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Apoptosis, a form of programmed cell death is a physiological process that guides the 

systematic removal of unwanted cells from the body. A key step in apoptosis is the 

irreversible release of mitochondrial intermembrane space (IMS) proteins into the cytosol 

by a process called Mitochondrial Outer Membrane Permeabilization (MOMP). MOMP 

is regulated by a class of proteins called Bcl-2 family and a sphingolipid called ceramide. 

The pro-apoptotic Bcl-2 proteins, especially Bax and Bak can cooperate with ceramide to 

form channels in mitochondria that cause protein efflux during MOMP. The ability of 

ceramide to form protein-permeable channels in MOM is established. Bax and ceramide 

enhanced MOMP synergistically. The ability of Bax to stimulate ceramide channels was 

investigated. It was found that the apparent affinity of Bax for a ceramide channel 

increases with the ceramide channel size. The results indicate that Bax binds a small 

ceramide channel and drives its growth until the Bax molecule finds the best fit to the 

channel. This interaction between Bax and a ceramide channel does not require of the 

presence of other Bcl-2 proteins or mitochondrion-specific factors. The structural features 

of ceramide were investigated for their role in channel formation. Analogs of ceramide 

bearing modifications in the functional groups were analyzed for their ability to form 

channels to assess stability and also to interact with native ceramide to form channels to 



assess compatibility between interacting groups. The C1-hydroxyl was found to be 

indispensable for channel formation while the C3-hydroxyl was inconsequential. The 

amide nitrogen with its ability to donate hydrogen was important for stability.  Similarly, 

converting the carbonyl oxygen to a urea group, now more polar resulted in more stable 

permeabilization. Phytoceramide, which has a C4 hydroxyl instead of the C4-C5 trans 

double bond formed stable channels but phytoceramide inhibited channel formation by 

ceramide suggesting incompatibility in structure.  

Bax activation involves translocation of Bax from the cytosol to the MOM, 

conformational changes and subsequent channel formation. All steps involved in Bax 

activation are not well-understood. We have used ionic strength as a modulating tool to 

dissect the different steps in Bax mediated MOMP. Increasing the ionic strength was 

found to delay formation of real-time permeability by Bax. Increasing the ionic strength 

resulted in smaller channels that grew in size slowly. The high permeability induced by 

low ionic strength was not reversed by raising the ionic strength suggesting that Bax 

channels are not in dynamic equilibrium with Bax monomers. Ionic strength also altered 

the sensitivity of Bax mediated MOMP to inhibition by Bcl-xL. Ionic strength, however 

did not affect Bax insertion into membranes. Thus, ionic strength presents a good 

diagnostic tool to modulate Bax mediated channel formation downstream of Bax 

insertion into membranes. 
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Preface 

This dissertation describes my research on the protein permeability pathways formed in 

the mitochondrial outer membrane (MOM) during apoptosis by two distinct classes of 

molecules. The first is a class of lipids called sphinogolipids, especially ceramide. The 

second is a family of proteins called Bcl-2 with emphasis on Bax. The interactions 

between ceramide and Bax were also investigated. 

Chapter 1 is a general introduction to the field of apoptosis of Programmed Cell Death 

(PCD) where these permeability pathways operate. A thorough review of the literature 

summarizing our present understanding of apoptosis, the role of mitochondria in 

apoptosis, the different hypotheses about the possible MOM permeability pathways in 

apoptosis and the necessity and relevance of the research of this dissertation in the big 

picture of apoptosis are presented. 

Chapter 2 describes in detail those methods common to all the different lines of research 

undertaken in this dissertation. Emphasis of the description is on the detail necessary to 

reproduce the experimental conditions used in the various experiments in this research. 

The appropriateness of the choice of experiments to the research problem in question is 

also addressed. 

Chapter 3 describes the research that dealt with the interaction of Bax with ceramide in 

inducing MOMP. A synergistic interaction between Bax and ceramide in inducing 

MOMP was discovered. Further, the structural mechanism of this interaction was 

investigated in detail. We found that Bax causes expansion of the ceramide channels by 
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varying its apparent affinity for the channel based on the channel size. This work was 

performed in collaboration with Meenu Perera and published in the journal Apoptosis. 

Chapter 4 describes the research on the role of different functional groups in determining 

the ability of ceramide to form channels. Analogs with changes in the critical functional 

groups of ceramide were tested for their ability to form channels in mitochondria and 

planar membranes. It was found that the C1-hydroxyl is critical for channel formation 

while the C3-hydroxyl is not. The hydrogen bonding ability of amide nitrogen is crucial 

for the channel stability. The chain length of the hydrocarbon chains was inconsequential 

to channel formation by ceramide. Phytoceramide was capable of forming channels but 

was incompatible with native ceramide. This work was performed in collaboration with 

Meenu Perera and published in the journal BBA- Biomembranes. 

Chapter 5 describes insights into Bax channel formation in the MOM using ionic strength 

as a modulating tool. Ionic strength slowed the formation of real-time permeability 

without affecting Bax insertion into the MOM. Ionic strength resulted in the formation of 

smaller channels resulting in a slower rate of release of bigger proteins from 

mitochondria during MOMP. Ionic strength also enhanced the ability of Bcl-xL to inhibit 

MOMP. This work has been accepted for publication in the Biophysical Journal. 

Chapter 6 provides a discussion of the scope of the results in the light of the big picture of 

apoptosis and MOMP. It also provides a brief vision for the future, some questions that 

merit investigation to gather a better understanding of apoptosis.  
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PROTEIN PERMEABILITY PATHWAYS IN THE MITOCHONDRIAL OUTER 

MEMBRANE DURING APOPTOSIS – MECHANISTIC INSIGHTS INTO THEIR 

STRUCTURE AND DYNAMICS 

CHAPTER 1 GENERAL INTRODUCTION 

Apoptosis, a form of programmed cell death, is a complex, systematic process by which 

the multicellular organism eliminates damaged cells from its system. Cells constantly 

divide and renew themselves. Old cells are eliminated to make way for new cells. Cells 

could be damaged by infection by bacteria or viruses or various chemicals could induce 

DNA damage. In such circumstances, if the microbes cannot be destroyed or if the DNA 

damage cannot be corrected, the safest option for a cell is to undergo apoptosis to prevent 

the infection from spreading to other cells or in the case of DNA damage, stop the 

formation of cancer. Apoptosis is classified as intrinsic or extrinsic based on the nature of 

the mode of apoptotic induction (1).  

Internal apoptotic signals like DNA damage or microbial infection induce intrinsic 

apoptosis. This process is mediated by a special class or proteins called the Bcl-2 family.  

In this mode of apoptosis, an upstream caspase called caspase 8 cleaves the Bcl-2 family 

protein Bid into its active form called tBid (truncated Bid) which in turn activates the 

pro-apoptotic Bcl-2 family proteins Bax and Bak which induce Mitochondrial Outer 

Membrane Permeabilization (MOMP). Experimental apoptosis inducers such as 

ultraviolet light (UV), ceramide, etoposide and doxorubicin can also induce intrinsic 

apoptosis. The proteins released from mitochondria activate the downstream caspases 

like caspase 9 which initiate the execution phase of apoptosis. 
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In extrinsic apoptosis, signals from neighboring cells like CD95L, TNF-α engage death 

receptors on the plasma membrane which in turn activate caspase 8. Active caspase 8 can 

either activate tBid mediated MOMP or directly activate the downstream caspases 

bypassing the mitochondrial step. Chemicals like staurosporine or cyclohexamide can 

induce extrinsic apoptosis.   

Apoptosis as a protective mechanism 

An important role of apoptosis is to protect the host multicellular organism from 

microbial infections and cancer. Many a time, cells can be infected by bacteria or viruses 

that escape the immune surveillance in the blood. Such infected cells undergo apoptosis 

to not only prevent the infection from spreading to other cells but also to present the 

antigens of the microorganisms to the immune system. The apoptotic bodies resulting 

from the disbanded apoptotic cells are consumed by the macrophages that digest the 

microorganisms and produce antigens from the degradation of the microbial proteins. 

These macrophages act as antigen presenting cells to prime the immune T cells to the 

microorganisms. Prevention of host cell apoptosis is an important mechanism by which 

many bacteria and viruses evade the immune system (2 - 5). Alternatively, some 

pathogens induce apoptosis to aggravate the infection (5). The T cell apoptosis induced 

by HIV is one example.  

Another significant role of apoptosis is to eliminate cells with DNA damage. DNA 

damage can result in such mutations that can cause cancer. Damaged DNA stimulates the 

cellular apoptotic machinery through p53 (6).  P53 up regulates Puma and a host of other 

apoptotic proteins.   
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Apoptosis as a homeostatic mechanism 

Apoptosis is also an integral part of the embryonic developmental program of the 

multicellular organism. It is apoptosis that causes digitation of the fingers by removing 

the inter-digital cells in our hands and toes. But for apoptosis that removes a line of cells 

in the eyelid and enables the lid’s opening and closure, we would have never been able to 

perceive the world around us in its multitude of colors and shapes. Indeed, apoptosis is an 

eye opener (7).  

The cellular mechanism of apoptosis initiation 

The upstream processes of apoptosis converge at the activation of a class of proteases 

called the caspases. Caspases are classified as either upstream or downstream based on 

their temporal role in the apoptotic timeline. Once the death receptor mediated signaling 

is initiated, these receptors dimerize to form a signaling complex called the Death 

Inducing Signaling complex which activates an upstream caspase called caspase 8. This 

is accomplished by the proteolytic cleavage of pro-caspase or zymogen into active 

caspase by the signaling complex. The active caspase 8 can in turn activate either 

downstream caspases 3, 7 and 9 (the executioner caspases) by proteolytic cleavage 

directly leading to the execution phase of apoptosis or activate the Bcl-2 family protein 

Bid into its active version (tBid) engaging the mitochondria in the subsequent phase of 

apoptosis. Mitochondria release certain pro-apoptotic proteins that stimulate the 

downstream caspases leading the cell forward into the execution phase (1, 8). Cells are 

classified at type I or type II based on whether the upstream caspase engages the 

downstream caspases directly or through the role of mitochondria respectively (1, 8).   
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Apoptosis execution 

The direct activation of downstream caspases occurs in extrinsic apoptosis. In intrinsic 

apoptosis, the caspase 8 mediated activation of Bid results in the release of pro-apoptotic 

proteins from the mitochondria. Of these, cytochrome c forms a heptameric complex 

called apoptosome with a cytosolic protein called Apaf-1. The apoptosome acts as the 

activator of the executioner caspase namely caspase – 9 (Fig 1.1). Once the downstream 

caspases are activated, they accomplish the digestion of all other cellular proteins and 

packaging of the cell into apoptotic bodies. 

Mitochondria in apoptosis 

Mitochondria, the powerhouse of the cells, have a crucial role in apoptosis. Mitochondria 

consist of an outer membrane that is freely permeable to small solutes but impermeable to 

proteins. The inner membrane, which is folded into cristae has a greater surface area and 

houses the respiratory complexes that are used to generate the energy. The inner 

membrane is impermeable to all solutes. The mitochondria are dynamic structures that 

are constantly undergoing fission and fusion with other mitochondria (9, 10, 11). The 

fission of mitochondria is regulated by GTPases called Drp1 (dynamin Related Protein 1) 

and Fis1 (Fission Protein 1) (9, 10, 11). The fusion of the outer membrane is regulated by 

the Mitofusins (Mfn1 and 2) (9, 10, 11). The fusion of the inner membrane is regulated 

by another dynamin related GTPase called Opa1 (9, 10, 11).  The inter-membrane space 

is the volume between the 2 membranes that contains many proteins.  Important among 

these is the cytochrome c which shuttles electrons between the respiratory complexes. 

Other proteins include SMAC/Diablo, endonuclease G and AIF which have important 
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functions in apoptosis. Matrix is the volume enclosed by the inner membrane and 

contains metabolic enzymes.  

A crucial step in apoptosis is MOMP (fig 1.1) which is considered the point of no return. 

In this step, the mitochondrial outer membrane which is normally impermeable to 

proteins is breached and the Inter-Membrane Space (IMS) proteins translocate to the 

cytosol and activate the downstream caspases, importantly caspase 9 and caspase 3. This 

step is tightly regulated by the Bcl-2 family of proteins (12, 13). This family of proteins 

consists of 3 classes classified based on their role in apoptosis and the number of defining 

Bcl-2 Homology (BH) domains they possess. While the outer membrane changes 

determine the commitment to apoptosis, changes to the inner membrane occur 

downstream of the MOMP and caspase activation. Especially, the permeability transition 

of the inner membrane occurs downstream of caspase activation.  

Bcl-2 family proteins: Classification, location and function 

Pro-apoptotic BH1-3 type proteins: These proteins have 3 of the 4 BH domains and are 

pro-apoptotic in their action. They directly engage with the MOM to induce MOMP. Bax, 

Bak are the most studied BH1-3 type proteins. 

Pro-apoptotic BH3 only proteins: These proteins contain only one BH domain namely 

BH3. They act indirectly to induce MOMP by either favoring the insertion of BH1-3 pro-

apoptotic proteins into the MOM or interfering with the activity of the anti-apoptotic 

proteins. Bid, Bim, PUMA, Bad and Bik are the best known members of this family. 

Anti-apoptotic Bcl-2 proteins: These proteins inhibit MOMP. Structurally they contain all 

4 BH domains. The members of this group include Bcl-2, Bcl-xL, Mcl-1, and A1. 
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Fig 1.1 (reproduced from Spierings, D., McStay, G., Saleh, M., Bender, C., Chipuk, J., U. Maurer, U 

and D. R.  Green. 2005. Connected to death: the (unexpurgated) mitochondrial pathway of apoptosis. 

Science 310:66-67. (14) Reprinted with permission from AAAS): During apoptosis, BH3 only 

proteins induce conformational changes in BH1-3 type proteins and cause the translocation of Bax 

from the cytosol to the MOM. In the MOM, Bax and Bak enable the formation of the MOMP pore 

that allows the IMS proteins to efflux into the cytosol which activates downstream effectors of 

apoptosis. In normal cells, anti-apoptotic proteins prevent MOMP.    
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The Bcl-2 class of proteins is all nuclear-encoded and different members have different 

cellular locations (12 – 14). For example, Bax is normally cytosolic as a soluble 

monomer but becomes membrane-integrated at the MOM during apoptosis. On the 

contrary, Bak is always resident in the MOM. The pro-apoptotic activity of Bak is kept in 

check by its engagement with VDAC2, an integral MOM protein and this interaction is 

disrupted by tBid during apoptosis (15).  

Similar to Bax, Bid shows a cytosolic localization under normal conditions. During 

apoptosis, Bid undergoes proteolytic cleavage by caspase - 8 into a p15 and p7 fragment. 

The p15 fragment, called the tBid (truncated Bid) now has an exposed transmembrane 

region and integrates with the MOM (12). Other BH3 only proteins like Puma, Noxa and 

Bik show only cytosolic localization irrespective of the physiological status of the cell 

(12). 

The anti-apoptotic proteins Bcl-xL, Mcl-1 and A1 are cytosolic but during apoptosis Bcl-

xL migrates to the MOM to inhibit permeabilization. Bcl-2, another anti-apoptotic 

protein is an integral membrane protein of the MOM but has been found to localize to the 

ER membrane also (12).  

The members of the Bcl-2 family show specificity in their interaction with other 

members of the family. For example, Bcl-xL interacts with Bax, Bak, tBid and most other 

BH3 only proteins. But Bcl-2 interacts with Bax and tBid but not with Bak. Similarly 

Mcl-1 interacts with Bak, Bim and tBid but not Bax (16). The spectrum of interaction of 

one Bcl-2 family member with another is determined by the sequence of the BH3 domain 

of each of the proteins. Independent of their role in apoptosis, the multi-domain Bcl-2 
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family proteins have pivotal roles in regulating mitochondrial fission/fusion dynamics. 

(17).  

Bax 

Bax is a 21 kDa monomeric cytosolic pro-apoptotic Bcl-2 family protein that translocates 

to mitochondria during apoptosis. This translocation is associated with conformational 

changes (termed Bax activation) and homo-oligomerization or hetero-oligomerization 

with Bak that eventually lead to MOMP. In vitro, activation of Bax can be induced by 

certain non-ionic detergents like octyl-glucoside at their Critical Micellar Concentration 

(CMC: the concentration at which the detergent molecules form micelles) (18, 19) or by 

BH3 only proteins like tBid or BIM in the presence of MOM or MOM-like membranes 

(20, 21). 

Ceramide 

Another crucial molecule, whose involvement in MOMP is increasingly being 

appreciated, is a sphingolipid called ceramide (22 - 24). Mitochondrial ceramide levels 

increase prior to MOMP (24 - 27). Mitochondrial ceramide is capable of causing 

translocation of Bax from the cytosol to the MOM and its subsequent activation (25, 28, 

29). We have found that ceramide can form large protein-permeable channels in the 

MOM (30, 31). Unlike other common membrane lipids namely the phospholipids, 

sphingolipids are not based on esterification of glycerol but on sphingosine and its amide 

linkage to fatty acids.  The amide linkage is planar as in α-helices of proteins and along 

with the two hydroxyls at the C1 and C3 positions has a great potential for hydrogen 

bonding.  This is perfect for generating assemblies and ceramide channels are proposed to 
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be formed by a ring of columns each consisting of 6 ceramides interconnected by the 

hydrogen bonds of the amide linkage (Fig. 1.2).  The columns of ceramide have a net 

dipole in one direction that can destabilize the column. In ceramide channels, adjacent 

columns are thought to have anti-parallel configuration and hence the dipoles would have 

opposite directions, hence canceling each other (32). These pairs of columns align 

themselves in the membrane forming a cylinder through which proteins can pass. The 

proposed ceramide channel model envisions that, with the addition of more ceramide, the 

channels expand in size with the incorporation of more ceramide into the channel 

structure.  Studies with planar phospholipid membrane suggest that ceramide forms 

single channels in membranes that vary from being weakly cation-selective to non-

selective. In the mitochondrial outer membrane, size measurements based on gel filtration 

of proteins released from the IMS suggest that the channels can be big enough to cause 

release of proteins up to 60kDa (31). These measurements were made under denaturing 

conditions and thus the actual size of the channels could be even greater.    

Channel formation in the MOM can be measured in two ways. First, protein release from 

the IMS can be measured by assaying for the IMS enzymes or western blotting on the 

IMS proteins from the extra-mitochondrial medium. Alternatively, any protein-permeable 

pore in the membrane must allow the bi-directional diffusion of proteins across the 

membrane. The cytochrome c oxidation assay measures the rate of flux of exogenous 

cytochrome c across the MOM (31).This assay defines the status of the pore at any given 

time.  One can follow both an increasing permeability as channels form and a decreasing 

one as they are disassembled (33).    
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Fig 1.2: (reproduced from L.J. Siskind 2005(24)): a) A column of 6 ceramides can span the 

membrane. B & c) Many such columns align beside one another to form a ceramide channel.  d) 

Each column is directional and has a net dipole. Adjacent columns have an anti-parallel orientation 

canceling the dipoles.   
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The concentration of ceramide in the membrane determines the ability of channel 

formation. This is determined by the metabolism of ceramide.  In the mitochondrial outer 

membrane, there are enzymes capable of both ceramide synthesis and hydrolysis (34, 35, 

36).  The tight interaction between the MOM and ER membranes also provides an 

opportunity for ceramide exchange (37) between the site of ceramide de novo synthesis 

(the ER) and the MOM. However, ceramide metabolism can also produce other 

intermediates that influence ceramide channel formation. For example, both 

dihydroceramide and sphingosine interfere with ceramide channel formation (38, 39). 

Finally, and most importantly, Bcl-2-family proteins can also influence the stability of 

ceramide channels (33). 

Ceramide metabolism 

The synthesis and consumption of ceramide by multiple routes on different membranes 

presents an interesting and complex maze of that strongly defines the availability of 

ceramide at different locations to accomplish different functions. As already pointed out, 

ceramide metabolism determines the concentration of not only ceramide but also other 

sphingolipid metabolites in the MOM that can interfere with ceramide channel formation. 

Hence ceramide metabolism naturally factors itself into the study of ceramide channel 

formation especially in in vivo conditions.   

Ceramide can be synthesized by anabolism from simpler molecules by the de novo 

pathway (22, 24) that begins with the condensation of serine and palmitoyl coA in the ER 

by the enzyme Serine Palmitoyl coA transferase. Since the palmitoyl group is saturated, 

the resulting molecule is 3-keto dihydrosphingosine which has only one acyl chain, that 
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of sphingosine. This molecule is acylated by another ER resident enzyme 

dihydroceramide synthase to generate dihydroceramide. There are different ceramide 

synthases that differ in their specificity of the acyl chain length that they add to the 

sphingosine (22).  Finally Dihydroceramide desaturase converts dihydroceramide to 

ceramide in the ER. The ceramide can be further converted to sphingomyelin to by 

sphingomyelin synthases. Otherwise, the ceramide can be transported to the Golgi by a 

ceramide transfer protein called CERT (22).  Different CERT isoforms show different 

acyl chain length specificities to the ceramide. Transport of ceramide from the ER to the 

mitochondria seems to occur through direct exchange of ceramide between mitochondria 

associated ER membranes and the MOM (37). 

The salvage pathway of ceramide synthesis (22, 24) involves breakdown of 

sphingomyelin to ceramide by the enzymes sphingomyelinases. These sphingomyelinases 

are classified as acidic or neutral based on the optimal pH for their activity. They are 

present in different locations and hence constitute the major source of ceramide in 

different membranes like the plasma membrane and the lysosomes. During apoptosis, an 

acid sphingomyelinase from an unknown location has been found to localize in the 

mitochondria, presenting another source of ceramide generation in the MOM (27).   

Ceramides are broken down by ceramidases which are also classified as acid, neutral or 

alkaline based on the optimal pH for their activity. These enzymes are also present in 

different locations including the mitochondria. Ceramidases convert the ceramide to 

sphingosine. Further breakdown of sphingosine after its phosphorylation to S1P in the ER 

occurs by an enzyme called S1P lyase which breaks down S1P to ethanolamine and 

hexadecanal (22, 24).     
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Physiological relevance of ceramide channels 

Ceramide is a vital sphingolipid that participates in a slew of cellular events including 

cell senescence, apoptosis, differentiation, cell cycle arrest and raft formation during cell 

signaling (22).  Focusing on apoptosis, exogenously-added ceramide has been found to be 

able to induce apoptosis in a variety of cell types. Moreover, cellular ceramide levels rise 

in response to various apoptotic stimuli (40 - 44).  Since ceramide is virtually insoluble in 

water, it can be isolated in different membrane compartments.  The mitochondrion is a 

particularly important site where an increase in the ceramide level is associated with 

apoptosis. While mitochondria are equipped with their own ceramide synthesizing 

machinery (34, 39) migration of acid sphingomyelinase to mitochondria has been 

observed in response to UV irradiation (27) resulting in elevation of mitochondrial 

ceramide. The localization of ceramide to the MOM during apoptosis is also correlated 

with MOMP (24). Several studies have found that isolated mitochondria can be 

permeabilized by adding ceramide (24, 28, 45, 46). Targeted elevation of mitochondrial 

ceramide can also lead to mitochondrial permeabilization and the subsequent steps of 

apoptosis (46).   Anti-apoptotic Bcl-2 proteins, namely Bcl-2 and Bcl-xL have been 

found to negatively regulate ceramide synthesis during apoptosis (47 - 49) and to favor 

the disassembly of ceramide channels (33). Thus the case for ceramide’s importance in 

causing apoptosis in cells is very strong.   

Bax channels 

Bax translocation to the MOM precedes MOMP in cells. In vitro, addition of Bax and 

tBid causes IMS protein release (50 - 54). Thus, Bax is thought to form channels in the 
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MOM to allow IMS protein efflux into cytosol during apoptosis. This notion is further 

substantiated by the observation that Bax is structurally similar to bacterial toxins 

particularly, diphtheria toxin (13). Also, Bax forms ion-conducting channels in planar 

membranes (55, 56).  But the dynamics of Bax activation and subsequent channel 

formation are only partially understood. In vivo, a long time gap of a few hours exists 

between Bax translocation to mitochondria and MOMP (57, 58). This implies that 

additional activation signals are necessary to stimulate membrane-bound Bax to form 

channels (58). The stoichiometry of Bax channels, size, nature of open and closed states 

are also unknown.  

Aim of the research 

The goal of this dissertation is to study the mechanism of structural regulation of 

ceramide and Bax channel formation. While the role of anti-apoptotic proteins in 

regulating ceramide channels has been well established (33), the mechanism by which 

Bax, a pro-apoptotic Bcl-2 protein regulates ceramide mediated permeabilization is 

investigated here. The question of how the different functional groups of the ceramide 

molecule contribute to its ability to form channels was also investigated. Finally we have 

investigated the dynamics of Bax channel formation using ionic strength as a tool to 

dissect the different steps in the growth of Bax channels.  
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CHAPTER 2 COMMON MATERIALS AND METHODS 

Isolation of rat liver mitochondria 

The isolation of mitochondria from rat liver was done as described (31, 59). Briefly, male 

Sprague-Dawley rats were fasted overnight. On the next day, they were euthanized by 

exposure to high levels of CO2 and decapitation.  The liver was removed by surgery and 

minced and kept cold in ice-cold mitochondrial isolation buffer (70mM sucrose, 210mM 

mannitol, 1mM EGTA and 5mM HEPES-KOH pH 7.5) supplemented with 1% BSA. 

Then the tissue was homogenized. The homogenate was subjected to alternate cycles of 

centrifugation in low speed (700 RCF) and high speed (5600 RCF) twice each for 10 

minutes at 4
o
C to enrich the mitochondrial fraction. The resulting pellet was resuspended 

in BSA-free mitochondrial isolation buffer and centrifuged at high speed for 10 minutes 

at 4
o
C to remove BSA. The final pellet was resuspended in ice-cold sucrose-free 

isosmotic buffer called FH (280mM mannitol, 1mM EGTA and 5mM HEPES-KOH pH 

7.4). The concentration of mitochondrial protein was determined as previously described 

(4).   

Preparation of cytochrome c 

Horse heart cytochrome c (44mg) was dissolved in 1mL of 0.2M Tris-HCl pH 7.5 and 

then 11mg of ascorbate was added to reduce all the cytochrome c. The reduced 

cytochrome c was separated from the ascorbate in a sephadex G-10 column equilibrated 

with 0.2M Tris-HCl pH 7.5.  
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Cytochrome c oxidation assay 

The cytochrome c oxidation or complex IV accessibility assay measured the ability of 

exogenously added cytochrome c to diffuse across the MOM to access the cytochrome 

oxidase complex (complex IV) in the MIM and be oxidized by it. The MOM is normally 

impermeable to proteins unless the outer membrane is permeabilized. Thus, the rate of 

oxidation of exogenous cytochrome c is directly proportional to the extent of outer 

membrane permeabilization. In this assay, mitochondria were treated with suitable 

permeabilizing agents (ceramide or Bax/tBid) and incubated. At the end of incubation, all 

or fraction of the mitochondria were resuspended in cytochrome c oxidation assay buffer 

(buffer isosmotic to FH supplemented with 5mM DNP and 5µM antimycin A). 

Cytochrome c (~25nM final) was added to the suspension and the change is absorbance 

was quickly measured for 2 minutes at 550nm. Reduced cytochrome c absorbs at 550nm 

but this absorbance declines as it gets oxidized.  Thus, the rate of decline of absorbance at 

550nm is a direct measure of rate of cytochrome c oxidation. And the initial rate of 

cytochrome c oxidation is a measure of the extent of MOMP permeabilization. Please 

refer to specific materials and methods in each chapter for details of the amount of 

mitochondrial protein used for assay, type and concentrations of permeabilizing agents 

used.  

Measurement of mitochondrial intactness 

The intactness of the mitochondrial preparation must be > 80% for reliable 

experimentation. For each mitochondrial preparation, the intactness was determined 

using the cytochrome c accessibility assay. The rate of oxidation of cytochrome c by 
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control mitochondria that were not treated with any permeabilizing agent must be very 

low.  This rate was compared to the rate of cytochrome c oxidation by an equivalent 

amount of hypotonically shocked mitochondria that would allow complete access of 

exogenous cytochrome c to cytochrome oxidase complex. The ratio of control rate to 

hypotonically shocked rate multiplied by 100 gives % intactness of mitochondria.  

Purification of Bcl-2 family proteins  

All Bcl-2 proteins were expressed and purified in E.coli. Bax was purified as described 

(18, 60) with slight modifications. The final elute from the chitin column was dialyzed in 

microporous membrane of 12000MW cutoff for 24 hr at 4
o
C in 3L buffer (1mM EDTA, 

20mM Tris-HCl pH8). The dialysis was repeated in 5L of buffer of same composition to 

remove residual DTT. tBid (61) and Bcl-xL (60, 62) were purified as published earlier. 

All purified proteins were filter-sterilized through 0.2µm filter and glycerol was added to 

a final concentration of 10% v/v. small aliquots were flash-frozen with dry ice and 

ethanol in thin-walled glass tubes and stored at -80
o
C until use.  Once a tube was thawed 

for use, it was not re-frozen or re-stored.  

Adenylate kinase (AK) assay 

Adenylate kinase (AK) is a 24KDa IMS protein that is released into the cytosol from 

mitochondria during apoptosis. This enzyme converts 2 molecules of ADP into ATP and 

AMP. AK can be assayed using a coupled enzyme system that utilizes ATP (31). In this 

assay, ATP produced by the AK reaction is consumed by hexokinase to convert glucose 

to glucose – 6 – phosphate which is oxidized by G3P dehydrogenase and electrons 

transferred to NADP which forms NADPH. NADPH absorbs at 340nm while NADP 
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does not. Thus, when other reaction components are in excess and the amount of AK is 

the only rate-limiting factor, the rate of increase in absorbance at 340nm is a direct 

measure of AK activity. Mitochondria (final concentration 160µg/mL)   were treated with 

suitable concentrations of the permeabilizing agents (exact quantities are mentioned in 

the methods of corresponding chapters or figure legends) and incubated. At the end of the 

incubation, the mitochondria were centrifuged at 14000 RCF and supernatant collected 

and kept cold. The 2.5µL enzyme mixture of hexokinase and G6P dehydrogenase (final 

concentration – 5 units each) was added to 350µL of AK reaction mixture (50mM Tris, 

5mM MgSO4, 10mM glucose, 5mM ADP, 0.2mM NADP pH 7.5) 5 minutes prior to 

assay to remove residual ATP from the mixture. Then 150µL of the mitochondrial 

supernatant was added to the reaction mixture and the initial increase in absorbance 

measured at 340nm for 5 minutes. Maximal release of AK corresponding to 100% was 

measured by osmotically lysing equivalent amount of mitochondria and measuring the 

activity of that supernatant. 

 

 

 

 

 



19 
 

CHAPTER 3 CERAMIDE AND ACTIVATED BAX ACT SYNERGISTICALLY 

TO ENHANCE MITOCHONDRIAL OUTER MEMBRANE 

PERMEABILIZATION 

ABSTRACT 

A critical step in apoptosis is mitochondrial outer membrane permeabilization (MOMP), 

releasing proteins critical to downstream events.  While the regulation of this process by 

Bcl-2 family proteins is known, the role of ceramide, which is known to be involved at 

the mitochondrial level, is not well-understood. Here, we demonstrated that Bax and 

ceramide induce MOMP synergistically.  Using a release assay and the real-time 

measurement of MOMP, the effect of activated Bax and ceramide together in inducing 

MOMP in isolated rat liver and yeast (lack mammalian apoptotic machinery) 

mitochondria  was studied. The interaction between activated Bax and ceramide was also 

studied in the defined isolated system of planar phospholipid membranes. At 

concentrations where ceramide and activated Bax have little effects on their own, the 

combination induces substantial MOMP.  Direct interaction between ceramide and 

activated Bax was demonstrated both by using yeast mitochondria and phospholipid 

membranes.  The apparent affinity of activated Bax for ceramide increases with ceramide 

content indicating that activated Bax shows enhanced propensity to permeabilize in the 

presence of ceramide. An agent that inhibits ceramide-induced but not activated Bax 

induced permeabilization blocked the enhanced MOMP, suggesting that ceramide is the 

key permeabilizing entity, at least when ceramide is present.  These and previous findings 

that anti-apoptotic proteins disassemble ceramide channels suggest that ceramide 
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channels, regulated by Bcl-2-family proteins, may be responsible for the MOMP during 

apoptosis.   

INTRODUCTION 

 Apoptosis, a type of programmed cell death, is a regulated process where 

unwanted or damaged cells are eliminated.  The permeabilization of the mitochondrial 

outer membrane (MOM) to key intermembrane space (IMS) proteins such as cytochrome 

c, Smac/Diablo, and apoptosis-inducing factor, is an irreversible and decision-making 

step in apoptosis, which leads to the execution phase involving effector caspase 

activation.  Ceramide, a pro-apoptotic sphingolipid, has been reported (22) to act as a 

second messenger in several cellular processes, including apoptosis. It can also form 

channels and thus can directly permeabilize the MOM without the aid of ancillary 

proteins (24, 30 - 33).  Physiological studies show that ceramide is both an extracellular 

stimulus and intracellular mediator (22) of mitochondrial apoptosis.  Several lines of 

evidence indicate that cellular levels of ceramide become elevated (22, 24) most 

importantly in mitochondria (24).  We have shown that Bcl-xL and Bcl-2 can inhibit 

permeabilization induced by ceramide in isolated rat liver mitochondria (33). This is 

achieved by the anti-apoptotic proteins inhibiting ceramide channel formation and 

disassembling pre-formed ceramide channels.   

 The mechanism by which Bax increases MOMP is cause for much debate (51. 63 

– 67). Bax is located in the cytosol or loosely associated with the MOM in the 

monomeric form.  Upon an apoptotic signal, Bax inserts into the MOM and becomes 

activated and oligomerized.  Activated Bax and/or Bak are proposed to be directly 
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responsible for the release of intermembrane space proteins by forming channels in cells 

and indeed, in phospholipid membranes, Bax treated with β-octyl glucoside (activated 

Bax) is capable of forming channels (61). Yet whether these channels are large enough to 

allow for the release of all the IMS proteins is unclear (68).  In yeast cells that lack the 

mammalian apoptotic machinery, expression of Bax still leads to leads to cytochrome c 

release and cell death indicating that Bax channels may suffice despite the presence of 

ceramide.  However the effect of Bax is inhibited by co-expression of sphingomyelin 

synthase, which consumes ceramide (69).  In mammalian cells, ceramide-induced 

cytochrome c release does not require Bax (24, 70) but Bax enhances apoptosis induced 

by ceramide (24, 71). Also, ceramide has been found to activate monomeric Bax in the 

presence of the MOM (25, 28).  When combined, these publications can be interpreted to 

indicate that Bax and ceramide may interact cooperatively to generate the MOMP.  This 

is clearly not the view of most investigators in the field but it is a logical conclusion from 

published experiments.  The present work provides direct evidence of a synergistic 

interaction between activated Bax and ceramide resulting in enhanced MOMP to 

proteins. We also provide mechanistic insights into this interaction.  

MATERIALS AND METHODS 

Reagents  

C16-ceramide were bought from Avanti Polar Lipids. Antimycin A, 2, 4-dinitrophenol 

[DNP], horse heart cytochrome c, fatty acid-depleted Bovine Serum Albumin (BSA), and 

sodium ascorbate were bought from Sigma Chemical Co. Other chemicals were reagent 

grade.  
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Isolation of yeast mitochondria  

Yeast mitochondria were prepared and isolated as previous described (72) until the 

washed spheroplast pellet was obtained.  Twice, the pellet was resuspended in H-medium 

(0.6 M mannitol, 0.1 mM EGTA, 10 mM HEPES, pH 7.2) and spun at 700 RCF for 5 

min to yield the mitochondrion-containing supernatants.  The supernatants were spun at 

5600 RCF for 10 min and the pellets were retained.  The pellets were resuspended in H-

Medium, combined and spun at 700 RCF for 5 min. The supernatant was spun at 5600 

RCF for 10 minutes yielding the final mitochondrial pellet which was resuspended in H-

medium. The intactness of the mitochondria, as measured by comparing their rate of 

cytochrome c oxidation with that of osmotically shocked mitochondria (18) was more 

than 93% for yeast mitochondria. 

Bax activation 

 Bax was purified as described in the common materials and methods section. The native 

Bax was oligomerized by adding 10% β-octyl glucoside to a final concentration of 0.7% 

and incubated for 30 min on ice.  The proper folding of the detergent treated Bax was 

confirmed by its partial resistance to trypsin as published elsewhere (73). Note that the 

concentrations of activated Bax reported here were based on the molecular weight of 

monomeric Bax because the activated form is heterogeneous.   

Cytochrome c accessibility assay 

 Shortly before use, mitochondria were diluted in the isolation buffer to 0.5 mg 

protein/mL and stored on ice.  Once diluted, mitochondria lose function more rapidly and 

so the diluted suspension is used within an hour.  In a typical experiment, 50µL of this 
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dilution was dispersed in 650µL of room temperature incubation buffer [the sucrose-free 

buffer supplemented with 5mM DNP and 5µM antimycin A and pH 7.25 (31) to final 

protein content of 25 µg in 700µL.  Unless otherwise stated, this was done for all 

experiments.  In most experiments, when Bax was added, it was added immediately.  

Then the mitochondria were incubated for 10 min at room temperature to allow them to 

acclimate and interact with Bax.  Ceramide was generally added at this point from a 1 

mg/mL solution in isopropanol.  In experiments where tBid and monomeric Bax were 

used, the mitochondria were incubated with the permeabilizing agents for 30 minutes at 

30
o
C. In experiments where activated Bax was used, the mitochondria were incubated 

with activated Bax for 20 minutes at room temperature.  It was added while 

simultaneously vortexing the microfuge tube vigorously so as to achieve rapid and 

effective dispersal of the sphingolipid (controls show that this does not damage the outer 

membrane).  After dispersal, the mixture was incubated for 10 min followed by 

measurement of the outer membrane permeability.  Reduced cytochrome c was added to 

the mitochondrial suspension (10µL; final concentration approx 25µM) and the 

absorbance at 550nm was measured immediately for 2 min.  The initial rate was used to 

assess the permeability of the MOM to cytochrome c.  The extinction coefficient of 18.5 

mM
-1 

∙
 
cm

-1
 [ Red.-Ox.] was used to convert absorbance units to µM units.  

Assessment of apparent dissociation constant of ceramide channels for activated 

Bax 

 The oxidation rate was used as the functional parameter to evaluate the apparent 

dissociation constant of ceramide channels for activated Bax.  The data was plotted using 

the Hill formalism for cooperative binding.  
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]log[)log(log
max

BaxnK
rate

rateBax  

where the rates are the initial activated Bax-stimulated rates of oxidation at a specific 

ceramide concentration, above the rate observed with ceramide alone. rateBax is the rate at 

any [activated Bax] and ratemax is the maximal rate. K and n are the parameters of the Hill 

formalism.  The inherent variability in the experiments forced us to combine these 

parameters into one.  Since K and n increased simultaneously with amount of ceramide 

used, we found it more informative to combine these two parameters into one term: 

K0.5 = [1/K]
1/n

 

K0.5 is the Bax concentration at which the extent of permeabilization (as measured by the 

rate of cytochrome c oxidation] is half-maximal. It is a measure of the apparent 

dissociation constant, the reciprocal of the apparent affinity.  

Electrophysiological experiments 

The monolayer method was used as described previously (74) to make planar 

phospholipid membranes.  Calomel electrodes were used to interface with the aqueous 

solutions (1.0 M KCl, 1mM MgCl2, 5mM PIPES pH 6.95) on either side of the 

membrane.  The voltage was clamped and the current recorded.  The lipid solution 

contains 0.5% (w/v) 1,2-diphytanoyl-sn-glycero-3-phosphocholine, 0.5% (w/v) asolectin, 

and 0.05% (w/v) cholesterol dissolved in hexane.  To form a ceramide channel, a stock 

solution of 0.05 mg/ml C16- ceramide was made in isopropanol and 10-20μL amounts 

were added to the cis side of the membrane while stirring for 15 seconds to induce an 

initial conductance.  The channel was then allowed to enlarge and stabilize before the 
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addition of proteins or other compounds.  To obtain an activated Bax conductance, 

activated Bax was added to the cis side of the membrane only. 

Adenylate Kinase (AK) assay 

As described earlier (31), mitochondria were resuspended in the incubation buffer 

(50mM potassium lactobionate, 180mM mannitol, 0.1mM EGTA and 2mM HEPES and 

pH 7.4) to a final mitochondrial protein concentration of 160μg/mL.  After adding 

ceramide and Bax, as done for cytochrome c oxidation assay, mitochondria were 

incubated at 30
o
C for 30 min. The mitochondria were sedimented at 14,000 RCF  for 5 

min at 4
o
C and 300μL of the supernatant was combined with 700μL adenylate kinase 

reaction buffer (50mM Tris, 5mM MgSO4, 10mM glucose, 5mM ADP, 0.2mM NADP 

pH 7.5) that had been preincubated for 2 min with 5μL of enzyme mixture (2.5 units of 

hexokinase and 8.7 units of glucose-6-phosphate dehydrogenase).  The absorbance of the 

mixture at 340nm was recorded immediately and the initial rate used as a measure of the 

adenylate kinase activity. Maximal release of adenylate kinase was achieved by exposing 

the mitochondria to an osmotic shock.  An aliquot of the mitochondrial suspension 

(usually 10-20 μL containing 160 μg mitochondrial protein) was added to in 1mL 

distilled H2O (50 to 100 fold shock) and incubated on ice for 10 min.  

RESULTS 

Activated Bax enhances ceramide-induced MOMP  

To evaluate the influence of Bax on ceramide permeabilization of the MOM, we used a 

dynamic cytochrome c accessibility assay, as previously described (31).  This is a 

dynamic measurement of permeability and permeability changes in the MOM to 
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cytochrome c in real-time.  While treatment of isolated mitochondria with low levels of 

ceramide or tBid-monomeric Bax induced a small amount of membrane 

permeabilization, when the same amounts were added together, there was a synergistic 

increase in MOMP (Fig. 3.1A). This synergistic induction of permeabilization was also 

observed using the adenylate kinase release assay that evaluates release of proteins from 

the intermembrane space. (Fig 3.1B). tBid alone did not have any effect on ceramide-

induced MOMP at these levels.  Bax activated chemically with detergent has been found 

to permeabilize the MOM in similar manner to physiologically activated Bax (61, 75) and 

shows similar restricted accessibility to trypsin (73).  A similar synergistic enhancement 

of permeabilization was also observed with ceramide and chemically activated Bax (Fig 

3.1C). Under these conditions, there was no swelling of the mitochondria and thus the 

permeabilization was not secondary to inner-membrane swelling.   

One possible interpretation for the synergistic interaction between ceramide and activated 

Bax is that activated Bax could be binding to anti-apoptotic proteins thus removing any 

inhibitory effect on ceramide induced MOMP.  To test if the anti-apoptotic Bcl-2 proteins 

are involved in this interaction, ceramide induced MOMP enhancement by activated Bax 

was tested using yeast mitochondria, which are devoid of Bcl-2 family proteins.  We 

found that activated Bax and ceramide interact synergistically to induce MOMP in yeast 

mitochondria also, suggesting that their interaction could be direct and not indirectly 

mediated by elimination of inhibition by anti-apoptotic members (Fig. 3.1D).  This also 

suggests that the interaction between activated Bax and ceramide does not require 

processed Bid or Bak.   
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Fig 3.1 Ceramide (cer) and activated Bax increase the MOMP in a cooperative fashion assessed by 

the cytochrome c accessibility assay (A, C, D) or adenylate kinase release (B). A. Isolated rat liver 

mitochondria diluted to 250 μg protein/ml were pre-treated with both 45 nM N/C Bid and 40 nM 

monomeric Bax. Sub-aliquots containing 25 μg of mitochondria were either treated with 5 μl 

isopropanol (as a vehicle control) or 5 μl of 1 mg/ml ceramide (in isopropanol) and incubated at room 

temperature for 10 min before assaying for cytochrome c accessibility. Respective vehicle controls 

were subtracted from the data shown. The “add” bar is the sum of the rates measured with ceramide 

alone and Bid/Bax alone. The results are the means ± SD of three experiments. The respiration rate 

of the combined treatment differed from the sum of the individual rates with P < .01. B. Rat liver 

mitochondria were treated either with 10 μg ceramide or a combination of 40 nM monomeric Bax 

and 245 nM N/C Bid or both and the released adenylate kinase activity was measured. The “add” 

bar is the sum of the results of individual treatments minus their product divided by the maximal 
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possible release (to correct for both agents acting on the same mitochondrion). The combined 

treatment exceeded the sum of individual treatments, “add”, with P < .05. C. Isolated rat liver 

mitochondria were treated with either 1 μg ceramide, 15 nM detergent activated Bax (ac-Bax), or 

both. The results are mean ± SE of three experiments. The combined treatment exceeded the sum of 

individual treatments, “add”, with P < .05. D. Mitochondria isolated from wild-type S. cerevisiae 

were used and treated with 2 μg of ceramide and activated Bax as shown. The results are means ± SE 

of three to five experiments. Statistical tests yielding P < .05 compared the results of the combined 

treatment of ceramide and ac-Bax with the numerical addition of the results of treatments with 

ceramide alone and ac-Bax alone 

Bax mediated enhancement of ceramide induced permeabilization can be inhibited 

by trehalose, a disaccharide that disassembles ceramide channels 

 Since both Bax and ceramide are channel formers and each of them is capable of 

permeabilizing the MOM in the absence of the other, we wanted to test whether, in this 

synergistic interaction, Bax is enhancing ceramide channels or vice versa.  Some insight 

was gained by using trehalose, a disaccharide that inhibits ceramide channels causing 

partial disassembly.  The same dose of trehalose inhibited both the ceramide induced 

MOM permeabilization and the enhancement of this permeabilization induced by 

activated Bax (Fig. 3.2). In this experiment, activated Bax alone had essentially no effect.  

Using a higher concentration of activated Bax (inset) a significant MOMP was achieved 

and trehalose had no effect on this MOMP induced by activated Bax alone.  The simplest 

interpretation is that the enhanced MOMP has the properties of ceramide channels.  

Activated Bax could be acting by enhancing the permeabilization induced by ceramide, 

perhaps by favoring the growth of ceramide channels.  This observation can also be 

explained by a complex structural assembly of ceramide and activated Bax that is 

sensitive to trehalose. However, this observation is inconsistent with the possibility that 

ceramide is simply enhancing Bax activation.  In addition, if the enhanced MOMP were 
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the result of ceramide monomers enhancing channels formed by activated Bax then it is 

hard to see how trehalose could interfere with this process because trehalose cannot 

remove ceramide from the membrane. The amount of trehalose needed to inhibit 

ceramide induced permeabilization seems to be 10
5
 to 10

6
 orders of magnitude more than 

ceramide stoichiometrically. This could be because the affinity of trehalose for ceramide 

channel might be much lower than with water or between trehalose molecules. And 

unlike ceramide molecules in channel which have much lower entropy in the membrane, 

soluble trehalose has much higher entropy. 

 

Fig 3.2 Trehalose (23 mM final) inhibits MOMP induced by ceramide alone and that induced by the 

combination of ac-Bax and ceramide. In the main figure, samples were treated with 30 μg of 
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ceramide and 10 nM ac-Bax as indicated. In the inset 43 nM ac-Bax was used to obtain a high enough 

MOMP. The cytochrome c oxidation rates are means ± SE of three to four experiments. 

** Represents P < .01 and *** represents P < .001 

Bax expands ceramide induced conductance in planar phospholipid membranes       

Planar phospholipid membranes are membranes consisting only of phospholipids and 

cholesterol.  Being a defined system, one can clearly demonstrate interactions without the 

influence of other constituents found in natural membranes.  The ability of ceramide to 

form channels in planar membranes has been established (30). To assess the effect of 

activated Bax on ceramide channels in an environment free of other membrane 

components, ceramide channels were formed in the planar membranes and then activated 

Bax was added.  Activated Bax caused a large increase in conductance while monomeric 

Bax (m-Bax) did not significantly affect the channel (Fig. 3.3A).  This is typical of many 

experiments.  These show that the interaction between activated Bax and ceramide is a 

direct one and does not require other proteins.  

 Trehalose also inhibited the conductance of a ceramide channel formed in a 

phospholipid membrane (data not shown).  In Fig. 3.3B, a small ceramide conductance 

was greatly increased by the addition of activated Bax.  At the reduced scale used to 

show the experiment, the initial ceramide conductance is barely visible.  Once the 

conductance stabilized, trehalose was added resulting in an immediate decline in 

conductance.  Thus the activated Bax-enhanced conductance was reduced by trehalose 

(Fig. 3.3B).  Trehalose has no effect on the conductance produced by activated Bax alone 

(Fig. 3.3C).  Thus, trehalose is useful to effectively distinguish between a permeability 

formed by activated Bax and one formed by ceramide.  When the conductance was 

inhibited using lanthanum ions, there was stochastic delay in channel disassembly, 
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suggesting that a singular structure is responsible for the conductance observed.  

Ceramide and activated Bax may be forming a unified structure or activated Bax might 

enhance the size of the ceramide channel (3.3D)  These experiments also suggest that 

metabolism of ceramide to other sphingolipids like sphingosine is not necessary for 

interaction with activated Bax and the consequent changes in permeability.  

 

Fig 3.3: Addition of activated Bax to a ceramide channel in a planar phospholipid membrane causes 

it to enlarge. A. The initial conductance was formed by the addition of 16 μg ceramide to a high-

resistance phospholipid membrane. Once the conductance had stabilized first monomeric Bax then 

activated Bax were added to both sides of the membrane. Once the conductance rise had restabilized 

at a higher level LaCl3 was added to the final concentrations indicated in the figure. The 
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LaCl3 additions were added to one side in the sequence: cis, cis, trans, trans. The experiment shown is 

representative of more than eight experiments. Amounts of added ceramide and ac-Bax were 

different between experiments. Bax enhancement of a ceramide channel was seen in over 50 

experiments. B.  A small ceramide channel was formed followed by the addition of ac-Bax at the 

indicated final concentration. Trehalose was added as indicated. C. Activated Bax conductances were 

induced in a planar phospholipid membrane in the experiment illustrated in the figure. The total 

amount of activated Bax added was equivalent to 42 nM. Trehalose was added as indicated stepping 

up the final concentration by 6 mM at each addition. This is typical of more than three experiments. 

 

The influence of activated Bax on MOMP depends on the amount of added 

ceramide 

At a low level of added ceramide 1.4 µg/mL, the amount of activated Bax needed to 

enhance the MOMP to half maximal was 30 nM.  At a higher dose of 2.8 µg ceramide, 

less activated Bax was needed to achieve a half-maximal effect (12nM) (Fig. 3.4A).  

Both of these results were obtained on the same mitochondrial preparation, eliminating 

variability between mitochondrial isolations.  This difference can be interpreted as a 

change in apparent affinity between activated Bax and a ceramide channel as the size of 

the ceramide channel increases.  In a separate set of experiments (Fig. 3.4B) low levels of 

ceramide still show a dose-dependence but at high levels (10 µg), the enhancement by 

activated Bax was not observed (Fig. 3.4B).  The lack of further stimulation was not due 

to the achievement of maximal cytochrome c accessibility to cytochrome oxidase because 

higher levels of ceramide did produce still higher rates of cytochrome c oxidation, closer 

to those observed with hypotonically-shocked mitochondria.  This indicates that the 

effect of activated Bax on ceramide induced-MOMP is a saturable function of the amount 

of ceramide. This saturation could be interpreted as activated Bax favoring an optimal 

size of the ceramide channel and if the channel is already at the optimal size there is no 
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further change in MOMP.  A Hill plot revealed changes in both the measure of 

cooperativity, n, and the constant, K.  The Hill parameters were combined [see methods] 

to evaluate the apparent dissociation constant, K0.5 (the Bax concentration at which half-                                 
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Fig 3.4: Dose–response curves of the 

enhancement of ceramide mediated 

MOMP by the addition of activated 

Bax to rat liver mitochondria.  

A and B: Experiments were 

performed by pre-incubating the 

mitochondria with the indicated 

amount of activated Bax for 10 min 

followed by addition of the indicated 

amount of ceramide.  

A. 0.5 and 1 μg of ceramide were 

used. These results are mean ± SE of 

four experiments.  

B. 0.5 and 10 μg of ceramide were 

used. These results are mean ± SE of 

three to four experiments. 

Experiments within one panel were 

performed on the same batch of 

mitochondria.  

C. Summary of the results of four 

independent experiments. Each set 

of data points defining each line was 

determined from a set of 

experiments performed on the same 

mitochondrial isolation. The figure 

shows the increase in apparent 

affinity of activated Bax for 

ceramide channels with increase in 

ceramide content.  

K 0.5 is defined in the “Materials 

and Methods” section of this 

chapter in the sub-section 

“Assessment of apparent 

dissociation constant of ceramide 

channels for activated Bax”.  
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maximal enhanced permeabilization is achieved).  The resulting apparent dissociation 

constant of activated Bax for ceramide channels in the MOM decreases as the ceramide 

concentration increases (Fig. 3.4C). This is highly reproducible, despite the variation in 

intrinsic sensitivity of isolated mitochondria to added ceramide.  Each line represents the 

results of sets of experiments performed on one isolated batch of mitochondria.  These 

results indicate a relationship between the structure of activated Bax and the structure 

formed in the presence of ceramide. An increase in affinity indicates a better fit.  The 

increase in MOMP may result from an increase in diameter of the Bax-ceramide 

assembly resulting is a better match to the structure of activated Bax.  In this way 

activated Bax could result in the formation of a channel of a particular size. 

DISCUSSION 

The release of proteins from mitochondria is a critical, decision-making step in apoptosis 

and thus the identification of the structure responsible for this release has many important 

implications.  A favorite candidate for the release pathway is activated Bax since Bax is 

pro-apoptotic, can form channels and its activation on the MOM leads to protein release.  

Interestingly, ceramide is also pro-apoptotic, can self-assemble to form channels (22, 24) 

and its delivery to the MOM leads to protein release (24, 25, 28, 46).  Here we show that 

activated Bax and ceramide act synergistically to permeabilize the MOM.  

The nature of the channels formed in the presence of both ceramide and activated 

Bax is not known and could be a structure fundamentally different from that formed by 

either substance alone.  Some findings in this work, however, are easily interpreted in 

terms of activated Bax controlling the structure of ceramide channels.  The apparent 
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affinity of activated Bax for ceramide-induced MOM permeability increases with the 

amount of ceramide added.  In other words, as the amount of added ceramide was 

increased, lesser amounts of Bax were required to achieve half-maximal 

permeabilization.  This could be due to more ceramide increasing the degree of Bax 

activation but at high levels of ceramide, where ceramide by itself produced a large 

permeability, there was no further stimulation by activated Bax (even though additional 

amounts of ceramide would have increased MOMP).  This observation is not easily 

compatible with ceramide activating Bax or the two channels mutually enhancing each 

other.  It is more naturally explained by activated Bax favoring the growth of a ceramide 

channel up to a size designated by the structure of activated Bax.   

Activated Bax seems to enhance the size of ceramide channels up to some critical 

level, probably an optimum channel size.  The increased radius of curvature may offer a 

better fit for activated Bax.  Regardless of the site of interaction, if the interaction energy 

increases with channel size, then the binding of activated Bax to a smaller channel could 

generate stress on the channel that would be relieved by the channel growing in size.  The 

dynamic equilibrium between ceramides in the channel and non-conducting ceramide in 

the membrane would be shifted toward ceramide insertion into the channel and thus 

growth of the channel size (Fig 3.5).  Once the optimal size is achieved, activated Bax 

would have no further effect and this was observed. It is possible that the physical shape 

of the activated Bax in the membrane might act as a molecular mold to drive the 

ceramide channel to an optimum size.  
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Fig 3.5: Illustration of how activated Bax might increase the size of the ceramide channel. 

On the left, a 32-column ceramide channel has a small radius of curvature than ac-Bax. When ac-Bax 

binds (center) it distorts the channel, disturbing the equilibrium between ceramide aggregates on the 

monolayer and ceramides forming the channel. The insertion of more ceramide columns increases 

the channel size until its curvature matches that of activated Bax (right), forming a 48-column 

channel. 

The results obtained with phospholipid membranes argue that the interaction 

between activated Bax and ceramide must be direct. Furthermore, these demonstrate that 

activated Bax increases the size of the single existing ceramide channel because the 

disassembly of the resulting enhanced permeability shows stochastic properties consistent 

with a unified structure.  If the added Bax were to form a separate structure then the 

disassembly would show two separate processes rather than just one.  This is in harmony 

with the natural interpretation of the mitochondrial experiments that measured the 

apparent affinity of activated Bax as described above.  
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Experiments on isolated mitochondria raise the possibility of indirect effects.  

Ceramide could act on another mitochondrial component and thus indirectly influence the 

ability of activated Bax to permeabilize the outer membrane.  Indeed, a product of 

ceramide metabolism could be the active species.  Mitochondria have ceramidases that 

could convert ceramide to sphingosine (35, 39).  Although the conversion rate was shown 

to be minimal under the conditions of our experiments (39), even a small conversion 

might be important.  Sphingosine was shown to be capable of interacting with and 

influencing the formation of ceramide channels (39) and thus might influence the 

channel-forming ability of activated Bax.  Although this possibility cannot be excluded, 

the experiments performed in planar membranes demonstrate a direct functional 

synergism between ceramide and activated Bax in terms of channel formation.  The close 

parallelism between the results obtained with the two experimental approaches provides 

strong confidence that both are reporting the same synergistic permeabilization.   

Our work shows that activated Bax could alternatively function by acting on 

ceramide channels to increase their size or form large hybrid channels with ceramide.  

Indeed, the channel formed in Fig. 3.3B has a calculated diameter of 50 nm, certainly 

large enough to allow the passage of all proteins known to be released from mitochondria 

early in apoptosis.   

Upton et al. (57) show that Bax inserts into the MOM through a C-terminal 

targeting signal but that Bax can insert into the MOM even in the absence of this 

targeting signal once the mitochondria have been permeabilized, in a caspase independent 

manner.  These authors and others (76) have concluded that activated Bax is a receptor 

for cytosolic Bax.  However, it is also likely that cytosolic Bax binds to ceramide 
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channels downstream or concomitant with MOMP in a target-signal-independent fashion, 

especially because a constitutively membrane localized Bax mutant that cannot induce 

permeabilization does not recruit cytosolic Bax to membranes.  Mutant Bcl-xL that 

cannot interact with either Bax or tBid still prevents membrane permeabilization (50), 

suggesting that additional levels of regulation exist beyond Bax through which Bcl-xL 

inhibits MOMP.  One of these is direct inhibition of ceramide channels by Bcl-xL (33).  

Cell death induced in yeast by the over-expression of Bax, was inhibited when ceramide 

levels were reduced by co-expression with sphingomyelin synthase (69).  While either 

Bax or Bak has been found to be mandatory in inducing apoptosis to various stimuli, 

ASMase knockout cells are resistant to UV induced apoptosis even in the presence of 

both Bax and Bak (77). The multiple routes and organelles of ceramide generation, 

stimulation of alternative routes of ceramide synthesis by different stimuli and Pleiotropic 

roles of ceramide in different membranes under different circumstances make appropriate 

knockouts for ceramide impossible.   

It is not clear whether the release of IMS proteins is due to transient openings or 

sustained permeability.  Many publications (51, 54) have reported a Bax-induced release 

of cytochrome c from isolated mitochondria over a period of hours without significant 

increases in the MOM permeability to cytochrome c.  Transient channel openings are a 

likely explanation.  Does this mean that the Bax/ceramide sustained permeabilization of 

the MOM and thus rapid release of protein is unnecessary or unphysiological?  It seems 

unlikely that the Bax/ceramide synergism is an interaction that is not specific and not 

maintained by natural selection, especially since anti-apoptotic proteins act precisely in 

the opposite manner (33).  Further, Kluck et. al (51), have shown that, in the presence of 
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a putative apoptotic component of the cytosol (which would be expected to be available 

to apoptotic mitochondria in vivo), Bax induces sustained enhancement of permeability. 

Munoz-Piendo et al (78) report that a non-specific pore showing prolonged permeability 

is responsible for protein release during apoptosis.  Thus the sustained permeability 

observed in the presence of activated Bax and ceramide is not an aberration.   

 It must be emphasized that the experiments were performed with physiologically 

relevant doses of ceramide and Bax.  The ceramide used in this study is C16-ceramide 

which is one of the common, naturally occurring, long-chain ceramides.  The amounts of 

ceramide used seem high but, only about 5% of the ceramide added to isolated 

mitochondria inserts into mitochondrial membranes (79) requiring the addition of larger 

amounts of ceramide to the mitochondrial suspension to achieve MOMP. Nevertheless, 

as shown previously (24, 79), we are working at mole fractions of ceramide typically 

found in mitochondria early in apoptosis. The amount of activated Bax used in these 

experiments is also at physiological levels. Enhancement of ceramide induced MOMP 

was achieved with levels of activated Bax in the low nM range. At these levels, activated 

Bax often has little or no effect on MOMP, indicating that its action on ceramide 

channels may be more important. 

Activation of Bax in cells is thought to be mediated by tBid in cells. Apart from 

tBid, non-ionic detergents, at their CMC, have also been found to activate Bax (18, 61).  

This detergent-activated Bax shows similar reactivity to conformation specific antibody 

(18) and restricted accessibility to trypsin digestion (73).  Historically, it was believed 

that the detergent-activated Bax oligomerizes in solution, while recent work (75) shows 

that activated Bax is still a monomer in solution.  We have used detergent activated Bax 
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for most of our experiments to circumvent complicating interactions arising from 

variations in effect of various concentrations of tBid on Bax, effect of high concentrations 

of tBid itself on ceramide. The results presented here and earlier work showing inhibition 

of ceramide induced MOMP by Bcl-xL evince structural regulation of MOMP by 

ceramide and Bcl-2 family proteins.  The Bcl-2 family proteins have been shown to 

regulate the formation of ceramide also during apoptosis.  

These and earlier studies with the anti-apoptotic Bcl-2 family proteins underscore 

that natural selection has favored mechanistic interactions between some Bcl-2 family 

proteins and ceramide resulting in functional outcomes.  These functional interactions 

could be pivotal in regulating MOMP under circumstances where both ceramide and the 

Bcl-2 family proteins are present.   

CONCLUSION 

Experiments with isolated mitochondria and phospholipid membranes show that 

low levels activated Bax and ceramide interact to enhance the membrane permeability to 

a level greater that each agent alone.  The results are best interpreted as activated Bax 

enhancing ceramide channels but other interpretations are not excluded.  These results are 

in harmony with published results showing that anti-apoptotic proteins disassemble 

ceramide channels.  These show that the Bcl-2 family of proteins that regulate protein 

release from mitochondria early in apoptosis also interact with ceramide and ceramide 

channels to influence MOMP.  This result is consistent with an emerging picture that 

ceramide channels may be a pathway by which proteins are released from mitochondria, 

initiating the execution phase of apoptosis.     



42 
 

Note: This line of research was accomplished in collaboration with Meenu Perera who 

is an equal contributor. I was responsible for the purification of the mitochondria from 

rat liver. Meenu was responsible for the purification of the recombinant proteins. The 

experiments to test ceramide and Bax on the MOMP was done by me and Meenu. The 

experiments with planar membranes reported here were performed by David 

Colombini, Debra Datovskiy and Kirti Chada. 
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CHAPTER 4 CERAMIDE CHANNELS: INFLUENCE OF MOLECULAR 

STRUCTURE ON CHANNEL FORMATION IN MEMBRANES 

ABSTRACT 

The sphingolipid, ceramide, has been demonstrated to self-assemble in the 

mitochondrial outer membrane (MOM), forming large channels capable of translocating 

proteins.  These channels are believed to be involved in protein release from 

mitochondria, a key decision-making step in apoptosis.  Synthetic analogs of ceramide, 

bearing modifications in each of the major structural features of ceramide were used to 

probe the molecular basis for the stability of ceramide channels.  Channel stability and 

mitochondrial permeabilization were disrupted by methylation of the C1-hydroxyl group 

whereas modifications of the C3 allylic hydroxyl group were well tolerated.  A change in 

chirality at C2 that would influence the orientation of the C1-hydroxyl group resulted in a 

strong reduction of channel-forming ability.  Similarly, methylation of the amide nitrogen 

is also detrimental to channel formation. Many changes in the degree, location and nature 

of the unsaturation of ceramide had little effect on mitochondrial permeabilization. 

Competition experiments between ceramide and analogs resulted in synergy with 

structures compatible with the ceramide channel model and antagonism with 

incompatible structures.  The results are consistent with ceramide channels being highly 

organized structures, stabilized by specific inter-molecular interactions, similar to the 

interactions responsible for protein folding.    
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INTRODUCTION  

The sphingolipid, ceramide, has been shown to be able to form channels in planar 

membranes (30, 32), liposomes (38) and the mitochondrial outer membrane (31, 33).  In 

mammalian mitochondria, channel formation occurs at physiologically relevant ceramide 

levels; levels measured in mitochondria from cells early in the apoptotic process (24, 79 - 

81).  In addition, the propensity to form channels and their size is influenced by Bcl-2 

family proteins (33, 82).  These channels are large, stable and capable of allowing 

proteins to cross membranes.    The size was determined from the molecular weight of 

proteins released from mitochondria (31), from the conductance of single channels 

formed in planar membranes (32), and from visualization of the pores by electron 

microscopy (83).  A range of sizes was reported with a typical channel having an 

estimated pore diameter of 10 nm (32, 83). Thus hundreds of ceramide molecules must 

spontaneously self-assemble in the 2-dimensional liquid phase of the membrane.  Unlike 

the fluid and transient toroidal pores or lipidic pores formed when lamellar lipids are 

disturbed by amphipathic molecules such as peptides or synthetic structures (84 – 86) 

whole proteins (87, 88), or at the phase transition (89), the channels formed by ceramide 

seem to be highly structured and rigid.  The disassembly of channels formed by short-

chain ceramide shows a quantization of conductance with a strong preference for large 

conductance drops to be multiples of 4 nS (30).   This finding not only supports the 

notion that ceramide channels are highly-organized cylindrical structures, but is also 

consistent with a modification of the originally-proposed barrel-stave structure (30). Each 

stave of the barrel is proposed to consist of a stack of ceramide molecules held together 
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by intermolecular hydrogen-bonding through the amide and carbonyl groups of the amide 

linkage.  These span the membrane forming a cylinder when arranged in an anti-parallel 

fashion (Fig. 4.1) (32). Molecular dynamic simulations indicate that this structure is 

stable (90).     

 

Fig 4.1: Model of the structure of the C16-ceramide channel. A. Model of a 48-column channel 

forming a 10 nm diameter pore. The columns are anti-parallel and so every other column has a red 

dot, the oxygen of the carbonyl group at the end of the column. The hydroxyl groups are facing the 

channel lumen and are proposed to hydrogen bond with water within the lumen (not shown). The 

phospholipid bilayer, not shown, would be in the plane of the image. B. A portion of a small ceramide 

channel showing how the channel might interface with the phospholipid bilayer. Note how the 

channel is proposed to take on a slightly hourglass shape and the interfacing phospholipids are 

proposed to tilt (alternate colored molecules) in order to the cover the apolar portion of the end of 

the ceramide channel. C. An expanded view of two ceramide columns in antiparallel orientation. 

Each column consists of a stack of 6 ceramide molecules. The figure shows the hydroxyl groups that 

would face the channel lumen and the hydrocarbon chains extending into the background, toward 

the lipid bilayer. The yellow bars indicate the hydrogen-bonding between the amide group of one 

ceramide and the carbonyl group of the adjacent ceramide. 
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The working structure of the ceramide channel is fundamentally a barrel-stave 

structure similar to the structure, both proposed and solved, for many channels.  The main 

difference is that for all other channels described to date, there is a strong preference for a 

fixed number of monomers forming a channel.  Forming channels with one stave more or 

less is highly unfavored.  If the ceramide channel has such a preference, it is not a strong 

preference.  Perhaps this unexpected feature is due to the large size of pore needed to 

allow the translocation of proteins resulting in a large radius of curvature.  Thus relatively 

small changes in this radius of curvature, as more staves are added to the barrel, may be 

accommodated by relatively small changes in the conformation of the polar headgroup.  

Alternatively, the structure of the polar region may allow enough flexibility to adapt to 

changes in the radius of curvature.  The difficulty observed in initially forming a 

ceramide channel and the rapid growth following initial formation (83) may indicate that 

a small radius of curvature is energetically unfavorable. 

The ability of ceramide to form channels must, at least in part, be attributed to the 

structural features of the ceramide molecule.   The polar head group of ceramide (Fig. 

4.2), with its amide linkage and two hydroxyl groups located in close proximity, 

constitutes a tridentate hydrogen-bonding donor/acceptor center and is capable of 

generating an effective network of directed hydrogen bonding interactions.  These 

structural features may partly explain its ability to form large, stable channels in 

membranes.  However, it is not known if the location and orientation of the interacting 

groups are critical to achieve a stable structure.  In addition, other structural features 

(such as the length of the hydrocarbon chains and the number and configuration of the 

double bonds) may be important.  
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Fig 4.2: Structure of N-palmitoyl-D-erythro-sphingosine (D-e-C16-ceramide or C16-Cer) showing the 

major features of the molecule and the codes used for the synthetic analogs: H for changes to the 

hydroxyl groups, S for changes in stereochemistry, A for changes to the amide group, T for changes 

to the trans double bond and L for changes to the chain length. 

Therefore, we have undertaken a study of synthetic ceramide analogs (Table 4.1 and Fig. 

4.3) to determine (a) if  naturally occurring ceramides are uniquely suited to form large 

aqueous pores and (b)  the structural and stereochemical features in ceramide that are 

necessary for the formation of large channels. 
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Table 4.1 Ceramide analogs. 

Code Structural Change Type/Location of 

Change 

S1 enantiomer: 2S,3R to 2R,3S Stereochemical 

S2 diastereomer: 3R to 3S 

A1 C16-ceramine (conversion of amide chain to amine-linked 

chain) 

amide linkage 

A2 C8-ceramine 

A3 N-methylation of amide chain 

A4 urea-ceramide 

A5 -methoxy group in amide chain of C8-ceramide 

H1 O-methylation of C1-hydroxyl group hydroxyl group 

H2 O-methylation of C3-hydroxyl group 

H3 oxidation of C3-OH to keto group; no double bond 

T1 translocation of double bond on sphingoid base 

T2 phytoceramide: double bond replaced by OH at C4 

T3 double bond converted to triple bond 

T4 allene: adjacent double bonds 

T5 4,6-diene: conjugated trans double bonds in C8-ceramide 

T6 trans double bond converted to cis in C8-ceramide 

T7 translocation of double bond and C3-OH in C8-ceramide 

L1 C10-ceramide hydrocarbon chains 

L2 truncation of sphingoid base 

L3 C8-ceramide 

L4 NBD-ceramide 

L5 N-palmitoyl-serinol 

L6 N-oleoyl-ceramide (C18:1) 
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Fig 4.3: Chemical structures of the analogs used 
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MATERIALS AND METHODS  

Reagents 

 N-Palmitoyl-D-erythro-sphingosine (D-e-C16-ceramide or C16-Cer) and N-oleoyl-

D-erythro-sphingosine (D-e-C18:1-ceramide or C18:1-Cer) were obtained from Avanti 

Polar Lipids (Alabaster, AL).  The analogs of C16-Cer and D-e-C8-ceramide (C8-Cer), T1 

and T4 (Fig. 4.3) were synthesized as described previously (91 – 98). Antimycin A, 2,4-

dinitrophenol (DNP), horse heart cytochrome c, and fatty acid depleted bovine serum 

albumin (BSA) were purchased from Sigma (St. Louis, MO). DPX (p-xylene-bis-

pyridinium bromide) was purchased from Molecular Probes (Invitrogen).  5(6)-

carboxyfluorescein was purchased from Acros Organics.   

Cytochrome c oxidation assay as a measure of mitochondrial outer membrane 

permeability  

 The rate of oxidation of exogenously-added reduced cytochrome c by cytochrome 

oxidase in isolated mitochondria is a measure of the permeability of the outer membrane 

to cytochrome c because translocation of cytochrome c through the outer membrane is a 

rate limiting step. The procedure previously described (31) was modified to improve 

reproducibility.  As the mitochondria were found to be more stable at higher 

concentrations, mitochondria were diluted in H buffer at 4 
o
C to a concentration of 0.2 

mg/mL, in small batches just before the assay.  Then, 50 μL aliquots were dispersed in 

650 µL of room temperature H buffer supplemented with 5 mM DNP and 5 µM 

antimycin A.  The final protein concentration was 14.3 µg/mL.  The mitochondria were 

allowed to acclimate at room temperature (10 min) in a microfuge tube.  Then ceramide 
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or one of the analogs (dissolved in 2-propanol at 1 mg/mL) was delivered to the 

mitochondria while the suspension was vortexed for 30 s to achieve effective dispersal of 

the sphingolipid.  After dispersal, the mixture was incubated for 10 min at room 

temperature followed by addition of cytochrome c (20 µL; final concentration, approx. 25 

µM) and immediate measurement of the absorbance at 550 nm for a period of 2 min. The 

initial rate of decline of absorbance of reduced cytochrome c was used as a measure of 

the permeability of the outer membrane to cytochrome c; ε550 (red-ox) = 18.5 mM
-1

 cm
-1

.  

Vehicle controls were treated in an identical way.  The percent of mitochondria with 

intact MOMs in these experiments was greater than 85%.   Rates were corrected for the 

rate of oxidation observed with vehicle alone and this was very close to the untreated rate 

arising from a small number of damaged mitochondria.    

The sensitivity of isolated mitochondria to permeabilization by added ceramide or 

analogs varied from one preparation to another.  Therefore experiments with analogs 

were always performed in parallel with experiments with C16-Cer.  In this way the 

permeabilization produced by the analog (measures as the rate of cytochrome c 

oxidation) could be compared to that of C16-Cer, either directly by reporting both rates or 

by expressing the result as a percent of that observed with C16-Cer (Table 4.2).  
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Compound Code % of C16-Cer 

permeabilization at 

0.5-1nmol/µg protein 

P 

Value  

% of C16-Cer 

permeabilization 

at 3nmol/µg 
protein 

P value % of C16-Cer 

partitioning 

from Table 4.3 

(2R,3S,4E) C16-

ceramide 

S1 No effect (P = 0.32 

relative to vehicle 

control) 

<0.01 16 ± 4 

 

<0.01 40 

(2S,3S,4E) C16-

ceramide 

S2 40 ± 60 N/S 80 ± 9 

 

<0.05 -- 

(2S,3R,4E) N-methyl-

C16-ceramide 

A3 No effect (P = 0.41 

relative to vehicle 

control) 

<0.02 21 ± 4 

 

<0.01 75 

(2S,3R,4E) C16-urea-

ceramide 

A4 236 ± 35 N/S 229 ± 7 

 

<0.005 -- 

(2S,3R,4E) 3-O-

methyl-C16-ceramide 

H2 125 ± 3 N/S 107 ± 15 N/S 60 

(2S)-3-keto-C16-dh-

ceramide 

H3 N/D  320 ± 82 

 

<0.01 -- 

(2S,3R,15E) C16-dh-

ceramide 

T1 76 ± 4 <0.03 385 ± 59 

 

<0.001 30 

(2S,3R,4R) C16-

phytoceramide 

T2 429 ± 27 <0.03 230 ± 50 <0.05 460 

(2S,3R) C16-4,5-tb-

ceramide 

T3 N/D  120 ± 20* 

 

N/S -- 

(2S,3R,4E) C16-(4,5-

allene)-ceramide 

T4 N/D  303 ± 26 

 

<0.02 -- 

(2S,3R,4E) C10-

ceramide 

L1 46 ± 17 

  

<0.02 662 ± 26 

 

<0.005 90 

(2S,3R,4E) 13C/C16-

ceramide 

L2 1310 ± 104 <0.00

5 

606 ± 27  

 

<0.005 -- 

N-palmitoyl-serinol L5 N/D  306 ± 92 <0.01 -- 

(2S,3R,4E)C18:1-

ceramide 

L6 100 ± 19 N/S 113 ± 4 N/S -- 

 

Table 4.2: Relative potency of analogs to permeabilize the mitochondrial outer membrane. MOM 

was permeabilized by the addition of the indicated amount of analog (nmoles of analog per µg of 

mitochondrial protein) and the degree of permeabilization, as measured by the rate of cytochrome c 

oxidation is expressed as a percent (± S.E. of at least 3 trials) of the permeabilization measured in 

parallel experiments with C16-Cer. The P values indicate the statistical significance of the 

permeabilization compared to that observed with C16-Cer using the Student’s T test. N/D means not 

done. N/S means not significantly different at the 95% confidence level. 
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The degree of cooperativity between an analog and C16-Cer was determined by 

averaging the rate of cytochrome c oxidation achieved with a specific amount of each 

agent alone (called the “expected average”) and comparing this with the rate observed 

with half the amount of each agent added combined (called the “combined effect”).   The 

degree of cooperativity is expressed as the ratio of the combined effect to the expected 

average.  A result not significantly different from “1” means no cooperativity; greater 

than “1” is synergy; less than “1” is antagonism.   

Measurement of lipid insertion into mitochondria 

 C16-Cer, one of the analogs, or a combination of both was added to a 0.7 mL 

mitochondrial suspension containing 160 µg of mitochondrial protein in H buffer.  In 

each experiment 30 μL of a 1 mg/mL 2-propanol solution of the lipid(s) was added while 

vortexing as described above.  The suspension was then layered on 0.7 mL of ice-cold 

solution of 15% (w/v) sucrose, 5mM HEPES pH 7.5 and centrifuged at 18,000 g for 5 

min at 4 
o
C. (Beckman Coulter Microfuge

 
22R Centrifuge).  The mitochondria 

sedimented and the uninserted lipid remained out of the sucrose layer (prior experiments 

showed that dispersed ceramide floats at this density (79).  Most of the supernatant was 

aspirated gradually and the tube inverted and any liquid wiped off with paper wipe.  The 

pellets were used for lipid extraction and measurement of the mitochondria incorporated 

ceramide and analogs by LC-MS/MS as previously described (99, 100). 

Liposome permeabilization   

Single-walled liposomes (93% asolectin and 7% cholesterol, by weight) were 

prepared by the extrusion method as previously described (38).  In summary, lipids (total 



54 
 

mass, 5 mg) were hydrated in a buffer containing 1.5 mM carboxyfluorescein (CF), 6 

mM DPX, 38.8 mM NaCl, 10 mM HEPES, and 1 mM EDTA, pH 7.0.  The mixture was 

vortexed and subjected to 4 cycles of freeze-thaw-sonication followed by freeze-thawing 

and extrusion through a polycarbonate membrane (13 times) to form uniform single 

walled vesicles (100 nm diameter).  A Sephacryl S200 gel filtration column (1.5 cm×30 

cm) was used to separate the liposomes from untrapped fluorophore using an isoosmotic 

elution buffer lacking carboxyfluorescein and DPX (50 mM NaCl, 10 mM HEPES, 1 

mM EDTA, pH 7.0).  Aliquots (100 µL; containing approximately 0.1 mg of lipid) of the 

liposome suspension were diluted into 2 mL of the eluting buffer.  CF was excited at 495 

nm and the emitted light was detected at 520 nm in a Deltascan spectrofluorometer 

(Photon Technology Instruments).  The fluorescence intensity was measured as a 

function of time under constant stirring and the test compound was added.  The increase 

in fluorescence intensity was the result of the release of CF from the liposomes and its 

dilution from the quenching agent, DPX.  The maximal increase in fluorescence intensity 

was measured after the addition of 150 µL of 5% Triton-X 100. The liposome 

permeabilization was plotted as % release of CF relative to maximal release. 

Channel formation in planar membranes  

Electrophysiological studies were conducted on some of the analogs to determine 

whether they were able to permeabilize planar phospholipid membranes devoid of 

proteins or other mitochondrial factors. Planar phospholipid membranes were generated 

using the monolayer method as previously described (101) and modified (74).  The lipids 

comprising the monolayers were 1,2-diphytanoyl-sn-glycero-3-phosphocholine, 

asolectin, and  cholesterol at a 1:1:0.1 ratio by weight.  The aqueous solutions were 1.0 M 
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KCl, 1mM MgCl2, 5mM PIPES pH 6.9 on both sides of the chamber.  The bilayer was 

formed across a 100μm diameter hole in a Saran (polyvinylidene chloride) partition 

Calomel electrodes were used to interface with the aqueous solution, the voltage was 

clamped at 10 mV and the current recorded using a Digidata 1322A digitizer by Axon 

Instruments and Clampex 9.0 software by Axon Laboratories.  To form a channel, 

successive additions of 5-20 μL of 0.05 mg/mL of the analog in 2-propyl alcohol were 

stirred into the aqueous solution (5 mL) on one side of the membrane.  The vehicle has no 

effect and its final concentration was less that 1% (v/v).    

RESULTS 

 The analogs were tested for their ability to permeabilize the outer membrane of 

isolated rat liver mitochondria to proteins, using the cytochrome c oxidation assay.  

Permeation through the MOM limits the rate of oxidation of exogenously-added 

cytochrome c by cytochrome oxidase in the inner membrane and thus the initial rate of 

oxidation of cytochrome c was utilized as a measure of the permeabilization of the MOM 

to proteins.  Sample dose-response curves are shown in Fig. 4.4.  Note that the shapes of 

these curves vary from rectangular hyperbola to sigmoid, making rigorous comparisons 

difficult.   Generally a dose of 30 nmoles per 10 µg of mitochondrial protein was chosen 

as the common dose for comparison because it was low enough to avoid pronounced 

saturation by some analogs but high enough to detect permeabilization by the less-

effective analogs.  Results with lower doses are also reported.  The sensitivity of 

mitochondria to MOM permeabilization varied from one isolation to the next so the 

permeabilization results summarized in Table 4.2 are expressed as a percentage of the 
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permeabilization achieved by ceramide in the same mitochondrial preparation, either C16-

Cer or C8-Cer, as appropriate.   

 

Figure 4.4: Examples of dose–response curves of the analogs used. The cytochrome c oxidation rate 

was used to assess the permeability of the MOM to proteins. The indicated amount of analog was 

added to 0.7 mL of a mitochondrial suspension.  

An indication of MOM permeabilization was also obtained by measuring the extent of 

release of adenylate kinase.  This is not a measure of MOM permeabilization but rather 

an indication of the fraction of mitochondria that have been permeabilized.  With one 

notable outlier (vide infra) the MOM permeabilization assay and the adenylate kinase 

release assay yielded similar results for the analogs when compared to the effect of 

ceramide (Fig. 4.5).  The permeabilizing ability of the analog is expressed as a fraction of 
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the ability of the corresponding ceramide, either C16-Cer or C8-Cer.  The line drawn is not 

fit to the data but is a theoretical line for a 1:1 correlation between the two experimental 

results. 

 

Figure 4.5: Correlation between changes in MOM permeability and adenylate kinase release by 

analogs. The “permeabilization relative to ceramide” is the rate of cytochrome c oxidation induced 

by the analog divided by that induced by ceramide (C16-Cer for triangles and C8-Cer for inverted 

triangles) under the same conditions. “adenylate kinase release relative to ceramide” is the activity of 

adenylate kinase released from mitochondria by analog addition divided by that released by 

ceramide. The error bars are standard error of at least three experiments. 
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The MOM permeabilization is dependent on the extent of insertion of the analog into the 

mitochondria, the propensity for channel formation, and the stability of the channels. 

Typically, only 0.3 to 1% of the added analog actually inserted into the mitochondrial 

membranes (Table 4.3).  Phytoceramide was the exception with nearly 5% insertion.  The 

extent of insertion helped to interpret the observed ability of an analog to permeabilize 

the MOM. 
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Table 4.3 Extent of delivery of ceramide and its analogs to mitochondrial membranes.  The indicated 

amount of lipid was added to a mitochondrial suspension (160 μg protein).  The percent of the added 

lipid that incorporated into mitochondria is shown as mean ± S.E. of 4 trials or the values of 

individual trials.   Column 4 shows the extent of analog insertion when added with equal amounts of 

C16-Cer.  The insertion of C16-Cer was not affected by the presence of the analog.  Column 5 is the 

T-test probability value obtained when comparing results in column 3 and 4.   

Ability of analogs to permeabilize the MOM to proteins  

Changes in the non-polar portions of ceramide did not interfere with channel 

formation.  The analogs of ceramide having a shorter N-acyl chain {L1} or a shorter 

sphingosine backbone {L2, L5} were more potent in permeabilizing the MOM than C16-

Cer (Table 4.2).   For C2-ceramide (79) the additional potency was attributed to an 

enhanced ability to incorporate into the mitochondrial membrane.  That is not the case for 

C10-ceramide {L1} (Table 4.2, column 5) as the permeabilization was increased 6 fold 

despite no difference in the degree of incorporation into the MOM.  Increasing the 

effective bulk of the hydrocarbon chain by using fluorescently labeled C6-NBD-ceramide 

{L4}, or C18:1-Cer {L6} with a cis double bond in the middle of the acyl chain, inhibited 

cytochrome oxidase activity.  After correction for the inhibition, channel formation by 

C18:1-Cer {L6} was indistinguishable from that of C16-Cer (Table 4.2).   

Compound nmoles 

added 

% incorporation % incorporation 

in the presence 

of C16-Cer 

P value 

D-C16-Cer 56 1.04 ± 0.23   

L-C16-Cer {S1} 56 0.41 ± 0.06   

C10-Cer {L1} 66 0.95 ± 0.07 2.45 ± 0.34 0.01 

Phytoceramide {T2} 54 4.78 ± 0.80 1.64 ± 0.36 0.004 

N-Me-C16-Cer {A3} 54 0.74, 0.85   

1-O-Me-C16-Cer {H1} 54 1.00, 1.25   

3-O-Me-C16-Cer {H2} 54 0.35, 0.95   

15E-C16-Cer {T1} 56 0.23, 0.42   
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Major alterations in ceramide’s trans double bond were also well tolerated (Table 

4.2 and table 4.4).  

Compound Code Liposome 

 % release 

MOM  

% perm. 

Adenylate Kinase 

% release 

(2S,3R,4E) C8-ceramide 

 

L3 17 ± 2 

22 ± 3 

36 ± 4 24 ± 2 

(2S,3R,4E) C8-ceramine
a
 A2 100 N/D none 

(2S,3R,4E) C2 - OCH3 - C8-

ceramide 

A5 18 ± 2 

24 ± 3 

18 ± 3 18 ± 2 

(2S,3R,4E,6E)C8-ceramide 

{diene} 

T5 32 ± 3 

40 ± 3 

62 ± 5 42 ± 4 

(2S,3R,4Z) C8-ceramide  

{cis analog} 

T6 37 ± 3 

47 ± 4 

61 ± 6 39 ± 7 

(2S,5R,3E) C8-ceramide 

 

T7 36 ± 3 

46 ± 4 

76 ± 6 43 ± 6 

 
Table 4.4: Comparison of channel-forming activity in mitochondria and liposomes. Liposomes and 

mitochondria were treated with ceramide analogs to assess the latter's ability to permeabilize 

membranes. For the liposomes (column 3) the % release of contents was performed at 2 different 

doses: 87 and 147 nmol per 2.5 mL of liposome suspension. For the MOM permeabilization (column 

4) results are expressed as a % permeabilization achieved by hypotonic shock. The dose used was 

0.19 nmol/μg protein. Measurements of adenylate kinase release (column 5) are expressed as percent 

of the kinase activity released following treatment with 0.25 nmol/μg protein. Release from liposomes 

was complete with as little as 15 nmol per 2.5 mL of liposome suspension. MOM permeabilization 

could not be done (N/D) because of strong inhibition of cytochrome oxidase. 

Some of these were analogs of C8-ceramide.  Under identical treatments, C8-Cer 

{L3} permeabilized the MOM to cytochrome c 36% of the maximal permeabilization, 

whereas the cis isomer {T6} resulted in a 61% of maximal permeabilization (Table 4.4).  

An analog with an extra double bond (6E) in conjugation with the first {T5} 

permeabilized the outer membrane to the same extent as the cis isomer {T6}.  Moving the 

4E double bond to a position between the two hydroxyl groups by putting it at the C3 

position and moving the C3-hydroxyl group to the C5 position {T7} did not prevent 

MOM permeabilization.  Similar results were obtained with analogs of C16-Cer.  C16-
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phytoceramide {T2}, where the 4E-double bond is replaced by a C4-hydroxyl group, had 

a 2-fold higher ability to permeabilize the MOM as compared to C16-Cer but this can be 

more than accounted for by an enhanced ability to insert into the MOM (Table 4.3).  

Replacing the 4E-double bond by a C4, C5-triple bond {T3} also did not significantly 

affect the ability of the molecule to permeabilize the MOM.  Moving the double bond 

farther down the chain {T1} to a position that does not form an allylic system results in 

an enhanced MOM permeabilization, despite a substantial reduction in its ability to insert 

into mitochondria.   Hence the location, conformation, and degree of unsaturation do not 

have significant effect on channel forming ability.  

The amide linkage in ceramide is proposed to have similar organizing effects as 

the amide linkages in proteins (102).  The hydrogen-bonding ability of this linkage was 

proposed to organize ceramide monomers into columns.  We found that increasing the 

hydrogen-bonding ability of this region by introducing a “urea” linkage {A4} resulted in 

an enhanced ability to permeabilize the MOM (Table 4.2).  Moreover, reducing the 

hydrogen-bonding capacity by using C8- and C16-ceramines {A1, A2}, which differ from 

ceramide by having an amino instead of an amide group, eliminated the molecule’s 

ability to permeabilize MOM to proteins.  Since both of these ceramines strongly inhibit 

cytochrome oxidase activity, release of adenylate kinase from the mitochondrial 

intermembrane space was measured.  The ceramines caused no significant release of 

adenylate kinase.  For C16-ceramine, kinase release was -0.6 ± 7% for the highest dose 

tested (8 nmol/µg mitochondrial protein).  C8-ceramine was much more effective at 

releasing carboxyfluorescein from liposomes than C8-Cer (Table 4.4) showing that it 

readily forms channels but these are very small.  Methylation of the amide nitrogen, 
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affording N-methyl-C16-Cer {A3}, drastically reduced but did not completely eliminate 

the ability of the molecule to permeabilize the MOM to cytochrome c (Table 4.2).   The 

partitioning of {A3} into mitochondria was slightly reduced, however the reduced 

insertion into the membrane of this analog could not account for the extent of its loss of 

function. 

 

 

Table 4.5: Cooperativity between C16-ceramide and its analogs. The analog was mixed in equimolar 

quantities with C16-Cer and the permeabilization of the MOM was compared to the average 

permeabilization observed with equal total amounts of either C16-Cer or the analog alone.  At least 3 

Compound Code Combined 

effect 

Expected 

average 

P value Nature of 

interaction 

(2R,3S,4E) C16-ceramide S1 0.33 

 

0.0005 

 

Antagonistic 

(2S,3S,4E) C16-ceramide S2 1
a
 0.36 Neutral 

(2S,3R,4E) N-methyl-C16-

ceramide 

A3 0.21 

 

0.003 

 

Antagonistic 

(2S,3R,4E) C16-urea-

ceramide 

A4 1.5
a
 

 

0.015 

 

Synergistic 

(2S,3R,4E) 3-O-methyl-C16-

ceramide 

H2 1.0 

 

0.25 

 

Neutral 

(2S)-3-keto-C16-dh-ceramide H3 1.0 0.41 Neutral 

(2S,3R,15E) C16-dh-

ceramide 

T1 1.3 

 

0.15 

 

Neutral 

(2S,3R,4R) C16-

phytoceramide 

T2 0.52
a
 

 

0.009 

 

Antagonistic 

(2S,3R) C16-4,5-tb-ceramide T3 0.95
a
 

 

0.33 

 

Neutral 

(2S,3R,4E) C16-(4,5-allene)-

ceramide 

T4 1.3 

 

0.06 

 

Neutral 

(2S,3R,4E) C10-ceramide L1 1.5
a
 

 

0.04 

 

Synergistic 

(2S,3R,4E) 13C/C16-

ceramide 

L2 1.4
a
 

 

0.02 

 

Synergistic 

N-palmitoyl-serinol L5 1.4 0.002 Synergistic 
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experiments were performed for each condition and P values for the t-tests are listed.  Using 95% 

confidence, ratios significantly greater than 1 are labeled synergistic; significantly less than 1, 

antagonistic; not significantly different, neutral. 
a
 The increase in MOMP resulting from the addition 

of a total of 3.6 nmoles/µg protein of an equimolar mixture of C16-Cer and the specified analog was 

compared to 3.6 nmoles/µg protein of either C16-Cer or the analog alone. In the other experiments, 

5.6 nmoles/µg protein were used. 

The ability of {A3} to form channels, even at a much reduced potency raises a 

severe problem with the working model of the ceramide channel where the hydrogen 

bonding from the amide nitrogen is essential to the overall structure. In the model, the 

amide nitrogen of one ceramide molecule forms a hydrogen bond with the carbonyl 

group of another to form ceramide columns. Methylation of the amide nitrogen as in 

{A3} would effectively prevent such interactions.  However, in molecular dynamic 

simulations performed by Andriy Anishkin (90), whereas the working model of the 

ceramide channel is the predominant form arising from such simulations, other, minor 

forms were also detected.  In some of these the carbonyl oxygen is not hydrogen bonding 

with the amide hydrogen of the adjacent ceramide but hydrogen bonding with a C1-

hydroxyl through a water bridge .  Thus it may be possible for {A3} to form a similar 

structure.  
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Figure 4.6 showing the top view of a ceramide channel structure. This figure, which was obtained by 

Andriy Anishkin as part of the structures formed by simulated annealing, is one of a few structures 

in which the carbonyl oxygen forms a hydrogen bond with one of the hydroxyl groups rather than 

forming a hydrogen bond with the amide group of an adjacent ceramide molecule. In this structure, 

the ceramide columns are arranged in parallel rather than anti-parallel. 

The C1 and C3 hydroxyl groups have been proposed to stabilize channel structure 

via hydrogen bonds with the corresponding functional groups on adjacent ceramide 

molecules.  Analogs of these functional groups were utilized to determine the 

contribution of these groups to the channel structure. O-Methylation of the C1-hydroxyl 

group {H1} was chosen because the methyl group should prevent this hydroxyl group 

from participating in a hydrogen bond. The methylation of the C1 hydroxyl resulted in an 

almost complete loss of any stable MOM permeabilization despite no change in ability to 

insert into mitochondria (Table 4.5).  When the ability of {H1} to release adenylate 

kinase was tested, it was almost double that observed with C16-Cer indicating that twice 

as many mitochondria were permeabilized, if only transiently, by {H1}.  When 

reconstituted into planar membranes, {H1} produced conductances that were transient 



65 
 

(vide infra) as opposed to the growing conductances observed with C16-Cer.  These were 

similar to those published for sphingosine (36) except that these are large enough to allow 

the release of adenylate kinase (Fig. 4.5).   

Unlike {H1}, methylation at the C3-hydroxyl {H2} produced functional properties 

very similar to those of C16-Cer (Table 4.2).  Both the cytochrome c oxidation assay and 

the adenylate kinase release assay produced results indistinguishable from those of C16-

Cer.  The importance of the location of the C3-hydroxyl group and the stereochemistry of 

the adjacent chiral center were tested by relocating the hydroxyl to the C5 position {T7} 

and by changing configuration from (2S,3R)-C16-Cer to (2S,3S)-C16-Cer {S2}, 

respectively. Neither of these alterations had a large effect on the ability of these 

molecules to permeabilize MOMs of isolated mitochondria (Table 4.2).  Thus the 

location and orientation of the C3-hydroxyl can be changed with minimal consequences.  

By sharp contrast, converting the (2S,3R)-C16-Cer to (2R,3S)-C16-Cer {S1} (i.e. an 

additional change in the chirality at C2) greatly reduced its ability to permeabilize 

MOMs, consistent with the importance of the C1-hydroxyl group (Table 4.2).  Unlike the 

results with {H1}, {S1} was unable to permeabilize the MOM or release adenylate kinase 

at 1 nmole/µg protein and produced only 16% of the permeabilization of  C16-Cer at 3 

nmoles/µg protein.  The amount of insertion was reduced by a little over half but not 

enough to account for the large reduction in ability to permeabilize the MOM.  Thus, the 

stereochemistry of ceramide that limits the possible and preferred positions of its polar 

groups (94), can also influence the propensity for channel formation in the MOM.   
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Interactions between D-e-C16-ceramide and its analogs 

 Isolated mitochondria were treated with either C16-Cer alone or the analog alone, 

or an equimolar mixture of C16-Cer and the analog at half the dose.  Thus, the total 

amount of sphingolipid added was kept constant.  The ability of each of the three 

treatments to permeabilize the MOM to cytochrome c was measured. Examples of the 

results are shown in Fig. 4.7.  For {A4} and {L2} the simultaneous presence of both lipids 

(designated as both) yielded a higher rate of cytochrome c oxidation (and therefore a 

higher permeability) than the average of the individual treatments (avg), thus indicating 

synergy.  The converse was true for {T4}, indicating antagonism.   For {S2} there was no 

significant difference, indicating neutrality or no cooperativity. Depending on the 

experimental set, 40 nmol or 60 nmol of lipids were utilized (as indicated in Table 4.4).  

The permeability resulting from the combined treatment (“combined effect” in Table 4.4) 

was compared to the “expected average” which is the average of the permeabilities 

observed with the individual sphingolipid treatments. The ratio is reported in Table 4.5 

along with the P values of statistical significance and the interpretation of the results.  

Ratios significantly greater than 1 indicate synergy and ratios significantly less show 

antagonism.   

A subtle change, such as the replacement of the 4E double bond of ceramide with 

a C4,C5-triple bond {T3}, resulted in a neutral effect when combined with C16-Cer (Table 

4.5).  Experiments with the diastereomer {S2} (2S,3S as opposed to 2S,3R for C16-Cer) 

were also consistent with simple neutrality (Fig. 4.7 and Table 4.5).  
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Figure 4.7: Cooperativity between analogs and C16-Cer. For an individual addition, a total of 40 

nmol was used. For combined additions (both), 20 nmol of each was used. The average bar (avg) 

shows the average of the results obtained with each lipid alone. The statistics are shown in Table 4.5. 

The individual and combined additions for each analog were performed with the same batch of 

mitochondria under the same conditions to avoid the variability in sensitivity to ceramide found 

among mitochondrial preparations. 

Treating mitochondria with a mixture of C16-Cer and the shorter chain analog, 

13C/C16:0 {L2} resulted in a permeabilization that was greater than the average of 

treatments with individual compounds (Fig. 4.7).  Similar results were obtained with 

other short-chain analogs {L1, L5} (Table 4.4) and with urea-ceramide {A4}. 
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Mitochondria treated with an equimolar mixture of ceramide and phytoceramide 

{T2} achieved a much reduced level of permeabilization than expected from averaging 

the individual treatments (Fig. 4.7, Table 4.4).  This inhibition was also found between 

phytoceramide {T2} and L-e-C16-Cer {S1} (data not shown).  A similar antagonistic 

interaction was found between C16-Cer and either N-methyl-C16–Cer {A3} or the 

enantiomer, (2R,3S) {S1}.   

The type and degree of cooperativity correlates with the channel-forming ability 

of the analog. A plot of the channel-forming potency relative to that of C16-Cer versus the 

cooperativity ratio from Table 4.5 shows the strong correlation (Fig. 4.8).  The upper 

right quadrant contains data from the analogs showing synergy and higher propensity for 

channel formation whereas the lower right quadrant contains data from those displaying 

antagonism and lower channel-forming propensity.  Analogs showing no cooperativity 

and essentially similar channel-forming propensity to C16-Cer tend to cluster at the 

“origin”.  The other two quadrants are essentially vacant.  

The permeabilization of the MOM following the dispersal of ceramide or an 

analog must involve at least two processes: insertion and self-assembly.  The 

cooperativity could take place at one or both of these.  The influence of combined 

delivery on the insertion of the sphingolipids was assessed for one analog showing 

synergy {L1} and one showing antagonism {T2} (Table 4.3).   The presence of C16-Cer 

influenced the ability of the analogs to insert into the MOM in harmony with the 

observed cooperativity.  The amount of {T2} that inserted when combined with C16-Cer 

was one third of that measured following its individual addition whereas the insertion of 
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{L1} doubled.  The insertion of C16-Cer was not significantly affected by the presence of 

the analog. 

 

Figure 4.8: Correlation between degree of cooperativity and ability of an analog to permeabilize the 

MOM. Relative cooperativity is from column 3 of Table4.5. The permeability relative to C16-Cer is 

from Table 4.2 column 3 after dividing by 100 and taking the log.  

The antagonism observed in mitochondrial experiments was also evident in experiments 

with liposomes, showing a direct interaction between these lipids. Premixing C16-Cer and 

C16-phytoceramide {T2} resulted in a much smaller permeabilization of liposome 

membranes than phytoceramide {T2} alone (Fig. 4.9). 
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Figure 4.9: Permeabilization of liposomes by C16-Cer, C16-phytoceramide {T2}, or the two together. 

Channel formation in phospholipid membranes 

To directly observe channel formation by ceramide analogs and to gain insight 

into their stability and dynamics, experiments were performed in defined systems 

consisting of phospholipid membranes:  planar membranes and liposomes.  In planar 

membranes, channel formation was monitored as changes in conductance to K
+
 and Cl

-
 

ions.  In liposomes, the release of carboxyfluorescein and the quenching agent, DPX, was 

used to assess the permeabilization of single-walled liposomes by the analogs.  In both of 

these experimental systems, the analogs that were able to permeabilize the MOM were 
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also able to permeabilize phospholipid membranes that were free of proteins, 

demonstrating that the analogs form channels rather than inducing MOM proteins to form 

channels. 

Most of the analogs that could permeabilize the MOM produced conductances in 

planar membranes with similar characteristics to those of C16-Cer.  Examples for 

phytoceramide {T2} and urea-ceramide {A4} are shown in Fig. 4.10.  Channel formation 

occurred after a lag phase and usually required a few separate additions.  Fig. 4.10A 

shows how a sustained conductance developed after a final addition of 1 nmole of {A4}.  

The conductance increased in steps of varying size until it reached a plateau.  Sometimes 

the increase was rapid, reaching a high conductance (Fig. 4.10B).  At the reduced gain 

required to observe the total conductance the increase appears to be very smooth.  

Addition of La
+3 

resulted in channel disassembly after a variable delay (Fig. 4.10B), 

which is similar to the effect of La
+3

 on a C16-ceramide channels as previously reported 

(30).   The variable delay is characteristic of a stochastic process (30) and is also 

consistent with the formation of a single channel that enlarges in size.  Most of the 

analogs appear to form a single large channel in the planar membrane (data not shown), 

as was demonstrated for ceramide (30).        

 



72 
 

 

Figure 4.10: Electrophysiological recording of conductances formed by ceramide analogs in planar 

phospholipid membranes. A. The formation of a channel by urea ceramide {A4}. Equal amounts of 

the analog were added at intervals (for a total of 4.6 nanomoles) with the last shown in the figure. B. 

The formation of a C16-phytoceramide {T2} channel and its partial disassembly by the addition of 

LaCl3. Channel formation followed the addition of 0.46 nmol of C16-phytoceramide {T2}. C. 

Segments of conductance transients observed after addition of 1 nmol of ceramide methylated at the 

C1-hydroxyl {H1}. The bursts shown were observed over a 40 min time period. D. Transient 

channels formed by {L6} C18:1-ceramide. A total of 25 nmol of C18:1 was added at intervals and 

similar patterns of channel growth and disassembly were seen after each addition. In all cases the 

transmembrane voltage was clamped at 10 mV. 

Marked exceptions were the behaviors of the conductances produced by 1-O-methyl-C16-

ceramide {H1}, N-methyl-C16-ceramide {A3} and C18:1-Cer {L6}.  With these 

compounds, the conductance rose rapidly but was transient, declining and returning to the 

baseline shortly thereafter.  This behavior was often observed multiple times in the same 
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membrane.  Only occasionally would a prolonged conductance form. The analog with the 

shortest conductance bursts was {H1} (Fig. 4.10C).  The figure shows samples of 

conductance burst recorded within a 40 min period of activity.  {L6} was at the other end 

of the spectrum, producing greater conductances but these also tended to decay (Fig. 

4.10D).  The addition of more sample produced a second transient conductance.  {A3} 

was intermediate between these (data not shown).  The behavior of these analogs is 

consistent with a less stable structure and in agreement with the observations made with 

isolated mitochondria.  {H1} produced virtually no permeability; {A3} had a much 

diminished permeabilizing ability (21% of that induced by C16-cer, Table 4.2); {L6} 

produced an effective permeabilization similar to C16-Cer.  Clearly the channel dynamics 

are not detectable in mitochondrial experiments and only the average permeability to 

cytochrome c is assessed. 

In general, liposome permeabilization experiments and adenylate kinase release 

experiments produced results in agreement with mitochondrial permeability 

measurements (Table 4.4 and Fig. 4.8). {H1} and the ceramines {A1} and {A2} were the 

exception.  {A2} induced the maximal release of liposomal contents, but did not facilitate 

the release of adenylate kinase from the mitochondrial intermembrane space (Table 4.4).  

The fact that ceramine can permeabilize liposomes to carboxyfluorescein, but did not 

permeabilize the MOM to adenylate kinase is consistent with its formation of  small 

channels capable of allowing small molecules to cross membranes, but not large enough 

to allow the passage of proteins. These conductances resemble those published for 

sphingosine (36),  Like {H1}, these conductances did not grow in size but returned to the 

baseline and were likely the result of the formation of small pathways such as the toroidal 
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structures induced by amphipathic structures (85 – 87).  Unlike {H1} the transient 

conductances did not become large enough to release adenylate kinase from 

mitochondria.   

DISCUSSION 

The data presented show that the structure of ceramide can be altered in a number 

of ways without losing the ability of the molecule to permeabilize membranes in a 

manner that is consistent with self-assembly into large channels capable of translocating 

proteins through membranes.  The mitochondrial and planar membrane experiments 

suggest that many of the analogs form large, stable channels.   The results indicate the 

relative importance of specific structural features of ceramide for channel formation, 

namely the differential importance of the hydroxyl groups, the role of the trans double 

bond, and the importance of the stereochemistry.   

Ceramide channel formation is minimally affected by apolar chain length  

Physiologically, the length of the N-acyl chain of ceramide is clearly very 

important (103, 104). For example, the ceramide synthases show strong specificity for 

different acyl-CoA substrates (105 - 108).  Some preferentially produce long-chain 

ceramides such as C16-Cer, whilst others preferentially produce very long-chain 

ceramides such as C24-Cer (107, 108).  Many enzymes that metabolize ceramide do not 

recognize C2-Cer (109, 110).  Yet, with regard to the ability to form channels, the length 

of the N-acyl chain was found to be relatively unimportant.   After compensating for the 

difference in delivery to the mitochondrial membranes, the potency of C16-Cer and C2-

Cer were found to be indistinguishable (79).   Here we tested analogs having shorter N-
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acyl chains {L1, L3} and shorter sphingoid base backbones {L2, L5}.  The results 

indicate that these can also form permeability pathways in membranes in a manner 

consistent with channels and interact synergistically with ceramide.  For {L1}, the 

synergy arises from the ability of C16-Cer to aid in the insertion of {L1} into 

mitochondria.   

It is important to note that the minimal ceramide analog, N-palmitoyl-serinol 

{L5}, functions very well with only one aliphatic chain.  Thus, one might ask why natural 

ceramides have such a large amount of apolar mass.  The simplest answer would be that 

the extra bulk anchors the lipid in the membrane, limiting spontaneous, uncatalyzed 

motion between membranes of different organelles.   

C1- hydroxyl group is critical to stable ceramide channel formation; modifications 

to the trans double bond are well tolerated 

An important feature in the ceramide structure is the C4,C5-trans double bond in 

the sphingoid base backbone (93, 103, 111)  For permeabilization of the MOM, many 

changes were well tolerated, namely conversion of trans to cis, displacement of the 

double bond relative to the adjacent hydroxyl, and replacement of the double bond by a 

third hydroxyl.  Thus, a variety of structures are capable of permeabilizing membranes in 

a manner consistent with the channels formed by C16-ceramide.   

The ability to form stable channels was lost by O-methylation of the C1-hydroxyl 

group {H1}. It forms transient pores capable of allowing adenylate kinase release but too 

short-lived to significantly increase the overall MOM permeability to proteins.  The 

transient conductances were evident in planar membrane experiments.  By contrast, O-
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methylation of the C3-hydroxyl group {H2} was well tolerated.  Similar results with the 

C3-keto {H3} analog provide additional evidence that C3-hydroxyl modifications are 

well tolerated.  Further evidence for a difference in the importance of these two hydroxyl 

groups comes from results obtained with stereochemical isomers.  The diastereomer 

studied in which “3R” was changed to “3S” {S2} showed no change in MOM 

permeabilizing properties despite a change in orientation of the C3-hydroxyl.  However, 

the enantiomer, with the same change at the C3 position and an additional change from 

“S” to “R” at the C2 position {S1}, was much weaker in its capacity to permeabilize 

mitochondria.   Thus the presence and orientation of the free hydroxyl at C1 is critical to 

the stability of the channels, indicating that this hydroxyl forms part of a highly organized 

structure.     

Amide linkage provides stabilizing structural support for the ceramide channel 

The importance of the amide linkage as an organizing unit is supported by the 

finding that the conversion of an amide chain to an amine-linked chain in ceramine {A1, 

A2} prevents the permeabilization of the MOM to proteins.  If the ceramides are arranged 

in the channel as proposed by the structural model (18, 80) then the conversion of the 

amide linkage to an amine would indeed destabilize the structure by eliminating the 

hydrogen bonding that has been proposed to be the basis for the columns that make up 

the channel.  By contrast, the greater hydrogen-bonding and ordering ability of a urea 

linkage according to the structural model would be expected to stabilize the channel, and 

indeed this analog {A4} forms channels. The introduction of a methoxy group in the 

amide region {A5} still allowed channel formation, indicating that the modification is 

tolerated.   
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 N-methyl C16-Cer {A3} can still form channels, which is in apparent contradiction 

to the structural model because the methyl group that replaces the C3 hydroxyl cannot 

participate in hydrogen bonding.  Whilst its ability to permeabilize the MOM is much 

reduced as compared to C16-Cer and in planar membranes it forms unstable channels, the 

ability to form channels at all seems to invalidate the structural model of the ceramide 

channel.  However, channel formation by {A3} is antagonistic with that of C16-Cer, 

indicating that structural incompatibilities were introduced by N-methylation.  Molecular 

modeling studies show that a channel can be formed with the carbonyl group hydrogen-

bonding with the C1-hydroxyl group through a water bridge as shown by the  example 

structure.   This structure is quite different from the working model of the ceramide 

channel (30). 

Cooperativity between ceramide and analogs 

Combined addition of C16-Cer and an analog showed cooperativity in membrane 

permeabilization in certain cases: either synergy or antagonism.  The cooperativity 

correlates well with the ability of individual lipids to permeabilize the MOM.  

Surprisingly, the cooperativity seems to involve the insertion into the MOM.  Insertion 

may be catalyzed by structures formed by sphingolipids in the membrane.  Perhaps 

ceramide forms phases or domains in the membrane that could engage or exclude other 

analogs depending on the compatibility or incompatibility of the molecular structures (i.e. 

their ability to bind to each other).  Organized structures composed of many sphingolipids 

would require that each component fit well sterically and in bonding interactions.  Thus 

very similar structures would be interchangeable, complementary structures would show 
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synergy and poorly compatible structures would show antagonism.  Without structural 

information it will be difficult to understand the molecular basis for the cooperativity.   

Influence of structural changes on channel function 

The ability of ceramide to self-assemble and form membrane channels is 

remarkably resistant to changes in molecular structure.  However, structural changes in 

specific regions such as the C1-hydroxyl and the amide linkage do decrease channel 

stability or form channels too small to release proteins.  These changes would reduce or 

eliminate the ability of the channel to release proteins from mitochondria.  A reduction in 

the rate of release and amount of protein release does result in a failure to initiate 

apoptosis.  The use of lasers to damage mitochondria in live cells failed to induce 

apoptosis presumably because of insufficient protein release and thus failure to achieve a 

critical cytosolic concentration of pro-apoptotic proteins such as cytochrome c.  Thus 

natural selection pressure maintains the structure of ceramide and the ability to form large 

and stable channels.       

CONCLUSIONS 

The results of previously published work on ceramide channels strongly suggests 

that these channels have a highly organized structure, one in which an altered 

configuration of the polar lipid head region would disrupt the structure.  The results 

presented here identify key functional groups important for ceramide channel formation 

and structural aspects where changes are tolerated. The C1-hydroxyl is indispensable for 

channel stability whereas C3-hydroxyl is not critical for channel formation.   It is 

interesting that further elaborations of ceramide in cells involve additions to the C1-
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hydroxyl rather than the C3-hydroxyl, thus interfering with the propensity to form 

channels.  The amide linkage is also highly important for channel stability.  Reducing the 

length of the hydrocarbon chains favors channel formation and indeed a single chain is 

sufficient.   The allylic system is not necessary and the trans double bond does not seem 

important to the ability to form channels.  The sensitivity of channel stability to the 

stereochemistry at C2 further supports the notion of ceramide channels being highly-

organized structures.  

Note: This body of research was accomplished in collaboration with Meenu Perera 

who is an equal contributor to this work. The experiments with planar membranes 

reported here were performed by various undergraduate students. Leah J. Siskind did 

the experiments with C8 ceramide. I and Meenu shared the responsibility of testing 

various analogs of ceramide for their ability to induce MOMP. Drs. Szulc, Bielawska, 

Bielawski, and Bittman provided us with the various analogs.  
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CHAPTER 5 MECHANISTIC INSIGHTS INTO BAX MEDIATED MOMP 

USING IONIC STRENGTH 

ABSTRACT 

Mitochondrial outer membrane permeabilization (MOMP) is a complex multi-step 

process. Studies of MOMP in vivo are limited by the stochastic variability of MOMP 

between cells and rapid completion of IMS protein release within single cells. In vitro 

models have provided useful insights into MOMP.   We have investigated the dynamics 

of Bax mediated MOMP in isolated mitochondria using ionic strength as a tool to control 

the rate of MOMP. We find that Bax can induce both transient permeabilization, detected 

by protein release and more substantial long-lasting permeabilization measured by the 

rate of oxidation of added cytochrome c. We found that higher ionic strength causes Bax 

to form small channels quickly but the expansion of these early channels is impeded. This 

inhibitory effect of ionic strength is independent of tBid. Channels formed under low 

ionic strength are not destabilized by raising the ionic strength. Increase in ionic strength 

also increases the ability of Bcl-xL to inhibit Bax mediated MOMP. Ionic strength does 

not affect Bax insertion into mitochondria. Thus ionic strength influences the assembly of 

Bax molecules already in membrane into channels. Ionic strength can be used as an 

effective biophysical tool to study Bax mediated channel formation. 

INTRODUCTION 

Apoptosis is a form of programmed cell death that is crucial to the elimination of 

damaged or unwanted cells. Its proper execution is vital for appropriate development. A 

key event in the apoptotic pathway is increased permeability of the mitochondrial outer 

membrane (MOM
†
), which leads to the release of intermembrane space (IMS) proteins. 



81 
 

These proteins trigger the activation of downstream caspases, which carry out the 

repackaging of the cell into apoptotic bodies. The rate-limiting increase in MOMP 

leading to the release of IMS proteins is well known to be modulated by Bcl-2 family of 

proteins (13, 20, 112, 113). The Bcl-2 proteins can be categorized broadly on the basis of 

their mode of action into pro-apoptotic and anti-apoptotic proteins. Pro-apoptotic BH1-3 

proteins act directly to enhance MOMP by forming protein –permeable pores. BH3-only 

proteins increase MOMP indirectly by activating BH1-3 proteins or inhibiting anti-

apoptotic Bcl-2 proteins (or both). Anti-apoptotic BH1-4 type proteins inhibit the action 

of the pro-apoptotic proteins (112 - 115).  

The control of MOMP by the Bcl-2 proteins has been studied extensively. Bax, normally 

cytosolic, upon activation by the BH3 only protein, tBid, targets the MOM, inserts, and 

forms oligomeric pores (40, 116 - 119).  Bcl-xL inhibits MOMP by either out-competing 

Bax for tBid and/or interacting directly with Bax to inhibit its insertion into the MOM 

(40). The molecular roles of different domains of Bax in membrane insertion are well 

known (54, 57, 119 - 121). Some amino acids have also been identified that either 

enhance or eliminate the pro-apoptotic function of Bax (57, 121) but the properties of the 

oligomeric channel such as size, stoichiometry, and kinetics of channel assembly are only 

partially understood. We sought to study the dynamics of Bax induced permeabilization 

of the MOM to proteins in isolated mitochondria using ionic strength as a modulating 

tool.  

Since MOMP is a rapid, irreversible, essentially all-or none process where most IMS 

proteins are released almost simultaneously within a few minutes (78, 122 - 124), in vitro 

models have been very useful in studying the regulation of MOMP by Bcl-2 family 
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proteins (50 -  56, 125, 126).  We use ionic strength as a diagnostic tool to provide 

mechanistic insights into the dynamics of Bax mediated permeabilization.  

MATERIALS AND METHODS 

Preparation of cytochrome c 

Horse heart cytochrome c (44mg) was reduced with 11mg ascorbate in 1mL of 0.2M 

Tris-HCl pH 7.5. The reduced cytochrome c was separated from the ascorbate by gel 

filtration through a Sephadex G-10 column equilibrated with 0.2M Tris-HCl pH 7.5.     

Isolation of rat liver mitochondria 

Fresh mitochondria were purified from rat liver as described (31). The BSA was removed 

by sedimenting mitochondria in BSA free isolation buffer and the final pellet 

resuspended in 300mM mannitol,   5mM HEPES and 0.1mM EGTA pH 7.4 (FH-buffer) 

to a final concentration of 10-20mg mitochondrial protein/mL. The mitochondrial stock 

was always kept cold and dilutions were made periodically from the stock for 

experiments.  

Purification of recombinant proteins 

Recombinant human Bax was produced as described (18) but the purification procedure 

was modified. The Bax eluted from the chitin column was dialyzed (12000 MW cutoff) 

at 4ºC for 24hrs against 3L of 1mM EDTA, 20mM Tris-HCl, pH 8. Then it was dialyzed 

again for 48hrs against 5L of 20mM Tris-HCl pH 8 to remove all remaining DTT. 

Recombinant tBid was purified as described (51). Bcl-xL was purified as described (60, 

62). All proteins were filter-sterilized (0.2 m filter), glycerol added (10% final), rapidly 
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flash-frozen with ethanol and dry-ice, and stored at -80
o
C. Protein concentration was 

determined after dialysis by the BCA method.  

Preparation of mitochondrial samples for cytochrome c oxidation and IMS protein 

release assays 

Isolated rat liver mitochondria were incubated in buffers of varying salt concentrations 

with the total osmotic pressure kept constant at 300 mOs by addition of the appropriate 

amount of mannitol.  To this mitochondrial suspension, a combination of Bcl-2 family 

proteins (Bax, tBid, and Bcl-xL) was added as needed. Prior to each experiment, the 

mitochondria were diluted to a protein concentration of 160 g/ml in FH (300mM 

mannitol, 0.1mM EGTA and 5mM HEPES pH 7.4) buffer. Since mitochondrial function 

degrades once diluted, the mitochondria were used within 10 minutes of dilution.  In all 

experiments 600 L of this mitochondrial dilution was added to 400 L of isosmotic 

buffer (with either 25.1mM KCl or 150mM KCl)  pre-mixed with appropriate amounts of 

Bcl-2 family proteins  to achieve a final mitochondrial concentration of 96 g/mL (and 

final [KCl] of either 10mM or 60mM respectively).  These isosmotic solutions are 

referred to as “KCl buffer” prefixed with the [KCl]. The same methodology was followed 

when NaCl or potassium lactobionate was tested. For 90mM buffer, the mitochondrial 

stock was diluted 50-100 fold in 150mM KCl buffer to a protein concentration of 

160 g/ml. 600µL of this suspension was then diluted with 400µL of FH buffer 

containing the Bcl-2 family proteins to achieve a final ionic strength of 90mM. The 

mitochondria were preincubated at 30
o
C with the Bcl-2 family proteins for 30 minutes 

except for time course experiments.  For all experiments using Bcl-xL, the Bcl-2 proteins 

were incubated together for 10 minutes prior to the addition of mitochondria. Once the 
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incubation period was over, 100 L of the mitochondrial suspension was used for the 

cytochrome c accessibility assay, while the rest was centrifuged and the supernatant used 

for adenylate kinase and sulfite oxidase assays. In corresponding experiments, 50 L of 

cyclosporin A (dissolved in DMSO to a stock concentration of 1mg/mL) was added to 

1mL of mitochondrial suspension to a final concentration of 50 M just prior to the 

preincubation process. 

Western blot analysis 

For all western blotting experiments, three 1mL mitochondrial suspensions (960 g/mL) 

were incubated at 30
o
C under the conditions and for the times indicated in the figure 

legends.  The triplicates were centrifuged (10,000 RCF for 5 min) and each resuspended 

into 200µL of FH buffer.  These were pooled together, mitochondria repelleted and 

subjected to sodium carbonate treatment as described (127).  The pellet was resuspended 

in 50 L of 2% SDS and incubated for 1 hr on ice. Then, the detergent solubilized fraction 

was separated from the detergent-insoluble fraction by centrifugation and 30 µL used for 

PAGE/blotting analysis. VDAC served as loading control. Bax was probed with rabbit 

anti-Bax (Ab7977: 1:1000) and VDAC was probed with rabbit anti-VDAC anti-serum 

(1:1,000,000).  Both the primary antibodies were probed with HRP tagged anti-rabbit 

secondary antibodies (1:2500 for Bax and 1:5000 for VDAC). Blots were developed with 

DAB as described in (128).  

Cytochrome c accessibility assay 

The cytochrome c oxidation or accessibility assay was performed as described previously 

(31).  After appropriate treatment of 96 g/mL mitochondria with Bcl-2 family proteins, 
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100 L of this suspension was dispersed in 600 L of cytochrome c oxidation assay buffer 

(equivalent to FH buffer (mannitol + KCl (total 300mOs), 0.1mM EGTA, 5mM HEPES 

pH 7.5) of appropriate ionic strength supplemented with 5mM DNP and 5 M antimycin 

A) and quickly assayed for cytochrome c oxidation by adding 10 L of reduced 

cytochrome c to a final concentration of ~25 M.  Cytochrome c oxidation was measured 

as decline in absorbance at 550nm. The rate of oxidation was calculated from the slope of 

the linear region of the absorbance change measured for 2 minutes. Maximal rate of 

cytochrome c oxidation (corresponding to 100% permeabilization) was determined by the 

rate of cytochrome c oxidation by equivalent amount of hypotonically shocked 

mitochondria (at least 1 volume of mitochondrial suspension to 50 volumes of double 

distilled H2O). Hypotonic lysis breaks the MOM and exposes all the cytochrome oxidase 

to exogenous cytochrome c. The % oxidation rate was calculated with maximal oxidation 

rate as 100% and rate of oxidation by control mitochondria (no treatment) as 0%. 

Cytochrome oxidase activity was strongly sensitive to ionic strength, so control and 

maximal oxidation rates were determined for each salt concentration tested. The actual 

numerical values of control, Bax-tBid treated and maximal cytochrome c oxidation rates 

at 10 and 90mM KCl are presented (Fig 5.1A) for comparison.  

Adenylate kinase (AK) assay 

The assay was performed as described previously (31).  This assay measures the release 

of the 24kDa protein, adenylate kinase, from the IMS of mitochondria. In this coupled 

enzyme assay, NADP is reduced to form NADPH which has a strong absorbance at 

340nm. (The oxidized form NADP does not have this absorbance). Prior to assaying, 
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2.5 L of a mix of Hexokinase/Glucose-6-Phosphate Dehydrogenase  (5 units each) was 

incubated in 350 L AK buffer (5mM MgSO4, 10mM glucose, 5mM ADP, 0.2mM 

NADP, 50mM Tris, and pH 7.5) to remove residual ATP. After 2-3 minute incubation, 

150 L of mitochondrial supernatant was added to the AK buffer/enzyme mix, and 

absorption was measured for 5 minutes at 340nm. The initial linear slope of increase in 

absorption was taken as the rate of AK reaction. Since all other reaction components are 

in excess, the concentration of AK is the rate-limiting factor. Hence the rate of NADPH 

formation is a direct measure of amount of AK released from mitochondria. Maximal rate 

of NADPH formation, corresponding to 100% release of AK from mitochondria, was 

measured from the activity of supernatant from equivalent amount of hypotonically 

shocked mitochondria.  The actual numerical values of AK activity used as control (0% 

AK activity or no release of AK), Bax-tBid treated and lysed (100% AK activity or 

complete release of AK) are presented in Fig 5.1B for comparison. 

Sulfite oxidase (SOX) assay 

SOX is a 120kDa IMS protein and its release from mitochondria was assayed as 

described (129). SOX reduces cytochrome c using sulfite as the electron donor. Prior to 

the assay, a one-to-one solution of 40mM Na2SO3 and 50mg/ml oxidized cytochrome c 

was made. Then 10 L of this solution (0.4mM Na2SO3 and 0.5mg oxidized cytochrome c 

final) was added to 500 L mitochondrial supernatant and the absorbance was quickly 

measured at 550nm for 5 minutes. Maximal release was measured from the activity of 

supernatant from equivalent amount of hypotonically shocked mitochondria.  SOX 

activity was strongly sensitive to ionic strength. Hence, the supernatant was 
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supplemented with suitable amount of salt by dilution from stock salt solution to adjust 

the ionic strength. The actual numerical values of SOX activity used as control (0% SOX 

activity or no release of SOX), Bax-tBid treated and lysed (100% SOX activity or 

complete release of SOX) are presented in Fig 5.1C for comparison. 
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FIGURE 5.1: Measured rates of enzymatic activity in a set of experiments showing the rates prior to 

any treatment (control rates), the rates after tBid/Bax treatment, and the maximal rates after 

hypotonic shock.  The influence of ionic strength on some of these rates is illustrated. By subtracting 

the control rates and expressing the results as a percentage of the maximal rates we correct for 

background rates and effects of ionic strength. The figure shows the rates of cytochrome c (25 M) 

oxidation (A), AK activity as measured by absorbance (OD) change at 340nm (B) and SOX activity 

as measured by absorbance change at 550nm (C) recorded from 96 g/mL mitochondrial suspensions 
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that were either untreated (control), or treated with 17nM Bax and 120nM tBid or osmotically lysed 

(lysed).  Incubations (30 min) were in either 10 or 90mM KCl buffer. * represents P value < 0. 05 and 

** represents P value < 0.01. n= 3. 

Measurement of fumarase activity 

Fumarase is a matrix enzyme that reversibly converts malate to fumarate. Fumarase 

release was measured by a standard procedure (130). Briefly 96 g/mL mitochondrial 

suspension in FH buffer was treated with varying concentrations of digitonin (from 

0.0025% to  0.1% in multiples of 2) for 5 minutes at room temperature and centrifuged 

for 5 minutes at 14000 RCF and supernatant collected. 500 L of the supernatant was 

mixed with 500 L of fumarase assay buffer (50mM malate, 50mM Na2HPO4 pH 7.3) and 

change in absorbance measured for 5 minutes at 250nm in quartz cuvettes to measure 

formation of fumarate which shows strong absorbance at 250nm. Maximal fumarase 

release corresponding to 100% was obtained by treating equivalent amount of 

mitochondria with 0.2% Triton-X100. 

Normalization of data 

Normalization of data was performed for two reasons: 1) activity varied from one 

mitochondrial preparation to another; 2) the activity of some enzymes was sensitive to 

ionic strength.  The latter was especially important because the relevant parameters 

sought were the degree of permeabilization of the outer membrane and the fractional 

release of a particular protein.  By normalizing, the results obtained at different ionic 

strengths could be compared directly.  Normalization involved subtracting the activity of 

untreated mitochondria (control) from the experimental value and dividing the difference 
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by the maximal activity after hypotonic shock (control subtracted) measured under the 

same conditions (e.g. the same ionic strength). 

Statistics 

The results are reported as means ± S.E. of at least 3 independent experiments. 

Significance was determined by Student’s t-test. *, **, *** indicate significance with P 

values <0.05, <0.01, and <.001 resp.  N/S indicates P values >0.05 and thus judged to be 

not significant. 

RESULTS 

Increase in ionic strength decreases real-time MOMP but the extent of IMS protein 

release increases 

In isolated mitochondria, MOMP can be measured in 2 ways. Firstly, release of IMS 

proteins can be measured. This provides information on the minimum size of the MOMP 

pore and also the fraction of the population of mitochondria that have been permeabilized 

but does not define the status of the pore at any given time. The second method records 

the real-time flux of cytochrome c across the outer membrane by measuring the rate of 

oxidation of exogenously added cytochrome c. MOM is impermeable to cytochrome c. 

However, once the mitochondria are permeabilized with Bax, cytochrome c crosses the 

MOM, accesses the cytochrome oxidase complex in the inner membrane and becomes 

oxidized. The rate of oxidation is directly proportional to the extent of permeabilization 

i.e. the size of the MOMP pore and the number of pores in the mitochondrial population.  

Both methods were used to observe the ability of Bax to permeabilize the outer 

membrane at different KCl concentrations.  Protein release from the IMS was monitored 

by measuring the release of adenylate kinase (AK: 24kDa).  Real-time permeabilization 
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was measured by measuring the rate of oxidation of exogenously added cytochrome c. 

Neither Bax alone (up to 50nM) nor tBid alone (up to 120nM) resulted in any significant 

MOMP by either assay method (Fig 5.2 A- B). 

However, when mitochondria were incubated with Bax and tBid at either low salt (10mM 

KCl) or high salt (90mM KCl) buffer, permeabilization was achieved (Fig 5.3A and 5.2A 

– B). After treatment, a fraction of the mitochondrial suspension was assayed for 

cytochrome c oxidation; the remaining suspension was centrifuged and the supernatant 

was assayed for AK activity. At the lower KCl concentration (10mM) a substantial 

amount of both AK release and real-time permeabilization was observed. However, at the 

higher KCl concentration (90mM), the release of AK was comparable to (e.g. in Fig 

5.3A) or sometimes more than that at low salt depending on the Bax concentration, but 

the extent of real-time permeabilization was always much lower (Fig 5.3A). The Real-

time permeabilization decreased linearly with increase in [KCl]. (Fig 5.3B) This behavior 

is not specific to KCl but rather an ionic strength effect because substituting KCl with 

either NaCl or potassium lactobionate resulted in a similar decline in cytochrome c 

oxidation rate with increasing salt concentration during the Bax/tBid treatment (Fig 

5.2C).  
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Figure 5.2:  Control experiments and 

evidence of ionic strength dependence.  A, B: 

Bax and tBid alone have little or no effect on 

MOMP.  The rates of cytochrome c 

oxidation (A) or AK release (B) by 96 g/mL 

mitochondrial suspension are expressed as a 

percent of the maximal amount.Except as 

indicated, mitochondria were incubated for 

30 min with 17nM Bax and/or 120nM tBid 

in the presence of either 10mM (black bars) 

or 90mM KCl (grey bars) buffer. C. The 

rates of cytochrome c oxidation (expressed 

as a % of the maximal values) induced by a 

30 min incubation with 17nM Bax and 

120nM tBid in the presence of varying 

concentrations of either NaCl (solid line) or 

potassium lactobionate (K lac, broken line). 

* represents P value < 0.05. n = 3. 
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Figure 5.3: Increase in ionic strength inhibits real-time permeabilization by Bax without inhibiting 

IMS protein release. A. Mitochondrial suspension was treated with 17nM Bax and 120nM tBid at 

either 10mM or 90mM KCl buffer and rates of cytochrome c oxidation (black bar) and AK release 

(grey bar) were measured. The “*” refer to the statistically significant difference between the black 

bars. B. The measured rates of cytochrome c oxidation by mitochondria exposed to tBid/Bax at the 

indicated KCl concentrations.  The results are means ± S.E. of 3 experiments. 
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In these experimental conditions, PTP did not influence MOMP as we found that CsA did 

not alter the rate of cytochrome c oxidation or AK release by Bax and tBid at either ionic 

strength (Fig 5.4). 

 

Figure 5.4: MOMP induced by Bax and tBid is independent of PTP. Mitochondria were incubated 

with 35nM Bax and 120nM tBid in the presence or absence of 50 M CsA at either 10mM KCl or 

90mM KCl for 30 minutes at 30
o
C.   Then, the mitochondria from each treatment were assayed for 

real-time permeabilization using the cytochrome c oxidation assay and the supernatant analyzed for 

extent of AK release. The statistical tests are between the black bars in each panel.  Both are 

significantly different ** P value < 0.01 and *** P value < 0.001.  n = 3. 
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It was reported that tBid causes remodeling of the inner membrane and ionic strength 

could affect this process (131).  This remodeling might explain the different rates of 

cytochrome c oxidation observed at different ionic strengths if restricted diffusion of 

cytochrome c between the cristae is rate limiting in our system and changed by the 

remodeling.  To investigate if the cristae folds limit the cytochrome c oxidation rate, we 

compared the maximal rates of cytochrome c oxidation after osmotic lysis where swelling 

unfolds the cristae and MOM permeabilization with digitonin where the cristae structures 

remain intact at doses that do not permeabilize the inner membrane (131, 132). Under our 

conditions, 0.01% digitonin selectively permeabilized the MOM without releasing the 

matrix enzyme, fumarase (Fig 5.5A). Whether mitochondria were treated with digitonin 

or hypotonic shock, in the presence of 10 or 90mM KCl buffer, the rates of cytochrome c 

oxidation were not significantly different.  In another set, mitochondria were pre-

incubated for 30 minutes with tBid to allow remodeling of the inner membrane at either 

ionic strength and then treated with digitonin and similar oxidation rates were observed 

(Fig 5.5B).  Thus any potential changes in the inner membrane due to changes in the 

ionic strength did not affect the rates of cytochrome c oxidation observed. The 

permeability of the outer membrane seems to be the rate-limiting factor in the oxidation 

of exogenous cytochrome c by mitochondria. 
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Figure 5.5: Comparison of maximal cytochrome c oxidation obtained under swelling and non-

swelling conditions. A) At 0.01% digitonin, no activity of fumarase, a matrix enzyme, could be 

detected, but at 0.02% nearly 20% of fumarase was released from 96 g/mL mitochondrial 

suspension. B) 96 g/mL mitochondrial suspension was treated with 0.01% digitonin for 5 minutes 

either without tBid or after pre-incubation of the mitochondrial suspension with 120nM tBid for 30 

minutes at 30oC at either ionic strength. Then, the mitochondrial suspension was assayed for the rate 

of cytochrome c oxidation. The mean values are the % of cytochrome c oxidation rate observed with 

an equivalent amount of osmotically lysed mitochondria at the corresponding ionic strengths. No 
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statistically significant difference was found between digitonin treated samples (with or without tBid) 

and osmotically lysed samples. (P values > 0.15). n = 3. 

 The different results obtained with the two methods of measurement of permeability 

(AK release and cytochrome c oxidation) could be explained in three ways:  

1) Change in the energetics: The higher ionic strength makes the channels flicker, 

allowing release without much permeabilization.      

2) Transient permeabilization: At the higher ionic strength the channels form for some 

time and then close resulting in restoration of a protein impermeable outer membrane.  

3) Kinetic delay: Bax channel formation begins with small or flickering channels but with 

time these become larger and more stable.  At high ionic strength this process is slow. 

Experiments were performed to distinguish among these possibilities.  

MOMP induced at lower [KCl] is not reversed by increasing the salt concentration 

One interpretation of the ionic strength effect is that Bax channels are in equilibrium 

between an open and a closed state and the ionic strength influences the position of the 

equilibrium.  Perhaps the equilibrium favors the open state at low ionic strength and the 

closed at high ionic strength. To test this, Bax mediated MOMP was induced under low 

ionic strength (10mM KCl buffer) for 30 minutes by treating mitochondria with Bax and 

tBid.  Under these conditions a significant level of MOMP was achieved.  The 

permeabilized mitochondria were sedimented (14000RCF, 5min) and resuspended in 

higher ionic strength medium (90mM KCl buffer) and incubated for another 30 minutes. 

We found that after switching from low salt to high salt (90mM), the MOMP did not 

decrease but remained at the high value found at low salt (Fig 5.6). This demonstrates 

that the process is far from equilibrium.  Thus ionic strength is not merely shifting a fast 

equilibrium between conducting states of Bax channels.  Instead, once Bax channels 
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achieve a highly permeable state, that state is not reversible.  Thus the first option is not 

correct.  A time course of growth of real-time MOMP with Bax and tBid shows that the 

rate of permeabilization is monotonic.  There is no indication of a transient 

permeabilization because at all times tested, the real-time permeability remained low at 

higher ionic strength.  Thus the second option is incorrect.  However, it is also clear that 

the permeabilization increases much faster at low salt than at high salt (Fig 5.7). Thus the 

difference between the two methods is partly explained by a difference in kinetics. 

 

Figure 5.6: Bax permeability induced at lower ionic strength was not reversed by raising ionic 

strength. Mitochondrial suspensions were treated with 8nM Bax and 120nM tBid for 30 minutes at 

30oC in either 10mM or 90mM KCl buffer. At the end of 30 minutes, the rate of cytochrome c 

oxidation by these mitochondria were determined. Simultaneously, the mitochondrial suspension 

incubated in 10mM KCl buffer was centrifuged and mitochondrial pellet resuspended in 90mM KCl 

buffer to raise the ionic strength. This suspension was incubated for 30 minutes at 30oC and at the 

end of the incubation, rate of cytochrome c oxidation measured. To correct for any loss of 
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mitochondria during centrifugation, control and lysed samples with equivalent amount of 

mitochondria were also treated in an identical manner and pellet resuspended in 90mM KCl buffer 

(control without Bax or tBid) or H2O (lysed) and rates measured. The results are means ± S.E. of 3 

experiments. 

 

 

 

Figure 5.7: Bax induced MOMP increased at a faster rate at lower ionic strength.  Mitochondrial 

suspensions were treated with 34nM monomeric Bax and 120nM tBid at 30
o
C at either 10mM KCl 

buffer (solid lines) or 90mM KCl buffer (dashed lines) and the rate of cytochrome c oxidation was 

determined at different time intervals. * represents P value < 0.05, ** - P value < 0.01. n = 3. 
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At high ionic strength, Bax forms smaller channels more rapidly 

To better understand the kinetics of Bax channel formation, the Bax-induced release of 

AK (24kDa) and that of a larger protein sulfite oxidase (SOX: 120KDa) were measured 

as a function of time and ionic strength using different Bax concentrations (Fig. 5.8). At 

all Bax concentrations tested, the rate of release of AK was faster at 90mM than at 10mM 

KCl. At the smallest Bax concentration tested (8nM), the release of SOX lagged behind 

the release of AK at both salt concentrations (Fig 5.8A and B). Since the flux of proteins 

across the membrane through the Bax pore is not rate-limiting (see discussion), the 

increase in the amount of release corresponds to the formation of channels in more 

mitochondria. The kinetic delay between the release of AK and SOX suggests that the 

channels grow in size with time. At a higher Bax concentration (17nM), the rates of 

release of AK and SOX were identical for 10mM KCl but at 90mM, the release of AK 

was faster than release of SOX (Fig 5.8C and D). It must be noted again that the rate of 

AK release was higher with 90mM KCl than with 10mM KCl.  At 34nM, with 90mM 

KCl, the amount of release of AK saturated at 30min indicating that essentially all the 

mitochondria were permeabilized but only about half of the channels were large enough 

to allow to flux of SOX.   The release of SOX increased with time and by 60min 90% of 

the AK permeable mitochondria has channels large enough to release SOX, clearly 

indicating slow channel growth. In contrast, at 10mM KCl, the release of AK and SOX 

increased synchronously (Fig 5.8E and F) indicating slower channel formation but fast 

growth to a large size capable of releasing both proteins at the same time. Clearly both 

the initial permeabilization of mitochondria, as indicated by the AK release, and the 

growth of channels, as indicated by the % of permeabilized mitochondria that released 
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SOX, are augmented by increasing the Bax concentration.  The extent of SOX release did 

not change very much comparing low and high salt but that can be explained by the 

conflicting effects of ionic strength: augmenting the formation of new channels and 

inhibiting their rate of growth.  
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Figure 5.8: Bax 

channels expand in size 

with time but this 

expansion is slower at 

higher ionic strength. 

Mitochondrial 

suspensions were 

incubated in 10mM KCl 

buffer (A, C, E and G) 

or 90mM KCl buffer (B, 

D F and H) with 120nM 

tBid and either 8nM 

Bax (A and B) or 17nM 

Bax (C and D) or 34nM 

Bax (E and F) or 50nM 

Bax (G and H) for 

various time points at 

30
o
C.   Then the 

mitochondria were 

centrifuged and the 

supernatants were 

assayed for either AK 

release (solid lines) or 

SOX release (dashed 

lines). Percentage values 

next to SOX data 

indicate % of AK 

permeable 

mitochondria that have 

been permeabilized to 

SOX.  Note that in some 

cases the error bars are 

smaller than the data 

point. The results are 

means ± S.E. of 3 

experiments. 
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tBid does not alter the sensitivity of Bax induced MOMP to ionic strength 

tBid is necessary for Bax to permeabilize the MOM. Thus, we hypothesized that the 

interaction between tBid and Bax may be sensitive to ionic strength i.e. changing the tBid 

concentration could change the sensitivity of Bax-induced MOMP to ionic strength. 

Increasing the level of tBid might enhance channel expansion at 90 mM.  To test this, 

real-time MOMP induced by Bax was measured in either 10mM or 90mM KCl buffer at 

three different tBid concentrations (Fig 5.9). The permeabilization did not change over a 

wide concentration range of tBid at either ionic strength. This is consistent with a 

catalytic function of tBid in initiating Bax mediated MOMP (20, 21) but not in the 

growth process.   Thus the influence of ionic strength on MOMP is not due to an effect 

on tBid.   

 

 

 

Figure 5.9: Ionic strength 

effect on Bax channel 

dynamics is not mediated 

by tBid. Mitochondrial 

suspensions were incubated 

in 10mM KCl buffer (solid 

line) or 90mM KCl buffer 

(dashed line) with 34nM 

Bax and varying 

concentrations of tBid (24, 

60 and 120nM) for 30 

minutes at 30
o
C.  Then, the 

real-time permeability was 

determined by measuring 

the cytochrome c oxidation 

rate. There was no 

significant difference in 

cytochrome c oxidation 

rates between any 

treatments at 90mM KCl 

buffer. The results are 

means ± S.E. of 3 

experiments. 
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Ionic strength affects Bcl-xL mediated inhibition of MOMP by Bax-tBid 

Bcl-xL inhibits MOMP by multiple processes. We tested whether the inhibition of Bax 

mediated MOMP by Bcl-xL is also sensitive to ionic strength. We hypothesized that 

since decreasing the ionic strength resulted in more stable permeabilization (a pro-

apoptotic effect), a higher ionic strength will facilitate Bcl-xL mediated MOMP 

inhibition. Consistent with this hypothesis, for a given amount of tBid and Bax, less Bcl-

xL was needed to inhibit MOMP at 90mM KCl than at 10mM KCl (Fig 5.10). Unlike 

what was observed for the action of tBid on Bax, inhibition of MOMP by Bcl-xL 

changed with the tBid concentration (Fig 5.11).  Presumably tBid reduced the amount of 

Bcl-xL available to interact with and inhibit Bax. 

 

FIGURE 5.10: Increase in ionic strength increases the efficiency of Bcl-xL in inhibiting Bax mediated 

MOMP. Mitochondrial suspensions were incubated with 17nM Bax, 120nM tBid and varying 

concentrations of purified Bcl-xL (48, 120, 160 and 240nM) at either 10mM KCl buffer (solid line) or 

90mM KCl buffer (dashed line) for 30 minutes at 30
o
C.  Then, the mitochondria were centrifuged 

and supernatant assayed for AK release. The results are means ± S.E. of 3 experiments. 
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FIGURE 5.11: Bcl-xL mediated inhibition of MOMP is sensitive to tBid concentration. 

Mitochondrial suspensions were incubated with 17nM monomeric Bax, either 24nM or 120nM tBid, 

without Bcl-xL or with 48nM Bcl-xL in 10mM KCl buffer or 90mM KCl buffer for 30 minutes at 

30
o
C.  Then, the extent of AK release was determined for the different treatments. The differences in 

the inhibitory effects of Bcl-xL at 10 and 90 mM were statistically significant with P<0.0001 at both 

tBid concentrations.  n = 3. 

 

Change in ionic strength has little effect on membrane insertion of Bax 

 It is possible that ionic strength could interfere with the extent of Bax insertion into the 

membrane causing differences in the degree of permeability. Our initial hypothesis was 
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that more Bax inserts into mitochondria at higher ionic strength causing more 

mitochondria to be permeabilized hence greater release of AK. To test this hypothesis, 

mitochondria were incubated with Bax and tBid and the amount of AK released was 

measured at 10, 20 and 30 minutes of incubation. We found that, although there was an 

almost 3 fold difference in the amount of AK released at 10 min between 10 and 90mM 

KCl, the amount of Bax inserted was about the same (Fig 5.12A, B).  

 

 

Figure 5.12: Bax insertion into mitochondrial outer membranes is not affected by ionic strength. A. 

Mitochondrial suspensions (960 g mitochondrial protein/mL) was treated with 50nM Bax and 

240nM tBid for increasing amounts of time (10, 20 and 30 minutes) in either 10mM or 90mM KCl 

buffer. Then the mitochondria were centrifuged and supernatant assayed for AK release. The pellets 

were subjected to carbonate treatment and probed for Bax insertion by western blot. The carbonate 

treatment western blots were performed as described in the materials and methods section in the 
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supporting materials. VDAC served as loading control. B shows the extent of AK release at 10 (solid 

line) and 90mM KCl buffer (broken line) for each time point corresponding to A.  

 

In our hands, Bax insertion was essentially complete by 10 minutes. Although there was 

no significant difference in the amount of Bax inserted across the time points tested, AK 

release increased with time (Fig 5.12B), indicating that new channel formation in more 

mitochondria continued with time.  Thus ionic strength affected the channel formation 

process rather than Bax insertion. This is consistent with the observation made with 

purified Bak whose insertion into membranes is not affected by salt concentration 

(133).   To test if ionic strength affected Bcl-xL mediated inhibition of Bax insertion into 

membranes, mitochondria were incubated with Bax and tBid with or without Bcl-xL. We 

found that Bcl-xL had little effect on Bax insertion although there was a complete 

inhibition of AK release (Fig 5.13). Therefore, under these conditions, Bcl-xL inhibits 

MOMP by interfering with Bax channel formation. 

 

Figure 5.13: Bcl-xL inhibited Bax mediated MOMP without affecting Bax insertion. Mitochondrial 

suspensions (960 g mitochondrial protein/mL) were treated with 100nM Bax and 240nM tBid for 10, 

20 and 30 minutes without Bcl-xL or with 100nM Bcl-xL (for 30 minutes only) in either 10mM KCl 

buffer or 90mM KCl buffer. The western blots were performed as described in Experimental 
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Procedures. VDAC served as loading control. Band L corresponds to 10% of the total Bax expected 

to be present if all the added Bax inserted into the mitochondrial outer membrane. 

DISCUSSION 

Bax activation and subsequent MOMP occur in multiple steps that are only partially 

understood. MOMP is a rapid and irreversible process and very stochastic in cell 

populations (78, 122 - 124). Thus, in vitro models have been used to gain insights into 

this process. Bax is a cytosolic monomeric protein in normal cells, but upon apoptotic 

induction, translocates to MOM, forms homo-oligomers and hetero-oligomers with Bak 

and some other proteins (134 – 137) and induces MOMP.  

We show that increasing the ionic strength influences the size of the Bax channels, 

consequently leading to smaller channels. 

In summary, our results are consistent with the following conclusions. 

1. Bax insertion into MOM is fast and is followed by channel formation and then a 

slow growth in channel size.   

2. The rate of formation of channels, as measured by the kinetics of AK release at 

different salt concentrations, is faster at higher salt concentration.        

3. The rate of expansion of the size of the initial channels is faster at the lower salt 

concentration, as measured by comparing the kinetics of release of AK and SOX 

and the time course of growth of real-time MOMP. 

4. This effect of salt concentration on the rate of growth of Bax channels explains 

the differences in the extent of real-time MOMP seen with the cytochrome c 

oxidation assay at different salt concentrations.    

5. Increase in ionic strength also makes Bax mediated MOMP more sensitive to 

inhibition by Bcl-xL. 
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6. Ionic strength does not affect the insertion of Bax into membranes, suggesting 

that subsequent steps in channel formation are impeded by an elevated ionic 

strength.   

Key to gaining insight into the dynamics of Bax channel formation and the influence of 

ionic strength on this dynamics is the measurement of outer membrane permeabilization 

in two ways: IMS protein release and the rate of cytochrome c oxidation.  Because of the 

small volume of the intermembrane space and the long time scale of our experiments, 

once a channel is formed in one mitochondrion that is large enough to allow the 

translocation of a particular protein, e.g. AK, all the AK will be released from that 

mitochondrion within a few milliseconds.  Thus the time-dependent release of AK or 

SOX from a population of mitochondria does not measure the rate of release from each 

individual mitochondrion but the rate of permeabilization of each of the mitochondria in 

the population.  Thus partial release of AK signifies that only a portion of the 

mitochondrial population has Bax channels large enough to allow AK release.  A 

difference in the extent of release of AK and SOX in the population means that some 

mitochondria have channels that are too small to release SOX but are large enough to 

release AK. It is important to note that release of AK and SOX is independent of ionic 

strength (138 - 140) hence these proteins may be more suitable for measuring MOMP 

than cytochrome c release. Cytochrome c, being a charged protein, binds membranes, 

especially the inner membrane of mitochondria that is rich in cardiolipin and a separate 

dissociation step is necessary to facilitate cytochrome c release apart from pore formation 

(138, 140).  Thus, assessing permeabilization of the outer membrane becomes more 

complicated if measuring cytochrome c release.   
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A change in ionic strength is not a very specific tool and thus other possible effects of 

ionic strength that may influence MOMP were examined. Over a wide concentration 

range of tBid, the sensitivity to ionic strength did not change suggesting that the 

interaction between tBid and Bax is not affected by changes in ionic strength. tBid has 

been reported to remodel cristae in a PTP dependent manner (131) releasing loosely 

bound IMS proteins from inner membrane into the IMS. Given the catalytic rather than 

stoichiometric nature of tBid in facilitating Bax mediated MOMP (20, 21) and that Bax 

mediated cytochrome c oxidation rate did not change with tBid at either ionic strength, 

this is consistent with a model in which the effect of ionic strength is directly on the 

ability of Bax to form channels in the MOM rather than on the structure of the inner 

membrane. The inner membrane remodeling induced by tBid was inhibitable by CsA 

(131) but, in our hands, the exogenous cytochrome c oxidation induced by Bax-tBid at 

either ionic strength was independent of the presence of CsA. This is consistent with 

other reports (141 - 144) that found MOMP induced by Bax and tBid to be independent 

of PTP (Fig 5.4).   

These observations strongly signify that the cytochrome c oxidation rates observed after 

Bax-tBid treatment are limited by MOM permeability rather than other effects on the 

structure of inner membrane. Though we do not rule out that changes are caused to the 

inner membrane by tBid under our conditions, these changes do not affect the 

interpretation of MOM permeability from the cytochrome c oxidation assay.  Thus, the 

rate of oxidation of exogenously-added reduced cytochrome c measures the actual 

permeability of the MOM at any time (real-time permeabilization) and depends on the 

number of channels and the size of channels present.  But it does not distinguish between 
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many small channels spread out among many mitochondria or a few large channels in 

just a few mitochondria. Thus each type of assay measures different properties of the 

permeabilizing pore.  By combining the results obtained from the three assays (AK 

release, SOX release and cytochrome c oxidation) one obtains a good picture of the 

nature of the permeabilization of the MOM.   

At low ionic strength, there is general congruency between the permeability 

measurements (cytochrome c oxidation rates) and the amount of protein release but 

nevertheless the % permeabilization is quite a bit smaller (half in Fig. 5.3A) that the % 

AK release.  Fig. 5.8 shows that at this level of Bax, the release of AK and SOX are the 

same.  Thus the Bax channels are large enough to release SOX but not large enough not 

to limit the rate of cytochrome c oxidation.  To allow SOX release the Bax pore must be 

greater than 3.3 nm in radius.  Simple calculations show that such a pore would limit 

cytochrome c translocation rates under the conditions of our experiments.  Electron 

microscopy of Bax channels formed in liposomes show that Bax channel can reach much 

larger sizes (61, 88) and under those conditions they would certainly not be rate limiting.  

Thus channel growth requires time both at low and high ionic strength and this is also 

seen at 8 nM Bax (Fig. 5.8 A and B) when comparing the release of AK and SOX.  The 

quicker release of AK at higher salt suggests that the initial pore formation by Bax is 

faster at higher ionic strength. However, the release of SOX showed a greater time lag for 

release at higher ionic strength. This indicates that the Bax channels start out small and 

grow in size and the expansion is delayed by increasing ionic strength.  Thus, the Bax 

channel-forming process seems to consist of two stages: initial formation of channels 

capable of releasing AK (stimulated by high ionic strength) and growth of channels 
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(inhibited by high ionic strength). The small channels limit the rate of cytochrome c 

oxidation resulting in low real-time permeabilization and thus low oxidation rates.     

Kluck et al. first observed a dichotomy between extent of IMS protein release and real-

time permeabilization in mitochondria treated with Bax or tBid (51).  The apparent 

paradoxical finding that the extent of MOMP depended on the technique used to make 

the measurement is resolved by the experiments reported in this manuscript.  MOMP 

measurement is complicated by the growth in Bax channel size and the marker of 

permeabilization is influenced by channel size. For protein release to happen, a small 

pore or a pore with brief open time is sufficient. This is because, after a threshold channel 

size, protein release is essentially independent of channel size. And since protein 

diffusion across the MOM is quick (a few milliseconds) compared to the duration of the 

experiment (order of minutes), all the protein from the IMS will be released as soon as a 

channel opens in a mitochondrion. But for the real-time flux of cytochrome c across the 

MOM, the pores need to have longer open times. Also, the size of the channel is a critical 

determinant of the rate of cytochrome c flux. In other words, a bigger channel can allow 

greater flux of cytochrome c. Indeed, a detectable cytochrome c oxidation rate may 

involve simultaneous flux of many cytochrome c molecules across the membrane. Thus, 

in spite of cytochrome c being smaller than AK, the fractional rates of cytochrome c 

oxidation are lower than the fractional release of AK. This also means that the sensitivity 

of AK release assay to pore formation is much greater than the cytochrome c oxidation 

assay. But the limitations of the release assays, particularly their independence on 

channel size and inability to measure real-time changes in the behavior of the channel 
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require the information from the real-time cytochrome c oxidation assay for a more 

complete understanding of the MOMP pore.  

We find that the real-time permeability induced by Bax and tBid increases with time and 

is influenced by ionic strength.  Larger channels formed at lower ionic strength allow 

greater flux of exogenous cytochrome c causing its faster rate of oxidation. A high rate of 

cytochrome c oxidation does not imply unphysiologically high channel sizes as we found 

that such permeabilities happened when release of AK or SOX was submaximal. In cells, 

release of most IMS proteins is rapid and complete (78). It is an all-or-none event (78, 

122- 124).  Thus one can conclude that large channels are present in vivo and these have 

been observed in reconstituted systems (51, 88).  We found that Bcl-xL was essentially 

ineffective at preventing Bax insertion even at concentrations of Bcl-2 proteins when 

MOMP was completely inhibited. Thus, in the experimental conditions and 

concentrations of Bcl-2 proteins we used, Bcl-xL may be acting at the level of Bax 

channel formation. Such an experimental setting provides a platform to study the 

mechanics of Bax channel assembly downstream of Bax insertion into membranes.   

CONCLUSION 

In summary, we have identified that decreasing ionic strength results in the formation of 

large channels that allow high flux rates of cytochrome c and synchronously release both 

small and large proteins.  High ionic strength favors the initial formation of small 

channels and these develop more slowly into the larger structures that were observed 

much sooner at low ionic strength.  Higher ionic strength also increases the sensitivity of 

Bax mediated MOMP to inhibition by Bcl-xL. Ionic strength can be used as a diagnostic 

tool to dissect the different steps in Bax mediated MOMP.   
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Note: Undergraduate honors student Timothy Walsh and fellow graduate student Kai-

Ti Chang also contributed to this work. Kai-Ti helped with the purification of the 

recombinant proteins and Tim helped to perform the enzymatic assays. 
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CHAPTER 6 GENERAL DISCUSSION AND FUTURE DIRECTIONS 

Simplifying the science: The what, why and how 

The complexity of cellular processes necessitates both a reductionist approach to 

mechanistically understand the function of each molecule in the process and a holistic 

approach to understand how the process occurs by the interplay of these molecules. 

Either approach presents its own pros and cons. The scientist is constantly required to 

integrate the insights gained from each approach to develop a comprehensive 

understanding of the process in study. 

A recurring theme of this dissertation has been to understand the structural regulation of 

molecular assemblies in the reductionist systems of mitochondria, planar membranes and 

liposomes. Purified mitochondria are simpler than whole cells in that mitochondria are 

free from the cellular transcription/translation and degradation machinery that can change 

the concentrations of proteins, among other variables. Planar membranes/liposomes are 

even simpler and more isolated than mitochondria in that the membrane composition is 

very well-defined and devoid of any proteins other than the protein of interest. These 

systems provide an opportunity to study the structural interaction between the 

constituents whose amounts can be specifically defined, under controlled membrane 

compositions.  

In this chapter, the insights obtained from these studies are discussed in the context of our 

present knowledge of apoptosis and MOMP from the literature.  

 



116 
 

This research dissertation has dealt with transport pathways formed in mitochondria that 

could allow protein flux across the MOM during apoptosis. Specifically, two such 

pathways have been investigated in detail. 

1. Ceramide channels 

2. Bax channels 

Ceramide and Bax: Till death do them apart 

In the first part (chapter 3), the structural regulation of ceramide channels by activated 

Bax was examined. There is strong evidence in the literature that ceramide and Bcl-2 

family proteins interact at multiple levels. At a metabolic level, Bak is necessary to 

elevate the activity of ceramide synthase to produce ceramide (145). Anti-apoptotic 

proteins Bcl-2 and Bcl-xL inhibit the synthesis of ceramide. (47 – 49). On a structural 

level, mitochondrial ceramide and Bax co-localize in the mitochondrial outer membrane 

upstream of the MOMP resulting in Bax translocation and activation (22, 25, 26, and 46). 

Based on this observation, it is concluded that ceramide in MOM can activate Bax. Our 

results with yeast mitochondria and planar membrane indicate that Bax and ceramide 

interact directly to induce MOMP. More recent work (146) has identified key functional 

groups of the ceramide molecule that determine the ability of ceramide to interact with 

Bax. This suggests that the interaction between ceramide and Bax shows molecular 

specificity and hence is evolutionarily conserved. The exact role of ceramide in the MOM 

during apoptosis in the physiological context is still debated. Ceramide has been ascribed 

a predominantly second messenger role in various cellular processes. In the plasma 

membrane, it is known to form lipid rafts facilitating cell signaling. While the possibility 
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of ceramide channels being the platform for the Bax interaction is strong (82, 146, and 

147), formation of macro-domains of ceramide where Bax co-localizes has also been 

found (29). Our work further elucidates the cross-talk between ceramide and Bax, 

suggesting structural mechanisms.  

Traditionally, the molecular mechanism of Bcl-xL mediated inhibition of MOMP has 

been assumed to be entirely mediated by direct and indirect inhibition of Bax activation 

by the BH3 only proteins, some of which directly activate Bax while some others 

sequester anti-apoptotic proteins. However, studies with mutants of Bcl-xL that do not 

bind to any Bcl-2 family proteins (50) which would be expected to not affect 

permeabilization, still inhibit MOMP, suggesting that additional levels of regulation exist 

by which Bcl-xL can inhibit MOMP. The effect of Bcl-xL on the ceramide channel (33, 

146) qualifies as an additional regulatory step. The interplay between ceramide and Bcl-2 

proteins in the highly simplified systems of mitochondria and planar membranes is 

indeed compelling in that direct molecular interactions between ceramide and the Bcl-2 

family proteins are very much possible and hence merit further investigation in the 

physiological context. A review summarizing our current knowledge of the interaction 

between Bcl-2 family proteins and ceramide channels was published in the journal, FEBS 

letters. (147). 

Ceramide channel structure: The wonder of structures 

In the second part (chapter 4), various analogs of ceramide, representing different 

modifications in the functional groups of the ceramide molecule, were investigated for 

their effect on the ability of ceramide to form channels. Ceramide is a unique molecule 
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with an amide bond. The removal of the C4-C5 trans double bond completely alters the 

biological function of the resulting dihydroceramide molecule. Ceramide is also at the 

hub of a complex metabolic pathway that regulates the inter-conversion of sphingolipids 

into one another. This metabolism must be finely regulated as each sphingolipid has 

functions strikingly different from their neighbors in the metabolic cross-roads. Various 

enzymes that metabolize sphingolipids show a great structural specificity. Our results 

indicate that the structural specificity also operates in the structural stability of the 

ceramide channel.  The insights gained from this study could be used to develop analogs 

of ceramide that can more potently induce MOMP and can be used as cancer 

therapeutics. These studies, in light of the ability of Bcl-2 family proteins to regulate 

ceramide channels (33, 82, 146), indicate that the evolutionary selection pressure that 

generated and maintains the structure of ceramide is influenced by the need to participate 

in the onset of apoptosis.  The right properties and interactions must be maintained to 

ensure that apoptosis occurs only when the appropriate conditions are present in the cell.  

A paper summarizing the ability of different analogs of ceramide to form channels was 

published in the journal BBA – Bio membranes (148).  

Probing Bax channel dynamics with ionic strength: Expanding the in vitro inventory 

In the last part (chapter 5), the dynamics of Bax channel formation was investigated using 

ionic strength as a tool. In this study, the ability of higher ionic strength to influence the 

rate of Bax channel formation was exploited to follow the gradual expansion of Bax 

channels in real-time. To our knowledge, this is the first study to document the formation 

and growth of Bax mediated permeabilization of the mitochondria in real-time. Activated 

Bax can form heterogeneous-sized channels in planar membranes (55). Attempts have 
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also been made to estimate the stoichiometry of Bax in the channel structure (149) but the 

estimated numbers have been very different and ambiguous. Our results show that Bax 

does not form discrete sized channels but rather a continuum and the rate of growth is 

strongly dependent on experimental conditions of ionic strength. The translocation of Bax 

from the cytosol to the MOM is fairly well studied but the events subsequent to the 

insertion leading to the MOMP and the nature of the Bax channel are only partially 

understood.  While in vitro studies have strongly established that Bax is a channel former 

and capable of permeabilizing membranes, there are significant disparities between Bax-

induced MOMP in vitro and the MOMP seen in vivo. For example, in vitro, no real-time 

permeabilization as measured by the bidirectional flux of exogenous cytochrome c was 

detected with Bax (51).  But the MOMP that occurs in vivo emphatically enables bi-

directional flux of proteins across the MOM (78). Our results indicate that this disparity 

can be resolved by changing the ionic strength of the incubation medium. Obviously, the 

inhibitory effect of ionic strength seen in vitro is overcome in vivo. Identifying the 

molecular components that counteract this inhibitory effect can provide further clues into 

the process of Bax channel formation. In vivo, there is a considerable time gap between 

Bax translocation to the MOM and the induction of permeabilization (57, 58, 120, 123, 

124).  In vitro, Bax insertion into membranes correlates with the onset of MOMP. 

Additional signals apart from those that cause Bax translocation are necessary to induce 

the conformational changes in Bax associated with MOMP (57, 58). Hunting for those 

missing links provides an interesting line of future research to produce a more 

comprehensive picture of MOMP. MOMP, being a rapid and stochastic process, has 

defied any mechanistic investigation in cells and in vivo. Thus, in vitro tools have been 
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very effective in understanding MOMP step-by-step. However, the success of in vitro 

models lies in the knowledge of all the factors that influence the process and in the 

availability of tools to control each one of them precisely. In ionic strength lies one such 

tool. Keeping this in mind, we have developed ionic strength as a diagnostic to control 

Bax mediated MOMP in a controlled fashion. Ionic strength can be altered to control the 

rate of growth of Bax channels real-time.  

A few cents for the future: Bequeathing a fortune in science 

The complexity of biological systems entails that the researcher must approach his 

research question from different directions and cross-check the inferences drawn from 

one line of investigation by different methods. It is also important to have an open mind 

to accept the need to change the paradigms as more insights are gained. Equally 

important is the determination to make a constant effort to integrate the results of each 

line of investigation, howsoever small, into the context of the bigger picture. Indeed, 

these smaller forays into science provide the finer details that complete the big picture. 

As with any scientist, it is my earnest hope that this dissertation has added a finer stroke 

to the picture of apoptosis. I further hope that this effort will open newer avenues of 

exploration into one of nature’s most inspiring exercises, integrating death into life. 
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