

ABSTRACT

Title of Dissertation : ANALYSIS OF ERRORS IN SOFTWARE

RELIABILITY PREDICTION SYSTEMS

AND APPLICATION OF MODEL

UNCERTAINTY THEORY TO PROVIDE

BETTER PREDICTIONS

 Susmita Ghose, Ph.D 2006

Dissertation Directed By: Dr. Carol S. Smidts,

Associate Professor,
Department of Mechanical Engineering.

Models are the medium by which we reflect and express our understanding

of some aspect of reality, a particular unknown of interest. As it is virtually

impossible to grasp any situation in its entire complexity, models are representations

of reality that are always partial resulting in a state of uncertainty or error. However

the question of model error from a pragmatic point of view is not one of accounting

for the difference between models and reality at a fundamental level, as such

difference always exists. Rather the question is whether the prediction or

performance of the model is correct at some practically acceptable level, within the

model’s domain of application.

Here lays the importance of assessing the impact of uncertainties about

predictions of a model, modeling the error and trying to reduce the uncertainties

associated as much as possible to provide better estimations.

While the methods for assessing the impact of errors on the performance of a

model and error modeling are well established in various scientific and engineering

disciplines, to the best of our knowledge no substantial work has been done in the

field of Software Reliability Modeling despite the fact that the inadequacy of the

present state and techniques of software reliability estimation has been recognized

by industry and government agencies. In summary, even though hundreds of

software reliability models have been developed, the software reliability discipline

is still struggling to establish a software reliability prediction framework.

This work intends to improve the performance of software reliability models

through error modeling. It analyzes the errors associated with a set of five software

Reliability Prediction Systems (RePSs) and attempts to improve their prediction

accuracy using a model uncertainty framework. In the process, this work also

statistically validates the performances of the RePSs. It also provides a time and cost

effective alternative to performing experiments that are required to assess the error

form which is integral to the process of application of the model uncertainty

framework.

ANALYSIS OF ERRORS IN SOFTWARE RELIBILITY PREDICTION
SYSTEMS AND APPLICATION OF MODEL UNCERTAINTY THEORY TO

PROVIDE BETTER PREDICTIONS

By

Susmita Ghose

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2006

Advisory Committee:
Associate Professor Carol Smidts, Chair
Professor Ali Mosleh
Professor Mohammad Modarres
Assistant Professor Michel Cukier
Professor Marvin Zelkowitz

© Copyright by
Susmita Ghose

2006

 ii

DEDICATION

To my parents, Prativa Rani Ghose and Sudhir Kumar Ghose

 iii

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to Dr. Carol Smidts for her immense

help in guiding my research. As an advisor she assisted me in every aspect from

research brainstorming to writing this dissertation.

I am fortunate to have been able to work on this project with a talented and

dedicated team of UMD researchers consisting of Dr. Ming Li, Dr. Bin Li, Dr Avik

Sinha, Dr Dongfeng Zhu, Yuan Wei, Anand Ladda, Wende Kong andYing Shi. I

would like to thank them for their help and support to this project.

I would like to thank Dr. Mohammad Modarres, Dr. Ali Mosleh, Dr. Marvin

Zelkowitz, Dr. Michel Cukier for agreeing to be on my committee. I am grateful to

Dr Mosleh, Dr Zelkowitz and Dr Cukier for their inputs.

Finally I would like to thank Alok Priyadarshi, my husband, for helping me

intellectually and emotionally throughout the research.

 iv

Table of Contents

DEDICATION.. ii

ACKNOWLEDGEMENTS... iii

List of Tables ... ix

List of Figures .. xi

Chapter 1 Introduction... 1

1.1 The Issue ... 1

1.2 The Objectives .. 4

1.3 The Approach ... 5

1.4 The Contents ... 6

Chapter 2 Literature Review ... 8

2.1 Model and Model Uncertainty.. 8

2.1.1 Definition of “model” ... 8

2.1.2 Uncertainty.. 9

2.1.3 Model Uncertainty .. 9

2.1.4 Quantifying Model Uncertainty.. 10

2.1.4.1 Model Averaging Method... 10

2.1.4.2 Uncertainty-Factor Methodology ... 14

2.2 Error Modeling ... 17

2.3 Summary... 25

Chapter 3 Literature Review: Software Reliability Modeling and Reliability

Prediction Systems (RePSs).. 26

 v

3.1 Software Reliability Models ... 26

3.2 Theory of RePSs ... 31

3.2.1 Defect Density RePS .. 33

3.2.2 Test Coverage RePS ... 35

3.2.2.1 Test Coverage Modification to Take Missing Functionalities into

Account .. 35

3.2.2.2 Reliability Estimation from the Modified Test Coverage 37

3.2.3 Requirements Traceability RePS .. 38

3.2.4 Function Point RePS... 40

3.2.5 Bugs per Line of Code RePS .. 41

3.3 Summary... 42

Chapter 4 Simulation and Simulation Results... 43

4.1 Theory behind Simulation .. 43

4.1.1 Defect Density Error Model Simulation:.. 52

4.1.2 Test Coverage Error Model Simulation.. 57

4.1.3 Requirements Traceability Error Model Simulation 60

4.1.4 Function Point Error Model Simulation ... 61

4.1.5 Bugs per Line of Code .. 63

4.2 Simulation Results .. 65

4.2.1 Statistical tests that were carried out to determine the simulation

results .. 66

4.2.2 The Tool.. 69

4.2.3 Simulation Results .. 73

 vi

4.2.4 Summary of the Simulation Results ... 76

4.3 Discussion of the Simulation Results: .. 80

4.4 Summary... 90

Chapter 5 Experiment.. 92

5.1 The Experiment Design .. 92

5.2 The Objectives of the Experiment .. 92

5.3 Hypotheses of the Experiment.. 93

5.3.1 First set of hypotheses... 93

5.3.2 Second set of hypotheses .. 95

5.3.3 Third set of hypotheses ... 96

5.4 The Design.. 97

5.4.1 Design of the Development phase .. 98

5.4.2 Design of the Measurement phase .. 99

5.4.3 Threats to Validity .. 100

5.4.3.1 Threats to Validity during the Development Phase 100

5.4.3.2 Threats to Validity during the Measurement Phase.................... 101

5.5 Experiment Execution... 102

5.5.1 Pre-experiment preparation for Development phase 102

5.5.1.1 Subjects... 102

5.5.1.2 Applications .. 103

5.5.1.3 Groups... 105

5.5.1.4 Execution .. 105

5.5.2 Pre-experiment preparation for the Measurement phase 106

 vii

5.5.2.1 Subjects... 106

5.5.2.2 Execution .. 107

5.6 Experiment Results ... 107

5.6.1 Statistical Analysis of the results to accept/reject the first set of

hypotheses... 108

5.6.2 Statistical Analysis of the results to accept/reject the second set of

hypotheses... 114

5.6.3 Statistical Analysis of the results to accept/reject the third set of

hypotheses... 117

5.7 Summary... 119

Chapter 6 Updating the Estimations Based on .. 120

Error Forms... 120

6.1 Additive Error Model.. 120

6.2 Multiplicative Error Model... 122

6.3 Examples... 123

6.3.1 Updates based on evidence on the order of failure probability 125

6.3.2 Updates in the lack of any evidence ... 126

6.3.3 Updates based on evidence on the accuracy of the models 128

6.3.4 Updates based on evidence on the accuracy of the models and using

an weighted average procedure... 129

6.4 Summary:.. 143

Chapter 7 Conclusion .. 145

7.1 Contributions of this Research.. 145

 viii

7.2 Limitations of this Research ... 147

7.3 Future Work.. 148

Appendix A: Results of the simulation of error forms ... 151

Appendix B: Experiment Design for the Measurement Phase 158

Appendix C: Further Investigation on Interaction of Defects 164

Bibliography ... 175

 ix

List of Tables

Table 4-1 Code that shows that the masked defect may not have any effect 49

Table 4-2 Code that shows two defects may cancel each other................................ 50

Table 4-3 Mean and Standard Deviation for different error forms for varying

functional sizes with upper bound of fault exposure probability of 10E-2

(Multiply each value by 10**-2) .. 77

Table 4-4 Mean and Standard Deviation for different error forms for varying

functional sizes with upper bound of fault exposure probability of 10E-6

(Multiply each value by 10**-6) .. 78

Table 4-5 Relative error percentages for varying functional sizes with upper bound

of fault exposure probability of 10E-2.. 79

Table 4-6 Relative error percentages for varying functional sizes with upper bound

of fault exposure probability of 10E-4.. 79

Table 4-7 Relative error percentages for varying functional sizes with upper bound

of fault exposure probability of 10E-6.. 80

Table 4-8 Mean and Standard Deviation for Requirements

Traceability/DefectDensity error forms for varying functional sizes and

requirements traceability/inspection efficiencies with upper bound of fault

exposure probability of 10E-1 (Multiply each value by 10**-1) 82

Table 5-1 Null and alternate hypothesis that the relative errors is less than unity ... 94

Table 5-2 Null and alternate hypothesis that the relative error is less than 0.5 95

Table 5-3 Null and alternate hypothesis that the relative error is less than 0.3 95

Table 5-4 Null and alternate hypotheses for the error models.................................. 96

 x

Table 5-5 Null and alternate hypotheses that the simulation and the experimental

errors are similar ... 97

Table 5-6 Experiment design for development phase .. 98

Table 5-7 Experiment design for the off-campus students for the development phase

.. 99

Table 5-8 Subjects’ Experience Profile .. 103

Table 5-9 Details of the reliability testing of the applications................................ 109

Table 5-10 Real reliability and reliability values predicted by the different RePSs

.. 110

Table 5-11 Error Data and Their Mean and Standard Deviation............................ 111

Table 5-12 Relative errors for each of the five models for each application.......... 112

Table 5-13 Statistics of the t-tests on the first set of hypotheses 113

Table 5-14 Statistics of the Sign tests on the first set of hypotheses 113

Table 5-15 Mean and standard deviation of the simulation results 118

Table 5-16 Statistics of the t-tests on the third set of hypotheses........................... 118

Table 5-17 Statistics of the Wilcoxon-tests on the third set of hypotheses 119

Table 6-1 Characteristics of the applications.. 124

Table 6-2 Updated predictions of failure probabilities of SRQS............................ 126

Table 6-3 Percentages of improvement in the estimates based on no evidence of

order of failure probability.. 128

Table 6-4 SRQS update results taking WAE into account 135

Table 6-5 The percentages of improvement in estimation 137

Table 6-6 Initial average and weighted average estimates of failure probability... 139

 xi

List of Figures

Figure 3-1 RePS Constitution [Li00].. 33

Figure 4-1 Real error vs. modeled error ... 47

Figure 4-2 Control flow graph -1.. 47

Figure 4-3 Control flow graph - 2... 48

Figure 4-4 Control flow graph – 3 .. 51

Figure 4-5 Control flow graph – 4 .. 51

Figure 4-6 Stem and Leaf Plot .. 68

Figure 4-7 Framework of the Error simulation Tool .. 69

Figure 4-8 Snapshot of the program showing the incorporation of the input data ... 70

Figure 4-9 Snapshot of the results showing the probability of failure values 71

Figure 4-10 Snapshot of the results showing mean and standard deviation of the

error values ... 72

Figure 4-11 Snapshot of the results showing the tests of normality on the error

values .. 72

Figure 4-12 Statistics for the Defect Density Error .. 73

Figure 4-13 Statistics for the Bugs per Line of Code Error...................................... 74

Figure 4-14 Statistics for the Function Point Error... 74

Figure 4-15 Statistics for the Requirements Traceability Error................................ 75

Figure 4-16 Statistics for the Test Coverage Error ... 76

 xii

Figure 4-17 Variation of relative error percentages across different order of failure

probabilities for a functional size of 75 FP... 81

Figure 4-18 Relative error percentages for varying functional sizes with upper

bound of fault exposure probability of 10E-2... 83

Figure 4-19 Test Coverage relative error percentages for varying functional sizes

and varying testing efficiency with upper bound of fault exposure probability

of 10E-2 .. 84

Figure 4-20 Test Coverage relative error percentages for varying functional sizes

and varying repair probabilitys with upper bound of fault exposure probability

of 10E-2 .. 85

Figure 4-21 Relative error percentages for an application with failure probability of

the order 10E-1and functional size of 75 FP .. 86

Figure 4-22 Relative error percentages for an application with failure probability of

the order 10E-1 and functional size of 10,000 FP .. 86

Figure 4-23 Relative error percentages for Function Point Error for applications of

different order of failure probabilities .. 88

Figure 4-24 Relative error percentages for an upper bound of failure probability of

10E-1 and varying LOC per module... 89

Figure 4-25 Relative error percentages for an upper bound of failure probability of

10E-6 and varying LOC per module... 89

Figure 5-1 Statistics of the log-normality tests on eBLOC .. 114

Figure 5-2 Statistics of the normality tests on eDD.. 115

Figure 5-3 Statistics of the log-normality tests on eFP .. 116

 xiii

Figure 5-4 Statistics of the log-normality tests on eRT.. 116

Figure 5-5 Statistics of the log-normality tests on eTC.. 117

Figure 6-1 Plots of initial and updated values of failure probabilities of SRQS 126

Figure 6-2 Plots of initial and updated values of failure probabilities.................... 127

Figure 6-3 Plots of initial and updated values of failure probabilities of ATM 129

Figure 6-4 The weighted average update procedure... 132

Figure 6-5 Plots of initial and updated values of failure probabilities of ATM taking

WAE into account... 134

Figure 6-6 Plots of initial and updated values of failure probabilities of SRQS taking

WAE into account... 135

Figure 6-7 Initial and final estimates for SSP... 136

Figure 6-8 Initial and final estimates for WPU... 136

Figure 6-9 Initial and final estimates for LOCAT .. 137

Figure 6-10 Initial and final estimates for LOCAT-III... 137

Figure 6-11 Inspection Efficiency for varying Test Coverage when the Test

Efficiency is 30%.. 140

Figure 6-12 Inspection Efficiency for varying Test Coverage when the Test

Efficiency is 50%.. 141

Figure 6-13 Inspection Efficiency for varying Test Coverage when the Test

Efficiency is 80%.. 142

Figure C-1 Control flow graph -1 ... 164

Figure C-2 Flow Graph showing interaction among defects 166

Figure C-3 Control flow graph – 2 ... 167

 xiv

Figure C-4 Flow Graph showing interaction among defects 168

Figure C-5 Control Flow Graph – 3.. 169

 1

Chapter 1 Introduction

1.1 The Issue

Despite the fact that hundreds of software reliability models have been

developed to date [Smidts02], the software reliability discipline is still struggling to

establish a software reliability estimation and prediction framework.

This work intends to improve the performance of software reliability models

through error modeling. It analyzes the errors associated with a set of five software

Reliability Prediction Systems (RePSs) [Smidts00, Smidts02] and attempts to

improve their prediction accuracy using a model uncertainty framework.

Models are the medium through which we reflect and express our understanding

of some aspect of reality, a particular unknown of interest. As it is virtually

impossible to grasp any situation in its entire complexity, models are representations

of reality that are always partial. In other words, what we know about the true nature

of the unknown of interest is generally incomplete, resulting in a state of

uncertainty. This uncertainty is termed as “error” and is defined as the difference

between the true value of the unknown of interest and the value predicted by the

model. The error in model predictions can arise from uncertainties in the values

assumed by the model parameters, uncertainties and errors associated with the

structure of the model stemming from simplifications, assumption and

approximations.

 2

Model uncertainty arises in natural sciences and engineering when in addressing

a situation of interest when there is [Droguett02]

• No plausible model

• A single model, generally accepted, but not completely validated

• Conceptually accepted and validated models, but of uncertain quality of

implementation

• A single model covering some but not all relevant aspects of the problem

• Multiple plausible models, none of which is completely validated

• Competing theories with contradictory predictions

• Multiple models each covering different aspects of the reality of interest

• Composite models formed from sub-models with different degrees of

accuracy and credibility

In evaluating the uncertainties associated with a model various sources of

information might be available. This includes comparison of actual measurements

and results of experiments directly or indirectly related to model predictions.

Information concerning a particular model itself may also be available.

Thus, the central question is what we can say about the unknown of interest given

all the available sources of information. Can the information be used to obtain a

better performance of the model?

Model performance is to be seen in the context of its objective and scope.

The question of model error/uncertainty from a pragmatic point of view is not one

of accounting for the difference between models and reality at a fundamental level,

as such difference always exists. Rather the question is whether the prediction or

 3

performance of the model is correct at some practically acceptable level, within the

model’s domain of application.

Here lays the importance of assessing the impact of the uncertainties about

predictions of a model, modeling the errors, and trying to reduce the uncertainties

associated as much as possible to provide better estimation.

While the methods for modeling the errors to assess the impact of

errors/uncertainties on the performance of a model are well established in various

scientific and engineering disciplines [Albert01, Badar05, Cromlry02, Cho04,

Bierman95, Bessler03], to the best of our knowledge no work has been done in the

field of Software Reliability Modeling.

The inadequacy of the present state and techniques of software reliability

estimation has been recognized by industry and government agencies. For instance,

the nuclear industry usually uses IEEE STD 7-4.3.2-1993, “Standard Criteria for

Digital Computers in Safety Systems of Nuclear Power Generating Stations.” While

the Nuclear Regulatory Commission (NRC) endorsed this standard in Regulatory

Guide 1.152, Revision 1 (January, 1996), it did not endorse Section 5.15,

“Reliability” as a sole means of meeting the Commission’s regulations for reliability

of digital equipment used in safety systems. The applicable Section 5.15 of the

standard states “when qualitative or quantitative reliability goals are required, the

proof of meeting the goals shall include software used with hardware.” The NRC

did not endorse that section because there is no general agreement that a

measurement methodology currently exists that provides a credible method to

measure software reliability [NRC96, NRC97, Smidts00].

 4

The aircraft industry standard for software is RTCA/DO-178B [RTCA92],

“Software Considerations in Airborne Systems and Equipment Certification.” It

states in section 12.3.4 ‘Software Reliability Methods’ that “currently available

methods do not provide results in which confidence can be placed to the level

required for this purpose.” Hence this document does not provide guidance for

software failure rates.

In summary, despite the fact that hundreds of software reliability models

have been developed to date [Smidts02], the software reliability discipline is still

struggling to establish a software reliability estimation and prediction framework.

This work intends to improve the performance of software reliability models

through error modeling. It analyzes the errors associated with a set of five software

Reliability Prediction Systems (RePSs) [Smidts00, Smidts02] and attempts to

improve their prediction accuracy using a model uncertainty framework.

1.2 The Objectives

The objectives of this work are as follows

• Statistically validate the performance of a set of five software Reliability

Prediction Systems (RePSs). A detailed discussion on the RePSs is provided

in Chapter 3.

• Analyze and determine the nature of the errors associated with the RePSs,

classify the errors and once that is accomplished, apply the results to the

model uncertainty framework to better the performances of the models. This

should allow a better estimation of reliability.

 5

• Provide a platform for generalizing model uncertainty problems to the

software reliability modeling domain and suggest an approach to improve

model performance using the model uncertainty approach.

• Suggest alternate methods which are cost and time effective to determine the

nature of errors. Determining the nature of the errors is integral to applying

the model uncertainty framework and is sometimes infeasible from a cost or

time perspective. The objective is also to validate these alternate methods.

1.3 The Approach

Simulations were carried out to determine the nature of the errors.

Traditionally the nature of the errors is determined experimentally. That includes the

extensive and difficult task of designing the experiment in a way that counter threats

to validity, and executing it. Each experiment requires a minimum number of data

points (the larger the number, the better) in order to statistically validate it. This

approach is expensive not only from a cost perspective but also from a time

perspective. Sometimes carrying out an experiment is just not feasible due to lack of

resources. Simulation is an alternative which provides a solution to the above

problems. Moreover, simulation allows us to use a wide range of inputs. This not

only provides a broader spectrum of possibilities but also acts as a catalyst for

sensitivity analysis of the inputs/values.

This work also validates the results obtained from the simulation on the nature

of the error models and their prediction accuracies. This validation was important to

establish the level of accuracy of each RePSs and confirm/reject/refine the error

 6

models associated with the RePSs. This validation was also important to confirm

whether the assumptions made in the simulation process can be validated and

whether the simulation process can be generalized as an alternative to an

experimental approach. The validation was also significant from the perspective of

generalizing the assumptions and the simulation approach to construct error models

for simulation from other software reliability models. Therefore an in-vitro

experiment was designed [Field03], [Hughes71] involving eight different

applications to validate the findings from simulation.

1.4 The Contents

The rest of this work is organized as follows. Chapter 2 provides a detailed

discussion on model and model uncertainty. The discussion includes the definitions

of a model, the reasons for model uncertainty, the taxonomy of model uncertainty,

the model uncertainty framework and the applications of the framework. It also

provides examples of domains where error modeling has been applied.

Chapter 3 provides a detailed discussion on the theory of RePSs and the

process of construction of the five RePSs from five software engineering measures:

Defect Density, Bugs per Line of Code, Requirements Traceability, Function Point

and Test Coverage. This provides the foundation for the construction of error

models for the simulation.

Error models for each of the RePSs are then built for the simulation. Chapter 4

enumerates the importance of simulation and provides the rationale and assumptions

 7

behind the construction of error models for simulation. It then summarizes the

results and discusses them.

Chapter 5 presents an experiment involving eight software applications to

establish the level of accuracy of each RePSs and confirm/reject/refine the error

models associated with the RePSs. This includes the experiment design, the

objectives, the hypotheses, the threats to validity and the execution process of the

experiment. It also provides the experimental results and statistically analyzes them.

The results obtained from simulation are compared to the experimental results and

are analyzed for similarity.

Chapter 6 applies the model uncertainty framework to the results obtained

from the experiment and the simulation. It then presents a new and more robust

software reliability prediction. The predictive ability of the new model is also

assessed.

 Finally Chapter 7 summarizes and concludes this research. It identifies the

contributions of this work, provides the limitations, and then suggests possible

future avenues of research.

 8

Chapter 2 Literature Review

This chapter presents an overview of recently published research on model

uncertainty and the applications of error modeling to different scientific and

engineering disciplines. It also then presents an overview of the research done to

assess the impact of errors in software reliability modeling domain.

2.1 Model and Model Uncertainty

This section presents a discussion on model and model uncertainty. The

discussion includes definitions of a model, the reasons for model uncertainty, the

taxonomy of model uncertainty, the model uncertainty framework and the

applications of the framework.

2.1.1 Definition of “model”

The Concise Oxford Dictionary [Thompson95] defines model as one of the

following:

• a representation in three dimensions of an existing person or thing or of a

proposed structure, especially on a smaller scale (a model train)

• a simplified (often mathematical) description of a system, etc., to assist

calculations and predictions

• a particular design or style of a structure or commodity.

Why is modeling an integral part of our lives? That is because modeling is

necessary to explain any real event. Modeling takes place in the quest of handling a

specific problem.

 9

2.1.2 Uncertainty

Uncertainty is a reflection of the lack of knowledge. There have been different

schools of classification of uncertainty. According to one classification, and the

most widely accepted, uncertainty is of basically two types:

• Epistemic uncertainty (also known as subjective uncertainty, knowledge

uncertainty, reducible uncertainty): it arises from lack of knowledge about

the state of reality under study and is thus a property of the analysts

performing the study [Helton96A]

• Aleatory uncertainty (also known as stochastic uncertainty, variability

uncertainty, irreducible uncertainty): it arises because the reality under

study can behave in many different unpredictable ways and is thus a

property of reality [Helton96A]. That is, there are aspects of reality that are

inherently stochastic. This is due to the inherent variability of nature. This

also leads to the assertion that such a type of uncertainty is irreducible even

in principle, i.e., further knowledge or better understanding of the natural

phenomena underlying the process under investigation is not useful.

2.1.3 Model Uncertainty

As discussed before, reducing reality into a model inevitably results in an

error, reflecting the discrepancies between the reality portion of interest and its

model representation. These errors can be associated with the structure of the model

stemming from simplifications, assumption and approximations or due to

uncertainties in the values assumed by the model parameters or due to errors in the

 10

measurement process itself. This error can be viewed as a measure of how good a

model is in representing reality.

2.1.4 Quantifying Model Uncertainty

A number of approaches for quantifying model uncertainty have been

proposed in the literature with varying degrees of complexity, strength of theoretical

foundation, and capability in addressing different model uncertainty situations.

Among them, two approaches have seen wider practical applications. One approach

involves averaging of predictions of multiple models, the Model Averaging method

and the other uses model adjustment factors and is also known as Correction Factor

method or the Uncertainty Factor Approach. The following sections provide a brief

theoretical description of the Model Averaging and Uncertainty Factor approaches

and a discussion regarding each methodology’s major features and highlight their

respective advantages and disadvantages.

2.1.4.1 Model Averaging Method

The Model Averaging (MA), also known as Alternate Hypotheses approach

[Zio96] or the P{Mi} approach [Mosleh95], considers each available model a

representation of a set of plausible hypotheses about a system that, in light of

available evidence, provides predictions about a common quantity of interest. The

predictions of available and plausible models are then combined probabilistically

via mixture of distributions, thus requiring a set of mutually exclusive and

collectively exhaustive models.

 11

The MA approach is employed either implicitly or explicitly in various

domains. de Finetti [deFinetti72], Davis [Davis79], Draper et al. [Draper87], Draper

[Draper95, Draper98], Hodges [Hodges87], Madigan and Raftery [Madigan94,

Madigan96], Laskey [Laskey95, Laskey96], Chatfield [Chatfield96] have used it in

the fields of statistics and decision theory. Apostolakis [Apostolakis90,

Apostolakis95] addressed the issue of model uncertainty through this approach in

probabilistic risk assessments. Chhibber et al. [Chhiber91] applied the MA

procedure to the quantification of model uncertainty in the context of distributed

environmental contamination. Zio and Apostolakis [Zio96] used the MA framework

in the performance assessment of radioactive waste depositories, particularly

dealing with models of groundwater flow and contaminant transport. The MA

procedure has also been suggested and applied in other areas. Hoeting et al.

[Hoeting98] provided an extensive discussion of the methodology and applied it in

dealing with the uncertainty in the treatment of primary biliary cirrhosis of the liver

and from the prediction of percent body fat using 13 alternate body measurements in

a multiple regression model.

2.1.4.1.1 The MA Theory

The Model Averaging (MA) approach, as mentioned, combines the

predictions of various plausible models probabilistically via a mixture of

distributions and computes the average value [Zio96].

A mathematical model may be represented [Droguett02] as xi = Mi(Θi, Si) ,

where xi is the prediction of the model about a reality aspect of interest, Si

 12

represents the model’s form reflecting a set of assumptions and simplifications

encoded into the mathematical model Mi, and Θi = (θ1, θ2, . . .) is a finite set of

model parameters. In a general case of a discrete set of n models Ω, each model

Mi(Θi, Si), i=1,2…n, represents an alternate form of Si with given set of parameters

Θi. Each model in the set Ω provides an estimate about the quantity of interest X in

the form of a predictive probability distribution p(x |Mi) = p(x | Θi,Si) .

The Model Averaging (MA) method treats the model Mi(Θi, Si), as a

variable or a parameter and integrates over uncertainty about both the model form Si

and model parameters Θi [Draper95]. Given available evidence E and the set ∆ of

possible models’ forms, the posterior distribution of quantity X is provided by the

standard Bayesian estimator

])|,(),,|([)|(iiiii dESpSExpExp
i i

ΘΘΘ=∑ ∫
∆ Θ

 (2-1)

representing a weighted average of the conditional predictive distributions p(x

|E,Mi) using the posterior model probabilities p(Mi|E) as weights. Now, writing the

posterior model probabilities p(Mi|E) as

)|(),|()|,(ESpSEpESp iiiii Θ=Θ , (2-2)

the posterior distribution p(x |E) can be rewritten as follows:

])|(),|(),,|([)|(iiiiii dESpSEpSExpExp
i i

ΘΘΘ=∑ ∫
∆ Θ

 (2-3)

The posterior probability distribution for a model Mi can then be obtained by

Bayes theorem. The probability of a specific model M is given in terms of its form

Si, i.e., p(Si|E) .

 13

The MA framework is an intuitive approach. Furthermore, all probability

distributions involved in the MA approach can be updated via Bayes’ theorem. In

particular, given new evidence, posterior model probability distributions can be

obtained.

2.1.4.1.2 The Pros and Cons

However, the MA approach has several drawbacks. First of all, the concept of

assessing a probability distribution over the available model set necessarily leads to

the question of how to interpret the probabilities p(Si). This interpretation is implied

by, the two fundamental assumptions on which the MA approach is based:

• the set of alternate models should be mutually exclusive and

• the set of alternate models should be collectively exhaustive. Simply put,

the model probabilities should sum up to one (as required by the summation

in eq. (2-3)).

Both of these assumptions are hardly satisfied in practice. The collective

exhaustiveness, for example, implies that not only the probability attributed to a

model, say p(Si), is “correct” but also that the correct model be one of the alternate

models M1, . . .,Mn. As stated by Winkler [Winkler96], “in most real world

situations, the possible existence of a correct model is questionable at best.”

Moreover, the set of plausible models is unavoidably incomplete.

The mutual exclusiveness assumption of the plausible models M1, . . ., Mn

implies that it is not possible to explicitly model dependence among the set of

 14

alternate models under the MA framework. This assumption imposes a strong

restriction in practical situations.

An illustration of cases where models are not mutually exclusive and

collectively exhaustive has been provided by Bier [Bier95].

2.1.4.2 Uncertainty-Factor Methodology

The Uncertainty-Factor (UF) method [Siu85], also known as Error-Factor

approach [Chhiber91], accounts for model uncertainty by modifying the prediction

given by a single “best” model (also called the reference model) by means of a

correction factor, which is usually uncertain, in order to estimate the true value of a

quantity of interest [Siu92]. In terms of applications, Siu et al. [Siu92] applied the

UF method in the context of fire risk assessment, more precisely in the estimation of

the velocity of flame spread over a horizontal cable tray. Zio and Apostolakis

[Zio96] present an application of the uncertainty-factor methodology to the

performance assessment of radioactive waste depositories in which it is used as a

second-stage model uncertainty assessment procedure following the identification of

the single “best” available model via quantification of posterior model probabilities

under the MA approach.

2.1.4.2.1 The UF Theory

The Uncertainty-Factor (UF) approach [Siu92] consists of introducing an

adjustment directly on the predictions provided by a single model. Formalizing, let

xi = Mi(Θi, Si) , where xi is the prediction of the model about a reality aspect of

interest, Si represents the model’s form reflecting a set of assumptions and

 15

simplifications encoded into the mathematical model Mi, and Θi = (θ1, θ2, . . .) is a

finite set of model parameters. A factor ξ is introduced which may be

multiplicative (ξm) or additive (ξa) so that the assessment about the unknown

quantity of interest X is given by

 aMXX ξ+= (2-4)

in the additive case, or

 mMXX ξ/= (2-5)

for the multiplicative case.

The correction factor (ξa or ξm) modifies the prediction of the model M in order to

arrive at the true value of the quantity of interest X.

Considering the simple case where X is a deterministic single valued

quantity and adopting the multiplicative uncertainty-factor model given by eq. (2-4),

in order to determine the uncertainty distribution of ξm, Siu [Siu92] suggests that if

the model’s parameters Θi are known, then the ratio of XM/X (or equivalently XM – X

in the additive case) is fixed for a given experiment (where each experiment

corresponds to any situation in which data can be gathered). However, ξm is likely to

vary from experiment to experiment. This variability is expressed by the correction

factor ξm population variability distribution (its uncertainty distribution). Now if Λ

= {λ1, . . ., λm} is a finite set of m parameters, as per Bayes’ Theorem,

∫
Λ

ΛΛΛ

ΛΛ
=Λ

dEL

EL
E

()|(

)()|(
)|(

0

0

π

π
π (2-6)

where E is the evidence on model performance, E.

 16

where L(E| Λ) is the likelihood function and πo(Λ) is the prior distribution on the set

of parameters Λ = {λ1, . . ., λm}. Under the restriction of n independent experiments,

the likelihood function is given by

)|()|(
1

Λ=Λ ∏
=

n

i

mi
fEL ξ (2-7)

where ξmi =
i

M

X

X
i or ξai =

iMX - iX in the additive case, and Xi is the measured

value of the quantity of interest X in experiment i and XMi is the corresponding

predicted value by model . The posterior population variability, f(ξm|E) , is obtained

by averaging over all possible values of the parameter set Λ ,

ΛΛΛ= ∫
Λ

dEfEf mm)|()|()|(πξξ (2-8)

The modeler’s final goal is to estimate the probability distribution of the quantity of

interest X given the prediction provided by the model and any additional

performance data E. This distribution can be obtained from eq. (2-5)

2.1.4.2.2 The Pros and Cons

A positive aspect of the uncertainty-factor approach with a population

variability distribution for the error term ξm is that it allows for the use of a model

outside its intended domain of application. The uncertainty-factor tries to correct the

predictions provided by model M by means of the correction factor ξ , and make

them applicable to the situation at hand which the model was not initially designed

to handle. Thus, ξ can be interpreted as a factor that indicates how far are the current

application’s conditions and assumptions to those for which the model was intended

 17

for [Zio96]. The uncertainty-factor method allows for the incorporation of

experimental data into the assessment of model uncertainty.

In this work, since one of the objectives is to validate each of the five

models, it is desired to use each of the models separately. Also, it can not be

assumed that the models are mutually exclusive and collectively exhaustive (Section

2.1.4.1.2). Therefore, a generalized version of the Uncertainty Factor Approach

suggested by [Droguett02] is used in this work to analyze the five RePS models.

This approach is Bayesian in nature, simple to use, allows us to incorporate

experimental data and update the estimates made by the models. It can be applied to

additive and multiplicative error models. Chapter 6 discusses the approach in greater

details.

2.2 Error Modeling

In this section, the importance of error modeling is reiterated and the

applications of error modeling to various scientific and engineering domains are

discussed. Error is the difference between the reality and the model representation

of the reality behavior.

A mathematical model may be represented as xi = Mi(Θi, Si), where xi is the

prediction of the model about a reality aspect of interest, Si represents the model’s

form reflecting a set of assumptions and simplifications encoded into the

mathematical model Mi, and Θi = (θ1, θ2, . . .) is a finite set of model parameters.

Now error is defined as the difference between the real value of unknown quantity

of interest X and xi, the value predicted by Mi. Errors are analyzed to determine their

 18

nature and their sources. This information is then used to model the errors.

Modeling the errors provides a better understanding of the impact of the errors and

how they affect the real value X in different scenarios. By different scenarios it

means different contexts in which the models are used, their impact if there are

changes in the parameters etc. It provides a sensitivity analysis of the models.

Error modeling is widely conducted in the field of mechanical and industrial

engineering. Various approaches are proposed for machine tool error modeling and

compensation. Some of these approaches are described below.

Different mathematical models such as coordinate transformation are given by

[Schultschik77], [Ferreira86]. Other approaches, including empirical, trigonometric,

and error matrix methods are proposed by [Ferreira86]. A simulation study is

conducted in [Wang06] to illustrate an error compensation procedure.

[Badar05] presents an adaptive sampling procedure, which uses manufacturing

surface error patterns and optimization search methods to reduce sample size, while

improving accuracy. Surface errors for different processes are quantified and

validated using previously published models. The initial points for sampling are

identified through such a characterization of the process and its effect on the

workpiece. These sampled points are fit using the least-squares method to complete

the form evaluation. Points are added to the initial set using optimization search

heuristics. The final tolerance value obtained is compared with that obtained from a

large population sample to check the accuracy. With such an adaptive approach, it is

proposed that the number of points sampled is potentially less than that which

would be expected to achieve the same level of accuracy using traditional sampling

 19

methods. This paper demonstrates the error modeling and validation aspects of this

adaptive sampling procedure.

Error modeling has been widely used in the field of construction

engineering. [Cho04] proposes a correction to improve the position error in

automated construction manipulators. Hydraulically actuated construction

equipment is rapidly being retrofitted with robotic control capabilities by several

major manufacturers. However, position control errors caused by several factors are

significant in these types of construction equipment. Errors are amplified if the

manipulator and its operator must measure and locate objects in the equipment's

fixed reference frame. Both mechanistic and statistical approaches to correcting

position errors are possible. [Cho04] reports a statistical approach validated through

experiments with a computer-controlled large-scale manipulator (LSM). The LSM

is sufficiently representative of several types of construction equipment to be able to

serve as a general test bed. In the regression analysis, three factors which are

measurable in real time: distance, hydraulic pressure, and payload, are varied to

determine their influence on position errors in the LSM. It is shown that with an

integrated multivariable regression model, about 30% of the mean positioning error

of the LSM can be reduced without the use of fixed external reference systems. The

model is implemented as simple, real-time regression equations.

Error modeling has also been used extensively in the fields of biometrics and

medical sciences. Two models of disease progression among healthy persons with a

history of a precancerous lesion and the errors associated with them are studied by.

[Goldie03]. Evaluating cancer screening often requires modeling the underlying

 20

disease process and not the observed disease, particularly in the absence of direct

evidence linking screening to a survival benefit. Two models with four basic health

states (disease free, presence of a precancerous lesion, presence of cancer, dead), are

studied and the errors associated are analyzed. This modeling error's magnitude is

examined under a variety of assumptions and finally certain errors when modeling

the underlying disease process in evaluating screening programs for cancers

associated with precancerous states are removed.

The assessment and management of exploited fish and invertebrate

populations is subject to several types of uncertainty. This uncertainty translates into

risk to the population in the development and implementation of fishery

management advice. Here, risk is defined as the probability that exploitation rates

will exceed a threshold level where long term sustainability of the stock is

threatened. [Fogarty96] studies the different sources of errors: (a) stochasticity in

demographic rates and processes, particularly in survival rates during the early life

stages; (b) measurement error resulting from sampling variation in the determination

of population parameters or in model estimation; and (c) the lack of complete

information on population and ecosystem dynamics. Short term stochastic

projections are then made accounting for uncertainty in population size and for

random variability in the number of young surviving to enter the fishery.

Error modeling is also widely used in the fields of economics and trade and

commerce. [Bessler03] examines dynamic relationships among wheat prices from

five countries for the years 1981-1999. Error correction models and directed acyclic

graphs are employed with observational data to sort-out the dynamic causal

 21

relationships among prices from major wheat producing regions: Canada, the

European Union, Argentina, Australia, and the United States. The empirical results

show that Canada and the U.S. are leaders in the pricing of wheat in these markets

and that the U.S. has a significant effect on three markets excluding Canada.

Error modeling has been applied in the field of safety critical systems like

nuclear power plants, in the aviation industry etc. Air traffic control automation

synthesizes aircraft trajectories for the generation of advisories. Trajectory

computation employs models of aircraft performances and weather conditions. In

contrast, actual trajectories are flown in real aircraft under actual conditions. Since

synthetic trajectories are used in landing scheduling and conflict probing, it is very

important to understand the differences between computed trajectories and actual

trajectories. [Jackson96] examines the effects of aircraft modeling errors on the

accuracy of trajectory predictions in air traffic control automation. Three-

dimensional point-mass aircraft equations of motion are assumed to be able to

generate actual aircraft flight paths. Modeling errors are described as uncertain

parameters or uncertain input functions. A typical trajectory is defined by a series of

flight segments with different control objectives for each flight segment and

conditions that define segment transitions. A constrained linearization approach is

used to analyze trajectory differences caused by various modeling errors by

developing a linear time varying system that describes the trajectory errors, with

expressions to transfer the trajectory errors across moving segment transitions. A

numerical example is presented for a complete commercial aircraft descent

trajectory consisting of several flight segments.

 22

[Brannigan93] studies the computerized fire risk assessment models and

proposed a set of guidelines for their regulatory use. To do that he analyzes the

errors associated with the models. He outlined the sources of errors in these models:

mainly the assumptions taken into account while building these models like

equivalence of buildings, special cases like arson etc.

Even though error modeling application traverses a variety of fields, to the best

of our knowledge it has not been used in the field of software reliability modeling.

However the impact of errors in software reliability models has been studied.

[Brocklehurst90] analyzes the predictive accuracy of several software reliability

growth models using “u-plot”, which allows a user to estimate the relationship

between the estimated reliability and the true reliability using the past performance

data. Then the future estimates are improved by a process of recalibration.

Recalibration is done assuming that there is a consistent bias (i.e. consistent over-

estimation or under-estimation) between the estimated reliability and the true

reliability.

[Li93] argues that there is no way to tell exactly how close an estimation will be

to the actual value using the recalibration process mentioned in [Brocklehurst90].

The authors simply measure the bias of the estimation of the software reliability at

each past point of time and then take the average of these bias values and deduct this

average bias from the model projection. They also show that this simple approach is

superior to the recalibration method.

[Matsumoto88] evaluate software reliability growth models in the context of a

software project conducted in a university. A compiler was implemented and tested

 23

by five students. The test data was used to evaluate three different software

reliability growth models. Evaluation of the three models is based on the magnitude

of the relative error of the prediction. The relative error is defined as the ratio of the

difference between the actual number of defects detected during the testing process

and the number of defects predicted by the models, to the actual number of defects.

[Malaiya92] evaluate five different software reliability growth models using 18

datasets collected from a wide variety of software systems. The size of the projects

range from 1000 Lines of Code to 1 million Lines of Code and come from different

domains. These datasets are used to estimate the parameters of the five models.

Evaluation of the models is based on the mean relative error of the prediction. Here

also the relative error of a model is defined as the error in the prediction of total

number of faults in a specific dataset by a model over the actual number of faults in

that dataset.

[Lyu96] discusses a study where linear combination of results, even in their

simplest format, appears to provide more accurate predictions. The following

strategy is adopted in forming linear combination models.

• Identify a basic set of models (component models): If possible select models

whose assumptions are close to the actual environment. Also, select those

models whose predictive biases tend to cancel each other. (Models can have

optimistic or pessimistic biases)

• Apply certain criteria to ascribe weights to the component models and form

a combination model for the final predictions.

 24

The authors experimented with three different models. The authors, in their

investigation, found that these models perform well. Moreover, with the data sets

that the models were analyzed with, one of the models tended to be optimistic, one

pessimistic and one went either way. They also experimented with statically

weighted combinations and dynamically weighted combinations. In statically

weighted combinations, each component model has a constant weighing which

remains the same throughout the modeling process. In dynamically weighted

combinations, the weights are dynamically assigned incorporating the latest

information on the models.

Even though there has been some study on the evaluation of software

reliability models, error modeling has not been done to analyze and then improve

the estimations. This work generalizes the domain of application of error modeling

approaches to the software reliability field. It analyzes and evaluates the prediction

accuracy of Reliability Prediction Systems (RePSs) that are constructed from

software measurements like Requirements Traceability, Defect Density, Function

Point count, Test Coverage and Bugs per Line of Code. The errors for each of the

RePSs are modeled and the impact of the errors for different parameters is

determined. The nature of the errors associated with the RePSs (multiplicative or

additive) is also determined, which is then applied to the model uncertainty

framework to update the estimates.

 25

2.3 Summary

This chapter described the error modeling applications and approaches in

different scientific and engineering fields. The various approaches to error modeling

include empirical, trigonometric, statistical, error matrix methods, simulation

studies, coordinate transformation methods etc. Many of the approaches of error

modeling were applied in real-time to reduce the errors. The approaches looked at

sources of variations/errors and tried to rectify the sources itself. The approaches

also looked at different types of errors such as model errors and parametric errors

and found that most of the errors resulted from assumptions made by the models and

the parameters.

This chapter also discussed various studies on the evaluation of software

reliability models. However, it was also noted that error modeling approaches has

not been applied to the software reliability modeling field. This work aims to apply

error modeling approaches to the software reliability field.

 26

Chapter 3 Literature Review: Software Reliability
Modeling and Reliability Prediction Systems (RePSs)

This chapter first enumerates some of the widely used software reliability

models and then discusses the advantages of RePSs and the theory behind the

construction of the RePSs.

3.1 Software Reliability Models

Before introducing the concept of software reliability, few other concepts

need to be understood. The concepts in question are those of errors, faults, and

failures. Following are the IEEE [IEEE90] definitions of these concepts.

Errors are human actions that result in the software containing a fault.

Examples of such faults are the omission or misinterpretation of the user’s

requirements, a coding error, etc.

Faults are manifestations of an error in the software. If encountered, a fault

may cause a failure of the software. In this work, the term “defect” and “fault” are

used interchangeably.

Failure is the inability of the software to perform its mission or function

within specified limits. Failures are observed during testing and operation.

Now, Software Reliability is defined as the probability that the software will

not cause the failure of a product for a specified time under specified conditions;

this probability is a function of the inputs to and usage of the product, as well as a

function of the existence of faults in the software. The inputs to the product

determine whether an existing fault is encountered or not.

 27

Software reliability models may be categorized into Early Prediction Models

that can predict the reliability of software during the requirement, design or coding

phases of the Software Development Life Cycle (SDLC) and Late Prediction

Models that can predict the reliability when comprehensive testing starts

[Smidts02].

Models for early prediction are few in number and most models can be

categorized in the late prediction category. The Late Prediction Models mostly

consists of the Software Reliability Growth Models. Input Domain Models and

Error-Seeding Models are also late prediction models. Some of the widely used

models are discussed below.

The Rome Air Development Center (RADC) Reliability Metric was one of the

first early prediction models [ASFC87] to be used. A large range of software

programs and related failure data were analyzed in order to identify the

characteristics that would influence software reliability. The model identifies three

characteristics: the application type (A), the development environment (D), and the

software characteristics (S). A new software is examined with reference to these

different characteristics. Each characteristic is quantified, and reliability R in terms

of number of faults per executable line of code is obtained by multiplying these

different metrics

R=A×D×S where

The application type (A) is a basic characteristic of software. Examples of

application types that were initially used by RADC are airborne systems, process

control systems, developmental systems (such as software development tools), etc.

 28

An initial value for the reliability of the software to be developed is based only on

the application type. This initial value is then modified when other factors

characterizing the software development process and the product become available.

Development environment (D) is divided into three categories [Boehm81].

• Organic mode: Small software teams develop software in a highly familiar,

in-house environment. Most software personnel are extremely experienced

and knowledgeable about the impact of this software development on the

company's objectives.

• Semidetached mode: Team members have an intermediate level of expertise

with related systems. The team is a mixture of experienced and

inexperienced people. Members of the team have experience with some

specific aspects of the project.

• Embedded mode: The software needs to operate under tight constraints. In

other words, the software will function in a strongly coupled system

involving software, hardware, regulations, and procedures.

The software characteristics (S) metric includes all characteristics of the software

that are likely to impact software reliability like the size, complexity etc.

Software reliability growth models (SRGM) relates the cumulative number

of failures experienced during software testing (or the time-interval between

software failures) to the test duration.

Some of the widely used SRGMs are discussed below.

Jelinski and Moranda's Model [Jelinksi72]: Jelinksi and Moranda developed

one of the earliest reliability models. The main assumptions are:

 29

• All faults in a program are equally likely to cause a failure during test

• The hazard rate is proportional to the number of faults remaining and is

piecewise constant i.e it changes at each fault correction by a constant

amount but remains constant between corrections.

• No new defects are introduced into the software as testing and debugging

occur i.e. debugging is perfect.

 Originally, the model assumed only one fault was removed after each failure, but an

extension of the model, credited to Lipow [Lipow74], permits more than one fault to

be removed.

Goel and Okumoto [Goel78] developed a modification of the Jelsinki-

Moranda model for the case of imperfect debugging.

Musa Basic Execution Time Model [Musa75] assumes that failures occur as

a non-homogeneous Poisson process (NHPP). The important assumption in this

model is that the per-fault hazard rate is constant. The per-fault hazard rate is

defined as the ratio of initial failure intensity to the number of faults inherent in the

code [Musa87]. Failure intensity function is defined as the instantaneous rate of

change of the expected number of failures with respect to time. Moreover, in this

model, Musa postulated that software reliability theory should be based on

execution time, which is the actual processor time utilized in executing the program,

rather than on calendar time. Hence, failure intensity is measured in terms of

numbers of failures per unit (CPU) time. A Bayesian approach to software

reliability measurement was taken by Littlewood and Verrall [Littlewood73]. Most

models postulate that the hazard rate is a function of the number of faults remaining,

 30

whereas as Littlewood and Verrall modeled it as a random variable. One of the

parameters of the distribution of this random variable is assumed to vary with the

number of failures experienced which characterizes reliability change. The authors

proposed various functional forms for the description of this variation. The values of

the parameters of each functional form that produce the best fit for that form is

determined and then the functional forms are compared and the best fitting form is

selected.

In Musa-Okumoto Logarithmic Poisson Execution Time Model [Musa84],

the underlying software failure process is modeled as a logarithmic Poisson process

wherein the total number of failures in the system is "infinite in infinite time". The

intensity function decreases exponentially with the number of failures. This model

assumes that repair of the first failure has the greatest impact in reducing failure

intensity and the impact of each subsequent repair decreases exponentially.

The Delayed S-shaped SRGM was originally proposed by Yamada et al.

[Yamada83] and is a simple modification of the NHPP to obtain an S-shaped

growth curve for the cumulative number of failures detected. This model’s software

fault detection process can be viewed as a learning process in which the software

testers become familiar with the testing environments and tools and as time

progresses, these testers’ skills gradually improve and then level off as the residual

faults become more difficult to uncover.

Input-domain models consider the software input space from which test

cases are chosen and the studied quantity is the probability that an input datum

randomly chosen according to the operational profile, will lead to a failure. By

 31

recording the output results for a series of test cases, this probability can be

estimated using some statistical sampling techniques. Two well known input

domain models are Nelson's model [Nelson78] and Ramamoorthy and Bastani’s

model [Ramamoorthy82].

Fault seeding models assume that a known number of faults, called “seeded”

faults, are inserted into the software and both seeded faults and inherent faults are

detected during testing. The number of faults remaining after testing can then be

estimated from the numbers of seeded faults and inherent faults uncovered during

the testing. Mills fault seeding model [Mills72] is an example of this kind of

models.

3.2 Theory of RePSs

This section discusses the pros and cons of early and late prediction models

and the importance of RePSs and the theory behind it. Early prediction models are

of paramount importance since they provide early identification of cost overruns,

resource allocation, software development process issues, trade-off and risk

analysis, optimal development strategies, etc. Unfortunately, research in this area

has been sparse and results are not universally accepted due to a lack of systematic

validation and the rapid obsolescence of results due to shifts in software engineering

paradigms [Li06]. Late prediction models also have inherent flaws. The main issue

is the need for exorbitant amounts of testing (especially in case of safety critical

systems) and the availability of failure data. As an example, to assure 10 E-15

probability of failure per demand one will need to run and order of 10E14 test cases

 32

[Butler93]. This, at the rate of 0.1 seconds per test case, would require more than

10E5 years of continuous, uninterrupted testing [Butler93].

The inadequacy of the present state and techniques of software reliability

estimation has been recognized by industry and government agencies [NRC96,

RTCA92]. In summary, despite the fact that hundreds of software reliability models

have been developed to date [Smidts02], the software reliability discipline is still

struggling to establish software reliability estimation and prediction model as the

hardware reliability discipline did years ago. This is mainly due to the fact that most

of these models either require failure data information and trends observed in the

failure data or need exorbitant amount of testing and assume that the failure data is

available (especially in case of safety critical systems) to predict reliability.

Moreover most of these models have not been verified and validated extensively.

Reliability prediction systems, [Li00, Smidts00] RePSs provides an alternative

to these models. RePS are constructed from software measurements. The

measurements are obtained from different phases of the software development life

cycle (SDLC) and hence do not rely upon the availability of just the failure data. In

addition, these predictions do not require extensive amount of testing which in turn

saves time and money. From an organization’s perspective, the time required to

estimate these measures and their cost effectiveness make them ideal candidates for

reliability estimation. The RePSs can be used alone or with existing

methods/techniques of reliability estimation as a check of conformance.

Fig 3-1 depicts the constitution of a RePS [Li00, Smidts00]. Construction of a

RePS starts with the “Measure”, which is also the “root” of a RePS. “Support

 33

measures are identified to connect the measure to reliability. The set of the

“measure” and “support measures” constitutes a RePS. The “model” between

“Reliability” and RePS is also termed “software reliability model”.

Measure
Support
Measure 1

Support
Measure 2

Support
Measure m

Model

...

RePS

Reliability

Figure 3-1 RePS Constitution [Li00]

The set of five RePS taken into account in this study are Defect Density, Bugs per

Line of Code, Function Point, Requirements Traceability and Test Coverage. [Li00,

Li04, Smidts00, Smidts04] discusses the RePS construction from these measures in

details. However a summary of the RePSs is provided below in order to set the

foundation for the simulation.

3.2.1 Defect Density RePS

Defect density is defined as the number of defects remaining unresolved in

an application divided by the number of lines of code in the application. The Defect

Density RePS is constructed taking into account the defects discovered by

independent inspection. However, please note that this is an approximation of the

defect density measure. Although the defect density ratio is traditionally meaningful

as an indicator of the quality of development, only the defects themselves that are

 34

detected through inspection is taken into account for the reliability estimation

[Smidts00].

Software fails due to the defects introduced during the development process.

A defect leads to a failure if it meets the following conditions: first, it needs to be

triggered (executed); then such execution should modify the computational state;

and finally such abnormal state should propagate to the output and manifest itself as

an abnormal output, in other words, a failure [Thompson93, Voas92].

The PIE concept [Voas92] was used to describe such failure mechanism in

[Smidts00]. The acronym PIE corresponds to the above three program

characteristics: the probability that a particular section of a program (termed

“location”) is executed (termed “execution” and noted as E), the probability that the

execution of such section affects the data state (termed “infection” and noted I) and

the probability that such an infection of the data state has an effect on program

output (termed “propagation” and noted P). Thus the failure probability per demand

pf is given in (3-1).

∫ ∗∗=
i

f iEiIiPp)()()((3-1)

where

P(i) the propagation probability for the ith defect

I(i) the infection probability for the ith defect

E(i) the execution probability for the ith defect.

A simple, convenient and effective method using an extended finite state

machine model (EFSM) [Wang93] can be used to determine failure probability.

 35

EFSMs describe a system’s dynamic behavior using hierarchically arranged states

and transitions. A state describes a condition of the system; and the transition

visually describes the system’s new state as a result of a triggering event.

3.2.2 Test Coverage RePS

In this section the RePS construction from Test Coverage is examined. Test

coverage was designed to reveal the efficiency of software testing. Some empirical

studies [Malaiya94] correlated test coverage and the number of defects in the

software. The RePS utilizes such relationship and obtains software reliability based

on the number of defects obtained from the test coverage. Section 3.1.2.1 discusses

the issues with the traditional definition of Test Coverage and how it was resolved

in [Smidts00] and Section 3.1.2.2 provides the approach given by the authors to

estimate reliability from the modified Test Coverage.

3.2.2.1 Test Coverage Modification to Take Missing Functionalities into

Account

The software engineering literature [IEEE98] defines multiple test coverage

measures such as block (also called statement) coverage, branch coverage and data

flow coverage. Only the statement coverage was selected in [Smidts00]. Statement

coverage is defined as [IEEE98]:

Statement Coverage =
Total

Tested

LOC

LOC

(3-2)

where

 36

LOCTested number of lines of code implemented that are being executed

by the test data documented in the test plan [Lockheed98C].

LOCTotal total number of lines of code [Lockheed98B].

However, (3-2) does not take the unimplemented functions specified in the

requirements into consideration. Since these functions were not implemented, the

portion of code these would have constituted had they been implemented is

unknown. An equivalent line of code count for these unimplemented functionalities

was calculated by: 1) counting the number of function points corresponding to the

missing functionalities, 2) using documented backfiring rules [Jones96] to compute

an equivalent line of code count for the missing functionalities.

Therefore, (3-2) was modified in [Smidts00] to take the missing functionalities into

account. This yielded:

Statement Coverage =
MissIMPL

MissTested

LOCLOC

LOCLOC

+

+

(3-3)

where

LOCMiss The number of lines of code for the missing functionalities

LOCIMPL The number of lines of code implemented

Now using the backfiring rule (the number of lines of code of software is

empirically proportional to the number of function points),

LOC = k * FP (3-4)

where

LOC The number of lines of code in the software

 37

k The backfiring coefficient, dependent on the specific programming

language used

FP The number of function points contained in the software

So now (3-3) was written as

Statement Coverage =
MissIMPL

MissTested

FPkLOC

FPkLOC

*

*

+

+

 (3-5)

where

FPMiss The number of function points corresponding to the missing functionalities

in the requirements specifications

The backfiring coefficient for C++ is available in the public data domain, and ranges

from 40 to 140 (mode 55) LOC/FP in [Jones96].

3.2.2.2 Reliability Estimation from the Modified Test Coverage

 Given the modified value of test coverage defined in Section 3.1.2.1, the number

of defects remaining in the software, N, was estimated using Malaiya’s results

[Malaiya94, Malaiya98] which can be summarized as

N = N
0
/C

0
 (3-5)

where N0
 The number of defects found by test cases provided in the test plan,

 C
0
 The defect coverage, which is defined in [Malaiya94, Malaiya98] as the

fraction of defects found by test cases given in the test plan. C0
 is given as

C
0 = a0 * ln(1 + a1(exp(a2*C1)-1) (3-6)

 38

Where, a0, a1, a2 are coefficients and C1 is the statement coverage defined in Section

3.1.2.1. The coefficients can be estimated from field data [Malaiya94, Malaiya98].

Hence knowing C1 one obtains C
0 and knowing N0, N is obtained.

Now, the number of defects remaining that contributes to failure is (N – Nrepaired)

where Nrepaired is the number of defects fixed from among N
0 , however, we do not

have information about what these unknown defects are and where they are located.

Therefore an approximation is made to find the probability of failure per demand, pf.

i.e.

)(1)(
repairedK

NN

f NNep repairedK −×≈−= −− νν (3-7)

where Kν is an average value that can be estimated from the known failure

probability and the number of defects remaining in the software[Smidts00]. For

instance

repaired

f

K
NN

p

−
=

0

0

ν
 (3-8)

where pf
0 the failure probability caused by the number of known defects

remaining, N0
- Nrepaired

3.2.3 Requirements Traceability RePS

In this section the approach in [Smidts00] of constructing a RePS from the

Requirements Traceability measure is described.

The measure “Requirements Traceability” is defined in [IEEE98] as:

 39

%100
2
1
×=

R

R
RT

(3-9)

where

RT The value of the measure “Requirements Traceability”

R1 The number of requirements implemented in the source code

R2 The number of final requirements. We know that R2 is a function of time as

requirements gets added or deleted during the software life cycle. However the

model used here assumes that R2 is the final set of requirements.

This definition requires the count of R1 and R2. Unfortunately, [IEEE98]

does not provide rules to perform such counting. [Smidts00] thus utilized the

concept of Master Requirements Lists (MRLs) [Lockheed98A] to decompose the

requirements specifications.

Each MRL can be further decomposed into a number of verbs or verb

phrases that represent end-user meaningful requirements primitives. For instance,

the requirements “Any failure of the system shall default to a ‘Access Denied’

message to the reader and a message to the attending guard ‘System Failure.’ The

system shall default to a locked-gate with guard override capability” can be

decomposed into the following four MRLs:

MRL1: Any failure of the system shall default to a ‘Access Denied’ message to the

reader

MRL2: and a message to the attending guard ‘System Failure.’

MRL3: The system shall default to a locked-gate

MRL4: with guard override capability.

 40

Quantities R1 and R2 are then counted at this primitive level. Each

unimplemented function was considered as a defect. Any functionality not defined

in the requirements and implemented was also considered a defect.

Once the set of defects is identified, the EFSM technique is then used to calculate

the failure probability propagating this specific set of defects.

3.2.4 Function Point RePS

Function point is designed to determine the functional size of the software.

This measure can be determined at any stage of the software life cycle starting from

the requirements specification phase as a basis to assess software quality, costs,

documentation and productivity. Function points have gained acceptance as a

primary measure of software size. Function points measure the size of an entire

application as well as that of software enhancements, regardless of the technology

used for development and/or maintenance.

Jones summarized the state-of-the-practice of the U.S. averages for delivered

defects in [Jones96]. Table 3.46 in [Jones96] provides the average numbers of

delivered defects per function point for different types of software systems (end-

user software, management information systems, outsourced and contract software,

commercial software, system software, and military software). The number of

delivered defects can be obtained using the table by interpolation. Since the a priori

knowledge of the defects’ type and location and their impact on failure probability

is not available, the EFSM technique cannot be applied to quantify the failure

likelihood. Therefore the traditional relationship below was applied:

 41

τN
T

K

s
Lep

−

=
(3-10)

Where

ps is the probability of success per demand. A demand is an execution of the

software representing its usage.

K fault exposure ratio, the average value is 4.2 x 10–7 failure/fault in [Musa87,

Musa98]

TL linear execution time.

N number of defects

τ average execution time per demand

τ is obtained by analyzing the reliability testing data (total testing time divided by

number of test cases). In order to estimate the linear execution time, a piece of linear

code is created using the same language as the original application. The statements

in this simulated code follow the same pattern as the application. By pattern, it

means the coding style and frequency at which a type of statement appears. The

simulated code is at best an approximation of the actual code [Li06]. The simulated

code is executed multiple times and the average execution time per run is obtained.

3.2.5 Bugs per Line of Code RePS

[Smidts00] also constructed a RePS to estimate failure probability from the

bugs per line of code metric. Gaffney [Gaffney84] established that the number of

defects remaining in the software (N) could be expressed empirically as a function

of the number of line of codes. That is,

 42

∑
=

+=
M

i

iSN
1

3/4)0015.02.4(
(3-11)

where

i The module index

M The number of modules

Si The number of lines of code for the ith module.

A module is defined as “an independent piece of code with a well-defined interface

to the rest of the product” [Scach93], and since this definition is satisfied by the

notion of class, we can substitute the idea of “module as a subroutine” to the idea of

“module as a class”.

The reliability estimation from this measure follows (3-10). The parameters

TL and τ are obtained in the same manner as mentioned in Section 3.1.4.

3.3 Summary

This chapter discussed the RePSs in details. The construction of RePSs is an

analytical approach that links measures to defects and then defects to reliability estimation.

The rationale behind the construction of RePSs provides the basis of construction of

error models for the simulation. The next chapter illustrates the construction of error

models for the simulation in details.

 43

Chapter 4 Simulation and Simulation Results

In this chapter the theory behind the simulation that was carried out to

determine the nature of the errors/correction factors is provided. Subsequently the

results of the simulation are also presented.

4.1 Theory behind Simulation

Simulations were carried out to determine the nature of the errors for a variety

of reasons. Traditionally the nature of the errors is determined experimentally which

includes the extensive and difficult task of designing the experiment in a way to

counter threats to validity, and executing it. Also each experiment needs a minimum

number of data points (the larger the number, the better) in order to statistically

validate it. This is expensive not only from a cost perspective but also from a time

perspective. Sometimes carrying out an experiment is just not feasible due to lack of

resources. Simulation is an alternative which provides a solution to the above

problems. Moreover, simulation allows us to use a wide range of inputs. This not

only provides a broader spectrum of possibilities but also acts as a catalyst for

sensitivity analysis of the inputs/values. In this section, the rationale behind the

simulation of each of the error forms is provided.

However, in order to simulate the error, which is defined as the difference

between the real failure probability and the failure probability predicted by the

model, the real failure probability requires to be modeled. As again, we do not know

the reality in its totality. Therefore our goal is to model the real failure probability as

it deems appropriate in the context of the models and the model uncertainty

 44

framework. From the model uncertainty framework perspective, the experimental

value is assumed to be the real value and is compared against the value predicted by

the model. Therefore we simulate the experimental process to obtain the real

reliability. The experimental failure probability is obtained through reliability

testing. The steps are:

1) Construction of an EFSM [Wang93, Li06] representing the user’s

requirements and embedding user’s operational profile information. Testmaster tool

[Testmaster99] was used for this purpose.

2) Execution of the model to evaluate the impact of the defects. A large

number of test cases are run through the application and the ratio of number of test

cases failed over the total number of test cases run, gives the real failure probability.

Test cases were generated from the models using Winrunner [Winrunner01].

As we can see, the total number of defects and their impact provide the key

to the real failure probability. In order to simulate the real failure probability, the

number of defects and their impacts require to be determined.

The number of defects is obtained from [Jones96], Table 3.46, which is US averages

for delivered defects per function point. Jones’s [Jones96] analysis is based on more

than 6700 software projects.

The fault exposure probability of each defect is considered in order to assess

the impact of these defects. Fault exposure probability is defined as the probability

that a fault leads to failure. Therefore if there are N defects remaining in an

application the real failure probability of the application is the sum of the fault

 45

exposure probability, k, of each of these, i.e., the real probability of failure is ∑
=

=

Ni

i

ik
1

,

where ki is the fault exposure probability of defect i. The assumption here is that the

defects are mutually exclusive of each other. This is a fair enough assumption as it

only excludes the case in which one fault masks others [Wu93]. As long as this

situation does not happen frequently, the mutually exclusive faults assumption will

be a fairly good approximation [Wu93].

Moreover, mutual exclusiveness of defects assumption gives the maximum

failure probability. This is because it assumes that the defects are on different paths

of the program and contribute independently to the failure probability. So, if there is

interaction among defects, which arises when a defect masks another defect, the

failure caused by the masked defect either will not appear in the execution of the

program [Wu93] or will appear partially. Therefore the assumption of mutual

exclusiveness gives a conservative value for the failure probability.

Most importantly, in this study we are concerned with the error rather than

the absolute value of the real failure probability. Section 4.1.1 through Section 4.1.5

discusses the construction of error models in great details but they can be

summarized as follows. The error

∑∑
=

=

=

=

−=
1

1

*

1

Ni

i

i

Ni

i

i kke i.e. the difference between the real failure probability given by

∑
=

=

Ni

i

ik
1

 and predicted value of failure probability given by∑
=

=

1

1

*
Ni

i

ik . N is actual number

of defects present in the application and N1 is the number of defects detected. k and

k* are similar and the difference in k and k* may arise due to the modeler’s

 46

subjective understanding of the system which may lead to mapping of the defects at

different spots/levels of the EFSM [Wang93, Li06]. This may happen in very large

and complex systems and can lead to either overestimation or underestimation of

errors. Since the assumption of mutual exclusiveness is also extended to the

modeling of the predicted failure probability, the overestimation of failure

probability cancels out to a large extent.

Figure 4-1 shows the real error vs. the modeled error. Since both the real and

the modeled failure probabilities are overestimated, it is reasonable to believe that

the real error is similar to the modeled error. However this will depend on the

amount of overestimation made for the real failure probability and the estimated

failure probability. If there are N defects actually residing in the application and all

the defects are detected, the overestimation made for the real failure probability and

the estimated failure probability are the same. However as the number of defects

detected decreases, the difference between the overestimation for the estimated

failure probability and the overestimation for the real failure probability increases.

This is because of the way the error is modeled (eq(4-1)). This similarity of real and

modeled errors can be studied further and is an avenue of future research. Appendix

C provides further investigation on the mutual exclusiveness of defects and possible

directions for future research.

An experiment was conducted to determine the similarity between real and

simulated errors. The experimental results presented in Section 5.6.3 statistically

show that there is not enough evidence to reject the hypothesis that the simulated

errors are similar to the real errors.

 47

Figure 4-1 Real error vs. modeled error

The following examples illustrate that assumption of mutual exclusiveness

provides a conservative value for the failure probability. The “real” versus the

“modeled” failure probabilities are also discussed.

Case1:

Let us consider a program structure as shown in the following flow diagram

S1 S3S2

D,(1-e2)

C,e2,k2

B, (1-e1)

A, e1, k1

Figure 4-2 Control flow graph -1

Say S1, S2, S3 are predicates and A, B, C, D, are the different paths taken.

The shaded paths A and C contain a defect each with a fault exposure probability of

k1 and k2.

 48

 i.e k1 = e1× I1×P1End where e1 is the execution probability of path A, I1

is the infection probability of the defect in path A and P1End is the probability that

the defect propagates to the end. Similarly,

k2 = e2× I2×P2End where e2 is the execution probability of path B, I2 is the

infection probability of the defect in path B and P2End is the probability that it

propagates to the end.

Thus the real failure probability is equal to k1 + k2 – k1×k2. However the

modeled failure probability is k1+ k2 and is thus a conservative estimate.

In this case the if both the defects are detected, the actual estimated failure

probability is k1* + k2* - k1*×k2* and the estimated failure probability as modeled

is k1* + k2*. Therefore the modeled error (k1 + k2 –k1* + k2*) on an average is

equal to zero. The actual error (k1 + k2 – k1×k2 - (k1* + k2* - k1*×k2*)) on an

average is also equal to zero. If one of the defects is detected the actual error is (k1

+ k2 – k1×k2 - k1*), where as the modeled error is (k1 + k2 - k1*) , which is also a

conservative estimate. Moreover since fault exposure probability values are less

than one, their multiplicative values are small and tend towards zero.

Case2:

S1 S3S2

D,(1-e2)

C,e2

B, (1-e1)

A,e1, k1, k2

Figure 4-3 Control flow graph - 2

 49

Let us assume that there are two defects on the path A, each with a fault

exposure probability k1 and k2. Now, the effect of the masked defect may not show

at all. For example in the above case, the real failure probability is equal to k1.

However the modeled failure probability is k1+k2 and is also a conservative

estimate. The table below provides an example where the effect of the masked

defect may not show at all.

Correct Code Incorrect Code

……….
if(x !=1)
{
 y = 4× (x-1);
 z = y/6;
}
else
{
………..

……….
if(x !=1)
{
 y = 4× (x-2);
 z = y/3;
}
else
{
………..

Table 4-1 Code that shows that the masked defect may not have any effect

As can be seen there are two defects in the incorrect code and both are in the

same path. Now, if x equals 2, y in the case of incorrect code will always be equal to

0 and the value of z is also always equal to zero. Here the defect in the statement “z

= y/3” does not affect the failure probability.

In the above case with two defects on the path A (Figure 4-3), the defects

may cancel each other in which case the real failure probability is zero whereas the

modeled failure probability is k1+k2 and is also a conservative estimate. The table

below provides an example where the defects may cancel each other.

 50

Correct Code Incorrect Code

……….
if(x < 10)
{
 y = x+1;
 z = y+4;
 w = y+z;
}
else
{
………..

……….
if(x !=1)
{
 y = x+2;
 z = y+2;
 w = y+z;
}
else
{
………..

Table 4-2 Code that shows two defects may cancel each other

As can be seen from the above table, in case of the correct code,

 w = y+z = y+y+4 = 2(x+1)+4 = 2x+6;

and in the case of incorrect code,

w = y+z = y+y+2 = 2(x+2)+2 = 2x+6. Hence the defects cancel each

other.

Now consider Figure 4-4. Paths A, C and D contain a defect each. Now, the

real failure probability is equal to k1 + k2 + k3 - k1×k2 - k1×k3. Please note that e2

+ e3 + e4 is equal to one. The modeled failure probability is k1 + k2 + k3 which is

a conservative estimate.

In this case, real estimated failure probability if all three defects are found is

k1* + k2* + k3* - k1*×k2* - k1*×k3*. Here also the error remains the same i.e.

equal to zero. If two of the three defects are detected, the real estimated failure

probability is k1* + k2* - k1*×k2*. Therefore the real error is (k1 + k2 + k3 -

k1×k2 - k1×k3 - (k1* + k2* - k1*×k2*)) whereas the modeled error is (k1 + k2 +

k3 –(k1* + k2*)).

 51

S1 S3S2

A, e1, k1

E, e4

C, e2, k2

B, (1-e1)

D, e3, k3

Figure 4-4 Control flow graph – 3

Now consider the following program structure. In this case the predicate S1

has a defect with a fault exposure probability k1 and path A has a defect with fault

exposure probability k2. However the failure probability will be less than or equal to

k1+ k2. This is because if the defect in S1 does not affect the path A at all, the two

defects together will be mutually exclusive of each other and the total failure

probability will be k1 + k2. However, if the defect in S1 also affects the path A, the

total failure probability will be less than k1+ k2.

S1, e1, k1 S3S2

A, e2, k2

F

D

B

C

E

Figure 4-5 Control flow graph – 4

In the same manner it can be shown that the mutual exclusiveness

assumption always provides a conservative estimate. Moreover the modeled errors

are also similar to the real errors. In fact, they are equal to zero if all the defects are

detected. On an average (with a data set of 6700 software projects from various

domains, languages and sizes) 80% of the defects are detected [Jones96], and also

since the fault exposure probabilities are less than one (the multiplicative values of

 52

the fault exposure probabilities approach to zero), the assumption that the real and

the modeled errors are similar is reasonable for all practical purposes. In fact,

Capers Jones, in one of his latest talks on the state of the art of software quality in

2005 (http://www.umsec.umn.edu/files/SQA05l.pdf), says that defect removal

efficiency, on an average, is 85%. However, as mentioned before, the similarity of

real and modeled errors can be studied further and is an avenue of future research.

4.1.1 Defect Density Error Model Simulation:

The rationale behind the error form for Defect Density is simple. The

predicted failure probability is the sum of the fault exposure probabilities of the

number of defects that were identified through inspection, say N1. [Jones96]

suggests that on an average N1 is equal to 0.8N. Therefore the error term is the

difference between the real failure probability given by ∑
=

=

Ni

i

ik
1

 and predicted value of

failure probability given by∑
=

=

1

1

*
Ni

i

ik i.e.

The error form for defect density is given by

∑∑
=

=

=

=

−=
1

1

*

1

Ni

i

i

Ni

i

i kke (4-1)

where

• e denotes the error

• k is the real value of the fault exposure probability

o k has a lower bound of 10-24 . This is because in safety critical

applications, failure probabilities in the order of 10-9 are not unheard

 53

of. Butler [Butler93] mentions the fact that ultra-reliable safety

critical systems are required to have failure probabilities of 10-7-10-9

per hour. He also mentions that it is not unusual to find "iteration

rates" of 10-100 cycles per second. Considering 100 cycles per

second, a failure rate of the order of 10-12-10-14 per demand

[Butler93] is obtained. 10-24 is taken to be the lower bound as a

conservative estimate. Any evidence of a failure probability lower

than that does not exist.

o The upper bound of k is varied in order to simulate a population of

software. This would give us a better picture with a range of failure

probabilities. The upper bound of k is set at 10-1, 10-2, 10-3, 10-4,

10-5, 10-6 for different sets of simulations. This set covers the lower

and the moderately reliable applications [Butler93]. Moreover, the

characteristics of the error did not change and were predictable for

lower order of failure probabilities. However, an upper bound of

10-13 is also considered to represent ultra-reliable applications.

o k is log-normally distributed within the above range (which is also

taken as the six sigma range) . Various studies suggest that software

failure rate is log-normally distributed [Mullen98A, Mullen98B].

The main reasoning is that since event rates in software systems are

generated by multiplicative processes there is reason to believe that

the distribution of rates of events, including, failure rates, is

lognormal. Also many previously published empirical studies show

 54

that the failure rate distributions are well fit by the lognormal

probability distribution [Mullen98A, Mullen98B].

• k* is the predicted value of fault exposure probability.

Models, as we know are the means by which we reflect and express

our understanding of some aspect of reality, a particular unknown of

interest. Even though the difference between models and reality at a

fundamental level always exists, the issue is whether the prediction

or performance of the model is correct at some practically acceptable

level, within the model’s domain of application. [Musa87] studied

the performance of various software reliability models and found

them to be fairly good approximations of reality. Intuitively, we can

say that k* should be of the same nature as k and close to k.

Moreover the difference in k and k* may arise due to the modeler’s

subjective understanding of the system which may lead to mapping

of the defects at different spots/levels of the EFSM [Wang93, Li06].

This may happen in very large and complex systems and can lead to

either overestimation or underestimation of errors. Hence a

reasonable assumption is to take k* as normally distributed around k

ie with a mean of k.

o The standard deviation of k* is varied in order to simulate the

different population of software and/or models. Musa et al [Musa87]

have noticed that the error in the prediction of different software

reliability models vary to a maximum of about 30%. [Malaiya92]

 55

studied four software reliability growth models and found similar

results. For the simulation purposes, the value of standard deviation

is varied between 0.01k*, 0.05k*, 0.1k*, 0.15 k*, 0.20 k*, 0.25 k*,

and 0.3 k* and 0.4k*.

• N is the number of defects remaining in the application and is obtained from

[Jones96], Table 3.46, which is US averages for delivered defects per

function point. We wanted to simulate different sizes of software

applications. Therefore functional size is also varied and the different

functional sizes taken into account are 75, 150, 300, 600, 1200 and 2400 and

10,000 functional points. As per Jones [Jones96], one function point refers to

128 lines of code in C. Therefore 10,000 function points refer to more than a

million lines of code in C.

• N1 is the number of defects found and removed. As per Jones [Jones96], the

defect removal efficiency on an average is 80%. Therefore N1 is equal to

0.8*N. However for the simulation purposes, N1 is varied from 0.1*N to

0.8*N with an interval of 0.1. N1 is selected uniformly from among N. This

means that every defect has equal probability of getting detected irrespective

of its fault exposure probability. In the vast literature, software inspection

and reviews have been studied extensively over the years. Primarily these

studies have been to understand the efficacy of software inspection and the

events or sources that help detecting a defect. There is no evidence that fault

exposure probability influences the detectability of a defect. [Porter98]

studied the sources of variation in software inspections and found that the

 56

inspection experience, language familiarity and application experience of the

reviewers; the language familiarity and application experience of the code

author, the type of change, functionality, code structure, code size and pre-

inspection testing of the code units are the main sources of variation of the

efficacy of inspection. Pre-inspection testing refers to unit testing performed

by developers before the inspection. Another significant research work is

presented in [Chaar93] where the authors studied the events that helps

detect such a defect. [Anda02], [Porter95A], [Porter95B], [Kelly03],

[Kelly00], [Dunsmore01], [Laitenberger99] and numerous other studies on

software inspection do not consider fault exposure probability at all.

The observation that software defect detection during software

inspection is independent of the fault exposure probability of the defect can

be justified because before or during inspection, the fault exposure

probabilities of the defects are usually never known. Moreover the

inspection techniques (ad-hoc, checklist based or scenario based

[Porter95A]) do not require the knowledge of fault exposure probabilities of

the defects. Therefore it can be assumed that the detectability of the defects

is independent of the fault exposure probability of a defect.

However, if the historical data of a certain organization hints at a

relationship between the detectability of a defect and its fault exposure

probability, such a relationship can be explored and established and then

incorporated into the error model.

 57

4.1.2 Test Coverage Error Model Simulation

Let the number of defects before the testing process begins be Nbefore_test. Let

the number of defects detected through testing be Ntest. The defects are then repaired

and if ρ is the defect repair probability, the number of defects repaired,

Nrepaired = ρ* Ntest. (4-2)

Now the number of defects which are either not repaired or are the ones which when

repaired lead to addition of new faults is equal to (1-ρ)* Ntest. If the number of

defects added due to bad fixes is Nbad_fix., the true number of defects remaining after

test,

Nafter_test = Nbefore_test - Nrepaired + Nbad_fix (4-3)

Therefore the real probability of failure is ∑∑
=

−

=

+
fixbadrepairedtestbefore N

i

i

NN

i

i kk
__

1

'

1

. Here the ks’ refer

to the fault exposure probabilities and are sampled from among the fault exposure

probabilities already selected for the defects, Nbefore_test, and
'k refers to new fault

exposure probability that exists due to addition of new faults.

In order to predict the failure probability, the number of defects remaining in

the code is considered as always. The number of defects estimated to be in the code

is Ntest/C
0
 where C

0 is the defect coverage .The defect coverage is defined in

[Malaiya94, Malaiya98][Jones96] as the fraction of defects found by test cases

given in the test plan. In the RePS construction from the Test Coverage measure, a

perfect repair probability was considered. Hence the number of defects repaired is

Ntest. Therefore the number of defects remaining that contributes to failure is Ntest/C
o

- Ntest.

 58

Thus the estimated failure probability is

−×

∑
=

Testo

Test

Test

N

i

i

N
C

N

N

k
Test

1

*

 (4-4)

where
Test

N

i

i

N

k
Test

∑
=1

*

 is the average value of fault exposure probability per fault. This

corresponds to Kν in Section 3.1.2.2.

Therefore the error form for Test coverage is given by

−×−+=

∑
∑∑ =

=

−

=
Testo

Test

Test

N

i

iN

i

i

NN

i

i N
C

N

N

k

kke

Test

fixbadrepairedtestbefore

1

*

1

'

1

__

 (4-5)

where

• e denotes the error

• The first two terms of (4-5) denotes the real failure probability. The fault

exposure probabilities, k and 'k are simulated in the same manner as

mentioned before in Section 4.1.1.

• As per Jones [Jones96] the defect removal efficiency of a formal testing

process by itself is 53% (median value). Therefore Ntest is equal to 0.53*

Nbefore_test. However since the upper and lower bound for defect removal

efficiency of a formal testing process by itself is 60% and 37% respectively,

simulations were conducted for these values also.

o Nbefore_test is the number of defects remaining in the application and

is also obtained from [Jones96]

o The functional size is varied as before

 59

• Nafter_test is the true number of defects remaining after test and is equal to

Nbefore_test - ρ* Ntest+ Nbad_fix

o As far as the defect repair probability is concerned, Jones states

[Jones96] that the defect removal efficiency is 85%. This value takes

into account the bad fixes defects as well. Bad fixes defects are the

defects that are accidentally injected while fixing an existing defect

[Jones97]. The survey presented at www.softwaremetrics.com

suggests a similar value. For the simulation, a ρ value of 0.62, 0.85,

and 0.96, which are the lower bound, median and the upper bound

values, are considered.

o According to [Jones96, Musa87] bad fix defects are about 5% of all

defects. Therefore, Nbad_fix will approximately be equal to 0.05*Ntest.

In fact, Capers Jones, in one of his latest talks on the state of the art

of software quality in 2005

(http://www.umsec.umn.edu/files/SQA05l.pdf), says that bad fix

defects on an average is 8%. Therefore simulation for bad fix defects

was conducted at 5% and 8%. Moreover, according to [Jones96,

Table5.3], 0% of all the Severity-1 (most critical, system or program

is inoperable) failures are caused by bad fix errors. [Sullivan91] also

suggests that bug fix errors have little impact on the system

availability. The authors have studied five years of field data on

software defects to develop a taxonomy of defects, providing insight

into their behaviour and impact. The data comes from IBM’s field

 60

service database called RETAIN. Based on these evidences, we

believe that the bug fix defects will not have fault exposure

probabilities higher than the fault exposure probability initially

considered to be the upper bound.

• k* is the predicted value of fault exposure probability and with the same

reasoning as presented in Section 4.1.1, is normally distributed around k i.e.

with a mean of k. The standard deviation of k* is varied between 0.1*k to

0.4*k as before. Here the ks’ refer to the real fault exposure probabilities and

are sampled from the fault exposure probabilities already selected for the

defects, Nbefore_test.

• As mentioned before, C0 is the defect coverage and can range from 0.0 to 1.0

depending on the efficacy of the test cases. For the simulation, different

values of C0
 from 0.1 to 1.0 with an interval of 0.1 are considered.

4.1.3 Requirements Traceability Error Model Simulation

Here again the logic is similar to that of the Defect Density error form

simulation. If there are N defects remaining in an application, the real failure

probability of the application is the sum of the fault exposure probability, k, of each

of the defects. Therefore the real probability of failure is ∑
=

=

Ni

i

ik
1

with the same

assumptions as in Section 4.1.1. The predicted failure probability is the sum of the

fault exposure probability of the number of defects that were found through

Requirements Traceability, say N1. Therefore the error term is the difference

 61

between the real failure probability given by ∑
=

=

Ni

i

ik
1

 and the predicted value of failure

probability given by∑
=

=

1

1

*
Ni

i

ik i.e.

∑∑
=

=

=

=

−=
1

1

*

1

Ni

i

i

Ni

i

i kke (4-6)

where

• e denotes the error

• The first term of (4-6) i.e. ∑
=

=

Ni

i

ik
1

 is the same as in (4-1) and denotes the real

failure probability

• k* is the predicted value of fault exposure probability and has the same

properties as in Defect Density.

• N1 is the number of defects detected by Requirements Traceability. Since the

literature does not provide an estimate of the efficiency of requirements

traceability analysis, a set of values from 1.0 to 0.8 with an interval of 0.1 is

considered to represent different requirements traceability efficiencies. The

higher bound is taken to be 0.8 because that is the maximum defect removal

efficiency as per Jones [Jones96]. The functional size is also varied as

mentioned in Section 4.1.1.

4.1.4 Function Point Error Model Simulation

The error form for Function Point is given by the difference between the real

failure probability and the predicted failure probability. Here the real failure

 62

probability is computed as before. As mentioned before, in the construction of

RePS from Function Point, since the a priori knowledge of the defects’ type and

location and their impact on failure probability is not available, the EFSM technique

could not be applied to quantify the failure likelihood. Therefore the traditional

relationship as in (3-10) is applied. Hence to simulate this error, K, or the fault

exposure ratio proposed by Musa [Musa87, Musa98] is used. Therefore

e = ∑
=

=

Ni

i

ik
1

- 1** NK
TL

τ
 (4-7)

where

• e denotes the error

• The first term of (4-7) ie ∑
=

=

Ni

i

ik
1

 is same as (4-1) and denotes the real failure

probability

• It is usually seen [Lockheed98] that the times taken per demand τ, and the

linear time of execution of the program are usually of the same order.

[Malaiya93] also suggests same order of average time per execution and

linear execution time. In fact the authors cite the cases where the ratio of

average execution time over linear execution time may be greater than or

less than one. They say that if a program is loop dominated, i.e. the program

execution involves a large number loops, the ratio may be greater than one.

For a branch dominated program, the ratio may be smaller than one since

during a single execution, many branches would not be executed. Therefore

 63

to represent various populations of software we vary the
LT

τ
 ratio and the

values taken into account are 0.1, 0.01, 0.001, 1, 10, 100 and 1000.

• K is the fault exposure ratio proposed by Musa [Musa87, Musa98] and is

4.2 * 10-7 failure/fault.

• N1 is the number of defects estimated as a function of number of Function

Points and is obtained from [Jones96]. The functional size is also varied as

before.

4.1.5 Bugs per Line of Code

As mentioned before, Gaffney [Gaffney84] established that the number of

defects remaining in the software (N1) could be expressed empirically as a function

of the number of line of codes. That is,

∑
=

+=
M

i

iSN
1

3/4
1)0015.02.4(

 (4-8)

Therefore, the predicted failure probability is given

by ∑
=

=

+
Mi

i

i

L

SK
T 1

)0015.02.4(**
τ

. Also, during the construction of RePS from Bugs

per Line of Code the relationship as in (3-10) was used to determine the failure

probability instead of the EFSM technique as again, the a priori knowledge of the

defects’ type and location and their impact on failure probability is not available.

Therefore, the error term is given as

e = ∑
=

=

Ni

i

ik
1

- ∑
=

=

+
Mi

i

i

L

SK
T 1

)0015.02.4(**
τ

 (4-9)

 64

where

• e denotes the error

• The first term of (4-9) ie ∑
=

=

Ni

i

ik
1

 is same as (4-1) and denotes the real failure

probability

• We vary the
LT

τ
 ratio in a similar fashion as mentioned in Section 4.1.4.

• K is the fault exposure ratio proposed by Musa [Musa87, Musa98] and is

4.2*10-7 failure/fault

• The term ∑
=

+
M

i

iS
1

3/4)0015.02.4(gives the number of defects N1, as

established by Gaffney [Gaffney84]. Here, M is the number of modules in

the application. In order to estimate M, the following steps are taken.

o The functional size is varied as before. For each functional size, the

number of lines of code for the application is calculated as kb*FP,

where kb is the backfiring coefficient and FP is the number of

function points of the application. The backfiring coefficient of the

most used languages ie C, C++, FORTRAN and VB is taken into

account [Jones96]

o There is no official standard for the number of lines of code per

module. Every organization has its own standard which it tries to

conform to. However there is evidence [Hatton97] that when one

plots defect density versus module size, the curve is U-shaped and

concave upwards which means very small and very large modules

 65

are associated with more bugs than those of intermediate size. The

curve looks roughly logarithmic up to a ‘sweet spot’ where it flattens

(corresponding to the minimum in the defect density curve), after

which it goes up. Hatton's empirical results imply that the sweet spot

lies between 200 and 400 lines of code that minimizes probable

defect density, all other factors (such as programmer skill) being

equal. This size is also independent of the language being used.

Banker and Kemerer [Banker89] and Withrow [Withrow90] have

also observed similar results. Based on this evidence, we vary the

value of lines of code per module between 200, 300 and 400.

o The number of modules M is then given by

Number of Lines of Code for the application / Number of

Lines of code per module.

4.2 Simulation Results

Once the simulation for each of the error forms was designed, it was executed

using the SAS statistical tool (www.sas.com). This section discusses SAS and the

characteristics of statistical tests that were carried out using SAS to determine the

results. It also discusses the tool that was developed to carry out the simulation.

Finally it discusses the simulation results in great details.

 66

4.2.1 Statistical tests that were carried out to determine the simulation
results

SAS, originally called "Statistical Analysis Software," has generally been

preferred primarily due to the power of its programming language and the

acceptability of its results. SAS has developed a reputation of being powerful and

full-featured statistical software that allows the user to manipulate and analyze data

in many different ways. Because of its capabilities, this software package is used in

many disciplines, including medical sciences, biological sciences, social sciences,

and education [Chen03]. SAS has changed a lot across versions, with most of the

changes catering to the business community. We used SAS version 9.1, the latest

version available at this point of time, for the statistical tests.

Normality and log normality tests for the errors were conducted at an α =

.05. For the log normality tests, normality tests on the natural logarithm of error

values were carried out. The values provided by Shapiro Wilk tests are the most

powerful. The Shapiro-Wilk test, proposed in 1965, calculates a W statistic that tests

whether a random sample, x1, x2, ..., xn comes from (specifically) a normal

distribution . Small values of W are evidence of departure from normality and

percentage points for the W statistic, obtained via Monte Carlo simulations, were

reproduced by Pearson and Hartley [Pearson72]. This test has done very well in

comparison studies with other goodness of fit tests. The W statistic is calculated as

follows:

 67

∑

∑

=

=

−
=

n

i

i

n

i

ii

xx

xa

W

1

2

2

1
)(

)(

)(
 (4-10)

where the x(i) are the ordered sample values (x(1) is the smallest) and the ai are

constants generated from the means, variances and co-variances of the order

statistics of a sample of size n from a normal distribution [Pearson72]. For more

information about the Shapiro-Wilk test please refer to the original Shapiro and

Wilk paper [Shapiro65] and the tables in Pearson and Hartley [Pearson72].

For each set of conditions, the simulation for each error form was ran 50,000

times. By a set of conditions, we mean the specifics of the data set, i.e., a particular

size of the application, upper bound of failure probability, requirements traceability

efficiency (if applicable),
LT

τ
 ratio (if applicable), language in which the application

is coded (if applicable) etc. For every run of simulation 25 to 50 data points1 (error

values) were generated. That is because a really good normality test in SAS requires

close to 30 data points but too many data points may result in overly sensitive tests

in normality [Douglass04]. The final results for each error form are given below

along with the stem and leaf and box plots.

The stem and leaf plot is simply a horizontal histogram. In a stem-and-leaf

plot each data point is split into a "stem" and a "leaf". The first two or three digits of

the value of each data point are used as the stem and the next digits are used as the

1 A data point is a value of the variable on which statistical tests are performed

 68

leaf. This forms a histogram that not only provides the frequency of each class but

also the actual values for each observation/data point. For example, in Figure 4-7,

which is a stem and leaf plot, there are 30 data points. And the values of each data

point are: 0.65, 0.5, 0.34, 0.38, 0.38 and so on.

Figure 4-6 Stem and Leaf Plot

The Box Plot is an efficient method for displaying data. . The box plot is interpreted

as follows:

• the box itself contains the middle 50% of the data. The upper edge (hinge) of

the box indicates the 75th percentile of the data set, and the lower hinge

indicates the 25th percentile.

• the bar in the center anchored with the ‘*’ represents the median value of the

data.

• the ‘+’ in the center of the box represents the mean

• the ends of the vertical lines or "whiskers" indicate the minimum and

maximum data values, unless outliers are present in which case the whiskers

extend to a maximum of 1.5 times the inter-quartile range.

 69

• The points outside the ends of the whiskers, if present, are outliers and are

marked as ‘o’.

4.2.2 The Tool

As mentioned before, a tool was developed to simulate the error models.

This section describes the overall framework of the tool, the type of inputs and the

output generated by the system.

The tool is developed using SAS programming language. The development

platform is Windows. Figure 4-7 shows the block diagram of the tool.

Input Data

Implementation

and Execution of

SAS program

Error Model

Reasoning

OutPut Data in

Excel Sheet or

.SAS file

Figure 4-7 Framework of the Error simulation Tool

The input data can be incorporated into the SAS program. The SAS program

along with the error model reasoning (Section 4.1.1 – Section 4.1.5) is then

executed. The results can be saved in .SAS files. The tabular results can be exported

into an Excel file.

The snapshot showing the incorporation of input data and a portion of the

program is shown in Figure 4-8.

 70

Figure 4-8 Snapshot of the program showing the incorporation of the input

data

As can be seen, the input data can be incorporated at the beginning of the

program. Figure 4-9 is a snapshot of the output results showing real probability of

failure values, predicted probability of failure values and the error values

 71

Figure 4-9 Snapshot of the results showing the probability of failure values

Figure 4-10 is a snapshot of the output results showing the mean and

standard deviation of the error and Figure 4-11 shows the results of the normality

tests on the error.

 72

Figure 4-10 Snapshot of the results showing mean and standard deviation of

the error values

Figure 4-11 Snapshot of the results showing the tests of normality on the error

values

 73

4.2.3 Simulation Results

As can be seen, there was enough evidence to assume that the Defect

Density error model
 follows an additive distribution. The statistics for the same

are given below.

Figure 4-12 Statistics for the Defect Density Error

There was enough evidence to assume that Bugs per Line of Code error model

follows a multiplicative distribution. The statistics for the same are given below.

 74

Figure 4-13 Statistics for the Bugs per Line of Code Error

There was enough evidence to assume that Function Point error model
 follows a

multiplicative distribution. The statistics for the same are given below.

Figure 4-14 Statistics for the Function Point Error

 75

There was enough evidence to assume that Requirements Traceability error model

follows an additive distribution. The statistics for the same are given below.

Figure 4-15 Statistics for the Requirements Traceability Error

There was enough evidence to assume that Test Coverage error model

 follows an

additive error model.

 76

Figure 4-16 Statistics for the Test Coverage Error

4.2.4 Summary of the Simulation Results

Simulation was conducted on the different values that were considered as

per the design, for example, different functional sizes, different bounds of the fault

exposure probabilities, different inspection efficiencies etc. The error form did not

change for any of these variations, i.e., the error form followed an additive error

model for the Defect Density, Requirements Traceability, and Test Coverage errors

and followed a multiplicative error model for Bugs per Line of Code and Function

Point errors. In this section the mean and standard deviation of some of the results

obtained for different sets of simulation is provided. The relative error percentages

for some of the results are also provided. Relative error is defined as the ratio of the

absolute value of the error over the real value of failure probability. More results are

provided in Appendix A.

The results are then discussed in details. The change of the errors with

variation of different parameters is shown through graphs.

 77

Functional

Size

Error

 75 150 300 600 1200 2400 10000

Mean .09 1.1 1.4 1.7 2.4 3.0 4.9 Defect
Density

 Std. Dev 0.04 1.1 1.3 1.2 1.6 2.4 3.1

Mean 0.1 1.1 1.3 1.6 2.3 2.7 4.7 Requirements
Traceability

 Std. Dev 0.05 1.1 1.1 1.2 1.4 2.4 2.2

Mean 0.01 1.5 1.7 2 2.5 3 5.7 Test
Coverage

 Std. Dev 0.05 1 1.1 1.5 2.3 2.2 2.8

Mean 1.1 2.1 3.8 4.0 4.4 5.4 9.6 Function
Point

 Std. Dev 1.9 1.6 2.5 2.6 2.3 1.8 2.6

Mean 1.3 2.4 3.2 3.8 4.6 5.5 9.6 Bugs per Line
of Code

 Std. Dev 1.9 1.7 3.0 3.2 1.9 2.7 2.3

Table 4-3 Mean and Standard Deviation for different error forms for varying

functional sizes with upper bound of fault exposure probability of 10E-2

(Multiply each value by 10**-2)

 78

Functional

Size

Error

 75 150 300 600 1200 2400 10000

Mean . 09 1.245 1.2 1.7 2.2 2.6 4.7 Defect
Density

 Std. Dev .04 1.3 .9 1.2 1.7 2.0 2.9

Mean 0.10 1.2 1.4 1.8 2.3 2.7 4.7 Requirements
Traceability

 Std. Dev 0.04 1.3 1.1 1.3 1.9 2. 4 2.7

Mean 0.12 1.3 1.6 1.9 2.4 3.0 5.6 Test
Coverage

 Std. Dev 0.06 1.2 1.1 1.7 1.8 2.0 2.8

Mean -9.3 -17.5 -39.4 -76.2 -255.3 -660.9 -2787 Function
Point

 Std. Dev 2.9 10.6 11.2 13.3 23.3 27.3 32.6

Mean -41.2 -81.3 -155.3 -315.3 -645.2 -1184 -4789 Bugs per Line
of Code

 Std. Dev 3.8 8.6 11.4 20.5 24.2 34.4 39.2

Table 4-4 Mean and Standard Deviation for different error forms for varying

functional sizes with upper bound of fault exposure probability of 10E-6

(Multiply each value by 10**-6)

For a better understanding of the errors, the tables below provide the average

percentages of the relative errors for varying functional sizes with upper bound of

fault exposure probability of 10E-2, 10E-4 and 10E-6. Results for upper bounds of

fault exposure probabilities 10E-1 are provided in Appendix A.

 79

Functional
Size

Error

75 150 300 600 1200 2400 10000

Defect Density

9.29 38.36 38.56 44.54 50.45 54.09 58.45

Requirements
Traceability

10.45 38.45 39.76 43.28 50.91 53.69 57.72

Test Coverage

12.16 43.34 43.87 48.43 57.27 60.83 67.38

Function Point

99.89 99.91 99.91 99.57 99.54 99.01 98.89

Bugs per Line of
Code

99.86 99.87 99.45 99.43 99.32 99.03 99.00

Table 4-5 Relative error percentages for varying functional sizes with upper

bound of fault exposure probability of 10E-2

Functional
Size
Error

75 150 300 600 1200 2400 10000

Defect Density

9.68 37.45 39.31 42.93 50.36 53.84 57.42

Requirements
Traceability

9.54 38.74 39.33 43.06 49.97 53.17 59.37

Test Coverage

13.07 42.99 43.67 48.43 56.29 60.33 66.35

Function Point

58.89 67.86 94.28 77.5 62.21 22.22 185.56

Bugs per Line of
Code

51.67 57.14 48.57 15.00 42.22 118.51 395.83

Table 4-6 Relative error percentages for varying functional sizes with upper

bound of fault exposure probability of 10E-4

 80

Functional
Size
Error

75 150 300 600 1200 2400 10000

Defect Density

9.18 37.45 38.47 44.51 48.99 53.02 60.21

Requirements
Traceability

9.86 34.98 38.54 45.14 48.98 52.60 60.72

Test Coverage

13.17 44.75 46.76 49.05 56.73 59.95 70.73

Function Point

760 950 1114 1904 5667 11700 28400

Bugs per Line of
Code

3400 3681 4428 8076 14300 21142 48867

Table 4-7 Relative error percentages for varying functional sizes with upper

bound of fault exposure probability of 10E-6

4.3 Discussion of the Simulation Results:

Table 4-3 through Table 4-7 tells us how the errors/relative errors vary across

different sizes and different failure probabilities. They also provide information on

the prediction accuracies of the RePSs.

As we can see, Defect Density and Requirements Traceability errors are very

close to each other. That is expected because of the similarities in the RePSs

constructions from these measures. Moreover, in all the results provided above, the

defect removal efficiency of Requirements Traceability is 80%, which is the same

as the defect removal efficiency of Defect Density.

The relative error for defect density is around 9% for an application with a

functional size of 75 function points, 37% for a functional size of 150 function

points, 39% for a functional size of 300 function points, 44% for a functional size of

600 function points, 48% for a functional size of 1200 function points and 53% for a

functional size of 2400 function points and 59% for a functional size of 10,000

 81

function points. The percentages of relative errors across different orders of failure

probabilities remained similar for Defect Density, Requirements Traceability and

Test Coverage. Figure 4-17 shows the relative error percentages across application

of varying order of failure probabilities for a functional size of 75 function points.

The points in X-axis correspond to applications of different order of failure

probabilities (10E-1, 10E-2, 10E-4 and 10E-6). As can be seen, the percentages of

relative errors across different orders of failure probabilities remained similar.

0

2

4

6

8

10

12

14

1 2 3 4

Failure Probabilities

R
e
la
ti
v
e
 E
rr
o
r
P
e
rc
e
n
ta
g
e
s

DD

RT

TC

Figure 4-17 Variation of relative error percentages across different order of

failure probabilities for a functional size of 75 FP

 The error across functional sizes is progressively greater which is also

expected because of the increase in the number of defects across functional sizes.

Therefore the number of defects that contribute to the error (which is 20% of the

total number of defects for the results provided above) also increases leading to an

error bloat. The increase of error is sub-linear in nature.

 82

Table 4-8 gives the variation of Requirements Traceability errors across

different requirements traceability efficiencies. The upper bound of failure

probability is 10E-1. The percentages of errors remained the same when the upper

bound of failure probability was varied between 10E-2 and 10E-6. The results are

the same for Defect Density errors when the inspection efficiency is varied

accordingly. This is because the error functions for both the error models are the

same (eq(4-1) and eq(4-6)).

Functional

Size

RT/Inspection

Efficiency

 75 150 300 600 1200 2400

Mean 0.13 1.38 1.67 2.00 2.62 3.0 60%

Std. Dev 0.04 1.09 1.15 1.76 2.70 2.23

Mean 0.43 1.47 1.75 2.43 2.94 3.43 40%

Std. Dev 0.14 1.98 1.23 1.24 1.65 2.12

Mean 0.87 1.8 2.83 3.25 3.87 4.67 20%

Std. Dev 0.15 1.09 1.17 1.7 2.54 2.21

Mean 1.19 2.12 3.4 3.9 4.5 5.74 10%

Std. Dev 0.19 1.68 2.80 2.56 2.17 1.64

Table 4-8 Mean and Standard Deviation for Requirements

Traceability/DefectDensity error forms for varying functional sizes and

requirements traceability/inspection efficiencies with upper bound of fault

exposure probability of 10E-1 (Multiply each value by 10**-1)

Test Coverage error percentage follows a similar graph as that of the Defect

Density and the Requirements Traceability errors. However, the error percentage is

higher than that of the Defect Density and Requirements Traceability errors. This is

 83

also expected since the number of defects detected through testing alone is less than

the number of defects detected through inspection for the Defect Density errors.

Moreover, for a Requirements Traceability defect removal efficiency of about 60%,

Test Coverage and Requirements Traceability errors were similar. Figure 4-18

shows the variation of relative error percentages of Defect Density, Requirements

Traceability and Test Coverage RePSs across different sizes. As can be seen, Test

Coverage error follows a similar graph as that of Defect Density but the error

percentage is higher for any specific size. Also, it shows that the relative error

percentages for Defect Density, Requirements Traceability and Test Coverage errors

increase across functional sizes.

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7

Size

R
e
la
ti
v
e
 E
rr
o
r
P
e
rc
e
n
ta
g
e

Defect Density

Requirements

Traceability

Test Coverage

Figure 4-18 Relative error percentages for varying functional sizes with upper

bound of fault exposure probability of 10E-2

When the testing efficiency for Test Coverage error is varied, the relative

error percentage also varies. Figure 4-19 shows the variation of the Test Coverage

relative error for different testing efficiencies. The X-axis represents the different

sizes taken into consideration in increasing order.

 84

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7

Size

R
e
la
ti
v
e
 E
rr
o
r
P
e
rc
e
n
ta
g
e

Test Efficiency =

0.37

Test Efficiency =

0.53

Test Efficiency =

0.60

Figure 4-19 Test Coverage relative error percentages for varying functional

sizes and varying testing efficiency with upper bound of fault exposure

probability of 10E-2

When the percent of bug fix errors was changed from 5% to 8%, the results

for test coverage errors did not change significantly. However, when the defect

repair probability was varied, the errors changed significantly. The figure below

shows the change in relative error percentages when the repair probability is

changed. The test efficiency is 0.53. From Figures 4-20 and 4-21 it can be seen that

the errors are similar for the applications with smaller sizes. The error difference

across functional sizes gets progressively greater because of the rapid increase in the

number of defects across functional sizes.

 85

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7

Size

F
a
il
u
re
 P
ro
b
a
b
il
it
y

Repair Rate = 0.85

Repair Rate= 0.96

Repair Rate = 0.62

Figure 4-20 Test Coverage relative error percentages for varying functional

sizes and varying repair probabilitys with upper bound of fault exposure

probability of 10E-2

Also in the results provided above (Table 4-3 – Table 4-8) the standard

deviation of k* is 0.01k. When the standard deviation increases, the error also

increases but is not very significant. Figure 4-21 and 4-22 provides the relative error

percentages of an application with failure probability of the order 10E-1 and

functional sizes 75 and 10,000 function points respectively. The values 1, 2, 3, 4, 5

across the X-axis refer to the Defect Density, Requirements Traceability, Test

Coverage, Bugs per Line of Code and Function Point error models respectively.

There are noticeable differences in the Defect Density, Requirements Traceability

and Test Coverage relative error percentages in case of the application with a

functional size of 10,000 function points. This is again because of the increase in

number of defects that contribute to the error.

 86

0

20

40

60

80

100

120

1 2 3 4 5

Error Models

R
e
la
ti
v
e
 E
rr
o
r
P
e
rc
e
n
ta
g
e
s

sigma = 0.1k*

sigma = 0.2k*

sigma = 0.3k*

sigma = 0.4k*

Figure 4-21 Relative error percentages for an application with failure

probability of the order 10E-1and functional size of 75 FP

0

20

40

60

80

100

120

1 2 3 4 5

Error Models

R
e
la
ti
v
e
 E
rr
o
r
P
e
rc
e
n
ta
g
e
s

sigma = 0.1k*

sigma = 0.2k*

sigma = 0.3k*

sigma = 0.4k*

Figure 4-22 Relative error percentages for an application with failure

probability of the order 10E-1 and functional size of 10,000 FP

However it is a very different situation for the Function Point and the Bugs

per Line of Code errors. First, the error percentages are much higher than that of

 87

Defect Density, Requirements Traceability and Test Coverage. The relative

error percentages are almost 100% across applications with different functional

sizes for failure probabilities of the order 10E-1 and 10E-2. This is because the

probabilities of failures predicted by the two models are insignificant in these

cases due to the prevalence of Musa’s fault exposure ratio K (Section 3.1.4,

Section3.1.5) whose value is of the order of 10E-7. Therefore the predicted

probabilities are of the order of 10E-4 to 10E-6 (eq.(4-7) and eq.(4-9)). Please

note that the
LT

τ
 ratio for the results provided above is considered to be unity.

When the real failure probability is of the order of 10E-3, the prediction errors

are lesser in case of applications of larger sizes. The reason is the same i.e. the

predicted failure probabilities become more significant in these cases (eq.(4-7)

and eq.(4-9)). In the cases where real failure probability is of the range 10E-4-

10E-5, it can be seen that the prediction error is very little or negative. When the

real failure probability is of the order of 10E-6 or lower, we get only negative

errors and the relative error percentages is very high. Figure 4-23 shows this

variation for different order of failure probabilities. All these observations

follow the same rationale. The negative values stem from the fact that the

predicted probabilities are higher than the real probabilities. These observations

not only tell us that the prediction accuracies of the Function points and the

Bugs per Line of Code RePSs are weaker, but also speak volumes about the

irrelevance of Musa’s fault exposure ratio K in most of the cases. They show

 88

that it provides good estimations of failure probabilities for very specific

application sizes and when the real failure probabilities are of a specific order.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5 6 7

Size

R
e
la
ti
v
e
 E
rr
o
r
P
e
rc
e
n
ta
g
e

pf=10**-2

pf=10**-4

pf=10**-6

Figure 4-23 Relative error percentages for Function Point Error for

applications of different order of failure probabilities

It is also observed that when the
LT

τ
 ratio was varied, the results were the

same but for a different set of sizes and order of failure probabilities.

The results above (Table 4-3 through Table 4-8) have taken 200 lines of

code per module into account for Bugs per Line of Code error values. When the

number of lines of code per module was increased to 300 and 400, the predicted

failure probabilities were lower (eq (4-9)) and hence the error results were

slightly worse for higher orders of failure probabilities and were slightly better

for lower orders of failure probabilities. Figure 4.24 and Figure 4.25 show the

variation of the percentages of relative errors for 200 and 300 lines of code per

module with 10E-1 and 10E-6 as upper bound of failure probabilities. The X-

 89

axis refers to the different sizes in increasing order. However the results are not

significantly different.

Figure 4-24 Relative error percentages for an upper bound of failure

probability of 10E-1 and varying LOC per module

Figure 4-25 Relative error percentages for an upper bound of failure

probability of 10E-6 and varying LOC per module

98.4

98.6

98.8

99

99.2

99.4

99.6

99.8

100

1 2 3 4 5 6 7
Data Points (different sizes)

R
e
la
ti
v
e
 E
rr
o
r
P
e
rc
e
n
ta
g
e
s

200
LOC/Module

300
LOC/Module

0

10000

20000

30000

40000

50000

60000

1 2 3 4 5 6 7

Data Points (Different sizes

in increasing order)

R
e
la
ti
v
e
 E
rr
o
r
P
e
rc
e
n
ta
g
e
s

200
LOC/Module

300
LOC/Module

 90

Moreover, the results provided in Table 4-3 through Table 4-8 have taken C++

as the coding language for Bugs per Line of Code error values. The median C++

backfiring coefficient as per Jones [Jones96] is 55. The errors varied only slightly

when the coding language was changed to Visual Basic, FORTRAN or C. The

backfiring coefficients for these languages are 32 (Visual Basic 3), 71 (FORTRAN

95) and 128 respectively. An increase in backfiring coefficient leads to an increase

in number of modules (eq(4-9)) and hence an increase in the predicted failure

probability. This leads to better estimates for higher order of failure probabilities

and worse estimates for lower order failure probabilities (eq(4-9)).

4.4 Summary

In this chapter, the error models for the simulation were constructed. We

believe that error models for simulation can be constructed in a similar fashion for

any model with a thorough knowledge of the models. Simulation has been used to

determine the nature of the errors in some engineering disciplines. [Jiao04]

conducted a simulation to study the impacts of error structure on stock–recruitment

(S-R) models. S-R models are fishery models that predict the amount of juvenile

recruitment or production as a function of the parent stock. The authors observed

through simulation that S-R models are less effective especially when there is a

smaller data set. Simulation therefore provides a better alternative. [Kim98]

conducted a simulation study to assess the impact and sources of errors in

distributed decision support systems (DSS). DSS are computer technologies which

 91

allow users to collect and analyze data in more sophisticated and complex ways and

thus help in making a decision.

One would probably need to make some assumptions for the simulation, but

they can be well augmented and justified either through previous work that exists or

through validation/experimentation. Simulation is well worth the effort because of

its flexibility and the range of applications it can simulate. Error values for any

application can be generated through simulation.

Not only that, it helps understand the modeling approach better and identifies

the fallacies of the models to a greater extent. It also is very effective from cost,

time and effort perspective. Simulation may provide the only alternative in some

cases, for example, an application with very low order of failure probability which

may take hundreds of years [Butler93] of testing to estimate the failure probability.

It is also a desirable and feasible alternative for very large applications.

 92

Chapter 5 Experiment

An experiment was designed to validate the results obtained from the

simulation on the prediction accuracies of the RePSs and the nature of their error

models. This was important to establish the level of accuracy of each RePSs and

confirm/reject/refine the error models associated with the RePSs. This was also

consequential to validate the assumptions made in the simulation process. This

chapter provides a detailed discussion of the experiment and the experimental

results.

5.1 The Experiment Design

An in-vitro experiment was designed [Field03], [Hughes71] involving eight

different applications to validate our findings. This section provides the objective,

hypotheses, design, threats to validity, subjects and the execution of the experiment

in details.

5.2 The Objectives of the Experiment

There were three main objectives of the experiment.

• to investigate the accuracy of the RePSs

• to determine the form of the “errors” ie whether they are additive or

multiplicative in order to apply the information to the model uncertainty

framework

• to validate the assumptions of the simulation

 93

5.3 Hypotheses of the Experiment

This section gives the different sets of hypotheses that were used to verify the

objectives.

5.3.1 First set of hypotheses

This section provides the hypotheses to statistically evaluate the prediction

accuracies of the five RePSs. For this purpose, we defined a term ‘relative error’ (pe)

for each RePS which is equal to

s

ss
e

p

PSpp
PSp

−
−

=
1

|)(Re|
)(Re

*

 (5-1)

Where

 pe (RePS) The relative error for a particular RePS

 ps The probability of success per demand obtained from reliability

testing.

 ps
*(RePS) The probability of success per demand predicted by the particular

RePS

This definition implies that the lower the value of pe, the better the

prediction. Statistical tests were then conducted on the relative error of each of the

five RePSs.

As a rule of thumb, the relative error should ideally be less than or equal to

one. This rule of thumb derives from the fact that a regulator will at least want a

reliability estimate of the correct order of magnitude. However, we wanted to

 94

further understand the limitations of each RePS and thus experimented on a broader

set of hypotheses rather than confining ourselves to just one particular value.

Therefore three sets of hypotheses were formulated. The first set of general

hypothesis is that the relative error for each of the RePSs is less than equal to one;

the second is that it is less than 0.50 and the third is that it is less than 0.30.

Table 5-1 gives the null (H0) and alternate (HA) hypotheses [Field03], [Hughes71]

that the relative errors are less than unity.

RePS Null Hypotheses Alternate Hypotheses

Bugs per Line of Code H0BLOC : pe BLOC <= 1 HABLOC : pe BLOC > 1

Defect Density H0DD : pe DD <=1 HADD : pe DD > 1

Function Point H0FP : pe FP <=1 HAFP : pe FP > 1

Requirements Traceability H0RT : pe RT <=1 HART : pe RT > 1

Test Coverage H0TC : pe TC <=1 HATC : pe TC > 1

Table 5-1 Null and alternate hypothesis that the relative errors is less than

unity

Where pe BLOC = relative error in the Bugs per Lines of code RePS model

pe DD = relative error in the Defect Density RePS model

pe FP = relative error in the Function Point RePS model

pe TC = relative error in the Requirements Traceability RePS model

pe TC = relative error in the Test Coverage RePS model

Similarly the null and alternate hypothesis that the relative error is less than 0.5 is

given by Table 5-2.

 95

RePS Null Hypotheses Alternate Hypotheses

Bugs per Line of Code H0BLOC : pe BLOC <= 0.5 HABLOC : pe BLOC > 0.5

Defect Density H0DD : pe DD <= 0.5 HADD : pe DD > 0.5

Function Point H0FP : pe FP <= 0.5 HAFP : pe FP > 0.5

Requirements Traceability H0RT : pe RT <= 0.5 HART : pe RT > 0.5

Test Coverage H0TC : pe TC <= 0.5 HATC : pe TC > 0.5

Table 5-2 Null and alternate hypothesis that the relative error is less than 0.5

Table 5.3 gives the null and alternate hypothesis that the relative error is less than

0.3.

RePS Null Hypotheses Alternate Hypotheses

Bugs per Line of Code H0BLOC : pe BLOC <= 0.3 HABLOC : pe BLOC > 0.3

Defect Density H0DD : pe DD <= 0.3 HADD : pe DD > 0.3

Function Point H0FP : pe FP <= 0.3 HAFP : pe FP > 0.3

Requirements Traceability H0RT : pe RT <= 0.3 HART : pe RT > 0.3

Test Coverage H0TC : pe TC <= 0.3 HATC : pe TC > 0.3

Table 5-3 Null and alternate hypothesis that the relative error is less than 0.3

5.3.2 Second set of hypotheses

The second objective of the experiment was to determine the form of the

“errors” i.e. whether they are additive or multiplicative. The simulation results were

used to build the general hypothesis.

Therefore the null (H0) and alternate (HA) hypotheses for the error models are given

as:

 96

Error Model Null Hypotheses Alternate Hypotheses

Bugs per Line of Code H0BLOC : eBLOC is
multiplicative

HABLOC : eBLOC is not
multiplicative

Defect Density H0DD : eDD is additive HADD : eDD is not additive

Function Point H0FP : eFP is multiplicative HAFP : eFP is not
multiplicative

Requirements Traceability H0RT : eRT is additive HART : eRT is not additive

Test Coverage H0TC : eTC is additive HATC : eTC is not additive

Table 5-4 Null and alternate hypotheses for the error models

Where eBLOC = error in the Bugs per Lines of code RePS model

eDD = error in the Defect Density RePS model

eFP = error in the Function Point RePS model

eRT = error in the Requirements Traceability RePS model

eTC = error in the Test Coverage RePS model

In order to determine the error form, normality and lognormality tests were

conducted on each of the error models.

5.3.3 Third set of hypotheses

The results obtained from simulation and those obtained from experiment

were compared in order to validate the third objective. The general hypothesis is

that they are equal.

Therefore the null (H0) and alternate (HA) hypothesis is given by

 97

RePS Null Hypotheses Alternate Hypotheses

Bugs per Line of
Code

H0BLOC : simulatione BLOC =

erimenteexp BLOC

HABLOC : simulatione BLOC ≠

erimenteexp BLOC

Defect Density H0DD : simulatione DD =

erimenteexp DD

HADD : simulatione DD ≠

erimenteexp DD

Function Point H0FP : simulatione FP =

erimenteexp FP

HAFP : simulatione FP ≠

erimenteexp FP

Requirements
Traceability

H0RT : simulatione RT =

erimenteexp RT

HART : simulatione RT ≠

erimenteexp RT

Test Coverage H0TC : simulatione TC =

erimenteexp TC

HATC : simulatione TC ≠

erimenteexp TC

Table 5-5 Null and alternate hypotheses that the simulation and the

experimental errors are similar

Where PSesimulationRe is the simulation error for a particular RePS and

PSe eriment Reexp is the experimental error for that RePS.

5.4 The Design

An in-vitro experiment was designed to achieve the objectives described in

Section 5.2. The experiment was conducted in two parts. First was the development

phase of different software applications. The second was the measurement phase

where RePSs were constructed for the five models.

 98

5.4.1 Design of the Development phase

This part was conducted in the class on Software Quality Assurance (SQA),

a graduate course offered at the University of Maryland during Spring 2004. The

SQA course consisted of 22 students, three of whom were off-campus students. The

on-campus students were divided amongst five different groups, Group ATM,

Group SRQS, Group WPU, Group SSP and Group LOCAT with six, five, four, two

and two students each.

ATM, SRQS, WPU, SSP and LOCAT were the five different applications.

ATM is the largest, SRQS and WPU were of medium sizes and SSP and LOCAT

were of smaller sizes.

Each of these groups was divided into two subgroups. The experiment

design for each group is shown below

 RR SDesign SDR Coding UT CI ST

Subgroup1 √ √ √ √ √

Subgroup2 √ √ √ √ √

Table 5-6 Experiment design for development phase

 where

RR: Software Requirements Review SDesign : Software Design

SDR : Software Design Review Coding : Software Coding

UT : Unit Test CI : Code Inspection

 ST : System Test

 99

The three off-campus students developed different versions of LOCAT

individually. These three applications will henceforth be referred to as LOCAT-I,

LOCAT-II and LOCAT-III.

The experiment design for off-campus students is

5.4.2 Design of the Measurement phase

The second part of this experiment, the measurement phase, was carried out

in the (Software Reliability Engineering) SRE lab. Seven students were involved in

this experiment. RePSs were constructed from five different measures:

Requirements Traceability, Defect Density, Function Point, Test Coverage and Bugs

per Line of Code for each of the eight applications. Each RePS had different

numbers of support measures (ranging from one to seven). In total, more than 150

tasks were performed. By task we mean estimating the support measures, modeling

the systems as Finite State Machine (FSM) models and computing the final

 RR SDesign SDR Coding UT CI ST

Student1 LOCAT-I

LOCAT-II

LOCAT-II LOCAT-I

LOCAT-II

LOCAT-I LOCAT-I LOCAT-I

LOCAT-II

LOCAT-III

Student2 LOCAT-
II,

LOCAT-
III

LOCAT-III LOCAT-II,

LOCAT-III

LOCAT-II LOCAT-II LOCAT-II,

LOCAT-III

LOCAT-I

Student3 LOCAT-
III,

LOCAT-I

LOCAT-I LOCAT-III,

LOCAT-I

LOCAT-
III

LOCAT-III LOCAT-III,

LOCAT-I

LOCAT-II

Table 5-7 Experiment design for the off-campus students for the

development phase

 100

reliabilities. The design for the measurement phase is provided as an appendix

(Appendix B).

The work was designed to avoid any bias. For example, support measures

for the construction of Defect Density RePS and support measures for the

construction of Requirements Traceability RePSs were measured by different

subjects due to similarity in their structure. The similarity stems from the fact that

both RePSs are defect oriented and the defects considered in the construction of

RePS from Defect Density are a superset of the defects considered in the

construction of RePS from Requirements Traceability. This is because the defects

considered in the construction of RePS from Defect Density are found through

inspection of requirements specifications, design specifications and the code where

as the defects considered in the construction of RePS from Requirements

Traceability are found by tracing the requirements to design and code. Moreover the

construction of both the RePSs uses the EFSM technique to propagate the defects.

5.4.3 Threats to Validity

The experiment design minimizes the effects of threats to validity

[Campbell63]. This section discusses threats to validity during the development

phase and threats to validity during the measurement phase.

5.4.3.1 Threats to Validity during the Development Phase

Threats due to selection of respondents which can introduce disparity in

development groups are eliminated through randomization. The students were

 101

monitored through log sheets on their daily performances. This gave us a chance to

observe any effects due to History and Maturation. [Campbell63]

One of the most prominent threats to external validity is caused by the use of

students as subjects. However, the students were graduate students of computer

engineering, computer sciences and electrical engineering disciplines, and many of

them had part-time or full time jobs in software companies. (see Section 5.5.1.1).

Most of them were familiar with software engineering concepts and had a lot of

experience in software development. Moreover they were trained in course of the

class on all issues pertaining to the experiment. Another threat to external validity is

that of representativeness of the applications i.e. if they are representative of the real

world scenario. Although this is an impossible task to achieve, the judicious choice

of applications tries to alleviate this problem. The applications chosen are of varying

sizes and come from different application domains that include database

applications, real time applications, word processors etc. The applications were

developed in different languages like C, C++, and VB.

5.4.3.2 Threats to Validity during the Measurement Phase

Here also, threats due to selection of respondents which can introduce

disparity in measurement groups are eliminated through randomization. As before,

the students were monitored through log sheets on their daily performances which

gave us a chance to observe any effects due to History and Maturation. The effect

of instrumentation is minimized because the measurements were performed

according to unique guidelines and tools. As mentioned before, one of the most

prominent threats to validity is caused by the use of students as subjects. For the

 102

measurement phase all the students were from the SRE lab and were familiar with

the measurement process and with the use of Testmaster [Testmaster99] and

Winrunner [Winrunner01] which were the two main tools used. They were also

given specific instructions and manuals etc on the measures and the measurement

process.

The threats due to repeatability in the measures have also been taken care of.

Even though there were a large number of common support measures [Smidts00,

Li04], in each of the five RePSs, they were measured separately for repeatability

concerns. Any discrepancies in the measures were analyzed, the measurement

process was made more robust and unambiguous and the measurements were re-

done if necessary.

5.5 Experiment Execution

This section discusses the execution process in details including the pre-

experiment preparation and the final execution of the experiment.

5.5.1 Pre-experiment preparation for Development phase

In this section the steps taken as a pre-experiment preparation for the actual

execution of the experiment are provided.

5.5.1.1 Subjects

The subjects for the development phase were students of a graduate level

course on SQA at the University of Maryland. These students had comprehensive

experience in the software development and testing field. Eight of these students

were PhD students. There were three Computer Science graduate students, three

 103

computer engineering graduate students, one electrical engineering graduate student,

three systems engineering students and eight reliability engineering students. The

following table provides information on the background of the students.

Profile Number of Students

Currently working full time in software companies 4

Currently working part-time in software companies 2

Full time jobs in software industry in the past 4

Currently conducting research in the software field 18

Table 5-8 Subjects’ Experience Profile

The students were not notified about the experiment to ensure that they

would not be influenced by the knowledge of the experiment. The experiment was

presented as a class project mandatory for the course, ensuring the necessary

motivation. Preventive steps were taken to ensure that the students had no un-

wanted communications during the course. Though it was an experiment per se, it

was in line with the course and was conducted as a course project.

5.5.1.2 Applications

 Applications from various domains, sizes and coding languages were chosen to

ensure diversity and representativeness.

 ATM [Ghose04C] or the Automated Teller Machine is the largest application

of around 2500 SLOC. It was developed in Visual C++. The software performs the

following activities:

 Verification of customer identification, selection of services, deposition of

cash or check, withdrawal of cash, transfer of funds between the customers'

 104

accounts and inquiry of customers' account balances.

SRQS and WPU are the two medium sized applications of sizes of around

1500 SLOC each. SRQS [Ghose04D] or the Student Registry Query System is a

database application and is designed for students to create and manage their

accounts online. Registry DB is a database that maintains student SSN, student login

ID, student password, course information, and registration information. SRQS

generates SQL queries for retrieval of data from Registry DB. The result of the

query is returned to the user interface.

SRQS performs the following activities: Create a student account, manage it

by adding or dropping a course, view a particular course’s schedule, booklist,

waitlist etc and edit Registry DB by authorized personnel. This application was

developed in Visual Basic.

 WPU [Ghose04E] or the Word Processing Unit was designed to perform

word processing functions such as adding text, deleting text, checking for errors,

counting words and characters etc. The application performs these functions based

on user inputs. User inputs are accepted either from direct keyboard entry or from

ASCII source Input file. The output is written to a file. WPU was developed in C.

SSP [Ghose04B] or Small Search Program is a database application with

around 600 SLOC. It has a database called Search PUBS created in Microsoft

Access with information about authors and their publications. The database has

three tables named authors, titles and titleauthor. The application asks the user for

search options and generates SQL queries on the basis of the search options. SSP

was developed in Visual Basic.

 105

LOCAT [Ghose04A] is a real time simple projectile tracking system. It

calculates the projectiles coordinates at any point of time. It was developed in

Visual Basic and consists of around 500 SLOC.

LOCAT-I [Ghose04F], LOCAT-II [Ghose04G] and LOCAT-III [Ghose04H]

are different versions of LOCAT and have different functions like finding range,

angle, and velocity of the projectiles. LOCAT-I was developed in FORTRAN,

LOCAT-II was developed in Visual Basic and LOCAT-III was developed in C++.

5.5.1.3 Groups

The students were given a questionnaire on the first day of the class. The

questionnaire was mainly a background check of the students including their

experience in the software field, the types of application/computer languages they

have worked with, and the research that they were involved with. It also consisted of

some coding and testing questions. Three groups were then formed: those proficient

in C/C++, those proficient in VB and those conversant with testing. (Please note that

C, C++ and VB were the only languages that were specified in the requirements

specifications of the applications). Based on this information, the subjects were

randomly assigned to a team/sub-group in a way so that each team was evenly

balanced in terms of proficiency.

5.5.1.4 Execution

The experiment was run for a span of sixteen weeks. Each class, each week

was 2 hrs and 40 min long. Students were trained before each round of assignments.

Apart from the theory presentations, the sessions consisted of in class assignments.

Questions were encouraged during the class but no interactions were allowed among

 106

students outside the class. All questions to the instructor, outside the class were

through e-mails or through help sessions. Events in the lecture and the help sessions

were recorded and so were the questions through e-mails. The students were also

given log-sheets and were demonstrated how to use them.

The subjects were provided with Software Requirements Specifications

(SRS) of the applications and the experiment commenced with the review of these

SRSs. They were formatted as per IEEE specification standards [IEEE84]. Every

document, deliverable, review etc was formatted according to IEEE standards.

5.5.2 Pre-experiment preparation for the Measurement phase

In this section, the steps taken as a pre-experiment preparation for the actual

execution of the measurement phase are provided.

5.5.2.1 Subjects

The “Measurement phase” is the phase of the experiment where RePS’s

were constructed from the five different software measures: Requirements

Traceability, Defect Density, Function Point, Test Coverage and Bugs per Line of

Code for each of the above eight applications. The subjects were seven graduate

students of the Software Reliability Engineering Lab at the University of Maryland.

Five of these were PhD candidates, one was a Post Doctoral student and one was a

Masters student. All the students were conversant with different part/parts of the

measurement process and were ideally suited for constructing RePSs.

 107

5.5.2.2 Execution

As mentioned before more than 150 tasks were performed to construct the

RePSs and compute the estimated failure probability. Detailed procedure to carry

out the tasks is provided in [Smidts00]. These tasks were divided amongst the seven

subjects. Care was taken to avoid any biases that were suspected to be present.

The subjects were first given a questionnaire to appraise their knowledge on the

measurements. They were then given a lecture on the whole measurement process.

This part of the experiment lasted for 8 weeks/two months. The design is provided

in Appendix B.

The rules and regulations for the measurement phase were the same as those

for the development phase. Questions were encouraged but no interactions were

allowed among students. The students were also given log-sheets and were

demonstrated how to use them.

The subjects were provided with requirements specifications, design

specifications, code, and test plan of the applications as required, to perform their

task. Moreover they were given manuals which had specific guidelines to carry out

their task.

5.6 Experiment Results

This section provides the results of the experiment along with a statistical

analysis of the results.

 108

5.6.1 Statistical Analysis of the results to accept/reject the first set of

hypotheses

The table below gives the final RePS values for the five different models and

the real reliability values for each of the applications. Theoretically, it is not

possible to compute the real reliability of an application. Therefore, by real

reliability we mean the experimental reliability value that is obtained through

extensive testing.

The steps taken to estimate this value are:

1) Construction of an EFSM [Wang93, Li06] representing the user’s

requirements in detail and embedding user’s operational profile information.

Testmaster tool [Testmaster99] was used for this purpose. This model is also the

oracle for the application as the modeler is the person who knows the correct user

specifications.

2) Execution of the model to evaluate the impact of the defects. A large

number of test cases are run through the application and the ratio of number of test

cases failed over the total number of test cases run, gives the real failure probability.

Test cases were executed using Winrunner [Winrunner01].

Through reliability testing, it is taken care that all the defects that were

discovered during the process of RePS constructions are represented and taken into

account. Therefore, it is equivalent to four different persons testing the application.

The first person discovers defects through inspection of the requirements, design

and the code, the second person discovers defects through requirements traceability

and the third person discovers defects through system testing. The fourth person is

 109

the one that models the oracle and does extensive testing using Winrunner.

Therefore, the application is not only tested by four different persons, it is also

tested from different perspectives focusing in different techniques of finding

defects. Boundary value analysis was performed for all the applications. Also,

during this testing, enough test cases were generated not only to ensure complete

functional testing of the application but also to ensure an all- path testing from the

perspective of user’s requirements, i.e., all the paths of the EFSMs were tested. The

following table provides the details of the reliability testing. The 95% confidence

interval and the standard error of reliability are determined assuming a binomial

process.

Applications Number

of Test

Cases

Number

of Failed

Test

Cases

Estimated

Reliability

95% Confidence

Interval for

Reliability

Standard

Error of

Reliability

ATM 300 8 0.97 (0.95,0.99) 0.009

SRQS 198 100 0.49 (0.42,0.56) 0.035

SSP 96 51 0.43 (0.33,0.53) 0.050

WPU 200 91 0.54 (0.47,0.61) 0.035

LOCAT 92 7 0.076 (0.022,0.130) 0.027

LOCAT_I 100 24 0.76 (0.67,0.84) 0.042

LOCAT_II 22000 0 1 (1,1) 0.0

LOCAT_III 50 6 0.88 (0.78,0.97) 0.045

Table 5-9 Details of the reliability testing of the applications

 110

Applications BLOC DD FP RT TC Real

Reliability

ATM 0.999998 0.99805 1 0.9956 0.94995 .9733

SRQS 0.9992074 0.95346 0.99998 0.98548 0.7334 .4949

 SSP 0.962761 0.69059 0.99993 0.68259 .46875

WPU

0.999938 0.627 1 0.58119 .545

LOCAT 0.9986872 0.4 0.99993 0.1 0.10955 .0761

LOCAT_I 0.9965977 1 0.99935 1 1 .76

LOCAT_II 0.9999982 1 1 1 1 1.00

LOCAT_III 0.9999931 0.89 0.99982 1 1 .88

Table 5-10 Real reliability and reliability values predicted by the different

RePSs

Table 5-10 provides the real reliability and the reliability values as estimated

by the five RePSs for all the applications. The columns BLOC, DD, FP, RT, and TC

refer to the reliability values obtained from the Bugs per Lines of Code, Defect

Density, Function Point, Requirements Traceability and Test Coverage RePS

respectively. The Real Reliability value corresponds to the experimental value

which is obtained after extensive testing.

The missing value in case of Requirements Traceability RePS for SSP is due

to the fact that the SSP application could not be compiled in the measurer’s machine

due to platform/operating system issues and the missing value in case of Test

Coverage RePS of WPU is because the measurer was not able to find a bug in the

application. And this RePS is based on the assumption that the application has at

least one bug. Moreover, no defects were found in LOCAT-II and the real reliability

 111

was computed as one. Since, theoretically it is not possible to have a completely

bug-free application, it was considered an outlier. Therefore, this application was

not taken into consideration for the statistical analysis.

The errors were computed from the above table as the difference between

real reliability and the predicted reliability.

Table 5-11 provides the error data and their mean and standard deviation for

each application for each of the RePSs. Table 5-12 provides the relative error for

each of the RePSs for each application. Relative error is defined as the ratio of the

error to the real value of failure probability.

Table 5-11 Error Data and Their Mean and Standard Deviation

Applications Bugs/LOC DD FP RT TC

ATM 0.026 0.024 0.02 0.022 -0.02

SRQS 0.50 0.45 0.50 0.49 0.23

 SSP 0.49 0.22 0.53 0.21

WPU 0.45 0.082 0.45 0.03

LOCAT 0.92 0.32 0.92 0.023 0.03

LOCAT_I 0.23 0.24 0.23 0.24 0.24

LOCAT_III 0.11 0.01 0.11 0.2 0.12

Mean 0.39 0.19 0.40 0.16 0.13

Standard
Deviation

0.30 0.16 0.30 0.18 0.11

 112

Applications pe BLOC pe DD pe FP pe RT pe TC

ATM
0.99 0.92 0.99 0.83 0.87

SRQS
0.99 0.90 0.99 0.97 0.47

SSP
0.92 0.41 0.99 0.402

WPU 0.99
0.18 1 0.079

LOCAT
0.99 0.35 0.99 0.025 0.036

LOCAT_I
0.98 1 0.99 1 1

LOCAT_III
0.99 0.083 0.99 1 1

Table 5-12 Relative errors for each of the five models for each application

Statistical significance tests are conducted to test the first set of hypotheses

with α= 0.05. The SAS tool is used for all the tests. Normality tests are performed to

assess the normality of the data. If the data is normal, a one sample t-test allows us

to test whether a sample mean significantly differs from the hypothesized

value. [Field 03].

If the data is not normal, non-parametric Sign tests are performed to infer on

the null-hypothesis. The results show that only Defect Density and Test Coverage

data follow a normal distribution.

 The results are given in the tables below. The H0RePS: pe RePS <= 1, H0RePS :

pe RePS <= 0.5, H0RePS : pe RePS <= 0.30 denote first set of hypotheses. Estimate refers

to the mean value of the relative error and DF denotes the number of degrees of

freedom. t-value is the t-test statistic and M-value is the Sign test statistic.

 113

Error
Model

Estimate DF t-value
H0RePS :
 pe RePS <=

1

Pr > |t|
H0RePS :
 pe RePS

<= 1

t-value
H0RePS :
 pe RePS <=

0.5

Pr > |t|
H0RePS :
 pe RePS

<= 0.5

t-value
H0RePS :
 pe RePS

<= 0.30

Pr > |t|
H0RePS :
 pe RePS

<= 0.30

pe DD 0.55

6 -3.08

0.98 0.36

0.36 1.73

0.066

pe TC 0.63

5 -2.31

0.96 0.82

0.22 2.07

0.046

Table 5-13 Statistics of the t-tests on the first set of hypotheses

Error
Model

Estimate DF M-value
H0RePS :
 pe RePS <=

1

Pr > |M|
H0RePS :
 pe RePS

<= 1

M-value
H0RePS :
 pe RePS <=

0.5

Pr > |M|
H0RePS :
 pe RePS

<= 0.5

M-value
H0RePS :
 pe RePS

<= 0.30

Pr > |M|
H0RePS :
 pe RePS

<= 0.30

pe BLOC 0.98

6 -3.5

0.99 3.5

0.0078 3.5

0.0078

pe FP 0.99

6 -3.0

0.98 3.5

0.0078 3.5

0.0078

pe RT 0.65

5 -2.0

0.93 1

0.34 1

0.34

Table 5-14 Statistics of the Sign tests on the first set of hypotheses

We can conclude from above that there isn’t enough evidence to reject the

null hypotheses (since p-value > 0.05) for all the five RePSs for the null hypotheses

that pe RePS <= 1. For the null hypotheses that pe RePS <= 0.5, we reject the null

hypotheses for pe FP and pe BLOC only and for the null hypotheses that pe RePS <= 0.3,

we reject the null hypotheses for pe BLOC, pe FP, and pe TC. From the above tests it is

observed that the relative error for all the five models passed the basic criterion of

being less than or equal to one which is encouraging. Among the five RePSs, the

relative errors for only Defect Density and Requirements Traceability RePSs are

less than equal to 0.30 and seem to have better predictive ability than the others.

Even though Test Coverage RePS did not pass the test that its relative error is less

 114

than 0.3, it produced much better results than Bugs per Lines of Code and Function

Point RePSs.

5.6.2 Statistical Analysis of the results to accept/reject the second set of
hypotheses

The second objective was to determine the form of the “errors” i.e. whether

they are additive or multiplicative. Normality and log normality tests for the errors

are conducted at α = .05. For the log normality tests, normality tests [Hughes71] on

the natural logarithm of error values are carried out. The results are given below.

The Stem-Leaf and Box Plots for each of the error models are also provided.

There isn’t enough evidence to reject the null hypothesis that eBLOC follows a

multiplicative distribution and therefore we accept the null hypotheses. The

statistics for the same are given below.

Figure 5-1 Statistics of the log-normality tests on eBLOC

 115

Similarly as seen below, there is enough evidence to assume that eDD

 follows an

additive distribution.

Figure 5-2 Statistics of the normality tests on eDD

Also, we accept the hypotheses that eFP follows a multiplicative distribution.

 116

Figure 5-3 Statistics of the log-normality tests on eFP

For eRT, we accept the hypotheses that it follows an additive distribution. The

statistics are given below.

Figure 5-4 Statistics of the log-normality tests on eRT

Similarly eTC can be assumed to follow an additive distribution with the following

statistics.

 117

Figure 5-5 Statistics of the log-normality tests on eTC

5.6.3 Statistical Analysis of the results to accept/reject the third set of

hypotheses

The third objective was to compare the error results obtained from

simulation and from experiment to check if they are similar. The error form has

been observed to be the same for the simulation and the experiment (Section 4.6.2).

However we wanted to simulate the experimental data set and compare the results.

We believe that doing so would give a better comparison as both the data set will be

similar. Therefore equal number of data points with the same characteristics as that

of the experiment were generated. By same characteristics, we mean that the sizes

of the applications, their order of failure probabilities etc were kept the same for the

simulation as that of the experiment. The set of characteristics for each application

is given in Table 6-1.

Table 5-14 provides the mean and standard deviation of the simulation results

.

 118

Statistical significance tests were conducted to test the third set of

hypotheses with α= 0.05. An F-test [Snedecor89] was used to test if the standard

deviations of the two populations (errors from the simulation and errors from the

experiment) are equal. The results showed that they are equal. t-tests were

conducted for the data set that followed normal distribution i.e. Defect Density,

Requirements Traceability and Test Coverage error data. Wilcoxon two-sample

non-parametric tests were conducted for non-normal data i.e. Bugs per line of code

and Function Point error data. The results are given in the tables below. t-value is

the t-test statistic, W-value is the Wilcoxon test statistic.

RePS t-value

H0RePS : PSsimulatione Re =

PSerimente Reexp

Pr > |t|

H0RePS : PSsimulatione Re =

PSerimente Reexp

DD
-0.08

0.6

RT
-0.35

0.6

TC
-0.31

0.6

Table 5-16 Statistics of the t-tests on the third set of hypotheses

RePS BLOC DD FP RT TC

Mean 0.48 0.20 0.46 0.19 0.15

Std. Dev 0.36 0.14 0.38 0.18 0.14

Table 5-15 Mean and standard deviation of the simulation results

 119

RePS W-value

H0RePS : PSsimulatione Re =

PSerimente Reexp

Pr > |W|

H0RePS : PSsimulatione Re =

PSerimente Reexp

BLOC
-1.022

0.30

FP
-0.50

0.61

Table 5-17 Statistics of the Wilcoxon-tests on the third set of hypotheses

We can conclude from above that there isn’t enough evidence to reject the

null hypotheses (since p-value > 0.05) for all the five RePSs for the third set of

hypotheses. Therefore, simulation and experimental errors for all the five RePSs not

only follow the same distribution but also have similar values of errors which is

encouraging. However, further research may be conducted to analyze the simulation

results for applications with larger sizes and smaller order of failure probabilities.

5.7 Summary

In summary, it was seen that the Defect Density, Requirements Traceability,

and Test Coverage performed better than the Bugs per Line of Code and Function

Point RePSs. It was also observed that the Defect Density, Requirements

Traceability, and Test Coverage error models follow an additive distribution and

Bugs per Line of Code and Function Point error models follow a multiplicative

distribution. Moreover results also showed that there wasn’t any significant

difference between the findings from the simulation and the findings from the

experiment.

 120

Chapter 6 Updating the Estimations Based on

 Error Forms

In this chapter, we illustrate the technique of the uncertainty quantification

procedure. First a general Bayesian Framework [Droguett02] to update a model’s

estimate in case of additive and multiplicative error models is presented. This is a

generalized version of the Uncertainty Factor approach. The framework is then

applied to the software applications considered in this study as examples. The

results obtained from the application of the framework are then presented.

6.1 Additive Error Model

If there are n experimental results x1

e
 ,….., xn

e and corresponding model

estimates are x1
*
 , …..,xn

*
 and the form of the error is known, it can be used to

construct the likelihood function.

The model estimate is considered as a random variable, X , which is the sum

of the true but unknown value, x, and a random error term E: X*
= x + E. In terms

of realizations (i =1, …,n) of the random variables X*, we have xi
*
= xi

t
 + Ei where

xi
* and Ei are realizations of the random variables X

*
, and E respectively, (i =1,

…,n). xi
 t
 is the true value of quantity X at i . Therefore, each realization Ei of E

represents the difference between the model’s estimate xi
* and the true value of

quantity X at i, xi
 t.

Under the assumption of no experimental error, xi
e
= xi

t.

 121

Thus, evidence on model M might be given as D = {E1,…,En} where Ei is the error

factor of i.

Now L(x* | θ, x) is a parametric likelihood function where the set of

parameters θ is estimated from the performance data D ={E1,…,En} via Bayes’

theorem. A simple, flexible, and practical form for the likelihood function L(x* | θ,

x) is a Normal distribution with mean obtained as x+b, where b =average(E) is the

bias factor and standard deviation σ. The set of parameters is now given by θ = {b,

σ}. The likelihood can now be written as

2
*

)
)(

(
2

1
**

2

1
),,|(),|(σ

πσ
σθ

bxx

ebxxLxxL

+−
−

== (6-1)

Now, the posterior distribution of the set of parameters θ = {b, σ} is

∫ ∫
=

b

n

n

n
dbdbbEEL

bbEEL
EEb

σ

σσπσ

σπσ
σπ

),(),|,...,(

),(),|,...,(
),...,|,(

01

01
1 (6-2)

where the likelihood function is constructed considering that each pair of

experimental results and corresponding model estimates for each realization i are

independent, that is, {E1,…,En} are independent realizations of the random variable

E. Therefore,

∏
=

=
n

i

in bELbEEL
1

1),|(),|,...,(σσ (6-3)

Using the additive error model ,

∏
=

−
−

=
n

i

bE

n

i

ebEEL
1

)
)(

(2/1

1

2

2

1
),|,...,(σ

πσ
σ (6-4)

Now substituting in (5-2)

 122

∏
=

−
−

=
n

i

bE

n be
k

EEb
i

1
0

)(2/1

1
1),(

11
),...,|,(

2

σπ
σ

σπ σ (6-5)

where ∫ ∫∏
=

−
−

=
b

n

i

bE

dbdbek
i

σ

σ σσπ
σ1

0

)(2/1

1),(
1 2

 is a normalizing constant and

),(0 σπ b is the prior distribution on b and σ.

Therefore now the likelihood function L(x
*
|D,x) is given as

),(
2

11

2

1
),|(

1
0

)
)

(2/1

1

)
)(

(
2

1
*

22
*

σπ
πσπσ

σ

σ

σ be
k

exDxL
n

i

bE

b

bxx i

∏∫∫
=

−
−

+−
−

= (6-6)

6.2 Multiplicative Error Model

The development of the procedure using the multiplicative error model is

analogous to the additive error model, with the modification that the model estimate

X is now modeled as the product of the true but unknown value, x, and an error term

E:

Therefore, for each realization of X*, where xi
*

= xi
t
Ei where xi

* and Ei are

realizations of the random variables X*
, and E respectively, (i =1, …,n) and xi

 t
 is

the true value of quantity X at i. The multiplicative error term is now given as

Ei = xi
*
/xi

t
. Under the restriction of no experimental error, we have that Ei = xi

*
/xi

e
.

By taking logarithms, lnX
*
 = lnX + lnE as in the previous case, the likelihood

function is given as

2
*

)
)ln(lnln

(
2

1

*

**

2

1
),,|(),|(σ

πσ
σθ

bxx

e
x

bxxLxxL

+−
−

== (6-7)

 123

Now, if πo(b, σ) is a prior distribution of b and σ, the posterior distribution of the set

of parameters θ ={b, σ} is

∏
=

−
−

=
n

i

bE

n be
k

EEb
i

1
0

)
lnln

(2/1

2
1),(

11
),...,|,(

2

σπ
σ

σπ σ (6-8)

where k2 is normalizing constant and the likelihood function is constructed

considering that each pair of experimental results and corresponding model

estimates for each realization i are independent, that is, {E1,…,En} are independent

realizations of the random variable E.

Therefore, the likelihood function becomes

),(
2

11

2

1
),|(

1
0

)
)lnln

(2/1

2

)
)ln(lnln

(
2

1

*

*
22

*

σπ
πσπσ

σ

σ

σ be
k

e
x

xDxL
n

i

bE

b

bxx i

∏∫∫
=

−
−

+−
−

= (6-9)

6.3 Examples

In this section we illustrate the uncertainty assessment of the software

reliability of the applications given the estimates by the five RePSs. In order to

assess the uncertainty of the RePSs estimates, some assumptions are made as

required by the model uncertainty framework [Droguett02]. Different data sets were

generated using the same set of conditions/characteristics as that of the applications.

Table 6-1 provides the set of characteristics of each of the applications.

 A homogenous population assumption is made concerning the error data.

Given that the data sets that were used to update the failure probability prediction

comprised only of results from the same set of characteristics, this is a reasonable

assumption.

 124

Applicatio

ns

Size

(LOC)

Language Real

Failure

Probability

Defect

removal

efficiency of

Inspection

and

Reviews

(%)

Requirements

Traceability

Efficiency

(%)

Defect

detection

efficiency

of testing

(%)

Defect

repair

proba

bility

(%)

LT

τ

ratio

ATM

2500 VC++ 0.0267 60 60 100 80 6.86

SRQS 1500 Visual
Basic

0.5051 18 9 56 54 0.44

WPU

1500 C 0.53125 78 71 N/A N/A 0.889

SSP 600 Visual
Basic

0.455 44 33 55 75 11.2

LOCAT 500 Visual
Basic

0.9239 14 86 83 40 37.9

LOCAT

_I

200 FORTRAN 0.24 0 0 0 N/A 1.28

LOCAT

_III

250 C++ 0.120 100 0 0 N/A 1.37

Table 6-1 Characteristics of the applications

Now the posterior distribution of the of the true unknown, x, (in this case the failure

probability) given the available evidence D, is given as

∫
=

x

dxxxDxL

xxDxL
Dxx

)(),|(

)(),|(
)*,|(

0
*

0
*

π

π
π (6-10)

 Based on the simulation and the experimental results it is assumed that the error E

representing the divergence between an estimate and an experimental measurement

is described by the multiplicative error model for Bugs per Line of Code and

Function point RePSs and additive error model for Defect Density, Requirements

Traceability and Test Coverage RePSs. As a result, the parametric likelihood

function for Bugs per Line of Code and Function point RePSs are modeled as

Lognormal distributions and Defect Density, Requirements Traceability and Test

Coverage RePSs are modeled as Normal distributions with parameters set θ ={b,

σ}, where b and σ are defined as before. Furthermore, let us consider that the

 125

analyst’s prior belief is negligible compared to the evidence provided by the

performance data set D and the new estimate *x . Thus, a flat prior πo(x) is adopted.

Now, the mean value of posterior failure probability is given by

dxDxxx
x

)*,|(π∫ × (6-11)

The sections below provide examples and illustrate the different ways of

obtaining an updated estimate.

6.3.1 Updates based on evidence on the order of failure probability

In this section, the process of application of model uncertainty framework

based on evidence on the order of the failure probability of the application is

discussed. Usually obtaining evidence on the order of failure probability of an

application is tough as that would need comprehensive testing of the application.

This also loses the purpose of estimation of failure probability. However, there may

be cases like having different versions of the same application where there may be

some idea on the order of failure probability of the application. Updates can then be

made on the estimation of failure probability. Now, say that we know that SRQS has

the same order of failure probability as that of SSP, WPU and LOCAT-I. Therefore

the estimates for SRQS can be updated based on the experimental results obtained

for SSP, WPU and LOCAT-I. Table 6-2 provides the updated predictions of failure

probability for SRQS. Figure 6-1 provides the plots of the updated failure

probability predictions vs. the initial failure probability predictions for SRQS. The

five data points along the X-axis (1, 2, 3, 4, 5), refer to the five RePSs: Bugs per line

of Code, Defect Density, Function Point, Requirements Traceability and Test

 126

Coverage respectively. The updated values are much closer to the experimental

value.

RePSs Updated

Predictions

Bugs per Line of Code 0.37

Defect Density 0.34

Function Point 0.38

Requirements
Traceability

0.35

Test Coverage 0.53

Table 6-2 Updated predictions of failure probabilities of SRQS

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5

RePSs

F
a
il
u
re
 P
ro
b
a
b
il
it
ie
s

old pf

new pf

experimental value

Figure 6-1 Plots of initial and updated values of failure probabilities of SRQS

6.3.2 Updates in the lack of any evidence

If there is no evidence at all of the order of the failure probability of an

application, the values estimated by the RePSs may be considered as the upper

bound of fault exposure probability. Figure 6-2 provides the plots of the updated

failure probability predictions vs. the initial failure probability predictions for SRQS

 127

considering the estimated values as the upper bound of fault exposure probability.

The five data points along the X-axis (1, 2, 3, 4, 5), refer to the five RePSs as

before: Bugs per line of Code, Defect Density, Function Point, Requirements

Traceability and Test Coverage.

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5

RePSs

F
a
il
u
re
 P
ro
b
a
b
il
it
ie
s

old pf

new pf

experimental value

Figure 6-2 Plots of initial and updated values of failure probabilities

As can be seen, the updated estimates are better than the original estimates.

However the degree to which the estimates get updated depends on how good the

estimates already are. The table below provides the percentage of improvement in

the estimates after they are updated. Percentage of improvement is defined as

100*
_exp

__

valueerimental

estimateinitialestimateupdated −
 . As can be seen, the percentage of

improvement is very small for the Bugs per Line of Code and Function Point errors.

This is because the initial estimates are very low and close to zero. Therefore even a

100% improvement on the initial estimates is still close to zero.

 128

 ATM SRQS WPU SSP LOCAT LOCAT-
I

LOCAT-
III

DD 27 8 25 30 30 0 0
RT 28 2.6 33 N/A 11 0 0
TC .06 19 N/A 28 .8 0 0
BLOC 1.7*10^-6 0.02 .07 .2 .3 .6 .34
FP 2*10^-5 2*10^-

4
.08 .007 .035 .06 .66

Table 6-3 Percentages of improvement in the estimates based on no evidence of

order of failure probability

6.3.3 Updates based on evidence on the accuracy of the models

It has been observed from the simulation and the experimental results that

Defect Density, Requirements Traceability and Test Coverage RePS provide better

estimates. Therefore in absence of any other evidence, the estimates provided by

these RePSs can be averaged to obtain an idea regarding the real failure probability

of the application and the estimates can be updated based on the averaged value.

Figure 6-3 provides the plots of the updated failure probability predictions vs. the

initial failure probability predictions for ATM. The five data points along the X-axis

(1, 2, 3, 4, 5), refer to the five RePSs: Bugs per line of Code, Defect Density,

Function Point, Requirements Traceability and Test Coverage respectively. The

average value is the average of the Defect Density, Requirements Traceability and

Test Coverage RePS estimates.

 129

0

0.01

0.02

0.03

0.04

0.05

0.06

1 2 3 4 5

RePSs

F
a
il
u
re
 P
ro
b
a
b
il
it
ie
s

old pf

new pf

experimental value

average value

Figure 6-3 Plots of initial and updated values of failure probabilities of ATM

Here the failure probability for Test Coverage is overestimated initially.

Since the defect detection efficiency of testing is 100% for ATM, the updated

failure probability is similar to the initial failure probability. The failure

probabilities for Bugs per Line of Code, Defect Density, Function Point and

Requirements Traceability are updated as shown.

6.3.4 Updates based on evidence on the accuracy of the models and
using an weighted average procedure

We now formalize the previous method of updating the estimates based on

the average value of Defect Density, Requirements Traceability and Test Coverage

RePS estimates. In this process, an weight is ascribed to each of the RePSs and an

weighted average estimate is obtained. The procedure of making the updates is

discussed below.

First, the average value of Defect Density, Requirements Traceability and

Test Coverage RePS estimates, AEst (Average Estimate), is used to obtain the error

 130

percentages of all the five RePSs. Based on the error percentages, a weight, WRePS, is

ascribed to each of the RePSs and then a weighted average estimate, WAE, is

obtained for the application. Now this estimate can be used to make the final

updates on the RePSs.

Formulating the weighted average procedure, the average estimate, of an

application,

3

___ TCRTDD EstimateInitialEstimateInitialEstimateInitial
AEst

++
= (6-12)

Based on AEst, the average errors, AErr are determined for all the RePSs, for the

specific application using simulation. Now, the average error ratio for an RePS,

ERRePS, is defined as the ratio of average error for that RePS over the average

estimate AE, i.e.
AEst

PSAErr
ER PS

)(Re
Re = (6-13)

A new term, Accuracy_IndexRePS, is coined to represent the accuracy of the

RePS and is equal to (1-ERRePS). If the accuracy index of a RePS is negative, it can

be discarded. This is because as a rule of thumb, the average error should ideally be

less than or equal to one. This rule of thumb derives from the fact that a regulator

will at least want a reliability estimate of the order of magnitude [Li06].

 The weight of the RePS, WRePS, is equal to

∑
=

PS

PS

PS

PS
IndexAccuracy

IndexAccuracy
W

Re
Re

Re
Re _

_
 (6-14)

Therefore the weighted average estimate, WAE, is equal to,

∑=
PS

PSPS EstimateInitialWWAE
Re

ReRe _* (6-15)

 131

Simulation can then be run based on the weighted average estimate for each of the

RePSs and the values can be updated accordingly. Figure 6-4 illustrates the

weighted average update procedure.

 132

Initial_EstimateRePS

3

___ TCRTDD EstimateInitialEstimateInitialEstimateInitial
AEst

++
=

AErr(RePS)

Average Error Ratio,

Accuracy_IndexRePS = 1-ERRePS

AEst

PSAErr
ER PS

)(Re
Re =

∑
=

PS

PS

PS
PS

IndexAccuracy

IndexAccuracy
W

Re
Re

Re
Re _

_

∑=
PS

PSPS EstimateInitialWWAE
Re

ReRe _*

Final Average

Error Estimates

Simulation considering application characteristics

and WAE as the order of failure probability

Final Updates

Update using Model Uncertainty Framework

Simulation considering application characteristics

and AEst as the order of failure probability

Figure 6-4 The weighted average update procedure

 133

We now illustrate the weighted average procedure using examples. Let us

consider the ATM application. The average estimate,

AEst = (0.00195+0.0044+0.05005)/3 = 0.0188 failure per demand.

Using the average estimate value as the order of failure probability and

considering the characteristics of the application, (Appendix C), the average errors

are obtained through simulation. The average errors are 0.018789, 0.00846,

0.018799, .00840 and 0.001 failures per demand for Bugs per Line of Code, Defect

Density, Function Point, Requirements Traceability and Test Coverage RePS

respectively. The error ratio for Bugs per Line of code, ERBLOC, =
.0188

0.018789
=

0.999415. Similarly the error ratios are 0.45, 0.999947, .446809 and .053191 for

Defect Density, Function Point, Requirements Traceability and Test Coverage RePS

respectively. The Accuracy_Index is now calculated as 0.000585, 0.55, 5.32E-05,

0.553191and 0.946809 for Bugs per Line of Code, Defect Density, Function Point,

Requirements Traceability and Test Coverage RePS respectively.

Now the weights associated with each of the RePSs can be estimated. The weight

for BLOC is equal to
946809.553191.0532.555.000585.0

000585.0

++−++ E
 = 0.000285.

Similarly the weights are 0.268209, 2.59E-05, 0.269766, 0.461714 for Defect

Density, Function Point, Requirements Traceability and Test Coverage RePS

respectively.

 134

Finally the weighted average estimate is calculated as 0.000285*2E-6 +

0.268209*.00195 + 2.59E-05*3E-6 + 0.269766*.0044 + 0.461714*0.05005 =

0.024819 failure per demand.

Based on the weighted average estimate, average errors are then obtained

through simulation and the initial estimates are updated. The results of the updates

are shown in Figure 6-5.

0

0.01

0.02

0.03

0.04

0.05

0.06

1 2 3 4 5

RePSs

F
a
il
u
re
 P
ro
b
a
b
il
it
ie
s

old value

new value

WAE

experimental value

Figure 6-5 Plots of initial and updated values of failure probabilities of ATM taking

WAE into account

 The updated estimates are much closer to the experimental value. As can be

seen from Figure 6-2 and 6-5, the updated estimates considering WAE are better

than the updated estimates considering initial estimates by themselves.

The weighted average error procedure is now applied to the SRQS application.

Table 6-2 provides the intermediate results for SRQS and Figure 6-5 shows the plots

of initial and updated values. AEst for SRQS is 0.16383 and WAE is 0.19859.

 135

RePS
Old Pf ERRePS

Accuracy_
Index Weights New Pf

Bugs per Line
of Code 0.00079 0.99 2.13E-05 2.46E-05 0.19

Defect Density
0.0465 0.85 0.14 0.17 0.20

Funtion Point
2E-05 0.99 0.0001 0.00011 0.19

Requirements
Traceability 0.0145 0.89 0.103 0.11 0.18

Test Coverage
0.266 0.38 0.61 0.70 0.34

Table 6-4 SRQS update results taking WAE into account

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5

RePSs

F
a
il
u
re
 P
ro
b
a
b
il
it
ie
s

Old Pf

New Pf

experimental value

WAE

Figure 6-6 Plots of initial and updated values of failure probabilities of SRQS taking

WAE into account

As seen from the results above, the updated values are much closer to the

experimental value than the initial estimates. Figures 6-7 through 6-10 provide the

initial and final estimates for SSP, WPU, LOCAT and LOCAT-III. The initial

estimates for LOCAT-I for Defect Density, Requirements Traceability and Test

Coverage are equal to zero. Therefore the initial average estimate (AEst) is also

equal to zero and hence the updated estimates are also equal to zero. Table 6-5

provides the percentage of improvement in the estimates for all the applications

 136

after they are updated. The four RePSs across X-axis for SSP (Figure 6-7) are

Defect Density, Bugs per Line of Code, Function Point and Test Coverage

respectively and the RePSs across X-axis for WPU are Defect Density, Bugs per

Line of Code, Function Point and Requirements Traceability.

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4

RePSs

F
a
il
u
re
 P
ro
b
a
b
il
it
ie
s

Old Pf

experimental

value

New Pf

WAE

Figure 6-7 Initial and final estimates for SSP

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 3 4

RePs

F
a
il
u
re
 p
ro
b
a
b
il
it
ie
s

New Pf

Old Pf

experimental

value

WAE

Figure 6-8 Initial and final estimates for WPU

 137

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5

RePS

F
a
il
u
re
 P
ro
b
a
b
il
it
ie
s Old Pf

New Pf

Experimental

value

WAE

Figure 6-9 Initial and final estimates for LOCAT

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 3 4 5

RePS

F
a
il
u
re
 P
ro
b
a
b
il
it
ie
s Old Pf

New Pf

Experimental

Value

WAE

Figure 6-10 Initial and final estimates for LOCAT-III

RePSs SRQS ATM WPU SSP LOCAT LOCAT-

I
LOCAT-
III

BLOC 38.88 89.5 85 53 87 0 50
DD 31.35 44.76 12 26 35 0 0
FP 39.56 89.13 85 56 87 0 50
RT 33.61 41.27 0.26 N/A 8 0 58
TC 15.8 0.59 N/A 23 10 0 58

Table 6-5 The percentages of improvement in estimation

 138

As mentioned before, the percentages of improvement for Locat-II are zero

since AEst for Locat-II is equal to zero. The percentage of improvement for Bugs

per Line of Code and Function Point ranges from 39% to 90%. The high percentage

of improvement is because of the fact that the initial estimates were not good and

were close to zero (Table 5-9). The percentage of improvement for Defect Density

and Requirements Traceability varied from 0% to about 60%. The percentage of

improvement are dependent on various factors such as how good the estimates

already are and the specific set of characteristics of the application. For example, for

Locat-III the initial estimate for Defect Density RePS is close to the experimental

value (Table 5-9) and the defect removal efficiency is 100% (Table 6-1). Therefore

the average error is zero and hence there is no improvement in the estimate.

However in case of ATM, defect removal efficiency is 67% and therefore there is an

error in the estimate and the estimate is improved by 44.67%. The percentage of

improvement in test coverage RePSs also vary between 10% to 60%. The reasoning

for the variation is the same as the Defect Density RePS variation.

 Also, from Table 6-3 and Table 6-5, it can be seen that the percentage of

improvement in estimation of RePSs are higher in case of the weighted average

update procedure than in cases where just the initial estimates (Section 6.3.2) are

used. Also, since evidence on the order of failure probability may not be available in

most of the cases, the weighted average update procedure is recommended. The

table below provides the initial average (AEst) and the weighted average (WAE) for

each of the application.

 139

 ATM SRQS SSP WPU LOCAT LOCAT-I LOCAT-III
AEst 0.018 0.11 0.31 0.39 0.79 0 0.036
WAE 0.026 0.19 0.30 0.39 0.81 0 0.076

Table 6-6 Initial average and weighted average estimates of failure probability

As far as recommending a single RePS is concerned, it depends on the

characteristics of the application and/or the organization. It has already been

observed from the experimental and simulation results that the Defect Density,

Requirements Traceability and Test Coverage RePSs provide better estimations.

According to Jones [Jones96], on an average the inspection procedure is 80%

efficient in detecting faults. Therefore Defect Density RePS may be used to estimate

the failure probability. The defects detected through Requirements Traceability

RePS construction are a subset of the defects detected through Defect Density RePS

(For reasoning, please refer to Section 5.4.2). However, detecting defects through

Requirements Traceability is usually easier than detecting defects through

inspection. Moreover, inspection procedures may not be followed strictly rendering

the inspection less effective. In such cases Requirements Traceability RePS should

be used. The historical data of the organization may be used to determine the

efficiency of Defect Density and Requirements Traceability and the one with better

efficiency should be used.

For the Test Coverage RePS, the testing efficiency as well as the test coverage

ratio are instrumental in estimating the failure probability. It is seen from the

simulation that with 53% testing efficiency and 70% test coverage, the relative error

for Test Coverage RePS is similar to the relative error of Defect Density RePS at

60% inspection efficiency. (As illustrated in Figure 6-12, the third point in the Test

Coverage plot corresponds to 70% test coverage and the corresponding equivalent

 140

inspection efficiency is 60% (the third data point in the inspection efficiency plot)).

Figures 6-11 through 6-13 provide the equivalent inspection efficiency for varying

Test Efficiency and Test Coverage that provide similar relative errors in estimation

of failure probability.

0

10

20

30

40

50

60

70

80

90

100

1 2 3

Data Points

%

Test Coverage(%)

Inspection

Efficiency(%)

Figure 6-11 Inspection Efficiency for varying Test Coverage when the Test

Efficiency is 30%

Figure 6-11 provides the inspection efficiency equivalent for varying test

coverage when the test efficiency is 30%. From Figure 6-11, it can be seen that

when the test efficiency is low (30%), and the test coverage increases, the error

increases and therefore the equivalent inspection efficiency decreases. The error is

the least when the test coverage is the same as the test efficiency, i.e, 30%, which

means that when a 30% of test coverage detects the same percentage of faults, Test

Coverage RePS provides good estimation. Please note that the estimated failure

probability of the application will be high in this case since only 30% of the defects

have been detected, but this estimation is closer to the real value and therefore the

 141

error is small. In order for the Defect Density RePS to obtain such accuracy, the

equivalent inspection efficiency is 90%.

Similarly, when test coverage is 80%, which also means that 80% of test

coverage detected only 30% of the faults, the failure probability is under-estimated

and the error in the failure probability estimation is very high. Hence the inspection

efficiency equivalent that gives the same amount of error is 20%.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4

Data Points

%

Test Coverage(%)

Inspection

Efficiency(%)

Figure 6-12 Inspection Efficiency for varying Test Coverage when the Test

Efficiency is 50%

Figure 6-12 provides the inspection efficiency equivalent for varying test

coverage when the test efficiency is 50%. As before, it can be seen that the error is

the least when the test coverage is the same as the test efficiency, i.e, 50%, which

means that a 50% of test coverage detects the same percentage of faults. Therefore,

in order for the Defect Density RePS to obtain such accuracy, the equivalent

inspection efficiency is about 90%.

 142

Similarly, when test coverage is 80%, which also means that 80% of test

coverage detected only 50% of the faults, the failure probability is under-estimated

and the error in failure probability estimation is high. Hence the inspection

efficiency equivalent that gives the same amount of error for the Defect Density

RePS estimation is 45%. However when the test coverage is low (30%), which

means that 30% of test coverage detected 50% of the faults, the failure probability is

over-estimated and the inspection efficiency equivalent that gives the same amount

of error in this case is 65%.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4

Data Points

%

Test Coverage(%)

Inspection

Efficiency(%)

Figure 6-13 Inspection Efficiency for varying Test Coverage when the Test

Efficiency is 80%

 Figure 6-13 provides the inspection efficiency equivalent for varying test

coverage when the test efficiency is 80%. As before, it can be seen that the error is

the least when the test coverage is the same as the test efficiency. However, when

the test coverage is low (30%), which means that 80% of the defects are detected by

30% of the test coverage, the Test Coverage RePS provides gross over-estimation of

 143

the failure probability and the error is very high. An inspection efficiency that gives

the same amount of error is 5%.

The results presented in the table above can be used as a guideline to

determine which RePS to use. The historical data of the organization can be used to

determine the testing efficiency and inspection efficiency and then the plots can be

used to determine the RePS that provide a better estimate. Test Coverage can be

determined using tools available commercially. For example, say that it is usually

seen that a certain organization has typically a testing efficiency of 30%. The test

coverage is measured as 60%. This means that the equivalent inspection efficiency

that gives the same error is about 48% (Figure 6-11). Therefore if the organization

typically has lesser inspection efficiency, it is better to use Test Coverage RePS.

Else, Defect Density RePS should be used.

6.4 Summary:

As seen from the results, the updated failure probability values are much

closer to the experimental value. The results also show that even in the absence of

any evidence, the estimates can still be updated using simulation data. The updated

estimates are better than the original estimates but the degree to which the estimates

get updated depends on how good the estimates already are.

Moreover, updates can be made from the knowledge of the accuracy of the

models even though there is no evidence like the order of failure probability of the

application. Appropriate weights can be ascribed to each of the models and updates

can be made accordingly.

 144

We also would like to note that the approach of model improvement provided

above can be generalized to other reliability models. The evidence on these models

can be obtained either through experiment or through simulation. However we feel

that the values obtained through simulation usually fit the homogenous assumption

of the data set better. This is because the data is generated for a specific set of

characteristics of the application. Moreover simulation saves time, effort and cost.

This chapter also provided guidelines to determine which RePS to use based

on application/organization characteristics. The guidelines help choose the RePS

with least relative error.

 145

Chapter 7 Conclusion

We have achieved the objectives set out at the beginning of the dissertation. In

this chapter we conclude by summarizing our achievements and the contributions

made by this research. We also identify the limitations of our work. Avenues for

future research are subsequently identified.

7.1 Contributions of this Research

• The research contributes to measurement-based software reliability

modeling by statistically analyzing and validating five different software

reliability prediction systems, RePSs. The RePSs are constructed from

software engineering measures such as Defect Density, Bugs per Line of

Code, Function Point, Requirements Traceability and Test Coverage. An

experiment was designed to obtain data on the RePSs and statistically

investigate their prediction performance.

• It generalizes the domain of application of model uncertainty approaches to

the field of software reliability modeling. As illustrated in Chapter 6, a

Bayesian approach of model uncertainty quantification has been used to

update the estimates of failure probability. Therefore, the first steps to foray

into the domain of model uncertainty have been taken in this research.

• It contributes to software reliability modeling intellect and the industry by

providing more robust reliability estimates. As shown in Table 6-5, the

updated estimates of failure probability were better than the initial estimates.

 146

The percentage of improvement for Bugs per Line of Code and Function

Point ranges from 39% to 90%. The percentage of improvement for Defect

Density and Requirements Traceability varied from 0% to about 60%.

• We also provide an alternate approach of determining the error forms which

is integral to the application of the model uncertainty framework: simulation.

Simulation allows us to use a wide range of inputs. This acts as a catalyst for

sensitivity analysis of the models and helps determining the error for

different scenarios. The values assumed such as the defect removal

efficiency etc can be fine-tuned as per the specific organization’s software

engineering practices. Traditionally the nature of the errors is determined

experimentally. It includes the extensive and difficult task of designing the

experiment in a way to counter threats to validity, and executing it. Also

each experiment needs a minimum number of data points (the larger the

number, the better) in order to statistically validate it. This is expensive not

only from a cost perspective but also from a time perspective. Sometimes

carrying out an experiment is just not feasible due to lack of resources.

Simulation is an alternative which provides a solution to the above problems.

o We also compared the results obtained from the simulation and from

the experiment and found similarities between them. This

corroborates our claim that simulation can be an alternative to

determine the nature of errors.

 147

o A tool was developed in the course of this research to simulate the

error models. The tool can be used to estimate the errors on the

failure probabilities predicted by the RePSs for applications of

varying sizes, languages and domains. The error values can then be

used to update and provide better predictions.

• The research also contributes to the understanding of some of the root causes

of error in the software reliability model building processes leading to

possible improvements of these. For example, it is almost customary to use

Musa’s K [Musa87, Musa98] in the estimation of software reliability.

However in the course of simulation we realized the irrelevance of Musa’s K

in most of the cases. The simulation results showed that it can be used for a

very specific order of failure probabilities and application sizes.

7.2 Limitations of this Research

Like everything else, this research has its limitations which are enumerated below.

• Assumptions in the simulation:

o The assumption that the defects are independent of each other only

excludes the case in which one defects masks others [Wu93]. This is

a fair enough assumption as long as this situation does not happen

frequently. However, this assumption may limit the research in some

manner especially when there are many defects masking one another,

and needs to be investigated. Moreover the real and the simulated

 148

errors are assumed to be similar in this study. This assumption also

needs to be investigated to provide better results.

o Usage of defect removal efficiency values etc are only an average

value and may not be reflective of the participating organization’s

own standards. Moreover they are dynamically changing due to the

ever-changing software engineering paradigms and/or practices.

o In Chapter 4, we use only certain values of defect removal efficiency,

defect repair probability, backfiring coefficient and any other

variable obtained from [Jones96]. This may lead to a certain amount

of uncertainty on the error.

• We realize that the experimental data set is still very small. There are no data

points on applications with very low failure probability or very large size.

This may limit the inferences made especially on these kinds of applications.

Moreover we are unable to compare the performance of the simulation at

this level.

7.3 Future Work

Following are some possible areas of future research.

• Development of a larger data set: As mentioned before a large data set is

essential and integral to validate any study. In the data set that is available,

there are no applications with very low order of failure probabilities or very

large sizes. Such applications should be included in the data set. This shall

 149

allow for the scalability of the approach. Moreover it can be compared to the

simulation data in a more appropriate manner.

• The assumptions in the simulation process such as independence of defects

can be studied to better the estimate of errors in the simulation process. Also

we assume that defects detected during software inspection are independent

of their fault exposure probabilities as there are no evidences to believe

otherwise. However this area may be explored to confirm such assumptions.

• We feel that this approach can be generalized to any software reliability

model. Studies may be done to validate this hypothesis. From an

organization’s perspective this would allow for a better estimation of

reliability while using the technique existing in the organization.

• Further work may also include correlation among models. A major issue in

the assessment of model uncertainty is the possibility of dependence among

the models considered in the weighted average error assessment. Possible

reasons for dependence among models include [Droguett02]:

� As they are representations of the same reality aspect, the

models might share common theoretical principles,

� Common implementation procedures, such as mathematical

approximations,

� They might have been conceptualized and implemented by

individuals sharing the same basic training,

� As a result of sharing similar modeling processes, they would

share, to some degree, the available limited information

 150

sources and have the tendency to be redundant with regards to

some of their inputs.

The dependence of models in the model uncertainty framework should be

studied and incorporated into the framework.

• Extension of error modeling to software systems with redundant

components. In safety critical systems, a fault tolerance approach may be

employed to obtain high reliability. The basic strategy of the software fault-

tolerance approach is to design several versions of a program from the same

specification and to employ a voter of some kind to protect the system from

bugs. The voter can be an acceptance test (i.e., recovery blocks) or a

comparator (i.e., N-version programming) [Butler93]. This system does not

fail unless there is a co-incident error i.e. both the versions produce

erroneous outputs in response to the same input [Butler93]. This research

was solely aimed at software systems with single components and does not

handle software systems with redundant systems. Further work may be done

to extend error modeling to such systems and analyze the errors in the

estimation of reliability of such systems.

 151

Appendix A: Results of the simulation of error forms

This appendix provides the mean and standard deviation of the results obtained for

different sets of simulation.

Functional

Size

Error

 75 150 300 600 1200 2400 10000

Mean .099 1.14 1.30 1.77 2.39 2.96 4.56 Defect Density

Std.
Dev

.044 1.42 1.09 1.21 1.73 2.66 3.89

Mean .104 1.13 1.29 1.79 2.52 2.81 4.51 Requirements
Traceability

Std.
Dev

.046 1.10 1.13 1.23 1.58 2.64 3.78

Mean .11 1.42 1.67 2.09 2.69 3.27 5.46 Test Coverage

Std.
Dev

.041 1.07 1.16 1.60 2.69 2.28 4.83

Mean 1.15 2.02 3.70 3.97 4.36 5.60 9.87 Function Point

Std.
Dev

1.99 1.68 2.80 2.56 2.17 1.64 2.55

Mean 1.25 2.26 3.50 3.76 4.47 5.53 9.56 Bugs per Line
of Code

Std.
Dev

1.90 1.71 3.07 3.00 2.22 1.56 2.22

Table A-1 Mean and Standard Deviation for different error forms for varying

functional sizes with upper bound of fault exposure probability of 10E-1

(Multiply each value by 10**-1)

 152

Functional

Size

Error

 75 150 300 600 1200 2400 10000

Mean 0.12 1.24 1.56 1.80 2.16 2.57 5.01 Defect Density

Std.
Dev

0.12 1.31 1.60 1.74 2.04 2.80 2.16

Mean 0.12 1.40 1.56 1.80 2.34 2.70 4.92 Requirements
Traceability

Std.
Dev

0.13 1.13 1.57 1.68 2.02 2.94 2.12

Mean 0.14 1.55 1.77 2.04 2.46 2.83 5.14 Test Coverage

Std.
Dev

0.14 1.54 1.57 1.88 2.18 2.98 2.19

Mean 1.73 2.19 3.46 3.92 4.23 4.88 7.09 Function Point

Std.
Dev

1.81 2.05 3.40 3.99 4.79 5.25 4.04

Mean 1.55 2.09 3.20 3.33 3.57 3.84 5.12 Bugs per Line
of Code

Std.
Dev

1.60 1.94 3.28 3.58 4.24 5.12 2.66

Table A-2 Mean and Standard Deviation for different error forms for varying

functional sizes with upper bound of fault exposure probability of 10E-3

(Multiply each value by 10**-3)

 153

Functional

Size

Error

 75 150 300 600 1200 2400 10000

Mean .080 1.01 1.38 1.65 2.43 3.01 4.66 Defect Density

Std.
Dev

0.034 1.15 1.34 1.34 1.35 2.39 2.67

Mean 0.11 1.14 1.28 1.56 2.13 2.24 4.57 Requirements
Traceability

Std.
Dev

0.033 1.16 1.17 1.65 1.98 1.99 2.00

Mean 0.14 1.48 1.69 2.00 2.54 3.17 5.82 Test Coverage

Std.
Dev

0.054 1.12 1.16 1.87 2.35 2.98 2.83

Mean 1.06 1.90 3.38 3.18 2.84 -1.24 -18.23 Function Point

Std.
Dev

1.76 1.67 2.34 2.24 2.98 1.98 10.65

Mean .93 1.61 1.69 .65 -1.90 -6.48 -38.12 Bugs per Line
of Code

Std.
Dev

1.76 1.88 1.76 2.87 1.92 3.78 12.54

Table A-3 Mean and Standard Deviation for different error forms for varying

functional sizes with upper bound of fault exposure probability of 10E-4

(Multiply each value by 10**-4)

 154

Functional

Size

Error

 75 150 300 600 1200 2400 10000

Mean .07 1.13 1.28 1.66 2.28 2.56 4.87 Defect Density

Std.
Dev

.034 1.12 1.09 1.56 1.89 2.97 3.09

Mean 0.10 1.24 1.43 1.70 2.25 2.89 4.86 Requirements
Traceability

Std.
Dev

0.65 1.34 1.57 1.36 1.99 2.76 2.13

Mean 0.12 1.37 1.70 1.99 2.77 3.34 5.97 Test Coverage

Std.
Dev

.087 1.18 1.14 1.70 2.01 2.00 2.83

Mean .15 .0026 -0.54 -4.20 -22.04 -51.15 -278.02 Function Point

Std.
Dev

1.88 1.65 2.98 2.65 2.18 1.94 22.66

Mean -1.35 -6.05 -12.50 -28.34 -60.54 -115.4 -476.76 Bugs per Line
of Code

Std.
Dev

1.89 1.67 3.23 3.07 8.33 12.99 29.45

Table A-4 Mean and Standard Deviation for different error forms for varying

functional sizes with upper bound of fault exposure probability of 10E-5

(Multiply each value by 10**-5)

 155

Functional

Size

Error

 75 150 300 600 1200 2400 10000

Mean . 09 1.24 1.28 1.74 2.26 2.65 4.78 Defect Density

Std.
Dev

.045 1.32 .98 1.23 1.76 2.01 2.98

Mean 0.10 1.24 1.41 1.80 2.30 2.79 4.78 Requirements
Traceability

Std.
Dev

0.04 1.31 1.11 1.36 1.98 2. 47 2.76

Mean 0.12 1.34 1.69 1.99 2.45 3.02 5.69 Test Coverage

Std.
Dev

0.06 1.23 1.13 1.76 1.86 2.03 2.87

Mean -9.35 -17.56 -39.45 -76.24 -255.3 -660.9 -2787 Function Point

Std.
Dev

2.98 10.67 11.26 13.32 23.34 27.34 32.665

Mean -41.23 -81.36 -155.3 -315.3 -645.2 -1184 -4789 Bugs per Line
of Code

Std.
Dev

3.86 8.67 11.43 20.59 24.298 34.453 39.234

Table A-5 Mean and Standard Deviation for different error forms for varying

functional sizes with upper bound of fault exposure probability of 10E-6

(Multiply each value by 10**-6)

 156

Functional

Size

Error

 75 150 300 600 1200 2400 10000

Mean . 067 1.14 1.38 1.67 2.28 2.56 4.87 Defect Density

Std.
Dev

.02 1.23 1.02 1.53 1.87 2.17 2.92

Mean 0.10 1.32 1.54 1.69 2.35 2.78 4.65 Requirements
Traceability

Std.
Dev

.076 1.33 1.17 1.35 1.99 2.13 2.14

Mean 0.13 1.49 1.78 2.00 2.76 3.40 5.97 Test Coverage

Std.
Dev

0. 09 1.13 1.13 1.34 2.00 2.19 2.82

Mean -1.2E8 -1.2E8 -1.2E8 -1.2E8 -1.2E9 1.2E9 1.2E10 Function Point

Std.
Dev

19813 15674 29845 26653 218567 219887 929998

Mean -4.27E8 -4.27E8 -4.28E8 -4.28E8 -4.28E9 -4.28E9 -4.3E10 Bugs per Line
of Code

Std.
Dev

21813 18675 31987 34554 329877 314657 999456

Table A-6 Mean and Standard Deviation for different error forms for varying

functional sizes with upper bound of fault exposure probability of 10E-13

(Multiply all values by 10**-13)

 157

The table below provides the percentage of the relative error for varying functional

sizes with upper bound of fault exposure probability of 10E-1. Relative error is

defined as the ratio of the absolute value of the error over the real value of failure

probability.

Functional

Size

Error

75 150 300 600 1200 2400 10000

Defect Density

9.09 39.31 37.34 43.54 51.76 53.43 57.42

Requirements
Traceability

10.03 39.14 39.35 44.65. 51.65 52.97 58.87

Test Coverage

13.06 43.45 44.56 52.65 59.65 61.45 65.43

Function Point

99.98 99.91 99.86 99.68 99.46 99.34 99.12

Bugs per Line
of Code

99.99 99.99 99.96 99.96 99.86 99.87 99.32

Table A-7 Relative error percentages for varying functional sizes with upper

bound of fault exposure probability of 10E-1

 158

Appendix B: Experiment Design for the Measurement

Phase

ATM Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7

 B/LOC
 Si 1
 TL 1
 τ 1
 pf 1
 DD
 DD Defects 1
 FSM, pf 1
 FP
 FP 1
 N 1
 TL 1
 τ 1
 pf 1
 RT
 RT Defects 1
 FSM,pf 1
 TC
 FP 1
 FPMiss 1
 LOCTested 1
 LOCIMPL 1
 TL 1
 τ 1
 FSM,pf 1
SRQS
 B/LOC
 Si 1
 TL 1
 τ 1
 pf 1
 DD
 DD Defects 1
 FSM, pf 1
 FP
 FP 1
 N 1

 159

 TL 1
 τ 1
 pf 1
 RT
 RT Defects 1
 FSM,pf 1
 TC
 FP 1
 FPMiss 1
 LOCTested 1
 LOCIMPL 1
 TL 1
 τ 1
 FSM,pf 1
WPU
 B/LOC
 Si 1
 TL 1
 τ 1
 pf 1

 DD
 DD defects 1
 FSM, pf 1

 FP FP 1
 N 1
 TL 1
 τ 1
 pf 1
 RT
 RT Defects 1
 FSM,pf 1
 TC
 FP 1
 FPMiss 1
 LOCTested 1
 LOCIMPL 1
 TL 1
 τ 1
 FSM,pf 1

SSP
 B/LOC
 Si 1
 TL 1
 τ 1

 160

 pf 1
 DD
 DD Defects 1
 FSM, pf 1
 FP
 FP 1
 N 1
 TL 1
 τ 1
 pf 1
 RT
 RT Defects 1
 FSM,pf 1
 TC
 FP 1
 FPMiss 1
 LOCTested 1
 LOCIMPL 1
 TL 1
 τ 1
 FSM,pf 1

LOCAT
 B/LOC
 Si 1
 TL 1
 τ 1
 pf 1
 DD
 DD Defects 1
 FSM, pf 1
 FP
 FP 1
 N 1
 TL 1
 τ 1
 pf 1
 RT
 RT Defects 1
 FSM,pf 1
 TC
 FP 1
 FPMiss 1
 LOCTested 1
 LOCIMPL 1
 TL 1
 τ 1

 161

 FSM,pf 1

LOCAT_Frank
 B/LOC
 Si 1
 TL 1
 τ 1
 pf 1
 DD
 DD Defects 1
 FSM, pf 1
 FP
 FP 1
 N 1
 TL 1
 τ 1
 pf 1
 RT
 RT Defects 1
 FSM,pf 1
 TC
 FP 1
 FPMiss 1
 LOCTested 1
 LOCIMPL 1
 TL 1
 τ 1
 FSM,pf 1

LOCAT_James
 B/LOC
 Si 1
 TL 1
 τ 1
 pf 1
 DD
 SRS,DDR 1
 FSM, pf 1
 FP
 FP 1
 N 1
 TL 1
 τ 1
 pf 1
 RT
 RT Defects 1
 FSM,pf 1

 162

 TC
 FP 1
 FPMiss 1
 LOCTested 1
 LOCIMPL 1
 TL 1
 τ 1
 FSM,pf 1

LOCAT_Barker
 B/LOC
 Si 1
 TL 1
 τ 1
 pf 1
 DD
 DD Defects 1
 FSM, pf 1
 FP
 FP 1
 N 1
 TL 1
 τ 1
 pf 1
 RT
 RT Defects 1
 FSM,pf 1
 TC
 FP 1
 FPMiss 1
 LOCTested 1
 LOCIMPL 1
 TL 1
 τ 1
 FSM,pf 1

Table B-1 The experiment design for the measurement phase

The “1” in a column implies that the task was performed by the corresponding subject. DD

defects refer to defects found for construction of the Defect Density RePS. These defects

were found through requirements, design and code inspection for each application. RT

defects refer to the defects found for the construction of the Requirements Traceability

RePS. These defects were found by tracing the code to requirements and finding out the

 163

requirements that were amiss. Sub1 through Sub7 refers to the seven different subjects who

participated in the Measurement Phase.

 164

Appendix C: Further Investigation on Interaction of

Defects

In this section the interaction among defects is further investigated and their

effect on the failure probability is analyzed. This may provide the direction of future

research on the assumption of the mutual exclusiveness of defects. It also discusses

how the interaction of defects may affect the modelling of the error forms.

Case1:

Let us consider a program structure as shown in the following flow diagram

S1 S3S2

D,(1-e2)

C,e2

B, (1-e1)

A, e1

Figure C-1 Control flow graph -1

Say S1, S2, S3 are predicates and A, B, C, D, are the different paths taken.

The shaded paths A and C contain a defect each, D1 and D2 respectively. Figure C-

2 shows the interaction among defects.

Now, the failure probability when defects interact mutually exclusively is k1 + k2

where

k1 = e1× I1×PD1->S2 ×e2’× PS2->D2×PD2->End and

k2 = e1×e2× I2×PD2->End + (1-e1)×e2× I2×PD2->End. This is also the real failure

probability as modeled by the simulation error form.

 165

The failure probability with interaction of defects is e1× I1×PD1->S2 ×e2’×

PS2->D2× P’D2->End + e1× I1’× e2× I2 × PD2->End + (1-e1)×e2× I2 × PD2->End. This is

also the real failure probability and is equal to k1× (P’D2->End/ PD2->End) + k2 –

I2×e1×e2× I1×PD2->End. which is equal to k1×α + k2× β where

 α = P’D2->End/ PD2->End and β = 1-e1× I1.

Please note that β is always less than one.

Therefore the difference between modeled failure probability and the real failure

probability is k1 + k2 – k1×α - k2× β . This will be a conservative estimate if α

is less than one.

 166

Start

I1

I1'

Propagates

to S2

Execute D1

Not Infected

by D1

Infected by

D1

e1

Does not

propagate

Executes D2

P
D1->S2

Does not

Execute D2

e2'
Does not

propagate to

D2

Propagates

to D2

P
S2->D2

Infected by

D2

Does not

propagate to

the end

Propagates

to the end

P'
D2->End

Executes D2

Does not

Execute D2

e2

Not Infected

by D2

Infected by

D2

I2

Propagates

to the end

Does not

propagate to

the end

P
D2-End

Figure C-2 Flow Graph showing interaction among defects

In this case if both the defects are detected, the modeled error is k1 + k2 – (k1* +

k2*) and the actual error is k1×α + k2× β - (k1*×α * + k2*× β *). If one of the

defects (D1 say) is detected the actual error in the estimate is k1×α + k2× β - k1

where as the modeled error is k1 + k2 – k1*.

 167

Case 2:

Now consider the following:

S1 S3S2

D,(1-e2)

C,e2

B, (1-e1)

A,e1

Figure C-3 Control flow graph – 2

Let us assume that there are two defects on the path A, D1 and D2. Figure C-4

shows the interaction among defects.

 168

Start

I1

I1'

Execute D1

Not Infected

by D1

e1

Does not

propagate to

D2

Propagates

to D2

P
D1->D2

Infected by

D2

Does not

propagate to

the end

Propagates

to the end

P'
D2->End

Not Infected

by D2

Infected by

D2

I2

Propagates

to the end

Does not

propagate to

the end

P
D2-End

Infected by

D1

Figure C-4 Flow Graph showing interaction among defects

Now, the failure probability when defects interact independently is k1 + k2

where

k1 = e1× I1×PD1->D2 ×PD2->End and k2 = e1× I2 × PD2->End. This is also the real

failure probability as modeled by the simulation error form.

The failure probability with interaction of defects is e1× I1×PD1->D2×P’D2->End +

e1× I1’× I2×PD2->End. This is also the real failure probability. This is equal to k1×α

+ k2× 'β where 'β =1 – I1’
. Therefore the difference between modeled failure

 169

probability and the real failure probability is k1 + k2 – k1×α - k2× 'β . This will

be a conservative estimate if α is less than one. 'β is always less than one.

In this case if both the defects are detected, the modeled error is k1 + k2 – (k1* +

k2*) and the actual error is k1×α + k2× 'β - (k1*×α * + k2*× 'β *). If one of the

defects (D1 say) is detected the actual error in the estimate is k1×α + k2× 'β - k1

where as the modeled error is k1 + k2 – k1*.

Case3:

S1 S3S2

D,(1-e2)

C,e2

B, (1-e1)

A, e1

Figure C-5 Control Flow Graph – 3

Let us assume that there are two defects, on the predicate S1 and on the path A. If

the defect in S1 affects the path A only, it will be equivalent to two defects on path

A and the failure probability can be calculated as in Case 2. If the defect affects only

path B, the case is equivalent to two defects that are mutually exclusive and the real

failure probability is the sum of the failure probabilities of the defects in Path A and

Path B. If the defect affects both the branches, it will be equivalent to two defects in

A (D1 and D2, say) and one defect in path B (say D3). Now the real failure

probability is k1×α + k2× 'β + k3, where, k1, α , k2, 'β , are the same as in case 2

and k3 is the fault exposure probability of defect D3. The modeled failure

 170

probability is k1+k2+k3. Therefore the difference between modeled failure

probability and the real failure probability is k1 + k2 – k1×α - k2× 'β as in Case 2.

Case 4:

S1 S2

B, (1-e1)

C,1-e2

A, e1

D, e2

Figure C -6 Control Flow Graph – 4

The different paths of execution are S1-A-S2-End, S1-B-S2-End, S1-A-S2-D-S1-A-

S2-End, S1-A-S2-D-S1-B-S2-End, S1-B-S2-D-S1-A-S2-End, and S1-B-S2-D-S1-

B-S2-End. The paths of execution with interaction of defects are S1-A-S2-D-S1-A-

S2-End, S1-A-S2-D-S1-B-S2-End, S1-B-S2-D-S1-A-S2-End and S1-B-S2-D-S1-B-

S2-End. The assumption here is that the loop S2 to S1 is traversed at most once.

Therefore the execution probability of C after the loop is traversed once, is equal to

one.

Paths similar to S1-A-S2-D-S1-B-S2-End and S1-B-S2-D-S1-A-S2-End have been

analyzed in Case 1. Paths similar to S1-B-S2-D-S1-B-S2-End have been analyzed in

Section 4-1.

 171

The path which remains to be studied is S1-A-S2-D-S1-A-S2-End. Figure C-7

shows the flow graph depicting the interaction of defects. The continuation of the

flow graph is shown in Figure C-8.

The assumption here is that once a previous defect has propagated to a location

where another defect exists, infection due to the second defect always occurs. This

is a reasonable assumption because the data has already been infected and the

second defect executes on the already infected data. [Malaiya92] states that

infection is the probability that a change to the program causes a change in the

resulting internal computational state of the program. Therefore when a defect

executes on a data state that is already infected, the probability that the defect would

infect the data state can reasonably be assumed to be one.

 172

Start

I1

I1'

Propagates

to S2

Execute D1

Not Infected

by D1

Infected by

D1

e1

Does not
propagate

to S2

zExecutes D2

P1
D1->S2

Does not

propagate to

D2

Propagates

to D2

P1
S2->D2

Infected by

D2

Propagates

to S
1

P12
D2->S1

Executes D2

e2

Not Infected

by D2

Infected by

D2

Propagates

to S1

Does not

propagate to

S1

P2
D2-S1

e2'

Does not

Propagate to

S
1

P12'
D2->S1

X

Executes D1

e1

Infected by

D1

I1

Propagates

to S2

P1
D1->S2

Executes C (1-e2')
Propagates

to the end P1
S2-End

e1

e2

I2

e1

P1'
S2->D2

P2'
D2->S1

I2'

I2'

I2

P1'
D1->S2

Figure C-7 Control Flow Graph showing interaction of defects

 173

X I11Execute D1e1''

Does not

propagate to

the end

Propagates

to S2

P11
D1->S2

Infected by

D1

Executes to

the end

(1-e''') = 1

Propagates

to the end
P''

S2->End

Figure C-8 Continuation of the flow graph for case 4

Now, the failure probability when defects interact independently is k1 + k2

where

k1=e1× I1×P1D1->S2×e2’×P1S2->D2×P1D2->S1×e1’×P1’’S1->D1×P1’’D1->S2×1×P1S2-

>End and k2=e1×e2× I2×P2D2->S1×e1’×P2’S1->D1×P2’D1->S2×1×P2S2->End. This is

also the failure probability as modeled by the simulation error form.

The failure probability with interaction of defects is

e1× I1×P1D1->S2×e2’×P1S2->D2×P12D2->S1×e1’’× I11×P11D1->S2×1×P’’S2->End +

e1× I1×P1D1->S2×e2’×P1S2->D2×P12’D2->S1×e1× I1×P1D1->S2×1×P1S2->End +

e1× I1×P1D1->S2×e2’×P1’S2->D2× I2×P2D2->S1×e1a’’× I11a× P11aD1->S2×1×

Pa’’S2->End+

e1× I1×P1D1->S2×e2’×P1’S2->D2× I2×P2’D2->S1×e1b× I1b×P1bD1->S2×1×P1bS2-

>End+

e1× I1×P1D1->S2×e2’×P1’S2->D2× I2’× e1c× I1c×P1cD1->S2×1×P1cS2->End +

e1× I1×P1’D1->S2×e2× I2× P2dD2->S1×e1d’’× I11d×P11dD1->S2×1×Pd’’S2->End+

e1× I1×P1’D1->S2×e2× I2× P2’D2->S1×e1f × I1f ×P1fD1->S2×1×P1fS2->End +

e1× I1×P1’D1->S2×e2× I2g’× e1g× I1g×P1gD1->S2×1×P1gS2->End+

 174

e1× I1’×e2× I2h×P2hD2->S1×e1h’’× I11h×P11hD1->S2×1×Ph’’S2->End+

e1× I1’×e2× I2j×P2j’D2->S1×e1j× I1j×P1jD1->S2×1×P1jS2->End+

e1× I1’×e2× I2k’×e1k× I1k×P1kD1->S2×1×P1kS2->End..

As can be seen, the relationship between the above expression and the

modeled failure probability (k1 + k2) is not directly observable. One of the avenues

of future work is to investigate the interaction of defects and establish the

relationship between the real and modeled failure probability. An experiment may

be conducted to analyze and investigate the interaction of defects and incorporate

the results into the error models.

 175

Bibliography

 [Albert01] Albert PS, McShane LM, Shih JH;.Latent Class Modeling Approaches for

Assessing Diagnostic Error without a Gold Standard: With Applications to p53

Immunohistochemical Assays in Bladder Tumors Source: Biometrics, vol:57 iss:2 pg:610

-619, June 2001

[Anda02] Anda, B., Sjøberg, Dag I. K., Requirements engineering: Towards an

inspection technique for use case models Proceedings of the 14th international

conference on Software engineering and knowledge engineering SEKE '02 July 2002

 [Apostolakis90] Apostolakis, G. (1990). “The Concept of Probability in Safety

Assessments of Technological Systems.” Science 250: 1359-1364.

 [Apostolakis95] Apostolakis, G. (1995). “A Commentary On Model Uncertainty”. In

Model Uncertainty: Its Characterization and Quantification, Annapolis, Maryland, USA,

October 20-22, 1993, Center for Reliability Engineering University of Maryland.

[ASFC87] Methodology for Software Prediction. RADC-TR-87-171. New York:

Griffiss Air Force Base, 1987

[Badar05] Badar, M. Affan, Raman, S, Pulat, P. Simin Experimental verification of

manufacturing error pattern and its utilization in form tolerance sampling. International

Journal of Machine Tools & Manufacture Jan2005, Vol. 45 Issue 1, p63 , 2005

[Banker89] Banker, R. D. , and Kemerer, C. F., Scale Economies in new software

development, IEEE Trans. Software Engineering, pp. 1199-1205, Oct. 1989.

[Bessler03] Bessler, D, Yang, J, Wongeharupan, M., Price dynamics in the international

 176

wheat market: modeling with error correction and directed acyclic graphs, Journal of

Regional Science, Vol. 43, pp. 1-33, 2003

 [Bier95] Bier, V. M. (1995). “Some Illustrative Examples of Model Uncertainty.” In

Model Uncertainty: Its Characterization and Quantification, Annapolis, Maryland, USA,

October 20-22, 1993, Center for Reliability Engineering University of Maryland.

[Bierman95] Bierman, G.S., Error modeling for differential GPS, Publisher: Charles

Stark Draper Laboratory Inc., National Aeronautics and Space Administration, National

Technical Information Service, 1995

 [Boehm] Boehm B.W. , Software Engineering Economics. Prentice-Hall, New

Jersey.1981.

[Brannigan93] Brannigan,V., and Meeks,C., Computerized Fire Risk Assessment Models:

A Regulatory Effectiveness Analysis, Model Uncertainty: Its characterization and

Quantification, Proceedings of the International Workshop Series on Advanced Topics in

Reliability and Risk Analysis, 1993

[Brocklehurst90] Brocklehurst, S, Chan, P.Y., Littlewood, B., and Snell, J.,: Re-

calibrating Software Reliability Models, IEEE Trans. Software Eng., Vol 16, No. 4,

1990, pp. 458-469

[Butler93] Butler, R. W. and Finelli, G. B., The Infeasibility of Quantifying the

Reliability of Life-Critical Real-Time Software IEEE Transactions on Software

Engineering VOL 19. NO. 1, JANUARY 1993

[Campbell63] Campbell, D.T., Stanley, J. C., Experimental and Quasi-Experimental

Designs for Research. Chicago: Rand McNally and Company, 1963.

 177

[Chaar93] Chaar, J.K.; Halliday, M.J.; Bhandari, I.S.; Chillarege, R. In-process

evaluation for software inspection and test, Software Engineering, IEEE Transactions on

Volume 19, Issue 11, Nov 1993 Page(s):1055 – 1070

 [Chatfield96] Chatfield, C. (1996). “Model Uncertainty and Forecast Accuracy.” Journal

of Forecasting 15(7): 495-508.

[Chen03] Chen, J, Using the SAS Statistical Tool from Thesis to Career: Current

Experiences and Future Outlook, Midwest SAS Users Group 14th Annual Conference,

Minneapolis, MN, September 15, 2003,

[Chhiber91] Chhibber, S., G. Apostolakis, et al. (1991). “A Probabilistic Framework for

the Analysis of Model Uncertainty.” Process Safety and Environmental Protection 69(2):

67-75.

[Cho04] Cho, Y, Haas, Carl T. Sreenivasan, S. V. Liapi, K, Position Error

Modeling for Automated Construction Manipulators. Journal of Construction

Engineering & Management , Vol. 130 Issue 1, p50, 2004

[Cromley02] Robert G. Cromley, Richard D. Mrozinski, Jr., Analyzing Geographic

Representation Error in Capacitated Location-Allocation Modeling

[Davis79] Davis, W. W. (1979). “Approximate Bayesian Predictive Distributions and

Model Selection.” J. Am. Statist. Ass. 74: 312-317.

[deFinetti72] de Finetti, B. (1972). “Probability, Induction, and Statistics.” New York,

Wiley.

[Douglass04] Douglass, L., Biom1, a graduate level course in Biometrics, University of

Maryland, College Park, Fall 2004.

 178

[Draper87] Draper, D., J. S. Hodges, et al. (1987). “A Research Agenda for Assessment

and Propagation of Model Uncertainty”, RAND.

[Draper95] Draper, D. (1995). “Assessment and Propagation of Model Uncertainty.”

Journal of the Royal Statistical Society, Series B 57(1): 45-97.

 [Draper98] Draper, D. (1998). “On the Relationship Between Model Uncertainty and

Inferential/Predictive Uncertainty.”

[Droguett02] Droguett, E.L., Mosleh, A., Methodology for the treatment of Model

Uncertainty, Center for Technology Risk Studies, University of Maryland ,April 2002

[Dunsmore01] Dunsmore, A., Roper, M., Wood, M., Systematic object-oriented

inspection — an empirical study Proceedings of the 23rd International Conference on

Software Engineering July 2001

[Ferreira 86] Ferreira, P.M. and Liu, C.R. A contribution to the analysis and

compensation of the geometric error of a machining center. Annals of the CIRP, 35,

259–262, 1986

[Field03] Field, A., Hole G., How to Design and Report Experiments .London, UK:

SAGE Publications, 2003

[Fogarty96] Fogarty, M. J., Mayo, R. K. , O'Brien', L., Serchuk, F. M., Rosenberg, A.

A., Assessing uncertainty and risk in exploited marine populations, Reliability

Engineering and System Safety ,54, 183-195, 1996

[Gaffney84] Gaffney, J.E., Estimating the Number of Faults in Code, IEEE Transactions

on Software Engineering, vol. 10, pp. 459-64, 1984

[Ghose04A] Ghose, S. Software Requirements Specifications for LOCAT,

 179

[Ghose04B] Ghose,S. Software Requirements Specifications for SSP, University of

Maryland, College Park, MD January 2004.

[Ghose04C] Ghose, S. Software Requirements Specifications for TELLERFAST,

[Ghose04D] Ghose, S. Software Requirements Specification for Student Registry Query

System (SRQS), University of Maryland, College Park January 2004.

[Ghose04E] Ghose, S. , Software Requirements Specifications for an Word Processor

Unit (WPU), University of Maryland, College Park, MD January 2004.

[Ghose04F] Ghose, S. Software Requirements Specifications for LOCAT-I, University of

Maryland, College Park, MD January 2004.

[Ghose04G] Ghose, S. Software Requirements Specifications for LOCAT-II, University

of Maryland, College Park, MD January 2004.

[Ghose04H] Ghose, S. Software Requirements Specifications for LOCAT-III, University

of Maryland, College Park, MD January 2004.

[Goel78] Goel, A. L., and Okumoto, K., An analysis of recurrent software errors in real

time control systems, Proceedings of ACM conference, pp 496-501, 1978

[Goldie03] Goldie, S. J., Kuntz, K.M., A Potential Error in Evaluating Cancer

Screening: A Comparison of 2 Approaches for Modeling Underlying Disease

Progression, Medical Decision Making 23, no. 3, 232-241, 2003

 [Hatton97] Hatton, L., Re-examining the Defect-Density versus Component Size

Distribution IEEE Software, pp. 89-97, March 1997

[Helton96A] Helton, J. C. (1996). “Probability, Conditional Probability and

Complementary Cumulative Distribution Functions in Performance Assessment for

 180

Radioactive Waste Disposal.” Reliability Engineering and System Safety 54: 145-163.

[Helton96B] Helton, J. C., D. R. Anderson, et al. (1996). “Uncertainty and Sensitivity

Analysis Results Obtained in the 1992 Performance Assessment for the Waste Isolation

Plant.” Reliability Engineering and System Safety 51: 53-100.

[Hoeting98] Hoeting, J. A., D. Madigan, et al. (1998). “Bayesian Model

Averaging.”Technical Report 9814, Department of Statistics, Colorado State University.

[Hughes71] Hughes, A., Grawoig, D. Statistics: A Foundation for Analysis. Reading,

MA: Addition Wesley Publishing Company, 1971.

[IEEE84] IEEE Guide to Software Requirements Specification, IEEE Standard 830,

1984.

[IEEE90] Institute of Electrical and Electronics Engineers. IEEE Standard Glossary of

Software Engineering Terminology, IEEE Std.610.12-1990.IEEE 1990.

[IEEE98] IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce

Reliable Software, IEEE, New York IEEE Std 982.2, 1988.

[Jackson96] Jackson, M.R.C., Zhao,Y., Slattery, R, Effects of modeling errors on

trajectory predictions in air traffic control automation, Guidance, Navigation and

Control Conference, San Diego, CA, July 29-31, 1996

[Jelinski] Jelinski Z. and Moranda P., Software reliability research, In W. Freiberger, Ed.,

Statistical Computer Performance Evaluation, Academic, New York, 1972, pp.465-484

[Jiao04] Jiao, Y., Chen, Y., Schneider,D., and Wroblewski,J., A simulation study of

impacts of error structure on modeling stock–recruitment data using generalized linear

models, Published on the NRC Research Press Web site at http://cjfas.nrc.ca on 3 March

 181

2004.

[Jones96] Jones, C. Applied Software Measurement, 2nd ed. New York: McGraw-Hill,

1996.

[Jones97] Jones, C. Software Quality — Analysis and Guidelines for Success. Boston,

MA: International Thomson Computer Press, 1997.

[Kelly00] Kelly,D., Shepard, T., Task-directed software inspection technique: an

experiment and case study, Proceedings of the 2000 conference of the Centre for

Advanced Studies on Collaborative research November 2000

[Kelly03] Kelly,D., Shepard, T., An experiment to investigate interacting versus nominal

groups in software inspection. 122-134, Proceedings of the 2003 conference of the

Centre for Advanced Studies on Collaborative research October 2003

 [Kim98] Kim, G., J., Burns, J., R., Error reduction in distributed DSS through

coordination of modeling activities: Simulation study, Journal of Computing and

Electronic Commerce, 8(3), 217-245, 1998

 [Laitenberger99] Laitenberger, O., Atkinson, C., Generalizing perspective-based

inspection to handle object-oriented development artifacts, Proceedings of the 21st

international conference on Software engineering, May 1999

 [Laskey95] Laskey, K. B. (1995). “Implications of Model Uncertainty for the Practice of

Risk Assessment.” In Model Uncertainty: Its Characterization and Quantification,

Annapolis, Maryland, USA, October 20-22, 1993, Center for Reliability Engineering

University of Maryland.

[Laskey96] Laskey, K. B. (1996). “Model Uncertainty: Theory and Practical

 182

implications.” IEEE Transactions on Systems, Man and Cybernetic 26(3): 340-448.

[Li93] Li, N. and Y. K. Malaiya Enhancing accuracy of software reliability prediction.

In 4th International Symposium on Software Reliability Engineering, Denver, pp. 71—

79, (1993, November).

[Li00] Li, M. and Smidts, C. Ranking Software Engineering Measures Related to

Reliability Using Expert Opinion, presented at The 11th International Symposium on

Software Reliability Engineering, San Jose, California, 2000.

[Li04]Li, M., Wei, Y., Desovski, D., Najad, H., Ghose, S., Cukic, B., and Smidts, C.,

Validation of a Methodology for Assessing Software Reliability, presented at the 15th

IEEE International Symposium of Software Reliability Engineering, Saint-Malo,

Bretagne, France, 2004.

[Li06] Li, M., Ghose, S., Smidts, C., Arndt, S., Assessing Software Reliability from

Software Engineering Measures, submitted to IEEE Transactions on Software

Engineering, February, 2006

[Lipow74] Lipow M., Some variations of a model for software time to failure. TRW

Systems Group, Correspondence ML-74-2260.1.9-21, Aug.,1974.

[Littlewood73] Littlewood B. and L.Verrall J., A Bayesian reliability growth model for

computer software, Journal of Royal Statistical Society Series C, 22(3), 332-346, (1973)

 [Lockheed98A] PACS Requirements Specification, Lockheed Martin Corporation Inc.,

Gaithersburg, MD July 20 1998.

[Lockheed98B] PACS Source Code, Lockheed Martin Corporation Inc., Gaithersburg,

MD July 28 1998.

 183

[Lockheed98C] PACS Test Plan, Lockheed Martin Corporation, Gaithersburg, MD, July

28 1998

[Lyu96] Lyu, M. R., Handbook of Software Reliability Engineering, McGraw Hill, 1996

[Madigan94] Madigan, D. and A. E. Raftery (1994). “Model Selection and Accounting

for Model Uncertainty in Graphical Models Using Occam's Window.” Journal of the

American Statistical Association 89(428): 1535-1546.

[Madigan96] Madigan, D., A. E. Raftery, et al. (1996). “Bayesian Model Averaging.”

AAAI Workshop on Integrating Multiple Learned Models.

[Malaiya92] Malaiya, Y.K., Karunanithi, N., Verma, P., Predictability of Software-

Reliability Models, IEEE Transactions on Reliability, VOL. 41, NO. 4, DECEMBER,

1992

[Malaiya93] Malaiya, Y.K., Mayrhauser, A., Srimani, P.K.,: An Examination of Fault

Exposure Ratio. IEEE Trans. Software Eng. 19(11): 1087-1094, 1993

[Malaiya94] Malaiya, Y. K., Li, N., Bieman, J., Karcich, R., and Skibbe, B., The

Relationship Between Test Coverage and Reliability, Colorado State University,

Colorado March 15 1994.

[Malaiya98] Malaiya,Y. K., and Denton, J., Estimating the Number of Residual Defects,

presented at Third IEEE International High-Assurance Systems Engineering

Symposium, Washington, DC, USA, 1998.

[Matsumoto88] Matsumoto, K., Inoue, K., Kikuno, T., and Torii, K., Experimental

evaluation of software reliability growth models, in Proc. 18th Int’l. Symp. Fault-

Tolerant Computing (FTCS), pp. 148–153. 1988

 184

[Mills72] Mills H.D, On the statistical validation of computer programs, IBM Federal

Syst. Div., Gaithersburg MD, Rep. 72-6015,1972

 [Mosleh95] Mosleh, A., N. Siu, et al. (1995). Model Uncertainty: Its Characterization

and Quantification, Center for Reliability Engineering - University of Maryland.

[Mullen98A] Mullen, R.E.; The lognormal distribution of software failure rates:

application to software reliability growth modeling The Ninth International Symposium

on Software Reliability Engineering, Proceedings. Page(s):134 – 142, 4-7 Nov. 1998

[Mullen98B] Mullen,R.E.; The lognormal distribution of software failure rates: origin

and evidence The Ninth International Symposium on Software Reliability Engineering,

Proceedings. Page(s): 124-133, 4-7 Nov. 1998

[Musa75] Musa J. D., A theory of software reliability and its application, IEEE Trans.

Software eng., SE-1, 312-327, 1975

[Musa84] Musa J.D., and Okumoto K., A logarithmic Possion execution time model for

software reliability measurement, Proc. Int. Conf. Software Eng., Orlando, FL, 230-237

(Mar.1984).

[Musa87] Musa, J.D., Iannino, A. and Okumoto, K., Software Reliability Measurement

Prediction Application. McGraw-Hill, 1987

[Musa98] Musa, J. D., Software Reliability Engineering - More Reliable Software, Faster

Development and Testing. New York: McGraw-Hill, 1998.

[Nelson78] Nelson E., Estimating software reliability from test data, Microelectron. Rel,

17, 67-74 (1978).

[NRC96] NRC, "REGULATORY GUIDE 1.152: Criteria for Digital Computers in

 185

Safety Systems of Nuclear Power Plants, U.S. Nuclear Regulatory Commission, Office of

Nuclear Regulatory, Washington D.C. September 1996.

[NRC97] NRC, Regulatory Guide 1.172, Software Requirements Specifications for

Digital Computer Software Used in Safety Systems of Nuclear Power Plants, U.S.

Nuclear Regulatory Commission, Office of Nuclear Regulatory, Washington D.C.

September 1997.

[Pearson72] Pearson, A. V., and Hartley, H. O., Biometrica Tables for Statisticians, Vol

2, Cambridge, England, Cambridge University Press, 1972

[Porter94] Porter, A. A. , Votta, L. G., An experiment to assess different defect detection

methods for software requirements inspections, Proceedings of the 16th international

conference on Software engineering, p.103-112, Sorrento, Italy, May 16-21, 1994

[Porter95A] Porter, A. A. , Votta, L. G., Basili, V.R., Comparing Detection Methods for

Software Requirements Inspections: A Replicated Experiment, IEEE Transactions on

Software Engineering, v.21 n.6, p.563-575, June 1995

[Porter95B] Porter, A., Siy, H., Toman, C. A., Votta, L. G., An experiment to assess the

cost-benefits of code inspections in large scale software development, ACM SIGSOFT

Software Engineering Notes , Proceedings of the 3rd ACM SIGSOFT symposium on

Foundations of software engineering SIGSOFT '95, Volume 20 Issue 4, October 1995

[Porter98] Porter, A., Siy, H., Mockus ,A., Votta, L. G., Understanding the sources of

variation in software inspections, ACM Transactions on Software Engineering and

Methodology (TOSEM), v.7 n.1, p.41-79, Jan. 1998

[Ramamoorthy82] Ramamoorthy C.V. and Bastani F.B., Software reliability: Status and

 186

perspectives, IEEE Trans. Software Eng., SE-8, 359-371, (Jul. 1982).

 [RTCA92] RTCA, Software Considerations in Airborne Systems and Equipment

Certification, RTCA, Inc., Washington DC December 1, 1992.

[Scach93] S. R. Schach, Software Engineering, 2nd ed. Homewood, IL: Aksen

Associates Inc., 1993.

[Schultschik97] Schultschik, R. The components of the volumetric accuracy. Annals of

the CIRP, 26, 223–228, 1977

[Shapiro65] Shapiro, S. S. and Wilk, M. B. "An analysis of variance test for normality

(complete samples)", Biometrika, 52, 3 and 4, pages 591-611, 1965

 [Siu85] Siu, N. and G. Apostolakis (1985). “On the Quantification of Modeling

Uncertainties.” 8th Intl. Conf. On Structural Mechanics in Reactor Technology, Brussels,

Belgium.

[Siu92] Siu, N. O., D. Karydas, et al. (1992). Bayesian Assessment of Modeling

Uncertainties; Application to Fire Risk Assessment. Analysis and Management of

Uncertainty: Theory and Applications. B. M. Ayyub, M. M. Gupta and L. N. Kanal,

Elsevier Science Publishers: 351- 361.

[Smidts00] Smidts, C., Li, M. , Software Engineering Measures for Predicting Software

Reliability in Safety Critical Digital Systems, University of Maryland, Washington D.C.

NUREG/GR-0019, November 2000.

 [Smidts02] Smidts, C., Li, B., Li, M., and Li, Z., Software Reliability Models, in

Encyclopedia of Software Engineering, vol. 2, J. J. Marciniak, Ed., 2nd ed. New York:

John Wiley & Sons Inc., 2002, pp. 1594-1610.

 187

[Smidts04] Smidts, C., Li, M., Validation of A Methodology for Assessing Software

Quality," Nuclear Regulatory Commission, Office of Nuclear Regulatory Research,

Washington DC NUREG/CR-6848, 2004.

[Snedecor89] Snedecor, George W. and Cochran, William G. (1989), Statistical

Methods, Eighth Edition, Iowa State University Press.

[Sullivan91] Sullivan, M., and Chillarege. R., Software defects and their impact on

system availability -- a study of field failures in operating systems, In Proc. 21st

International Symposium on Fault-Tolerant Computing, Montreal, Canada, 1991.

[Testmaster99] Test Master User’s Guide, Release 1.9.5, Empirix Inc., New Hampshire,

1999.

[Thompson93] Thompson, M. C., Richardson, D. J., and Clarke, L. A., An Information

Flow Model of Fault Detection, presented at International Symposium on Software

Testing and Analysis, Cambridge, MA, USA, 1993.

 [Thompson95] Thompson, D. (1995). “The Concise Oxford Dictionary.” Ninth Edition,

Clarendon Press.

[Voas92] Voas, J. M., PIE: A Dynamic Failure-Based Technique, IEEE Transactions on

Software Engineering, vol. 18, pp. 717-27, 1992.

[Wang06] Wang, H and Huang, Q, Error cancellation modeling and its application to

machining process control, IIE Transactions, 38, 355–364, 2006

[Wang93] Wang, C. J., and Liu, M. T., Generating Test Cases for EFSM with Given

Fault Models, presented at 12th Annual Joint Conference of the IEEE Computer and

Communications Societies (IEEE INFOCOM '93), San Francisco, CA, 1993

 188

[Winkler96] Winkler, R. L. (1996). “Uncertainty in Probabilistic Risk Assessment.”

Reliability Engineering and System Safety 54(2-3): 95-111.

[WinRunner01] WinRunner User’s Guide, Version 7.01, Mercury Interactive Inc.,

Sunnyvale, CA, 2001.

[Withrow90] Withrow, C., Error density and size in Ada software, IEEE Software, pp.

26-30, Jan. 1990.

[Wu93] Wu, K., and Malaiya, Y.K., A Correlated Faults Model for Software Reliability,

Proc. IEEE Int. Symp. on Software Reliability Engineering, Nov. 1993, pp. 80-89.

[Yamada83] Yamada, S., Ohba, M., and Osaki, S., S-Shaped reliability growth modeling

for Software Error detection, IEEE Trans.on Reliability, vol. 32, pp. 475-478, 1983.

 [Zio96] Zio, E. and G. E. Apostolakis “Two Methods for the Structured Assessment of

Model Uncertainty by Experts in Performance Assessments of Radioactive Waste

Repositories.” Reliability Engineering and System Safety 54: 225-241, 1996

