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ABSTRACT

In this paper, the concept of the dyadic shift invariance (DSI) and cyclic shift invariant
(CSI) functions are proposed. First, basic properties of the DSI and CSI functions are
presented. Then, we can show that the Walsh-Hadamard transform (WHT) and discrete
Fourier transform (DFT) functions are, in fact, special cases of the DSI and CSI functions,
respectively. Many properties of the WHT and DFT can then be obtained easily from DSI
and CSI points of view. The proposed unified approach is simple and rigorous. We will
show that the properties of the WHT and DFT are the consequence of the basic principles
of the DSI and CSI functions.






1 Introduction

There are many signal processing applications where the use of effective transformation such
as the Walsh-Hadamard transform (WHT) and discrete Fourier transform (DFT) is essential
(1,2, 3, 4, 5]. Basically, there are three different kinds of orderings for the WHT, specifically,
the Walsh ordering, the Hadamard ordering, and the Dyadic/Paley rodering [1, 2]. It is well
known that the power spectrum of the WHT’s are invariant to a dyadic shift of the data
sequence. Unfortunately, up to now, there is still no unified proof of the invariance for all of
the orderings. The only proof available is of show-by-example illustration [1, 2, 4, 5] which,
though demonstrates the invariant property, did not provide a rigorous treatment of the
dyadic shift invariance. Here, we not only propose a simple but rigorous treatment of the
subject, but also provide a more general way to look into various properties of the WHT.
We first propose the concept of dyadic decomposable and present some properties of the
dyadic shift invariant function. Then, based on these, we will show that all the WHT’s are
dyadic shift invariant functions and present unified treatments for various known properties
of the WHT. This unified approach provides a deep insight into various properties of the
WHT. The results can be easily extended to other transform function such as DFT which,
on the other hand, is a cyclic shift invariant function. This extension is also considered in
this paper. We will see that all the well-known properties of the WHT and DFT are the
consequence of the basic principles of the special functions. In fact, the WHT is a special
case of the dyadic shift invariant function and the DFT is a special case of a cyclic shift
invariant function.

The dyadic Shift invariance is presented in Section 2 followed by the cyclic shift invari-

ance in Section 3.



2 Dyadic Shift Invariance
A function h(m,n) is said to be dyadic decomposable if it satisfies
h(m & k,n) = h(m,n) - h(k,n), (1)

where @ is the moduls 2 addition. A transformation is said to be dyadic shift invariant

(DSI) if the transform function is dyadic decomposible with unity norm. That is
1. {|a(m, n)||? = h(m,n) - B*(m,n) = 1,
2. h(m @ k,n) = h(m,n) - h(k,n),

where * is the complex conjugate operation. Let {z(m)} be a real-valued N-periodic se-
quence and {X(n)} be the DSI transformation of {z(m)}. We have

1 N-1
X(n)= v Z z(m)h(m,n). (2)

m=0

Theorem 1 The power spectrum of a DSI transform function is dyadic shift invariant.

Proof: Let {Xy(n)} be the transformation of {z(m®k)}, where {(m @ k)} is the sequence
obtained by subjecting {z(m)} to a dyadic shift of size k. Since the modulo 2 addition is

the same operation as the modulo 2 substraction, one obtains

Xi(n)

1 N-1
N Z z(m @ k)h(m,n)

m=0

1 N-1
= ¥ > z(m)h(i @ k,n).
m=0

Since h(m,n) is DSI, we have

1 N-1
Xi(n) = % > a(m)h(, n)h(k,n) = X (n)h(k,n),

m=0



and the power spectrum of {X(n)} is
IXe(m)I? = X (m)]|? - [|A(k, mI* = 1 X (n)]|*

The power spectrum is dyadic shift invariant. O

Let m,n be any two real-valued parameters which have the binary representation
m = my_12V 1+ my_g2V 7 4+ my 2 + me2°,
n o= a2V +an_g2V T4 4 ng 2+ g2’ (3)

The bit-valued inner product < m,n > is defined as

N-1
<mn>= Y mn,. (4)

s=0

Lemma 1 The WHT function (—1)<™"> is DSL.

Proof: Since (—1)<m®kn> — (—1)2i}1(m’®k”)"’, and from Table 1, the Boolean function

(ms @ ks)ns is equivalent to the function m,n, @ ksns. We have

N-1
(_1)<m®k,n> — (__1)23:0 mens@ksns _ (_1)<m,n>e)<k,n>_ (5)

From Table 2, it can be found
(_‘1)<mm>€B<k,n> — (_1)m1n1&9k1n1 . (_1)m2n2€Bk2n2 . (_l)nN—1nN—163kN—1nN—1

_ (_1)mml+k1n1 . (_1)Tn2n2+k2‘n2 . (_1)71«N—1nN—1+kN—1nN—l
— (__1)<m,n> . (_1)<k,n>. (6)

As |[(=1)<™">||2 = 1, one concludes that WHT function is a DSI function. O

In general, the WHT is defined as

N-1

X(n) = 3 3 a(m)(=1)m >, 7

m=0



where r(n) is a function which depends on the ordering of WHT. Let

N-1
<m,r(n) >= ) myrs(n),

s=0

where 7,(n),s = 0,1,---,N — 1 is the binary representation of r(n) as in (3).

Hadamard oedering, r4(n) = n,. For the Walsh ordering,

NAN—s + NN —s-1 for s ;é 0
rs(n) =

nN_1 for s = 0.

For the Dyadic/Paley oedering, 75(n) = ny_1-s. We have the following theorem.

For the

Theorem 2 The power spectrum of all rderings of the WHT are dyadic shift invariant.

Proof: By Lemma 1, we know the function (—1)<™"(™> is DSI. From Theorem 1, the

power spectrum of WHT is dyadic shift invariant. O

Lemma 2 Let {X} be the WHT transform of {z} and {X} be the transform of {z} sub-

jected to a dyadic of size k, where {z} is an N -periodic sequence. Then the relationship

between X and X 1is

Xi(n) = X(n) - (~1)<kn>,

Proof: Since Xi(n) = & N-le(m @ k)(=1)<™"> by Lemma 1, we have

N-1
Xi(n) = % Y a(rm)(~1)<mm> (1)< = X(n) - (~1)<k">0

m=0

(8)

With Lemma 2, we can interpret that for the WHT, the dyadic shift in the time domain

results in a ”phase shift” of either 0 or 7 in the frequency domain.



The dyadic cross-correlation function of two real-valued N-periodic sequences {z(m)}

and {y(m)} is defined as
o(m) = 3 3 2(R)y(m ® h) ©)
=0
Let the DSI transform of z(m) be Z(n) and the DSI transform of sequences z(m) and y(m)

be X (n) and Y (n) respectively. We have

N-1N-1
Z(n) = DSIT(x(m))= Fli Y S 2(l)y(m & Dh(m, n)
m=0 l=
1 N-1N-1
= 33 2(hy(m @ HA(m, n)h(l,n)k*(1, n), (10)
m=0 |=0
1 N-1 N-1 _
Z(n) = 37 3 s(OR*(,n) Y y(m@ Dh(m @ ,n) = X*(n) - Y(n), (1)
=0 m=0

where X* 2 (DSI(z*))*. If it is a real DSI function such as WHT, then Z(n) = X(n)-Y(n).

Obvious, the power spectrum is dyadic shift invariant in the way that
1Z(m)II* = I X (]2 - ¥ (n)]]2. (12)

A two-dimensional transformation which is said to be DSI if the transform function

satisfies
1. ”h(ml7m2, nlvn2)||2 = 1’
2. h(ml 5] kv m2 @ la ni, n2) = h(mla m2, M, n2) : h(k7 l? n, n2)'

Analogous to 1-D case, it can be shown that the power spectrum of a two-dimensional (2-D)

DSI transform function is dyadic shift invariant. The 2-D WHT function is (—1)<m1m1>+<mzm2>,

Since

(_1)<m163k,n1 >+<mabline> _ (_1)<m1,n1>(_1)<k.n1 >(_1)<m2,n2>(_1)<l,n2>

(_1)<m1,n1>+<m2,n2> . (_1)<k,n1>+<1,n2>’ (13)



the 2-D WHT function is a 2-D DSI function. Therefore, all the properties of the 2-D WHT
follow as discussed in the 1-D case. For instance, denote X i(nq,n2) as the transformation
of {z(m1®k, ma®1)} which is the sequence obtained by subjecting {z(m1,m3)} to a dyadic

shift of size k in m; direction and of size [ in my direction. It can be easily obtained that
Xia(m1,m2) = X(ng, ng)(=1)Smk>+<nal>, (14)

From the analogy in the 1-D case, the 2-D cross-correlation function can be defined as

N;—-1N;~-1
1 2 1
z(ml,mg) = m’; Z Z a;(m1 69 hl, mo @ hz)y(hl,h2). (15)

ho=0 hy1=0
Let the 2-D DSI transform of z, z, and y be Z, X, and Y respectively. With the same

derivation as before, we can show that
Z(n1,n2) = X*(n1,n2) - Y (n1, ny). (16)

Again, if the 2-D DSI transform function is real-valued such as 2-D WHT, then Z(n1,n9) =

X(nl, ’n2) . Y(nl, ’ng).

3 Cyclic Shift Invariance

The above results can be extended to cyclic shift invariance. A function g(m,n) is cyclic

decomposable if it satisfies

g(m+k,n) = g(m,n) - g(k,n). (17)

A transformation is said to be cyclic shift invariant (CSI) if the transform function is cyclic

decomposable with unity norm. That is

1. |lg(m,n)||* =1,



2. g(m+ k,n) = g(m,n)- g(k,n).
Theorem 3 The power spectrum of a CSI transform function is cyclic shift invariant.

Proof: Let {z(m)} be a real-valued N-periodic sequence and {X(n)} be transformation of

{z(m)}. We have
X(n)= i Z z(m)h(m,n). (18)
m=0

Let {Xk(n)} be the transformation of {z(m+k)}, where {z(m+k)} is the sequence obtained

by subjecting {z(m)} to a cyclic shift of size k. One obtain

Xi(n) = — Z z(m + k)h(m,n)

m=0

N-1

= - E z(m)h(m — k, n). (19)

Since h(m,n) is cyclic decomposible, we have
1 N2
Xi(n) = i Z z(m)h(m, n)h(—k,n) = X(n)h(-k,n).

m=0

By the property that the norm of h(m,n) equals unity,
Xk (m)]* = [ X ()12 - ||W( =k, n)||? = | X (n)||*.0

The cyclic cross-correlation (or convolution) function of two real-valued N-periodic se-

quences {z(m)} and {y(m)} is defined as

N-1

“(m) = 37 3 Ryl + ). (20)

Let the CSI transform of z(m) be Z(n) and the CSI transform of sequences z(m) and y(m)

be X(n) and Y (n) respectively. We have

N-1N-1
Z(n) = CSIT(z(m)) 12 . z(l)y(m + 1)h(m,n)
m=0 |=0
1 N-1N-1
= w7 2 2 =(y(m+ Dh(m, mh(l,n)h*(L,n), (21)
m=0 [=0



1 N-1 N-1 _
Z(n) = N7 IZ z(D)h*(1,n) Z y(m + Dh(m +1,n) = X*(n)-Y(n), (22)

m=0

where X* 2 (CSI(2*))*. It can be easily shown that the discrete Fourier transform (DFT)
function exp(—j27kn/N)is a CSI function. Therefore, the power spectrum of DFT is cyclic
shift invariant. Many well-know properties of the DFT can then be easily obtained by the

same derivations as in Section 2.

4 Conclusions

Basic properties of the dyadic shift invariance and the cyclic shift invariance are presented
in this paper. As we have shown, the WHT and DFT are the special cases of the DSI and
CSI functions, respectively. Therefore, all the properties of the DSI and CSI functions are
preserved in the WHT and DFT, respectively. Many properties are then easily derived by
using this proposed approach. This approach also provides a deep insight into those well-
known properties. In conclusion, the properties of the WHT and DFT are the consequence

of the basic principles of the DSI and CSI functions.
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ms | s | ns ms ls | myn, lsn (ms @ ls)ns msns @ lgng
0(0]O0 0 0 0 0 0
0 (0] 1 0 0 0 0 0
0 [1]0 1 0 0 0 0
0 |1]1 1 0 1 1 1
1 (0] 0 1 0 0 0 0
1101 1 1 0 1 1
1 (1[0 0 0 0 0 0
1 111 0 1 1 0 0

Table 1: Truth table for (m; ® ks)ns and msn, @ ksng

My | Ny | My Dy | Mg+ ny | (—1)™eOne | (=1)metns
0 0 0 0 1 1

0 1 1 1 -1 -1

1 0 1 1 -1 -1

1 1 0 2 1 1

Table 2: Truth table for (—1)™:®"s and (—1)m:t"s




