these reactions are plotted in Figure 5.7 for the baseline

case at 1.1 V cell. The rates of gas production and current density are plotted in

Figure 5.8 with respect to position in the channel. The higher rate of H2 production at

the anode and greater diffusivity of H2 in water leads to a larger concentration

boundary layer as shown by Figure 5.7 (note the different concentration scales in this

 149

figure). The gas production rates and current density show the same trends of

diminishing magnitude with distance from the inlet, with each having substantially

greater values near the inlet. These trends are the result of higher reactant

concentrations at the inlet end of the electrode-solution interface, which drive charge

transfer and chemical loss reactions more quickly there.

Figure 5.7. Predicted H2 (a) and O2 (b) concentrations in the channels for the baseline
case at 1.1 V cell. Concentration units are mol·L-1.

The predicted gas production rates are realistic because they depend on the fitted

reaction rate parameters and transport of aqueous species, for which the diffusion,

migration and advection fluxes can be estimated accurately. The predicted rates of H2

and O2 transport in the channel, however, are likely in error because the predicted

(a)

(b)

H2 Concentration

O2 Concentration

Membrane

Anode

Inlet

Membrane

Cathode

Inlet

 150

concentrations exceed the saturation limits for these species in water. The saturation

limit of H2 in pure water at 298 K is 7.8×10-4 M, and the saturation limit of O2 in 1 M

H2SO4 is 9.3×10-4 M [91]. Concentrations above these limits imply that bubbles will

form, as observed in the experiments. The model does not include multiphase flows

of liquid and gas bubbles (for reasons discussed in Chapter 2), and so the model

predictions of gas concentration are useful only as an indicator of likely bubble

generation locations. Most bubble formation should take place near the inlets due to

the high concentrations and preponderance of gas production there; this insight could

be useful for the design of graded catalyst structures which discourage bubble

adhesion near the inlets and emphasize reactant access to the catalyst at points further

from the inlet.

Figure 5.8. Predicted current density and H2 and O2 production rate distributions with
respect to position in the channel, for the baseline case at 1.1 V cell.

 151

The rate of gas production is only one metric for judging the impact of competing

electrode reactions. Coulombic efficiency 𝜂𝑐𝑒 is the fraction of reactant reaching the

electrode that participates in charge transfer reactions. Higher coulombic efficiency

implies that fewer electrons are being lost to competing reactions. For example,

complete electro-reduction of every BH4
- anion reaching the anode would give an

anode coulombic efficiency of 100%. Local coulombic efficiency at each electrode

was calculated as the ratio of predicted current density 𝑖 to the current density

possible if all of the electrochemically active species 𝑘 arriving at the electrode were

consumed in charge transfer reactions (Eq. 5.6). Predicted coulombic efficiencies at

each electrode are plotted in Figure 5.9 with respect to channel (x-) position.

𝜂𝑐𝑒(𝑥) =
𝑖(𝑥)

𝐽𝑘(𝑥) 𝜐𝑒 𝜐𝑘⁄
 Eq. 5.6

Figure 5.9. Predicted coulombic efficiencies at the anode and cathode with respect to
distance from the channel inlets, for the baseline case at 1.1 V cell.

 152

Figure 5.9 shows that for these operating conditions, the cathode delivers

electrons to arriving H2O2 more efficiently than the anode extracts electrons from

arriving BH4
-. The cathode reduces electrochemically more than half of the arriving

H2O2 and decomposes the rest to O2 and H2O. The anode electro-oxidizes less than

40% of the arriving BH4
-. The coulombic efficiencies of both electrodes increase

with distance from the inlets; since concentrations at the electrode interfaces fall and

overpotentials grow with distance from the inlets. Figure 5.9 shows that these

changes must favor charge transfer reactions. The low overall coulombic efficiencies

and variation with channel position suggest that a priority for future research should

be to shift the relative rates of reaction in favor of charge transfer reactions. One way

to accomplish this shift is through novel catalyst materials and morphologies [42], but

another is to operate the cell in a regime favoring charge transfer reactions.

Cell voltage strongly influences DBFC behavior and therefore presents an

opportunity to tailor cell operation to more efficiently convert reactant chemical

energy into electricity. In the parlance of the controls community, cell voltage is a

powerful lever with which to adjust cell operation. The coulombic efficiencies of the

anode and cathode are plotted with respect to cell potential in Figure 5.10, which

shows that lower cell potentials raise the coulombic efficiencies of both electrodes.

In effect, lower cell potential decreases the activation energy barriers to charge

transfer reactions at both electrodes as the anode becomes less negative and the

cathode less positive. The rates of charge transfer reactions increase, but because the

rates of chemical hydrolysis and decomposition in the mechanism of section §5.2.3

do not depend on the electrode potentials, their rates decline as they compete with the

 153

charge transfer reactions for reactants at the electrode interfaces. The net result is a

shift in favor of the charge transfer reactions.

Power density is included in Figure 5.10 to show the relationship between

coulombic efficiency and the desirable operating envelope of the fuel cell. Since cell

potential falls with increasing power density, the coulombic efficiency rises with

increasing power density. Gains in coulombic efficiency beyond the peak power

point are undesirable, however, because they coincide with falling thermodynamic

efficiency and are accompanied by greater total reactant fluxes to the electrodes.

Beyond the peak power point, overall efficiency losses and greater reactant

consumption rates offset any gains in coulombic efficiency, thus the maximum

desirable coulombic efficiencies are those at peak power.

Figure 5.10. Predicted power density and coulombic efficiency for 50mM BH4

- /
250mM H2O2 with 10 mL·min-1 flow rates.

 154

The ideal DBFC analysis in Chapter 3 showed that low single-pass fuel

utilization is a challenge to DBFC practicality, and pointed to recirculation as a

prospective solution. The extent to which the reactant solutions must be recirculated

was evaluated in Chapter 3 with respect to the reactant utilization rates, assuming that

all reactant consumption was due to charge transfer reactions. When competing

reactions take place, the efficacy of recirculation is best described by the coulombic

utilization 𝜂𝑐𝑢, which is the fraction of reactant entering the cell that is consumed in a

charge transfer reaction. The coulombic utilization was calculated as the ratio of the

total cell current 𝐼 to the current that would be available if all electro-active species 𝑘

entering the cell were consumed in charge transfer reactions. Coulombic utilization

is equivalently the product of reactant utilization 𝜂𝑟𝑢 and average coulombic

efficiency over the whole channel (see Eq. 5.7).

𝜂𝑐𝑢 =
𝐼

𝐶𝑘𝑉̇ 𝜐𝑒 𝜐𝑘⁄
= 𝜂𝑟𝑢𝜂̅𝑐𝑒 Eq. 5.7

The coulombic utilization in the baseline case is plotted with respect to cell

potential in Figure 5.11. The coulombic utilizations are reversed in comparison to the

coulombic efficiencies; despite having a higher coulombic efficiency, the lower

diffusivity of H2O2 leads to overall lower coulombic utilization in comparison to the

anode. The slow rates of reactant transport through aqueous solution lead to low

coulombic utilizations (< 4%) for both sides of the cell under these operating

conditions.

 155

Figure 5.11. Plots of cell power density and coulombic utilization with respect to cell

potential. Predictions for 50mM BH4
-/250mM H2O2 with 10 mL·min-1 flow rates.

The losses and inefficiencies due to competing reactions are manifested in two

ways: loss of reactants (and the chemical energy therein) to gas production, and lower

cell potential via the Nernst equation (Eq. 1.8) as reactant concentrations near the

electrodes are depressed. Cell potentials predicted by the calibrated model using the

full reaction mechanisms are clearly lower than those predicted by the model with

BH4
- hydrolysis (reaction R 1.4) and H2O2 decomposition (R 1.5) turned off, as

shown in Figure 5.12. Both curves in Figure 5.12 are plotted at 100 mA·cm-2 current

density to make ohmic losses in the membrane comparable, with the two curves

having the same electric potential gradients across the membrane. The power density

in the full mechanism case is 80 mW·cm-2, whereas the power density in the case

without hydrolysis or decomposition is nearly twice as high at 152 mW·cm-2. If the

current density in the case without hydrolysis or decomposition were decreased to 0

mW·cm-2, the resulting electric potential profile would be the ideal case at OCV.

 156

Figure 5.12. Electric potential profiles across the cell predicted by the calibrated
model, at the midpoint (25 mm from the inlets), for the baseline case at 100 mA·cm-2
current density. The two curves compare results with R 1.4 and R 1.5 turned on and

off.

One measure of the efficiency with which a DBFC extracts electrical energy from the

reactants is the effective energy conversion efficiency. If the cell thermodynamic

efficiency is expressed as the ratio of actual cell potential to theoretical OCV, then the

effective energy conversion efficiency 𝜂𝑒𝑓𝑓 is given by Eq. 5.8.

𝜂𝑒𝑓𝑓 = 𝜂𝑐𝑒
𝑉𝑐𝑒𝑙𝑙
𝐸𝑅1.1
0 Eq. 5.8

The effective energy conversion efficiency shows a peak near the peak power point,

indicating that (for this DBFC, in the baseline operating conditions) the most energy

that can be extracted from a limited reactant supply by operating the cell at peak

power. This is due to the opposing trends for thermodynamic efficiency and

coulombic efficiency, and is in contrast to fuel cells which do not suffer from

 157

parasitic side reactions, such as the PEMFC. The most efficient operating point for a

PEMFC is near OCV, because thermodynamic efficiency is greatest near OCV.

Figure 5.13. Effective conversion efficiencies for fuel and oxidizer in the baseline
case, plotted with power density for comparison of the peak locations.

The overall peak efficiency operating point for a real PEMFC system is displaced

from OCV by the minimum power consumed by the balance of plant (pumps, etc.),

and the same should be true for a real DBFC. The overall peak efficiency for a

DBFC system is likely shifted to lower net power output by the balance of plant load.

For this reason, the DBFC model developed in this study was designed so that it

could easily be subsumed into a larger system model for system-level analysis.

 158

5.3.1 Influence of Fuel Flow Rate on Realistic Performance

The ideal DBFC analysis showed that raising the fuel or oxidizer flow rate

improved performance by increasing the rates of convection mass transport in the

channels. The same is true for the realistic DBFC, but with a caveat. The higher

rates of reactant transport to the electrodes that come with higher flow rates also lead

to higher rates of gas production. The influence of fuel flow rate on concentration

boundary layer development is shown in Figure 5.14, where the BH4
- concentration

boundary layer at 10 mL·min-1 fuel flow rate is compact and the boundary layer at 1

mL·min-1 is beginning to envelop the entire channel. The compact boundary layer is

the result of convection augmenting the rate of diffusion mass transport to the anode.

Figure 5.14. Predicted BH4
- concentration in the fuel channel for 10 mL·min-1 (a) and

1 mL·min-1 (b) flow rates, for the baseline case at 1.1 V. Both plots share the same
color map, with concentrations in mol·L-1.

(b)

(a)

 159

The power density is plotted with respect to fuel flow rate in Figure 5.15, which

shows the same trend of increasing peak power with flow rate that was found for the

ideal case (Figure 3.13). The peak power point in the realistic DBFC does not shift to

lower cell potentials with increasing flow rate as obviously as it did in the ideal

analysis, however. The peak power point shifted in the ideal analysis because

increasing fuel flow rates enabled higher current densities, which incurred greater

ohmic losses in the membrane. In the realistic analysis, the current density at peak

power density does not increase as quickly with fuel flow rate because coulombic

efficiency and coulombic utilization at peak power density fall with increasing fuel

flow rate, restraining the increase in current density. These trends are illustrated in

Figure 5.16.

Figure 5.15. Predicted power density for fuel flow rates from 1-15 mL·min-1, oxidizer
flow rate of 10 mL·min-1 and 50mM BH4

-/250mM H2O2.

 160

Figure 5.16. Predicted coulombic efficiency (a) and coulombic utilization (b) for fuel
flow rates from 1-15 mL·min-1, oxidizer flow rate of 10 mL·min-1,

and 50mM BH4
- / 250mM H2O2.

The black line in Figure 5.16(a) traces the peaks of the power density curves,

showing how greater power density is accompanied by a lower upper bound on the

(a)

(b)

 161

coulombic efficiency. As the fuel flows more quickly, BH4
- concentration at the

anode interface rises in response to more facile transport from the bulk. The higher

BH4
- concentration favors hydrolysis, so the coulombic efficiency falls. The convex

black curve approaches the horizontal axis as the fuel flow rate is lowered, until it

intercepts the axis at zero flow rate. The maximum theoretical coulombic efficiency

achievable for these operating conditions is ~73% and occurs in the zero flow rate

case, in which diffusion and migration alone dictate the rates of transport to the

anode. The power density shows a different relationship with coulombic utilization,

with a concave black curve linking peak power points in Figure 5.16(b). The

coulombic utilization at peak power increases as the flow rate and power density

decreases.

5.3.2 Influence of Fuel BH4
- Concentration on Realistic Performance

The influence of inlet concentration on realistic DBFC performance was

examined with respect to the concentration of BH4
-. Changing the inlet concentration

revealed a relationship between power density and coulombic efficiency which

mirrors that of the fuel flow rate (see Figure 5.17(a)). The similarity between the

effects of fuel flow rate and BH4
- concentration is unsurprising given that increases in

either parameter shift the relative rates of reaction at the anode in favor of H2

production by increasing BH4
- concentration at the anode interface. The coulombic

utilization trend with respect to BH4
- concentration (see Figure 5.17(b)) differs from

the trend with respect to flow rate. Slower flow rates increase residence times in the

DBFC while diffusion and migration continue to transport BH4
- to the anode, leading

to the asymptotic approach to 100% utilization at zero peak power density seen in

 162

Figure 5.15. Lower inlet concentrations decrease the rate of transport by all three

processes (migration, diffusion and convection), leading to a theoretical upper bound

of ~4.75% coulombic utilization at zero inlet concentration in Figure 5.17(b).

(a)

(b)

 163

Figure 5.17. Predicted coulombic efficiency and utilization for BH4
- concentrations

from 10 – 70 mM, flow rates of 10 mL·min-1 and 250mM H2O2 / 1 M H2SO4
oxidizer.

5.3.3 Conclusions from the Realistic DBFC Analysis

The performance of a real DBFC is related to cell design and operating

parameters in complex ways. Many trends are the same as in the ideal analysis, but

with performance degraded by losses to BH4
- hydrolysis and H2O2 decomposition.

The trends are, in general, the same at the anode and cathode although the relative

magnitudes differ. At the anode, for example, the peak power density increases with

BH4
- inlet concentration as it did in the ideal analysis, but differs in key ways.

With the side reactions included, power is delivered at lower cell potential due to

competition with hydrolysis decreasing the BH4
- concentration at the anode interface,

which shifts the anode equilibrium potential according to the Nernst equation,

increasing the activation overpotential necessary for a given current density.

Furthermore, greater ion fluxes to/from the anode are required to support the

combination of charge transfer and hydrolysis reactions, which incur greater ohmic

losses in the fuel solution. Similarly, greater current density is required to achieve a

given power density at the lower potential, which incurs greater ohmic losses in the

membrane. Together, these effects decrease the thermodynamic efficiency of the cell.

Also with the side reactions, coulombic utilization is less than 100%, and

substantially so for most operating conditions. Losses to competing reactions can cut

the effective energy density of a system to half, or less, than the ideal case scenario.

Recirculation still improves the overall coulombic utilization, but losses to hydrolysis

will continue to consume a fraction of reactants with each pass through the cell.

 164

Several promising strategies for mitigating the effects of hydrolysis and

decomposition on the performance of DBFCs were revealed by the realistic DBFC

analysis. Among these are operating at low cell potential and with low reactant

concentration at the electrode interfaces; both strategies favor charge transfer

reactions over hydrolysis and decomposition, shifting the relative reaction rates and

improving the coulombic efficiency and utilization. There are several ways to

achieve these favorable operating conditions, including lower reactant flow rates,

lower inlet concentrations and higher recirculation fractions. Each change to the cell

operating conditions has implications not only for the coulombic fuel utilization, but

for the thermodynamic efficiency of the cell and the ability of a given system to

satisfy design requirements for power output and total useful energy capacity. A

more complete design trade analysis would examine the total effective conversion

efficiency with respect to power density to choose a cell geometry and set of

operating conditions that meet the requirements of a particular application.

 165

Chapter 6: Conclusions

 The four goals of this work outlined in Chapter 1 were all part of an underlying

theme: applying cell-level models and experiments to the problem of understanding

DBFC performance so that it can be improved. This approach has been applied to

other fuel cell technologies with great success; the PEMFC is a prominent example.

DBFC technology is still in its infancy compared to more mature technologies like

the PEMFC. This relative immaturity has two implications for cell-level DBFC

modeling and experimental studies. First, the small body of prior work provides an

open field for substantially improving our understanding of DBFC performance.

Second, modeling and experimental tools remain underdeveloped. The purpose of

this study was to lay some of the groundwork for modeling DBFCs (Chapter 2), show

how the models can be used to analyze design trends (Chapter 3), and show how the

interplay of DBFC modeling and cell experiments could provide improved

understanding of DBFC performance and guide design decisions (Chapters 4 and 5).

6.1 Factors Governing DBFC Performance

The combination of modeling and experiments in this study yielded a greater

understanding of DBFC performance, and how it might be improved. Broadly

speaking, the parameters dictating DBFC fall into two categories: transport and

electrode reaction related phenomena.

 166

6.1.1 Influence of Transport on Performance

As the modeling results of Chapters 3 and 5 showed, rapid development of

compact concentration boundary layers in both channels make power density depend

heavily on inlet reactant concentration. The compact nature of the concentration

boundary layers and slow growth rate at points far from the inlet may be due, in part,

to migration contributing to transport in the bulk. The slow broadening of the

concentration boundary layers makes the average power density (for a given set of

operating conditions) relatively insensitive to channel length. Peak power output can

be increased by higher reactant concentrations and/or solution flow rate, because

these boundary layers factor so prominently in determining peak power.

All three transport processes (diffusion, migration and advection) contribute to

the transport of reactants and products in the channels. Diffusion and advection

(together, convection) dominate transport near the electrodes. In the bulk, migration

of Na+ is crucial for charge balancing the cell and in general, reactant transport is

dominated by migration and advection. Advection fluxes in the y-direction due to

water crossing through the membrane can be significant, and the interaction of this

advection flux with a membrane impermeable to some species can influence the

concentrations of all species near the membrane due to the electroneutrality condition.

Specifically, the y-direction advection flux coupled with a membrane impermeable to

anions will lead to depressed anion concentrations near the membrane, which depress

the cation concentrations as well. In the ideal case analysis, the cell incurred a small

(1%) efficiency loss due to these concentration gradients.

 167

Ohmic losses in the channels are small compared to losses in the membrane,

where the lower mobility of Na+ ions limits conductivity compared other cations,

such as H+. The membrane ohmic overpotential was small in this study compared to

the activation overpotentials at the electrodes (particularly so for the larger cathode

activation overpotential), but it was still a significant source of loss. For example, the

baseline case of the realistic DBFC analysis at 1.1 V cell potential showed the

membrane ohmic losses were 3.5% of total potential loss compared to the theoretical

3.01 V cell potential. The importance of membrane ohmic loss increases with current

density, so it would become more significant in systems using higher reactant

concentrations and/or higher flow rates to achieve higher current density. Channel

ohmic losses are negligible for any reasonable combination of reactant and supporting

electrolyte concentrations (≤ 2 M) and channel depth (≤ 1 mm). Also, for reasonable

concentrations of OH- and H+, crossover of these species through the membrane is

negligible at cell potentials less than OCV. With higher concentrations, crossover of

OH- and H+ may occur at open circuit and depress OCV, but remains unlikely to have

a significant impact on cell performance at lower cell potentials, for which the electric

potential gradient in the membrane opposes crossover.

Reactant stoichiometry was shown to affect DBFC behavior by altering the

relative rates at which the anode and cathode potentials change with increasing

current density. Fuel (BH4
-) limited cases showed consistent trends of increasing

current density with increasing BH4
- concentration as the higher concentration drove

larger BH4
- fluxes to the anode. The limiting current density in these cases was

roughly proportional to the BH4
- concentration. Oxidizer (H2O2) limited cases

 168

showed that shifting most of the concentration overpotential to the cathode could

cause its potential to fall far enough for additional charge transfer reactions (H+

reduction) to become thermodynamically favorable. The onset of additional charge

transfer reactions showed that changes to stoichiometry could change cell behavior at

high current density in ways which deviate from the proportionality dictated by

convection transport.

6.1.2 Influence of Electrode Reactions on Performance

Electrode reaction rates influence DBFC performance in two ways. First, the

activation and concentration (manifested through the activation) overpotentials are

the largest factors determining the relationship between the cell potential and current

density. In the baseline case of the realistic DBFC analysis at 1.1 V cell potential, the

total anode and cathode overpotentials (𝜂𝑎𝑐𝑡 + 𝜂𝑐𝑜𝑛𝑐) constituted 20% and 75% of

total potential losses, respectively. Second, the coulombic efficiency is determined

by the relative rates of the desired charge transfer reactions and competing chemical

reactions. These relative reaction rates also play a role in the coulombic utilization.

The rate of H2 production at the anode tends to be greater than the rate of O2

production at the cathode, yet H2 production has less effect on the anode overpotential

than O2 does on the cathode. The reasons involve transport and stoichiometry. BH4
-

has higher diffusivity than H2O2 and is augmented by migration, so the concentration

overpotential at the anode tends to be lower. Furthermore, each BH4
- anion to arrive

at the anode can yield up to 8 e-, so the coulombic efficiency at the anode can fall to

25% and still balance the cathode current density for a given molar consumption flux

 169

at both electrodes. Even a small decrease in the cathode coulombic efficiency forces

a large increase in the cathode overpotential to match the current density of the anode.

At the anode, Au does not favor complete BH4
- oxidation as claimed in many

publications, although the rate of H2 production may be less than that of more active

catalysts such as Pt. Qualitative observations in ex situ experiments showed that the

rate of H2 production increased with anode potential, likely due to higher rates of

anion adsorption as the anode became less negative. Despite the higher net rate of H2

production, model results showed that the relative rates of BH4
- oxidation and H2

production favored BH4
- oxidation (higher coulombic efficiency) at less negative

anode potentials.

At the cathode, large overpotentials cause the electrode potential to fall rapidly

with increasing current density, and it can reach potentials sufficiently low for H+

reduction to occur. The onset of a second charge transfer reaction at low potential

can delay the transport limit to lower cell potentials and increase the peak power

density of the cell. In general, however, most H+ reduction occurs at points on the

power density curve which are undesirable from an efficiency perspective. Bubble

production was observed at open circuit (O2) and at low cathode potential (H2) in cell

and ex situ experiments. Few bubbles were observed at intermediate cathode

potentials.

6.1.3 Recommendations for Improved DBFC Performance

In terms of cell design and operation, long shallow channels are preferable to

improve both coulombic utilization and efficiency. As demonstrated by Figure 5.13,

the highest overall conversion efficiency is obtained close to peak power density for

 170

this DBFC, rather than near OCV as is common for many fuel cells. Flow rate and

inlet reactant concentrations can be adjusted to maintain operation near peak power as

the load varies. If reactant storage volume is limited, the total energy capacity of the

system may be greatest with a low fuel:oxidizer storage ratio, so that the cell can

operate with more excess oxidizer to mitigate activation and concentration losses at

the cathode and raise the overall conversion efficiency. Similarly, operating the cell

with an oxidizer flow rate greater than the fuel flow rate to compensate for slower

transport of H2O2 may be a good compromise between cell thermodynamic efficiency

and parasitic power consumption by the recirculation pumps.

Due to the low reactant utilization rates, even for channels as thin as 0.5 mm

deep, recirculation will be necessary for any practical DBFC. With recirculation,

some fluid must be rejected downstream of the cell to accommodate the addition of

new reactants; the rate of reactant loss to this process will be mitigated by operating

the cell with low average reactant concentrations.

The high rate of water crossover through the membrane introduces an important

caveat to the recommendation to run near peak power. Water crosses the membrane

predominantly due to electro-osmotic drag, making the crossover rate proportional to

the current density. Depending on the system topology and design constraints for a

given application, it may be preferable to operate the cell close to OCV in order to

produce sufficient power with the smallest possible current density, thereby

minimizing the water crossover rate.

The present study analyzed a cell with catalyst layers on planar electrodes

separated from the membrane. This topology was chosen because it was

 171

straightforward to model and because of advantages such as simplicity of design, few

processing steps in the fabrication process, and migration aiding reactant transport.

This cell topology is not necessarily the best for all applications, however. Cells in

which the flow channels are filled with a porous solid catalytic medium may offer

better performance by removing concentration boundary layer development as an

impediment to higher current density (power density) operation. Concentration

gradients would still develop, but forcing the reactant solutions through a porous

medium would improve rates of transport from the bulk to the surface by distributing

those gradients over a larger surface area. Furthermore, the larger catalytic surface

area could lessen the need for recirculation by improving coulombic utilization rates.

6.2 Prospects for Practical DBFCs

The high theoretical energy density and air independence of NaBH4 / H2O2

DBFCs continue to make this technology attractive for portable power and undersea

applications, yet the technology remains too immature to be practical. The greatest

obstacles to implementation continue to be losses to competing electrode reactions,

water crossover through the membrane, ohmic losses in the membrane and activation

losses at the cathode. The strategies for mitigating these problems recommended by

this study can help to improve DBFC performance, but more progress must be made

before DBFCs can be practical. The modeling tools developed in this study should be

useful for investigating possible solutions, such as catalysts with higher activity and

selectivity, membranes with higher conductivity and system configurations which

minimize water crossover.

 172

6.3 The Utility and Limits of (Present) DBFC Models

The ability of this model to predict performance characteristics such as power

density and efficiency makes it a valuable tool for system design. It can be used in

several ways, including:

(a) Optimizing for one or more steady-state performance metrics in a given

system by choosing appropriate operating conditions.

(b) Providing insight into difficult to measure system parameters, such as the rate

of hydrolysis down the channel, to inform cell design decisions.

(c) Guiding development of control strategies which optimize one or more

performance metrics over a range of operating conditions.

If the model is sufficiently accurate, it can be used to develop a reduced state

estimator for a model predictive control strategy. Such an approach may be well

suited to DBFCs because the complex relationships between operating conditions and

performance complicate the selection of operating conditions, and because the

variables of greatest interest for control (such as coulombic utilization) can be

difficult to measure in real time.

This study showed that models must accommodate down-the-channel variations

in transport and reaction rates in order to accurately predict cell performance. The

finite volume approach worked well for this system and provided a flexible and

robust means to solving the transport equations for the channel and membrane. The

generalized reaction rate estimation functions readily accommodated both chemical

and charge transfer reactions when the appropriate rate parameters were provided.

 173

The largest challenge to DBFC model development is identifying electrode

reactions with sufficient detail to adequately describe the system under study. The

global reaction rates fitted to the measurements in this study were adequate, but

discrepancies remained. To produce high fidelity performance predictions for system

design, it may be necessary to incorporate more complex reaction rate models. A

framework for incorporating surface species and adsorption reactions was laid out in

Chapter 2, but was not adopted here in part because the rate parameters for such a

mechanism are not readily available. While progress has been made, measurement of

rate parameters for such a complex microkinetic rate mechanism continues to be a

challenge for reactions as complex as BH4
- oxidation.

6.4 Products of this Study

The products of this study include modeling tools for DBFC analysis and

calibration, calibrated reaction rate mechanisms for Au and Pd:Ir, experimental

results from a DBFC with geometry that is amenable to modeling, and experimental

data which can be used to calibrate future iterations of this model or other models.

Beyond these concrete products, however, is an improved understanding of the

factors dictating DBFC performance.

In terms of disseminating the conclusions of this study, one paper describing the

model development and ideal DBFC analysis was accepted to the Journal of Power

sources [95]. Talks on this work were delivered at three conferences: the 2012 Fuel

Cell Seminar, the 2013 ASME Fuel Cell Science and Technology Conference and the

 174

2013 NRL Chemistry Division Symposium. A second paper describing the

experiments, model calibration and realistic DBFC analysis is in preparation.

6.5 Recommendations for Future Work

Future work could take several paths. The present model could be modified to

include an anode reaction mechanism involving adsorption and surface species to

better capture the shift in anode reaction rates with electrode potential, and the

possibility of intermediates escaping prior to complete oxidation. Such a more

detailed mechanism will be feasible if the relevant rate parameters become available.

High concentration reactants could be investigated to understand whether or not the

underlying dynamics governing DBFC performance change when the electrolyte

solutions become strongly non-ideal. Such a high concentration investigation would

have to adopt a method for estimating activity coefficients, with the Pitzer equations

being the best choice if the necessary species properties are available.

The model could be modified to accommodate multiphase flows and bubble

nucleation at the catalyst layers. Adding these details could reveal the relationships

between gas production rate and performance degradation when bubbles occlude the

electro-catalysts. The transport features of the model could be modified to fill the

channels with a catalytic porous medium and compare the performance of that cell

topology to the cell examined in this study.

As discussed in Chapter 5, the model was designed to fit into a system-level

DBFC model. A major feature of such a model would be recirculating flows, which

could be established by assigning the outlet flow conditions (concentrations and flow

 175

rate) to the inlet boundary conditions, with appropriate adjustments to simulate waste

removal and reactant injection. This study examined steady state DBFC

performance, which was reasonable given the relatively slow dynamics of the cell. A

transient system-level analysis may be desirable to investigate cell interactions with

varying operating conditions such as flow rate and inlet concentration. The present

model is well suited to this purpose, because the governing equations were written

such that the residuals are time derivatives of the associated state variables. The

model could straightforwardly be adapted to work with a time integrating solver for

transient analysis.

 176

Chapter 7: Appendices

7.1 DBFC Model Code

%% SUMMARY: DBFC_MAIN
% Purpose: Call the scripts and functions to set up the model, solve it and display the results. Author:
% Rick Stroman

%% NOTES
%
% To change the way the code runs, modify the global variables Geometry, Model, Flags, Scales, Fuel and
% Oxidizer in the script DBFC_USER_INPUT. This is the ONLY place these global variables are created
% and/or changed... elswhere they are ONLY READ, NOT ALTERED. Nothing else should be changed from one run
% to another, unless you want to change the model.

%% CODING CONVENTIONS
%
% (1) Script and function names are in "ALL_CAPS"
%
% (2) Vectors, structures and matrices have first letter "Capitalized"
%
% (3) Scalars are all lower "case"
%
% (4) Top level functions and script names begin with DBFC_ , sub-functions begin with FUNC_ and
% sub-scripts begin with SCRIPT_ .
%
% (5) Major sections of code are broken into MATLAB cells and labeled with comments in all caps, and
% subsections have comment headings with ordinary text.
%
% (6) Quantities restricted to one discretization start are stored in structures beginning with the
% discretization name; for example, Asln.mass_density. Fluxes among discretizations are stored in
% structures starting with the flux direction, followed by the flux type and flux name. For example,

 177

% Yfluxes.mass.asln is the y-direction mass flux leaving discretization asln. Numerical indexes
% following either type of variable are ordered (x-discretization, y-discretization, species number).
%
% (7) Abbreviations and acronyms
%
% DCS: Discretization Coordinate System. This includes ghost cells for boundary conditions and is
% denoted x_d and y_d. x_d = 2, y_r = 2 is the corner real cell adjacent to the inlet and
% electrode. x_r = Geometry.x_d_num + 1 and y_r = Geometry.y_d_num + 1 is the corner real cell
% adjacent to the outlet and membrane.
%
% RCS: Real Coordinate System. This does not include ghost cells and is denoted x_r and y_r. x_r =
% 1, y_r = 1 is the corner cell adjacent to the inlet and electrode. x_r = Geometry.x_d_num and
% y_r = Geometry.y_d_num is the corner cell adjacent to the outlet and membrane.
%
% DBFC: Direct Borohydride Fuel Cell

%% 1. SET UP THE WORKSPACE

close all; clc; clear all;

global BC Scales Geometry Pointer Solver total_cathode_current Grid_size

%% 2. SET UP THE MODEL

% Set user configurable options such as cell geometry, model properties, solver parameters, etc. This is
% the only place where model functionality is changed from one run to the next.
DBFC_USER_INPUT;

% Set up the MATLAB workspace
DBFC_CONFIGURE_WORKSPACE

% Define physical constants and species properties.
DBFC_CONSTANTS_AND_PROPERTIES;

% Calculate additional parameters from the user input, outside of the solver to be more efficient.
DBFC_PROCESS_USER_INPUT

 178

% List the reactions included, with stoichiometric and rate parameters for each. Store all of the
% stoichiometric and rate parameters in structures expected by the reaction rate function.
DBFC_SETUP_REACTION_RATES

% Create pointers, names, scales and constraints vectors. Generate a Jacobian pattern, mass matrix and
% populate the initial state vector.
DBFC_INITIALIZE

%% 3. SOLVE THE MODEL

voltage_num_tot = length(Cathode_electric_potential);

% Solve model for each cell voltage specified in Cathode_electric_potential
for voltage_index = 1:voltage_num_tot

 % SET THE CELL VOLTAGE AND CALL THE REQUESTED SOLVER TO SOLVE THE MODEL
 BC.cathode.elec_pot = Cathode_electric_potential(voltage_index);

 % CALL THE SOLVER TO FIND STEADY STATE SOLUTION AT THIS CELL VOLTAGE
 DBFC_KINSOL

 % IF GENERATING A POLARIZATION CURVE, RUN THE REST OF THE VOLTAGES

 if voltage_num_tot > 1
 % If we are running more than one cell voltage, do this stuff after the first one...

 % Store the current density from this voltage in an array so we can plot the pol curve later
 current_density(voltage_index) = -total_cathode_current / (sum(Geometry.y_flux_area));
 anode_delta_phi(voltage_index) = 0 - mean(SV_steady_state(Pointer.a_int.elec_pot));
 cathode_delta_phi(voltage_index) = Cathode_electric_potential(voltage_index) ...
 - mean(SV_steady_state(Pointer.c_int.elec_pot));

 DBFC_RESULTS_OUTPUT

 total_BH4_consumed(voltage_index) = total_BH4_to_anode;

 179

 total_H2O2_consumed(voltage_index) = total_H2O2_to_cathode;

 % Display status in the command window
 disp(' ')
 disp(['Point number ', num2str(voltage_index), ' of ', num2str(voltage_num_tot), ' is complete.'])
 disp(['Cell voltage is: ' num2str(BC.cathode.elec_pot), ' V'])
 disp(['Total cell current is: ' num2str(total_cathode_current) ' A'])
 disp(['Average cell current density is: ' num2str(current_density(voltage_index)) ' A/m^2'])

 % SAVE WORKSPACE TO A .mat FILE
 if Flags.setup.save_inter_output
 % If saving the workspace after each cell voltage:
 c = clock;
 filename_id = strcat(num2str(c(1)), '-', num2str(c(2)), '-', num2str(c(3)), '-', ...
 num2str(c(4)), 'h-', num2str(c(5)), 'm-', num2str(c(6)),'s', '_', ...
 num2str(BC.cathode.elec_pot), 'V');
 filename = strcat('Inter_Results_', filename_id, '.mat');
 save(filename); disp(['Results were saved in file: ' filename])
 clear c filename_id filename
 end

 if Flags.setup.reuse_previous_soln && ...
 voltage_index < voltage_num_tot

 % Change the strategy to be pure Newton search, in case LineSearch was used to get the simulation
 % started
 Solver.kinsol.strategy = 'None';

 % Configure the solution from the previous voltage to be the initial guess for the next voltage
 if Flags.setup.adjust_V_prev_soln
 % Adjust the solution from the previous voltage to form the initial guess for the next point
 V_cell_old = Cathode_electric_potential(voltage_index);
 V_cell_new = Cathode_electric_potential(voltage_index+1);
 SV_initial = FUNC_ADJUST_SOLN_VOLTAGE(SV_steady_state, V_cell_old, V_cell_new, Scales, ...
 Pointer, Geometry, Grid_size);
 else

 180

 % Use the solution from the previous voltage as-is
 SV_initial = SV_steady_state;
 end
 end

 end

 % Loop to walk down the polarization curve, one cell voltage at a time
end

%% 4. SUMMARIZE SIMULATION

% Stop the clock and display end message.
elapsed_time = toc; disp(' ');
disp(['Simulation complete. Total time for solver to run was ' num2str(elapsed_time) ' s.'])

%% 5. ANALYZE AND DISPLAY THE RESULTS

% Plots output for a single solution
if voltage_index == 1
 DBFC_RESULTS_OUTPUT
end

if voltage_index > 1 && ~pol_curve_compare
 figure(1);
 plot(0.1*current_density, Cathode_electric_potential, 'r-o')
 title('Calculated Polarization Curve'); xlabel('Current Density [mA/cm^2]'); ylabel('Cell Voltage [V]')
end

if voltage_index > 1 && pol_curve_compare
 figure(1);

 measured_current_densities = [0.00; 0.62; 0.92; 1.63; 2.77; 5.26; 9.67; 16.63; 47.00; 69.93; ...
 81.56; 90.84; 100.73; 109.67; 118.40; 126.42; 128.87; 131.34]; % Exp54H in mA/cm^2

 figure(1);

 181

 plot(0.1*current_density, Cathode_electric_potential, 'r-o', measured_current_densities, ...
 Cathode_electric_potential, 'b-s')
 title('Calculated and Measured Polarization Curves'); xlabel('Current Density [mA/cm^2]');
 ylabel('Cell Voltage [V]')
 legend('Calculated', 'Measured')

 figure(2);
 plot(0.1*current_density, anode_delta_phi, 'b-o', 0.1*current_density, cathode_delta_phi, 'r-o', ...
 0.1*current_density, Cathode_electric_potential, 'g-o')
 title('Electrode Potentials wrt Interface'); xlabel('Current Density [mA/cm^2]');
 ylabel('Potential [V]')
 legend('Anode', 'Cathode' ,'Cell')

 figure(3);
 plot(Cathode_electric_potential, anode_delta_phi, 'b-o', Cathode_electric_potential, ...
 cathode_delta_phi, 'r-o')
 title('Electrode Potentials wrt Interface'); xlabel('Cell Voltage [V]'); ylabel('Potential [V]')
 legend('Anode', 'Cathode')

end

if Flags.setup.save_final_output
 c = clock;
 filename_identifier = strcat(num2str(c(1)), '-', num2str(c(2)), '-', num2str(c(3)), '-', ...
 num2str(c(4)), 'h-', num2str(c(5)), 'm-', num2str(c(6)), 's');
 filename = strcat('Results_', filename_identifier, '.mat');
 save(filename); disp(['Results were saved in file: ' filename])
end
% Purpose: Set user defined model parameters such as cell geometry, voltage, etc. Author: Rick Stroman

%% DECLARE MODEL-WIDE GLOBAL VARIABLES

global Flags Geometry Pointer BC Initial Tolerances Solver Grid_size Species

disp('Reading user inputs...');

 182

%% 1. MODEL OPTIONS

% SOLUTION APPROACH

Flags.setup.parallel = 0;
% [1 = run in parallel, 0 = run serially]
Flags.setup.MEX = 1;
% [1 = run MEX file to calc properties and fluxes, 0 = run MATLAB code]

% SOLUTION AND RESIDUAL SCALES

Flags.setup.rescale_init_guess = 0;
% [0 = Leave the initial guess as-is, 1 = Adjust Scales.SV so that the initial guess is all ones]

Flags.setup.rescale_init_resid = 0;
% [0 = Leave the initial residuals as-is, 1 = Adjust Scales.dSV so the initial residuals are all ones]
% SOURCES FOR THE INITIAL GUESS

Flags.setup.new_SV_initial = 1;
% [1 = Initialize to the standard guess, 0 = Initialize to a guess from a solution file
% NOTE: This flag determines which guess is initialized. If Flags.setup.reuse_SV_steady_state = 0 below,
% then it is also used for subsequent points]

Flags.setup.reuse_previous_soln = 1;
% [0 = Use the guess from the Initialization for all voltages, 1 = Use the guess from the Initialization
% for the first voltage,
% then reuse solutions for subsequent voltages.]

Flags.setup.adjust_V_prev_soln = 0;
% [0 = Use the previous solution as-is for the initial guess, 1 = Adjust the voltages in the previous
% solution to be closer to
% the voltages in the case for which it is the initial guess. NOTE: Only applicable when using a
% previous solution,either from
% file or from a previous voltage in a pol curve]

Flags.setup.randomize_SV = 0;

 183

% MODEL CONFIGURATION

Flags.model.scale_cells_x = 'lin';
% ['off' or 'lin' or 'log' for logarithmic, must use even numbers of cells ... makes cells smaller near
% inlets and walls]
Flags.model.scale_cells_y = 'lin';
% ['off' or 'lin' or 'log' for logarithmic, must use even numbers of cells ... makes cells smaller near
% inlets and walls]
Flags.model.solution_ideality = 1 ;
% [1 = ideal, 0 = non-ideal]
Flags.model.y.migration = 1;
% [1 : include y-direction migration in transport calculations in the electrolyte]
Flags.model.y.diffusion = 1;
% [1 : include y-direction diffusion in transport calculations in the electrolyte]
Flags.model.x.migration = 1;
% [1 : include x-direction migration in transport calculations in the electrolyte]
Flags.model.x.diffusion = 1;
% [1 : include y-direction diffusion in transport calculations in the electrolyte]
Flags.model.m.migration = 1;
% [1 : include migration in membrane transport]
Flags.model.m.diffusion = 1;
% [1 : include diffusion in membrane transport]
Flags.model.m.permeation = 1;
% [1 : include permeation in membrane transport]
Flags.model.m.EOD = 1;
% [1 : include electro-osmotic drag (of water) in membrane transport]
Flags.model.electroneutrality = 1;
% [1 : solve for electric potential in channel using electroneutrality
% 0 : solve for electric potential in channel using poisson electrostatic equation]

% KINSOL SETUP

% kinsol options
Solver.kinsol.display_iter = 1;
Solver.kinsol.verbose = false;

 184

Solver.kinsol.func_norm_tol = 1e-3;
% Stopping tolerance on the residual 2-norm
Solver.kinsol.scaled_step_tol = 1e-15;
% Stopping tolerance (minimum) step size
Solver.kinsol.linear_solver = 'Band';
% 'Dense' 'Band' or 'GMRES' 'TFQMR' 'BiCGStab'
% Solver.kinsol.KrylovMaxDim = 10; Solver.kinsol.MaxNumRestarts = 2;
Solver.kinsol.MaxNumSetups = 50;
Solver.kinsol.strategy = 'None'; % 'LineSearch' or 'None'
Solver.kinsol.MaxNewtonStep = 1e9; % Default is 1e3
Solver.kinsol.MaxNumBetaFails = 50; % Default is 10
Solver.kinsol.MaxNumIter = 500; % Default is 200

% Jacobian options
Solver.Jacobian.Jpattern_flag = 'none';
% ['random', 'load', 'analytic', 'ones', 'empirical' 'specified' or 'none']
Solver.Jacobian.JAC_bandwidth_flag = 'user';
% ['user' = user supplied upper and lower Jabobian bandwidths 'Jpattern' = determine from Jacobian pat]
Solver.Jacobian.rtrn_dense_JAC_flag = 0; % [0 or 1]
Solver.Jacobian.function = 'FUNC_JACOBIAN_NUMJAC';
% External function for calculating the Jacobian, if that option is used.
Solver.Jacobian.upper_bandwidth = 359;
Solver.Jacobian.lower_bandwidth = 359;

%% 2. FUNCTION SCALES

% Scales for the solution vector... initially divide SV by these factors to get a value of order 1.
% Converting back to the real value inside the function is a multiplication, which is fast.
Solver.SV_scale.mass_frac_anode = [1e-3 1e-5 1e-3 1e-1 1e-2 1e-2]; % Fuel.Mass_fractions
Solver.SV_scale.mass_frac_cathode = [1e-3 1e-6 1e-1 1e-3 1e-5 1e-3 1e-1]; % Oxidizer.Mass_fractions
Solver.SV_scale.x_vel = 1e-2;
Solver.SV_scale.y_vel = 1e-4;
Solver.SV_scale.press = 1;
Solver.SV_scale.elec_pot = 1;

% Scales for the residuals... these are what we multiply by inside the function to get values which have

 185

% a similar magnitude near the solution.
Solver.dSV_scale.electroneutrality = 1e1*1e0;
Solver.dSV_scale.species_cons_a = 1e4 * [1e1 1e1 1e1 1e0 1e1 1e1];
Solver.dSV_scale.species_cons_c = 1e4 * [1e1 1e1 1e0 1e1 1e1 1e1 1e1];
Solver.dSV_scale.x_momentum_cons = 1e0;
Solver.dSV_scale.y_momentum_cons = 1e0;
Solver.dSV_scale.mass_cons = 1e0;
Solver.dSV_scale.species_flux_balance_a = 1e4 * [1e1 1e1 1e1 1e0 1e1 1e1];
Solver.dSV_scale.species_flux_balance_c = 1e4 * [1e1 1e1 1e0 1e1 1e1 1e1 1e1];
Solver.dSV_scale.mass_flux_balance = 1e0;

%% 3. PLOTTING AND DISPLAY OPTIONS

Flags.setup.display_initial_state = 0;
% [1 = display initial state of system before starting the solver]
Flags.setup.display_final_state = 0;
% [1 = display final state of system after the steady state solver is finished]
Flags.setup.display_aspect_ratios = 0;
% [1 = display aspect ratios of channel discretizations]
Flags.setup.plot_curr_density = 0;
% [1 = display current density down the channel for anode and cathode at each iteration. 0 = don't
% display the current density at each iteration]

Flags.setup.display_Jpattern = 0; % [1: display the Jacobian pattern]
Flags.plots.grids = 0; % [1: plot the channel grids]

% If this is a steady state simulation, plot the following:
Flags.plots.anode = 0;
Flags.plots.cathode = 0;
Flags.plots.whole_cell = 1;

Flags.plots.contour = 0;
Flags.plots.profiles = 0;
Flags.plots.image = 0;
Flags.plots.yfluxes_mass = 0;
Flags.plots.yfluxes_mole = 0;

 186

Flags.plots.xfluxes_mass = 0;
Flags.plots.xfluxes_mole = 0;

Flags.plots.error = 0;

pol_curve_compare = 1;
display_output_text = 1;

%% 4. READING AND WRITING FILES

% If using a previously stored Jacobian pattern, load it from the following file.
if strcmp(Solver.Jacobian.Jpattern_flag, 'load')
 Solver.Jacobian.j_pattern_filename = 'Jacobian_pattern_x60_y_15.mat';
end

% If using a previously stored solution vector, load it from the following file.
if ~Flags.setup.new_SV_initial
 Solver.SV_initial_filename = 'Inter_Results_2013-10-22-16h-48m-57.296s_1.6197V.mat';

 % File at voltage previous to the initial filename. Used to calculate the rate at which state
 % variables change with respect to cell voltage, to generate a better initial guess than just starting
 % at the last good solution.
 Solver.SV_previous_filename = 'Results_2013-8-1-9h-43m-58.491s.mat';
end

% Configure whether or not the calculated Jacobian and Jacobian pattern are saved to files
Flags.setup.save_Jacobian = 1;
Flags.setup.save_JAC_pat = 1;

Flags.setup.save_final_output = 1;
% [1 = save the final workspace]
Flags.setup.save_inter_output = 1;
% [1 = save the workspace after solving for each cell voltage]

%% 5. CELL GEOMETRY

 187

% Channel and membrane dimensions
Geometry.channel_length = 5.000e-2; % m [Length of channels]
Geometry.channel_width = 5.000e-3; % m [Width of channels]
Geometry.channel_height = 5.00e-4; % m [Depth of channels]
Geometry.mem_thick = 208e-6; % m [Membrane thickness]

% Discretization of the model domain
Grid_size.y_d_num = 15; % [Number of y-direction discretizations]
Grid_size.x_d_num = 50; % [Number of x-direction discretizations]

% For linear scaling
Geometry.x_d_min = 0.25/3;
% [Size of the smallest x-discretization with respect to the average.]
Geometry.y_d_min = 0.1;
% [Size of the smallest y-discretization with respect to the average.]

% For exponential scaling
Geometry.x_d_min_log = 1e-6; % m [Size of the smallest x-discretization.]
Geometry.y_d_min_log = 1e-5; % m [Size of the smallest y-discretization.]

%% 6. OPERATING PARAMETERS (DIRECLET BOUNDARY CONDITIONS)

% Anode side boundary conditions
BC.anode.elec_pot = 0; % V [Electric potential of anode]
BC.anode.x_vel_electrode = 0; % m/s [x-direction vel at electrodes]
BC.anode.x_vel_membrane = 0; % m/s [x-direction vel at membrane]
BC.anode.y_vel_electrode = 0; % m/s [y-direction vel at electrode]
BC.anode.y_vel_inlet = 0; % m/s [y-direction vel at inlet]
BC.anode.press_outlet = 0; % Pa [Pressure at inlet]

% Cathode side boundary conditions
BC.cathode.x_vel_electrode = 0; % m/s [x-direction vel at electrodes]
BC.cathode.x_vel_membrane = 0; % m/s [x-direction vel at membrane]
BC.cathode.y_vel_electrode = 0; % m/s [y-direction vel at electrode]
BC.cathode.y_vel_inlet = 0; % m/s [y-direction vel at inlet]
BC.cathode.press_outlet = 0; % Pa [Pressure at the inlet]

 188

% List of cell voltages to evaluate. If there is more than one, then a polarization curve is generated
% by solving teh model for each voltage sequentially.
Cathode_electric_potential = [1.6197 1.525 1.5 1.475 1.45 1.4 1.35 1.3 1.2 1.1 1.0 0.9 0.8 0.7 ...
 0.6 0.5 0.4 0.3]; % Exp54H

% Mean solution velocity at the inlet
anode_mean_inlet_velocity = 1.6666e-7 / (Geometry.channel_width*Geometry.channel_height);
% m/s [Mean inlet flow rate of fuel solution]
cathode_mean_inlet_velocity = 1.6666e-7 / (Geometry.channel_width*Geometry.channel_height);
% m/s [Mean inlet flow rate of oxidizer solution]

% The species mass fraction boundary conditions at the inlets are calculated from the fuel and oxidizer
% concentrations (set below). The inlet velocity boundary conditions are determined from the mean inlet
% velocities.

%% 7. MODEL PROPERTIES

% Note about the structure names in this section. Typically one would make the top level catagories the
% largest and further subdivide for each subcatagory to minimize the number of fields in a structure.
% Here, the goal is to have structures in the form Model.discretization.property so that all of the
% properties of a particular discretization can be easily passed into a function... If they were
% organized as Model.property.discretization, this would be much more complicated.

% Species included in each phase. Note that the membrane species list elements which appear on both the
% anode and cathode; if a species appears on both sides, its flux throught the membrane will be
% calculated. Species should be in alphanumeric order.
Species.fuel.list = 'BH4'; 'BO2'; 'H2'; 'H2O'; 'Na'; 'OH' }; % 'BH3OH';
Species.oxidizer.list = 'H'; 'H2'; 'H2O'; 'H2O2'; 'Na'; 'O2'; 'SO4' };
Species.membrane.list = 'H2O'; 'Na' };
%intersect(Model.anode.species_list, Model.cathode.species_list);

% Store the total number of species in each list
Species.fuel.num = length(Species.fuel.list);
Species.oxidizer.num = length(Species.oxidizer.list);
Species.membrane.num = length(Species.membrane.list);

 189

%% 8. SET UP SPECIES POINTERS

% Use the species lists to create pointers for the anode and cathode, which have different species. The
% relative positions of the species are the same as in the lists.

% Create the anode species pointers
for s_i = 1 : Species.fuel.num
 Pointer.anode.species.(char(Species.fuel.list(s_i))) = s_i;
end

% Create the cathode species pointers
for s_i = 1 : Species.oxidizer.num
 Pointer.cathode.species.(char(Species.oxidizer.list(s_i))) = s_i;
end

% Create the membrane species pointers
for s_i = 1 : Species.membrane.num
 Pointer.membrane.species.(char(Species.membrane.list(s_i))) = s_i;
end

%% 9. FUEL PROPERTIES

% Include the mole densities (molarities) of each solute species. Do not include the solvent, which is
% assumed to be water.

Fuel_mole_density.BH4 = 50E-3; % M [Molarity of NaBH4]
Fuel_mole_density.BO2 = 1.0E-6; % M [Molarity of NaOH]
Fuel_mole_density.OH = 2.0E+0; % M [Molarity of NaBO2]
Fuel_mole_density.H2 = 1.0E-6; % M [Molarity of H2]

% Ensure the solution is electrically neutral
Fuel_mole_density.Na = Fuel_mole_density.BH4 + Fuel_mole_density.BO2 + Fuel_mole_density.OH;

%% 10. OXIDIZER PROPERTIES

 190

% Include the mole densities (molarities) of each ionic species. Do not include the solvent, which is
% assumed to be water.

Oxidizer_mole_density.H2O2 = 250E-3; % M [Molarity of H2O2]
Oxidizer_mole_density.Na = 1.0E-6; % M [Molarity of Na+]
Oxidizer_mole_density.SO4 = 1.0E+0; % M [Molarity of SO4]
Oxidizer_mole_density.O2 = 2.67E-4; % M [Molarity of O2]
Oxidizer_mole_density.H2 = 1e-6; % M

% Ensure the solution is electrically neutral
Oxidizer_mole_density.H = 2 * Oxidizer_mole_density.SO4 - Oxidizer_mole_density.Na;

%% 11. INITIAL STATE

if Flags.setup.new_SV_initial == 1

 % Concentrations in the channel are initialy set to those of the inlet anode and cathode flows. To help
 % the solver find a solution, the code in this section 1. sets the electric potential in the channels,
 % imposing gradients 2. sets the mass fractions at the electrode and membrane interfaces 3. sets the
 % initial guess for the inlet pressure, and imposes a gradient from inlet to outlet.

 Initial.a_int_elec_pot_in = 1.24;
 Initial.a_int_elec_pot_out = 1.24;
 Initial.m_int_a_elec_pot_in = 1.24;
 Initial.m_int_a_elec_pot_out = 1.24;
 Initial.m_int_c_elec_pot_in = 1.25;
 Initial.m_int_c_elec_pot_out = 1.25;
 Initial.c_int_elec_pot_in = 1.247;
 Initial.c_int_elec_pot_out = 1.247;

 Initial.a_int_mass_fracs = [(0.000067977539050 - 4e-5) (0.000000039211998 + 4e-5) ...
 0.000000001846454 0.926555707330665 0.042220459212564 0.031155814859269];
 Initial.m_int_a_mass_fracs = [(0.000067977539050 - 0e-5) (0.000000039211998 + 0e-5) ...
 0.000000001846454 0.926555707330665 0.042220459212564 0.031155814859269];
 Initial.m_int_c_mass_fracs = [0.001876408651602 0.000000001876410 0.908382204023011 ...
 0.000316613634117 0.000000021399202 0.000007952577700 0.089416797837959];

 191

 Initial.c_int_mass_fracs = [0.001876408651602 0.000000001876410 0.908382204023011 0 ...
 0.000000021399202 0.000007952577700 0.089416797837959];

 % Set the initial guess for pressure at the inlet
 Initial.inlet_press = 250; % Pa

 % Set the initial guess for pressure at the membrane interfaces
 Initial.m_int_a.press = BC.anode.press_outlet; % Pa
 Initial.m_int_c.press = BC.cathode.press_outlet; % Pa

 Initial.anode_press = 1e-3;
 % Pa superimposed on the dominant gradient in the x-direction
 Initial.cathode_press = -1e-3;
 % Pa superimposed on the dominant gradient in the x-direction

 Initial.m_int_a_y_velocity = 1E-6; % m/s
 Initial.m_int_c_y_velocity = -1E-6; % m/s

end

%% 12. ERROR TOLERANCES

% These are used to check the initial solution vector and the final solution.
Tolerances.mole_fractions = 1E-5;
% unitless [Permitted deviation from sum(X_k) = 1]
Tolerances.mass_fractions = 1E-5;
% unitless [Permitted deviation from sum(Y_k) = 1]
Tolerances.non_neutrality = 1E-7;
% C/m^3 [Permitted deviation from charge density = 0]
Tolerances.mass_conservation = 5E-3;
% [Percent error for a control volume around the whole stack, ...
Tolerances.charge_conservation = 5E-4;

%% 14. CLEAR UNNECESSARY VARIABLES FROM THE WORKSPACE

clear Fuel.NaBH4_molarity Fuel.NaOH_molarity Fuel.NaBO2_molarity Oxidizer.H2O2_molarity ...

 192

 Oxidizer.HCl_molarity s_i smallest_x smallest_y

%% REFERENCES

% [1] DuPont Nafion materials specification sheet downloaded from DuPont website [2] Craig Urian
% experiments with PdIr coated plates

%% SUMMARY: DBFC_CONSTANTS_AND_PROPERTIES
% Purpose: Store universal constants and material properties which do not change.
% Author: Rick Stroman
% Date: 1 December 2011

%% DECLARE MODEL-WIDE GLOBAL VARIABLES

global Constants Properties Species

%% CONSTANTS

disp('Defining physical constants...')

Constants.e_charge = 1.60218e-19; % C [Charge on an electron. Ref 5, back cover]
Constants.e = 2.71828; % unitless [Base of natural logarithm]
Constants.faraday = 9.64853e7; % C / kmol [Coulombs of charge in 1 kmol of electons. Ref 5]
Constants.avogadro = 6.02214e26; % number / kmol [Avogadro's number. Ref 5, back cover]
Constants.ideal_gas = 8.31447e3; % J / (K * kmol) [Ideal gas constant. Ref 5, back cover]
Constants.boltzman = 1.38065e-23; % J / K [Boltzmann's constant. Ref 5, back cover]
Constants.pi = 3.14159; % unitless [Ratio of circle circumfrence to diameter. Ref ?]
Constants.DH_A = 1.2555; % [D-H constant value for water at 1 ATM and 300 K.]
Constants.DH_B = 0.3965E10; % [D-H constant value for water at 1 ATM and 300 K.]
Constants.permittivity = 8.854187817620e-8; % F/m [Permittivity of free space]
Constants.H2O_permeability = 80;
Constants.temperature = 23+273.15; % K

 193

%% SPECIES PROPERTIES

disp('Defining species thermodynamic and electrochemical properties...')

% MOLAR MASS

Properties.molar_mass.Na = 22.98976928; % kg/kmol [Ref 9]
Properties.molar_mass.H = 1.00794; % kg/kmol [Ref 9]
Properties.molar_mass.OH = 17.0073; % kg/kmol [Ref 9]
Properties.molar_mass.BH4 = 14.843; % kg/kmol [Ref 9]
Properties.molar_mass.Cl = 35.453; % kg/kmol [Ref 9]
Properties.molar_mass.BO2 = 42.810; % kg/kmol [Ref 9]
Properties.molar_mass.H2O2 = 34.0147; % kg/kmol [Ref 9]
Properties.molar_mass.H2O = 18.0153; % kg/kmol [Ref 9]
Properties.molar_mass.BH3OH = 30.8424; % kg/kmol [sum of BH4 and O, Ref 9]
Properties.molar_mass.H2 = 2.01588; % kg/kmol [Ref 9]
Properties.molar_mass.O2 = 31.9988; % kg/kmol [Ref 9]
Properties.molar_mass.SO4 = 96.063; % kg/kmol [Ref 9]

% ELECTRIC CHARGE

Properties.electric_charge.Na = +1;
Properties.electric_charge.H = +1;
Properties.electric_charge.OH = -1;
Properties.electric_charge.BH4 = -1;
Properties.electric_charge.Cl = -1;
Properties.electric_charge.BO2 = -1;
Properties.electric_charge.H2O2 = 0;
Properties.electric_charge.H2O = 0;
Properties.electric_charge.e = -1;
Properties.electric_charge.BH3OH = -1;
Properties.electric_charge.H2 = 0;
Properties.electric_charge.O2 = 0;
Properties.electric_charge.SO4 = -2;

 194

% STANDARD APARENT MOLAR VOLUME AT INFINITE DILUTION

% Assuming T = 25 deg C and P = 1 bar.
Properties.apparent_volume.Na = -1.11E-3; % m^3/kmol [Ref 1, Table 8.13, page 536]
Properties.apparent_volume.H = 0; % m^3/kmol [Ref 1, Table 8.13, page 536... defined]
Properties.apparent_volume.OH = -4.18E-3; % m^3/kmol [Ref 1, Table 8.13, page 536]
Properties.apparent_volume.BH4 = (-14.5E-3)/3; % m^3/kmol [GUESS --- VALUE NEEDED]
Properties.apparent_volume.Cl = 17.79E-3; % m^3/kmol [Ref 1, Table 8.13, page 536]
Properties.apparent_volume.BO2 = -14.5E-3; % m^3/kmol [Ref 1, Table 8.13, page 536]
Properties.apparent_volume.H2O2 = 22.17e-3; % m^3/kmol [Ref 10, page 2--]
Properties.apparent_volume.H2O = 0; % m^3/kmol [Water is the solvent... 0 works out OK]
Properties.apparent_volume.BH3OH = 0; % m^3/kmol [GUESS --- VALUE NEEDED]
Properties.apparent_volume.H2 = 2.52E-2; % m^3/kmol [Ref 1, Table 9.14, page 653]
Properties.apparent_volume.O2 = 3.038E-2; % m^3/kmol [Ref 1, Table 9.14, page 653]
Properties.apparent_volume.SO4 = 24.8e-3; % m^3/kmol [Ref 16]

% SPECIES DIFFUSIVITIES IN WATER

% Diffusivities of each species in H2O, most at infinite dilution and 25 deg C.
Properties.diffusivity_in_water.Na = 1.334E-9; % m^2/s
%[Diffusivity of Na+ in H2O at infinite dilution and 25 deg C. Ref 6 Table 11.1]
Properties.diffusivity_in_water.H = 9.312E-9; % m^2/s
%[Diffusivity of H+ in H2O at infinite dilution and 25 deg C. Ref 6 Table 11.1]
Properties.diffusivity_in_water.OH = 5.260E-9; % m^2/s
%[Diffusivity of OH- in H2O at infinite dilution and 25 deg C. Ref 6 Table 11.1]
Properties.diffusivity_in_water.BH4 = 1.5*2.42E-9; % m^2/s
%[Diffusivity of BH4- in H2O and 2M NaOH at 25 deg C. Ref 4 page F19]
Properties.diffusivity_in_water.Cl = 2.032E-9; % m^2/s
%[Diffusivity of Cl- in H2O at infinite dilution and 25 deg C. Ref 6 Table 11.1]
Properties.diffusivity_in_water.BO2 = 8.14E-10; % m^2/s
%[Diffusivity of BO2- in H2O at infinite dilution and 25 deg C. Ref 14]
Properties.diffusivity_in_water.H2O2 = 1.61E-9; % m^2/s
%[Diffusivity of H2O2 in H2O from ref 18... at 25 deg C]
Properties.diffusivity_in_water.H2O = 0 ; % m^2/s
%[H2O diffusion balances solute diffusion... this value is irrelevent, but keeps things from blowing up]
Properties.diffusivity_in_water.BH3OH = 7.48E-10; % m^2/s

 195

%[Diffusivity in 0.02 M DMAB and 1 M NaOH at 20 deg C. Ref 12]
Properties.diffusivity_in_water.H2 = 4.5E-9; % m^2/s [Diffusivity of H2 in H2O Ref 17]
Properties.diffusivity_in_water.O2 = 1.97E-9; % m^2/s [Diffusivity of O2 in H2O Ref 17]
Properties.diffusivity_in_water.SO4 = 6.25e-10; % m^2/s [Diffusivity of SO4-2 in water . Ref 15]

%% MEMBRANE PROPERTIES

Properties.membrane.electro_drag = 9.2; % unitless
%[Mole H2O transported per mole Na+, for fully hydrated (lambda = 18) membane in Na+ form. Ref 8]
Properties.membrane.Na_mobility = 2.7E-8; % m^2 / (V s)
%[Mobility of Na+ in a fully hydrated Nafion 115 membrane where X_Na = 1.0. Ref 8]
Properties.membrane.H_mobility = 1.49E-7; % m^2 / (V s)
%[Mobility of H+ in a fully hydrated Nafion 115 membrane where X_H = 1.0. Ref 8]
Properties.membrane.SO3_density = 1.13; % kmol/m^3
%[Density of sulfonic acid groups in fully hydrated Nafion 115. Ref 8]
Properties.membrane.k = 0.20; % unitless
%[Na+ and H+ mobility interaction factor in fully hydrated Nafion 115, Ref 8]
Properties.membrane.hydration = 18.4; % H2O per SO3-
%[Number of water molecules per sulfonic acid group in the membrane at full hydration in the Na+ form in
%Nafion 115, Ref 8]
Properties.membrane.H2O_diffusivity = 3.5E-10; % m^2/s
Properties.membrane.permeability = 1.7e-14; % m Pa^-1 s^-1
%[Filtration coefficient for water through Nafion 125 at 20 deg C in 3 M NaCl, Ref 13]

%% SOLVENT PROPERTIES

% Need to do this twice becuase of the way Properties is passed into functions...
Properties.anode.density_water = FUNC_WATER_DENSITY(Constants.temperature);
Properties.cathode.density_water = FUNC_WATER_DENSITY(Constants.temperature);

%% STORE SPECIES PROPERTIES IN VECTORS TO SIMPLIFY USE OF PROPERTIES IN LOOPS OVER ALL SPECIES

for species_position = 1 : Species.fuel.num
 species_name = char(Species.fuel.list(species_position));
 Properties.anode.Molar_mass(species_position,1) = Properties.molar_mass.(species_name);
 Properties.anode.Electric_charge(species_position,1) = Properties.electric_charge.(species_name);

 196

 Properties.anode.Ionic_diameter(species_position,1) = Properties.ionic_diameter.(species_name);
 Properties.anode.Apparent_volume(species_position,1) = Properties.apparent_volume.(species_name);
 Properties.anode.Diffusivities(species_position,1) = Properties.diffusivity_in_water.(species_name);
end

for species_position = 1 : Species.oxidizer.num
 species_name = char(Species.oxidizer.list(species_position));
 Properties.cathode.Molar_mass(species_position,1) = Properties.molar_mass.(species_name);
 Properties.cathode.Electric_charge(species_position,1) = Properties.electric_charge.(species_name);
 Properties.cathode.Ionic_diameter(species_position,1) = Properties.ionic_diameter.(species_name);
 Properties.cathode.Apparent_volume(species_position,1) = Properties.apparent_volume.(species_name);
 Properties.cathode.Diffusivities(species_position,1) = ...
 Properties.diffusivity_in_water.(species_name);
end

for species_position = 1 : Species.membrane.num
 species_name = char(Species.membrane.list(species_position));
 Properties.membrane.Molar_mass(species_position,1) = Properties.molar_mass.(species_name);
 Properties.membrane.Electric_charge(species_position,1) = Properties.electric_charge.(species_name);
end

%% CALCULATE 1 / SEVERAL PROPERTIES HERE INSTEAD OF IN THE MAIN FUNCTION BECAUSE DIVISION IS SLOW

Properties.anode.one_over_molar_mass = 1 ./ Properties.anode.Molar_mass;
Properties.cathode.one_over_molar_mass = 1 ./ Properties.cathode.Molar_mass;
Properties.anode.Appar_vol_over_Molar_mass = (Properties.anode.Apparent_volume ...
 ./ Properties.anode.Molar_mass)';
Properties.cathode.Appar_vol_over_Molar_mass = (Properties.cathode.Apparent_volume ...
 ./ Properties.cathode.Molar_mass)';

%% CALCULATE TRANSPOSES OF SEVERAL PROPERTIES HERE BECAUSE DIVISION IS SLOW

Properties.anode.Molar_mass_T = Properties.anode.Molar_mass';
Properties.cathode.Molar_mass_T = Properties.cathode.Molar_mass';

Properties.anode.Electric_charge_T = Properties.anode.Electric_charge';

 197

Properties.cathode.Electric_charge_T = Properties.cathode.Electric_charge';

Constants.FoRT = Constants.faraday / (Constants.ideal_gas * Constants.temperature);
Constants.RToF = 1/Constants.FoRT;

%% CLEAR UNNECESSARY VARIABLES FROM THE WORKSPACE

clear species species_position

%% REFERENCES

% [1] Ottonello, G., Principles of Geochemistry. 1997, New York: Columbia University Press. xii, 894 p.
% [2] Sodaye, S., C. Agarwal, et al. (2008). "Study on multicomponent diffusion of ions in poly
% (perfluorosulfonated) ion-exchange membrane using radiotracers." Journal of Membrane Science 314(1-2):
% 221-225.
% [3] Bird, Steward and Lightfoot
% [4] Santos, D. M. F. and C. A. C. Sequeira (2010). "Chronopotentiometric Investigation of Borohydride
% Oxidation at a Gold Electrode." Journal of the Electrochemical Society 157(1): F16-F21.
% [5] Bard, A. J. and L. R. Faulkner (2001). Electrochemical methods : fundamentals and applications. New
% York, Wiley.
% [6] Newman, J. S. and K. E. Thomas-Alyea (2004). Electrochemical systems. Hoboken, N.J., J. Wiley.
% [7] DuPont Nafion 115 specifications sheet. www2.dupont.com/FuelCells/en_US/assets/downloads/dfc101.pdf
% [8] Okada, T., S. Moller-Holst, et al. (1998). "Transport and equilibrium properties of Nafion (R)
% membranes with H+ and Na+ ions." Journal of Electroanalytical Chemistry 442(1-2): 137-145.
% [9] NIST Web Book. http://webbook.nist.gov
% [10] Schumb, W. C. (1955). Hydrogen peroxide. New York,, Reinhold Pub. Corp.
% [11] Macpherson, J. V. and P. R. Unwin (1997). "Determination of the diffusion coefficient of hydrogen
% in aqueous solution using single and double potential step chronoamperometry at a disk
% ultramicroelectrode." Analytical Chemistry 69(11): 2063-2069.
% [12] Nagle, L. C. and J. F. Rohan (2005). "Investigation of DMAB oxidation at a gold microelectrode in
% base." Electrochemical and Solid State Letters 8(5): C77-C80.
% [13] Evans, C. E., R. D. Noble, et al. (2006). "Role of conditioning on water uptake and hydraulic
% permeability of Nafion (R) membranes." Journal of Membrane Science 279(1-2): 521-528.
% [14] Cloutier, C. R., A. Alfantazi, et al. (2007). "Physicochemical Transport Properties of Aqueous
% Sodium Metaborate Solutions for Sodium Borohydride Hydrogen Generation and Storage and Fuel Cell
% Applications." Thermec 2006 Supplement 15-17: 267-274.

 198

% [15] Nielsen, J.M., A.W. Adamson, and J.W. Cobble, The Self-Diffusion Coefficients of the Ions in
% Aqueous Sodium Chloride and Sodium Sulfate at 25-Degrees. Journal of the American Chemical Society,
% 1952. 74(2): p. 446-451.
% [16] Poisson, A. and J. Chanu, Semi-Empirical Equations for the Partial Molar Volumes of Some Ions in
% Water and Seawater. Mar. Chem., 1980. 8: p. 289-298.
% [17] C.R. Wilke, P. Chang, Aiche J, 1 (1955) 264-270. [18] S.B. Hall, E.A. Khudaish, A.L.
% Hart, Electrochim Acta, 43 (1998) 579-588.

%% SUMMARY: DBFC_SETUP_REACTION_RATES
% Purpose: Read user provided stoichiometric and rate parameters for the Arxn taking place at the RDE.
% Collect those stoichiometric and rate parameters into the structures expected by the reaction rate
% function in the model. Author: Rick Stroman

%% NOTES

% 1. ALL species must be given a stoichiometry and concentration dependence (both forward and reverse).
% If a species doesn't participate, set its stoichiometry to zero. If a species which doesn't exist in
% the model is given a value or a species which exists isn't given a value, the model will throw an
% error. Assign a stoichiometric coefficient to the electrons, though they are excluded when the
% "Reaction_stoich" vector is built so it does not cause problems calculating the mass fluxes.

%% 1. SETUP GLOBAL VARIABLES

global Arxn Crxn Constants Pointer Species

%% 2. ANODE REACTION RATES

% Overall anode parameters
Arxn.param.area_ratio = 2.73; % unitless [Ratio electrochemical/geometric surface area]

% --%
% Reaction #1... 1 BH4- + 8 OH- <--> 1 BO2- + 6 H2O + 8 e-

 199

% --%

Arxn.rxn(1).active = 1;

% Species stochiometries
Arxn.rxn(1).stoich.BH4 = -1;
Arxn.rxn(1).stoich.BO2 = 1;
Arxn.rxn(1).stoich.e = 8;
Arxn.rxn(1).stoich.H2 = 0;
Arxn.rxn(1).stoich.H2O = 6;
Arxn.rxn(1).stoich.Na = 0;
Arxn.rxn(1).stoich.OH = -8;

% Rate constants, electron transfer coefficients and standard half-cell potential.
Arxn.rxn(1).k_f = 1.25*0.00704; % m^4 / (kmol s) [Anodic direction reaction rate constant]
Arxn.rxn(1).beta_f = 0.098; % unitless [Anodic charge transfer coefficient]
Arxn.rxn(1).phi_0 = -1.240; % V [Standard half-cell potential]
Arxn.rxn(1).e_rds = 1; % unitless [Number of electrons transferred in rate determining step]

Arxn.rxn(1).beta_r = 1 - Arxn.rxn(1).beta_f; % unitless [Cathodic charge transfer coefficient]
Arxn.rxn(1).k_r = Arxn.rxn(1).k_f * exp(Arxn.rxn(1).e_rds * Constants.faraday / ...
 (Constants.ideal_gas * Constants.temperature) * Arxn.rxn(1).phi_0);

% Concentration dependencies (assumed to be first order) for the cathodic and anodic directions
Arxn.rxn(1).conc_dependence_f = [Pointer.anode.species.BH4];
Arxn.rxn(1).conc_dependence_r = [Pointer.anode.species.BO2];

% --%
% Reaction #2... 1 H2 + 2 OH- <--> 2 H2O + 2 e-
% --%

Arxn.rxn(2).active = 0;

% Species stoichiometries
Arxn.rxn(2).stoich.BH4 = 0;
Arxn.rxn(2).stoich.BO2 = 0;

 200

Arxn.rxn(2).stoich.e = 2;
Arxn.rxn(2).stoich.H2 = -1;
Arxn.rxn(2).stoich.H2O = 2;
Arxn.rxn(2).stoich.Na = 0;
Arxn.rxn(2).stoich.OH = -2;

% Rate constants, electron transfer coefficients and standard half-cell potential.
Arxn.rxn(2).k_r = 1.0e-15; % [Cathodic direction reaction rate constant]
Arxn.rxn(2).beta_r = 0.5000; % unitless [Cathodic charge transfer coefficient]
Arxn.rxn(2).phi_0 = -0.828; % V [Standard half-cell potential]
Arxn.rxn(2).e_rds = 1; % unitless [Number of electrons transferred in the rate determining step]

Arxn.rxn(2).beta_f = 1 - Arxn.rxn(2).beta_r; % unitless [Cathodic charge transfer coefficient]
Arxn.rxn(2).k_f = Arxn.rxn(2).k_r / exp(Arxn.rxn(2).e_rds * Constants.faraday / ...
 (Constants.ideal_gas * Constants.temperature) * Arxn.rxn(2).phi_0);

% Concentration dependencies (assumed to be first order) for the forward and reverse rates
Arxn.rxn(2).conc_dependence_f = [Pointer.anode.species.H2 Pointer.anode.species.OH];
Arxn.rxn(2).conc_dependence_r = [];

% --%
% Reaction #3... BH4- + 2 H2O --> BO2- + 4 H2
% --%

Arxn.rxn(3).active = 0;

% Species stoichiometries
Arxn.rxn(3).stoich.BH4 = -1;
Arxn.rxn(3).stoich.BO2 = 1;
Arxn.rxn(3).stoich.e = 0;
Arxn.rxn(3).stoich.H2 = 4;
Arxn.rxn(3).stoich.H2O = -2;
Arxn.rxn(3).stoich.Na = 0;
Arxn.rxn(3).stoich.OH = 0;

% Rate constants, electron transfer coefficients and standard half-cell potential.

 201

Arxn.rxn(3).k_f = 1.5*2.06e-4; % [Anodic direction reaction rate constant]
Arxn.rxn(3).beta_f = 0; % unitless [Anodic charge transfer coefficient]
Arxn.rxn(3).phi_0 = 0; % V [Standard half-cell potential]
Arxn.rxn(3).e_rds = 0; % unitless [Number of e- transferred in the rate determining step]

Arxn.rxn(3).beta_r = 0;
Arxn.rxn(3).k_r = 0;

% Concentration dependencies (assumed to be first order) for the forward and reverse rates
Arxn.rxn(3).conc_dependence_f = [Pointer.anode.species.BH4];
Arxn.rxn(3).conc_dependence_r = [];

%% 3. CATHODE REACTION RATES

% Overall anode parameters

Crxn.param.area_ratio = 4.11; % unitless [Ratio electrochemical/geometric surface area] 1.0

% --%
% Reaction #1... 2 H2O <--> 1 H2O2 + 2 H+ + 2e-
% --%

Crxn.rxn(1).active = 1;

% Species stoichiometries
Crxn.rxn(1).stoich.e = 2;
Crxn.rxn(1).stoich.H = 2;
Crxn.rxn(1).stoich.H2O = -2;
Crxn.rxn(1).stoich.H2O2 = 1;
Crxn.rxn(1).stoich.Na = 0;
Crxn.rxn(1).stoich.O2 = 0;
Crxn.rxn(1).stoich.SO4 = 0;
Crxn.rxn(1).stoich.H2 = 0;

% Rate constants, electron transfer coefficients and standard half-cell potential.
Crxn.rxn(1).k_r = 7.54e-3; % m^4 / (kmol s) [Cathodic direction reaction rate constant]

 202

Crxn.rxn(1).beta_r = 0.455; % unitless [Cathodic charge transfer coefficient]
Crxn.rxn(1).phi_0 = 1.763; % V [Standard half-cell potential]
Crxn.rxn(1).e_rds = 1; % unitless [Number of electrons transferred in the rate dermining step]

Crxn.rxn(1).beta_f = 1 - Crxn.rxn(1).beta_r; % unitless [Cathodic charge transfer coefficient]
Crxn.rxn(1).k_f = Crxn.rxn(1).k_r / (exp(Crxn.rxn(1).e_rds * Constants.faraday / ...
 (Constants.ideal_gas * Constants.temperature) * Crxn.rxn(1).phi_0));

% Concentration dependencies (assumed to be first order) for the forward and reverse rates
Crxn.rxn(1).conc_dependence_r = [Pointer.cathode.species.H2O2 Pointer.cathode.species.H ...
 Pointer.cathode.species.H];
Crxn.rxn(1).conc_dependence_f = [];

% --%
% Reaction #2... 1 H2O2 <--> 1 O2 + 2 H+ + 2e-
% --%

Crxn.rxn(2).active = 0;

% Species stoichiometries
Crxn.rxn(2).stoich.e = 2;
Crxn.rxn(2).stoich.H = 2;
Crxn.rxn(2).stoich.H2O = 0;
Crxn.rxn(2).stoich.H2O2 = -1;
Crxn.rxn(2).stoich.Na = 0;
Crxn.rxn(2).stoich.O2 = 1;
Crxn.rxn(2).stoich.SO4 = 0;
Crxn.rxn(2).stoich.H2 = 0;

% Rate constants, electron transfer coefficients and standard half-cell potential.
Crxn.rxn(2).k_f = 1e-6; % m^4 / (kmol s) (Abruna on Au, 5 mM BH4 in NaOH)%2.7397e-2;
Crxn.rxn(2).beta_f = 0.5; % unitless [Anodic charge transfer coefficient]
Crxn.rxn(2).phi_0 = 0.695; % V [Standard half-cell potential]
Crxn.rxn(2).e_rds = 1; % unitless [Number of electrons transferred in rate dermining step]

Crxn.rxn(2).beta_r = 1 - Crxn.rxn(2).beta_f; % unitless [Cathodic charge transfer coefficient]

 203

Crxn.rxn(2).k_r = Crxn.rxn(2).k_f * exp(Crxn.rxn(2).e_rds * Constants.faraday / ...
 (Constants.ideal_gas * Constants.temperature) * Crxn.rxn(2).phi_0);

% Concentration dependencies (assumed to be first order) for the forward and reverse rates
Crxn.rxn(2).conc_dependence_r = [Pointer.cathode.species.O2; Pointer.cathode.species.H];
Crxn.rxn(2).conc_dependence_f = [Pointer.cathode.species.H2O2];

% --%
% Reaction #3... 2 H2O2 --> 2 H2O + O2
% --%

Crxn.rxn(3).active = 0;

% Species stoichiometries
Crxn.rxn(3).stoich.e = 0;
Crxn.rxn(3).stoich.H = 0;
Crxn.rxn(3).stoich.H2O = 2;
Crxn.rxn(3).stoich.H2O2 = -2;
Crxn.rxn(3).stoich.Na = 0;
Crxn.rxn(3).stoich.O2 = 1;
Crxn.rxn(3).stoich.SO4 = 0;
Crxn.rxn(3).stoich.H2 = 0;

% Rate constants, electron transfer coefficients and standard half-cell potential.
Crxn.rxn(3).k_r = 0; % [Cathodic direction reaction rate constant] Pt: 8e-3
Crxn.rxn(3).beta_r = 0; % unitless [Cathodic charge transfer coefficient] 0.50 Pt: 0.45
Crxn.rxn(3).phi_0 = 0; % V [Standard half-cell potential]
Crxn.rxn(3).e_rds = 0; % unitless [Number of electrons transferred in the rate determining step]

Crxn.rxn(3).beta_f = 0; % unitless [Cathodic charge transfer coefficient]
Crxn.rxn(3).k_f = 6.34E-4; % [Forward direction reaction rate constant]

% Concentration dependencies (assumed to be first order) for the forward and reverse rates
Crxn.rxn(3).conc_dependence_r = [Pointer.cathode.species.O2];
Crxn.rxn(3).conc_dependence_f = [Pointer.cathode.species.H2O2];

 204

% --%
% Reaction #4... 1 H2 <--> 2 H+ + 2 e-
% --%

Crxn.rxn(4).active = 1;

% Species stoichiometries
Crxn.rxn(4).stoich.e = 2;
Crxn.rxn(4).stoich.H = 2;
Crxn.rxn(4).stoich.H2O = 0;
Crxn.rxn(4).stoich.H2O2 = 0;
Crxn.rxn(4).stoich.Na = 0;
Crxn.rxn(4).stoich.O2 = 0;
Crxn.rxn(4).stoich.SO4 = 0;
Crxn.rxn(4).stoich.H2 = -1;

% Rate constants, electron transfer coefficients and standard half-cell potential.
Crxn.rxn(4).k_r = 0.5*2.37e-09; % [Cathodic direction reaction rate constant]
Crxn.rxn(4).beta_r = .8*0.1764; % unitless [Cathodic charge transfer coefficient]
Crxn.rxn(4).phi_0 = 0.000; % V [Standard half-cell potential]
Crxn.rxn(4).e_rds = 2; % unitless [Number of electrons transferred in rate determining step]

Crxn.rxn(4).beta_f = 1 - Crxn.rxn(4).beta_r; % unitless [Cathodic charge transfer coefficient]
Crxn.rxn(4).k_f = Crxn.rxn(4).k_r / exp(Crxn.rxn(4).e_rds * Constants.faraday / ...
 (Constants.ideal_gas * Constants.temperature) * Crxn.rxn(4).phi_0);

% Concentration dependencies (assumed to be first order) for the forward and reverse rates
Crxn.rxn(4).conc_dependence_r = [Pointer.cathode.species.H Pointer.cathode.species.H];
Crxn.rxn(4).conc_dependence_f = [Pointer.cathode.species.H2];

%% 4. PROCESS THE REACTION RATE PARAMETERS

% Store the stoichiometric coefficients in a vector with species organized in the same order as in the
% species list.

for r_i = 1:length(Arxn.rxn)

 205

 Arxn.rxn(r_i).Reaction_stoich = zeros(1,Species.fuel.num);

 for s_i = 1:Species.fuel.num
 Arxn.rxn(r_i).Reaction_stoich(1,s_i) = Arxn.rxn(r_i).stoich.(char(Species.fuel.list(s_i)));
 end

end

for r_i = 1:length(Crxn.rxn)

 Crxn.rxn(r_i).Reaction_stoich = zeros(1,Species.oxidizer.num);

 for s_i = 1:Species.oxidizer.num
 Crxn.rxn(r_i).Reaction_stoich(1,s_i) = Crxn.rxn(r_i).stoich.(char(Species.oxidizer.list(s_i)));
 end

end

%% SUMMARY: DBFC_INITIALIZE
% Purpose: Create the solution vector with the initial values at which the solver will start.
% Author: Rick Stroman

%% 1. DECLARE MODEL-WIDE GLOBAL VARIABLES AND DISPLAY STATUS MESSAGE

global Model Pointer Names Scales Units BC Initial SV_fail SV_fail_lg Geometry Flags Solver ...
 Jacobian Grid_size Species

%% 1. PRINT SOME KEY PARTS OF THE SETUP

disp(' ')
disp('SELECTED MODEL INPUT PARAMETERS')
disp('---')

 206

disp(['Number of x-discretizations: ' num2str(Grid_size.x_d_num)])
disp(['Number of y-discretizations: ' num2str(Grid_size.y_d_num)])
disp(' ');
disp(['Channel height: ', num2str(Geometry.channel_height), ' m'])
disp(['Channel width: ', num2str(Geometry.channel_width), ' m'])
disp(['Channel length: ', num2str(Geometry.channel_length), ' m'])
disp(['Membrane thickness: ', num2str(Geometry.mem_thick), ' m'])
disp(' ');
disp(['Model Temperature: ', num2str(Constants.temperature), ' K'])
disp(' ')
disp('Anode concentrations:')
disp(['[BH4-]: ', num2str(Fuel_mole_density.BH4), ' M'])
disp(['[BO2-]: ', num2str(Fuel_mole_density.BO2), ' M'])
disp(['[OH-]: ', num2str(Fuel_mole_density.OH), ' M'])
disp(['[Na+]: ', num2str(Fuel_mole_density.Na), ' M'])
disp(' ')
disp('Cathode concentrations:')
disp(['[H2O2]: ', num2str(Oxidizer_mole_density.H2O2), ' M'])
disp(['[SO4-]: ', num2str(Oxidizer_mole_density.SO4), ' M'])
disp(['[H+]: ', num2str(Oxidizer_mole_density.H), ' M'])
disp(['[Na+]: ', num2str(Oxidizer_mole_density.Na), ' M'])
disp(' ')
disp(['Fuel inlet flow rate: ', num2str(anode_flowrate_inlet), ' m^3 / s'])
disp(['Oxidizer inlet flow rate: ', num2str(cathode_flowrate_inlet), ' m^3 / s'])
disp(' ')
disp(['Fuel inlet velocity: ', num2str(anode_mean_inlet_velocity), ' m/s'])
disp(['Oxidizer inlet velocity: ', num2str(cathode_mean_inlet_velocity), ' m/s'])
disp(' ')
fprintf('%-32s %-3e\n', 'Anode anodic rate constant: ', Arxn.rxn(1).k_f)
fprintf('%-32s %-3e\n', 'Cathode cathodic rate constant: ', Crxn.rxn(1).k_r)
disp(' ')
disp(['Cell potential(s): ', num2str(Cathode_electric_potential), ' V'])
disp(' ')
if Flags.setup.new_SV_initial == 1;
 disp('Starting simulation with the standard guess')
else

 207

 disp(['Starting simulation with solution file (' Solver.SV_initial_filename ')'])
end
disp('---')
disp(' ')

disp(' ')
disp('Initializing the model...')

%% 2. ESTABLISH POINTERS, NAMES, SCALES CONSTRAINTS AND UNITS

disp('Creating pointers, state variable names, units, and scales...')

% Initialize the counter that tracks which element in the solution vector is being operated on.
SV_position = 1;

% Initialize the variables containing the number of state variables in each part of the cell.
Grid_size.anode.state_vars_num = 0;
Grid_size.cathode.state_vars_num = 0;
Grid_size.membrane.state_vars_num = 0;

for x_d = 1 : Grid_size.x_d_num

 x_d_string = strcat('(', num2str(x_d), ')');

 % ---%
 % y-Discretization "a_int". Anode electrolyte solution
 % ---%

 % Electric Potential
 Pointer.a_int.elec_pot(x_d) = SV_position;
 Names{Pointer.a_int.elec_pot(x_d),1} = strcat('A_int.elec_pot', x_d_string);
 Scales.SV(Pointer.a_int.elec_pot(x_d),1) = Solver.SV_scale.elec_pot;
 Scales.dSV(Pointer.a_int.elec_pot(x_d),1) = Solver.dSV_scale.electroneutrality;
 Units{Pointer.a_int.elec_pot(x_d),1} = 'V';
 Solver.kinsol.Constraints(Pointer.a_int.elec_pot(x_d),1) = 0; % 0 --> none, 1 --> >= 0, 2 --> >0
 Grid_size.anode.state_vars_num = Grid_size.anode.state_vars_num + 1;

 208

 SV_position = SV_position + 1;

 % Mass Fractions
 Pointer.a_int.mass_fracs(x_d) = SV_position;
 for species = 1 : Species.fuel.num
 Names{Pointer.a_int.mass_fracs(x_d) + species - 1,1} = strcat('A_int.mass_fr.' , ...
 char(Species.fuel.list(species)), x_d_string);
 end
 Pointer_range.a_int = Pointer.a_int.mass_fracs(x_d) :
 Pointer.a_int.mass_fracs(x_d) + Species.fuel.num - 1;
 Scales.SV(Pointer_range.a_int,1) = Solver.SV_scale.mass_frac_anode; % Scale for mass fracs
 Scales.dSV(Pointer_range.a_int,1) = Solver.dSV_scale.species_flux_balance_a;
 Units(Pointer_range.a_int,1) = {'none'};
 Solver.kinsol.Constraints(Pointer_range.a_int,1) = 1; % 0 --> none, 1 --> >= 0, 2 --> >0
 Grid_size.anode.state_vars_num = Grid_size.anode.state_vars_num + Species.fuel.num;
 SV_position = SV_position + Species.fuel.num;

 % ---%
 % y-Discretization "asln". Anode electrolyte solution
 % ---%

 for y_d = 1 : Grid_size.y_d_num

 x_y = strcat('(',num2str(x_d),',',num2str(y_d),')');

 % Electric Potential
 Pointer.asln.elec_pot(x_d,y_d) = SV_position;
 Names{Pointer.asln.elec_pot(x_d,y_d),1} = strcat('Asln.elec_pot',x_y);
 Scales.SV(Pointer.asln.elec_pot(x_d,y_d),1) = Solver.SV_scale.elec_pot;
 Scales.dSV(Pointer.asln.elec_pot(x_d,y_d),1) = Solver.dSV_scale.electroneutrality;
 Units{Pointer.asln.elec_pot(x_d,y_d),1} = 'V';
 Solver.kinsol.Constraints(Pointer.asln.elec_pot(x_d,y_d),1) = 0; % 0 --> none, 1 --> >= 0
 Grid_size.anode.state_vars_num = Grid_size.anode.state_vars_num + 1;
 SV_position = SV_position + 1;

 % Mass Fractions

 209

 Pointer.asln.mass_fracs(x_d,y_d) = SV_position;
 for species = 1 : Species.fuel.num
 Names{Pointer.asln.mass_fracs(x_d,y_d) + species - 1,1} = ...
 strcat('Asln.mass_fr.' , char(Species.fuel.list(species)), x_y);
 end
 Pointer_range.asln = Pointer.asln.mass_fracs(x_d,y_d) : ...
 Pointer.asln.mass_fracs(x_d,y_d) + Species.fuel.num - 1;
 Scales.SV(Pointer_range.asln,1) = Solver.SV_scale.mass_frac_anode; % Scale for mass fractions
 Scales.dSV(Pointer_range.asln,1) = Solver.dSV_scale.species_cons_a;
 Units(Pointer_range.asln,1) = {'none'}; % Mass fraction is unitless
 Solver.kinsol.Constraints(Pointer_range.asln,1) = 0; % 0 --> none, 1 --> >= 0
 Grid_size.anode.state_vars_num = Grid_size.anode.state_vars_num + Species.fuel.num;
 SV_position = SV_position + Species.fuel.num;

 % x-Velocity
 Pointer.asln.x_vel(x_d,y_d) = SV_position;
 Names{Pointer.asln.x_vel(x_d,y_d),1} = strcat('Asln.x_velocity',x_y);
 Scales.SV(Pointer.asln.x_vel(x_d,y_d),1) = Solver.SV_scale.x_vel;
 Scales.dSV(Pointer.asln.x_vel(x_d,y_d),1) = Solver.dSV_scale.x_momentum_cons;
 Units{Pointer.asln.x_vel(x_d,y_d),1} = 'm/s';
 Solver.kinsol.Constraints(Pointer.asln.x_vel(x_d,y_d),1) = 0; % None
 Grid_size.anode.state_vars_num = Grid_size.anode.state_vars_num + 1;
 SV_position = SV_position + 1;

 % y-Velocity
 Pointer.asln.y_vel(x_d,y_d) = SV_position;
 Names{Pointer.asln.y_vel(x_d,y_d),1} = strcat('Asln.y_velocity',x_y);
 Scales.SV(Pointer.asln.y_vel(x_d,y_d),1) = Solver.SV_scale.y_vel;
 Scales.dSV(Pointer.asln.y_vel(x_d,y_d),1) = Solver.dSV_scale.y_momentum_cons;
 Units{Pointer.asln.y_vel(x_d,y_d),1} = 'm/s';
 Solver.kinsol.Constraints(Pointer.asln.y_vel(x_d,y_d),1) = 0; % None
 Mass_matrix_diag(Pointer.asln.y_vel(x_d,y_d)) = 1; % Differential (residual is d v_y / dt)
 Grid_size.anode.state_vars_num = Grid_size.anode.state_vars_num + 1;
 SV_position = SV_position + 1;

 % Pressure

 210

 Pointer.asln.press(x_d,y_d) = SV_position;
 Names{Pointer.asln.press(x_d,y_d),1} = strcat('Asln.pressure',x_y);
 Scales.SV(Pointer.asln.press(x_d,y_d),1) = Solver.SV_scale.press;
 Scales.dSV(Pointer.asln.press(x_d,y_d),1) = Solver.dSV_scale.mass_cons;
 Units{Pointer.asln.press(x_d,y_d),1} = 'Pa';
 Solver.kinsol.Constraints(Pointer.asln.press(x_d,y_d),1) = 0; % None
 Grid_size.anode.state_vars_num = Grid_size.anode.state_vars_num + 1;
 SV_position = SV_position + 1;

 end

 % ---%
 % y-Discretization "m_int_a". Anode electrolyte solution/membrane interface
 % ---%

 % Electric Potential
 Pointer.m_int_a.elec_pot(x_d) = SV_position;
 Names{Pointer.m_int_a.elec_pot(x_d),1} = strcat('M_int_a.elec_pot', x_d_string);
 Scales.SV(Pointer.m_int_a.elec_pot(x_d),1) = Solver.SV_scale.elec_pot;
 Scales.dSV(Pointer.m_int_a.elec_pot(x_d),1) = Solver.dSV_scale.electroneutrality;
 Units{Pointer.m_int_a.elec_pot(x_d),1} = 'V';
 Solver.kinsol.Constraints(Pointer.m_int_a.elec_pot(x_d),1) = 0; % None
 Grid_size.anode.state_vars_num = Grid_size.anode.state_vars_num + 1;
 SV_position = SV_position + 1;

 % Mass Fractions
 Pointer.m_int_a.mass_fracs(x_d) = SV_position;
 for species = 1 : Species.fuel.num
 Names{Pointer.m_int_a.mass_fracs(x_d) + species - 1,1} = ...
 strcat('M_int_a.mass_fr.' , char(Species.fuel.list(species)), x_d_string);
 end
 Pointer_range.m_int_a = Pointer.m_int_a.mass_fracs(x_d) : ...
 Pointer.m_int_a.mass_fracs(x_d) + Species.fuel.num - 1;
 Scales.SV(Pointer_range.m_int_a,1) = Solver.SV_scale.mass_frac_anode; % Scale for mass fractions
 Scales.dSV(Pointer_range.m_int_a,1) = Solver.dSV_scale.species_flux_balance_a;
 Units(Pointer_range.m_int_a,1) = {'none'}; % Mass fraction is unitless

 211

 Solver.kinsol.Constraints(Pointer_range.m_int_a,1) = 0; % 0 --> none, 1 --> >= 0
 Grid_size.anode.state_vars_num = Grid_size.anode.state_vars_num + Species.fuel.num;
 SV_position = SV_position + Species.fuel.num;

 % Pressure
 Pointer.m_int_a.press(x_d) = SV_position;
 Names{Pointer.m_int_a.press(x_d),1} = strcat('M_int_a.pressure', x_d_string);
 Scales.SV(Pointer.m_int_a.press(x_d),1) = Solver.SV_scale.press;
 Scales.dSV(Pointer.m_int_a.press(x_d),1) = Solver.dSV_scale.mass_flux_balance;
 Units{Pointer.m_int_a.press(x_d),1} = 'Pa';
 Solver.kinsol.Constraints(Pointer.m_int_a.press(x_d),1) = 0; % 0 --> none, 1 --> >= 0, 2 --> >0
 Grid_size.anode.state_vars_num = Grid_size.anode.state_vars_num + 1;
 SV_position = SV_position + 1;

 % ---%
 % y-Discretization "m_int_c". Cathode electrolyte solution/membrane interface
 % ---%

 % Electric Potential
 Pointer.m_int_c.elec_pot(x_d) = SV_position;
 Names{Pointer.m_int_c.elec_pot(x_d),1} = strcat('M_int_c.elec_pot', x_d_string);
 Scales.SV(Pointer.m_int_c.elec_pot(x_d),1) = Solver.SV_scale.elec_pot;
 Scales.dSV(Pointer.m_int_c.elec_pot(x_d),1) = Solver.dSV_scale.electroneutrality;
 Units{Pointer.m_int_c.elec_pot(x_d),1} = 'V';
 Solver.kinsol.Constraints(Pointer.m_int_c.elec_pot(x_d),1) = 0; % 0 --> none, 1 --> >= 0, 2 --> >0
 Grid_size.cathode.state_vars_num = Grid_size.cathode.state_vars_num + 1;
 SV_position = SV_position + 1;

 % Mass Fractions
 Pointer.m_int_c.mass_fracs(x_d) = SV_position;
 for species = 1 : Species.oxidizer.num
 Names{Pointer.m_int_c.mass_fracs(x_d) + species - 1,1} = ...
 strcat('M_int_c.mass_fr.' , char(Species.oxidizer.list(species)), x_d_string);
 end
 Pointer_range.m_int_c = Pointer.m_int_c.mass_fracs(x_d) : ...
 Pointer.m_int_c.mass_fracs(x_d) + Species.oxidizer.num - 1;

 212

 Scales.SV(Pointer_range.m_int_c,1) = Solver.SV_scale.mass_frac_cathode; % Scale for mass fractions
 Scales.dSV(Pointer_range.m_int_c,1) = Solver.dSV_scale.species_flux_balance_c;
 Units(Pointer_range.m_int_c,1) = {'none'}; % Mass fraction is unitless
 Solver.kinsol.Constraints(Pointer_range.m_int_c,1) = 0; % 0 --> none, 1 --> >= 0, 2 --> >0
 Grid_size.cathode.state_vars_num = Grid_size.cathode.state_vars_num + Species.oxidizer.num;
 SV_position = SV_position + Species.oxidizer.num;

 % Pressure
 Pointer.m_int_c.press(x_d) = SV_position;
 Names{Pointer.m_int_c.press(x_d),1} = strcat('M_int_c.pressure', x_d_string);
 Scales.SV(Pointer.m_int_c.press(x_d),1) = Solver.SV_scale.press;
 Scales.dSV(Pointer.m_int_c.press(x_d),1) = Solver.dSV_scale.mass_flux_balance;
 Units{Pointer.m_int_c.press(x_d),1} = 'Pa';
 Solver.kinsol.Constraints(Pointer.m_int_c.press(x_d),1) = 0; % None
 Grid_size.cathode.state_vars_num = Grid_size.cathode.state_vars_num + 1;
 SV_position = SV_position + 1;

 % ---%
 % y-Discretization "csln". Cathode electrolyte solution
 % ---%

 for y_d = 1 : Grid_size.y_d_num

 x_y = strcat('(',num2str(x_d),',',num2str(y_d),')');

 % Electric Potential
 Pointer.csln.elec_pot(x_d,y_d) = SV_position;
 Names{Pointer.csln.elec_pot(x_d,y_d),1} = strcat('Csln.elec_pot',x_y);
 Scales.SV(Pointer.csln.elec_pot(x_d,y_d),1) = Solver.SV_scale.elec_pot;
 Scales.dSV(Pointer.csln.elec_pot(x_d,y_d),1) = Solver.dSV_scale.electroneutrality;
 Units{Pointer.csln.elec_pot(x_d,y_d),1} = 'V';
 Solver.kinsol.Constraints(Pointer.csln.elec_pot(x_d,y_d),1) = 0;
 Grid_size.cathode.state_vars_num = Grid_size.cathode.state_vars_num + 1;
 SV_position = SV_position + 1;

 % Mass Fractions

 213

 Pointer.csln.mass_fracs(x_d,y_d) = SV_position;
 for species = 1 : Species.oxidizer.num
 Names{Pointer.csln.mass_fracs(x_d,y_d) + species - 1,1} = ...
 strcat('Csln.mass_fr.' , char(Species.oxidizer.list(species)), x_y);
 end
 Pointer_range.csln = Pointer.csln.mass_fracs(x_d,y_d) : ...
 Pointer.csln.mass_fracs(x_d,y_d) + Species.oxidizer.num - 1;
 Scales.SV(Pointer_range.csln,1) = Solver.SV_scale.mass_frac_cathode; % Scale for mass fractions
 Scales.dSV(Pointer_range.csln,1) = Solver.dSV_scale.species_cons_c;
 Units(Pointer_range.csln,1) = {'none'}; % Mass fraction is unitless
 Solver.kinsol.Constraints(Pointer_range.csln,1) = 0; % 0 --> none, 1 --> >= 0, 2 --> >0
 Grid_size.cathode.state_vars_num = Grid_size.cathode.state_vars_num + Species.oxidizer.num;
 SV_position = SV_position + Species.oxidizer.num;

 % x-Velocity
 Pointer.csln.x_vel(x_d,y_d) = SV_position;
 Names{Pointer.csln.x_vel(x_d,y_d),1} = strcat('Csln.x_velocity',x_y);
 Scales.SV(Pointer.csln.x_vel(x_d,y_d),1) = Solver.SV_scale.x_vel;
 Scales.dSV(Pointer.csln.x_vel(x_d,y_d),1) = Solver.dSV_scale.x_momentum_cons;
 Units{Pointer.csln.x_vel(x_d,y_d),1} = 'm/s';
 Solver.kinsol.Constraints(Pointer.csln.x_vel(x_d,y_d),1) = 0;
 Grid_size.cathode.state_vars_num = Grid_size.cathode.state_vars_num + 1;
 SV_position = SV_position + 1;

 % y-Velocity
 Pointer.csln.y_vel(x_d,y_d) = SV_position;
 Names{Pointer.csln.y_vel(x_d,y_d),1} = strcat('Csln.y_velocity',x_y);
 Scales.SV(Pointer.csln.y_vel(x_d,y_d),1) = Solver.SV_scale.y_vel;
 Scales.dSV(Pointer.csln.y_vel(x_d,y_d),1) = Solver.dSV_scale.y_momentum_cons;
 Units{Pointer.csln.y_vel(x_d,y_d),1} = 'm/s';
 Solver.kinsol.Constraints(Pointer.csln.y_vel(x_d,y_d),1) = 0;
 Grid_size.cathode.state_vars_num = Grid_size.cathode.state_vars_num + 1;
 SV_position = SV_position + 1;

 % Pressure
 Pointer.csln.press(x_d,y_d) = SV_position;

 214

 Names{Pointer.csln.press(x_d,y_d),1} = strcat('Csln.pressure',x_y);
 Scales.SV(Pointer.csln.press(x_d,y_d),1) = Solver.SV_scale.press;
 Scales.dSV(Pointer.csln.press(x_d,y_d),1) = Solver.dSV_scale.mass_cons;
 Units{Pointer.csln.press(x_d,y_d),1} = 'Pa';
 Solver.kinsol.Constraints(Pointer.csln.press(x_d,y_d),1) = 0;
 Grid_size.cathode.state_vars_num = Grid_size.cathode.state_vars_num + 1;
 SV_position = SV_position + 1;

 end

 % ---%
 % y-Discretization "c_int". Cathode electrolyte solution
 % ---%

 % Electric Potential
 Pointer.c_int.elec_pot(x_d) = SV_position;
 Names{Pointer.c_int.elec_pot(x_d),1} = strcat('C_int.elec_potent', x_d_string);
 Scales.SV(Pointer.c_int.elec_pot(x_d),1) = Solver.SV_scale.elec_pot;
 Scales.dSV(Pointer.c_int.elec_pot(x_d),1) = Solver.dSV_scale.electroneutrality;
 Units{Pointer.c_int.elec_pot(x_d),1} = 'V';
 Solver.kinsol.Constraints(Pointer.c_int.elec_pot(x_d),1) = 0; % 0 --> none, 1 --> >= 0, 2 --> >0
 Grid_size.cathode.state_vars_num = Grid_size.cathode.state_vars_num + 1;
 SV_position = SV_position + 1;

 % Mass Fractions
 Pointer.c_int.mass_fracs(x_d) = SV_position;
 for species = 1 : Species.oxidizer.num
 Names{Pointer.c_int.mass_fracs(x_d) + species - 1,1} = ...
 strcat('C_int.mass_fr.' , char(Species.oxidizer.list(species)), x_d_string);
 end
 Pointer_range.c_int = Pointer.c_int.mass_fracs(x_d) : ...
 Pointer.c_int.mass_fracs(x_d) + Species.oxidizer.num - 1;
 Scales.SV(Pointer_range.c_int,1) = Solver.SV_scale.mass_frac_cathode; % Scale for mass fractions
 Scales.dSV(Pointer_range.c_int,1) = Solver.dSV_scale.species_flux_balance_c;
 Units(Pointer_range.c_int,1) = {'none'}; % Mass fraction is unitless
 Solver.kinsol.Constraints(Pointer_range.c_int,1) = 1; % 0 --> none, 1 --> >= 0, 2 --> >0

 215

 Grid_size.cathode.state_vars_num = Grid_size.cathode.state_vars_num + Species.oxidizer.num;
 SV_position = SV_position + Species.oxidizer.num;

end

% Sum the number of state variables in the anode, membrane and cathode
Grid_size.state_vars_num = Grid_size.anode.state_vars_num + Grid_size.cathode.state_vars_num;

%% 3. CREATE THE UNSCALED SOLUTION VECTOR AND ALLOCATE A CONTIGUOUS BLOCK OF MEMORY FOR IT

% Allocate space for all of the state variables in an x-discretization, for all x-discretizations, plus
% one for the cell voltage or the cell current, depending on which the user chooses.
SV_initial_unsc = zeros(Grid_size.state_vars_num, 1);

%% 4. POPULATE THE INITIAL SOLUTION VECTOR

if Flags.setup.new_SV_initial

 % Change the strategy to be LineSearch, which works much better from the standard guess
 Solver.kinsol.strategy = 'LineSearch';

 % For the initial condition, we'll assume that the anode flow is the same as the fuel flow and the
 % cathode flow is the same as the oxidixer flow. The following loop steps along the channel, one
 % x-discretization at a time, filling in the solution vector as it goes. The outer loop steps down the
 % channel and the inner loop steps through all of the species. It uses the pointers defined above to
 % fill in the state variables for each discretization. For differential variables, these are the
 % initial conditions and for agebraic variables they are initial guesses.

 disp('Populating the initial state vector...')

 % Find the slope with which the electric potential changes from the inlet to the outlet along each
 % interface, given the inlet and outlet values specified by the user.
 slope_a_int = (Initial.a_int_elec_pot_out - Initial.a_int_elec_pot_in) /Geometry.channel_length;
 slope_m_int_a = (Initial.m_int_a_elec_pot_out - Initial.m_int_a_elec_pot_in)/Geometry.channel_length;
 slope_m_int_c = (Initial.m_int_c_elec_pot_out - Initial.m_int_c_elec_pot_in)/Geometry.channel_length;
 slope_c_int = (Initial.c_int_elec_pot_out - Initial.c_int_elec_pot_in) /Geometry.channel_length;

 216

 for x_d = 1 : Grid_size.x_d_num

 % ELECTRODE INTERFACE CELLS

 % Electric Potential
 SV_initial_unsc(Pointer.a_int.elec_pot(x_d)) = Initial.a_int_elec_pot_in + ...
 slope_a_int * Geometry.x_d_location(x_d+1);
 SV_initial_unsc(Pointer.c_int.elec_pot(x_d)) = Initial.c_int_elec_pot_in + ...
 slope_c_int * Geometry.x_d_location(x_d+1);

 % Mass Fractions
 SV_initial_unsc(Pointer.a_int.mass_fracs(x_d) + (1:Species.fuel.num) - 1) = ...
 Fuel.Mass_fractions;
 SV_initial_unsc(Pointer.c_int.mass_fracs(x_d) + (1:Species.oxidizer.num) - 1) = ...
 Oxidizer.Mass_fractions;

 % MEMBRANE INTERFACE CELLS

 % Electric Potential
 SV_initial_unsc(Pointer.m_int_a.elec_pot(x_d)) = Initial.m_int_a_elec_pot_in + ...
 slope_m_int_a * Geometry.x_d_location(x_d+1);
 SV_initial_unsc(Pointer.m_int_c.elec_pot(x_d)) = Initial.m_int_c_elec_pot_in + ...
 slope_m_int_c * Geometry.x_d_location(x_d+1);

 % Mass Fractions
 SV_initial_unsc(Pointer.m_int_a.mass_fracs(x_d) + (1:Species.fuel.num) - 1) = ...
 Initial.m_int_a_mass_fracs;
 SV_initial_unsc(Pointer.m_int_c.mass_fracs(x_d) + (1:Species.oxidizer.num) - 1) = ...
 Initial.m_int_c_mass_fracs;

 % BULK SOLUTION CELLS

 % x-Velocity... assume all points down the channel have the same fully developed velocity profile as
 % at the inlet.
 SV_initial_unsc(Pointer.asln.x_vel(x_d,:)) = BC.anode.x_vel_inlet(2:Grid_size.y_d_num+1);

 217

 SV_initial_unsc(Pointer.csln.x_vel(x_d,:)) = BC.cathode.x_vel_inlet(2:Grid_size.y_d_num+1);

 % y-Velocity... establish linear gradeints in the bulk with expected direction
 SV_initial_unsc(Pointer.asln.y_vel(x_d,:)) = linspace(0, Initial.m_int_a_y_velocity, ...
 Grid_size.y_d_num);
 SV_initial_unsc(Pointer.csln.y_vel(x_d,:)) = linspace(0, Initial.m_int_c_y_velocity, ...
 Grid_size.y_d_num);

 % Electric potential

 % Calculate the slope at which the electric field changes from electrode to membrane in each channel,
 % at each point down the channel, to accomodate the changing values of the potential at the electrode
 % and membrane interfaces.
 anode_slope(x_d) = (SV_initial_unsc(Pointer.m_int_a.elec_pot(x_d)) - ...
 SV_initial_unsc(Pointer.a_int.elec_pot(x_d))) / Geometry.channel_height;
 cathode_slope(x_d) = (SV_initial_unsc(Pointer.m_int_c.elec_pot(x_d)) - ...
 SV_initial_unsc(Pointer.c_int.elec_pot(x_d))) / Geometry.channel_height;

 % We're already in an x_d loop.... so for each value of x_d, the following loop fills in the values
 % of the electric potential in the bulk electrolyte between the electrode and membrane.
 for y_d = 1 : Grid_size.y_d_num

 % Electric Potential... establish linear gradients in the bulk with expected direction
 SV_initial_unsc(Pointer.asln.elec_pot(x_d,y_d)) = SV_initial_unsc(Pointer.a_int.elec_pot(x_d)) ...
 + Geometry.y_d_location(y_d+1) * anode_slope(x_d);
 SV_initial_unsc(Pointer.csln.elec_pot(x_d,y_d)) = SV_initial_unsc(Pointer.c_int.elec_pot(x_d)) ...
 + Geometry.y_d_location(y_d+1) * cathode_slope(x_d);

 % Mass Fractions
 SV_initial_unsc(Pointer.asln.mass_fracs(x_d,y_d) + (1:Species.fuel.num) - 1) = ...
 BC.anode.Mass_fractions_inlet(1,1,:);
 SV_initial_unsc(Pointer.csln.mass_fracs(x_d,y_d) + (1:Species.oxidizer.num) - 1) = ...
 BC.cathode.Mass_fractions_inlet(1,1,:);

 end

 218

 clear anode_slope cathode_slope

 % Pressure

 % Establish the x-direction pressure gradient
 anode_slope = (BC.anode.press_outlet - Initial.inlet_press) / Geometry.channel_length;
 cathode_slope = (BC.cathode.press_outlet - Initial.inlet_press) / Geometry.channel_length;

 SV_initial_unsc(Pointer.asln.press(x_d,:)) = Initial.inlet_press + ...
 Geometry.x_d_location(x_d+1) * anode_slope;
 SV_initial_unsc(Pointer.csln.press(x_d,:)) = Initial.inlet_press + ...
 Geometry.x_d_location(x_d+1) * cathode_slope;

 % Establish the y-direction pressure gradient by superimposing it over the x-direction gradient.
 SV_initial_unsc(Pointer.asln.press(x_d,:)) = SV_initial_unsc(Pointer.asln.press(x_d,:)) + ...
 (linspace(Initial.anode_press, Initial.m_int_a.press, Grid_size.y_d_num))';
 SV_initial_unsc(Pointer.csln.press(x_d,:)) = SV_initial_unsc(Pointer.csln.press(x_d,:)) + ...
 (linspace(Initial.cathode_press, Initial.m_int_c.press, Grid_size.y_d_num))';

 SV_initial_unsc(Pointer.m_int_a.press(x_d)) = ...
 SV_initial_unsc(Pointer.asln.press(x_d,Grid_size.y_d_num-1));
 SV_initial_unsc(Pointer.m_int_c.press(x_d)) = ...
 SV_initial_unsc(Pointer.csln.press(x_d,Grid_size.y_d_num-1));
 end

 % Scale the initial state vector
 SV_initial = SV_initial_unsc ./ Scales.SV;

else

 % LOAD THE INITIAL SOLUTION VECTOR FROM A FILE SPECIFIED IN DBFC_USER_INPUT

 % Store the present boundary conditions and scales in a temporary variable so they are not lost when
 % the file is imported
 BC_temp = BC;
 Scales_temp = Scales;

 219

 % Import the solution vector and some other data from the file
 load(Solver.SV_initial_filename, 'SV_steady_state', 'dSV_steady_state', 'Scales', 'BC')

 % Change the strategy to be pure Newton search
 Solver.kinsol.strategy = 'None';

 % Adjust the voltage field in the old solution to be closer to that of the solution we are looking for.
 if Flags.setup.adjust_V_prev_soln
 V_cell_old = BC.cathode.elec_pot;
 V_cell_new = Cathode_electric_potential(1);
 SV_initial = FUNC_ADJUST_SOLN_VOLTAGE(SV_steady_state, V_cell_old, V_cell_new, Scales, ...
 Pointer, Geometry, Grid_size);
 SV_initial_unsc = SV_initial .* Scales.SV;
 else
 SV_initial = SV_steady_state;
 SV_initial_unsc = SV_initial .* Scales.SV;
 end

 % Recover the boundary conditions and scales for this run.
 BC = BC_temp;
 Scales = Scales_temp;

end

%% 5. RESET SCALES, IF DESIRED

if Flags.setup.rescale_init_guess % Adjust Scales.SV and the intial guess so the initial guess is all 1s
 State_initial = SV_initial .* Scales.SV; Scales.SV = State_initial;
 SV_initial = ones(length(SV_initial),1);
 SV_initial_unsc = SV_initial .* Scales.SV; % For printing the unscaled values below
end

%% 6. INITIALIZE THE GLOBAL VARIABLES STORING THE LAST SOLUTION VECTORS BEFORE THE SOLVER FAILS FOR DEBUG

SV_fail_lg = SV_initial;

 220

SV_fail = SV_initial;

%% 7. CLEANUP BY CLEARING SOME VARIABLES THAT ARE NO LONGER NEEDED

% Cell arrays cannot be coded into MEX files, so remove the fields in Model containing species names.
Species.fuel = rmfield(Species.fuel, 'list');
Species.oxidizer = rmfield(Species.oxidizer, 'list');
Species.membrane = rmfield(Species.membrane, 'list');

%% 8. CALL THE MAIN FUNCTION ONCE TO COMPUTE THE INITIAL RESIDUAL VALUES

Jacobian.JAC_pat_exists = 0; Jacobian.bandwidth_exists = 0;

% Set the cell voltage to be the first value in the list in DBFC_USER_INPUT
BC.cathode.elec_pot = Cathode_electric_potential(1);

% Find out what the residuals values are at the initial guess. This if statement avoids an error due to
% calling the kinsol statistics function before it is initialized, which would happen if we called
% DBFC_FUNCTION before initializing kinsol with Solver.kinsol.display_iter = 1.

if Solver.kinsol.display_iter == 1
 Solver.kinsol.display_iter = 0; function_start_time = toc;
 dSV_initial = DBFC_FUNCTION(SV_initial);
 Solver.kinsol.display_iter = 1;
else
 function_start_time = toc;
 dSV_initial = DBFC_FUNCTION(SV_initial);
end

function_end_time = toc;
disp(['The function evaluation took: ' num2str(function_end_time - function_start_time) 'sec.'])

%% 9. RESCALE THE INITIAL RESIDUALS, IF DESIRED

if Flags.setup.rescale_init_resid
 Residuals_initial = dSV_initial ./ Scales.dSV;

 221

 Residuals_initial(Residuals_initial==0) = eps; % For initial residuals of zero...
 Scales.dSV = Residuals_initial.^-1;
end

%% 10. DISPLAY THE INITIAL SYSTEM STATE

if Flags.setup.display_initial_state

 disp(' ')
 disp('The initial state of the system is ... ')
 disp(' ')

 l_i = 0;

 for x_d = 1 : Grid_size.x_d_num

 disp(['x-Discretization ' num2str(x_d)])
 disp('---')
 fprintf('%-8s %-26s %-8s %-18s %-22s %-13s\n', 'Index', 'State Var Name', 'Units', ...
 'Initial Val.', 'Init. Scaled Val.', 'Init. Resids.')
 disp('---')

 for y_d = 1 : Grid_size.anode.state_vars_num / Grid_size.x_d_num;

 l_i = l_i + 1;
 fprintf('%-7u\t %-24s\t %-5s\t %-16E\t %-16f\t %-13E\n' , l_i, char(Names(l_i)), ...
 char(Units(l_i)), SV_initial_unsc(l_i), SV_initial(l_i), dSV_initial(l_i))

 end

 disp('-------------------------------------Membrane---')

 for y_d = 1 : Grid_size.cathode.state_vars_num / Grid_size.x_d_num;

 l_i = l_i + 1;
 fprintf('%-7u\t %-24s\t %-5s\t %-16E\t %-16f\t %-13E\n' , l_i, char(Names(l_i)), ...

 222

 char(Units(l_i)), SV_initial_unsc(l_i), SV_initial(l_i), dSV_initial(l_i))

 end

 end

 disp(' ')

end

disp(['There are ' num2str(Grid_size.state_vars_num) ' state variables total.'])

%% 8. CREATE OR LOAD THE JACOBIAN PATTERN AND SOME OF ITS CHARACTERISTICS

% Initially, no Jacobian pattern exists
Solver.Jacobian.JAC_pat_exists = 0; Solver.Jacobian.bandwidth_exists = 0;

% Start a clock for Jacobian calculations
jacobian_start_time = toc;

% Create a variable that is very useful in this cell
length_SV_initial = length(SV_initial);

% Either generate the Jacobian pattern, upper bandwidth and lower bandwidth using one of several methods,
% or load the Jacobian pattern from a file.
switch Solver.Jacobian.Jpattern_flag

 case 'load' % Load the Jacobian pattern from a file, with the filename specified in the input file

 disp('Loading the Jacobian pattern from file...');
 load(j_pattern_filename, 'Jacobian_pattern');
 Model.JAC_pattern = Jacobian_pattern; clear Jacobian_pattern
 %[Model.JAC_upper_bandwidth, Model.JAC_lower_bandwidth] = FUNC_MATRIX_BANDWIDTH(Model.JAC_pattern);
 Jacobian.JAC_pat_exists = 1; % Flags.bandwidth_exists = 1;
 time.JAC_pattern_construction = toc - jacobian_start_time;
 disp(['Jacobian pattern is loaded. Load time was ' num2str(time.JAC_pattern_construction) 's.']);

 223

 case 'random' % Calculate the Jacobian pattern using repeated random perturbations to the function

 disp('Generating a new Jacobian pattern...');
 Model.JAC_pattern = FUNC_JPAT_RANDOM_ASSEMBLE(length_SV_initial);
 [Model.JAC_upper_bandwidth, Model.JAC_lower_bandwidth] = FUNC_MATRIX_BANDWIDTH(Model.JAC_pattern);
 Jacobian.JAC_pat_exists = 1; Jacobian.bandwidth_exists = 1;
 time.JAC_pattern_construction = toc - jacobian_start_time;
 disp(' ');
 disp(['Jacobian pattern is complete. Generating time was ' ...
 num2str(time.JAC_pattern_construction) 's.']);

 case 'analytic' % Calculate the Jacobian pattern using knowledge of the problem structure

 disp('Constructing analytical Jacobian pattern...');

 % Calculate the Jacobian pattern
 Model.JAC_pattern = FUNC_JPAT_ANALYTIC(length_SV_initial, Species, Grid_size);

 % Find the upper and lower bandwidths of the Jacobian pattern for
 % the banded solver
 [Model.JAC_upper_bandwidth, Model.JAC_lower_bandwidth] = FUNC_MATRIX_BANDWIDTH(Model.JAC_pattern);

 % Set flag indicating that the Jacobian pattern exists for future calls to the Jacobian calculation
 % functions
 Jacobian.JAC_pat_exists = 1; Jacobian.bandwidth_exists = 1;

 % Calcuate and display the time to generate the Jacobian and Jacobian pattern
 time.JAC_pattern_construction = toc - jacobian_start_time;

 % Display completion message.
 disp(['Jacobian pattern is complete. Construction time was ' ...
 num2str(time.JAC_pattern_construction) 's.'])

 % Calculate the Jacobian pattern by calculating the Jacobian at the initial guess, then finding the
 % non-zero elements

 224

 case 'empirical'

 disp('Constructing empirical Jacobian pattern...');

 % Set the Jacobian function to return a sparse matrix
 Solver.Jacobian.rtrn_dense_JAC = 0;

 % Calculate the Jacobian at the initial guess
 [Jacobian_sparse, flag] = FUNC_JACOBIAN_NUMJAC(SV_initial, dSV_initial);
 %[Jacobian_sparse, flag] = FUNC_JACOBIAN_STROMAN(SV_initial, dSV_initial);

 % Find the sparsity pattern of the Jacobian and store it as the Jacobian pattern
 Solver.Jacobian.JAC_pattern = spones(Jacobian_sparse);

 % Find the upper and lower bandwidths of the sparse Jacobian for the banded solver
 [Solver.Jacobian.upper_bandwidth, Solver.Jacobian.lower_bandwidth] = ...
 FUNC_MATRIX_BANDWIDTH(Jacobian_sparse);

 % Save the Jacobian and Jacobian pattern to files for reuse later
 Jacobian_pattern_temp = Solver.Jacobian.JAC_pattern;
 save(strcat('Jacobian_pattern_xd',num2str(Grid_size.x_d_num), '_yd', ...
 num2str(Grid_size.y_d_num),'.mat'), 'Jacobian_pattern_temp');
 save(strcat('Jacobian_xd',num2str(Grid_size.x_d_num), '_yd', ...
 num2str(Grid_size.y_d_num),'.mat'), 'Jacobian_sparse');
 clear Jacobian_pattern_temp Jacobian_sparse % Don't need either of these... free up some memory

 % Set flag indicating Jacobian pattern exists for future calls to the Jacobian calculation functions
 Solver.Jacobian.JAC_pat_exists = 1; Solver.Jacobian.bandwidth_exists = 1;

 % Calcuate and display the time to generate the Jacobian and Jacobian pattern
 time.JAC_pattern_construction = toc - jacobian_start_time;

 % Display completion message.
 disp(['Jacobian pattern complete. Construction time: ' num2str(time.JAC_pattern_construction) 's.'])

 225

 case 'ones' % Jacobian pattern is all ones... calculate the whole Jacobian on each iteration

 Solver.Jacobian.JAC_pattern = ones(length_SV_initial);
 Solver.Jacobian.JAC_pat_exists = 1;
 time.JAC_pattern_construction = toc - jacobian_start_time;
 disp(['Created Jacobian pattern of all ones. Construction time: ' ...
 num2str(time.JAC_pattern_construction) 's.']);

 % Jacobian pattern is filled area between upper and lower bandwidths specified by the user
 case 'specified'

 disp('Constructing Jacobian pattern with user specified bandwidths...');

 Solver.Jacobian.JAC_pattern = sparse([],[],[],length_SV_initial,length_SV_initial, ...
 (Solver.Jacobian.lower_bandwidth+Solver.Jacobian.upper_bandwidth) * length_SV_initial);

 for row_index = 1:length(SV_initial);

 lower_bound = max(row_index - Solver.Jacobian.lower_bandwidth, 1);
 upper_bound = min(row_index + Solver.Jacobian.bandwidth, length(SV_initial));

 Solver.Jacobian.JAC_pattern(row_index, lower_bound:upper_bound) = 1;

 end

 % Calcuate and display the time to generate the Jacobian and Jacobian pattern
 time.JAC_pattern_construction = toc - jacobian_start_time;

 % Display completion message.
 disp(['Jacobian pattern complete. Construction time: ' num2str(time.JAC_pattern_construction) 's.'])

 case 'none' % No Jacobian pattern is requested
 disp('No Jacobian pattern requested or generated')
 otherwise % Error handling
 error('Unexpected source for the Jacobian pattern.')

 226

end

% Set the Jacobian matrix bandwidth if supplied by the user

if Jacobian.bandwidth_exists
 disp('Upper and lower Jacobian bandwidths calculated from Jacobian or Jacobian pattern')
else if strcmp(Solver.Jacobian.JAC_bandwidth_flag, 'user')
 Solver.Jacobian.JAC_upper_bandwidth = Solver.Jacobian.upper_bandwidth;
 Solver.Jacobian.JAC_lower_bandwidth = Solver.Jacobian.lower_bandwidth;
 disp('Using user supplied upper and lower Jacobian banwidths')
 end

end

%% 8. CLEAR UNNECESSARY VARIABLES FROM THE WORKSPACE AND DISPLAY STATUS MESSAGE

clear x_d y_d x_y x_d_string loop_index species_index i j loop_index l_i r_i s_i column_range_high ...
 column_range_low Pointer_range position_index_anode position_index_cathode species position_offset ...
 previous_SV_initial_path conc_f conc_r SV_position jacobian_start_time function_end_time
 function_start_time

%% SUMMARY: DBFC_KINSOL
% Purpose: Call kinsol to solve the model.
% Author: Rick Stroman

%% NOTES
%
% (1) Results are stored in SV_steady_state (the solution vector), and dSV_steady_state (the time
% derivatives and residuals) which is the system state at infinite time, given constant user input
% parameters.

%% SETUP THE SOLVER

global num_nonlin_iter Model Flags Solver

 227

switch Solver.kinsol.linear_solver

 case 'Dense'

 Flags.return_dense_Jacobian = 1;

 options = KINSetOptions(...
 'Verbose', Solver.kinsol.verbose, ...
 'FuncNormTol', Solver.kinsol.func_norm_tol, ...
 'ScaledStepTol', Solver.kinsol.scaled_step_tol, ...
 'LinearSolver', Solver.kinsol.linear_solver,...
 'JacobianFn', 'FUNC_CALC_JACOBIAN');

 case 'Band'

 options = KINSetOptions(...
 'Verbose', Solver.kinsol.verbose, ...
 'FuncNormTol', Solver.kinsol.func_norm_tol, ...
 'ScaledStepTol', Solver.kinsol.scaled_step_tol, ...
 'LinearSolver', Solver.kinsol.linear_solver, ...
 'MaxNewtonStep', Solver.kinsol.MaxNewtonStep, ...
 'LowerBwidth', Solver.Jacobian.lower_bandwidth, ...
 'UpperBwidth', Solver.Jacobian.upper_bandwidth, ...
 'Constraints', Solver.kinsol.Constraints, ...
 'MaxNumBetaFails', Solver.kinsol.MaxNumBetaFails, ...
 'MaxNewtonStep', Solver.kinsol.MaxNewtonStep, ...
 'MaxNumSetups', Solver.kinsol.MaxNumSetups, ...
 'MaxNumIter', Solver.kinsol.MaxNumIter);

end

% Globalization strategy
strategy = Solver.kinsol.strategy; % Strategy for the linear solver

% Set number of equations, and scaling on the solution variables and function

 228

num_eqns = length(SV_initial);
yscale = ones(num_eqns,1); % If ones, the model uses Scale.SV to scale the input
fscale = ones(num_eqns,1); % If ones, the model uses Scale.dSV to scale the residuals

% Initialize the solver
KINInit(@DBFC_FUNCTION, num_eqns, options);

disp(' ')
disp(strcat('Steady-state simulation using KINSOL and the linear solver solver...'));

%% SOLVE THE MODEL

% Set counter value for outputing solver status during solve process
num_nonlin_iter = 0;

% Header for residuals printed from function
disp(' ');
fprintf('%-15s %-18s %-17s %-12s \n', 'Non-lin. Iter.', 'Func Evals', 'Resid 2-Norm', 'Time (min)')
disp('---')

Init_resid_norm = norm(DBFC_FUNCTION(SV_initial));

fprintf('%-15.0f %-20.3e %-20.3e %-20.3f \n', 0, 1, Init_resid_norm, toc/60)

% Call the solver
[termination_status, SV_steady_state] = KINSol(SV_initial, strategy, yscale, fscale);
dSV_steady_state = DBFC_FUNCTION(SV_steady_state);

% HANDLE AND REPORT THE SOLVER OUTPUT

disp(' ')

switch termination_status

 case 0
 disp('KINSol succeeded')

 229

 case 1
 disp('The initial y0 already satisfies the stopping criterion given above')
 case 2
 disp('Stopping tolerance on scaled step length satisfied')
 case -1
 disp('An error occurred (see printed error message)')
end

KINSOL_status_structure = KINGetStats;

disp(' ')
disp('Status output from KINSol:')
disp('--')
disp(KINSOL_status_structure)
disp('--')
disp(' ')

%% CLEANUP

KINFree; % Release the memory that was allocated for KinSol

 function [d_SV, error_flag] = DBFC_FUNCTION(SV)

%% SUMMARY: DBFC_FUNCTION

% Purpose: This function accepts a guess at the solution vector and computes the time rates of change for
% differential variables and the residuals for algebraic variables.
% Author: Rick Stroman

%% NOTES
%
% (1) SV contains either the inital state of the system, or the state at the conclusion of the
% previous time step.

 230

%
% (2) d_SV contains the time rate of change of each differential state variable and the residual for each
% algebraic variable, at the present time step. The purpose of this function is to compute d_SV for the
% solver... when a steady state solver is used, d_SV is driven to zero, and when a transient (ODE) solver
% is used, the values of d_SV associated with differential equations are integrated to find the system
% state at each time step and the values associated with algebraic equations are driven to zero.
%
% (3) Acronyms
% SCB: Scalar Cell Boundary
% VCB: Velocity Cell Boundary
% ASLN: Anode SoLutioN
% CSLN: Cathode SoLutioN
% SV: State Vector

%% 1. DECLARE MODEL-WIDE GLOBAL VARIABLES

global Properties Scales Geometry Pointer Flags Constants BC Arxn Crxn SV_fail SV_fail_lg ...
 num_nonlin_iter Names Solver total_cathode_current Grid_size Species

% These lines are used for debug... they are global variables I can look at after the code bombs.
SV_fail_lg = SV_fail; % Value of SV from the last good iteration
SV_fail = SV; % Value of SV at which the code bombed

%% 2. PREALLOCATE MEMORY FOR RESIDUALS

% % Allocate memory for the residuals and time derivatives, and initialize them
d_SV = zeros(length(SV),1);

%% 3. READ THE PRESENT SYSTEM STATE OUT OF SV

[State.A_int, State.Asln, State.M_int_a, State.M_int_c, State.Csln, State.C_int, State.C] = ...
 FUNC_READ_SOLUTION_VECTOR(SV, Scales, Pointer, Grid_size, Species, BC);

% Adjust electric potential guesses that effect reaction rates if they are large enough to cause
% overflow problems in the reaction rate estimation function.
if any(abs(State.A_int.elec_pot) > 2)

 231

 State.A_int.elec_pot = 4 * sign(State.A_int.elec_pot) + ...
 1e-2 * sign(State.A_int.elec_pot) .* (abs(State.A_int.elec_pot)-8);
end

if any(abs(State.C_int.elec_pot) > 4)
 State.C_int.elec_pot = 4 * sign(State.C_int.elec_pot) + ...
 1e-2 * sign(State.C_int.elec_pot) .* (abs(State.C_int.elec_pot)-8);
end

if any(abs(State.C.elec_pot) > 4)
 State.C.elec_pot = 4 * sign(State.C.elec_pot) + ...
 1e-2 * sign(State.C.elec_pot) .* (abs(State.C.elec_pot)-8);
end

%% 4. CREATE GHOST CELLS AROUND THE BULK ELECTROLYTE SOLUTION

% The output of each function below is overwrites the original data in the specified structure.

[State.Asln] = FUNC_CREATE_GHOST_CELLS(State.Asln, Grid_size);
[State.Csln] = FUNC_CREATE_GHOST_CELLS(State.Csln, Grid_size);

%% 5. ASSIGN BOUNDARY CONDITIONS AND INTERFACE VALUES TO GHOST CELLS

% The output of this function overwrites the original data in the specified structure.
[State.Asln, State.Csln] = FUNC_ASSIGN_BCS_AND_INTERFACES(State.A_int, State.Asln, State.M_int_a, ...
 State.M_int_c, State.Csln, State.C_int, Grid_size, BC);

%% 6. CALCULATE THE SOLUTION PROPERTIES AND FLUXES

if Flags.setup.MEX

 [State, Yfluxes, Xfluxes, Membrane_mass_flux, SCB, VCB] = ...
 FUNC_PROP_AND_FLUX_CALCS_mex(State, Pointer, Flags, Geometry, Properties, Constants);

 Yfluxes.mass.arxn = FUNC_ANODE_REACTION_FLUXES(BC.anode.elec_pot, State.A_int, Arxn, ...
 Properties.anode, Grid_size, Species.fuel, Constants);

 232

 Yfluxes.mass.crxn = FUNC_REACTION_FLUXES(State.C.elec_pot, State.C_int, Crxn, ...
 Properties.cathode, Grid_size, Species.oxidizer, Constants);

else

 [State, Yfluxes, Xfluxes, Membrane_mass_flux, SCB, VCB] = ...
 FUNC_PROP_AND_FLUX_CALCS(State, Pointer, Flags, Geometry, Grid_size, Species, Properties, ...
 Constants);

 Yfluxes.mass.arxn = FUNC_ANODE_REACTION_FLUXES(BC.anode.elec_pot, State.A_int, Arxn, ...
 Properties.anode, Grid_size, Species.fuel, Constants);
 Yfluxes.mass.crxn = FUNC_REACTION_FLUXES(State.C.elec_pot, State.C_int, Crxn, ...
 Properties.cathode, Grid_size, Species.oxidizer, Constants);

end

anode_species_range = 1 : Species.fuel.num;
cathode_species_range = 1 : Species.oxidizer.num;

for x_d = 1 : Grid_size.x_d_num

 % Compute reaction mole fluxes [kmol/(m^2 s)]
 Yfluxes.mole.arxn(x_d,anode_species_range) = ...
 Yfluxes.mass.arxn(x_d,1:length(Properties.anode.one_over_molar_mass)) ...
 .* Properties.anode.one_over_molar_mass';
 Yfluxes.mole.crxn(x_d,cathode_species_range) = ...
 Yfluxes.mass.crxn(x_d,1:length(Properties.cathode.one_over_molar_mass)) ...
 .* Properties.cathode.one_over_molar_mass';

 % Compute the reaction charge fluxes [C/(m^2 s)]
 Yfluxes.charge.arxn(x_d,1) = ...
 Constants.faraday * Properties.anode.Electric_charge_T * Yfluxes.mole.arxn(x_d,:)';
 Yfluxes.charge.crxn(x_d,1) = ...
 Constants.faraday * Properties.cathode.Electric_charge_T * Yfluxes.mole.crxn(x_d,:)';

end

 233

%% 7. CALCULATE THE RESIDUALS

if Flags.setup.MEX

 [d_SV] = FUNC_RESIDUALS_mex(State, Yfluxes, Xfluxes, Membrane_mass_flux, SCB, VCB, ...
 Pointer, Flags, Geometry, Properties, Constants); %Grid_size, Species,

else

 [d_SV] = FUNC_RESIDUALS(State, Yfluxes, Xfluxes, Membrane_mass_flux, SCB, VCB, ...
 Pointer, Flags, Geometry, Grid_size, Species, Properties, Constants);

end

%% 8. CALCULATE THE TOTAL CELL CURRENT

% It isn't strictly necessary to do this here.... the current density at each electrode is calculated
% again in postprocessing. This was used at one point for some debugging.

% Initialize the cathode current at each x-discretization
cathode_current = zeros(Grid_size.x_d_num,1);

% CALCULATE THE LOCAL CURRENT DENSITY AT THE CATHODE

for x_d = 2 : Grid_size.x_d_num + 1 % Run through all real cells between the inlet and outlet in the DCS

 x_r = x_d - 1; % Corresponding position in the RCS
 cathode_current(x_r) = Geometry.y_flux_area(x_d) * Yfluxes.charge.crxn(x_r);

end

total_cathode_current = sum(cathode_current);

%% 9. SCALE THE RESIDUALS BEFORE RETURNING THEM FROM THE FUNCTION

 234

d_SV = d_SV .* Scales.dSV;

%% 10. ERROR HANDLING

% The variable error_flag is only used by the Sundials solvers...

% Check residuals for NaN or Inf...
if isfinite(d_SV) % If the values are all real and finite, tell the solver everything is OK

 error_flag = 0;

else
 % If there is residual which is NaN or Inf, throw an error and tell the solver there is an
 % unrecoverable error (error_flag < 0)

 disp(' '); disp('DBFC_FUNCTION has returned one or more NaN or Inf'); disp(' ');
 error_flag = -1;

 % Display which variables are associated with the NaNs
 disp('The following variables are associated with NaN:')
 Names(find(isnan(d_SV)))
 disp(' ')

 % Display which variables are associated with the Infs
 disp('The following variables are associated with Inf:')
 Names(find(isinf(d_SV)))

end

%% 11. KINSOL OUTPUT

% If the solver is Kinsol AND we want to display iterative output
if Solver.kinsol.display_iter

 Solver_statistics = KINGetStats;

 235

 if Solver_statistics.nni > num_nonlin_iter

 % If the number of nonlinear iterations has increased, print the
 % present statistics to the command window
 num_nonlin_iter = Solver_statistics.nni;
 fprintf('%-15.0f %-20.3e %-20.3e %-20.3f \n', num_nonlin_iter, Solver_statistics.nfe, ...
 Solver_statistics.fnorm, toc/60)

 if Flags.setup.plot_curr_density
 figure(100+num_nonlin_iter);
 plot(Geometry.x_d_location(2:Grid_size.x_d_num+1), Yfluxes.charge.arxn, 'b-o', ...
 Geometry.x_d_location(2:Grid_size.x_d_num+1), -Yfluxes.charge.crxn, 'r-o')
 title('Local anode and cathode current densities for present iteration')
 xlabel('Distance from inlet [m]')
 ylabel('Local Current Density [A/m^2]')
 legend('Anode Current Density', 'Cathode Current Density')
 end

 end

end

end
function [A_int, Asln, M_int_a, M_int_c, Csln, C_int, C] = ...
 FUNC_READ_SOLUTION_VECTOR(SV, Scales, Pointer, Grid_size, Species, BC)

%% SUMMARY: FUNC_READ_SOLUTION_VECTOR
% Purpose: This function reads the values out of a solution vector and assigns them to variables
% with nicer names which are indexed by x- and y-discretization, not position in the vector.
% Author: Rick Stroman

%% NOTES

% (1) This code was put in a separate script so that multiple functions and scripts can call it when

 236

% they want to access the solution vector. When called by a function (such as DBFC_FUNCTION),
% the results of this script dissapear with all the rest of that function once it is complete.
%
% (2) For this script to work propery, the solution vector must called SV. Any solution vector with
% the correct format can be used, including SV_initial, SV (an intermediate solution),
% SV_steady_state or one timestep in SM_transient. Scaling is included, so the new variables
% should have the correct (real world) units.
%
% (3) In each variable produced by this script, the x-discretizations appear in columns (inlet at
% top, outlet at bottom), y-discretizations appear in rows (anode at left, cathode at right) and
% species are listed in the third dimension.
%
% For interfaces:
%
% x 1, species 1 x 1, species 2 x 1, species 3
% x 2, species 1 x 2, species 2 x 2, species 3
% x 3, species 1 x 3, species 2 x 3, species 3
% x 4, species 1 x 4, species 2 x 4, species 3
%
%
% For electrolyte solution:
%
% species 3 species 3 species 2
% species 2 species 2 species 2
% species 1 species 1 species 1
% x 1, y 1 x 1, y 2 x 1, y 3
% x 2, y 1 x 2, y 2 x 2, y 3
% x 3, y 1 x 3, y 2 x 3, y 3
% x 4, y 1 x 4, y 2 x 4, y 3
%
% (4) The some variables are extracted without a loop, some with only the x index and some with both
% x and y indexes. The amount of looping has been minimized as much as possible to speed up the
% code.

%% 1. INITIALIZE VARIABLES TO SPEED UP LOOPS AND ENSURE THE CORRECT DIMENSIONS

 237

% Without this step, there would be some ambiguity in the variables which get updated outside of loops if
% either channel dimension is set to 1... by initializing them, we avoid that problem.

% Interfaces

A_int.elec_pot = zeros(Grid_size.x_d_num, 1);
C_int.elec_pot = zeros(Grid_size.x_d_num, 1);

M_int_a.elec_pot = zeros(Grid_size.x_d_num, 1);
M_int_c.elec_pot = zeros(Grid_size.x_d_num, 1);

A_int.Mass_fracs = zeros(Grid_size.x_d_num, Species.fuel.num);
C_int.Mass_fracs = zeros(Grid_size.x_d_num, Species.oxidizer.num);

M_int_a.Mass_fracs = zeros(Grid_size.x_d_num, Species.fuel.num);
M_int_c.Mass_fracs = zeros(Grid_size.x_d_num, Species.oxidizer.num);

M_int_a.press = zeros(Grid_size.x_d_num, 1);
M_int_c.press = zeros(Grid_size.x_d_num, 1);

% M_int_a.y_vel = zeros(Geometry.x_d_num, 1);
% M_int_c.y_vel = zeros(Geometry.x_d_num, 1);

% Electrolyte solution

Asln.elec_pot = zeros(Grid_size.x_d_num, Grid_size.y_d_num);
Csln.elec_pot = zeros(Grid_size.x_d_num, Grid_size.y_d_num);

Asln.Mass_fracs = zeros(Grid_size.x_d_num, Grid_size.y_d_num, Species.fuel.num);
Csln.Mass_fracs = zeros(Grid_size.x_d_num, Grid_size.y_d_num, Species.oxidizer.num);

Asln.x_vel = zeros(Grid_size.x_d_num, Grid_size.y_d_num);
Csln.x_vel = zeros(Grid_size.x_d_num, Grid_size.y_d_num);

Asln.y_vel = zeros(Grid_size.x_d_num, Grid_size.y_d_num);
Csln.y_vel = zeros(Grid_size.x_d_num, Grid_size.y_d_num);

 238

Asln.press = zeros(Grid_size.x_d_num, Grid_size.y_d_num);
Csln.press = zeros(Grid_size.x_d_num, Grid_size.y_d_num);

%% 2. EXTRACT STATE VARIABLES FROM THE SOLUTION VECTOR AND STORE THEM IN LOCAL VARIABLES

% Unscale the solution vector
SV_unsc = SV .* Scales.SV;

% ELECTRODE INTERFACE CELLS
% Electric Potential
A_int.elec_pot(:,1) = SV_unsc(Pointer.a_int.elec_pot(:));
C_int.elec_pot(:,1) = SV_unsc(Pointer.c_int.elec_pot(:));

% MEMBRANE INTERFACE CELLS

% Electric Potential
M_int_a.elec_pot(:,1) = SV_unsc(Pointer.m_int_a.elec_pot(:));
M_int_c.elec_pot(:,1) = SV_unsc(Pointer.m_int_c.elec_pot(:));

M_int_a.press(:,1) = SV_unsc(Pointer.m_int_a.press(:));
M_int_c.press(:,1) = SV_unsc(Pointer.m_int_c.press(:));

% M_int_a.y_vel(:,1) = SV_unsc(Pointer.m_int_a.y_vel(:));
% M_int_c.y_vel(:,1) = SV_unsc(Pointer.m_int_c.y_vel(:));

% ELECTROLYTE SOLUTION CELLS

% Electric Potential
Asln.elec_pot(:,:) = SV_unsc(Pointer.asln.elec_pot(:,:));
Csln.elec_pot(:,:) = SV_unsc(Pointer.csln.elec_pot(:,:));

% Velocities
Asln.x_vel(:,:) = SV_unsc(Pointer.asln.x_vel(:,:));
Asln.y_vel(:,:) = SV_unsc(Pointer.asln.y_vel(:,:));

 239

Csln.x_vel(:,:) = SV_unsc(Pointer.csln.x_vel(:,:));
Csln.y_vel(:,:) = SV_unsc(Pointer.csln.y_vel(:,:));

% Pressures
Asln.press(:,:) = SV_unsc(Pointer.asln.press(:,:));
Csln.press(:,:) = SV_unsc(Pointer.csln.press(:,:));

C.elec_pot = BC.cathode.elec_pot;

% Unfortunately some variables must be updated in loops becuse two " : " operators in one set of
% indexes is ambiguous.
for x_d = 1 : Grid_size.x_d_num

 % ELECTRODE INTERFACE CELLS

 % Mass Fractions
 A_int.Mass_fracs(x_d,:) = SV_unsc(Pointer.a_int.mass_fracs(x_d) + (1:Species.fuel.num) - 1);
 C_int.Mass_fracs(x_d,:) = SV_unsc(Pointer.c_int.mass_fracs(x_d) + (1:Species.oxidizer.num) - 1);

 % MEMBRANE INTERFACE CELLS

 % Mass Fractions
 M_int_a.Mass_fracs(x_d,:) = SV_unsc(Pointer.m_int_a.mass_fracs(x_d) + (1:Species.fuel.num) - 1);
 M_int_c.Mass_fracs(x_d,:) = SV_unsc(Pointer.m_int_c.mass_fracs(x_d) + (1:Species.oxidizer.num) - 1);

 % ELECTROLYTE SOLUTION CELLS

 for y_d = 1 : Grid_size.y_d_num

 % Mass Fractions
 Asln.Mass_fracs(x_d,y_d,:) = SV_unsc(Pointer.asln.mass_fracs(x_d,y_d) : ...
 (Pointer.asln.mass_fracs(x_d,y_d) + Species.fuel.num) - 1);
 Csln.Mass_fracs(x_d,y_d,:) = SV_unsc(Pointer.csln.mass_fracs(x_d,y_d) : ...
 (Pointer.csln.mass_fracs(x_d,y_d) + Species.oxidizer.num) - 1);

 240

 end

end

end

function [Sln] = FUNC_CREATE_GHOST_CELLS(Sln, Grid_size)

%% SUMMARY: CREATE_GHOST_CELLS
% Purpose: This script shifts the matrices containing state variables in the electrolyte solution by
% one cell in the x- and y-directions, then adds a ring of ghost cells around the perimeter wherever
% boundary conditions will be specified. Cells in the ring are all assigned the value
% placeholder_value.
% Author: Rick Stroman
% Date: 15 February 2011

%% NOTES

% 1. Ghost cells around the species mass fractions matrices are assigned values, but there are only
% boundary conditions at the inlets. At other locations the ghost cells are simply making it
% possible to calculate solution properties in the ghost cells, which are used to calculate some
% fluxes which form boundary conditions.

% 2. Ghost cells are initially assigned the value initial_value. A value is chosen which is not
% used in a boundary condition or state variable to make it easy to evaluate whether or not the
% boundary conditions and interface values have been applied correctly when looking at the matrices.

%% 1. SETUP THE NECESSARY VARIABLES

channel_x_range = 2:Grid_size.x_d_num+1;
channel_y_range = 2:Grid_size.y_d_num+1;
x_d_ub = Grid_size.x_d_num + 2; % Total num cells is the number of real cells plus one ghost at each end
y_d_ub = Grid_size.y_d_num + 2; % Total num cells is the number of real cells plus one ghost at each end

 241

placeholder_value = 0;

%% 2. CREATE ELECTRIC POTENTIAL GHOST CELLS

% We need ghost cells for electric potential along each boundary so we can evaluate the migration fluxes
% and electric body forces. Both are written using center differences, so to evaluate these quantities
% in the boundary cells, we need a ghost cell to compute the derivatives. Alternatively, one can look at
% what the model is doing as determining the time rate of change in the amount of species k in a
% differntial volume due to migration, which involves a second derivative (analagously to Fick's Second
% Law for diffusion) and hence two boundary conditions are required in each direction.

% Shift
Sln.elec_pot(channel_x_range, channel_y_range) = Sln.elec_pot;

% Create ghost cells
Sln.elec_pot(1,:) = placeholder_value; % Inlet
Sln.elec_pot(x_d_ub,:) = placeholder_value; % Outlet
Sln.elec_pot(:,1) = placeholder_value; % (an - sol interface) or (mem-cat solution interface)
Sln.elec_pot(:, y_d_ub) = placeholder_value; % (anode sol - mem interface) or (sol - cat interface)

%% 3. CREATE MASS FRACTION GHOST CELLS

% We need ghost cells for mass fraction along each boundary so we can evaluate the diffusion fluxes. The
% diffusion flux is written using a center difference, so calculating the diffusion flux in boundary
% cells requires a ghost cell for the derivatives. Alternatively, one can look at what the model is
% ultimately doing: evaluating Fick's Second Law, which gives the time rate of change of species k in a
% differential volume and contains a second derivative, hence we need two boundary conditions in each
% direction.

% Shift
Sln.Mass_fracs(channel_x_range, channel_y_range, :) = Sln.Mass_fracs;

% Create ghost cells
Sln.Mass_fracs(1,:,:) = placeholder_value; % Inlet
Sln.Mass_fracs(x_d_ub,:,:) = placeholder_value; % Outlet
Sln.Mass_fracs(:,1,:) = placeholder_value; % (an - sol interface) or (mem-cat solution interface)

 242

Sln.Mass_fracs(:, y_d_ub, :) = placeholder_value; % (anode sol - mem interface) or (sol - cat interface)

%% 4. CREATE x-VELOCITY GHOST CELLS

% The x-velocity has a first derivative in the x-direction for the advection terms, and a second
% derivative in the y-direction for the shear stress terms. Hence we need only one boundary condition in
% the x-direction and two in the y-direction. We've chosen to specify the velocity at the inlet and the
% electrode and membrane interfaces so they are Dirichlet boundary conditions. The inlet was chosen over
% the outlet so the equations can be formulated as upwind differences, which is more stable for advection
% than center or downwind differencing.

% Shift
Sln.x_vel(channel_x_range, channel_y_range) = Sln.x_vel;

% Create ghost cells
Sln.x_vel(1,:) = placeholder_value; % Inlet
Sln.x_vel(x_d_ub,:) = placeholder_value; % Outlet
Sln.x_vel(:,1) = placeholder_value; % (an - sol interface) or (mem-cat solution interface)
Sln.x_vel(:,y_d_ub) = placeholder_value; % (anode sol - mem interface) or (sol - cat interface)

%% 5. CREATE y-VELOCITY GHOST CELLS

% The y-velocity has a first derivative in the y-direction for the advection terms, and a second
% derivative in the x-direction for the shear stress terms. Hence we need only one boundary condition in
% the y-direction and two in the x-direction. We've chosen to specify the velocity at the inlets,
% outlets and the (anode-solution interface) on the anode side or the (membrane-cathode solution
% interface) on the cathode side, so they are Dirichlet boundary conditions. The (anode-solution
% interface) and (membrane-cathode solution interface) were chosen so the advection terms could be
% formulated as upwind differences.

% Shift
Sln.y_vel(channel_x_range, channel_y_range) = Sln.y_vel;

% Create ghost cells
Sln.y_vel(1,:) = placeholder_value; % Inlet
Sln.y_vel(x_d_ub,:) = placeholder_value; % Outlet

 243

Sln.y_vel(:,1) = placeholder_value; % Electrode interface
% Sln.y_vel(:, y_d_ub) = placeholder_value; % Membrane interface

%% 6. CREATE PRESSURE GHOST CELLS

% There is only a first derivative of pressure in each direction, so we only need one boundary condition.
% We've chosen to specify the pressure at the inlet to be consistant with the upwind differencing
% formulations of the equations. The pressure gradient is specified at both electrodes where the
% y-direction velocity must be zero due to mass conservation... nothing passes through or is stored on
% the surface. Both the electrode and membrane interface are given ghost cells here just to keep the
% code consistant and allow us to use the same ghost cell generating function for both the anode and
% cathode... one set of ghost cells for each channel is ignored in the rest of the code.

% Shift
Sln.press(channel_x_range, channel_y_range) = Sln.press;

% Create ghost cells
Sln.press(1,:) = placeholder_value; % Inlet (but these ghost cells are never used!)
Sln.press(x_d_ub,:) = placeholder_value; % Outlet
Sln.press(:,1) = placeholder_value; % Electrode interface
Sln.press(:, y_d_ub) = placeholder_value; % Membrane interface

end

function [Asln, Csln] = FUNC_ASSIGN_BCS_AND_INTERFACES(A_int, Asln, M_int_a, M_int_c, Csln, C_int, ...
 Grid_size, BC)

%% SUMMARY: FUNC_ASSIGN_BCS_AND_INTERFACES
% Purpose: This function applies the boundary conditions to the model domain and copies state variables
% from the anode, cathode and membrane interfaces into the bulk electrolyte ghost cells.
% Author: Rick Stroman

 244

%% NOTES

% 1. Boundary conditions are assigned to ghost cells at the inlet, anode and cathode interfaces.

% 2. State variables from the anode, cathode and membrane interfaces are copied into the ghost cells
% around the bulk electrolyte solution to simplify the flux calculations (eliminates special flux
% equations for the interfaces) and to simplify plotting the results (same reason).

%% 1. SET UP THE NECESSARY VARIABLES

x_d_range_chanl = 2:Grid_size.x_d_num+1; % Range of x_d values excluding ghost cells
y_d_range_chanl = 2:Grid_size.y_d_num+1; % Range of y_d values excluding ghost cells
x_d_ub = Grid_size.x_d_num + 2; % Largest value of x_d (ghost cell at outlet)
y_d_ub = Grid_size.y_d_num + 2; % Largest value of y_d (ghost cells at anode
% solution-membrane interface and at the cathode
% solution-cathode interface)

%% 2. APPLY DIRICHLET AND NEWMAN BOUNDARY CONDITIONS
% Flux boundary conditions at the electrodes and membrane are applied in DBFC_FUNCTION when the
% consevation equations are evaluated. Voltage boundary conditions for the electrodes are also applied
% in DBFC_FUNCTION when Kirchoff's Law is applied to electrode discretizations.

% BC's AT INLET

% Electric field at inlet is zero (Newmann) E = d phi / dx = 0
Asln.elec_pot(1,y_d_range_chanl) = Asln.elec_pot(2,y_d_range_chanl);
Csln.elec_pot(1,y_d_range_chanl) = Csln.elec_pot(2,y_d_range_chanl);

% Inlet y-velocity - (Newman)
Asln.y_vel(1,y_d_range_chanl) = Asln.y_vel(2,y_d_range_chanl);
Csln.y_vel(1,y_d_range_chanl) = Csln.y_vel(2,y_d_range_chanl);

% Mass fractions in inlet flows (Dirichlet)
for y_d = y_d_range_chanl
 Asln.Mass_fracs(1,y_d,:) = BC.anode.Mass_fractions_inlet(1,1,:);
 Csln.Mass_fracs(1,y_d,:) = BC.cathode.Mass_fractions_inlet(1,1,:);

 245

end

% Inlet x-velocity - user specified (Dirichlet)
Asln.x_vel(1,y_d_range_chanl) = BC.anode.x_vel_inlet(y_d_range_chanl);
Csln.x_vel(1,y_d_range_chanl) = BC.cathode.x_vel_inlet(y_d_range_chanl);

% BC'S AT OUTLET

% Electric field at outlet is zero (Newmann) E = d phi / dx = 0
Asln.elec_pot(x_d_ub,y_d_range_chanl) = Asln.elec_pot(x_d_ub-1,y_d_range_chanl);
Csln.elec_pot(x_d_ub,y_d_range_chanl) = Csln.elec_pot(x_d_ub-1,y_d_range_chanl);

% Mass fractions in outlet flows... gradient is zero (Newman)
for y_d = y_d_range_chanl
 Asln.Mass_fracs(x_d_ub,y_d,:) = Asln.Mass_fracs(x_d_ub-1,y_d,:);
 Csln.Mass_fracs(x_d_ub,y_d,:) = Csln.Mass_fracs(x_d_ub-1,y_d,:);
end

% Exit x-velocity - assume fully developed, i.e. dv_x/dx = 0 (Newman)
Asln.x_vel(x_d_ub,y_d_range_chanl) = Asln.x_vel(x_d_ub-1,y_d_range_chanl);
Csln.x_vel(x_d_ub,y_d_range_chanl) = Csln.x_vel(x_d_ub-1,y_d_range_chanl);

% Exit y-velocity - assume fully developed, i.e. dv_y/dx = 0 (Newman)
Asln.y_vel(x_d_ub,y_d_range_chanl) = Asln.y_vel(x_d_ub-1,y_d_range_chanl);
Csln.y_vel(x_d_ub,y_d_range_chanl) = Csln.y_vel(x_d_ub-1,y_d_range_chanl);

% Outlet pressure (Dirichlet)
Asln.press(x_d_ub,:) = BC.anode.press_outlet;
Csln.press(x_d_ub,:) = BC.cathode.press_outlet;

% BC's AT ELECTRODES AND MEMBRANE

% No-slip condition at electrodes (Dirichlet)
Asln.x_vel(:,1) = BC.anode.x_vel_electrode;
Csln.x_vel(:,1) = BC.cathode.x_vel_electrode;

 246

% No-slip condition at membrane (Dirichlet)
Asln.x_vel(:,y_d_ub) = BC.anode.x_vel_membrane;
Csln.x_vel(:,y_d_ub) = BC.cathode.x_vel_membrane;

% y-velocity is zero at the electrodes because there is no net mass flux (Dirichlet)
Asln.y_vel(:,1) = BC.anode.y_vel_electrode;
Csln.y_vel(:,1) = BC.cathode.y_vel_electrode;

% No pressure gradient in y-direction at electrodes (Newmann)
Asln.press(x_d_range_chanl,1) = Asln.press(x_d_range_chanl,2);
Csln.press(x_d_range_chanl,1) = Csln.press(x_d_range_chanl,2);

%% 3. ASSIGN INTERFACE VALUES TO BULK SOLUTION SCALARS IN GHOST CELLS

% Note that the interfaces have no values for velocity or pressure, since they are all handled by
% boundary conditions above. Only the electric potential and mass fractions are relevent.

% ELECTRIC POTENTIAL
Asln.elec_pot(x_d_range_chanl,1) = A_int.elec_pot(:);
Asln.elec_pot(x_d_range_chanl,y_d_ub) = M_int_a.elec_pot(:);
Csln.elec_pot(x_d_range_chanl,1) = C_int.elec_pot(:);
Csln.elec_pot(x_d_range_chanl,y_d_ub) = M_int_c.elec_pot(:);

% PRESSURE
Asln.press(x_d_range_chanl,y_d_ub) = M_int_a.press(:);
Csln.press(x_d_range_chanl,y_d_ub) = M_int_c.press(:);

% Need a loop here because more than one index range is ambiguous
for x_d = x_d_range_chanl

 % The x_d-1 accounts for the lack of ghost cells in the interface discretizations, so thier
 % x-discretization indices are shifted by -1 with respect to those of the bulk solution.

 % MASS FRACTIONS
 Asln.Mass_fracs(x_d, 1, :) = A_int.Mass_fracs(x_d-1, :);
 Asln.Mass_fracs(x_d, y_d_ub, :) = M_int_a.Mass_fracs(x_d-1, :);

 247

 Csln.Mass_fracs(x_d, 1, :) = C_int.Mass_fracs(x_d-1, :);
 Csln.Mass_fracs(x_d, y_d_ub, :) = M_int_c.Mass_fracs(x_d-1, :);

end

end

function [State_out, Yfluxes, Xfluxes, Membrane_mass_flux, SCB, VCB] = ...
 FUNC_PROP_AND_FLUX_CALCS(State, Pointer, Flags, Geometry, Grid_size, Species, Properties, ...
 Constants) %#codegen

 % 1. CALCULATE SOLUTION PROPERTIES IN THE CHANNELS (BULK) AND INTERFACES

 % The output of each function below is added to an existing structure as several new fields.

 [State_out.Asln] = FUNC_PROPERTIES_BULK(State.Asln, Grid_size, Species.fuel, ...
 Properties.anode, Pointer.anode, Flags, Constants);
 [State_out.Csln] = FUNC_PROPERTIES_BULK(State.Csln, Grid_size, Species.oxidizer, ...
 Properties.cathode, Pointer.cathode, Flags, Constants);

 % Calculate properties of electrolyte solution at the interfaces.
 [State_out.A_int] = FUNC_PROPERTIES_INTERFACES(State.A_int, Grid_size, Species.fuel, ...
 Properties.anode, Pointer.anode, Flags, Constants);
 [State_out.M_int_a] = FUNC_PROPERTIES_INTERFACES(State.M_int_a, Grid_size, Species.fuel, ...
 Properties.anode, Pointer.anode, Flags, Constants);
 [State_out.M_int_c] = FUNC_PROPERTIES_INTERFACES(State.M_int_c, Grid_size, Species.oxidizer, ...
 Properties.cathode, Pointer.cathode, Flags, Constants);
 [State_out.C_int] = FUNC_PROPERTIES_INTERFACES(State.C_int, Grid_size, Species.oxidizer, ...
 Properties.cathode, Pointer.cathode, Flags, Constants);

 State_out.C = State.C;

 % 2. CALCULATE FLUXES ACROSS SCALAR CELL BOUNDARIES DUE TO MIGRATION, DIFFUSION AND ELECTRODE RXNS

 Yfluxes = FUNC_Y_DIFF_MIG_REACT_FLUXES(State_out.Asln, State_out.M_int_a, State_out.M_int_c, ...

 248

 State_out.Csln, Geometry, Grid_size, Species, Properties, Pointer, Constants, Flags);

 Xfluxes = FUNC_X_DIFF_MIG_FLUXES(State_out.Asln, State_out.Csln, Geometry, Grid_size, Species, ...
 Properties, Pointer, Constants, Flags);

 % 3. CALCULATE THE MEMBRANE MASS FLUXES

 Membrane_mass_flux.am = sum(Yfluxes.mass.am,2)'; % kg/(m^2 s)
 Membrane_mass_flux.cm = -sum(Yfluxes.mass.cm,2)'; % kg/(m^2 s)
 % NOTE: Negative sign accounts for change in coordinate system

 % 4. CALCULATE VALUES AT SCALAR CELL BOUNDARIES

 % The mass and species conservation equations ensure those properties are conserved over the scalar
 % cells. To evaluate the equations, we need to know the mass density, mass fractions, and total mass
 % fluxes at the scalar cell boundaries. The FUNC_SCB_VALUES function calculates the properties by
 % linear interpolation between cell centers (accounting for different cell sizes) and the mass fluxes
 % are the sum of advection, diffusion and migration mass fluxes at the boundaries. The last levels
 % in each structure are .x and .y, which signify whether the values cell boundaries in the
 % x-direction or y-direction.

 [SCB.asln.mass_flux, SCB.asln.mass_density, SCB.asln.Mass_fracs, SCB.asln.charge_density] = ...
 FUNC_SCB_VALUES(State_out.Asln, Xfluxes.mass.asln, Yfluxes.mass.asln, Geometry, Grid_size, ...
 Species.fuel);
 [SCB.csln.mass_flux, SCB.csln.mass_density, SCB.csln.Mass_fracs, SCB.csln.charge_density] = ...
 FUNC_SCB_VALUES(State_out.Csln, Xfluxes.mass.csln, Yfluxes.mass.csln, Geometry, Grid_size, ...
 Species.oxidizer);

 % 5. CALCULATE VALUES AT VELOCITY CELL BOUNDARIES

 [VCB_x_asln_x_vel, VCB_y_asln_y_vel] = FUNC_VCB_VALUES(State_out.Asln, Grid_size);
 [VCB_x_csln_x_vel, VCB_y_csln_y_vel] = FUNC_VCB_VALUES(State_out.Csln, Grid_size);

 VCB.x.asln.x_vel = VCB_x_asln_x_vel;
 VCB.x.csln.x_vel = VCB_x_csln_x_vel;
 VCB.y.asln.y_vel = VCB_y_asln_y_vel;

 249

 VCB.y.csln.y_vel = VCB_y_csln_y_vel;

end

function [Sln] = FUNC_PROPERTIES_BULK(Sln, Grid_size, Species, Properties, Pointer, Flags, Constants)

%% SUMMARY: DBFC_PROPERTIES_BULK
% Purpose: This script calculates the electrolyte solution properties, given the state variables in the
% solution vector SV.
% Author: Rick Stroman

%% 1. PRE-ALLOCATE MEMORY FOR MATRICES CREATED IN THIS FUNCTION TO SPEED UP THE CODE

% These bounds are chosen so that the properties matrices have the same size as the state variable
% matrices, to simplify calculations later.
x_d_ub = Grid_size.x_d_num + 2;
y_d_ub = Grid_size.y_d_num + 2;

% Initialize mass density
Sln.mass_density = zeros(x_d_ub, y_d_ub);

% Initialize mole fractions
Sln.Mole_fracs = zeros(x_d_ub, y_d_ub, Species.num);

% Initialize mole densities (concentrations)
Sln.Mole_densities = zeros(x_d_ub, y_d_ub, Species.num);

% Initialize ionic strength
Sln.ionic_strength = zeros(x_d_ub, y_d_ub);

% Initialize activity coefficients (note the are initialized to an ideal solution... all ones)
Sln.Act_coeffs = ones(x_d_ub, y_d_ub, Species.num);

% Initialize the net charge density of solution

 250

Sln.charge_density = zeros(x_d_ub, y_d_ub);

% Use these column vectors to change the dimensions of Mass_fracs and Mole_densities inside the loop
% instead of using squeeze, which is very expensive.
Mass_fracs = zeros(Species.num, 1);
Mole_densities = zeros(Species.num, 1);

%% 2. CALCULATE ELECTROLYTE PROPERTIES

for x_d = 1 : Grid_size.x_d_num + 2
 % Include the inlet ghost cells, which have been assigned BC mass fractions, but ignore the outlet
 % ghost cells, in which solution properties are never needed.

 for y_d = 1 : Grid_size.y_d_num + 2
 % Include the anode and cathode interfaces and both membrane interfaces.
 Mass_fracs(:) = Sln.Mass_fracs(x_d,y_d,:);

 % DENSITY AND CONCENTRATION RELATED PROPERTIES

 % Mass density - [kg/m^3]
 Sln.mass_density(x_d,y_d) = FUNC_SOLUTION_MASS_DENSITY(Mass_fracs, Properties, Pointer);

 % Species mole fractions - [unitless]
 Sln.Mole_fracs(x_d,y_d,:) = FUNC_MASS_TO_MOLE_FRACTIONS(Mass_fracs, Properties.Molar_mass, ...
 Species);

 % Species mole densities - [kmol/m^3]
 Sln.Mole_densities(x_d,y_d,:) = FUNC_SPECIES_MOLE_DENSITIES(Sln.mass_density(x_d,y_d), ...
 Mass_fracs, Properties.Molar_mass);
 Mole_densities(:) = Sln.Mole_densities(x_d, y_d, :); % Making it a vector for local use this
 % way because squeeze is very expensive

 % ELECTROLYTE RELATED PROPERTIES

 if ~Flags.model.solution_ideality

 251

 % Ionic strength - [kmol/m^3]
 Sln.ionic_strength(x_d,y_d) = 0.5 * Mole_densities' * Properties.Electric_charge.^2;

 % Activity coefficients - [unitless
 % Sln.Act_coeffs(x_d,y_d,:) = FUNC_DEBYE_HUCKEL(Sln.ionic_strength(x_d,y_d), Properties, ...
 % Constants);
 Sln.Act_coeffs(x_d,y_d,:) = FUNC_H2O2_Act_Coeffs(Species, Sln.Mole_fracs(x_d, y_d, :), ...
 Constants);

 end % If we don't model the non-ideality of the solution, the activity coefficients keep ...
 % their initialized values... 1.

 % Calculate the net charge density in each phase for each x-discretization - [C/m^3]
 Sln.charge_density(x_d,y_d) = Constants.faraday * Properties.Electric_charge_T * Mole_densities;

 end

end

end

function [Int] = FUNC_PROPERTIES_INTERFACES(Int, Grid_size, Species, Properties, Pointer, Flags, ...
 Constants) %#codegen

%% SUMMARY: DBFC_PROPERTIES_INTERFACES
% Purpose: This script calculates the electrolyte solution properties at the electrode and membrane
% interfaces, from the mass fractions and/or mole fractions.
% Author: Rick Stroman

% Initialize mass density
Int.mass_density = zeros(1,Grid_size.x_d_num);

% Initialize mole fractions
Int.Mole_fracs = zeros(Grid_size.x_d_num, Species.num);

 252

% Initialize mole densities (concentrations)
Int.Mole_densities = zeros(Grid_size.x_d_num, Species.num);

% Initialize ionic strength
Int.ionic_strength = zeros(1,Grid_size.x_d_num);

% Initialize activity coefficients (note the are initialized to an ideal solution... all ones)
Int.Act_coeffs = ones(Grid_size.x_d_num, Species.num);
 % Initialize the net charge density of solution
Int.charge_density = zeros(1,Grid_size.x_d_num);

%% 1. CALCULATE PROPERTIES AT INTERFACES

Mass_fracs = Int.Mass_fracs';

for x_d = 1:Grid_size.x_d_num

 % Species mole fractions - [unitless]
 Int.Mole_fracs(x_d,:) = FUNC_MASS_TO_MOLE_FRACTIONS(Mass_fracs(:,x_d), Properties.Molar_mass, ...
 Species);

 % Mass density - [kg/m^3]
 Int.mass_density(x_d) = FUNC_SOLUTION_MASS_DENSITY(Mass_fracs(:,x_d), Properties, Pointer);

 % Species mole densities - [unitless]
 Int.Mole_densities(x_d,:) = FUNC_SPECIES_MOLE_DENSITIES(Int.mass_density(x_d), Mass_fracs(:,x_d), ...
 Properties.Molar_mass);

 if ~Flags.model.solution_ideality

 % Ionic strength - [kmol/m^3]
 Int.ionic_strength(x_d) = 0.5 * Int.Mole_densities(x_d,:) * Properties.Electric_charge.^2;

 % Activity coefficients - [unitless]
 %Int.Act_coeffs(x_d,:) = FUNC_DEBYE_HUCKEL(Int.ionic_strength(x_d), Properties, Constants);

 253

 Int.Act_coeffs(x_d,:) = FUNC_H2O2_Act_Coeffs(Species, Int.Mole_fracs(x_d,:), Constants);

 end

 % Calculate the net charge density in each phase for each x-discretization - [C/m^3]
 Int.charge_density(x_d) = Constants.faraday * Int.Mole_densities(x_d,:) * Properties.Electric_charge;

end
end

function Yfluxes = FUNC_Y_DIFF_MIG_REACT_FLUXES(Asln, M_int_a, M_int_c, Csln, ...
 Geometry, Grid_size, Species, Properties, Pointer, Constants, Flags) %#codegen

%% SUMMARY: FUNC_DIFF_MIG_REACT_FLUXES
% Purpose: This script calculates the y-direction fluxes due to diffusion, migration and (at the
% electrode surfaces) reactions.
% Author: Rick Stroman
% Date: 28 October 2011

%% NOTES
%
% 1. Indexing scheme: Same as for velocity in the electrolyte solution, where each flux is indexed by
% x_discretization, y_discretization and then species. Fluxes are assumed to be at the same locations as
% the y-velocity in the electrolyte solution. Fluxes with the index .asln(:,1,:) and
% .csln(:,Grid_size.y_d_num+2,:) are ghost cells for the electrolyte solution, but here are treated as
% the fluxes from the electrode interfaces to the bulk solution. The same goes for
% .asln(:,Grid_size.y_d_num+2,:) and .csln(:,1,:), which are fluxes into and out of the membrane
% interfaces, respectively.
%
% 2. Flux structures with .asln and .csln fields are in the electrolyte solution or interfaces. Flux
% structures with fields .arxn and .crxn are fluxes to/from the electrodes due to reactions at the
% surfaces. The field .m referrs to the flux through the membrane. The fields .arxn, .crxn and .m have
% no y-index.
%

 254

% 3. I tried to vectorize the loops, but MATLAB wouldn't let me put the results from the flux calcs back
% into the flux matrices... whenever a flux matrix has a singleton dimension, it ignores it, even if it
% changes from one operation to the next... so I would have to calculate ALL of the fluxes at once and
% stuff them back into the matrix. This is probably possible, but will take some more thought.

%% 1. SET RANGES AND PRE-ALLOCATE MEMORY FOR VECTORS CHANGED IN LOOPS TO SPEED UP THE CODE

% Initialize mass fluxes
Yfluxes.mass.asln = zeros(Grid_size.x_d_num, Grid_size.y_d_num + 1, Species.fuel.num);
Yfluxes.mass.csln = zeros(Grid_size.x_d_num, Grid_size.y_d_num + 1, Species.oxidizer.num);
Yfluxes.mass.arxn = zeros(Grid_size.x_d_num, Species.fuel.num);
Yfluxes.mass.crxn = zeros(Grid_size.x_d_num, Species.oxidizer.num);
Yfluxes.mass.am = zeros(Grid_size.x_d_num, Species.fuel.num);
Yfluxes.mass.cm = zeros(Grid_size.x_d_num, Species.oxidizer.num);
Yfluxes.mass_diff.asln = zeros(Grid_size.x_d_num, Grid_size.y_d_num + 1, Species.fuel.num);
Yfluxes.mass_diff.csln = zeros(Grid_size.x_d_num, Grid_size.y_d_num + 1, Species.oxidizer.num);
Yfluxes.mass_mig.asln = zeros(Grid_size.x_d_num, Grid_size.y_d_num + 1, Species.fuel.num);
Yfluxes.mass_mig.csln = zeros(Grid_size.x_d_num, Grid_size.y_d_num + 1, Species.oxidizer.num);

% Initialize mole fluxes
Yfluxes.mole.asln = zeros(Grid_size.x_d_num, Grid_size.y_d_num + 1, Species.fuel.num);
Yfluxes.mole.csln = zeros(Grid_size.x_d_num, Grid_size.y_d_num + 1, Species.oxidizer.num);
Yfluxes.mole.arxn = zeros(Grid_size.x_d_num, Species.fuel.num);
Yfluxes.mole.crxn = zeros(Grid_size.x_d_num, Species.oxidizer.num);
Yfluxes.mole.am = zeros(Grid_size.x_d_num, Species.fuel.num);
Yfluxes.mole.cm = zeros(Grid_size.x_d_num, Species.oxidizer.num);
Yfluxes.mole.mem_mig_Na = zeros(Grid_size.x_d_num, 1);
Yfluxes.mole.mem_diff_Na = zeros(Grid_size.x_d_num, 1);
Yfluxes.mole_diff.asln = zeros(Grid_size.x_d_num, Grid_size.y_d_num + 1, Species.fuel.num);
Yfluxes.mole_diff.csln = zeros(Grid_size.x_d_num, Grid_size.y_d_num + 1, Species.oxidizer.num);
Yfluxes.mole_mig.asln = zeros(Grid_size.x_d_num, Grid_size.y_d_num + 1, Species.fuel.num);
Yfluxes.mole_mig.csln = zeros(Grid_size.x_d_num, Grid_size.y_d_num + 1, Species.oxidizer.num);

Mole_fluxes_to_interface_a = zeros(Grid_size.x_d_num,Species.fuel.num);
Mole_fluxes_to_interface_c = zeros(Grid_size.x_d_num,Species.oxidizer.num);

 255

% Initialize charge fluxes
Yfluxes.charge.asln = zeros(Grid_size.x_d_num, Grid_size.y_d_num + 1);
Yfluxes.charge.csln = zeros(Grid_size.x_d_num, Grid_size.y_d_num + 1);
Yfluxes.charge.arxn = zeros(Grid_size.x_d_num, 1);
Yfluxes.charge.crxn = zeros(Grid_size.x_d_num, 1);
Yfluxes.charge.m = zeros(Grid_size.x_d_num, 1);
Yfluxes.charge.am = zeros(Grid_size.x_d_num, 1);
Yfluxes.charge.cm = zeros(Grid_size.x_d_num, 1);

% Create column vectors used locally to avoid having to call squeeze, which is expensive.
Act_coeffs_a_1 = ones(Species.fuel.num, 1);
Act_coeffs_a_2 = ones(Species.fuel.num, 1);
Mole_densities_a_1 = ones(Species.fuel.num, 1);
Mole_densities_a_2 = ones(Species.fuel.num, 1);

Act_coeffs_c_1 = ones(Species.oxidizer.num, 1);
Act_coeffs_c_2 = ones(Species.oxidizer.num, 1);
Mole_densities_c_1 = ones(Species.oxidizer.num, 1);
Mole_densities_c_2 = ones(Species.oxidizer.num, 1);

Yfluxes_mass_asln = ones(Species.fuel.num, 1);
Yfluxes_mass_csln = ones(Species.oxidizer.num, 1);
Yfluxes_mole_asln = ones(Species.fuel.num, 1);
Yfluxes_mole_csln = ones(Species.oxidizer.num, 1);

anode_species_range = 1 : Species.fuel.num;
cathode_species_range = 1 : Species.oxidizer.num;
mem_species_range = 1 : Species.membrane.num;

%% 2. MASS FLUXES IN THE BULK ELECTROLYTE SOLUTION [kg/(m^2 s)]

for x_d = 2 : Grid_size.x_d_num + 1 % Step through indexes of real fluid cells in the x-direction.

 for y_d = 1 : Grid_size.y_d_num + 1

 % Step through the bulk in the direction from anode to cathode, one y-discretization at a time. Note

 256

 % that we need the fluxes into and out of each cell, so the total number of fluxes is the number of
 % cells plus 1. Each flux is assumed to be entering the cell of the same index... i.e. flux y_d = 3
 % is entering cell y_d = 3. This indexing scheme was chosen because I can't have an index of 0.

 % y_d = 1 is the flux out of the electrode-solution interface and into the first fluid cell (cell
 % (:,1)). It is calculated using properties at the interface and in the first fluid cell. This is
 % the flux which the solver equates to the reaction flux to solve for mass fractions at the
 % electrode-solution interface.

 % y_d = 2 is the flux out of the first fluid cell nearest the electrode.

 % y_d = Grid_size.y_d_num is the flux into the fluid cell nearest the membrane.

 % y_d = Grid_size.y_d_num + 1 is the flux out of the fluid cell nearest the membrane, and into the
 % solution-membrane interface. It is calculated using properties in the last fluid cell and at the
 % solution-membrane interface. The solver will find the species mass fractions at the interface by
 % equating this flux with the membrane flux.

 % ANODE SIDE

 % Copy the relevent portions of 3D matrices into vectors to avoid using the squeeze function
 Act_coeffs_a_1(anode_species_range,1) = Asln.Act_coeffs(x_d,y_d, anode_species_range);
 Act_coeffs_a_2(anode_species_range,1) = Asln.Act_coeffs(x_d,y_d + 1,anode_species_range);
 Mole_densities_a_1(anode_species_range,1) = Asln.Mole_densities(x_d,y_d, anode_species_range);
 Mole_densities_a_2(anode_species_range,1) = Asln.Mole_densities(x_d,y_d + 1,anode_species_range);

 % Calculate the anode side mass fluxes in the y-direction due to diffusion and migration
 [Yfluxes.mass.asln(x_d-1,y_d,anode_species_range), ...
 Yfluxes.mass_diff.asln(x_d-1,y_d,anode_species_range), ...
 Yfluxes.mass_mig.asln(x_d-1,y_d,anode_species_range), ...
 Yfluxes.mole_diff.asln(x_d-1,y_d,anode_species_range), ...
 Yfluxes.mole_mig.asln(x_d-1,y_d,anode_species_range)] = FUNC_ELECTROLYTE_MASS_FLUXES(...
 Act_coeffs_a_1, ...
 Act_coeffs_a_2, ...
 Mole_densities_a_1, ...
 Mole_densities_a_2, ...

 257

 Asln.elec_pot(x_d,y_d), ...
 Asln.elec_pot(x_d,y_d+1), ...
 Geometry.y_d_size(y_d), ...
 Geometry.y_d_size(y_d+1), ...
 Properties.anode, ...
 Pointer.anode, ...
 Constants, ...
 Species.fuel, ...
 Flags.model.y);

 % CATHODE SIDE

 % Copy the relevent portions of 3D matrices into vectors to avoid using the squeeze function
 Act_coeffs_c_1(cathode_species_range,1) = Csln.Act_coeffs(x_d,y_d, cathode_species_range,1);
 Act_coeffs_c_2(cathode_species_range,1) = Csln.Act_coeffs(x_d,y_d + 1,cathode_species_range,1);
 Mole_densities_c_1(cathode_species_range,1) = Csln.Mole_densities(x_d,y_d, ...
 cathode_species_range,1);
 Mole_densities_c_2(cathode_species_range,1) = Csln.Mole_densities(x_d,y_d + 1,...
 cathode_species_range,1);

 % Calculate the cathode side mass fluxes in the y-direction due to diffusion and migration
 [Yfluxes.mass.csln(x_d-1,y_d,cathode_species_range,1), ...
 Yfluxes.mass_diff.csln(x_d-1,y_d,cathode_species_range,1), ...
 Yfluxes.mass_mig.csln(x_d-1,y_d,cathode_species_range,1), ...
 Yfluxes.mole_diff.csln(x_d-1,y_d,cathode_species_range,1), ...
 Yfluxes.mole_mig.csln(x_d-1,y_d,cathode_species_range,1)] = FUNC_ELECTROLYTE_MASS_FLUXES(...
 Act_coeffs_c_1, ...
 Act_coeffs_c_2, ...
 Mole_densities_c_1, ...
 Mole_densities_c_2, ...
 Csln.elec_pot(x_d, y_d), ...
 Csln.elec_pot(x_d, y_d+1), ...
 Geometry.y_d_size(y_d), ...
 Geometry.y_d_size(y_d+1), ...
 Properties.cathode, ...
 Pointer.cathode, ...

 258

 Constants, ...
 Species.oxidizer, ...
 Flags.model.y);
 end

end

%% 3. COMPUTE MOLE AND CHARGE FLUXES IN THE BULK FROM THE MASS FLUXES IN THE BULK

for x_d = 1 : Grid_size.x_d_num

 for y_d = 1 : Grid_size.y_d_num + 1

 % ELECTROLYTE SOLUTION AND INTERFACES

 % Copy the species mass fluxes into local variables to avoid using the squeeze function
 Yfluxes_mass_asln(anode_species_range,1) = Yfluxes.mass.asln(x_d,y_d,anode_species_range);
 Yfluxes_mass_csln(cathode_species_range,1) = Yfluxes.mass.csln(x_d,y_d,cathode_species_range);

 % Compute the electrolyte mole fluxes [kmol/(m^2 s)]
 Yfluxes.mole.asln(x_d,y_d,anode_species_range) = Yfluxes_mass_asln ...
 .* Properties.anode.one_over_molar_mass(anode_species_range);
 Yfluxes.mole.csln(x_d,y_d,cathode_species_range) = Yfluxes_mass_csln ...
 .* Properties.cathode.one_over_molar_mass(cathode_species_range);

 % Copy the species mole fluxes into local variables to avoid using the squeeze function
 Yfluxes_mole_asln(anode_species_range,1) = Yfluxes.mole.asln(x_d,y_d,anode_species_range);
 Yfluxes_mole_csln(cathode_species_range,1) = Yfluxes.mole.csln(x_d,y_d,cathode_species_range);

 % Compute the electrolyte charge fluxes [C/(m^2 s)]
 Yfluxes.charge.asln(x_d,y_d) = Constants.faraday * Properties.anode.Electric_charge_T * ...
 Yfluxes_mole_asln;
 Yfluxes.charge.csln(x_d,y_d) = Constants.faraday * Properties.cathode.Electric_charge_T * ...
 Yfluxes_mole_csln;

 end

 259

end

%% 4. MASS FLUXES THROUGH THE MEMBRANE [kg/(m^2 s)]
% Note that this function calculates the mass fluxes for the whole length of the channel at once.
% The matrices returned from this function have the indices (x_d, species).

[Yfluxes.mass.am, Yfluxes.mass.cm, Yfluxes.mole.mem_mig_Na, Yfluxes.mole.mem_diff_Na] = ...
 FUNC_MEMBRANE_MASS_FLUXES(... % Membrane flux with anode and cathode species orders
 M_int_a , M_int_c, ...
 Geometry.mem_thick , Properties, ...
 Constants , Species, ...
 Pointer , Flags, ...
 Grid_size);

%% 5. COMPUTE MOLE AND CHARGE FLUXES AT THE MEMBRANE AND ELECTRODES FROM THE MASS FLUXES

for x_d = 1 : Grid_size.x_d_num

 % REACTIONS AND MEMBRANE - no y-index dependence

 % Compute membrane mole fluxes [kmol/(m^2 s)]
 Yfluxes.mole.am(x_d,anode_species_range) = ...
 Yfluxes.mass.am(x_d,1:length(Properties.anode.one_over_molar_mass)) ...
 .* Properties.anode.one_over_molar_mass';
 Yfluxes.mole.cm(x_d,cathode_species_range) = ...
 Yfluxes.mass.cm(x_d,1:length(Properties.cathode.one_over_molar_mass)) ...
 .* Properties.cathode.one_over_molar_mass';

 % Compute the membrane charge flux [C/(m^2 s)]
 Yfluxes.charge.am(x_d,1) = ...
 Constants.faraday * Properties.anode.Electric_charge' * Yfluxes.mole.am(x_d,:)';
 Yfluxes.charge.cm(x_d,1) = ...
 Constants.faraday * Properties.cathode.Electric_charge' * Yfluxes.mole.cm(x_d,:)';

End

 260

function Xfluxes = FUNC_X_DIFF_MIG_FLUXES(Asln, Csln, Geometry, Grid_size, Species, ...
 Properties, Pointer, Constants, Flags) %#codegen

%% SUMMARY: FUNC_X_DIFF_MIG_FLUXES
% Purpose: This script calculates the x-direction fluxes due to diffusion and migration.
% Author: Rick Stroman

%% NOTES
%
% 1. Indexing scheme: Each flux is indexed by x_discretization, y_discretization and then species.
% x-direction fluxes are assumed to be at the same locations as the x-velocity in the electrolyte
% solution, namely at the boundaries between x-discretizations.
%
% 2. Some discretizations are ghost cells, which store the values at interfaces. They are used here
% to calculate the fluxes to or from the interfaces on the bulk electrolyte side of the interface.
% .asln(:,1,:) --- anode interface
% .asln(:,Grid_size.y_d_num+2,:) --- anode side membrane interface
% .asln(1,:,:) --- anode inlet
% .asln(Grid_size.x_d_num+2,:,:) --- anode outlet
% .csln(:,1,:) --- cathode side membrane interface
% .csln(:,Grid_size.y_d_num+2,:) --- cathode interface
% .csln(1,:,:) --- cathode inlet
% .csln(Grid_size.x_d_num+2,:,:) --- cathode outlet
%
% 3. Flux directions: x-fluxes are positive in the direction from inlet to outlet, and y-fluxes are
% positive in the direction from anode to cathode.
%
% 4. Flux structures with .asln and .csln fields are in the electrolyte solution. Flux structures with
% fields .arxn and .crxn are fluxes to/from the electrodes due to reactions at the surfaces. The field
% .m referrs to the flux through the membrane. The fields .arxn, .crxn and .m have no y-index, because
% they are linear in the x-direction.
%
% 5. I tried to vectorize the loops, but MATLAB wouldn't let me put the results from the flux calcs back
% into the flux matrices... whenever a flux matrix has a singleton dimension, it ignores it, even if it
% changes from one operation to the next... so I would have to calculate ALL of the fluxes at once and
% stuff them back into the matrix. This is probably possible, but will take some more thought.

 261

%% 1. SET RANGES AND PRE-ALLOCATE MEMORY FOR VECTORS CHANGED IN LOOPS TO SPEED UP THE CODE

% Initialize mass fluxes
Xfluxes.mass.asln = zeros(Grid_size.x_d_num + 1, Grid_size.y_d_num, Species.fuel.num);
Xfluxes.mass.csln = zeros(Grid_size.x_d_num + 1, Grid_size.y_d_num, Species.oxidizer.num);
Xfluxes.mass_diff.asln = zeros(Grid_size.x_d_num + 1, Grid_size.y_d_num, Species.fuel.num);
Xfluxes.mass_diff.csln = zeros(Grid_size.x_d_num + 1, Grid_size.y_d_num, Species.oxidizer.num);
Xfluxes.mass_mig.asln = zeros(Grid_size.x_d_num + 1, Grid_size.y_d_num, Species.fuel.num);
Xfluxes.mass_mig.csln = zeros(Grid_size.x_d_num + 1, Grid_size.y_d_num, Species.oxidizer.num);

% Initialize mole fluxes
Xfluxes.mole.asln = zeros(Grid_size.x_d_num + 1, Grid_size.y_d_num, Species.fuel.num);
Xfluxes.mole.csln = zeros(Grid_size.x_d_num + 1, Grid_size.y_d_num, Species.oxidizer.num);
Xfluxes.mole_diff.asln = zeros(Grid_size.x_d_num + 1, Grid_size.y_d_num, Species.fuel.num);
Xfluxes.mole_diff.csln = zeros(Grid_size.x_d_num + 1, Grid_size.y_d_num, Species.oxidizer.num);
Xfluxes.mole_mig.asln = zeros(Grid_size.x_d_num + 1, Grid_size.y_d_num, Species.fuel.num);
Xfluxes.mole_mig.csln = zeros(Grid_size.x_d_num + 1, Grid_size.y_d_num, Species.oxidizer.num);

% Initialize charge fluxes
Xfluxes.charge.asln = zeros(Grid_size.x_d_num + 1, Grid_size.y_d_num);
Xfluxes.charge.csln = zeros(Grid_size.x_d_num + 1, Grid_size.y_d_num);

% Create column vectors used locally to avoid having to call squeeze, which is expensive.
Act_coeffs_a_1 = ones(Species.fuel.num, 1);
Act_coeffs_a_2 = ones(Species.fuel.num, 1);
Mole_densities_a_1 = ones(Species.fuel.num, 1);
Mole_densities_a_2 = ones(Species.fuel.num, 1);

Act_coeffs_c_1 = ones(Species.oxidizer.num, 1);
Act_coeffs_c_2 = ones(Species.oxidizer.num, 1);
Mole_densities_c_1 = ones(Species.oxidizer.num, 1);
Mole_densities_c_2 = ones(Species.oxidizer.num, 1);

Xfluxes_mass_asln = ones(Species.fuel.num, 1);

 262

Xfluxes_mass_csln = ones(Species.oxidizer.num, 1);
Xfluxes_mole_asln = ones(Species.fuel.num, 1);
Xfluxes_mole_csln = ones(Species.oxidizer.num, 1);

%% 2. MASS FLUXES IN THE BULK ELECTROLYTE SOLUTION [kg/(m^2 s)]

% Step down the channel from the inlet to the outlet, one x-discretization at a time. The index x_d
% steps through the indeces of the real discretizations (not including the ghost cells at each end). Note
% that we need the fluxes into and out of each cell, so the total number of fluxes is the number of cells
% plus 1. Each flux is assumed to be entering the cell of the same index... i.e. flux x_d = 3 is
% entering cell x_d = 3. This indexing scheme was chosen because I can't have an index of 0.

% x_d = 1 is the flux from the inlet into the first fluid cell. It is calculated using properties
% at the inlet and in the first fluid cell.
% x_d = 2 is the flux out of the first fluid cell nearest the inlet.
% x_d = Grid_size.x_d_num is the flux into the last fluid cell near the outlet.
% x_d = Grid_size.x_d_num + 1 is the flux out of the fluid cell nearest the outlet. It is calculated
% using properties in the last fluid cell.

for x_d = 2 : Grid_size.x_d_num + 1 % Step through the x-direction fluxes. Neglect x_d = 1 to eliminate
 % unrealistic fluxes at inlet which don't obey charge neutrality
 % upstream of the model domain.

 for y_d = 2 : Grid_size.y_d_num + 1 % Step through the y-direction indexes of real fluid cells

 % Mass fluxes of each species

 Act_coeffs_a_1(:) = Asln.Act_coeffs(x_d,y_d,:);
 Act_coeffs_a_2(:) = Asln.Act_coeffs(x_d+1,y_d,:);
 Mole_densities_a_1(:) = Asln.Mole_densities(x_d,y_d,:);
 Mole_densities_a_2(:) = Asln.Mole_densities(x_d+1,y_d,:);

 [Xfluxes.mass.asln(x_d,y_d-1,:), ...
 Xfluxes.mass_diff.asln(x_d,y_d-1,:), ...

 263

 Xfluxes.mass_mig.asln(x_d,y_d-1,:), ...
 Xfluxes.mole_diff.asln(x_d,y_d-1,:), ...
 Xfluxes.mole_mig.asln(x_d,y_d-1,:)] = FUNC_ELECTROLYTE_MASS_FLUXES(...
 Act_coeffs_a_1, ...
 Act_coeffs_a_2, ...
 Mole_densities_a_1, ...
 Mole_densities_a_2, ...
 Asln.elec_pot(x_d,y_d), ...
 Asln.elec_pot(x_d+1,y_d), ...
 Geometry.x_d_size(x_d), ...
 Geometry.x_d_size(x_d+1), ...
 Properties.anode, ...
 Pointer.anode, ...
 Constants, ...
 Species.fuel, ...
 Flags.model.x);

 % Mass fluxes of each species

 Act_coeffs_c_1(:) = Csln.Act_coeffs(x_d,y_d,:);
 Act_coeffs_c_2(:) = Csln.Act_coeffs(x_d+1, y_d,:);
 Mole_densities_c_1(:) = Csln.Mole_densities(x_d,y_d,:);
 Mole_densities_c_2(:) = Csln.Mole_densities(x_d+1 ,y_d,:);

 [Xfluxes.mass.csln(x_d,y_d-1,:), ...
 Xfluxes.mass_diff.csln(x_d,y_d-1,:), ...
 Xfluxes.mass_mig.csln(x_d,y_d-1,:), ...
 Xfluxes.mole_diff.csln(x_d,y_d-1,:), ...
 Xfluxes.mole_mig.csln(x_d,y_d-1,:)] = FUNC_ELECTROLYTE_MASS_FLUXES(...
 Act_coeffs_c_1, ...
 Act_coeffs_c_2, ...
 Mole_densities_c_1, ...
 Mole_densities_c_2, ...
 Csln.elec_pot(x_d,y_d), ...

 264

 Csln.elec_pot(x_d+1, y_d), ...
 Geometry.x_d_size(x_d), ...
 Geometry.x_d_size(x_d+1), ...
 Properties.cathode, ...
 Pointer.cathode, ...
 Constants, ...
 Species.oxidizer, ...
 Flags.model.x);
 end

end

%% 3. COMPUTE MOLE AND CHARGE FLUXES FROM THE MASS FLUXES

for x_d = 1 : Grid_size.x_d_num + 1

 for y_d = 1 : Grid_size.y_d_num

 % ELECTROLYTE SOLUTION AND INTERFACES

 Xfluxes_mass_asln(:) = Xfluxes.mass.asln(x_d,y_d,:);
 Xfluxes_mass_csln(:) = Xfluxes.mass.csln(x_d,y_d,:);

 % Compute the electrolyte mole fluxes [kmol/(m^2 s)]
 Xfluxes.mole.asln(x_d,y_d,:) = ...
 Xfluxes_mass_asln(length(Properties.anode.one_over_molar_mass)) ...
 .* Properties.anode.one_over_molar_mass;
 Xfluxes.mole.csln(x_d,y_d,:) = ...
 Xfluxes_mass_csln(length(Properties.cathode.one_over_molar_mass)) ...
 .* Properties.cathode.one_over_molar_mass;

 Xfluxes_mole_asln(:) = Xfluxes.mole.asln(x_d,y_d,:);
 Xfluxes_mole_csln(:) = Xfluxes.mole.csln(x_d,y_d,:);

 265

 % Compute the electrolyte charge fluxes [C/(m^2 s)]
 Xfluxes.charge.asln(x_d,y_d) = Constants.faraday * Properties.anode.Electric_charge_T ...
 * Xfluxes_mole_asln;
 Xfluxes.charge.csln(x_d,y_d) = Constants.faraday * Properties.cathode.Electric_charge_T ...
 * Xfluxes_mole_csln;

 end

end

function [Mass_fluxes, Mass_fluxes_diffusion, Mass_fluxes_migration, Mole_fluxes_diffusion, ...
 Mole_fluxes_migration] = FUNC_ELECTROLYTE_MASS_FLUXES(...
 Act_coeffs_1 , Act_coeffs_2, Mole_densities_1, Mole_densities_2, Elec_pot_1, Elec_pot_2, ...
 cell_y_size_1, cell_y_size_2, Properties , Pointer, Constants , Species, Flags) %#codegen

 266

%% SUMMARY: FUNC_ELECTROLYTE_MASS_FLUXES
% Purpose: Compute the mass fluxes in the electrolyte solution, in the y-direction, due to diffusion and
% migration. This function adresses one pair of cells (one flux) per call.
% Author: Rick Stroman

%% NOTES
%
% (1) Mass fluxes are returned in units kg/(m^2 s) assuming the inputs to the function are:
% temperature in K, mole density in kmol/m^3, electric potential in V, binary diffusivity in m^2/s,
% molar transport coefficient in m/s and distances between discretizaiton centers in m. Activity
% coefficients have no units.
%
% (2) This function accounts for transport due to activity and electric potential gradients.
%
% (3) The molar flux of water is that which balances the diffusion of solutes; note that because it
% is neutral, there is no water migration flux.
%
% (4) The "1" and "2" notation comes from the assumption that positive fluxes are directed from
% the anode to the cathode, and the positive y direction is from anode to cathode. The gradient is
% calculated as (property_2 - property_1) / (location_2 - location_1), where 1 is closer to the anode
% than 2. Note that the fluxes calculated in this function flow in the direction opposite the
% gradient, so there are minus signs in front of the gradient terms.
%
% ---------------------------
% | |
% | |
% | * Properties_2 |
% | |
% | ^ Flux |
% | | |
% ------------|--------------
% | | | |
% | | |
% | * Properties_1 | | cell_y_size_1
% | | |
% | | |

 267

% | | |
% ---------------------------
%
% (5) The squeeze function applied to the electrolyte solution properties produces a matrix which is
% indexed (x_d, s_i), so that is the format of Act_coeffs and Mole_densities

%% 1. CALCULATE LOCALLY USEFUL QUANTITIES

Activities_1 = zeros(Species.num,1);
Activities_2 = zeros(Species.num,1);

% Calculate activities of all species in (:,y_1,:) and (:,y_2,:)
Activities_1 = Act_coeffs_1 .* Mole_densities_1;
Activities_2 = Act_coeffs_2 .* Mole_densities_2;

% Calculate the distance between the centers of the two cells defining the flux across thier boundary.
one_over_delta_y = 2 / (cell_y_size_1 + cell_y_size_2);

% Calculate the mole density of each species at the boundary between cells, assuming a linear gradient.
% Same process as above.
Boundary_Mole_densities = Mole_densities_2 - ...
 0.5 * cell_y_size_2 * (Mole_densities_2 - Mole_densities_1) * one_over_delta_y;

%% 2. CALCULATE THE DIFFUSION FLUX OF EACH SPECIES FROM Y-DISCRETIZATION "1" TO Y-DISCRETIZATION "2"

% Molar flux due to diffusion in response to the activity gradient (this is a vector). See Ref [1] pg
% 29. Sign check: When Activities_1 > Acitivities_2, then the flux should be positive. Example: when the
% activity in asln_a > asln, then the flow should be from asln_a to asln.
Mole_fluxes_diffusion = Flags.diffusion * Properties.Diffusivities .* -(Activities_2 - Activities_1) ...
 * one_over_delta_y; % kmol/(m^2 s)
%Mole_fluxes_diffusion = Flags.diffusion * Properties.Diffusivities .* -(Mole_densities_2 -
Mole_densities_1) * one_over_delta_y; % kmol/(m^2 s)

% The water flux cannot be calculated accurately using Fick's law because the concentration is enormous

 268

% compared to everything else, and changes slightly from one cell to the next. Zero out the erroneous
% mole flux of water. Calculate the mass flux of water in step #4 and stick it into the mass flux vector
% then.
Mole_fluxes_diffusion(Pointer.species.H2O,1) = 0;

% Calculate the mass fluxes of non-water species
Mass_fluxes_diffusion = Mole_fluxes_diffusion(1:Species.num,1) .* Properties.Molar_mass; % kg/(m^2 s)

% The net diffusion mass flux must be zero to conserve momentum, so we use water to balance the mass
% fluxes of everything else. Solutes go one way, and water goes the other way to keep the momentum
% fluxes balanced.

% We want sum(Y_k * rho * v_k) = 0 and mass_flux_diffusion_H2O = sum(mass_flux_diffusion_k) where
% k ~= 0

% Replace the erroneous water diffusion mass flux with the opposite of the total solute mass flux
Mass_fluxes_diffusion(Pointer.species.H2O,1) = - Properties.Molar_mass_T * Mole_fluxes_diffusion;

% Use the water mass flux to find the water mole flux
Mole_fluxes_diffusion(Pointer.species.H2O,1) = Mass_fluxes_diffusion(Pointer.species.H2O,1) ...
 / Properties.Molar_mass(Pointer.species.H2O);

%% 3. CALCULATE THE MIGRATION FLUX OF EACH SPECIES FROM Y-DISCRETIZATION "1" TO Y-DISCRETIZATION "2"

% Molar fluxes due to migration in response to the electric potential gradient (this is a vector). See
% Ref [1] pg 29. Note that z_i * F / (R * T) gives the mobility due to the Nernst - Einstein relation,
% and the mobility is the terminal velocity of an ion in solution in response to a force of 1 N... or
% alternatively, in response to a an electric field (potential gradient) of 1 V. See Ref [1] pg 66 and
% Ref [2] pg 11 and 283. The complete equation for migration is discussed in Ref [2] chapter 11
% "Infinitely dilute solutions".
Mole_fluxes_migration = Properties.Diffusivities * Constants.FoRT ...
 .* Properties.Electric_charge .* Boundary_Mole_densities ...
 * -(Elec_pot_2 - Elec_pot_1) * one_over_delta_y;

 269

% Calculate the mass fluxes due to migration
Mass_fluxes_migration = Mole_fluxes_migration .* Properties.Molar_mass; % kg/(m^2 s)

%% 4. CALCULATE THE TOTAL FLUX OF EACH SPECIES FROM Y-DISCRETIZATION "1" TO Y-DISCRETIZATION "2"

Mass_fluxes = Mass_fluxes_diffusion + Mass_fluxes_migration; % kg/(m^2 s)

end

function [Mass_fluxes_a, Mass_fluxes_c, mig_mole_flux_Na, dif_mole_flux_Na] = ...
 FUNC_MEMBRANE_MASS_FLUXES(M_int_a , M_int_c, thickness_m, Properties,...
 Constants, Species, Pointer, Flags, Grid_size) %#codegen

%% SUMMARY: FUNC_MEMBRANE_MASS_FLUXES
% Purpose: Compute the molar fluxes of each species through the membrane.
% Author: Rick Stroman

%% NOTES
%
% (1) Mass fluxes are returned in units kg/(m^2 s) assuming the inputs to the function are:
% temperature in K, molar density in kmol/m^3, electric potential in V, binary diffusivity in m^2/s
% and molar transport coefficient in m/s. Mole fractions and activity coefficients have no units.
%
% (2) At present the only species considered are Na+ and H2O. The rate of Na+ transport is
% calculated from the membrane conductivity and potential gradient. The rate of H2O transport is
% calculated by assuming all of the H2O flux is due to electroosmotic drag.
%
% (3) Positive fluxes are directed from the anode to the cathode, and the positive direction is from
% anode to cathode.

%% 1. CALCULATE THE DIFFUSION AND MIGRATION MASS FLUXES THROUGH THE MEMBRANE

 270

% Set the cation mole fractions... if we allow H+, these will be solved for and become inputs to the
% function.
M.Mole_fracs.Na = 1;
M.Mole_fracs.H = 0;

% Calculate the cation mobilities using equations from [3]. Note that they have F built-in, so there is
% no need to include it in the migration and diffusion equations!
u_Na = Properties.membrane.Na_mobility * (1 - Properties.membrane.k * M.Mole_fracs.H);
u_H = Properties.membrane.H_mobility * (1 - Properties.membrane.k * M.Mole_fracs.Na);

% Calculate the electric potential and concentration gradients.
elec_grad = (M_int_c.elec_pot - M_int_a.elec_pot) / thickness_m;
conc_grad = (M_int_c.Mole_densities(:,Species.membrane.loc_cathode) - ...
 M_int_a.Mole_densities(:,Species.membrane.loc_anode));

% Migration fluxes
mig_mole_flux_Na = ...
 -Properties.electric_charge.Na * u_Na * M.Mole_fracs.Na * Properties.membrane.SO3_density * elec_grad;
mig_mole_flux_H = ...
-Properties.electric_charge.H * u_H * M.Mole_fracs.H * Properties.membrane.SO3_density * elec_grad;

% Diffusion fluxes
dif_mole_flux_Na = -u_Na / Constants.faraday * Constants.ideal_gas * Constants.temperature ...
 * conc_grad(:,Pointer.membrane.species.Na);
dif_mole_flux_H2O = -Properties.membrane.H2O_diffusivity * conc_grad(:,Pointer.membrane.species.H2O);
%dif_mole_flux_H = -u_H / Constants.faraday * Constants.ideal_gas * Constants.temperature * ...
% conc_grad(:,Pointer.membrane.species.H);
dif_mole_flux_H = 0; % kludge, because H+ isn't in the list of membrane species, so there is
 % no pointer for it.

% Total mass fluxes of ions
mass_flux_Na = (Flags.model.m.migration * mig_mole_flux_Na + ...
 Flags.model.m.diffusion * dif_mole_flux_Na) * Properties.molar_mass.Na;
mass_flux_H = (Flags.model.m.migration * mig_mole_flux_H + ...

 271

 Flags.model.m.diffusion * dif_mole_flux_H) * Properties.molar_mass.H;

%% 2. CALCULATE THE ELECTRO-OSMOTIC DRAG MASS FLUX OF H2O THROUGH THE MEMBRANE

% Electro-osmotic drag flux of H2O
EOD_mole_flux_H2O = mig_mole_flux_Na * Properties.membrane.electro_drag;

%% 3. CALCULATE THE PERMEATION MASS FLUX OF H2O THROUGH THE MEMBRANE

if mean(M_int_a.press) > mean(M_int_c.press)
 water_mass_density = M_int_a.mass_density * M_int_a.Mass_fracs(:,Pointer.anode.species.H2O);
else
 water_mass_density = M_int_c.mass_density * M_int_c.Mass_fracs(:,Pointer.cathode.species.H2O);
end

permeation_mass_flux_H2O = -Properties.membrane.permeability * ...
 (M_int_c.press - M_int_a.press) * water_mass_density;

%% 4. TOTAL MASS FLUX OF H2O THROUGH THE MEMBRANE

% Total mass flux of H2O
mass_flux_H2O = (Flags.model.m.diffusion * dif_mole_flux_H2O + Flags.model.m.EOD * EOD_mole_flux_H2O) ...
 * Properties.molar_mass.H2O + Flags.model.m.permeation * permeation_mass_flux_H2O;

%% 4. RECAST MEMBRANE MASS FLUX VECTOR INTO MASS FLUX VECTORS WITH THE ANODE AND CATHODE SPECIES ORDERS

% Create a vector containing the water and Na+ mass fluxes
Mass_fluxes_m = [mass_flux_H2O mass_flux_Na];

Mass_fluxes_a = zeros(Grid_size.x_d_num, Species.fuel.num,1);
Mass_fluxes_c = zeros(Grid_size.x_d_num, Species.oxidizer.num,1);

% Mass fluxes based on the anode and cathode species pointers
% The negative sign in front of the cathode mass flux indicates that the mass fluxes as calculated above

 272

% are positive when flowing into the membrane from the anode side in the anode coordinate system, but
% that same mass flux flows out of the membrane and into the cathode side, which is negative in the
% cathode coordinate system.
Mass_fluxes_a(:, Species.membrane.loc_anode) = Mass_fluxes_m; % kg/(m^2 s)
Mass_fluxes_c(:, Species.membrane.loc_cathode) = -Mass_fluxes_m; % kg/(m^2 s)

end

function [mass_flux mass_density Mass_fracs charge_density] = ...
 FUNC_SCB_VALUES(Sln, Xfluxes_mass, Yfluxes_mass, Geometry, Grid_size, Species)

%% SUMMARY: FUNC_SCB_VALUES
% Purpose: This function calculates the mass density, mass fractions, charge density and total mass
% fluxes at the scalar cell boundaries for use in the continuity, N-S and species conservation equations.
% Author: Rick Stroman

%% NOTES:

% The mass and species conservation equations ensure those properties are conserved over the scalar
% cells. To evaluate the equations, we need to know the mass density, mass fractions, and total mass
% fluxes at the scalar cell boundaries. The FUNC_SCB_VALUES function calculates the properties by linear
% interpolation between cell centers (accounting for different cell sizes). The mass fluxes are the sum
% of advection, diffusion and migration mass fluxes at the boundaries. The lowest levels in each
% structure are .x and .y, which signify whether the values are at cell boundaries in the x-direction or
% y-direction.

%% 1. INITIALIZE VARIABLES STORING THE BOUNDARY PROPERTIES AND FLUXES

mass_density.x = zeros(Grid_size.x_d_num + 1, Grid_size.y_d_num);
mass_density.y = zeros(Grid_size.x_d_num , Grid_size.y_d_num + 1);

 273

mass_flux.x = zeros(Grid_size.x_d_num + 1, Grid_size.y_d_num);
mass_flux.y = zeros(Grid_size.x_d_num , Grid_size.y_d_num + 1);

Mass_fracs.x = zeros(Grid_size.x_d_num + 1, Grid_size.y_d_num, Species.num);
Mass_fracs.y = zeros(Grid_size.x_d_num, Grid_size.y_d_num + 1, Species.num);

charge_density.x = zeros(Grid_size.x_d_num + 1, Grid_size.y_d_num);
charge_density.y = zeros(Grid_size.x_d_num , Grid_size.y_d_num + 1);

%% 2. CALCULATE PROPERTIES AT THE SCALAR CELL BOUNDARIES

% Calculate the value at each cell boundary as the linear average of the values in the two adjacent cell
% centers, weighted to account for the boundary not necessarily being halfway between the centers.

% PROPERTIES AT THE x-DIRECTION SCALAR CELL BOUNDARIES

% Calculate the value at each cell boundary, starting with the inlet and ending with the outlet. The
% values at the inlet and outlet are the average between a ghost cell and a real cell. This excludes the
% ghost cells along the electrode and membrane.

for x_d = 1 : Grid_size.x_d_num + 1

 % Distance between scalar cell centers in the x-direction
 one_over_x_step = 1 / (Geometry.x_d_size(x_d) + Geometry.x_d_size(x_d+1));

 for y_d = 2 : Grid_size.y_d_num + 1

 % Note that a 1/2 that appears in both the numerator and denominator of the gradients below
 % has been dropped...
 mass_density.x(x_d,y_d-1) = Sln.mass_density(x_d,y_d) ...
 + Geometry.x_d_size(x_d) * (Sln.mass_density(x_d+1,y_d) - ...
 Sln.mass_density(x_d,y_d)) * one_over_x_step;

 274

 charge_density.x(x_d,y_d-1) = Sln.charge_density(x_d,y_d) ...
 + Geometry.x_d_size(x_d) * (Sln.charge_density(x_d+1,y_d) - ...
 Sln.charge_density(x_d,y_d)) * one_over_x_step;

 for s_i = 1 : Species.num

 Mass_fracs.x(x_d,y_d-1,s_i) = Sln.Mass_fracs(x_d,y_d,s_i) ...
 + Geometry.x_d_size(x_d) * (Sln.Mass_fracs(x_d+1,y_d,s_i) - ...
 Sln.Mass_fracs(x_d,y_d,s_i)) * one_over_x_step;

 end

 end
end

% PROPERTIES AT THE y-DIRECTION SCALAR CELL BOUNDARIES

% Calculate the value at each cell boundary, starting with the electrode interface and ending at the
% membrane interface. The values at the electrode and membrane interfaces are averages of a ghost cell
% and a real cell. This excludes the ghost cells along the inlet and outlet.

for x_d = 2 : Grid_size.x_d_num + 1
 for y_d = 1 : Grid_size.y_d_num + 1

 % Distance between scalar cell centers in the y-direction
 one_over_y_step = 1 / (Geometry.y_d_size(y_d) + Geometry.y_d_size(y_d+1));

 mass_density.y(x_d-1,y_d) = Sln.mass_density(x_d,y_d) ...
 + Geometry.y_d_size(y_d) * (Sln.mass_density(x_d,y_d+1) ...
 - Sln.mass_density(x_d,y_d)) * one_over_y_step;

 charge_density.y(x_d-1,y_d) = Sln.charge_density(x_d,y_d) ...
 + Geometry.y_d_size(y_d) * (Sln.charge_density(x_d,y_d+1) ...
 - Sln.charge_density(x_d,y_d)) * one_over_y_step;

 275

 for s_i = 1 : Species.num

 Mass_fracs.y(x_d-1,y_d,s_i) = Sln.Mass_fracs(x_d,y_d,s_i) ...
 + Geometry.y_d_size(y_d) * (Sln.Mass_fracs(x_d,y_d+1,s_i) ...
 - Sln.Mass_fracs(x_d,y_d,s_i)) * one_over_y_step;

 end

 end
end

%% 3. CALCULATE MASS FLUXES AT THE SCALAR CELL BOUNDARIES

% Sum the advection (rho*v), diffusion and migration mass fluxes. The sums of diffusion and migration
% are stored in the Xfluxes and Yfluxes arrays, having been calculated beforehand by another function.

% MASS FLUXES AT THE SCALAR CELL BOUNDARIES IN THE x-DIRECTION

for x_d = 1 : Grid_size.x_d_num + 1 % Includes fluxes at inlet and exit
 for y_d = 2 : Grid_size.y_d_num + 1
 mass_flux.x(x_d,y_d-1) = mass_density.x(x_d,y_d-1) * Sln.x_vel(x_d,y_d) ...
 + sum(Xfluxes_mass(x_d,y_d-1,:));
 end
end

% MASS FLUXES AT THE SCALAR CELL BOUNDARIES IN THE y-DIRECTION

for x_d = 2 : Grid_size.x_d_num + 1
 for y_d = 1 : Grid_size.y_d_num + 1
 mass_flux.y(x_d-1,y_d) = mass_density.y(x_d-1,y_d) * Sln.y_vel(x_d,y_d) ...
 + sum(Yfluxes_mass(x_d-1,y_d,:));
 end
end

 276

end

function [x_dir_x_vel, y_dir_y_vel] = FUNC_VCB_VALUES(Sln, Grid_size)

%% SUMMARY: FUNC_VCB_VALUES
% Purpose: Calculate the velocities at the boundaries of the velocity cells as a linear average of
% the velocities in the adjacent cell centers.
% Author: Rick Stroman

%% 1. INITIALIZE VARIABLES

x_dir_x_vel = zeros(Grid_size.x_d_num + 1, Grid_size.y_d_num);
y_dir_y_vel = zeros(Grid_size.x_d_num + 1, Grid_size.y_d_num);

%% 2. CALCULATE PROPERTIES AT THE BOUNDARIES

for x_d = 2 : Grid_size.x_d_num + 2 % The additional two cells are guard cells for BC's

 for y_d = 2 : Grid_size.y_d_num + 1 % The additional two cells are guard cells for BC's

 x_r = x_d - 1; y_r = y_d - 1;

 x_dir_x_vel(x_r,y_r) = 0.5 * (Sln.x_vel(x_d,y_d) + Sln.x_vel(x_d-1,y_d));
 y_dir_y_vel(x_r,y_r) = 0.5 * (Sln.y_vel(x_d,y_d) + Sln.y_vel(x_d,y_d-1));

 end

end

 277

function [Mass_fluxes, delta_phi] = FUNC_REACTION_FLUXES(phi_e, Interface, Srxn, Properties, ...
 Grid_size, Species, Constants)

%% SUMMARY: FUNC_REACTION_FLUXES
% Purpose: Compute the mass fluxes of species from electrode.
% Author: Rick Stroman

%% NOTES:

% (1) Mass fluxes are returned in units kg/(m^2 s) assuming the temperature is in K, mole density in
% kmol/m^3, and electric potential in V.
%
% (2) The rate expression for each reaction follows the form laid out in references [1] pg 210 and
% [2] page 2388. For the chemical reactions, there are simply forward and reverse reaction rate
% constants and concentration dependencies. For the charge transfer (electrochemical) reactions,
% there are also activation energy barriers created by the electric potential difference between the
% electrode and solution.
%
% (4) The electric potential of the electrode and interface are passed into this function as vectors
% covering the whole length of the channel, so the function returns a matrix of species mass fluxes,
% one species indexed vector for each x-discretization.
%
% (5) The electron transfer reactions must be reversible to correctly predict the open circuit
% voltage of the cell... even if the reverse reaction has a very, very slow rate and the overall
% reaction is nearly irreversible.

%% 1. SET UP AND INITIALIZE SOME NECESSARY SHARED PARAMETERS

x_d_range = 1 : Grid_size.x_d_num;
species_range = 1 : Species.num;

% Initialize the mass and mole fluxes of each species from the electrode to the interface
Mole_fluxes = zeros(Grid_size.x_d_num , Species.num);
Mass_fluxes = zeros(Grid_size.x_d_num , Species.num);

 278

reaction_rate = zeros(Grid_size.x_d_num, 4);

% Make a vector containing the electrode potential at each point in x-direction
phi_e = phi_e * ones(Grid_size.x_d_num,1);

% Calculate the potential drop across the electrode-solution interface
delta_phi = phi_e - Interface.elec_pot;

%% 2. CALCULATE THE RATES AND FLUXES

for r_i = 1:length(Srxn.rxn) % Cycle through all of the reactions, one at a time

 % Create the concentration dependence terms for the anodic and cathode directions, if the are specified
 % by the user. Otherwise the default dependence is 1, i.e. no dependence.

 if ~isempty(Srxn.rxn(r_i).conc_dependence_r)
 Conc_dependence_r = prod(Interface.Mole_densities(x_d_range,Srxn.rxn(r_i).conc_dependence_r),2);
 else
 Conc_dependence_r = ones(Grid_size.x_d_num , 1);
 end

 if ~isempty(Srxn.rxn(r_i).conc_dependence_f)
 Conc_dependence_f = prod(Interface.Mole_densities(x_d_range,Srxn.rxn(r_i).conc_dependence_f),2);
 else
 Conc_dependence_f = ones(Grid_size.x_d_num , 1);
 end

 rate_f = Srxn.rxn(r_i).k_f * Conc_dependence_f(x_d_range,1) .* exp(Srxn.rxn(r_i).e_rds * ...
 Srxn.rxn(r_i).beta_f * Constants.FoRT * delta_phi(x_d_range,1));
 rate_r = Srxn.rxn(r_i).k_r * Conc_dependence_r(x_d_range,1) .* exp(-Srxn.rxn(r_i).e_rds * ...
 Srxn.rxn(r_i).beta_r * Constants.FoRT * delta_phi(x_d_range,1));

 reaction_rate = rate_f - rate_r;

 279

 % TOTAL REACTION MOLE FLUXES TO THE SURFACE

 % Calculate the mole fluxes at each location down the channel and add them to the values from previous
 % reactions to give the total so far.

 Mole_fluxes(x_d_range,species_range) = Mole_fluxes(x_d_range,species_range) ...
 + Srxn.rxn(r_i).active * reaction_rate(x_d_range,1) * Srxn.rxn(r_i).Reaction_stoich; % kmol/(m^2 s)

end

%% 4. ACCOUNT FOR ROUGHNESS OF CATALYST SURFACE

Mole_fluxes = Srxn.param.area_ratio * Mole_fluxes;

%% 5. CONVERT THE TOTAL MOLE FLUXES INTO MASS FLUXES FOR OUTPUT FROM THE FUNCTION

for x_d = 1:Grid_size.x_d_num
 Mass_fluxes(x_d,species_range) = Mole_fluxes(x_d,species_range)' .* Properties.Molar_mass; % kg/(m^2 s)
end

%% REFERENCES
% [1] Newman, J. S. and K. E. Thomas-Alyea (2004). Electrochemical systems. Hoboken, N.J., J. Wiley.
% [2] Kee, R. J., H. Y. Zhu, et al. (2005). "Solid-oxide fuel cells with hydrocarbon fuels."
% Proceedings of the Combustion Institute 30: 2379-2404.

end

 280

function [d_SV] = FUNC_RESIDUALS(State, Yfluxes, Xfluxes, Membrane_mass_flux, SCB, VCB, ...
 Pointer, Flags, Geometry, Grid_size, Species, Properties, Constants) %#codegen

d_SV = zeros(Grid_size.state_vars_num,1);

% Renaming the variables isn't very efficient, but the code below would be almost
% unreadable with the extra text.
A_int = State.A_int;
Asln = State.Asln;
M_int_a = State.M_int_a;
M_int_c = State.M_int_c;
Csln = State.Csln;
C_int = State.C_int;

%% 1. SOLVE FOR PRESSURE USING CONTINUITY

% CONTINUITY - SOLVE RESIDUALS ASSOCIATED WITH PRESSURE del dot (rho*v) = - d_rho/d_t -------------

% Note that this section uses "real" indices x_r and y_r which exclude ghost cells, because it balances
% mass over real cells and does not need the ghost cells. The fluxes between ghost cells and real cells
% at the periphery were calculated beforehand and are included in SCB.

for x_r = 1 : Grid_size.x_d_num

 for y_r = 1 : Grid_size.y_d_num

 % NOTE: Written as d rho / dt = - (d J_x / dx + d J_y / dy) where J is the total mass flux
 % (advection, migration and diffusion). Example: For the first x-discretization, we want the mass
 % fluxes in and out in the x-direction, which are at x_d = 1 and x_d = 2. Since x_d starts at x_d =
 % 2, this is what we get below.

 % Continuity in the bulk cells

 % Asln

 281

 d_SV(Pointer.asln.press(x_r,y_r)) = ... % This is d rho / d t
 (...
 ... % x-direction mass flux due to advection, migration and diffusion (out) - (in)
 - (SCB.asln.mass_flux.x(x_r+1,y_r) - SCB.asln.mass_flux.x(x_r,y_r)) / Geometry.x_d_size(x_r+1)...
 ... % y-direction mass flux due to advection, migration and diffusion (upwind) (out)-(in)
 - (SCB.asln.mass_flux.y(x_r,y_r+1) - SCB.asln.mass_flux.y(x_r,y_r)) / Geometry.y_d_size(y_r+1));

 % Csln
 d_SV(Pointer.csln.press(x_r,y_r)) = ... % This is d rho / d t
 (...
 ... % x-direction mass flux due to advection, migration and diffusion (out) - (in)
 - (SCB.csln.mass_flux.x(x_r+1,y_r) - SCB.csln.mass_flux.x(x_r,y_r)) / Geometry.x_d_size(x_r+1)...
 ... % y-direction mass flux due to advection, migration and diffusion (upwind) (out)-(in)
 - (SCB.csln.mass_flux.y(x_r,y_r+1) - SCB.csln.mass_flux.y(x_r,y_r)) / Geometry.y_d_size(y_r+1));

 end

 % Continuity at the membrane interfaces

 % Anode solution-membrane interface.
 % (total advection mass flux in) + (total migration + diffusion mass fluxes in)
 % - (total membrane mass flux out) = 0
 d_SV(Pointer.m_int_a.press(x_r)) = SCB.asln.mass_flux.y(x_r,Grid_size.y_d_num+1) ...
 - Membrane_mass_flux.am(x_r);

 % Membrane - cathode solution interface.
 % (total membrane mass flux in) - (total advection mass flux out)
 % - (migration + diffusion mass fluxes out) = 0
 % Note that in this coordinate system the membrane flux is negative, because it is leaving the membrane!
 d_SV(Pointer.m_int_c.press(x_r)) = SCB.csln.mass_flux.y(x_r,Grid_size.y_d_num+1) ...
 - Membrane_mass_flux.cm(x_r);

end

% Store d_rho/dt for each bulk cell in a local variable for use later in the momentum and species

 282

% conservation equations. First initialize these local variables to zero. Include extra rows and
% columns of zeros at the edges for the membrane interface ghost cells and outlet ghost cells... this way
% when d_rho/dt is found at the centers of the velocity cells near the edge of the model domain, there is
% a second value for the average and the code won't crash.

d_rho_dt.asln = zeros(Grid_size.x_d_num+1,Grid_size.y_d_num);
d_rho_dt.csln = zeros(Grid_size.x_d_num+1,Grid_size.y_d_num);

d_rho_dt.asln(1:Grid_size.x_d_num,:) = d_SV(Pointer.asln.press(:,:));
d_rho_dt.csln(1:Grid_size.x_d_num,:) = d_SV(Pointer.csln.press(:,:));

% Make d_rho_dt in the ghost cells at outlet the same as the last of the real cells.
d_rho_dt.asln(Grid_size.x_d_num+1,:) = d_SV(Pointer.asln.press(Grid_size.x_d_num,:));
d_rho_dt.csln(Grid_size.x_d_num+1,:) = d_SV(Pointer.csln.press(Grid_size.x_d_num,:));

%% 2. SOLVE FOR VELOCITY USING THE 2D N-S EQUATIONS

% The 2D Navier-Stokes equation is evaluated over each velocity cell to solve for the velocity in
% that cell.

% CALCULATE THE SHEAR STRESS DERIVATIVES IN EACH REAL CELL

% Start by initializing the shear stress derivatives
d2_vx_d2_x_asln = zeros(Grid_size.x_d_num, Grid_size.y_d_num);
d2_vx_d2_x_csln = zeros(Grid_size.x_d_num, Grid_size.y_d_num);
d2_vx_d2_y_asln = zeros(Grid_size.x_d_num, Grid_size.y_d_num);
d2_vx_d2_y_csln = zeros(Grid_size.x_d_num, Grid_size.y_d_num);

d2_vy_d2_y_asln = zeros(Grid_size.x_d_num, Grid_size.y_d_num);
d2_vy_d2_y_csln = zeros(Grid_size.x_d_num, Grid_size.y_d_num);
d2_vy_d2_x_asln = zeros(Grid_size.x_d_num, Grid_size.y_d_num);
d2_vy_d2_x_csln = zeros(Grid_size.x_d_num, Grid_size.y_d_num);

% Evaluate the shear stress derivatives

 308

 DBFC_SETUP_REACTION_RATES
 DBFC_INITIALIZE

 Measured_current_density_loop = Measured_currents{:,curve_index} ...
 / (1000*Geometry.channel_length*Geometry.channel_width);

 % Solve the model for each cell voltage specified in Cathode_electric_potential
 for voltage_index = 1:length(Voltages_loop);

 % SET THE CELL VOLTAGE AND CALL THE REQUESTED SOLVER TO SOLVE THE MODEL

 BC.cathode.elec_pot = Voltages_loop(voltage_index);

 disp('-----------------------------')
 disp(['Solving point number: ' num2str(voltage_index) '...'])
 DBFC_KINSOL

 % Store the current density from this voltage in an array to return from this function
 Calculated_current_density_loop(voltage_index,1) = -total_cathode_current ...
 / (Geometry.channel_length*Geometry.channel_width);

 % Display status in the command window so we know what is going on
 disp(['Point number ', num2str(voltage_index), ' of ', num2str(length(Voltages_loop)), ...
 ' is complete.'])
 disp(['Cell voltage is: ' num2str(BC.cathode.elec_pot), ' V'])
 disp(['Total cell current is: ' num2str(total_cathode_current) ' A'])
 disp(['Average cell current density is: ' ...
 num2str(Calculated_current_density_loop(voltage_index)) ' A/m^2'])
 disp(['Time since start of calibration: ' num2str(toc/60) ' min']);
 disp('-----------------------------')

 if Flags.setup.reuse_previous_soln && voltage_index < length(Voltages_loop)

 % Configure the solution from the previous voltage to be the initial guess for the next voltage

 309

 if Flags.setup.adjust_V_prev_soln
 % Adjust the solution from the previous voltage to form the initial guess for the next point
 V_cell_old = Cathode_electric_potential(voltage_index);
 V_cell_new = Cathode_electric_potential(voltage_index+1);
 SV_initial = FUNC_ADJUST_SOLN_VOLTAGE(SV_steady_state, V_cell_old, V_cell_new, ...
 Scales, Pointer, Geometry);
 else
 % Use the solution from the previous voltage as-is
 SV_initial = SV_steady_state;
 end

 end

 end % Loop to walk down the polarization curve, one cell voltage at a time

 % Plot error between current density predicted by the present set of fitted
 % parameters and the literature values
 figure(curve_index);
 hold on;
 plot(Measured_current_density_loop, Voltages_loop , 'b-s', Calculated_current_density_loop, ...
 Voltages_loop, 'r-o')
 ylabel('Cell Voltage [V]')
 xlabel('Current Density [A/m^2]')
 legend('Measured', 'Calculated')
 title('Fit Results')
 hold off;

 Calculated_current_densities = vertcat(Calculated_current_densities, Calculated_current_density_loop);
 Measured_current_densities = vertcat(Measured_current_densities, Measured_current_density_loop');

 clear Voltages_loop Measured_current_density_loop Calculated_current_density_loop

end

%% PREPARE THE ERRORS FOR OUTPUT

 310

Errors = error_scales .* (Calculated_current_densities - Measured_current_densities);
Errors_recent = Errors;

disp(' ')
disp(['2-norm of fit residuals is: ' num2str(norm(Errors_recent))])
disp(' ')

if Flags.setup.save_final_output
 c = clock;
 filename_identifier = strcat(num2str(c(1)), '-', num2str(c(2)), '-', num2str(c(3)), '-', ...
 num2str(c(4)), 'h-', num2str(c(5)), 'm-', num2str(c(6)), 's');
 filename = strcat('Results_', filename_identifier, '.mat');
 save(filename); disp(' '); disp(['Results were saved in file: ' filename]); disp(' ');
end

end

 311

Chapter 8: Bibliography

1. Urian, R.C., et al., Direct Borohydride/Hydrogen Peroxide Fuel Cell

Development. Proceedings of the 43rd Power Sources Conference, 2008. 43: p.
295-298.

2. Urian, R.C., Air Independent Fuel Cells Utilizing Borohydride and Hydrogen
Peroxide. Material Research Society Symposium Proceedings, 2010. 1213.

3. Jacobson, M.M.K.a.R.W., Ventrol Alembic, 1979. 15(2).

4. Bard, A.J. and L.R. Faulkner, Electrochemical methods : fundamentals and
applications. 2nd ed. 2001, New York: Wiley. xxi, 833 p.

5. Kee, R.J., H.Y. Zhu, and D.G. Goodwin, Solid-oxide fuel cells with hydrocarbon
fuels. Proceedings of the Combustion Institute, 2005. 30: p. 2379-2404.

6. Bird, R.B., W.E. Stewart, and E.N. Lightfoot, Transport phenomena. 2nd, Wiley
international ed. 2002, New York: J. Wiley. xii, 895 p.

7. de Leon, C.P., et al., Direct borohydride fuel cells. Journal of Power Sources,
2006. 155(2): p. 172-181.

8. Amendola, S.C., et al., A novel high power density borohydride-air cell. Journal
of Power Sources, 1999. 84(1): p. 130-133.

9. Miley, G.H., et al., Direct NaBH4/H2O2 fuel cells. Journal of Power Sources,
2007. 165(2): p. 509-516.

10. Townea, S., et al., Performance of a Direct Borohydride Fuel Cell. ECS
Transactions, 2009. 25(1): p. 1951-1957.

11. Cheng, H. and K. Scott, Influence of operation conditions on direct borohydride
fuel cell performance. Journal of Power Sources, 2006. 160(1): p. 407-412.

12. Jamard, R., et al., Study of fuel efficiency in a direct borohydride fuel cell.
Journal of Power Sources, 2008. 176(1): p. 287-292.

13. Wu, H.J., et al., Influence of operation conditions on direct NaBH(4)/H(2)O(2)
fuel cell performance. International Journal of Hydrogen Energy, 2010. 35(7): p.
2648-2651.

14. de Leon, C.P., et al., A direct borohydride-peroxide fuel cell using a Pd/Ir alloy
coated microfibrous carbon cathode. Electrochemistry Communications, 2008.
10(10): p. 1610-1613.

 312

15. Urian, R.C., Expanded 3D Electrode Architecture for Low Temperature Liquid
Fuel Cells. Materials Research Society Symposium Proceedings, 2009. 1168.

16. de Leon, C.P., et al., A direct borohydride - Acid peroxide fuel cell. Journal of
Power Sources, 2007. 164(2): p. 441-448.

17. Raman, R.K., N.A. Choudhury, and A.K. Shukla, A high output voltage direct
borohydride fuel cell. Electrochemical and Solid State Letters, 2004. 7(12): p.
A488-A491.

18. Li, Z.P., et al., A fuel cell development for using borohydrides as the fuel. Journal
of the Electrochemical Society, 2003. 150(7): p. A868-A872.

19. Cheng, H., et al., Evaluation of new ion exchange membranes for direct
borohydride fuel cells. Journal of Membrane Science, 2007. 288(1-2): p. 168-
174.

20. Ma, J., N.A. Choudhury, and Y. Sahai, A comprehensive review of direct
borohydride fuel cells. Renewable & Sustainable Energy Reviews, 2010. 14(1):
p. 183-199.

21. Cao, D.X., et al., Kinetics of hydrogen peroxide electroreduction on Pd
nanoparticles in acidic medium. Journal of Electroanalytical Chemistry, 2008.
621(1): p. 31-37.

22. Choudhary, V.R., C. Samanta, and T.V. Choudhary, Factors influencing
decomposition of H2O2 over supported Pd catalyst in aqueous medium. Journal
of Molecular Catalysis a-Chemical, 2006. 260(1-2): p. 115-120.

23. Choudhury, N.A., et al., An alkaline direct borohydride fuel cell with hydrogen
peroxide as oxidant. Journal of Power Sources, 2005. 143(1-2): p. 1-8.

24. Demirci, U.B., Direct borohydride fuel cell: Main issues met by the membrane-
electrodes-assembly and potential solutions. Journal of Power Sources, 2007.
172(2): p. 676-687.

25. Merino-Jimenez, I., et al., Developments in direct borohydride fuel cells and
remaining challenges. Journal of Power Sources, 2012. 219: p. 339-357.

26. Santos, D.M.F. and C.A.C. Sequeira, On the electrosynthesis of sodium
borohydride. International Journal of Hydrogen Energy, 2010. 35(18): p. 9851-
9861.

27. Santos, D.M.F. and C.A.C. Sequeira, Sodium borohydride as a fuel for the future.
Renewable & Sustainable Energy Reviews, 2011. 15(8): p. 3980-4001.

28. Luo, N., et al., NaBH(4)/H(2)O(2) fuel cells for air independent power systems.
Journal of Power Sources, 2008. 185(2): p. 685-690.

 313

29. Lakernan, J.B., et al., The direct borohydride fuel cell for UUV propulsion
power. Journal of Power Sources, 2006. 162(2): p. 765-772.

30. Ahmed, M. and I. Dincer, A review on methanol crossover in direct methanol
fuel cells: challenges and achievements. International Journal of Energy
Research, 2011. 35(14): p. 1213-1228.

31. Li, X.L. and A. Faghri, Review and advances of direct methanol fuel cells
(DMFCs) part I: Design, fabrication, and testing with high concentration
methanol solutions. Journal of Power Sources, 2013. 226: p. 223-240.

32. Bahrami, H. and A. Faghri, Review and advances of direct methanol fuel cells:
Part II: Modeling and numerical simulation. Journal of Power Sources, 2013.
230: p. 303-320.

33. Retnamma, R., A.Q. Novais, and C.M. Rangel, Kinetics of hydrolysis of sodium
borohydride for hydrogen production in fuel cell applications: A review.
International Journal of Hydrogen Energy, 2011. 36(16): p. 9772-9790.

34. Liu, B.H. and Z.P. Li, Current status and progress of direct borohydride fuel cell
technology development. Journal of Power Sources, 2009. 187(2): p. 291-297.

35. Raman, R.K. and A.K. Shukla, A direct borohydride/hydrogen peroxide fuel cell
with reduced alkali crossover. Fuel Cells, 2007. 7(3): p. 225-231.

36. Rostamikia, G., et al., First-principles based microkinetic modeling of
borohydride oxidation on a Au(111) electrode. Journal of Power Sources, 2011.
196(22): p. 9228-9237.

37. Rostamikia, G. and M.J. Janik, Borohydride Oxidation over Au(111): A First-
Principles Mechanistic Study Relevant to Direct Borohydride Fuel Cells. Journal
of the Electrochemical Society, 2009. 156(1): p. B86-B92.

38. Chatenet, M., M.B. Molina-Concha, and J.P. Diard, First insights into the
borohydride oxidation reaction mechanism on gold by electrochemical
impedance spectroscopy. Electrochimica Acta, 2009. 54(6): p. 1687-1693.

39. Finkelstein, D.A., et al., Rotating Disk Electrode (RDE) Investigation of BH4-
and BH3OH- Electro-oxidation at Pt and An: Implications for BH4- Fuel Cells.
Journal of Physical Chemistry C, 2009. 113(45): p. 19700-19712.

40. Santos, D.M.F. and C.A.C. Sequeira, Chronopotentiometric study of the
electrooxidation of borohydride anion in alkaline medium. Diffusion in Solids
and Liquids, 2006. 258-260: p. 333-339.

41. Chatenet, M., F.H.B. Lima, and E.A. Ticianelli, Gold is not a Faradaic-Efficient
Borohydride Oxidation Electrocatalyst: An Online Electrochemical Mass

 314

Spectrometry Study. Journal of the Electrochemical Society, 2010. 157(5): p.
B697-B704.

42. Freitas, K.S., et al., Mass transport effects in the borohydride oxidation reaction-
Influence of the residence time on the reaction onset and faradaic efficiency.
Catalysis Today, 2011. 170(1): p. 110-119.

43. Concha, B.M., et al., In situ infrared (FTIR) study of the borohydride oxidation
reaction. Electrochemistry Communications, 2009. 11(1): p. 223-226.

44. Concha, B.M., et al., In Situ Infrared (FTIR) Study of the Mechanism of the
Borohydride Oxidation Reaction on Smooth Pt Electrode. Journal of Physical
Chemistry C, 2011. 115(25): p. 12439-12447.

45. Elder, J.P. and A. Hickling, Anodic Behaviour of Borohydride Ion. Transactions
of the Faraday Society, 1962. 58(477): p. 1852-&.

46. Gardiner, J.A. and J.W. Collat, Kinetics of Stepwise Hydrolysis of
Tetrahydroborate Ion. Journal of the American Chemical Society, 1965. 87(8): p.
1692-&.

47. Gardiner, J.A. and J.W. Collat, Polarography Fo Tetrahydroborate Ion . Effect of
Hydrolysis on System. Inorganic Chemistry, 1965. 4(8): p. 1208-&.

48. Mirkin, M.V., H.J. Yang, and A.J. Bard, Borohydride Oxidation at a Gold
Electrode. Journal of the Electrochemical Society, 1992. 139(8): p. 2212-2217.

49. Chatenet, M., et al., Kinetics of sodium borohydride direct oxidation and oxygen
reduction in sodium hydroxide electrolyte - Part I. BH4- electro-oxidation on Au
and Ag catalysts. Electrochimica Acta, 2006. 51(25): p. 5459-5467.

50. Krishnan, P., et al., Rotating ring-disc electrode (RRDE) investigation of
borohydride electro-oxidation. Journal of Power Sources, 2008. 182(1): p. 106-
111.

51. Concha, B.M., et al., In situ infrared (FTIR) study of the mechanism of the
borohydride oxidation reaction. Physical Chemistry Chemical Physics, 2010.
12(37): p. 11507-11516.

52. Rostamikia, G. and M.J. Janik, Direct borohydride oxidation: mechanism
determination and design of alloy catalysts guided by density functional theory.
Energy & Environmental Science, 2010. 3(9): p. 1262-1274.

53. Cheng, H. and K. Scott, Determination of kinetic parameters for borohydride
oxidation on a rotating Au disk electrode. Electrochimica Acta, 2006. 51(17): p.
3429-3433.

 315

54. Liu, B.H., J.Q. Yang, and Z.P. Li, Concentration ratio of [OH-]/[BH4-]: A
controlling factor for the fuel efficiency of borohydride electro-oxidation.
International Journal of Hydrogen Energy, 2009. 34(23): p. 9436-9443.

55. Flatgen, G., et al., Autocatalytic mechanism of H2O2 reduction on Ag electrodes
in acidic electrolyte: experiments and simulations. Electrochimica Acta, 1999.
44(25): p. 4499-4506.

56. Doblhofer, K., et al., Autocatalysis by the intermediate surface hydroxide formed
during hydrogen peroxide reduction on silver electrodes. Surface Science, 2009.
603(10-12): p. 1900-1903.

57. Adams, B.D., C.K. Ostrom, and A.C. Chen, Highly Active PdPt Catalysts for the
Electrochemical Reduction of H2O2. Journal of the Electrochemical Society,
2011. 158(4): p. B434-B439.

58. Bessette, R.R., et al., A study of cathode catalysis for the aluminium hydrogen
peroxide semi-fuel cell. Journal of Power Sources, 1999. 80(1-2): p. 248-253.

59. Pourbaix, M., Atlas of electrochemical equilibria in aqueous solutions. 2d
English ed. 1974, Houston, Tex.: National Association of Corrosion Engineers.
644 p.

60. Santos, D.M.F. and C.A.C. Sequeira, Determination of Kinetic and Diffusional
Parameters for Sodium Borohydride Oxidation on Gold Electrodes. Journal of
the Electrochemical Society, 2009. 156(5): p. F67-F74.

61. Santos, D.M.F. and C.A.C. Sequeira, Chronopotentiometric Investigation of
Borohydride Oxidation at a Gold Electrode. Journal of the Electrochemical
Society, 2010. 157(1): p. F16-F21.

62. Finkelstein, D.A., et al., Alternative Oxidants for High-Power Fuel Cells Studied
by Rotating Disk Electrode (RDE) Voltammetry at Pt, Au, and Glassy Carbon
Electrodes. Journal of Physical Chemistry C, 2011. 115(13): p. 6073-6084.

63. Weber, A.Z. and J. Newman, Transport in polymer-electrolyte membranes - I.
Physical model. Journal of the Electrochemical Society, 2003. 150(7): p. A1008-
A1015.

64. Okada, T., et al., Ion and water transport characteristics of perfluorosulfonated
ionomer membranes with H+ and alkali metal cations. Journal of Physical
Chemistry B, 2002. 106(6): p. 1267-1273.

65. Mauritz, K.A. and R.B. Moore, State of understanding of Nafion. Chemical
Reviews, 2004. 104(10): p. 4535-4585.

66. Liu, B.H. and S. Suda, Influences of fuel crossover on cathode performance in a
micro borohydride fuel cell. Journal of Power Sources, 2007. 164(1): p. 100-104.

 316

67. Okada, T., et al., Transport and equilibrium properties of Nafion (R) membranes
with H+ and Na+ ions. Journal of Electroanalytical Chemistry, 1998. 442(1-2):
p. 137-145.

68. Verma, A. and S. Basu, Experimental evaluation and mathematical modeling of a
direct alkaline fuel cell. Journal of Power Sources, 2007. 168(1): p. 200-210.

69. Sanli, A.E., M.L. Aksu, and B.Z. Uysal, Advanced mathematical model for the
passive direct borohydride/peroxide fuel cell. International Journal of Hydrogen
Energy, 2011. 36(14): p. 8542-8549.

70. Shah, A.A., et al., Mathematical modelling of direct borohydride fuel cells.
Journal of Power Sources, 2013. 221: p. 157-171.

71. Byrd, E.D. and G.H. Miley, Simulation studies of the membrane exchange
assembly of an all-liquid, proton exchange membrane fuel cell. Journal of Power
Sources, 2008. 176(1): p. 222-228.

72. Sprague, I.B. and P. Dutta, Modeling of Diffuse Charge Effects in a Microfluidic
Based Laminar Flow Fuel Cell. Numerical Heat Transfer Part a-Applications,
2011. 59(1): p. 1-27.

73. Sprague, I. and P. Dutta, Role of the diffuse layer in acidic and alkaline fuel cells.
Electrochimica Acta, 2011. 56(12): p. 4518-4525.

74. Ottonello, G., Principles of geochemistry. 1997, New York: Columbia University
Press. xii, 894 p.

75. Schumb, W.C., Hydrogen peroxide. American Chemical Society Monograph
series,. 1955, New York,: Reinhold Pub. Corp. xiii, 759 p.

76. Oran, E.S. and J.P. Boris, Numerical simulation of reactive flow. 2nd ed. 2001,
Cambridge, U.K. ; New York, NY: Cambridge University Press. xix, 529 p.

77. Newman, J.S. and K.E. Thomas-Alyea, Electrochemical systems. 3rd ed. 2004,
Hoboken, N.J.: J. Wiley. xx, 647 p.

78. Cloutier, C.R., A. Alfantazi, and E. Gyenge, Physicochemical Transport
Properties of Aqueous Sodium Metaborate Solutions for Sodium Borohydride
Hydrogen Generation and Storage and Fuel Cell Applications. Thermec 2006
Supplement, 2007. 15-17: p. 267-274.

79. Newman, J., Current Distribution on a Rotating Disk Below Limiting Current.
Journal of the Electrochemical Society, 1966. 113(12): p. 1235-&.

80. Nielsen, J.M., A.W. Adamson, and J.W. Cobble, The Self-Diffusion Coefficients
of the Ions in Aqueous Sodium Chloride and Sodium Sulfate at 25-Degrees.
Journal of the American Chemical Society, 1952. 74(2): p. 446-451.

 317

81. Poisson, A. and J. Chanu, Semi-Empirical Equations for the Partial Molar
Volumes of Some Ions in Water and Seawater. Mar. Chem., 1980. 8: p. 289-298.

82. Lakshminarayanaiah, N., Transport phenomena in membranes. 1969, New
York,: Academic Press. xi, 517 p.

83. Santos, D.M.F. and C.A.C. Sequeira, Effect of Membrane Separators on the
Performance of Direct Borohydride Fuel Cells. Journal of the Electrochemical
Society, 2012. 159(2): p. B126-B132.

84. Evans, C.E., et al., Role of conditioning on water uptake and hydraulic
permeability of Nafion (R) membranes. Journal of Membrane Science, 2006.
279(1-2): p. 521-528.

85. Gu, L.F., N. Luo, and G.H. Miley, Cathode electrocatalyst selection and
deposition for a direct borohydride/hydrogen peroxide fuel cell. Journal of Power
Sources, 2007. 173(1): p. 77-85.

86. Zhang, L., et al., Rapid and selective separation of iridium ions from aqueous
solutions using nano-Al2O3. Hydrometallurgy, 2012. 127: p. 8-15.

87. Alexeyeva, N., et al., Kinetics of oxygen reduction on gold nanoparticle/multi-
walled carbon nanotube hybrid electrodes in acid media. Journal of
Electroanalytical Chemistry, 2010. 642(1): p. 6-12.

88. Podlovchenko;, B.I. and Y.M. Maksimov, Open-circuit Potentials Established on
Platinum and God Electrodes in PtCl2-4 Solutions After the Displacement of
Copper Adatoms. Mendeleev Communications, 2013. 23(3): p. 157-159.

89. Chen, W. and S.W. Chen, Iridium-platinum alloy nanoparticles: Composition-
dependent electrocatalytic activity for formic acid oxidation. Journal of Materials
Chemistry, 2011. 21(25): p. 9169-9178.

90. Kjeang, E., et al., Hydrogen peroxide as an oxidant for microfluidic fuel cells.
Journal of the Electrochemical Society, 2007. 154(12): p. B1220-B1226.

91. CRC handbook of chemistry and physics. 1999, Chapman and
Hall/CRCnetBASE: Boca Raton, FL.

92. reviewer, U., Comments on "Modeling the Performance of an Ideal NaBH4 –
H2O2 Direct Borohydride Fuel Cell". 2013.

93. Lemmon, E.W., M.O. McLinden, and D.G. Friend, Thermophysical Properties of
Fluid Systems, in NIST Chemistry WebBook, P.J. Linstrom and W.G. Mallard,
Editors, National Institute of Standards and Technology: Gaithersburg MD,
20899.

 318

94. Santos, D.M.F. and C.A.C. Sequeira, Polymeric Membranes for Direct
Borohydride Fuel Cells: a Comparative Study. Alkaline Electrochemical Power
Sources, 2010. 25(13): p. 111-122.

95. Stroman, R.O. and G.S. Jackson, Modeling the performance of an ideal NaBH4-
H2O2 direct borohydride fuel cell. Journal of Power Sources, 2014. 247: p. 756-
769.

