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Perfect absorption in complex scattering systems
with or without hidden symmetries
Lei Chen 1,2✉, Tsampikos Kottos 3 & Steven M. Anlage 1,2✉

Wavefront shaping (WFS) schemes for efficient energy deposition in weakly lossy targets is

an ongoing challenge for many classical wave technologies relevant to next-generation tel-

ecommunications, long-range wireless power transfer, and electromagnetic warfare. In many

circumstances these targets are embedded inside complicated enclosures which lack any

type of (geometric or hidden) symmetry, such as complex networks, buildings, or vessels,

where the hypersensitive nature of multiple interference paths challenges the viability of WFS

protocols. We demonstrate the success of a general WFS scheme, based on coherent perfect

absorption (CPA) electromagnetic protocols, by utilizing a network of coupled transmission

lines with complex connectivity that enforces the absence of geometric symmetries. Our

platform allows for control of the local losses inside the network and of the violation of time-

reversal symmetry via a magnetic field; thus establishing CPA beyond its initial concept as

the time-reversal of a laser cavity, while offering an opportunity for better insight into CPA

formation via the implementation of semiclassical tools.
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Coherent perfect absorption (CPA) has been appealing to
physicists and engineers for both its fundamental and
technological relevance. On the technological level, its

implementation promises the realization of a family of wave-
based devices performing highly-selective and tunable absorption
in a manner that goes beyond the traditional concept of impe-
dance matching. On the fundamental level, CPA has initially been
associated with the concept of time-reversal (TR) symmetry, one
of the most fundamental symmetries in nature. In its original
conception CPA was proposed as the time reversal of a laser
cavity1,2: specifically, it is a lossy cavity that acts as a perfect
interferometric trap for incident radiation, provided that its
spatial distribution matches the one that would be emitted from
the same cavity if the loss mechanism is substituted by a corre-
sponding gain mechanism i.e., if the cavity turns into a laser.
Practically speaking, the CPA process works by injecting waves of
particular amplitude and phase (coherent illumination)2 from a
number of input channels and causing them to interfere and to be
completely absorbed by losses in the system. Remarkably, even an
arbitrarily small amount of loss can be used to completely absorb
the incident radiation if the system is sufficiently reverberant3.

CPA phenomena have been theoretically proposed in a number
of contributions1,4–10, but only a few experimental works have
reported a realization of CPA. At first, it was demonstrated with
free-space counter-propagating waves impinging on lossy slabs in
the form of semiconductors2, metasurfaces11, graphene-based
structures12, Parity-Time (PT) symmetric electronic circuits13

and PT-symmetric quantum well waveguides that act as both a
laser and CPA absorber14, and acoustic systems15,16. Multi-port
CPA was also achieved using a diffraction grating and lossy
plasmonic modes (this work employed a pair of nonreciprocal
scattering channels, but did not break time-reversal invariance
(TRI))17. Most of these experimental demonstrations of CPA
have generally been performed in open systems with freely
counter-propagating waves arriving on a loss center at normal
incidence. Such a configuration puts a strong constraint on the
loss required to achieve CPA (e.g., 50% single-beam absorp-
tion18), and this is a significant limitation of such free space
optical approaches. In summary, these early demonstrations used
highly symmetric structures and excitation conditions to achieve
CPA. Now the challenge is to considerably generalize the phe-
nomenon and realize CPA in complex wave settings without
special geometrical or hidden symmetries. It is clear that rever-
berations, hypersensitive complex interference, and system-
specific characteristics (e.g., bouncing orbits in stadium bil-
liards, coexistence of islands of regular dynamics in a chaotic sea
of phase space of the underlying ray settings, mixed symmetries
etc) blended with losses present in complex wave systems con-
stitute a challenge for achieving CPA. Recently a demonstration
of CPA was achieved in a multiple scattering environment with
many input and output channels, implementing effectively a TR
of a random laser19. This demonstration, however, utilized the
conventional anti-laser concept and is limited to a mechanically-
tunable loss element. It is desirable to expand the range of CPA to
include complex and chaotic scattering environments of all kinds.
Importantly, one has to investigate the applicability of CPA under
controllable TR symmetry violation conditions.

In more precise terms, there are a number of deficiencies
associated with the previous efforts to measure CPA. Some of
these schemes failed to directly measure the outgoing waves from
the system but deduced the CPA condition by calculating the
output signals based upon combinations of data (usually the
scattering matrix) taken under other (non-CPA) conditions.
Obviously, a CPA platform that will allow for a direct measure-
ment of the output signal will open up many technological
opportunities, as proposed in the photonic context3. Secondly, the

degree to which the CPA condition is achieved has only been
quantitatively demonstrated to a limited extent, typically 1 part in
102, not at all close to the expected ideal outcome. Third, the
previous experimental efforts have implemented loss in a way
that is difficult to control and systematically vary, such as the
thickness of a slab, or the temperature variation of conductivity.
Finally, all previous works have been limited to systems that
display TRI for the wave propagation (beyond the trivial TRI-
breaking effects of dissipation).

Here we experimentally demonstrate the concept of CPA in a
generalized setting where the weakly lossy cavity is a complex
scattering system without any special geometric symmetries. We
implement this scenario using a fully connected microwave net-
work constructed from coaxial cables connected by Tee-junctions.
By adding a convenient electronically tuned lossy attenuator, we
can continuously and precisely control the nearly ideal CPA
conditions, thus clearly identifying the CPA frequencies as the
complex zeros of the scattering matrix which cross the real-
frequency axis and achieving perfect absorption in this complex
scattering setting. Most importantly, our experimental setup
allows us to demonstrate that the concept of CPA can be
extended beyond the case where TR symmetry holds, greatly
expanding the impact and utility of the CPA phenomenon. The
latter can be achieved by introducing a circulator into the
microwave graph20. Such analysis proves that the concept of CPA
goes far beyond its initial conception as a "time-reversed laser”.
Our experimental platform, due to its elegant simplicity, provides
a convenient tool for the study of CPA in generic complex
scattering systems having neither geometric nor dynamical
symmetries. Importantly, it can be employed for the development
of semiclassical schemes that utilize system-specific character-
istics21–23 aiming to the optimization of CPA traps. Finally, we
have also confirmed the viability of CPAs in a two-dimensional
quarter bow-tie chaotic billiard demonstrating beyond doubt that
their formation occurs irrespective of the degree of complexity of
the scattering process. Our results are general and apply to a
variety of complex (i.e., without geometric or hidden symmetries)
wave settings, ranging from optics and microwaves to acoustics
and matter waves.

Results
Microwave networks. Complex over-moded networks have been
used to model mesoscopic quantum transport24, electromagnetic
energy propagation through multiply-connected arrays of com-
partments, and chains of coupled electromagnetic cavities25. In
wave chaos studies26–29, they have been proposed as a simple, yet
powerful platform which under specific conditions30–32 demon-
strates all generic wave phenomena of systems with underlying
classical chaotic dynamics. Their main advantage is that they
allow for an exact semiclassical expansion while their wave
scattering description is particularly transparent, inspiring the
development and implementation of semiclassical26–28,33 and
super-symmetric29–32,34 tools. Specifically, fully connected net-
works with incommensurate bond-lengths, under specific con-
ditions30–32, display universal statistical properties of various
observables which are hypothesized to be described by random
matrix theory (RMT)35,36. However, most practical systems also
show deviations from universal chaotic behavior due to short
orbits37, mixed chaotic and regular phase space38 (perhaps arising
from parallel walls or soft boundaries), inhomogeneous loss, etc.
In the case of fully connected networks with a small number of
bonds (like the graph that we have used in our experiment, see
Fig. 1) these deviations from RMT universality have already been
identified in ref. 26 (see also ref. 33,39) using semiclassics and their
origin has been traced back to the presence of short periodic
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orbits that are trapped along individual bonds of the graph.
Subsequent theoretical studies28–32,34 have further established
conditions under which RMT universality can be restored, while
experimental implementations of graphs in the microwave
realm20,40–43 have provided additional evidence of the origin of
these deviations44–46. Thus our platform, being a typical complex
scattering system without any geometric symmetries and with
controlled TR symmetries, and demonstrating both the extreme
sensitivity to perturbations and typical deviations from universal
statistical behavior45—due to system-specific features—is an ideal
surrogate for testing the viability of CPA protocols in real-world
scattering systems. Finally, to scrutinize further our statements on
the feasibility of CPA implementation in complex systems (even
in the case of chaos) we have performed additional experiments
using a two-dimensional quarter bow-tie chaotic cavity47.

Our experiment utilizes a tetrahedral microwave graph formed
by coaxial cables and Tee-junctions46,48. A variable attenuator is
attached to one internal node of the graph (see Fig. 1). The system
is coupled to external transmission lines attached to N specific
nodes of the graph. In our specific setup, we utilize N= 2. Each
coupling transmission line (labeled with a red arrow in Fig. 1) is a
coaxial cable supporting a single propagating mode connecting to
one port of the Vector Network Analyzer (VNA). The plane of
calibration of the VNA is at the point where the transmission line
attaches to the port of the graph. The experimental setup is
completed with the addition of a phase shifter. The latter will be
used in the second part of our experiments when we will launch
the appropriate CPA waveforms into the complex network (see
below).

Analysis of the CPA state. The wave transport properties of the
microwave network are succinctly summarized by the N ×N
complex scattering matrix S. The latter connects the incoming
and outgoing waves through these N channels as ϕout= Sϕin,

where ϕout (ϕin) is an N-component vector of outgoing (incom-
ing) wave amplitudes and phases that defines the scattered out-
going (incoming) field in the channel-mode space. In the case of
CPA all input energy is absorbed by the system, thus requiring
ϕout to be zero. This physical condition is mathematically for-
mulated by the requirement that Sϕin= 0 for nonzero ϕin. The
latter condition is equivalent to the requirement that the S-matrix
is not invertible i.e., it has a zero eigenvalue λS= 0. The associated
eigenvector provides the incident waveform configuration that
leads to a CPA. Note that this requirement does not violate any
constraints of the S-matrix, which in the case of CPAs is sub-
unitary due to the presence of an absorbing center inside the
scattering domain. Let us finally point out that both the scattering
matrix S= S(ω) and consequently its eigenvalues λS= λS(ω) are
functions of the frequency ω of the incident waveform. From the
mathematical perspective, one cannot exclude the possibility to
have complex ω’s as roots of the CPA condition λS(ω)= 0. These
complex zeros, however, are unphysical since they do not cor-
respond to incident propagating plane waves and therefore have
to be excluded from the set of acceptable CPA solutions. Of
course, the reality of ω is not an issue in the experimental analysis
since the measured S-matrix is always evaluated at real fre-
quencies. From the above discussion, we deduce that a specific
cavity (corresponding to a fixed connectivity, lengths of the cables
of the graph, and loss strength) might support multiple CPAs i.e.,
different frequencies ω≠ω0 for which the corresponding sub-
unitary scattering matrices SðωÞ≠Sðω0Þ have a zero eigenvalue in
their spectrum. We speculate that such multiple CPA scenarios
will have higher probability to occur when the scattering matrices
S(ω) and Sðω0Þ are uncorrelated—a property that can be quan-

tified by the rate with which the autocorrelation function CðχÞ �
Re hSα;βðωÞS�α0;β0 ðω þ χÞi

n o
goes to zero (〈 ⋯ 〉 indicates a

spectral averaging). An interesting future research effort would be
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Fig. 1 Experimental setup of the CPA state measurement. A PNA-X (network analyzer with two internal sources) is used to generate microwaves with
well-defined frequency and relative amplitudes at the two ports as the CPA state excitation signals. Coherent phase control between the two excitation
signals is realized by placing a phase shifter between port 2 of the network analyzer and the graph. The outgoing and returning waves are directly measured
by the PNA-X. On the right side of the figure is the tetrahedral microwave graph formed by coaxial cables and Tee-junctions. The four-way adapter shown
in the figure is realized by connecting two Tee-junctions together in the real experiment. One node of the graph is loaded with a variable attenuator to
provide parametric variation of the scattering system. One other node is made from either a Tee-junction (TRI) or a 3-port circulator (BTRI) to create a TRI
system or a broken TRI system, respectively.
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to identify rigorous conditions under which such multiple CPAs
can occur. We point out that a related analysis for the density of
complex zeros of the S-matrix of a chaotic system has been
recently carried out in ref. 10 (see also ref. 49).

A straightforward way to determine experimentally the CPA
conditions is via a direct evaluation of the eigenvalues {λ} of the
measured S matrix and subsequent identification of the frequency
ω for which the spectrum contains a zero. Such a direct process,
however, is tedious and in many occasions, it turns out to be
ineffective in our search for a true zero eigenvalue of the
scattering matrix. Instead, we have utilized the parametric
dependence of the S-matrix on the local attenuation strength in
order to establish the zero eigenvalue condition. Specifically, we
exploit simultaneously the frequency (wavelength) and local
losses (attenuation) as two free parameters which allow us to
exploit a larger parameter space for the identification of true S-
matrix zeros. Once the CPA condition is satisfied, the required
local loss and stimulus frequency are identified, and the
corresponding S-matrix eigenvector which defines the CPA
incoming stimulus wave amplitudes and phases (i.e., coherent
excitation) is evaluated. The corresponding injected coherent
monochromatic waveform results in a zero outgoing signal from
all N scattering channels of the system. It should be noted that
this procedure is entirely general and does not depend on the
nature of the wave physics setting or on the degree of chaoticity
that characterize the wave scattering process in the system.

Following this approach, the 2 × 2 scattering matrix of the
graph is acquired using the setup of Fig. 1 (excluding the phase
shifter). The measurement is taken from 10MHz to 18 GHz
which includes about 420 modes of the closed graph. The
calibrated S-matrix of the 2-port graph is then measured under
different attenuation settings ranging from 2 to 12 dB (which
includes the insertion loss of the variable attenuator). Implement-
ing a matrix diagonalization technique, the complex eigenvalues
λS of the S-matrix are found for each frequency and attenuator
setting. A limited number of these eigenvalues are found to
approach the origin in the complex λS plane (see Fig. 2). These
near-zero crossings are then examined in detail. Through this
method, the specific frequencies and attenuation values at the

zero-crossing CPA state, as well as the required excitation relative
magnitude and phase at the two ports (S-matrix eigenvector) are
then determined.

Using the information obtained from the S-matrix measure-
ment, the CPA conditions are identified, and we can directly test
them experimentally. To do this, a two-source VNA is used to
apply signals at the CPA frequency but with two different
amplitudes (see Fig. 1). In addition, a phase shifter is added
between port 2 of the network analyzer and the graph in order to
deliver signals with the appropriate phase difference to the two
ports of the graph. When signals are sent from both ports of the
network analyzer simultaneously, it should be possible to observe
the CPA, namely no microwave signals should emerge from the
graph through either of the ports. The VNA measures both the
outgoing and incoming waves at the plane of calibration, hence
the CPA condition can be directly confirmed with this setup.

Under the CPA condition, a nearly perfect absorption is
achieved, and it has been verified using four independent
parametric sweep measurements (see Fig. 3). Both experimental
and numerical data are plotted in the same figure. Parameters
swept include the microwave frequency (wavelength), attenuation
of the variable attenuator embedded in the graph, amplitude of
excitation signal at port 1, and phase of excitation signal at port 2,
while keeping other settings unchanged at the CPA condition.
The input wave power and outgoing wave power are directly
measured while changing the system configuration or the input
stimulus setting. The ratio of outgoing signal power over input
signal power (Pout/Pin) acquires values as low as 10−5 at the CPA
condition, and both experiment and simulation show similar
behavior upon deviation from the CPA conditions. Figure 3
demonstrates that the minimum outgoing power is measured at
precisely the CPA condition, and rapidly increases in a cusp-like
manner as any of the parameters deviate from that condition.

Due to the extreme sensitivity to perturbations and internal
system details, it is naturally difficult to create a numerical model
of a complex scattering system that reproduces all of its properties
in detail. The numerical simulations in Figs. 2, 3, and 6 are based
on S-parameter measurements of each individual component of
the graph (Tee-junctions and coaxial cables) which are then
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Fig. 2 Plot of selected S-matrix eigenvalues as a function of attenuator setting in the tetrahedral graph showing examples of near-zero-crossing
trajectories. Selected eigenvalues of the S-matrix are plotted in the complex λS plane, where the red dashed circle represents the unit circle. a Shows
experimental data, while b shows data from the simulation. Each trajectory represents one frequency (color coded), and the corresponding frequency for
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combined with the same topology as the full graph to yield high-
fidelity descriptions of the data (see Supplementary Note 3). It
should be noted that a numerical model of the graph employing
idealized components (e.g., without taking into account the
frequency dependence of their impedance) also shows the CPA
conditions, although at different frequencies and attenuator
settings. The models demonstrate that the CPA results are generic
to complex scattering systems, establishing the breadth and
generality of our results.

To emphasize the importance of having a reverberant cavity
instead of a bare attenuator only, we measure the power ratio of
the bare attenuator (see Fig. 3b inset) under the same settings as
in the complex networks. From the inset, we can see that in the
absence of the graph, the attenuator can only absorb a small
fraction of the incident power (Pout/Pin > 10−1). This illustrates
the importance of having the complex network as the cavity to
create the CPA condition.

Both the variable attenuator and the microwave graph cavity
play important roles in the formation of CPAs. At the same time,
in realistic settings there are other elements that might also
contribute to the total absorption. To rule out their influence in
the CPA protocol, we have evaluated their contribution to the
total power absorption using the idealized simulation model
shown in Fig. 4a (for further details see the Methods section).
Figure 4b shows that the voltage amplitudes at the four nodes in
the graph under CPA condition are roughly equal. As shown in
Fig. 4c, most of the power (i.e., more than 80%) is absorbed by

the variable attenuator, and the rest is absorbed by the coaxial
cables, which contribute to a spatially uniform absorption inside
the system. There is very little reactive power in the graph under
the CPA condition, as opposed to the "Anti-CPA” state where a
large amount of reactive power circulates in the system (see
Supplementary Fig. 2c). Therefore, Figure 4 exactly demonstrates
what the theory predicts: the CPA is the combined effect of
localized loss and intricate wave interferences, providing a
perfect destructive interferometric trap for the incident radiation.
The importance of these specific interferences that are induced
via the above CPA protocol, and its dominance over other
(nonuniversal) effects is even more appreciated in the case of our
tetrahedral graph. Here, short periodic orbits associated with an
enhanced backscattering at the vertices promote a trapping of the
electromagnetic field in individual cables of the graph (i.e., a
scarring effect31–33,45) which might not include the lossy element
(attenuator). Therefore, one could argue that their presence
poses fundamental difficulties for the realization of CPAs due to
a localized lossy center which is placed somewhere else inside the
cavity. Our experimental results demonstrate beyond doubt that
the interference imposed via the CPA protocol prevails over all
these nonuniversal features, leading to a (almost) perfect
absorption of the coherent incident radiation. Since the existence
of nonuniversal features of various origin is typical in any
realistic complex system, we expect that the development of a
semiclassical theory of CPA (which utilize nonuniversal
features), will lead to a better design of optimal traps. Complex
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networks can offer a fertile platform for developing and testing
such theories.

CPA in 2D chaotic quarter bow-tie billiard. To further chal-
lenge the robustness of the CPA protocols, we have also imple-
mented them using a two-dimensional quarter bow-tie cavity,
shown in the inset of Fig. 5. Such cavities are known to
demonstrate chaotic dynamics in the classical (ray) limit and have
been used in the past as an archetype system for wave chaos
studies47,50–52. The local losses have been incorporated via the
same voltage variable attenuator (see details in the “Methods”
section) which is attached to a port at the red dot position in the
schematic. There are two additional coupling ports on the top
plate of the bow-tie billiard for measurements. Following the
same experimental procedure as previously discussed, we have
identified the CPA conditions and injected the corresponding
CPA waveform into the cavity. Due to the higher mode density in
two-dimensional billiards, an interesting feature is the appearance
of two zeros λ(ω1)= λ(ω2)= 0 at the same attenuation strength
but two different frequencies. At these frequencies (keeping the
attenuation parameter fixed), the system supports two different
CPA waveforms identified by two different eigenvectors of the S-
matrix. We have confirmed this statement via a direct injection of
these specific waveforms into the cavity and measuring the cor-
responding output power versus frequency for a fixed attenuation
(see Fig. 5). At the CPA frequencies, we find that the output
power associated with these two distinct waveforms drops sharply
as one expects from a CPA. Therefore, a CPA setup can be uti-
lized as a fast tunable switch where incident monochromatic
radiation from one port of the cavity is interferometrically sup-
pressed by a control signal that is injected from the other port.

Extending CPA beyond time-reversal invariance. After explor-
ing the formation of a CPA in a TRI tetrahedral microwave

graph, we turned our focus to a graph with BTRI (Broken-Time
Reversal Invariance). CPA associated with violated TR symmetry
is unconventional, and challenges the idea that CPA is simply a
time-reversed laser action1,2. Driven by such motivation, we
introduced a circulator20 (2–4 GHz) at one internal node of the
tetrahedral graph (see Fig. 1), which allows us to violate the TRI
in a controllable manner. Previous work demonstrated that the
statistics of the microwave graph impedance (or reaction matrix)
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components under the CPA condition. Left plot shows that about 80% of the power are being dissipated on the attenuator, while the remainder is
dissipated in the uniformly attenuated cables. Right plot shows reactive power on the cables and short circuit. Compare with the "Anti-CPA" condition in
Supplementary Fig. 2.
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Fig. 5 Demonstration of two CPA states in the quarter bow-tie billiard. A
two-dimensional quarter bow-tie billiard (see inset) is used to test the CPA
protocols. The red dot on the bow-tie represents the location of a point-like
variable loss in the cavity. Through analysis of the S-matrix, two CPA states
are found at the same system configuration. By injecting two different CPA
waveforms, the measured ratios of output power Pout to input power Pin as
a function of the microwave frequency are plotted together. The different
incoming waveforms support two different CPA states with different CPA
frequencies. The scale bar of the mean mode spacing Δ is shown in the plot
as well.
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changed from that characterized by the Gaussian orthogonal
ensemble of random matrices (appropriate for TRI systems) to
the Gaussian unitary ensemble (appropriate for BTRI systems)
with the addition of this circulator20,53,54.

Following the same procedure as for the TRI graph experiment,
the CPA conditions are found by evaluating the eigenvalues of the
S-matrix. After that, similar sweep measurements are done as in
the TRI case to directly verify the formation of a CPA in the BTRI
graph. Our experimental measurements are reported in Fig. 6 and
confirm the formation of a CPA despite the naive expectation that
the presence of a nonreciprocal element (circulator) in the system
should weaken the coherence between incident waves, as seen in
the eigenfunctions of BTRI wave chaotic systems55. The
simulations from our modeling are reported in the same figure
and show the same behavior as the experimental data. The
formed CPAs show the same characteristic features (e.g., sharp
resonance, sensitivity to various parameters, abrupt drop of
outgoing signal) as the ones reported in the TRI case. We
therefore conclude that the CPA protocol applies even to BTRI
systems.

Discussion
The implementation of CPA in generic complex scattering sys-
tems opens up a number of interesting applications beyond the
ones that we have already discussed (e.g., reconfigurable
switching). The first is long-range wireless electromagnetic
power transfer technologies that seek to deliver significant

electromagnetic power to a single designated object located inside
a complex scattering enclosure many wavelengths away from the
source. Current approaches utilize multiple scattering and inter-
fering wave trajectories connecting power source and target
through either TR56,57 or phase conjugation of microwave sig-
nals58 that involve either large bandwidth or a large numbers of
channels. These methods suffer from low efficiency as well as
radiation safety concerns. A CPA-based method would require
only that the target employs a tunable loss, or other tunable
scattering property59–61, and that the source employs only a small
number of channels to measure the S-matrix of the enclosure to
find the CPA condition. Once CPA is established, the source
would output a coherent energetic signal that would be maximally
absorbed at the desired target, with minimal loss elsewhere in the
environment. As an added benefit other users can utilize the same
bandwidth to perform other tasks (e.g., information transfer)
utilizing the "Anti-CPA” condition (see Supplementary Note 2),
alleviating frequency crowding concerns.

A second application concerns sensing of minute changes in a
scattering environment. There will be a sensitive change in
absorbed energy, or output power from a complex scattering
structure, due to any perturbation of the system from the CPA
condition, as illustrated by the cusp-like features in Figs. 3, 5, and
6. This arises from the shift of the scattering matrix zero off of the
real-frequency-axis, and the dramatic alteration of the scattering
matrix is a very direct and easy to measure property. This sensing
protocol is simpler than the frequency splitting of degenerate
modes created by a perturbation to an optical resonator tuned to
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Fig. 6 Evidence of CPA in the complex network with BTRI under four independent parametric sweeps. Plots are normalized so that CPA conditions are
in the center of the parameter variation range. The closest CPA frequency condition for the simulation is plotted along with the experimental data.
a Measured ratio of output power Pout to input power Pin as the microwave frequency sent into both ports of the graph is simultaneously swept near the
CPA frequency (Δf= f− fCPA). Inset shows the output-to-input power ratio response for a larger frequency range around the resonance, and the dashed
box corresponds to the frequency range shown in a. The output-to-input power ratio shows a sharp dip below 10−5 at the CPA frequency (fCPA) in both
experiment and simulation. The scale bar of the mean mode spacing Δ is shown in the plot for reference. b Output-to-input power ratio obtained by varying
the attenuation of the variable attenuator in the graph, while the other waveform characteristics (CPA frequency and waveform) are equal to the ones set
in a. ΔAtt is the attenuation normalized by AttCPA from the CPA condition. Output-to-input power ratio obtained by changing the amplitude A (c) and
phase difference Δϕ (d) separately of the two excitation signals required for the CPA state. All experimental results are obtained by direct measurement of
the input and output RF powers.
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an exceptional point62, for example. Our CPA approach, which
relies on the natural complexity of the cavity, is generic and will
work in any wavelength regime (or for any wave phenomenon) as
long as it is performed in a complex scattering environment.

A third example application is a CPA protocol for secure
communications. Consider that the absorber is a target receiver
embedded at an unknown location in a complex environment.
Due to the complexity of the environment (multipaths with sen-
sitive interference), transfer of information from an outside source
occurs only if the emitter prepares and injects a very specific
waveform. The waveform has to be determined by the absorber
property as well as the environment information, and is rapidly
altered as soon as the absorber changes its property. The CPA
conditions (absorption and frequency) could be utilized to create a
unique key to encrypt the communication and secure the trans-
mission process. Through this method one can establish a secure
communication protocol between the emitter and the absorber. A
related application is to utilize CPA as a switch for an arbitrary
incident signal at one frequency. For a given waveform incident
through the ports of the system one can arrange the relative
amplitude/phase of a control wave injected into the CPA cavity to
create complete absorption of an incident signal at the same fre-
quency. Switching back and forth between the CPA and anti-CPA
control waves will toggle the incident signal to a maximum extent.

In summary, we demonstrate the implementation of CPA
protocols in generic complex scattering systems without any
geometric or hidden symmetries. The primary platform that has
been used in our investigations was a microwave realization of a
quantum graph consisting of a complex network of coaxial cables
where TR symmetry can be preserved or violated in a controllable
manner. Irrespective of the symmetry, the CPA condition has
been realized through continuous tuning of a localized lossy
component and its efficiency has been tested by means of direct
measurement of RF power coming out of the graph. As much as
99.999% of the injected power is absorbed by the system. To get
additional confirmation of the efficacy of our experimental CPA
protocols in complex systems, we have also tested them success-
fully in a chaotic microwave bow-tie cavity. Our work demon-
strates that CPA can indeed be achieved even in the case of
complex (or chaotic) scattering setups where small variations in
the form of the incoming waves or of the scattering system might
lead to dramatic changes in the scattering fields. These findings
establish the validity of CPA protocols, independent of the degree
of complexity of the wave transport phenomena, originating either
from the influence of system-specific features in the scattering
process or from the presence or the absence of an underlying
classical chaotic dynamics. Importantly, our work generalizes the
operations and settings for CPA beyond its initial assumptions of
TR symmetry and is expected to motivate practical applications,
including designing efficient absorbers, sensitive reconfigurable
switches, enabling practical long-range wireless power transfer,
and associated high-efficiency energy conversion systems. The
extreme sensitivity of absorption to parametric variation away
from the CPA condition can be utilized for ultra-sensitive detec-
tors and secure communication links. These ideas translate to all
forms of complex wave scattering, including audio acoustics and
solid-body vibro-acoustics. For future work, the CPA phenom-
enon can be extended to the nonlinear regime63 by introducing
nonlinear elements into the system.

Methods
Experimental setup. Our main experimental setup is a tetrahedral microwave
graph constructed from six coaxial cables connected by coaxial Tee-junctions. The
cables are semiflexible SF-141 coaxial cables, each of different length, with SMA
male connectors on both ends (Model SCA49141) obtained from Fairview

Microwave, Inc. The dielectric material of the cable is solid polytetrafluoroethylene,
which has a relative dielectric constant of 2.1. The inner conductor of the cable is
silver plated copper clad steel, and has a diameter of 0.036 in. (0.92 mm); while the
outer shield is a copper–tin composite which has an inner diameter of 0.117 in.
(2.98 mm). The dielectric loss tangent of the medium is tanδ= 0.00028 at 3 GHz,
and the resistivity of the metals in the cable is ρ= 4.4 × 10−8Ω⋅m at 20 °C. Both of
these contribute to the uniform loss of the coaxial cables. The lengths of the six
cables are 13, 14, 15, 16, 18, and 20 in. The total length of the graph is then ~2.44
m, giving rise to a mean spacing between modes of 42.4 MHz, which is constant as
a function of frequency. On one node of the graph, two Tee-junctions form a four-
way adapter where a voltage variable attenuator (HMC346ALC3B from Analog
Devices, Inc.) is connected to one connector. A short circuit termination is con-
nected to the other end of the attenuator. Using a Keithley power supply (2231A-
30-3), the attenuation of the variable attenuator is continuously swept by varying
the supplied voltage from 4.00 to 7.00 V. To find the appropriate CPA condition of
the setup, we perform the S-matrix measurement of the graph (using the PNA-X
N5242A from Agilent Technologies, Inc.) in the frequency range from 10MHz to
18.01 GHz (at 96,001 equidistant frequency points) which includes about 420
modes of the closed graph, with varying attenuation from about 2 to 12 dB (which
includes the insertion loss of the variable attenuator). The attenuation is swept with
a step size of roughly 0.1 dB. In the case of a BTRI microwave graph, a ferrite
circulator (Model CT-3042-O from UTE Microwave Inc.) is added to one node of
the graph (see Fig. 1). The circulator has an operational frequency range from 2 to
4 GHz, which constrains the frequency range of measurement accordingly. By
connecting the microwave graph to a 2-port VNA, with a coupling strength of
about 0.68, we can obtain the S-matrix of the system under different attenuation
configurations.

The quarter bow-tie billiard, shown schematically in Fig. 5, has an area of A=
0.115 m2. The brass cavity has a horizontal length of 17.0 in. (43.2 cm), and a
vertical length of 8.5 in. (21.6 cm). The upper arc radius is 42.0 in. (106.68 cm), and
the right arc has a radius of 25.5 in. (64.8 cm). The height of the cavity is d=
0.3125 in. (7.9 mm), which makes it a quasi-2D billiard below the cutoff frequency
of fmax= c/(2d)= 18.9 GHz. We add the voltage variable attenuator to the top plate
of the billiard by means of a coaxial port at the red dot location (see inset of Fig. 5)
as the local loss. A stub tuner (1819D from Maury Microwave Corporation) is used
to tune the coupling between the variable attenuator and the cavity.

Verification of the CPA state. In order to create the coherent stimulus signals, we
use a two-source VNA (PNA-X N5242A from Agilent Technologies, Inc.) to serve
as the RF signal source and measure the incoming and outgoing wave energies as
well. The PNA-X has two built-in RF sources which provides great convenience for
us to individually adjust the amplitudes of the two input excitation signals. The
relative phase difference of the two input signals is controlled by adding a manual
coaxial phase shifter (Model 3753B from L3Harris Narda-MITEQ) between the
VNA and port 2 of the graph (see Fig. 1). With this measurement setup, we can
effectively tune the input stimulus signals for the CPA state as well as the system
configurations, perform comprehensive parametric sweep measurements (see
Figs. 3, 5, and 6), and directly measure the input power Pin and output power Pout
of the graph.

Simulation model. To compare with the experimental results, we set up a com-
parable simulation model in CST (Computer Simulation Technology) Studio. CST
is commercial software specifically designed for electromagnetic field simulation,
and we use the Circuits and Systems module to simulate the microwave graph. All
individual components in the graph experiment, e.g., coaxial cables and Tee-
junctions, are modeled by their measured S-matrix data at the exact same fre-
quency points used in the experiment. The S-matrix data for the variable attenuator
are measured at the designated supply voltages from 4.00 to 7.00 V. The S-matrix
data are imported as TOUCHSTONE file blocks in the simulation model, and
correctly capture the electrical characteristics of all components. The imported S-
matrices are then combined in the same topology as the graph of interest.
Therefore, following the same procedure as in the experiment, we can verify the
CPA phenomena in the simulation as well.

In order to better understand the power distribution inside the system under
CPA conditions, we adapt an idealized simulation model in CST. In this model,
nodes constructed from Tee-junctions are set to be ideal (no loss), and the
attenuator is set to have no frequency-dependent characteristics, and the coaxial
cables have uniform attenuation properties. Results are shown in Fig. 4 and
Supplementary Fig. 2.

Data availability
The data that support the findings of this study are available in the Digital Repository at
the University of Maryland (DRUM) with the identifier "doi:10.13016/aqny-7v5z”
[http://hdl.handle.net/1903/26379]64.

Code availability
The custom codes that produce results presented in this paper and other findings of this
study are available from the corresponding authors upon reasonable request.
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