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Abstract 

Avian leukosis virus subgroup J (ALV-J) infection can cause tumors and immunosuppression in infected chickens. 
Macrophages play a central role in host defense against invading pathogens. In this study, we discovered an interest-
ing phenomenon: ALV-J replication is weakened from 3 hours post-infection (hpi) to 36 hpi, which was verified using 
Western blotting and RT-PCR. To further investigate the interaction between ALV-J and macrophages, transcriptome 
analysis was performed to analyze the host genes’ function in chicken primary monocyte-derived macrophages 
(MDM). Compared to the uninfected control, 624 up-regulated differentially expressed genes (DEG) and 341 down-
regulated DEG at 3 hpi, and 174 up-regulated DEG and 87 down-regulated DEG at 36 hpi were identified in chicken 
MDM, respectively. ALV-J infection induced strong innate immune responses in chicken MDM at 3 hpi, instead of 
36 hpi, according to the analysis results of Gene Ontology and KEGG pathway. Importantly, the host factors, such as 
up-regulated MIP-3α, IL-1β, iNOS, K60, IRG1, CH25H, NFKBIZ, lysozyme and OASL were involved in the host defense 
response during the course of ALV-J infection. On the contrary, up-regulated EX-FABP, IL4I1, COX-2, NFKBIA, TNFAIP3 
and the Jak STAT pathway inhibitors including CISH, SOCS1 and SOCS3 are beneficial to ALV-J survival in chicken mac-
rophages. We speculated that ALV-J tropism for macrophages helps to establish a latent infection in chicken MDM 
from 6 to 36 hpi. The present study provides a comprehensive view of the interactions between macrophages and 
ALV-J. It suggests the mechanisms of defense of chicken macrophages against ALV-J invasion and how ALV-J escape 
the host innate immune responses.

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
Avian leukosis virus subgroup J (ALV-J) is an oncogenic 
retrovirus, primarily inducing neoplastic diseases and 
reproduction problems in infected chickens. It is well 
known that ALV-J causes enormous economic loss in the 
global poultry industries. To date, there are no vaccines 
or treatments to protect against ALV-J infection. Since 
little is known about the interaction between ALV-J and 
the host, current strategies are focused on ALV-J eradica-
tion. RNA viruses are prone to mutations. In contrast to 
the virus, the host does not change quickly. It is therefore 

an enticing strategy to try to overpower ALV-J by finding 
ways to make chickens less permissive to viral replication.

Studies concerning host innate and adaptive immune 
responses to ALV-J are in their infancy [1]. Macrophages 
are found in all tissues and have a well-defined role in 
host responses against viral infection [2]. However, mac-
rophages are susceptible to infection for human immuno-
deficiency virus (HIV) [3], dengue virus [4], and porcine 
reproductive and respiratory syndrome viruses [5]. In 
particular, macrophages serve as a reservoir throughout 
HIV infection [3]. Importantly, macrophages also play a 
key role in avian viral infections including infectious bur-
sal disease virus (IBDV) [6], avian influenza virus (AIV) 
[7], Newcastle disease virus (NDV) [8] and infectious 
bronchitis virus (IBV) [9]. However, the role of mac-
rophages in ALV-J infection remains unclear.

In our previous study, we found that primary 
chicken monocyte-derived macrophages (MDM) were 
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susceptible to ALV-J and infection resulted in expres-
sion of immune-related genes [10]. However, the number 
of genes we examined was too low to comprehensively 
map the involvement of immune host factors in an ALV-J 
infection. The goal of the current study was to examine 
host gene expression profile to improve our understand-
ing of the relationship between macrophages and ALV-J 
during infection.

In this study, RNA-seq analysis platform and gene over-
expression verification were employed to analyze chicken 
MDM gene expression after ALV-J infection. Our find-
ings provide a comprehensive view of ALV-J immune 
escape and the host defense response to ALV-J infection 
in chicken macrophages.

Materials and methods
Animals and viruses
A total of 12 six-week-old specific-pathogen-free (SPF) 
White Leghorn chickens, half females and half males, 
were purchased from Guangdong DaHuaNong Ani-
mal Health Products Co., Ltd (Guangzhou, China) and 
housed under pathogen free conditions. Laboratory 
ALV-J strain SCAU-HN06 was kindly provided by Prof. 
Weisheng Cao, South China Agricultural University. All 
animal experiments were performed with approval and 
guidance from South China Agricultural University Insti-
tutional Animal Care and Use Committee.

Culture of primary chicken MDM
Chicken primary MDM were cultured and identified 
according to previous studies [10, 11]. Briefly, periph-
eral blood mononuclear cells (PBMC) were isolated from 
blood obtained from SPF chickens using chicken lym-
phocyte separation medium (Solarbio, Beijing, China) 
according to the manufacturer’s instructions. The super-
natant was removed and adherent cells were washed 
twice with PBS to remove thrombocytes, non-adherent 
lymphocytes and other semi-adherent cells after 6 h of 
incubation. These adherent cells were primarily chicken 
monocytes. Subsequently, fresh RPMI-1640 medium 
with 15% chicken serum, 100  U/mL penicillin and 
100  mg/mL streptomycin were added to the remaining 
monocytes. Chicken monocytes were then cultured for 
6  days to generate mature macrophage differentiation. 
The culture medium was changed every 2 days in order 
to ensure stable and consistent conditions.

Detection of ALV‑J replication in MDM
Chicken MDM were infected with a  105  TCID50/mL of 
ALV-J strain SCAU-HN06. DNA, RNA and total proteins 
were extracted from the ALV-J infected MDM at 3, 6, 12, 
24 and 36 h post-infection (hpi). RT-PCR was employed 
to detect the ALV-J replication using specific PCR 

primers H5/H7 [12]. Western blotting was performed 
with ALV-J envelope protein specific mouse antibody 
JE9 (kindly provided by Dr Aijian Qin, Yangzhou Univer-
sity, Yangzhou, China) and rabbit anti-β-actin antibody 
(Bioworld, Louis Park, USA) according to the method 
described previously [13]. IRDye 700DX-conjugated anti-
rabbit IgG and IRDye 800-conjugated anti-mouse IgG 
(Rockland Immunochemicals, Limerick, PA, USA) was 
used as the secondary antibody. Membranes were visu-
alized and analyzed with an Odyssey infrared imaging 
system (LI-COR Biosciences, Lincoln, NE, USA). ALV-J 
provirus was detected by PCR with primers H5/H7 using 
DNA template.

Total RNA isolation
Total RNA for RNA sequencing (RNA-Seq) was iso-
lated from pooled MDM (isolated and cultured from 12 
SPF chickens) infected with ALV-J  (105  TCID50/mL) at 3 
and 36 hpi using TRIzol reagent (Invitrogen, CA, USA). 
Samples were collected from two independent experi-
ments. Non-infected MDM were used as a control group. 
Purity and quantity of total RNA were assessed using 
the  NanoPhotometer® spectrophotometer (Implen, CA, 
USA) and the Bioanalyzer 2100 system (Agilent Technol-
ogies, CA, USA). RNA degradation and contamination 
were further monitored using agarose gel electrophoresis.

Library preparation for mRNA sequencing
After quality inspection, approximately 3  μg RNA per 
sample was used as input material for the RNA sample 
preparations. Briefly, ribosomal RNA was first removed 
using the Ribo-zero™ rRNA Removal Kit (Epicentre, WI, 
USA), and rRNA free residue was cleaned up by ethanol 
precipitation. Subsequently, sequencing libraries were 
generated using the rRNA-depleted RNA by  NEBNext® 
Ultra™ Directional RNA Library Prep Kit for  Illumina® 
(NEB, MA, USA) according to the manufacturer’s rec-
ommendations. First strand cDNA was synthesized with 
random hexamers and M-MuLV Reverse Transcriptase. 
Second strand cDNA synthesis was subsequently per-
formed using DNA Polymerase I and RNase H. In the 
reaction buffer, dNTP containing dTTP were replaced 
with dUTP. Remaining overhangs were converted into 
blunt ends via the exonuclease and polymerase activities. 
After adenylation of 3′ ends of DNA fragments, NEB-
Next Adaptor with hairpin loop structure were ligated 
to prepare for hybridization activities. In order to select 
cDNA fragments of preferentially 150–200 bp in length, 
the library fragments were purified with AMPure XP 
system (Beckman Coulter, Beverly, USA). Then 3 μL 
USER Enzyme (NEB, Ipswich, MA, USA) was used with 
size-selected, adaptor-ligated cDNA at 37  °C for 15 min 
followed by 5 min at 95  °C before PCR. Then, PCR was 
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performed with Phusion High-Fidelity DNA polymer-
ase, universal PCR primers, and Index (X) Primers. At 
last, products were purified (AMPure XP system) and 
library quality was assessed on the Agilent Bioanalyzer 
2100 system. The mRNA libraries were sequenced at the 
Novogene (Beijing, China) on an Illumina Hiseq  2000 
platform.

Data analysis of mRNA
Raw data (raw reads) of fastq format were first pro-
cessed through in-house perl scripts. In this step, clean 
data (clean reads) were obtained by removing adapter 
sequences as well as reads containing poly-N and low 
quality reads. Therefore, only high quality data were ana-
lyzed and quality scores (Q20 and Q30) and GC content 
were subsequently calculated. All the following analyses 
were based on the clean data with high quality. Reads 
were mapped to the chicken genome assembly [14] 
using Tophat (v2.0.9). The mapped reads of each sample 
were assembled by both Scripture (beta2) and Cufflinks 
(v2.1.1) in a reference-based approach.

Quantification of gene expression level
The FPKM (fragments per kilo-base of exon per million 
fragments mapped) was calculated based on the length of 
the fragments and reads count mapped to this fragment. 
Cuffdiff (v2.1.1) was used to calculate FPKM of coding 
genes in each sample. Gene FPKM were computed by 
summing the FPKM of transcripts in each gene group.

Differential expression analysis
Cuffdiff software was used to provide statistical routines 
for determining differential expression in digital tran-
scripts or gene expression data using a model based on 
the negative binomial distribution. In the present study, 
for differentially expressed genes (DEG), the threshold 
was q value < 0.05, log2 |(fold change)| ≥ 1 with an FPKM 
value no less than 10 in infected or uninfected samples.

Gene ontology, and pathway analysis
DEG were subjected to Gene Ontology (GO) categori-
zation and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analysis using the Database for Anno-
tation, Visualization, and Integrated Discovery (DAVID) 
version 6.8 [15].

Validation of gene expression in RNA‑seq by quantitative 
real‑time PCR (qPCR)
Total RNA was extracted from ALV-J-infected  (105 
 TCID50/mL) and uninfected MDM at 3 hpi and 36 hpi 
using RNAiso reagent (TaKaRa, Japan). For gene expres-
sion analysis, cDNA synthesis of mRNA was performed 

using a PrimeScript RT Reagent Kit (Perfect Real Time) 
(TaKaRa, Japan) according to the manufacturer’s proto-
col. The qPCR primers were designed using the NCBI 
Primer BLAST program [16] and were based on pub-
lished target sequences (Additional file 1A) [17–20]. The 
GAPDH gene was used as an internal control. qPCR was 
performed on a Bio-Rad CFX96 Real-Time Detection 
System using iTaqTM Universal  SYBR® Green Supermix 
Kit reagents (Bio-Rad, CA, USA) according to the manu-
facturer’s specifications. Data analyses were performed 
using the  2−ΔΔCt method.

Transfection of up‑regulated DEG and detection of their 
function on ALV‑J replication
MDM were cultured in 12-well plates and transfected 
with 1 μg plasmids including K60, IRG1, OASL, CH25H, 
CISH, EX-FABP, IL4I and SOCS3 using Lipofectamine 
3000 reagent, respectively. EGFP was used as a control. 
After incubation for 4 h, Lipofectamine 3000 transfection 
reagent was removed, and the cells were replenished with 
RPMI-1640 medium with 15% chicken serum. 24 h later, 
the transfected MDM were infected with  105  TCID50/mL 
of ALV-J strain SCAU-HN06. At 3 hpi, ALV-J replication 
level was analyzed by Western blot and qPCR. The prim-
ers used in the construction of these plasmids are sum-
marized in Additional file 1B.

Statistical analyses
Statistical comparisons were performed using GraphPad 
Prism 5 (GraphPad Software Inc., San Diego, CA, USA). 
The results are presented as the mean ± SEM. Two-way 
ANOVA analysis was used to analyze the statistical sig-
nificance among multiple groups and unpaired Student’s 
t-test between two groups. Statistical significance is indi-
cated by p values of > 0.05 (non-significant, ns), < 0.05 (*), 
0.01 (**) or 0.001(***).

Raw data information
The sequencing data obtained from RNA-Seq were 
released to the GEO database under the accession num-
bers GSE103207.

Results
Detection of ALV‑J in chicken MDM
ALV-J infections of MDM resulted in either genome 
integration or reverse transcription into cDNA during 
3-36 hpi (Figure 1A). The rate of ALV-J replication was 
very high at 3 hpi and gradually decreased from 6 to 36 
hpi (Figure  1B). Furthermore, the viral envelope pro-
tein was detectable by Western blotting at 3 and 6 hpi 
but not at later times. Similarly, env gene expression at 
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3 hpi was greater than that at 6 hpi (Figure 1C). These 
results demonstrate that the replication rate of ALV-J 
was extremely high at 3 hpi but low after 6 hpi, ALV-J 
replication might be inhibited in chicken MDM.

Differentially expressed genes after ALV‑J infection 
in chicken MDM
The Illumina HiSeq  2000 platform produced 
814  412  986 raw reads. After discarding adaptor and 
low-quality sequences, we obtained 794 083 068 clean 
reads (119.19 Gb). The clean reads were mapped onto 
the chicken reference genome (Gallus_gallus-4.0), and 
the mapping rate of each library ranged from 79.29 to 
83.27% (Additional file 2).

We found that at 3 and 36 hpi, 558 and 108 DEG 
were uniquely up-regulated, and 324 and 70 were 
uniquely down-regulated in ALV-J infected MDM, 
respectively. There were 66 up-regulated and 17 down-
regulated DEG in common at the two time points (Fig-
ures 2A and B). In addition, three DEG, OASL, FKBP51 
and MCF2, were up-regulated at 3 hpi and down-regu-
lated at 36 hpi (Figure 2C). Nine DEG were down-reg-
ulated at 3 hpi but up-regulated at 36 hpi (Figure 2D). 
More details of the DEG are shown in Additional file 3.

GO annotation of DEG after ALV‑J infection in chicken 
MDM
The GO biological process analysis shows that the 
up-regulated DEG were mainly enriched for immune-
related terms but down-regulated DEG were not (Fig-
ure 3). For the up-regulated DEG at 3 hpi, the top three 
significant GO terms were inflammatory response, 
response to lipopolysaccharide and regulation of apop-
totic process (Figure 3A). The top three significant GO 
terms for up-regulated DEG at 36 hpi were inflamma-
tory response, innate immune response and Toll-like 
receptor signaling pathway (Figure  3B). Down-regu-
lated DEG at 3 hpi were significantly enriched for trans-
membrane transport, endocytic recycling and positive 
regulation of interleukin-6 production (Figure 3C). The 
five down-regulated DEG at 36 hpi included HMOX1, 
SLC11A1, SLC40A1, GAB1 and SLC25A4 were signifi-
cantly enriched on four GO terms (Figure  3D). More 
details of the DEG involved in GO enrichment analysis 
can be found in Additional file 4.

Pathway analysis of DEG after ALV‑J infection in chicken 
MDM
KEGG analysis illustrated that up-regulated DEG 
induced by ALV-J in MDM at 3 hpi were involved in 
immune-related pathways including MAPK signaling, 
Toll-like, NOD-like, RIG-I-like and Jak-STAT signal-
ing pathway, and etc. (Figure  4A). Up-regulated DEG 
identified at 36 hpi were significantly enriched in cell 
adhesion molecules, influenza A, Toll-like receptor and 
adipocytokine signaling pathway (Figure  4B). How-
ever, just two pathways were significantly enriched by 
the down-regulated DEG at 3 hpi (Figure 4C). Moreo-
ver, down-regulated DEG at 36 hpi did not enrich any 
pathway. More details of the DEG involved in KEGG 
enrichment analysis can be found in Additional file 5.

More immune‑related DEG were induced by ALV‑J at 3 hpi 
than at 36 hpi
The immune-related genes were selected accord-
ing to gene function annotation. A greater number 
of immune-related DEG were found at 3 hpi than at 
36 hpi, and most of these immune-related DEG were 
up-regulated by ALV-J infection at 3 hpi (Figure  5A). 
According to published studies [21–23], 94 and 23 dif-
ferentially expressed interferon-stimulated genes (ISG) 
were identified in ALV-J-infected MDM at 3 hpi and 
36 hpi, respectively (Additional file  6). Similarly, the 
expression of most ISG (79) was significantly increased 
at 3 hpi, especially IRG1, RIPK2, CH25H, IRF7 and etc. 
(Figure 5B).

Figure 1 Detection of ALV‑J replication in chicken MDM from 3 
hpi to 36 hpi. A PCR detection with DNA template and ALV-J specific 
primer. All samples extracted from 3 hpi to 36 hpi produced specific 
545 bp fragment. B RT-PCR detection with cDNA template and ALV-J 
specific primer. C Western blotting analysis shows that samples 
extracted from 3 hpi produced obvious specific ALV-J envelope 
protein blots, but the protein blots became weaker at 6 hpi and 
tended to disappear at 12 to 36 hpi.
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RNA‑seq data matched the qPCR data
To validate the RNA-Seq results, we chose eight immune-
related DEG for qPCR analysis. These included CH25H, 
PKR, SOCS5, NOD1, TLR7, IL-18, ISG12-2 and OASL. 
The qPCR data matched the RNA-Seq results and both 
methods indicate similar trends for these eight genes 
(Figure 6).

Overexpression of K60, IRG1, OASL and CH25H inhibits 
ALV‑J replication
Overexpression of K60, OASL, CH25H and IRG1 signifi-
cantly decreased ALV-J replication at the protein (Fig-
ures 7A and B) and mRNA (Figure 7C) levels in chicken 
MDM cells at 3 hpi when compared to the control group 
(EGFP).

Overexpression of CISH, EX‑FABP, IL4I1 and SOCS3 
promotes ALV‑J replication
Overexpression of CISH, EX-FABP and SOCS3 sig-
nificantly increased the expression of ALV-J env gene 
at protein levels (Figures  8A and B) and mRNA levels 
(Figure  8C) in chicken MDM cells at 3 hpi. However, 

overexpression of IL4I1 only significantly increased the 
expression of the ALV-J env gene at the mRNA level, but 
there was no difference at the protein level (Figure 8).

Discussion
Host anti‑ALV‑J candidates
As an avian retrovirus, ALV-J has been studied for many 
years although many interesting scientific problems such 
as tumorigenesis, immunosuppression and immune 
responses induced by ALV-J infection are still not under-
stood [1]. In our previous studies, we found that chicken 
MDM are susceptible to ALV-J infection [10]. In the pre-
sent study, we observed that ALV-J replication in MDM 
was active at 3 hpi, but inhibited from 6 to 36 hpi. It is 
reported that recombinant chicken IFN-α as well as the 
ISG, CCCH type zinc finger antiviral protein (ZAP), 
could inhibit ALV-J replication in DF1 cells [24, 25]. So, 
we speculated that ISG may also resist ALV-J replication 
in chicken MDM.

ALV-J infection induced most immune-related DEG in 
MDM at 3 hpi (Tables 1 and 2). Strikingly, the expression 
of 79 ISG including CH25H, PKR, OASL, Mx, and etc. 
were significantly increased in ALV-J-infected MDM at 
3 hpi. ISG exert numerous antiviral effector functions by 

Figure 2 DEG in chicken MDM infected with ALV‑J at 3 hpi and 36 hpi. Venn diagrams of up-regulated DEG (A) and down-regulated DEG (B) 
at 3 hpi and 36 hpi from chicken MDM. C Venn diagrams of up-regulated DEG at 3 hpi and down-regulated DEG at 36 hpi in chicken MDM. D Venn 
diagrams of down-regulated DEG at 3 hpi compared up-regulated DEG at 36 hpi in chicken MDM.
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targeting almost any step in the virus life cycle [26]. For 
example, CH25H broadly inhibited growth of enveloped 
viruses including VSV, HSV, HIV and the acutely patho-
genic viruses EBOV, RVFV and RSSEV by converting 

cholesterol to 25-hydroxycholesterol (25HC) [27]. 
Additionally, 18 up-regulated ISG were identified in 
ALV-J MDM at 36 hpi. All of these up-regulated ISG in 

Figure 3 Gene ontology (GO) terms analysis of DEG expressed in ALV‑J‑infected MDM. Representative GO terms of up-regulated DEG in the 
ALV-J-infected MDM at A 3 hpi and B 36 hpi. Down-regulated DEG enriched in the representative GO terms of ALV-J-infected MDM at C 3 hpi and D 
36 hpi.

Figure 4 KEGG pathways in ALV‑J‑infected MDM. KEGG pathways of up-regulated DEG expressed in ALV-J-infected MDM at A 3 hpi and B 36 
hpi. C Down-regulated DEG enriched in KEGG pathways of ALV-J-infected MDM at 3 hpi.
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ALV-J-infected MDM at 3 and 36 hpi might serve as can-
didates resisting ALV-J infection.

In addition to the above ISG, some DEG have signifi-
cant changes in expression at 3 hpi and 36 hpi (Table 2). 
MIP-3α, macrophage inflammatory protein-3 alpha, is 
responsible for the chemo-attraction of dendritic cells, 
and effector and memory B and T cells [28]. Moreover, 
MIP-3α exhibited anti-microbial and anti-HIV activities 
[28–30]. IL-1β is produced primarily by activated mac-
rophages and possess multiple and diverse properties 

in their response to infection [31, 32]. Thus, host dam-
age following infection induces macrophage secretion 
of a variety of inflammatory mediators including IL-1 
and NO that activate anti-pathogenic microorganism 
defense mechanisms [2]. NO production is primarily 
catalyzed by iNOS and is a part of innate host defenses 
[33]. ALV-J infection in MDM at 3 hpi increased expres-
sion of the two orthologues of chicken IL-8, K60 (IL8L1) 
and IL8 (IL8L2) [34, 35]. IL-8 is a potent chemo-attract-
ant and activator of macrophages [36]. Furthermore, IL-8 

Figure 5 Heatmap of immune‑related DEG at different time points after ALV‑J infection. DEG with similar expressed patterns were clustered 
and are displayed in a heatmap format. Color intensity corresponds to relative expression level normalized according to  log2 fold change. A 
Selected immune-related DEG from 3 hpi and 36 hpi. Red, up-regulated DEG; blue, down-regulated DEG. B ISG expression in MDM at 3 hpi and 36 
hpi. Red, up-regulated ISG; purple, down-regulated ISG.
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has been shown to attract and activate T lymphocytes 
[37, 38], which would aid in raising an immunologically 
specific response against ALV-J. Immune response gene 
1 (IRG1) was originally identified as a highly inducible 
gene in murine macrophages following LPS stimulation 
[39]. The role of IRG1 in the course of virus infection has 
not been extensively reported. IRG1 was identified as an 
ISG with antiviral effects against different neurotropic 
viruses [40]. OASL has been found to broadly inhibit 

the replication of viruses such as swine fever virus, RSV 
and HCV through a variety of mechanisms [41–43]. 
Lysozyme is a differentiation marker for macrophage, 
and is activated during macrophage differentiation [44]. 
We found that lysozyme expression increased incremen-
tally from 3 hpi to 36 hpi in ALV-J-infected MDM. This 
result reminded us that ALV-J infection could stimulate 
chicken macrophage maturation. Lysozyme is a corner-
stone of innate immunity due to its direct antimicrobial 

Figure 6 Validation of RNA‑Seq data by qPCR. DEG were selected at (A) 3 hpi and (B) 36 hpi. qPCR results were represented using relative 
expression value. RNA-seq value is  log2(foldchange) values of DEG. *p < 0.05, **p < 0.01, ***p < 0.001.

Figure 7 Overexpression of K60, IRG1, OASL and CH25H could inhibit ALV‑J replication. MDM cells were transfected with pCMV-K60, 
pCMV-IRG1, pCMV-OASL, pCMV-CH25H and infected with ALV-J strain SCAU-HN06 at 24 post-transfection. MDM cells transfected with pCMV-EGFP 
as a control. A SCAU-HN06 strain envelop protein was measured by Western blot at 3 hpi. B The level of SCAU-HN06 strain envelop protein was 
analyzed by Image Studio Ver 5.2 (Odyssey Fc). C The expression of SCAU-HN06 env gene was measured by qPCR at 3 hpi. *p < 0.05, **p < 0.01.
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activity through peptidoglycan hydrolysis and immune 
regulatory functions [45]. Interestingly, lysozyme also 
possesses antiviral properties [46, 47]. NFKBIZ encodes 
the protein IκBz and is known as a partner of NFκB that 
regulates innate host defense factors [48].

Accordingly, the host genes MIP-3α, IL-1β, iNOS, K60, 
IRG1, CH25H, OASL, lysozyme and NFKBIZ served as 
restriction factor candidates against ALV-J infection in 
chicken macrophages. We further selected several of the 
anti-ALV-J candidates for verification. Exactly, the exper-
iments in  vitro show that overexpression of K60, IRG1, 
CH25H, and OASL could significantly decrease ALV-J 
replication in MDM at 3 hpi (Figure 7).

The survival strategy of the ALV‑J in MDM
Initially, we found that ALV-J infection activated many 
pattern recognition receptors (PRR) pathways including 
Toll-like receptors (TLR), RIG-I-like receptors (RLR), 
NOD-like receptors (NLR) and cytosolic DNA-sensing 
pathway at 3 hpi (Figure 4). Up to now, the specific innate 
sensors responding to ALV were unknown [1]. We spec-
ulated that ALV-J should theoretically be recognized by 

PRR such as TLR, RLR, IFI16, and cGAS, similar to HIV 
[1]. However, no functional PRR such as TLR3, TLR4, 
TLR7 or MDA5 were induced in ALV-J-infected MDM 
at 3 hpi. Only TLR15 was up-regulated by ALV-J at 3 
hpi (Table 1). Therefore, we speculate that chicken mac-
rophages lack functional PRR for ALV-J to escape host 
immune attack at the early stage of infection. Indeed, it 
has been reported that other retroviruses use this strat-
egy to achieve immune escape in macrophages [49]. 
Interestingly, the expression of TLR1, TLR7 and TLR15 
was significantly increased in ALV-J-infected MDM at 36 
hpi (Table 1). As a result, ALV-J replication was inhibited 
and weak innate immune responses were induced at 36 
hpi. At this infection stage, ALV-J may be recognized by 
TLR1, TLR7 and TLR15.

The Jak-STAT pathway is a major signaling path-
way in the function of immune cells and is activated by 
cytokines and growth factors [50]. In this study, many 
negative feedback regulators of cytokine signaling medi-
ated by this pathway were identified. CISH, SOCS1 and 
SOCS3 were significantly induced in ALV-J-infected 
MDM at 3 hpi and enriched on the Jak-STAT signaling 

Figure 8 Overexpression of CISH, EX‑FABP, IL4I1 and SOCS3 could enhance ALV‑J replication. MDM cells were transfected with plasmids 
including EGFP, CISH, EX-FABP, IL4I1 and SOCS3 and infected with SCAU-HN06 at 24 post-transfection. A, B The level of SCAU-HN06 strain envelop 
protein was detected by Western blot at 3 hpi and analyzed by Image Studio Ver 5.2 (Odyssey Fc). (C) The expression of SCAU-HN06 env gene was 
detected by qPCR at 3 hpi. *p < 0.05, **p < 0.01.
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pathway (Table 1). CISH and suppressor of cytokine sign-
aling (SOCS) family proteins are Jak-STAT inhibitors, 
including 8 members, CISH, SOCS1, SOCS2, SOCS3, 
SOCS4, SOCS5, SOCS6 and SOCS7 [51]. CISH, SOCS1, 
SOCS2 and SOCS3 are the best characterized SOCS 
family members [52]. CISH is induced by cytokines that 
activate STAT5 and block the STAT binding to cytokine 
receptors. SOCS1 binds to the Jaks and inhibits catalytic 

activity, while SOCS3 binds to Jak-proximal sites on 
cytokine receptors and inhibits Jak activity [52]. It has 
been reported that SOCS3 enhances HIV-1 replication in 
macrophages by inhibiting antiviral IFN-β signaling [53]. 
The SOCS3 expression was also significantly increased 
in ALV-J-infected MDM (Table  1). Further verification 
found that overexpression of CISH and SOCS3 promoted 
ALV-J replication in MDM at 3 hpi (Figure 8).

Table 1 The DEG listed involved in the pattern recognition receptor pathway and Jak-STAT signaling pathway in ALV-J-
infected MDM 

Gene ID Gene name Biological processes log2 (fold change) 3 hpi, 
36 hpi

Source of DEG

Pattern recognition receptor pathway ① Toll-like receptor signaling pathway; ② NOD-like receptor signaling pathway; ③ RIG-I-like receptor signaling 
pathway; ④ Cytosolic DNA-sensing pathway

 ENSGALG00000007015 CD40 ① 3.89259, – 3 hpi

 ENSGALG00000015474 CD80 ① 1.74169, – 3 hpi

 ENSGALG00000011389 TRAF3 ①, ③ 3.76105, – 3 hpi

 ENSGALG00000007932 TRAF6 ①, ②, ③ 1.27085, – 3 hpi

 ENSGALG00000009014 TRAF2 ③ 2.74956, 1.13451 3 hpi and 36 hpi

 ENSGALG00000000951 CCL5 ①, ④ 4.20314, – 3 hpi

 ENSGALG00000013356 IKBKE ①, ③, ④ 2.38933, 1.06398 3 hpi and 36 hpi

 ENSGALG00000014297 IRF7 ①, ③, ④ 4.51047, – 3 hpi

 ENSGALG00000000534 IL1β ①, ②, ④ 8.57939, – 3 hpi

 ENSGALG00000011668 K60 (IL8L1) ①, ②, ③ 7.00993, – 3 hpi

 ENSGALG00000026098 IL8 (IL8L2) ①, ②, ③ 5.96016, 1.67045 3 hpi and 36 hpi

 ENSGALG00000008612 MAPK11(p38Beta) ①, ②, ③ 1.56955, – 3 hpi

 ENSGALG00000004735 MAP2K3(MKK3) ① 1.62121, – 3 hpi

 ENSGALG00000007356 MAP3K8 ① 3.52264, – 3 hpi

 ENSGALG00000012304 NFKB1 ①, ②, ③, ④ 3.76626, – 3 hpi

 ENSGALG00000003428 PIK3R2 ① 1.30282, – 3 hpi

 ENSGALG00000021573 PIK3R5L ① 2.7941, 1.12565 3 hpi and 36 hpi

 ENSGALG00000026167 PIK3R5 ① 2.77632, 1.13829 3 hpi and 36 hpi

 ENSGALG00000001077 TIRAP ① 2.04202, – 3 hpi

 ENSGALG00000013861 TNFAIP3 (A20) ② 3.42548, – 3 hpi

 ENSGALG00000017186 BIRC2 ② 3.67041, – 3 hpi

 ENSGALG00000007874 IL18 ②, ④ 2.72387, 1.6161 3 hpi and 36 hpi

 ENSGALG00000015899 RIPK2 ② 4.27785, – 3 hpi

 ENSGALG00000021325 RIPK3 ② 3.04709, – 3 hpi

 ENSGALG00000017485 TLR1A ① –, 1.47044 36 hpi

 ENSGALG00000027093 TLR1B ① –, 1.10129 36 hpi

 ENSGALG00000016590 TLR7 ① –, 1.15464 36 hpi

 ENSGALG00000008166 TLR15 2.10934, 1.89122 3 hpi and 36 hpi

 ENSGALG00000027864 NFKBIA 2.10466, 1.14704 3 hpi and 36 hpi

 ENSGALG00000005653 NFKB2 2.8071, 1.41077 3 hpi and 36 hpi

Jak-STAT signaling pathway

 ENSGALG00000002260 CISH (CIS) 2.58373, – 3 hpi

 ENSGALG00000003282 STAT5B 1.29572, – 3 hpi

 ENSGALG00000007158 SOCS1 4.22098, – 3 hpi

 ENSGALG00000027786 SOCS3 4.08564, 3.14348 3 hpi and 36 hpi

 ENSGALG00000010016 SOCS5 −1.07644, – 3 hpi
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We speculated that ALV-J infection inhibited the 
Jak-STAT pathway via inducing expression of CISH, 
SOCS1 and SOCS3. Indeed, the key factors such as 
Jak and STAT in Jak-STAT pathway were not remark-
ably induced by ALV-J infection in MDM. The role of 
SOCS5 has not been well identified during viral infec-
tion. However, a novel role for SOCS5 has been found 
to restrain the early phase of influenza A infection by 
inhibiting EGFR activity [54]. Coincidently, SOCS5 
expression was inhibited by ALV-J in MDM at 3 hpi 
(Table 1).

In addition, the expression of NFKBIA and TNFAIP3 
(A20) were significantly increased in ALV-J-infected 
MDM at 3 hpi (Table 1). The IκBα protein is encoded by 
NFKBIA and is an important negative regulatory fac-
tor in the NF- κB pathway [55]. The protein TNFAIP3 
is known as a powerful suppressor of cytokine signal-
ing and innate antiviral pathways, and it can inhibit 
the activity of NF-κB and NF-κB-mediated inflamma-
tory responses [56, 57]. TNFAIP3 deficiency in mye-
loid cells and lung epithelial cells could protect against 
influenza A virus infection [58, 59]. We speculated that 
NFKBIA and TNFAIP3 were significantly induced by 
ALV-J infection in MDM to down-regulate cytokines 
in macrophages, resulting in viral persistence in the 
host. Altogether, NFKBIA, TNFAIP3, CISH, SOCS1 
and SOCS3 were considered as a counterbalance to the 
antiviral immune responses induced by ALV-J infection 
in chicken MDM at 3 hpi.

IL4I1, PTGS2 (COX-2) and EX-FABP significantly 
changed expression at 3 hpi and 36 hpi (Table 2). We also 
found that overexpression of IL4I1 and EX-FABP could 
enhance ALV-J replication in chicken MDM at 3 hpi (Fig-
ure 8). IL4I1 is an immunosuppressive enzyme and pri-
marily expressed in professional antigen-presenting cells 
and it inhibits T-cell proliferation and activation [60, 61]. 
COX-2 is one of the important mediators of inflamma-
tion in response to viral infection, which contributes to 
viral replication and this has been shown for HCV [62], 
HBV [63], dengue virus [64] and cytomegalovirus [65]. 
The EX-FABP gene encodes an extracellular fatty acid 
binding protein and it is significantly induced by Salmo-
nella enteritidis infections in chickens [66]. This protein 
may provide fatty acids for mitochondrial respiration 
during infection. EX-FABP expression is enhanced after 
treatments with inflammatory stimuli and is repressed 
by anti-inflammatory agents, behaving as an acute phase 
and constitutively expressed survival protein [67]. EX-
FABP was robustly induced in ALV-J-infected MDM at 
36 hpi and therefore may provide protection for MDM 
after the chemokine and cytokine production induced 
by ALV-J at 3 hpi. There is a rule that the virus is lost 
when the cells die. Consequently, induction of EX-FABP 
at 36 hpi may be a strategy of ALV-J to live in harmony 
with chicken macrophages at the late stages of infection. 
Consequently, EX-FABP, IL4I1 and COX-2 together with 
NFKBIA, TNFAIP3, CISH, SOCS1 and SOCS3 enable 
ALV-J survival in chicken macrophages.

Table 2 DEG with significant changes in expression at 3 hpi and 36 hpi 

Gene ID Gene name 3 hpi FPKM (J/NC),  log2(foldchange) 36 hpi FPKM (J/NC),  log2(foldchange)

ENSGALG00000003003 MIP-3α (CCL20) (2519.22/2.23788), 10.1366 –

ENSGALG00000000534 IL-1β (3039.04/7.94481), 8.57939 –

ENSGALG00000005069 PTGS2 (COX-2) (179.952/0.74049), 7.92492 –

ENSGALG00000005693 iNOS (NOS2) (1289.62/6.00488), 7.7466 –

ENSGALG00000011668 K60(IL8L1) (2559.75/19.8609), 7.00993 –

ENSGALG00000014182 ADORA2B (144.072/1.51003), 6.57606 –

ENSGALG00000016286 CXorf21 (717.697/7.58374), 6.56432 –

ENSGALG00000006352 CH25H (623.719/46.4632), 3.74674 –

ENSGALG00000016919 IRG1 (5752.22/67.2951), 6.41747 (77.9823/13.1535), 2.5677

ENSGALG00000015346 NFKBIZ (1250.44/16.1651), 6.27342 (12.6029/6.1146), 1.04343

ENSGALG00000006337 K123 (491.778/8.8756), 5.79202 (12.9952/1.95007), 2.73638

ENSGALG00000000081 IL4I1 (119.384/3.37829), 5.14318 (23.0818/0.794182), 4.86114

ENSGALG00000017184 MMP7 – (76.752/4.11625), 4.2208

ENSGALG00000009963 LYZ (lysozyme) (821.232/74.5905), 3.46073 (5524.5/62.4031), 6.46808

ENSGALG00000024011 EX-FABP (679.788/93.0983), 2.86826 (15805/51.4835), 8.26205

ENSGALG00000027716 HPS5 (459.873/127.921), 1.84599 (3600.15/52.3945), 6.1025

ENSGALG00000013723 OASL (56.9902/11.452), 2.31511 (6.0525/21.2826), − 1.81407

ENSGALG00000000947 FKBP51 (59.357/13.3894), 2.14832 (11.6466/48.2111), − 2.04946

ENSGALG00000006562 MCF2 (DBL) (20.0391/9.42061), 1.08892 (6.14223/13.7507), − 1.16268
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A balanced view for the interactions between ALV‑J 
and host immune response
The low levels of ALV-J replication in MDM at 36 hpi 
was accompanied with fewer immune-related DEG 
involved in host defense responses. Superficially, we 
could conclude that ALV-J replication was inhibited at 
6-36 hpi due to robust host immune responses induced 
at 3 hpi. However, in HIV-related studies, the conven-
tional host immune response does not contain HIV-1 
replication and even contributes by increasing virus 
replication through immune activation [68]. Moreover, 
viruses can proactively hide in the host to evade the 
host immune elimination and HIV typically establishes 
latency within the macrophage [69]. Based on our find-
ings, it is also possible that ALV-J is capable of escaping 
from host immune responses and establishing latency 
in chicken MDM after 3 h of viral infection. Accord-
ing to the above analyses, we should take a balanced 
view to consider the interactions between ALV-J and 
host immune response. Additional studies are needed 
to elucidate the mechanisms of ALV-J immune evasion 
and host defense responses in chicken macrophages.

In summary, gene expression profiling analysis in 
chicken MDM infected with ALV-J provides insights 
into the mechanisms underlying the host immune 
responses and ALV-J immune escape. Strong immune 
responses were induced by ALV-J infection in MDM at 
3 hpi. We found that numerous differentially expressed 
genes such as MIP-3α, IL-1β, iNOS, K60, IRG1, CH25H, 
NFKBIZ, lysozyme and OASL were involved in host 
defense of ALV-J infection. ALV-J countered host 
immune attacks by inhibiting the expression of func-
tional PRR and facilitating expression of Jak-STAT 
pathway inhibitors. These results provide valuable 
insights into the antagonism between host antiviral 
immune responses and ALV-J infection.
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