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Spatial interactions provide insights into urban mobility that reflects urban livability. A range of 

traditional and modern urban mobility models have been developed to analyze and model spatial 

interaction. The study of bike-sharing systems has emerged as a new area of research, offering 

expanded opportunities to understand the dynamics of spatial interaction processes. This 

dissertation proposes new methods and frameworks to model and understand the high-frequency 

changes in the spatial interaction of a bike share system. Three challenges related to the spatial and 

temporal dynamics of spatial interaction within a bike share system are discussed via three studies: 

1) Predicting spatial interaction demand at new stations as part of system infrastructure expansion; 

2) Understanding the dynamics of determinants in the context of the COVID-19 pandemic; and 3) 

Detecting events that lead to changes in the spatial interaction process of bike share trips from a 

model-based proxy. The first study proposes a hybrid strategy to predict 'cold start' trips by 

comparing flow interpolation and spatial interaction methods. The study reveals 'cold start' stations 



  

with different classifications based on their locations have different best model choices as a hybrid 

strategy for the research question. The second study demonstrates a disaggregated comparative 

framework to capture the dynamics of determinants in bike share trip generation before, during, 

and after the COVID-19 lockdown and to identify long-term bike share usage behavioral changes. 

The third study investigates an event detection approach combining martingale test and spatial 

interaction model with specification evaluation from simulated data and explorative examination 

from bike share datasets in New York City, Washington, DC, and San Francisco. Results from the 

study recognize events from exogenous factors that induced changes in spatial interactions which 

are critical for model evaluation and improvement toward more flexible models to high-frequency 

changes. The dissertation elaborated and expanded the spatial interaction model to more 

effectively meet the research demands for the novel transportation mode of bike-share cycling in 

the context of a high-frequency urban environment. Taken as a whole, this dissertation contributes 

to the field of transportation geography and geographic information science and contributes 

methods toward the creation of improved transport systems for more livable cities. 
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Chapter 1: Introduction 

1.1 Background and motivation 

The increasing trend of urbanization in the past century has resulted in over half of the world's 

population now living in cities (United Nations, Department of Economic and Social Affairs, 

Population Division, 2019). This rapid urbanization has created a pressing need to gain a deeper 

understanding of urban infrastructure, population distribution, and job opportunities, which are 

crucial indicators of urban livability (Bassolas et al., 2019). A key aspect of this livability is the 

rising human mobility within urban areas, which serves as an essential observation for urban 

planners. Thus, it has become increasingly important to investigate and anticipate human mobility 

both within and between cities. Spatial interactions or origin-destination flows, which refer to the 

movement of people and goods between locations, are vital indicators of urban socio-economic 

activities and provide insights into the interdependence between different places. Studying spatial 

interactions of human mobility can gain valuable insights into the factors that influence urban 

livability and create more sustainable and equitable cities for all. 

The study of spatial interaction and mobility has long been a central focus of transportation and 

geographical science, as understanding and predicting the flows of people, goods, and information 

across space is vital for numerous fields, including urban planning, transportation, and regional 

development. A range of methods have been developed to analyze and model spatial interaction, 

including both traditional approaches and new techniques that leverage recent advances in 

computing and artificial intelligence. Traditional methods such as spatial interaction models 

(Fotheringham & O’Kelly, 1989; Oshan, 2020; Wilson, 1971) are widely used to understand the 



 

 2 

spatial interaction generation process in telecommunication, commodity goods, and migration in 

the past decades. These models use statistical techniques to estimate the flows of people or goods 

between different locations, based on factors such as distance, accessibility, and infrastructure. In 

recent years, modern urban mobility methods such as deep learning have gained attention in the 

study of spatial interaction, due to the development of more powerful computing resources and the 

increased use of artificial intelligence. Among the different targets of urban mobility models, there 

are (1) trip-based origin-destination (OD) demand (Z. Cheng et al., 2021; Ke et al., 2019; L. Liu 

et al., 2019; Y. Wang et al., 2019; Xiong et al., 2020); (2) location-based demand (Ai et al., 2019; 

P.-C. Chen et al., 2020; Geng et al., 2019; S. Guo et al., 2019; Li & Axhausen, 2020; Lin et al., 

2019; Z. Pan et al., 2020; Ren, Chen, et al., 2019; Sun et al., 2020; Y. Yang et al., 2020); and (3) 

volumetric demand (L. Cai et al., 2020; Cui et al., 2019; Do et al., 2019; Ma et al., 2019; Qu et al., 

2019; Ren, Cheng, et al., 2019; Shleifer et al., 2019; B. Yang et al., 2019; Y. Zhang et al., 2020; 

Zhang & Xin, 2020). Trip-based OD demand, also referred to spatial interaction in geography and 

other disciplines, has focused on enhancing predictions with the recent advances in statistical 

learning and deep learning at various temporal scales utilizing big geospatial data. 

The availability of geo-located traces from Information and Communications Technologies (ICTs) 

has revolutionized the study of urban mobility, providing much greater spatiotemporal resolution 

than was previously possible. However, the use of individual-level traces from mobile phone 

records can be limited by concerns around privacy and consistency of data availability. As a result, 

anonymous flow records from transportation systems have become a popular choice for mobility 

modeling studies. Historically, public transportation systems such as buses, rail, and taxicabs have 

formed the backbone of cities, by facilitating interaction and providing an affordable and reliable 

alternative to private transportation. More recently, bike share systems have emerged as a new 
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form of transportation that can be more easily changed or expanded due to their lightweight and 

affordable infrastructure. Docked bike share systems, in particular, have become popular in many 

cities, offering daily trips with detailed time information that create new opportunities to study the 

dynamics of spatial interaction processes. Many articles have been dedicated to build the 

relationship between bike-share trips and its determinants. Factors related to socio-demographics, 

public transit, system infrastructure, street features, land use or places of interests, and weather are 

frequently included in the regression model with bike-share trip demand (Hu et al., 2022; A. Li et 

al., 2020; Maas et al., 2021; Noland et al., 2016; Ross-Perez et al., 2022; Schimohr & Scheiner, 

2021; X. Wang et al., 2021; Younes et al., 2020; Zacharias & Meng, 2021). 

 

Figure 1. Citi Bike trip arrival changes from 2019 to 2020 and 2020 to 2021 in NYC, with each 

hexagon categorized primarily as decreasing trips, increasing trips, and new stations installed. 

This dissertation aims to address unsolved challenges that arise for this new form of transportation 

by proposing new methods and frameworks to model and understand the high-frequency changes 
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in the spatial interaction from a bike share system. Taking the New York City (NYC) system 

demonstrated in Figure 1 above as an example, there are several types of changes from 2019 to 

2021. The blue hexagons contained new stations installed within the year, the red hexagons 

experienced a decrease in trip arrivals compared to the previous year, and the green hexagons 

marked an increase in the total trip arrivals. This exploratory data analysis from the NYC system 

has shown at least two challenges to predict the associated spatial interaction flows. The first 

challenge is the changing layout of the stations, which does not allow the direct application of 

models like Recurrent Neural Networks (RNN) or Long Short-Term Memory (LSTM) networks 

that take historical flows as input. A new approach is needed to deal with trips at those new stations. 

The second challenge stems from the changes associated with the COVID-19 pandemic as the total 

trips in 2020 dropped slightly compared to 2019 but total trips in 2021 exceeded those from 2019. 

In Table 1 below, changes in the total trips and trip duration across three years suggest the spatial 

interaction model calibrated before the pandemic may no longer be valid for the post-pandemic 

era (Werner et al., 2022). Such changes also imply that the health benefits of bike share are 

recognized by people and lead to a much stronger recovery after the COVID-19 pandemic. This 

short-term and long-term motivation for adopting the bike share brings a huge potential for the 

expansion of bike share systems in urban areas in the near future. Therefore, there is a critical need 

for developing new tools to understand the dynamics of spatial interactions from this new form of 

transportation. To achieve this goal, three studies are conducted that build on the theoretical basis 

of spatial interaction models. Specifically, the unconstrained gravity model (Wilson, 1971) is used 

as the core spatial interaction model across the three studies. Methodological frameworks that 

build from and incorporate spatial interaction models are introduced in each of the three main 
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chapters to accomplish the research objectives whose motivation and background are summarized 

below. 

 

 

 

 

 

Table 1. Bike share total trip count, mean trip duration, and mean trips per day in the NYC 

system from 2019 to 2021. 

Year 2019 2020 2021 

Total trips 20,551,517 19,506,857 27,551,166 

Mean trip duration 16:18 21:50 16:30 

Mean trips per day 56,306 53,297 75,483 

 

The first study in the dissertation is motivated by the aforementioned challenges from new stations 

as the system evolves. Among different transportation modes, bike share can be analyzed with 

models proposed for other transportation modes but it has unique features that require special 

treatments and make recent cutting-edge trip prediction methods not applicable: individual bike-

sharing programs are often piloted for a limited number of zones within an urban area that are 

known to have relatively high overall activity and transport demand and then systems are expanded 

and updated according to the evolution of demand over time and across space. Previous flows 

across stations are essential input in almost all cutting-edge spatial interaction prediction methods. 

However, the dynamic development of bike-sharing systems brings in a large amount of new bike 
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stations into the system without any historical flows. This feature prevents a straightforward 

deployment of the majority of cutting-edge models for flow prediction. A new methodology is 

hence needed to avoid the issue of missing previous flows when using cutting-edge prediction 

methods. Therefore, study 1 investigates a methodology for predicting OD flows of bike share 

systems given that the system evolves over time and demand is constantly changing. More 

specifically, this work focuses on predicting demand for a new station where there may be no 

knowledge of previous flows, also known as a ‘cold start’ station, which occurs when the system 

is progressively updated in order to maintain efficiency and grow the ridership of bike share 

systems.  

Flow prediction using spatial interaction models and flow interpolation methods are two directions 

that can be used to compute flows at a new station. On one hand, spatial interaction models are 

calibrated from the system-wide flow generation processes, so predictions are made based on the 

general relationships between the independent variables and all spatial interactions between all 

origins and destinations.  On the other hand, interpolation methods may incorporate data borrowed 

from nearby locations and incorporate local information that is not captured in a spatial interaction 

model. However, flow interpolation techniques are under-discussed with little literature on either 

their implementation or application. For example, only an areal natural neighbor method has been 

introduced for flow interpolation so far (Jang & Yao, 2011; Šimbera & Aasa, 2019). In study 1, a 

new Kriging-based interpolation method is proposed by adopting Ordinary Kriging and Regression 

Kriging in the flow domain. Along with the areal-based kriging method proposed in previous work, 

these interpolation methods are compared to spatial interaction models. Of note is that Regression 

Kriging also incorporates a spatial interaction model as the regression step before "kriging" the 

residual of the regression output. This array of potential methods is tested within the NYC system, 
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which is the longest and largest bike share system in the US, to get an initial result for the 

effectiveness of the newly proposed flow interpolation method against each alternative. As a result, 

a hybrid strategy is suggested that uses a different method for different station classifications based 

on the location of a new station in comparison to existing stations. 

Human mobility in major US cities was heavily impacted during the COVID-19 pandemic and the 

consequential lockdown period, resulting in significant changes in general mobility metrics (Kang 

et al., 2020; Y. Pan et al., 2020; Sevtsuk et al., 2021), metro ridership (H. Wang & Noland, 2021), 

bike share systems (Padmanabhan et al., 2021), and micro-transit (Y. Zhou et al., 2021). As will 

be seen in this research, changes in the coefficients in the spatial interaction models indicate that 

the COVID-19 pandemic affects the trip generation processes of cycling. Recent studies on bike 

share usage also revealed changes in the bike share trip duration during the COVID-19 pandemic. 

For example, in NYC there was a nearly 40% increase in the average trip duration in March 2020 

compared to the month before COVID (Teixeira & Lopes, 2020). Similar increases were also 

observed in other US cities like Boston and Chicago (Padmanabhan et al., 2021) as well as in some 

European cities such as London, UK (Heydari et al., 2021), Zurich, Switzerland (Li et al., 2021) 

and Kosice, Slovakia (Kubaľák et al., 2021). However, beyond changes in ridership volume, there 

is a lack of evidence regarding the processes driving changes in human behavior, such as the effects 

of distance and attraction factors at different locations. The motivation of the second study is 

therefore to use spatial interaction models calibrated over different periods of time to investigate 

how behavior related to bike share spatial interaction processes evolve before, during, and after 

the COVID-19 lockdown.  

As a result, the second study presents a disaggregated comparative modeling framework using two 

different time scales, yearly and weekly, to capture the dynamics of the determinants in the bike 
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share usage. A similar framework was proposed to split taxi trips by monthly and hourly subsets 

(Oshan, 2020), but it has never been applied to a bike-sharing dataset. NYC Citi Bike is selected 

again as it has the largest usage of bike share systems in the US and is the most frequently discussed 

in the related literature (Chai et al., 2018; P.-C. Chen et al., 2020; X. Chen & Jiang, 2022; Faghih-

Imani, Anowar, et al., 2017; Kong et al., 2020; Liu et al., 2016; Teixeira & Lopes, 2020; Wang & 

Noland, 2021). In order to get a parsimonious interpretation of determinants from the model 

calibration procedure, model selection is first performed to obtain a subset of the most important 

variables. Model selection with the LASSO (Least Absolute Shrinkage and Selection Operator) 

regression assigns penalties to the covariates by shrinking the associated coefficients until they 

converge to zero. The path of coefficients toward zero reflects the relative strength of each variable 

in explaining the observations of the dataset. Yearly modeling and weekly modeling of spatial 

interaction from the bike share provide a mechanism to observe the dynamics of determinants as 

a time series. An intellectual significance of the study is that further contextualization of the 

dynamics was carried out by relating trends from the coefficient time series to features of the 

COVID-19 pandemic timeline to help interpret the results. 

The third study in the dissertation builds on the findings of study 2, which showed that there were 

behavioral changes in bike share usage during the COVID-19 pandemic, particularly during the 

lockdown. Behavioral changes associated with trip volume have already been discussed by (X. 

Chen & Jiang, 2022). This study aims to go beyond this by investigating what other events can 

cause changes in the spatial interaction processes generating bike share trips and how these events 

can be detected. Detecting such events that may alter the spatial interaction process is important 

for the application of study 1 as it highlights the importance of the temporal dependency towards 

the prediction and understanding of spatial interaction. Event detection is another area where the 
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temporal subset comparison framework proposed in study 2 can be adopted for events that are less 

obvious than the COVID-19 pandemic and may have a smaller impact. Unlike the ubiquitous 

impacts of COVID-19, other events, such as weather, that are critical to the decision to cycle (Bean 

et al., 2021), can significantly influence bike-sharing over much shorter time horizons. However, 

these events may be more difficult to isolate, and their ephemeral nature means that the behavioral 

changes may occur more quickly without lasting very long. As a result, incorporating a finer time 

scale may enhance event detection. 

The problem of event or anomaly detection has a large literature due to the availability of time 

series data in a wide range of domains, including security and surveillance (Karbalaie et al., 2022), 

traffic and crowd monitoring (Djenouri et al., 2019), business intelligence (Ranco et al., 2015), 

social media analysis (T. Cheng & Wicks, 2014; Vioulès et al., 2018), environmental studies 

(Meyer et al., 2019), medical diagnosis (Ukil et al., 2016), and manufacturing (Pittino et al., 2020). 

Various methods of event detection have been implemented for analyzing data streams from 

transportation systems, such as likelihood ratio tests (Pang et al., 2011) and k-nearest neighbor 

(Dang et al., 2015). However, many of these methods focus on processing events from individual 

locations (i.e., origins or destinations), while origin-destination events related to spatial interaction 

have received less attention. As a result, a novel method is explored to detect events in spatial 

interaction processes by adapting the martingale framework for data streams (Cherubin et al., 2018; 

Ho, 2005; Ho & Wechsler, 2010) in combination with spatial interaction models. The martingale 

framework has several advantages, including compatibility with regression-based data-generating 

processes, potential for “on-line” streaming deployment, and ease of tuning. These benefits 

increase the significance of introducing such a framework into spatial interaction models that are 

typically time agnostic. To evaluate this new method, simulated spatial interaction flows are first 
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used to validate the ability of the method to detect known parameter changes that represent data 

generating processes (i.e., conditional associations). Then, the framework is tested on empirical 

data from three US cities, including NYC, which has one of the highest bike share usage rates in 

the country, as well as Washington, DC and San Francisco as two other major urban areas that are 

not as densely populated. The results demonstrate the framework's ability to extract different types 

of events from the data. 

 

1.2 Research objectives 

Overall, this dissertation aims to develop a comprehensive framework for understanding and 

predicting dynamically evolving spatial interaction demand in a bike share system, as shown in 

Figure 2. By doing so it addresses several research questions that were not adequately explored in 

previous studies. The framework proposed in this study addresses three critical challenges related 

to spatiotemporal dynamics in a bike share system. The first challenge is related to the expansion 

of system infrastructure causing limitations at newly added stations for models like LSTM that 

require historical flows. The second challenge comes from a gap in the knowledge about the 

changes in the processes generating bike trips. Although bike share trips after the lockdown due 

to the initial outbreak of the COVID-19 pandemic recovered to the pre-pandemic level quickly, 

the mean trip duration significantly increased in 2020 compared to 2019 suggesting behavioral 

changes from the public in making the decision to cycle during and after the lockdown. Such 

behavioral changes associated with COVID-19 are not fully addressed in the previous studies by 

analyzing changes in trip numbers. The last challenge comes from anomalies or events that cause 

smaller impacts on the trip generation process and are too subtle to be explained by weekly spatial 
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interaction models. To address this research gap, the third study employs an event detection 

framework that combines the martingale test and spatial interaction model to detect the events 

associated with bike share behavior (i.e., changes in coefficients over time). Study 2 directly uses 

coefficients from spatial interaction models while the regression kriging method in study 1 and the 

martingale test in study 3 both use the residual of the spatial interaction model as the input, making 

the spatial interaction model a common thread that connects the three studies and updates this 

classic spatial analysis framework to better accommodate spatiotemporal data in the era of big data. 

 

Figure 2. Conceptual framework of the dissertation.  

 

The objectives of each research topic and associated research questions are as follows: 

Research objective of study 1. Infrastructure expansion in a bike share system will present a 

challenge for demand prediction at the station level as most prevailing modeling methods (i.e., 

LSTM models) rely on historical flows at each station. The absence of historical data for newly 
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added stations makes such models unavailable and thus requires a novel solution for predicting 

‘cold start’ trips at the new stations, either from direct data borrowing interpolation or from indirect 

model-based interpolation. The first study compares methods and proposes a hybrid strategy taking 

advantage of both aspects by answering the following research questions. 

Research question 1a. How do interpolation methods, including areal natural neighbor, 

Ordinary Kriging, and Regression Kriging, compare to spatial interaction models for 

predicting the 'cold start' bike trips? 

Research question 1b. What is the best strategy for 'cold start' bike trip prediction at 

different locations? 

Research objective of study 2. Bike share usage during the COVID-19 pandemic changed on a 

much larger scale than the pre-pandemic routine, implying changes in the driving factors of bike 

trips. Dynamics of determinants of bike share trips during routine activities as well as during and 

after the COVID-19 lockdown were analyzed through a disaggregate comparative framework and 

by addressing the related questions below. 

Research question 2a. From a long-term perspective, what are the changes in the generating 

factors of bike trips before COVID-19 in 2019 and across different phases of COVID-19 

in 2020 and 2021? 

Research question 2b. From a short-term view, how did the weekly determinants of bike 

trips change with the evolution of COVID-19? 

Research objective of study 3. Short-term changes in the spatial interaction that are not explained 

using the approach from study 2 are considered potential events associated with trend breaks in 
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the spatial interaction processes over a long time period. The third study explores a method to 

detect the events that can lead to behavioral changes in the spatial interaction processes related to 

bike share trips. The proposed method is developed using a martingale framework, which is 

evaluated to answer the research questions below. 

Research question 3a. To what extent can events be detected using model-based proxies 

for changes in human behavior? 

Research question 3b. How to effectively combine the spatial interaction model and the 

martingale framework to detect events? 

Research question 3c. What types of events can be reliably detected within different US 

cities from a multiyear observation from 2018 to 2021? 

 

1.3 Dissertation outline 

The dissertation is organized into five chapters. The overall goal of the dissertation is to develop 

methods to help understand and predict high-frequency spatial interactions produced by bike share 

systems. Chapter 1 describes the essential background and motivations for three research 

objectives. Chapter 2 presents a hybrid approach to predict ‘cold start’ bike trips at newly added 

stations in a docked bike share system. Chapter 3 introduces a disaggregated comparative 

framework for capturing and understanding changes over time in the determinants of spatial 

interactions associated with the COVID-19 pandemic. Chapter 4 continues the focus on changes 

in spatial interaction processes by adapting and evaluating an event detection framework based on 

the martingale test. The utility of the event detection method is tested using simulated data and by 
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applying it to three different US cities. Chapter 5 concludes the dissertation by reviewing the key 

findings from the three studies, summarizing significant contributions from this research, and 

discussing the limitations and potential areas of future work. 
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Chapter 2: Comparing spatial interaction models and flow interpolation 

techniques for predicting 'cold start' bike share trip demand 

2.1 Abstract 

Bike-sharing systems are expanding rapidly in metropolitan areas all over the world and individual 

systems are updated frequently over space and time to dynamically meet demand. Usage trends 

are important for understanding bike demand, but an overlooked issue is that of ‘cold starts’ or the 

prediction of demand at a new station with no previous usage history. This chapter explores a 

methodology for predicting bike trips from and to a 'cold start' station in the NYC Citi Bike system. 

Specifically, gravity-type spatial interaction models and spatial interpolation models, including 

natural neighbor interpolation and kriging, are employed. The overall results from experiments of 

a real-world bike-sharing system in NYC indicate that the regression kriging model outperforms 

the other models by taking advantage of the robustness and interpretability of gravity-type spatial 

interaction regression models and the capability of ordinary kriging to capture spatial dependence. 

 

2.2 Introduction 

The past century has witnessed a significant increase in urbanization with more than half of the 

world's population currently living in urban areas (United Nations, Department of Economic and 

Social Affairs, Population Division, 2019). As a result, it has become increasingly important to 

understand and anticipate human mobility within and across cities. In particular, public 

transportation systems, historically composed of buses, trains, and taxicabs, form the backbone of 

cities, facilitating interaction and providing an affordable and reliable alternative to carry out 

routine activities compared to private transportation. The development and optimization of public 
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transportation infrastructure have therefore remained an important aspect of urban planning and 

community development. 

 

A more recent trend is the emergence of bike-sharing as an alternative means of transportation and 

the establishment of bike-sharing systems in cities around the world. Compared to other modes of 

mobility, cycling provides health and environmental benefits in addition to offering a more 

efficient means of navigating the urban environment (Oja et al., 2011; Otero et al., 2018; M. Wang 

& Zhou, 2017; Y. Zhang & Mi, 2018). For example, the New York City (NYC) Mobility Report 

indicates that trips made using the NYC Citi bike share system are over a minute faster than taxi 

trips across all distance categories within the Midtown area of Manhattan, and cost less than 25% 

for taxi trips for all trip length categories except those less than half a mile (NYC Department of 

Transportation, 2019). Such advantages are further highlighted during rush hour (Faghih-Imani, 

Hampshire, et al., 2017). This has led to the proliferation of bike-sharing systems, with nearly 2000 

bike-sharing systems now in operation around the world1. 

 

Individual bike-sharing programs are often piloted for a limited number of zones within an urban 

area that are known to have relatively high overall activity and transport demand. Systems are then 

expanded and updated according to the evolution of demand over time and across space. This 

dynamic development of bike-sharing systems requires a strong understanding of mobility 

behavior and flexible methods for predicting spatial-temporal demand. In particular, travel demand 

 

 

1  According to bikesharingworldmap.com and including both docked and dockless systems (last accessed on 

07/30/2021). 
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models may focus on predicting overall system demand, the total demand at each location or 

station within a system, or demand between individual locations. It is this latter scenario that is the 

primary focus of this research as it typically receives less attention (e.g., Li & Shuai, 2020; Y. 

Zhou et al., 2019). This is perhaps because it is more challenging to model individual origin-

destination (OD) flows due to a lack of detailed data and because they usually contain more noise 

and higher levels of variability compared to the overall system usage or the total inflows or 

outflows for a set of locations. However, models of OD flows, often referred to as spatial 

interaction models, are becoming increasingly possible as detailed data are generated by GPS-

enabled sensors and the internet of things (Shaw & Sui, 2018). For example, Calafiore et al. (2021) 

leveraged user OD flows based on social media check-ins to study the characteristics of cities’ 

neighborhoods. Furthermore, recent machine learning methods for incorporating various 

dimensions of spatial and temporal dependence hold promise for building models with enhanced 

predictive capabilities (Chu et al., 2020; Ke et al., 2019; L. Liu et al., 2019; Y. Wang et al., 2019). 

Consequently, this work investigates a methodology for predicting OD flows of bike share systems 

given that the system evolves over time and demand is constantly changing. More specifically, 

this work focuses on predicting demand for a new station where there may be no knowledge of 

previous flows, also known as a ‘cold start’, which is necessary when the goal is to progressively 

update transport infrastructure in order to maintain efficiency and grow the ridership of bike share 

systems. 

 

Previous work has not examined in detail the task of predicting spatial interaction demand for new 

stations, likely because more traditional public transportation infrastructure evolves much more 

slowly compared to the relatively inexpensive and flexible bike share infrastructure. That is, much 
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of the related state-of-the-art research assumes that the infrastructure is persistent across time and 

there is prior knowledge of station activity, which is not always the case for bike share systems. 

Therefore, section 2.3 of this chapter provides some additional background and formalizes the 

challenges that need to be overcome. Then, section 2.4 presents a novel methodological approach 

for predicting the spatial interaction demand associated with new bike share stations, and section 

2.5 briefs the data used in the case study and experiment settings. Section 2.6 describes the 

experimental results used to benchmark the proposed approaches. Overall, the results indicate that 

regression kriging models are slightly more performant than the other techniques considered. 

Finally, section 2.7 concludes with a discussion of the contributions of this research, the limitations 

of the proposed approach, and suggestions for future work in this area. 

 

2.3 Background 

The widespread adoption of information and communication technology has produced massive 

amounts of transportation and mobility data, sparking a wave of research into how to best model 

human movement. Meanwhile, the popularity of bike-sharing systems has inspired much recent 

research. Si et al. (2019) provide a review of bike-sharing papers published from 2010 to 2018 and 

group them based on the following categories: demand factors, rider behavior, system optimization, 

and impact on other modes. The factors associated with variation in bike-sharing ridership demand 

can largely be summarized as being related to the weather, built environment, sociodemographic, 

or temporal dimensions (Barbour et al., 2019; El-Assi et al., 2017; Eren & Uz, 2020; Guo et al., 

2017; H. Yang et al., 2020). Knowledge of the distribution of trips is useful for developing 

strategies to optimize systems through bike rebalancing or station repositioning, allowing the 

system to satisfy higher demand (P.-C. Chen et al., 2020; Faghih-Imani, Hampshire, et al., 2017; 
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Pan et al., 2019; R. Zhu et al., 2020). The introduction of a bike share system may impact other 

transport modes, leading researchers to compare bike share usage to taxi and bus ridership 

(Campbell & Brakewood, 2017; X. Zhou, Wang, & Li, 2019). Another trend focuses on bike share 

trip prediction using travel demand models and OD flow models, the latter of which is the focus 

of this study and will be used to consider a range of factors influencing bike share trip demand to 

predict OD flows. 

 

Trip demand at 'cold start' stations, however, catches less attention and is only explicitly discussed 

in Noland et al. (2016) and Y. Zhang et al. (2017). And both papers used linear regression models 

on station-level demand to examine the generalization of the models. Research by X. Wang et al. 

(2021) discussed the use of a regression model for making predictions at new stations but only 

performed out-of-sample predictions by randomly selecting stations as a test set, which is not an 

exhaustive validation for trip demand at potential new stations. Furthermore, there is a lack of 

effort dedicated to OD flow predictions for new stations. 

 

Spatial interaction (SI) describes aggregate movements of individuals, commodities, capital, or 

information over geographic space, resulting from some requisite decision-making process 

(Farmer & Oshan, 2017). A typical quantitative representation of SI is the origin-destination (OD) 

matrix: 
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Equation 2.1 

Where 𝑇 is the OD flows matrix from a set of origins (𝑂1, 𝑂2, . . . , 𝑂𝑛) to a set of destinations 

(𝐷1, 𝐷2, . . . , 𝐷𝑚), and 𝑇𝑖𝑗  is the magnitude of flows from origin 𝑖  to destination 𝑗. Inspired by 

Newton's law of gravity, early models of spatial interaction theorized OD flows to be proportional 

to the product of potential at origins and destinations and inversely proportional to the squared 

distance between them, yielding the following formulation, 

 Equation 2.2  

where 𝑇𝑖𝑗 still denotes the flows between origin 𝑖 and destination 𝑗,  and  represent the potential at 

𝑖  and 𝑗 , 𝑑𝑖𝑗  describes the distance between 𝑖  and 𝑗 , and 𝑘  is a scaling factor that ensures the 

number of flows predicted by the model matches the number of observed flows. In this context, 

the potential is often defined as the location population or the number of job opportunities (Gao et 

al., 2013; Krings et al., 2009; Lenormand et al., 2016), but can be expanded to consider a series of 

origin and destination attributes that may contribute towards the flow generation, each with their 

own parameter (Fotheringham & O’Kelly, 1989; Oshan, 2020). According to Kar et al. (2021), 

two groups of variables can be identified besides population or jobs: socio-economic attributes and 

built environment attributes. The former group usually explains trip generation, such as labor force 
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(Pourebrahim et al., 2018; Signorino et al., 2011); GDP (L. Zhang et al., 2019); human activity 

density (Marrocu & Paci, 2013). The latter group includes common destination determinants of 

travel demand, such as amenities (e.g., schools, hospitals, markets) (Botella et al., 2021; Kar et al., 

2021), tourism attractions (e.g., hotel rooms) (Khadaroo & Seetanah, 2008), and land use types (X. 

Liu et al., 2016). 

 

Recent work seeks to exploit temporal dependence within SI flows to increase predictive 

performance. The simplest instance involves taking the average of historical observations, which 

can yield accurate predictions for future flows when there is limited variation in the historical 

observations. Typical methods using temporal dependence include historical averaging; 

autoregressive integrated moving average (ARIMA); Deep neural network structures including 

recurrent neural networks (RNN) and long short-term memory (LSTM) architectures (Cheng, 

Trepanier, & Sun, 2021; Chu et al., 2020; Ke et al., 2019). The common factor amongst all these 

methods is that they require sufficient previous OD flows and become invalid to predict future 

flows when there are no historical observations to draw upon. 

 

Meanwhile, bike share systems are also spatially dynamic in that stations are frequently updated 

or perhaps more importantly that new stations are added to extend the system, though this is often 

overlooked in related work. One exception is Lu et al. (2018) who explored the extension of system 

infrastructure by deploying agent-based methods to simulate the result of adding new stations 

towards the usage of different transportation modes. In contrast, most previous research focuses 

on predicting bike-sharing trip flows at existing locations (i.e., in-sample spatial prediction), often 

using historical data as an important input feature. This is problematic when the focus is instead 
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on predicting flows associated with a new station that is being added to the system (i.e., out-of-

sample spatial prediction) because there is no historical flow data that can be used to learn temporal 

dependencies. A similar issue often occurs in recommender systems where new users or new items 

will have no historical record to be used for preference analysis (Su & Khoshgoftaar, 2009; 

Volkovs et al., 2017) and is often called the ‘cold start’ issue. This term is also used in the literature 

associated with detecting stops and trips from GPS trajectories (Schuessler & Axhausen, 2009; 

Stopher et al., 2005). Overcoming this limitation is the primary contribution of this research in 

order to develop a robust methodology for predicting historical OD flows at a new bike share 

station. 

 

It is reasonable to leverage spatial dependence to predict values at unobserved locations based on 

values from nearby observed locations. The First Law of Geography states that things that are 

closer together are typically more similar (Tobler, 1970) and is the basis for popular spatial 

statistics, such as Moran’s I measure of spatial autocorrelation and spatial interpolation methods, 

including natural neighbor interpolation, inverse distance weighting, Kriging, and more (Mitas & 

Mitasova, 1999). In particular, kriging has become a core spatial interpolation tool and is now used 

in many topic areas such as air quality analysis (Bayraktar & Turalioglu, 2005), natural resource 

analysis (Emery, 2005), water studies (Zimmerman et al., 1998) and traffic (Eom et al., 2006; X. 

Wang & Kockelman, 2009). Recently, spatial interpolation tasks have been adapted into a lattice 

or graph structure and integrated into generative adversarial networks (D. Zhu et al., 2020) or graph 

neural networks (Wu et al., 2020), but these extensions do not yet apply to the case of OD flows. 

For the interpolation of OD flows, Jang and Yao (2011) proposed an areal weighting method, 

which was further employed by Šimbera and Aasa (2019). As far as the authors are aware there 
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are no studies extending interpolation methods to SI flows. However, the spatial dependence 

between SI flows has previously been leveraged for community detection (Gao et al., 2013; Yao 

et al., 2018) and land use identification (X. Liu et al., 2016), indicating that kriging, which also 

relies on the presence of spatial dependence, may be promising for flow interpolation. Therefore, 

this research explores flow-based kriging and compares it to natural neighbor interpolation and 

gravity-type spatial interaction models. 

 

2.4 Methodology 

2.4.1 Problem statement 

For a station-based bike share system, 𝑆𝑛, there are 𝑛 docking stations serving as both origins 𝑆𝑖 

and destinations 𝑆𝑗 and information is available for each trip in the system regarding its origin 

station, destination station, start time, and end time. Trips are also sorted into discrete temporal 

subsets, 𝑡, based on their starting time (e.g., hour, day, week, etc.). Therefore, each trip in the 

system can be denoted using a 3-tuple (𝑡, 𝑠𝑖 , 𝑠𝑗)and the corresponding OD flow matrix 𝑇  is 

comprised of entries denoting aggregated trips between stations at the time 𝑡 (i.e., 𝑇𝑡,𝑖,𝑗 ). The 

diagonal elements of 𝑇 (i.e., 𝑖 = 𝑗) are filtered out and set to zero to remove their undue influence 

on any subsequent modeling procedures. A 'cold start' station refers to a scenario where there is no 

information available about previous flows for a newly added station 𝑆𝑥 and the goal is to predict 

future outflows 𝑇𝑡+1,𝑥,𝑗  and/or future inflows 𝑇𝑡+1,𝑖,𝑥 . The primary issue that arises is that there are 

no previous flows to use in any of the methods that leverage historical data. A methodology is 

proposed below to overcome this limitation by classifying stations and using a combination of 

regression modeling and interpolation techniques depending on the station class. 
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2.4.2 Station classification 

Predicting the flows associated with the addition of new stations is the primary task of this research. 

However, depending on the location of the new station and its proximity to currently existing 

stations, different techniques and information are available to carry out the predictions. At least 

three different scenarios can be distinguished. The first is referred to here as interpolation, which 

entails borrowing information directly from the existing stations. Interpolation typically only 

applies in the situation where the newly added station is sufficiently proximal to existing stations 

(i.e., within current system coverage). The second scenario is referred to here as margin 

interpolation and is the case where a new station is added on the margin of the current system. As 

such, there are some nearby stations with previous flow information that can be borrowed. The 

final scenario is referred to here as extrapolation and is concerned with the addition of stations that 

are essentially outside the coverage of the current system. Predictions for this scenario are 

hypothesized to be only possible through the extrapolation of modeled relationships, since there 

are no existing nearby stations to borrow information from. A method for identifying empirical 

instances of system expansion and classifying new candidate stations across the three scenarios is 

proposed below and then subsequently deployed and evaluated. 

 

Newly added stations are identified by examining the time series of trip data for the bike share 

system. For each station present in the system before July 2020, an array of station inflows (or 

station outflows) for each temporal subset (weekly in this case study) is used to track its operation 

status. Intuitively, the first non-zero entry of the array, 𝑡𝑖𝑛 > 0, is recorded as a preliminary 

inferred date that a station was initially put into operation. However, these preliminary dates are 
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then refined by manually checking for consistent station service as in practice there sometimes are 

test trips prior to the official launch of a new station. In addition, the system record indicates that 

all new stations added after the initial system rollout in 2013 did not occur until 2015. Therefore, 

the original stations existing before 2015 (Table 2) are not included in the set of classified stations 

nor are they used for prediction validation. 

 

Table 2. Numbers of stations added over time by month and year.  

Month and Year 2013 2015 2016 2017 2018 2019 2020 

January - - 2 2 9 6 8 

February - - 2 8 2 3 5 

March - - 2 4 6 6 1 

April - - 2 4 3 17 2 

May - - 3 5 7 11 36 

June 336 - 5 4 5 5 35 

July 1          1 8 4 4 3 - 

August - 85 98 4 5 4 - 

September - 39 43 64 1 15 - 

October - 16 2 74 3 38 - 

November - 5 2 6 3 34 - 

December - 2 2 4 4 15 - 

  

 

Next, these new stations, 𝑆𝑥, are classified between interpolation, margin, and extrapolation. This 

is done based on their relationship to the existing system coverage, which is represented here by 

computing the convex hull of all the stations in operation at the time when 𝑆𝑥 is introduced. The 

convex hull of all the station points provides a simplified representation of the system service area 
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in continuous Euclidean space, though the urban environment does not exist separately from the 

natural environment (i.e., rivers). To ensure these restricted areas are not included in the 

representation of system coverage, a few extra steps were taken to prepare a modified convex hull 

for the bike share system. First, stations on Governor’s Island and a single isolated station in the 

southern part of Brooklyn were removed from the analysis because these stations are essentially 

disconnected from the larger system. Then, multiple convex hulls were created separately for 

stations in Manhattan and stations in Brooklyn/Queens, ensuring that neither of the convex hulls 

cross into major waterways. 

 

For every temporal subset 𝑡, only the system coverage associated with stations running at time 𝑡 −

3 is used to classify the new station 𝑆𝑥 initialized at time 𝑡 where each temporal subset pertains to 

a week within the period from January 2015 through July 2020. This time lag of up to three weeks 

ensures that stations rolled out consecutively over a relatively short time period are not considered 

as previously existing to each other and is necessary because there is usually a short period of time 

before a new station becomes fully integrated within the system. If 𝑆𝑥 falls outside this current 

system coverage, it will be regarded as an extrapolation case. In contrast, if 𝑆𝑥 is within this current 

system coverage, it will be regarded as an interpolation case. It is then necessary to further 

distinguish the partial interpolation cases, which correspond to stations added to the margin of the 

current system coverage. The three cases are formally classified by the percentage of overlap 

between their Voronoi tessellation cell and the current system coverage. Stations overlapping < 5% 

are classified as an extrapolation station while those overlapping > 95% are classified as an 

interpolation station. The remaining stations are classified as margin stations. 
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Applying the above classification to all newly added stations identified in the previous step. Using 

these three different categories, it is possible to apply and evaluate unique mechanisms to borrow 

flow information based on data and/or modeled relationships for each category. The hypothesis 

employed here is that different mechanisms will be more efficient for each category because 

different types and levels of information are available. In particular, it is anticipated that better 

predictive performance will be attained for stations classified as extrapolation cases using a SI 

modeling approach because borrowing information for data from relatively far stations could 

introduce a disproportionately large amount of misinformation. In contrast, the interpolation and 

margin cases are anticipated to achieve higher predictive performance using methods that 

incorporate data-borrowing through interpolation techniques. That is, flows for stations classified 

as interpolation and margin are expected to be best predicted using interpolation methods whereas 

those that are not must rely on extrapolation through modeled relationships (i.e., SI model). 

However, it is less clear whether or not the same method will be the most effective for both 

interpolation and margin stations, since different levels of information are available. To investigate 

these issues, several interpolation methods are explored in the following sections and then 

subsequently compared to each other and to predictions from SI models. 

2.4.3 Modeling strategies 

Gravity-type spatial interaction model 

The unconstrained gravity-type spatial interaction model (Gravity SI) described in section 2.3 is 

perhaps the most widely used model for diverse types of aggregate transport flows (for several 

recent examples see Kar et al., 2021; Lenormand et al., 2016; Oshan, 2020; T. Zhou et al., 2020). 

It is calibrated here using a log-linear Poisson regression with a power distance-decay function 

and a set of origin/destination attributes using the spint module of the Python Spatial Analysis 
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Library (PySAL) (Oshan, 2016). Following Eren and Uz (2020), these attributes include points of 

interest (POI) for urban amenities and services, transportation infrastructure, and socio-

demographic factors. For transportation infrastructure, accessibility to other bike stations is 

computed based on a distance-weighted sum (i.e., spatial lag) of nearby bike station capacity2. POI 

data was obtained from SafeGraph (2020) and contains a hierarchical schema. Eleven categories 

were formed to aggregate POIs from this schema and include care, education, finance, food, 

housing, recreation, religion, shopping, travel, professional, and other services. Further 

descriptions of data sources and variables are summarized in Table 3. The selection process of 

distance parameters for station accessibility and POIs is based on trial and error, however, 

sensitivity results show there are no significant differences in gravity SI results when using other 

distance bands (e.g., 500 meters or 1000 meters) to compute these variables.   

 

 

 

 

 

 

 

 

 

2 Since capacity values from the most recent station information are representative of all previous system states, 

capacity values were based on system snapshots of the station information from Sep 2018, May 2019, and Feb 2020. 

Of the 1103 stations that existed from 2015-2020 this provided valid capacity information for all but 135 stations, 

which either were not running during the snapshots or had zero capacity values. These 135 stations were not included 

in the computation of the accessibility metric used here. 
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Table 3. Attributes used in the spatial interaction models in Chapter 2. 

Attributes Source Features description 

Population Cenpy 

Census.gov  

Population (2017 ACS5) of each 

census tract 

Employment Longitudinal Employer-

Household Dynamics 

(LEHD)3 

Workplace Area Characteristics by 

census block 

Station accessibility Station Info4 Weighted sum of nearby station 

capacity with inverse distance 

weights 

Access to subway NYC Open Data5 

 

Euclidean distance to nearest subway 

station. 

Points of Interest SafeGraph6  Place count weighted by spatial lag 

within 1500 meters of station 

   

Natural neighbor interpolation 

Spatial interpolation methods predict unknown values for an unsampled point in space based on 

its relationship to a set of sampled points. Given values of a random field 𝑍(⋅) measured at 

locations 𝑠1, . . . , 𝑠𝑛 yielding 𝑍(𝑠𝑖) for any station 𝑠𝑖, the objective is to estimate the value 𝑍(𝑠𝑥) 

for one or more unmeasured locations 𝑠𝑥. One well-established spatial interpolation method is the 

natural neighbor technique that finds the closest subset of input samples to a query point and 

weights them proportionally based on areal overlap to estimate a value (Sibson, 1981). Based on 

 

 

3 https://lehd.ces.census.gov/data/ 
4 https://gbfs.citibikenyc.com/gbfs/en/station_information.json 
5 https://data.cityofnewyork.us/Transportation/Subway-Stations/arq3-7z49 
6 https://www.safegraph.com/covid-19-data-consortium 
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the assumption that nearby stations typically experience similar levels of demand, it is possible to 

borrow data for a new station from neighboring stations using this method. The natural neighbor 

interpolation method for points/polygons was extended to spatial interaction flows by applying a 

modified areal-based weighting scheme (Jang & Yao, 2011). Equations 3.1-3.2 present the natural 

neighbor formula for calculating the flow 𝑇𝑥𝑗 between a new station 𝑆𝑥 and a destination station 

𝑆𝑗. First, Voronoi tessellations are computed for 𝑺𝒏 with and without 𝑆𝑥, denoted as 𝑉𝑛+𝑥 and 𝑉𝑛, 

respectively, with each individual Voronoi polygon approximating the service area for each station. 

In equation 3.1, 𝑚  is the number of stations overlapping with 𝑆𝑥 , 𝑝𝑘  is the proportion of the 

overlapping area between Voronoi shape of 𝑆𝑥 in 𝑉𝑛+𝑥 and 𝑆𝑘 in 𝑉𝑛 in relation to the total area of 

the Voronoi shape of 𝑆𝑥 in 𝑉𝑛+𝑥 (Equation 3). The resulting  [𝑇𝑥1, 𝑇𝑥2, . . . , 𝑇𝑥𝑛]⊤ are the ‘borrowed’ 

outflows of 𝑆𝑥. Thus, natural neighbor interpolation provides an areal-based method that can be 

used on flow data and will be one of the interpolation methods applied here. 

𝑇𝑥𝑗 = ∑ [𝑝𝑘 × 𝑇𝑘𝑗]𝑚
𝑘=1                Equation 2.3.1 

𝑝𝑘 =
𝐴𝑉𝑛+𝑥∩𝑉𝑛 𝑘𝑥

𝐴𝑉𝑛+𝑥𝑥
                        Equation 2.3.2 

Kriging 

While natural neighbor interpolation derives weights based only on location, kriging techniques 

derive weights based on both the location 𝑆𝑥  and value of each sample point 𝑍(𝑠𝑖) with 𝑖 ∈

(1,2, . . . , 𝑛). It is an optimal linear estimator of the form 

𝑍(𝑠𝑥) = ∑ 𝛼𝑖𝑍(𝑠𝑖)
𝑛
𝑖=1       Equation 2.4 

where the weights 𝛼𝑖 are chosen to make the estimator unbiased and of minimal prediction error. 

Kriging is a two-step process. First, the spatial covariance structure of the sampled points is 
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determined by fitting a variogram (a spherical model is used here) that captures the variability 

between all data points as a function of distance. Then, weights derived from this covariance 

structure are used to interpolate values for unsampled observations across the spatial field. 

Ordinary kriging assumes the random field 𝑍(⋅)is intrinsically stationary; that is for any location 

𝑠:  

𝐸[𝑍(𝑠)]  =  𝜇                                     Equation 2.5.1 

𝑉𝑎𝑟[𝑍(𝑠)  −  𝑍(𝑠 + ℎ)]  =  2𝛾(|ℎ|)   Equation 2.5.2 

 

where 𝛾(|ℎ|) is the semi-variogram and a function of distance ℎ that separates two locations. 

Further mathematical details are available in (Cressie, 1993). 

 

Ordinary kriging typically uses a k-dimension (usuallyk <= 3) point as an input location and a 1-

dimension target value 𝑍. However, a spatial interaction flow between stations is a spatial process 

involving two points in a 2-dimension Euclidean space (k = 4). To accommodate this higher 

dimensionality, a flow-based extension inspired by (Y. Zhou et al., 2019) is proposed that 

aggregates all the outflows to the m possible destination stations or inflows from m stations to the 

single origin station 𝑠𝑖 as 𝑍(𝑠𝑖)  and the definition of 𝑇𝑖𝑗 remains the same as in Equation 2.1. The 

coordinates of the origin station remain in 2-D space, but the target value 𝑍𝑖 is an m-length vector 

representing the flows to each destination. According to (X. Liu et al., 2016), this station-centric 

view, which aggregates the OD flows into vectors describing flows coming in and going out from 

one single station, is also referred to as the OD flow signature of a station. In this station-centric 

view, the adoption of the vectorized 𝑍 is needed for handling higher-dimensional 𝑍 within kriging 
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techniques. The inflow predictions 𝑍𝑖𝑛and outflow predictions 𝑍𝑜𝑢𝑡 are carried out separately and 

then concatenated as the overall OD predictions for a target station.  

 

Alternatively, regression kriging leverages information from exogenous variables in addition to 

the spatial dependence in a sample by first fitting a regression model and then kriging the residuals 

of the regression model. Therefore, a Gravity SI model is first fit and then a flow-based ordinary 

kriging (OK) model as described above is used to interpolate the residuals of the gravity-type SI 

model. Specifically, when using the station-centric view in the regression kriging model (RK), the 

kriging step uses 2-dim input with k-dim targets, while the regression step uses location data in 

OD flow form with 4-dim features. 

 
Figure 3. Illustration of areal natural neighbor interpolation and ordinary kriging interpolation 

with toy data. 
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To better highlight the difference between the kriging interpolation and natural neighbor 

interpolation, an illustration with pseudo data is attached to demonstrate the two interpolation 

processes step by step in Figure 3. Both methods take identical data structure as input data, e.g., 

existing locations 𝑆𝑛, a 'cold start' location 𝑆𝑥, and flow matrix among existing stations 𝑇. The 

bottom-left section shows the steps of areal-based natural neighbor interpolation. First, the service 

area of each station defined by the Voronoi shapes is calculated before and after a 'cold start' station 

is added. Then the overlapped area over the 'cold start' station is calculated at each existing station, 

consisting of the portion (𝑝) of new stations which is the final proportional weight to calculate the 

interpolated outflows and inflows at the new station shown in the last row. In contrast to the natural 

neighbor that exploits locations only, ordinary kriging interpolation leverages both locations and 

flow similarity. Under the assumption of ordinary kriging, variations between stations at a fixed 

range of distance is only decided by the distance ℎ. Thus, distances between each pair of origin 

and destination are grouped into bins (Right-bottom section, Figure 3 left) and the variance in each 

group is calculated and plotted (Right-bottom section, Figure 3 right). It is proved that the 

optimization equation can be solved using the semivariogram only. Details can be found in 

geostatistical textbooks such as Le & Zidek (2006). So, it is essential to interpolate the flow 

variance between new stations and any existing stations by fitting a covariance function (black 

solid line in Right-bottom section, Figure 3 right). Finally, the optimized alpha that minimizes the 

prediction error is calculated and used for the flow interpolation results just as the natural neighbor 

interpolation method. 
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2.5 Data 

2.5.1 Study area 

The Citi Bike system in New York City started operation in 2013 and now becomes the biggest 

bike share system in the US. Among the 809 stations added to the system since 2015, 55 of them 

had too few trips to produce reliable output in any one of the methods, specifically producing a 

null or negative correlation index value. Thus, the following results come from the remaining 

sample of stations ( 𝑛 = 754 ) with 313 interpolation stations, 123 margin stations, and 318 

extrapolation stations using the (0.05,0.95) classification threshold. The spatial distribution of the 

stations is mapped in Figure 4 along with the original (pre-2015) set of stations. All the trips are 

aggregated into unique spatial and time tuples by their original stations, destination stations, and 

the week of the trips starting from Jan 1st, 2015. In the regression-based models, the following 

expression is used: “flows ~ cost + origin attributes (15) + destination attributes (15)” Origin and 

destination attributes including 15 variables each listed in Table 3 where POI includes 11 

categories, e.g., care, education, finance, food, housing, recreation, religious, shopping, travel, 

professional, and other services. In the interpolation-based models, OD-matrices are formatted as 

the demonstration in Figure 3. 
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Figure 4. Spatial distribution of bike stations color-coordinated by the three derived classes for 

newly added stations and the original stations. 

 

2.5.2 Study design 

Each new station is associated with a unique time frame for training and testing. So iterating 

station-wise, SI models were trained for each added station 𝑆𝑥, with a training set including all the 

OD flows available in the time period before 𝑆𝑥 is added, and with prediction test set from the time 

period after 𝑆𝑥 is rolled out. Training data consisted of flows one week before a new station was 

added at time 𝑡, (i.e.,  𝑡 − 1) while the evaluation data was set to flows from one week after the 

roll out of a new station (i.e., 𝑡 + 2). This one-unit period provides a chance for demand to stabilize 

after a new station is added to the system for a complete week. Bike trips with duration more than 
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3 hours are excluded as abnormal trips. To evaluate the performance of each prediction method 

for all 𝑆𝑥, Pearson’s R correlation coefficient is employed7. 

 

2.6 Results 

2.6.1 Gravity-type spatial interaction model calibration 

Before producing the prediction results, it is necessary to calibrate the gravity-type SI models. An 

advantage of the SI model over the interpolation methods is the ability to elucidate how 

independent variables affect bike trip flows based on the parameter coefficients. To highlight the 

weight of each independent variable, the top of Figure 5 shows the average parameter magnitude 

and 95% confidence intervals based on the models for each station. The bottom of Figure 5 

captures the top 11 most important features over time. 

 

 

7 Zero flows were not included when calculating the performance metrics. 
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Figure 5. Top: Feature weight from the SI model results averaged over the time periods. The X-

axis represents the absolute value of the parameter estimates and the color represents the sign of 

the average magnitude. The dark green strip shows the average range. Bottom: Time series of top 

11 largest feature weights. The X axis is the number of weeks elapsed since 01/01/2015. 
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Generally, parameter estimates associated with a variable have the same direction, either negative 

or positive, and similar magnitudes for the origin stations and the destination stations. The cost 

factor, which is the average trip completion time of the OD pair and is typically called the distance-

decay effect, is the most important factor, attesting to the First Law of Geography. The next most 

important factors included recreation and other services POIs. The former POI group suggested 

the purpose of the bike share trips for leisure activities. The latter group, other services, includes 

many parking facilities. It could be interpreted as a potential common commuting pattern: people 

park their cars and then take bike trips. Surprisingly, population was not a top factor, suggesting 

the residential population around stations is not necessarily a strong indicator of the size of the 

potential bike share user base. In terms of the parameter estimate stability over time, the top 11 

important factors typically have consistently positive or negative signs. Some general trends can 

also be observed over time. First, the distance-decay factor associated with trip duration became 

more negative (i.e., stronger) over time as the system expanded. There is also a periodic fluctuation 

that captures the seasonal trend where distance-decay is less negative in the winter (the spikes 

around 50th, 110th, 210th weeks). Second, the impact of the COVID-19 lockdown was a decrease 

in the magnitude for the parameter estimates of most factors, likely because the regular trips of the 

public were essentially halted during this time and the alternative behavior was either less 

associated with these factors or generally more random. Besides, the gravity SI model also showed 

robustness in the parameter importance when changing the distance band from 1500m to 1000m 

to compute spatially lagged explanatory variables (i.e., POIs and accessibility), providing that the 

direction and magnitude of coefficients remain the same over the two distances. 
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2.6.2 Prediction results 

Table 4. A summary of the prediction results based on Pearson’s R for each method using data 

for each classification category and using all data. Standard deviations are in parentheses after 

the mean values. 

Pearson’s R   

(Standard deviation) 

Interpolation Margin Extrapolation All 

Natural neighbor 0.53 (0.22) 0.47 (0.22) - - 

Ordinary Kriging 0.52 (0.20) 0.45 (0.22) 0.41 (0.20) 0.46 (0.21) 

Gravity SI 

(Poisson) 

0.44 (0.19) 0.41 (0.24) 0.40 (0.24) 0.42 (0.22) 

Gravity SI 

(NegBin) 

0.42 (0.18) 0.37 (0.22) 0.39 (0.22) 0.40 (0.20) 

Regression Kriging 

(Poisson) 

0.54 (0.21) 0.49 (0.24) 0.41 (0.22) 0.47 (0.23) 

 

The prediction results based on the correlation index Pearson’s R between predicted and actual 

trip counts were recorded in Table 4 for the five methods (natural neighbor, ordinary kriging, 

regression kriging, gravity-type SI model, and negative binomial model) using data for each 

classification category (interpolation, margin, extrapolation), as well as the entire dataset. Overall, 

the results demonstrate that regression kriging is probably the most well-rounded model to capture 

the correlation in all three station types. The results also provide evidence in support of the primary 

hypothesis that different mechanisms in spatial interaction and spatial interpolation will be 

different depending on the location and the regression kriging can outperform the single methods 

of ordinary kriging or SI model. Meanwhile, the standard deviations around 0.2 indicate the 
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correlation varies much across stations. It is hard to say regression kriging can always outperform 

other methods.  

  

2.6.3 Spatial trends 

The relative comparison of the candidate methods within one location is more meaningful than the 

quantitative comparison of metrics across stations. Figure 6 reveals the spatial distribution of 'cold 

start' stations rendered with the best method in the individual station. Warm colors are associated 

with interpolation methods (Red: Natural Neighbor; Orange: Ordinary Kriging) and cold colors 

stand for regression methods (Cyan: Gravity SI; Blue: Negative Binomial). Green dots represent 

the compound model: regression kriging method. Overall, there is a substantial portion (518 out 

of 754) of interpolation methods topped as the best methods over the two regression-only methods, 

which supports flow interpolation as flow prediction tools. Then focusing on the lower Manhattan 

Island where stations are mostly added as interpolation types. Interpolation methods are commonly 

rated as the best methods there which comply with the intuition that nearby flow patterns facilitate 

interpolation methods. Two regression methods as best methods could hardly be spotted in lower 

Manhattan, but located in North Manhattan, Queens, and Brooklyn (north, east, and south of the 

system, respectively). 
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Figure 6. Spatial distribution of the best method for flow prediction at each 'cold start' station. 

 

On the edge of the bike share system, where added stations are usually of the extrapolation type, a 

mixture of best methods can be seen. Even though extrapolation stations are out of the coverage 

of the existing system with limited nearby spatial dependence, regression models are not 

necessarily superior to interpolation methods in all cases, which is unexpected. It implies the 

necessity of considering the spatial dependence or spatial structure of the bike share system at all 

times regardless of when locations are added. Another explanation could be that fewer trips at 

extrapolation stations introduce more noise than signal, having a negative impact on all methods. 

When comparing two gravity models, the Negative Binomial (NegBin) model seems to do better 
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in the outskirts of the system where there are probably more stations with a few numbers of rides 

and therefore more overdispersion. 

 

2.7 Discussion      

Spatial interaction demand for bike-sharing trips has caught the attention of many researchers in 

recent years as new bike share systems are installed at an astonishing speed around the world. Yet 

the prediction of demand at 'cold start' stations is an overlooked issue. Previous studies work 

around the issue either by filtering out the new stations or using a different spatial aggregation, 

such as grids. This chapter leveraged spatial interaction models and flow interpolation techniques 

to propose an approach to compare different models through a case study using the NYC Citi Bike 

system. Specifically, the proposed approach attempts to predict OD flows of newly added stations 

after the system infrastructure changes. 

 

After comparing all candidate methods on each identified 'cold start' station, results show that the 

gravity SI model comes with the advantage of the interpretability of the parameter estimates. For 

example, the interpretation of gravity SI models shows that the leading trip generation factor is the 

number of recreation sites nearby, which provides useful additional information to advise the 

planning of bike share systems. Alternatively, interpolation methods, including natural neighbor 

and ordinary kriging, show better predictability for stations classified as interpolation but are less 

performant for stations classified as extrapolation. Regression kriging combines both gravity SI 

and ordinary kriging and yields the best performance. Finally, spatial trends reveal some 

heterogeneity in the prediction performance of different methods. Specifically, the downtown 

Manhattan region shows higher predictability for interpolation methods, but stations added in 
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Brooklyn are less performant for regression methods only. Interpolation methods unexpectedly 

outperform regression models in many extrapolation cases, implying the presence of long-range 

spatial dependence and suggesting the use of spatial interaction models that incorporate spatial 

dependence (Oshan, 2021) in future work. 

 

One significance of this work is that it begins to fill the gap of the missing historical data that is 

needed for many popular methods. For example, the methodology could be used to generate 

pseudo historical flows so that methods dependent upon them can be used to make predictions 

over time even for 'cold start' stations. Therefore, the proposed approach facilitates a more robust 

demand modeling framework. 

 

However, trip prediction for stations classified as extrapolation is still limited using the proposed 

approach because neither the gravity-type spatial interaction model nor the interpolation 

techniques work as well as they do for the interpolation stations. For future work, the idea of 

geostatistical transfer learning may help overcome the issue (Hoffimann et al., 2021). Meanwhile, 

the evolving techniques of graph convolutional neural networks (such as Pareja et al., 2020) may 

be adapted as an alternative of flow interpolation method to be compared with the proposed 

Kriging methods in future work. Another limitation that needs to be more fully explored is the 

weak predictability of 2020 stations, which is possibly due to the low trip counts or drastic 

behavioral changes during the pandemic, or both. When there are low trip counts, the methods 

used here tend to underestimate the few stations with higher activity and more effort is needed to 

develop methods that can handle this scenario. 
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The methods included here only provide an initial investigation of the 'cold start' issue. Future 

work may unfold differences in the performance of methods at station level to show the magnitude 

of the differences and further investigate differences in spatial dependence at a finer spatial scale. 

Future studies could also further investigate and leverage the temporal dependencies of the OD 

flows. In this work, a weekly time interval was used, though other intervals could also be explored, 

as well as the temporal windows used to characterize demand before and after stations are added 

to the system. Future work could therefore explore different time parameters or even combine 

them to increase predictive accuracy. These are just a few suggestions that could be on the line of 

inquiry initiated here to grapple with the issues caused by 'cold start' stations in dynamic 

transportation systems. 

 

2.8 Conclusion 

This chapter focuses on the overlooked 'cold start' issue as historical flows are available at newly 

added stations. Instead, flow interpolation methods based on Kriging are proposed in the flow 

domain. Specifically, Ordinary Kriging and Regression Kriging with the adaptations in the flow 

domain are investigated and compared with existing flow interpolation of areal natural neighbor, 

as well as spatial interaction models that calibrate relationships between independent variables and 

spatial interaction flows. Based on experiments conducted on a bike-sharing system in NYC, the 

regression kriging model exhibits superior performance compared to other models regardless of 

the locations of 'cold start' stations by leveraging the strengths of both gravity-type spatial 

interaction regression models, which are robust and interpretable, and ordinary kriging, which is 

capable of capturing spatial dependence. The distribution of best methods at each station also 
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suggests a hybrid strategy to use interpolation-based methods at stations added within the system 

coverage and regression-based methods at stations added at the new areas of the system. 
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Chapter 3: Modeling the temporal dynamics of bike share trip 

determinants and the impact of the COVID-19 pandemic 

3.1 Abstract  

Spatial interaction modeling of trip demand can help identify the key determinants of trip 

generation and inform the planning and development of transportation systems. However, such 

models are often based on data aggregated across long periods of time (i.e., months, years, decades), 

which produce a single set of results that summarize the entire period of time. This aggregate 

perspective is essentially static and is unable to indicate the temporal dynamics of trip determinants. 

At the same time, recent studies highlight the massive impact of the COVID-19 pandemic on 

human mobility and suggest substantive changes to the determinants of trip-making behavior over 

time. Therefore, this work explores the temporal dynamics of trip demand determinants before, 

during, and after the pandemic lockdown in New York City and uses the bike-sharing system as 

the case study. This is done by calibrating spatial interaction models for weekly subsets of bike 

share trips and examining the dynamics of the parameter estimates associated with each 

determinant over time. Results indicate detailed shifts in the relationships between trip demand 

and factors such as trip distance, bike station capacity, and various types of nearby amenities. 

Through this disaggregate comparative modeling framework, it is possible to uncover both routine 

fluctuations and pandemic disruptions in terms of the determinants of bike share trips. These 

dynamics contribute to a better understanding of human mobility behavior and the use of 

transportation infrastructures, which can be useful for system maintenance, planning expansions, 

and anticipating vulnerabilities. 
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3.2 Introduction 

Spatial interaction modeling of trip demand may identify the key determinants of trip generation 

and further inform the planning and development of transportation systems. However, such 

modeling practices are often deployed with data aggregated over a period of time and result in one 

set of coefficients of determinants of bike share trips. This static perspective cannot capture the 

dynamics of trip determinants. An alternative dynamic perspective is lacking for two primary 

reasons: 1) spatial interaction data were historically limited to being collected intermittently before 

the widespread availability of location-enabled sensors, and 2) traditional transportation 

infrastructure and the associated urban environment usually changed slowly so that spatial 

interaction models representing multi-year periods were sufficient. Now, neither of these scenarios 

holds as there is an abundance of data about rapidly changing urban systems. Consequently, there 

is an increasing demand to be able to understand these dynamics and a methodological framework 

is proposed here within the context of bike share systems. 

Spatial interaction flows of transportation, such as commuting data, used to be captured from 

surveys, which were usually sampled discretely over time, such as the American Community 

Survey by the US Census that is compiled over several years. However, the use of geolocation 

technologies in transportation systems has enabled individual trips to be recorded with precise 

timestamps, such as those used in the bike share systems that emerged in the last decade. The 

detailed time information allows temporal dynamics of the bike trip usage with resolution up to an 

hour to be investigated through different studies (Noland et al., 2019; Shen et al., 2018; Y. Yang 

et al., 2019). 
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Urban transportation systems are becoming increasingly complex as micro-mobility modes, such 

as, docked or dockless bike share systems and e-scooters are introduced to address the first- and 

last-mile problem. There is an increasing demand for the dynamic planning of transportation, as 

infrastructures of such micro-mobility systems are versatile and can be added or moved at lower 

costs than the expansion of traditional public transportation infrastructure, such as a metro station 

(Liu & Oshan, 2022). Additionally, studies on the impact of short-term public transit disruptions 

on bike share usage (Saberi et al., 2018; Y. Yang et al., 2022; Younes et al., 2019) have not only 

underscored the capability of micro-mobility as a complement to public transportation but also 

posed new dynamic modeling challenges in response to disruption-driven trip demand. This 

therefore presents a practical challenge as more dynamic modeling can guide the deployment and 

rearrangement of a bike fleet to meet changing travel demand. 

Another driving factor for the need for dynamic modeling arises from the COVID-19 pandemic 

starting in 2020, which changed short-term travel behavior and resulted in changes to different 

spatial and temporal distributions of general mobility (Kang et al., 2020; Pan et al., 2020; Sevtsuk 

et al., 2021), metro ridership (H. Wang & Noland, 2021), bike share systems usage (Padmanabhan 

et al., 2021), and e-scooter rides (Y. Zhou et al., 2021). Furthermore, these changes in travel 

behaviors may imply the possible long-term social effects of COVID-19 (van Wee & Witlox, 

2021). 

 

Hence, modeling spatial interaction flows within a transportation system can help us understand 

changes to human mobility. The detailed and publicly available trip history records make a bike 

share system a good target to study the temporal dynamics of system usage, which serve as a proxy 

for human mobility dynamics. Previous studies on bike trip determinants explore bike trip 
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generation (Noland et al., 2016), but very little work so far has addressed the dynamics of trip 

demand determinants with a refined temporal resolution to understand bike share behavior in the 

context of a massive societal stressor, like the COVID-19 pandemic. To fill the gap in 

understanding the dynamics of bike share trip determinants, this study proposes an analytical 

framework for exploring the temporal dynamics of determinants in spatial interaction flows. Bike 

share system data from before, during, and after the COVID-19 pandemic lockdown are exploited 

as a case study to demonstrate the framework’s effectiveness in finding changing determinants of 

bike share trips. This research uses a disaggregate comparative framework to explore the dynamic 

determinants of bike-sharing trips. By understanding these determinants, it becomes possible to 

better respond to different types of stimulators.  

 

The remainder of this chapter will first describe the data and methodology that are used for the 

study. In the results, variable selection is discussed. After that, the results of yearly and weekly 

dynamics from the NYC CitiBike case study are described. The final section summarizes the 

findings and concludes the chapter with some implications and limitations. 

3.3 Data and methods 

3.3.1 Independent variables 

Data preparation consisted of collecting various independent variables that may contribute towards 

explaining the generation of bike trips. In Table 5, a set of sociodemographic variables and POIs 

features are collected and aggregated by each dock station which serves as both origin and 

destination features of spatial interactions. These features include population, employment, station 

capacity, subway accessibility, and points of interest with classification from Foursquare. The table 

also lists the methodology, data source, and the year of data acquisition for each feature, and it is 
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worth noting that each element in the POI categories is a separate variable. The median bike trip 

duration for each origin–destination pair is used as the distance cost factor. Many of the origin or 

destination variables here are overlapping with those used in the spatial interaction models in the 

first study but the nearby capacity variable has been substituted with the capacity directly available 

at each station. This is because the capacity information can only be accessed from the General 

Bikeshare Feed Specification (GBFS) service which is a live feed with no official historical data 

cached. Trip data in study 1 traces back to 2015 with a certain number of stations no longer in 

service at the time of data collection in 2020. However, for collection after 2020 when this study 

is performed, most stations in 2019 remain in the system for continuous operation so more than 

95% of stations and 98% of the trips have valid capacity information in the recent GBFS cache, 

which allows this study to use direct capacity as a feature. 
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Table 5. Variables for model selection in Chapter 3. 

Variable name Feature description Data source – year 

Distance cost Mean trip time in seconds Citibike trip records – 2019 

to 2021 

Population Population by census tract Census ACS 5-year - 2018 

Employment Total employment by census block LEHD Origin-Destination 

Employment Statistics - 

2018 

Station capacity Number of total docks at a station Citibike GBFS – 2019 to 

2021 

Subway access Euclidean distance to nearest subway 

station 

NYC Open Data - 2021 

Point of interests 
Weighted sum of nearby POIs with 

inverse distance weights with a distance 

band of 1500 m. 

Categories: (1) healthcare, (2) 

education, (3) finance, (4) food, (5) 

housing, (6) recreation, (7) religious, (8) 

shopping, (9) travel, (10) professional, 

and (11) other services 

SafeGraph - 2020 

 

3.3.2 COVID-19 pandemic semantics 

Daily confirmation number of COVID-19 cases is accessed from the GitHub repository of NYC 

Health Department8, which is available for the study period of 2020 and 2021. According to 

vaccination data from the NYC Health Department 9, the mass vaccination campaign against 

Coronavirus in NYC commenced in early 2021 and experienced the most noteworthy increase 

between March and June, before slowing down after August (See Figure A.1 in Appendix A).  

 

 

8 https://github.com/nychealth/coronavirus-data 
9 https://github.com/nychealth/covid-vaccine-data 
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3.3.3 Spatial interaction model 

A subset of variables is used in the final spatial interaction model based on the previously 

introduced unconstrained gravity model (Equation 3.1) for different years and weeks. Model 

calibration was carried out using the Python package spint. 

𝑇𝑖𝑗 = 𝑘
𝑉𝑖

𝜇
𝑊𝑗

𝛼

𝑑𝑖𝑗
𝛽                Equation 3.1 

3.3.4 Variable selection 

Not all the variables are equally important in the model fitting. To simplify the model, the variables 

whose coefficients are around zero will not be used in the model calibration. On one hand, when 

the confidence interval of a coefficient estimate overlaps with the value of zero, the interpretation 

of the variable becomes less informative. On the other hand, insignificant variables may bring in 

collinearity to the significant variables. LASSO (Least Absolute Shrinkage and Selection Operator) 

is a regression technique that helps to identify and select the most important features (or variables) 

that contribute to the model. Variable selection with LASSO applies a penalty to the regression 

coefficients, which causes some of them to be shrunk to zero, effectively removing those variables 

that are not relevant to the outcome (Equation 3.2). Final variable selection started with LASSO 

but also considered additional factors that are theorized to be associated with changes during 

COVID-19 as well as considering collinearity. 

Equation 3.2 
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3.4 Results 

3.4.1 Bike trip overview 

 

Figure 7. Weekly trip numbers in the NYC bike share system from 2019 to 2021. 

 

Figure 7 demonstrates the total number of trips from CitiBike for each week from 2019 (blue), 

2020 (red), and 2021 in (green). A side-by-side comparison of weekly trips across the three years 

highlights the impact of the COVID-19 pandemic, as well as the associated lockdown order. 

Specifically, weekly usage in 2020 started to drop in week 12. The Monday of the first week to 

drop is Mar 16, 2020, which is the first day that all schools in NYC closed. Usage resumed to 

normal levels by week 22 (May 25 - May 31, 2020), which is ten weeks after the initial outbreak 

of COVID-19 and right before the Reopening Phase 1 starting June 8. Weekly trips for the rest of 

2020 almost follow a similar pattern for 2019 and even exceed 2019 usage in the last several weeks 

of 2020. Weekly usage in 2021 exceeds 2019 in most of the weeks except for the start of 2021. 

From the total trip counts in Table 1, the total trip number in 2021 exceeded 2019 by 34%. The 
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weekly trip numbers over three years show that the system usage recovered and thrived beyond 

2019 levels right after the lockdown. However, trip numbers convey limited information on the 

change of determinants in different stages of the pandemic. The average trip time has increased 

from 16 minutes in 2019 to nearly 22 minutes in 2020 also indicates behavioral changes between 

years. 

 

3.4.2 Variable selection 

The regularization paths from the LASSO result give helpful information on the importance rank 

of variables as shown in Figure 8. Specifically, a more important variable doesn’t reach the X-axis 

(y=0) until larger values of lambda. The cost factor representing the distance decay has the most 

powerful effect because: first, it has the absolute value among all the variables before the LASSO 

penalty applied to the regression; and second, it is the last variable to reach 0 on the X-axis. Both 

support the notion that the cost factor can account for most deviance (variation) of the dependent 

variable within the model. Except for the cost, other variables at origin or destination locations 

seem to share a similar regularization path. With variable selection starting from right to left on 

the X-axis, the two most important variables are recreation and station capacity. The employment 

factor is the final factor that can be discerned, while the remaining factors are mixed with each 

other and cannot be distinguished based on their regularization paths.  
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Figure 8. Regularization paths for the LASSO results. A more important variable ends in y=0 

with a larger lambda. 

 

Even if some variables are not listed amongst the top factors from the lasso results, they may still 

be interesting in regard to the COVID-19 pandemic. Here, we examined two possible examples, 

healthcare facilities and restaurants. It is noteworthy that restaurants at origins and destinations are 

also showing the third largest intensity when lambda takes the minimum value in Figure 8. 

However, adding the extra variables might result in collinearity issues during model fitting. 

Collinearity refers to the situation when two or more predictor variables in a regression model are 

highly correlated with each other, which can lead to unstable estimates of the regression 

coefficients and make it difficult to interpret the effects of individual predictors on the outcome 

variable. The variance inflation factor (VIF) is a measure used to detect collinearity among the 

covariates in a multiple regression model. A VIF score measures the extent to which the variance 

of the estimated regression coefficient for a particular predictor variable is inflated due to 
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collinearity with other predictor variables in the model. This measure is calculated by regressing 

each predictor on all others being used in the regression.  

𝑉𝐼𝐹(𝛽𝑗) =
1

1−𝑅2
𝑗
         Equation 3.3 

where 𝑅2
𝑗  is the R-squared value generated by regressing predictor 𝑋𝑗  on all other predictors. 

Multicollinearity is thought to be a problem if VIF > 10 for any given predictor (Dormann et al. 

2013). 

 

Potential collinearity among independent variables was analyzed by visualizing their correlation 

at each origin location, as shown in Figure 9, and calculating the VIFs of the variables, as listed in 

Table 6. The three-step selection process is named after "full", "partial", and "final" in terms of the 

status of variables. The scatter plot between recreation places and restaurants suggests a linear 

relationship, indicating collinearity between these two variables. This observation is confirmed by 

the VIF scores, which exceed 20 for both restaurant and recreation, indicating a strong collinearity 

between them (column VIF full in Table 6). However, since the recreation factor is stronger than 

the restaurant factor in the LASSO result, the recreation variable is chosen over the restaurant 

variable. Even after dropping the origin and destination factors of the restaurant, the recreation 

factor still shows a VIF value slightly above 10, which is the threshold for a strong collinearity. 

The VIF of healthcare factor is close to 10, indicating a collinearity with the recreation factor in 

the "partial" status of the variables (column VIF partial in Table 6). To avoid the collinearity 

between recreation and healthcare, a decision is made to drop the healthcare factor from the spatial 

interaction model. 
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Figure 9. Pairwise scatter plot for selected variables in the spatial interaction design matrix for 

2019 model. 
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Table 6. Variance inflation factor values with different independent variables for the spatial 

interaction models. 

Variable name Model Term VIF full VIF partial VIF final 

Distance decay OD 3.3315 3.3242 3.3201 

Station capacity Origin 7.1353 6.9679 6.8294 

 Destination 7.0818 6.9121 6.7737 

Recreation Origin 20.1928 10.4382 4.9595 

 Destination 20.1380 10.4555 4.9336 

Employment Origin 2.4068 2.3996 2.2311 

 Destination 2.3982 2.3908 2.2222 

Healthcare Origin 10.7218 9.8345 - 

 Destination 10.7309 9.8497 - 

Restaurant Origin 20.6844 - - 

 Destination 20.5502 - - 

 

The final selection of determinants to explore for dynamic modeling of spatial interactions from 

NYC bike share data is distance cost, recreation, station capacity, and employment, as both 

origin and destination features. This line-up has all VIFs lower than 10, with the largest VIF values 

of 6.82 (column VIF final in Table 6).  

 

3.4.3 Yearly trends 

The yearly models are calibrated using aggregated bike share trips data from 2019, 2020, and 2021 

for each origin-destination pair. Table 7 displays the coefficient estimates and 95% confidence 

intervals for the cost (distance decay) and origin/destination variables. Results from comparing the 
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variable coefficients in 2020 and 2021 to those in 2019 can provide insight into how the behaviors 

have changed from the pre-pandemic level. 

 

Table 7. Yearly spatial interaction model coefficients and 95% confidence intervals. 

Year  2019 2020 2021 

Variables Model Term Estimates CI  Estimates CI  Estimates CI  

Cost (distance 

decay) 
OD 

-1.443 +/- 0.009 -1.446 +/- 0.007 -1.429 +/- 0.005 

Station 

capacity 
Origin 

0.373 +/- 0.024 0.513+/- 0.019 0.460 +/- 0.015 

 Destination 0.341 +/- 0.024 0.479 +/- 0.019 0.435 +/- 0.015 

Recreation Origin 0.258 +/- 0.018 0.221 +/- 0.014 0.313 +/- 0.010 

 Destination 0.286 +/- 0.018 0.241 +/- 0.014 0.324 +/- 0.010 

Employment Origin 0.033 +/- 0.008 -0.030 +/- 0.006 -0.032 +/- 0.004 

 Destination 0.040 +/- 0.008 -0.033 +/- 0.006 -0.034 +/- 0.004 

 

 

The distance decay remains relatively stable for the yearly trends, hovering around -1.44. Although 

there is a slight drop in 2021, the 95% confidence interval overlaps with that of 2019. When 

comparing the origin and destination coefficients of the same variable type, a general trend is 

observed, with both coefficients displaying a small shift across all three years. For instance, station 

capacity has a +0.03 difference from the origin coefficient to the destination in all three years. 

However, all differences between the origin and destination coefficients fall within the range of 

confidence intervals, indicating that they are not significantly different. A potential interpretation 

for the same coefficient of origins and destinations is that most origin-destination pairs have 

symmetric trip numbers (i.e., trips from A to B are similar to those from B to A). Therefore, only 
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destination trends are discussed between years to avoid redundancy. The station capacity shows a 

significant increase in 2020 (from 0.40 to 0.51) before dropping slightly to 0.47 in 2021, reflecting 

a stronger association between capacity and the number of trips during the COVID-19 pandemic. 

The association between destinations with more recreation opportunities drops in 2020 compared 

to 2019 (0.49 to 0.37) but increases (0.51) in 2021. The relationship between trips and destinations 

nearby to many jobs changes from a positive coefficient before the pandemic to a negative one in 

2020, potentially reflecting fewer commuting trips. In 2021, it remains negative, possibly due to 

the continued availability of work-from-home opportunities.  

 

In summary, the driving factors behind the rapid recovery and then increase in bike trips exhibit 

diverging trends. One trend, as displayed by distance decay and station capacity, is that some 

associations are essentially unchanged during COVID-19. Another trend, represented by factors 

such as recreation opportunities, shows a decrease in association before returning to pre-pandemic 

levels. The final trend, exemplified by factors such as employment opportunities, is that its 

association with bike trips changes since the outbreak of COVID-19 and remains a long-term 

change that doesn’t recover to pre-pandemic levels as did recreation opportunities. These long-

term trends highlight the importance of also investigating more short-term trends in the 

determinants to gain a more comprehensive understanding of the dynamic and static drivers of trip 

demand. 

3.4.4 Weekly trends 

For each factor, the figures below display the weekly trends of each determinant by year, with 

dashed lines indicating the 95% confidence interval. The plots also feature COVID-19 case trends 

at the top as a reference for the various stages of the pandemic. It is worth noting that the confirmed 
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cases in NYC at the end of 2021 were alarmingly high, with a daily average of over 25,000. To 

facilitate easy comparison of the COVID-19 waves from March 2020 to November 2021, the cases 

from week 50 to 52 in the end of 2021 have been omitted from the plots. 

 

Figure 10. Top: COVID cases by week. Bottom: Destination capacity coefficient estimates and 

95% confidence interval by week. 

 

In 2019, the association between trips and the capacity factor (represented by the blue line in Figure 

10) exhibited a typical arc with an increase during the summer months, indicating routine dynamics. 
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In 2020, the association initially decreased during the lockdown period but quickly rebounded to 

pre-pandemic levels after the reopening order in June. The remainder of 2020 followed the same 

path as 2019, but at a higher level. In 2021, the dynamics were interrupted by a drop at the 

beginning of the year, but then almost followed the routine of 2019 at a higher level similar to 

2020. However, different waves of COVID-19 cases all had an 'undermining' effect on the 

association with the capacity factor. A stronger coefficient estimate here means trips are more 

likely to terminate at a dock with more capacity, suggesting the desire to be able to efficiently find 

a parking spot was stronger during periods with fewer COVID-19 cases. 
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Figure 11. Top: COVID cases by week. Bottom: Distance decay coefficient estimates and 95% 

confidence interval by week. 

 

In 2019, the routine dynamics of the association between trips and distance decay, as depicted by 

the blue line in Figure 11, remained relatively stable over the year, with a slight upswing in the 

latter half. However, with the onset of lockdown measures in late March 2020, there was a 

reduction in the negative association of distance decay and bike trips. This suggests that people 

were traveling longer distances and were less concerned about the distance they were traveling. 

While there was a recovery in the relationship shortly afterward, the trend declined again towards 
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the end of 2020 and the beginning of 2021. Upon comparing the changes in distance decay 

coefficients with the COVID-19 waves, it is evident that changes in distance decay coincided with 

increases in COVID-19 cases before widespread vaccination became available in mid-2021. 

Interestingly, despite the peak in COVID-19 cases in mid-2021, there was no apparent impact on 

the association between distance and bike trips, unlike the two preceding waves. Following mid-

2021, the association increased and became more similar to the routine dynamics observed in 2019 

while still remaining weaker than pre-pandemic levels. 
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Figure 12. Top: COVID cases by week. Bottom: Destination recreation opportunities coefficient 

estimates and 95% confidence interval by week 

 

The association between trips and recreation opportunities at destinations was relatively stable 

over time by August in 2019 but became slightly stronger during the last three months of the year 

(Figure 12). In 2020, the onset of the pandemic caused a decline to almost no association between 

destination recreation levels and bike trips during the lockdown period, but it gradually recovered 

to pre-pandemic levels after August 2020. However, when COVID-19 cases increased during the 
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end of 2020 and the start of 2021, the relationship weakened again before eventually recovering 

to the 2019 levels. In terms of COVID-19 impacts on the association of recreation opportunities 

and bike trips, it is notable that the pandemic had a significant impact during the peak of cases in 

contrast to the one during the summer season. This was due to the fact that destination recreation 

opportunities include indoor venues such as museums, which experienced a decrease in visitors 

during peak COVID-19 cases. However, during summers, the association dynamics quickly 

resumed to pre-pandemic levels due to the availability of outdoor activity options. 
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Figure 13. Top: COVID cases by week: Bottom. Destination employment coefficient estimates 

and 95% confidence interval by week. 

 

Unlike the previous relationships, the association between trips and destinations nearby to many 

jobs have significantly changed since the onset of the pandemic in March 2020, as shown in Figure 

13. In normal times, destinations with many jobs are strong attractors of bike trips, but the 

relationship became weakly negative during the pandemic. In 2021, the relationship gradually 

recovered to zero and remained uncorrelated throughout the year until the end of 2021, potentially 
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due to the prolonged work-from-home opportunities offered by various employers during the 

pandemic, which has reduced the number of people commuting to workplaces and, consequently, 

the demand for bike trips to and from work. 

 

3.5 Discussion 

This study investigates the changes in bike share trips as one potential proxy for human mobility 

during the COVID-19 pandemic, with a focus on the processes associated with bike trip generation 

and post-pandemic recovery status. Previous studies have mostly examined the spatiotemporal 

changes of bike trips during the lockdown but neglected the bike trip generating processes and did 

not extend as far in time towards a post-pandemic period. The study addresses this gap by modeling 

high frequency spatial interactions and revealing the behavioral changes beyond the changes in 

trip numbers. 

 

The study uses yearly and weekly aggregation to analyze long-term and short-term trends in bike 

trips, respectively. Long-term trends pertain to aggregation of data and results by calendar year 

from 2019 to 2021 and highlight the potential long-term changes in the coefficient estimates. At 

this temporal scale, the association of the distance decay factor with bike trips remained essentially 

unchanged during the three years. In contrast, the association between trips and destinations with 

more jobs seems to suffer from a long-term impact of COVID-19. Destinations with more jobs 

used to have a positive relationship with bike trip volume before COVID-19. But such 

relationships turned negative in both 2020 and 2021, reflecting a long-term change in the trip 

purpose, namely that individuals took less commuting bike trips after the pandemic. This decrease 

is likely related to the prolonged work-from-home opportunities. However, bike trips still thrived 
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in 2021 with total usage exceeding that of 2019. This can be explained by the stronger association 

between trip volume and higher recreation opportunities in 2021, which indicates an increasing 

number of trips with recreation purposes. The decrease in the employment factor and the increase 

in the recreation factor suggests a change in the functional role of bike trips after the pandemic and 

contributes to the understanding of how human mobility changed after the initial lockdown. 

Previous studies on the impact of the COVID-19 pandemic on bike share trips modeled the drop 

and recovery of bike trip volume with lockdown policy and reopening orders (Wang and Noland, 

2021) but lacked insights in the association between trips and destination opportunities. 

Aggregating trips by year removes variation about several significant changes related to the 

pandemic but nevertheless there is still some evidence of changing processes, which supports the 

need for further modeling at a more disaggregate temporal resolution. 

 

Weekly subsets of the data resulted in coefficient trends that show more dynamic relationships 

between bike trips and different factors than the yearly aggregations. Coefficients from the weekly 

models in 2019 may be considered as an example of routine dynamics. Previous work (Oshan, 

2020) showed a seasonal trend in the distance decay factor using weekly subsets across several 

years for taxi data from NYC around 2015, with colder months having a stronger distance decay. 

Converse seasonal trends show in the distance decay as the weekly trends of distance decay in 

Figure 11 seems to show weaker relationships in the colder months, implying that individuals 

prefer shorter trips during the warmer months especially in September 2019. A seasonal trend can 

also be seen in the capacity factor where it is stronger during the warmer months than the colder 

months. Increased association between trips and station capacity during warmer months suggests 

a stronger desire to find a parking spot upon trip arrival. This decision preference might arise when 
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the system is under heavy usage and more frequently riders may be under more competition with 

each other to find an empty dock. Under this scenario, this means more trips might end at a larger 

station rather than smaller stations that are harder to find a parking spot during the rush hours.  

 

The comparison of weekly trends in 2020 and 2021 with the routine levels in 2019 provides 

insights on how COVID-19 disrupted the bike share system. The yearly trends showed that 

distance decay did not change in 2020 compared to 2019 and hovered around -1.44. However, the 

relationship between trips and distance decay from the weekly trends became weak during the 

peaks of COVID case incidences, indicating the travel behavior changed as people tended to take 

longer trips and become less sensitive to distance during periods that may have been perceived as 

higher risk to use other modes. Potential reasons why the annual 2020 model did not show a 

different relationship between trips and distance decay factor than the relationship in 2019 may be 

include: 1) the first two and half months in 2020 didn’t experience the impact of COVID-19; and 

2) the annual relationship may have remained the same if the distribution of trip distances across 

a year was similar, even the distribution changed for shorter periods of time. The weekly results 

confirm that the recovery of some of bike trip behaviors after the lockdown were quick and 

therefore might be less likely to appear in the yearly model. Between peaks of COVID-19 cases, 

the distance decay quickly recovered to a similar relationship from the pre-pandemic period. Even 

though distance decay largely recovered, the relationship never reached the same level as in 2019, 

indicating some longer lasting changes. The capacity factor also showed changes associated with 

COVID-19 such that during the peak of COVID-19 cases, the relationship became stronger than 

the pre-pandemic levels. Considering the persistent decrease in distance-decay after the pandemic, 

another possible explanation for the stronger relationship with the capacity factor could be that an 
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individual may spend more effort planning a longer trip and could become more likely to select a 

larger station that will optimize the trip by reducing the time needed to look for a parking spot. 

Another relationship that changed with the peak in COVID is recreation opportunities. The 

relationship coefficient estimate dropped to zero during the lockdown period, overlapping the time 

that almost all recreational activities paused. The relationship also recovered between the infection 

peaks of COVID-19, but one interesting finding is that it fully recovered to the pre-pandemic level 

during the summer of 2021 despite the existence of another peak of COVID cases. As the mass 

vaccination in NYC starting in early 2021 decreased risk, it helped stimulate demand for recreation 

trips. This finding also demonstrates that not all the infection peaks of COVID-19 induced the 

same impact on bike trips as similar behavioral changes were largely mitigated for the peak in 

mid-2021 by the mass vaccination. 

  

Thus, the COVID-19 pandemic introduced additional complexity to human mobility behavior. As 

the changes brought about by the pandemic are long- and short-lasting and multi-phase, it is crucial 

to carefully consider the time period used for modeling dynamic behavior. Additionally, the 

relationship between trips and origin-destination factors may exhibit subtle changes when the 

event scale is shorter than the time horizon used for modeling. Therefore, it is necessary to conduct 

spatial interaction modeling at a more disaggregate temporal resolution, as this approach allows 

for a more detailed analysis of dynamics and can help the development of more nuanced and 

contextualized interpretations of results.  
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Limitations 

This study uses spatial lags of Points of Interest (POIs) as features to better understand the 

relationship between bike trips and geolocated factors, in contrast to traditional land use data 

(Noland et al., 2016). POIs offer a greater number of location types (Table 5) than land uses, which 

are typically limited to fixed spatial partition and a limited number of categories (e.g., recreational, 

residential, mixed-use, etc.). However, the results of collinearity tests showed that the full range 

of POIs with weights from a fixed spatial lag was not fully leveraged due to their collinear spatial 

distribution. For instance, within a 200-meter range of a bike station in a Manhattan business 

district, the presence of pharmacies (healthcare) is not significantly different from the presence of 

restaurants since both types of places are common in the area. The presence of both types of POI 

could possibly introduce collinearity between the two POI types. In the future, additional 

information about individual trips and their purposes may be able to help alleviate the issue of 

collinearity between different types of POIs by only using certain POIs for certain types of trips. 

A different way to construct the place of interest attributes may also improve the data issue that 

causes collinearity. 

 

Another pitfall sourced by the data quality is the absence of dynamics in the origin and destination 

variables. Due to the lack of dynamic demographics and POI data, all the independent variables 

are static. In this case, determinants might generate different values than using dynamic features 

as independent variables. Coefficients from dynamic input variables may reveal slightly different 

stories in the behavioral changes. 
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It is important to note that there are differences in the magnitude of the same factor between the 

yearly and weekly models. Additionally, sudden changes in the weekly determinants at the 

beginning and end of each year are due to the missing days in the weeks on the edge of a year. 

These differences in coefficient estimates between different modeling time periods may be 

attributed to the modifiable areal unit problem (MAUP), a topic commonly discussed in spatial 

statistics. Furthermore, the bike share data has unbalanced training data as zeros are excluded, 

resulting in a different number of aggregated flows in the weekly aggregations compared to the 

yearly model. Therefore, to further explore this issue, methods for unbalanced model training 

could be explored in the future (Y. Yang et al., 2021). Furthermore, interpretation from the results 

depends on the model coefficients from the gravity-type spatial interaction models, which may be 

different from another type of spatial interaction model. Future work could compare multiple 

spatial interaction models to validate the robustness of results. 

 

3.6 Conclusion 

The COVID-19 pandemic has had a significant impact on human mobility behavior, underscoring 

the need to study high-frequency spatial interaction to comprehend these changes and how people 

have adapted to the "new normal". In study 2, a disaggregated comparative modeling framework 

was used with both long-term and short-term aggregations of data, leading to two key conclusions. 

First, factors of bike share trips show different evolutionary paths after the pandemic. Specifically, 

the association between trips and destination features, such as station capacity and recreation 

opportunities, experienced similar changes due to increased cases of COVID-19 but quickly 

returned to pre-pandemic levels between peaks of cases. However, at the end of 2021, not all 

behaviors have fully recovered, and associations between trips and factors of distance decay and 
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employment remain different from pre-pandemic levels. Second, different insights from the long-

term and short-term changes in bike trip determinants highlight the significance of examining 

pandemic disruptions and routine fluctuations using disaggregated comparative modeling to 

understand human mobility behavior and the use of transportation infrastructure. This modeling 

framework can be extended to further years to gain a deeper understanding of the behavioral 

changes brought about by the pandemic and contribute to a better understanding of the "new 

normal" as part of future planning decisions. Overall, this research can help inform policies and 

decision-making processes that affect human mobility behavior and transportation infrastructure 

in the context of the ongoing pandemic and future public health crises. 
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Chapter 4: Event detection in bike share trip behaviors with spatial 

interaction models and martingales 

4.1 Abstract 

Event detection has become increasingly important in various domains, including security, traffic 

planning, social media, and environmental science, and at the same time it has become increasingly 

possible thanks to the technological advancements in video surveillance, sensors, and the web. In 

particular, event detection with spatial interaction processes is important for understanding human 

mobility behaviors and socio-economic activities that cause behavioral changes in human mobility. 

This study proposes a framework that combines the martingale test with the spatial interaction data 

to detect events from human behaviors using spatial interaction models as a proxy for the processes 

related to human behavior. The framework's performance is evaluated with simulated data in 

experiments to detect events in artificial changes of spatial interaction processes. Empirical work 

is also conducted using bike share data from three different US cities to gain insights into real-

world events, such as extreme weather changes, seasonal activities, holiday breaks, and COVID-

19 pandemics, that can be detected using the proposed framework. This study develops a novel 

method for event detection from the perspective of spatial interaction processes and provides 

guidance on how to effectively combine spatial interaction models and martingale tests to detect 

events. Lastly, the study discusses model-tuning and limitations to guide future work in 

implementing a more versatile event detection framework based on spatial interaction data and 

models. 

4.2 Introduction 

In recent years, event detection has gained significant attention in various application domains, 

including security and surveillance (Karbalaie et al., 2022), traffic and crowd monitoring (Djenouri 
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et al., 2019), business intelligence (Ranco et al., 2015), social media (Vioulès et al., 2018), 

environment (Meyer et al., 2019), medical diagnosis (Ukil et al., 2016), and manufacturing (Pittino 

et al., 2020). The increasing adoption of event detection can be attributed to the remarkable 

advancements in technology, particularly in video surveillance, sensors, and the web. These 

developments have made it possible to extract real-time data in the form of visual and text 

information, which can reveal valuable insights into anomalous behaviors. In the realm of security 

and surveillance, event detection has proven useful in identifying intrusions and suspicious 

activities, thereby enhancing safety and preventing criminal activity. Similarly, in traffic and 

crowd monitoring, event detection is used to monitor traffic patterns and identify incidents such 

as accidents or road closures. Social media analysis also benefits from event detection, which can 

be employed to monitor public opinion and track the dissemination of information, thus facilitating 

informed decision-making for businesses. Additionally, event detection can aid in crisis 

management by swiftly identifying and responding to emergency situations, particularly those 

resulting from natural hazards.  

 

Among the event detection scenarios, event detection with spatiotemporal data from urban 

environments is imperative to understand the factors that may change human mobility behaviors, 

such as disruption in the metro services caused by construction (Younes et al., 2019) and by strikes 

(Y. Yang et al., 2022). This practice garners increased attention, particularly with the abundance 

of data stemming from transportation systems like sensor or surveillance data, as well as social 

media check-in with geospatial tags (Miranda et al., 2017). With the recent advances in geolocation 

technologies, trips with detailed information are collected for high-frequency trip records. For 

example, trip records from taxi and bike share services are used in event detection to better 
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understand human mobility dynamics and improve event management and city planning (Chen et 

al., 2017; Doraiswamy et al., 2014). 

 

There are multiple techniques available for event detection on spatiotemporal data, and the choice 

of technique depends on the data format and intended purpose. Djenouri et al. (2019) classify 

traffic flow outlier detection methods into three categories: statistical, similarity, and pattern 

mining. Statistical methods treat data as a statistical process (Kingan & Westhuis, 2006) and utilize 

statistical tests to identify outliers. Similarity methods, such as K-nearest neighbor, use distance 

measures to identify outliers in the input data (Dang et al., 2015). Pattern mining methods extract 

key data structures as patterns to distinguish anomalies, including trend decomposition (Zhu & 

Guo, 2017) and principal component analysis (Chawla et al., 2012). Event detection on a vector 

of spatial or temporal data can be generalized as an interesting subpath problem, such as locating 

an ecotone for ecological zones, with techniques such as changing point detection using CUSUM 

(Alippi & Roveri, 2006) and interesting subpath detection with statistical significance (Xie et al., 

2020). The various techniques of event detection on spatiotemporal datasets have improved our 

understanding of how events evolve over time and space. 

 

However, spatial interaction processes have not been adequately explored in the previous research 

in the domain of OD flows, especially in the relatively new mode of bike share systems. Meanwhile, 

flow processes that cannot be explained by the current spatial interaction model will produce larger 

model residuals and decrease the performance of a spatial interaction model. For example, 

COVID-19 has altered spatial interaction behaviors and caused a trend break during the lockdown 

period in NYC (Figure 14). To address this issue, this chapter proposes an event detection 

framework that can detect outliers based on these types of model-based changes. Such a technique 



 

 78 

has not been previously explored in the spatial interaction domain and needs to be evaluated for 

its ability to detect anomalies in OD flows. 

 

 

Figure 14. Demonstration of trend breaks from April to June 2020 in model performance 

(Pearson’s R) from spatial interaction models trained with different periods of data. 

 

The martingale framework for event detection is a statistical method that can fit classification, 

clustering, and regression-based event detection problems (Ho & Wechsler, 2010). The framework 

utilizes the martingale test that examines exchangeability within a sequence of data (Ho, 2005) 

and processes one sample at a time. Its 'online' feature makes it an ideal tool for real-time detection 

with applications in various fields, including video streams (F. Cai & Koutsoukos, 2020), social 

media (Vioulès et al., 2018), and flight behaviors (Ho et al., 2019). However, the martingale 

framework has not been widely applied in human mobility and transportation studies and requires 

evaluation in the spatiotemporal domain. 

 

Spatial interaction models are used to understand human behaviors by explaining the origin-

destination trip generating processes. Event detection using a model-based proxy can yield 

different insights from those using raw data distributions. For example, the second study of the 
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dissertation revealed behavioral changes from the dynamics of distance decay, which cannot be 

achieved by merely analyzing the total trip numbers. However, current event detection for bike 

share trips mostly relies on spatiotemporal data distributions (Doraiswamy et al., 2014; Lam et al., 

2019), resulting in a research gap in event detection from the view of spatial interaction processes. 

Thus, this study raises the first research question: Can we detect events from human behaviors 

using model-based proxies? To further explore the martingale framework, the second question is 

How can we effectively combine spatial interaction models and the martingale test to detect events? 

 

In order to answer both research questions, the study adapts the martingale framework with spatial 

interaction models to detect events in high-frequency OD flows from bike share trips. In the 

experiments, the study first evaluates the framework with simulated data to evaluate its 

performance on event detection with controlled simulations. Empirical work is then conducted 

with bike share data from multiple US cities to answer the third research question “What types of 

events can be reliably detected across time and different US cities?” Additionally, the study 

provides a discussion of model tuning and limitations to assist future applications of the martingale 

framework using spatial interaction process. 

 

4.3 Methods 

This section provides a detailed description of the proposed martingale framework for event 

detection using spatial interactions models. The initial steps introduce essential concepts and 

explain the working of the martingale test for event detection. The subsequent steps describe the 

necessary adaptations made from the original framework to tailor it to spatial interaction processes. 
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4.3.1 Exchangeability and martingales 

The first step is to introduce the definition of exchangeability. Given a sequence of random 

variables (𝑍1, 𝑍2, . . . , 𝑍𝑛)  that all take values in the same example space. The sequence is 

exchangeable if the joint distribution 𝑃(𝑍1, 𝑍2, . . . , 𝑍𝑛) of a finite number of the random variables 

is invariant under any permutation from the sequence, i.e, 𝑝(𝑍1, 𝑍2, . . . , 𝑍𝑛)  =

 𝑝(𝑍𝜋(1), 𝑍𝜋(2), . . . , 𝑍𝜋(𝑛)), for all permutations 𝜋 defined on the set {1, . . . , 𝑛}. 

 

The concept of martingale, originally used in gambling, refers to a fair game of chance where the 

outcome of each round is independent of previous rounds. For instance, consider Alice playing a 

sequence of coin toss games where heads earn her one dollar and tails lose her one dollar. Let 𝑍𝑖 

represent the amount Alice earns or loses in the ith game, where a negative 𝑍𝑖 indicates a loss. The 

gambler's total winnings at the end of the 𝑖 th game are denoted by 𝑀𝑖. The independence of 𝑍𝑖 

from previous individual game earnings (𝑍1, 𝑍2, . . . , 𝑍𝑖−1) implies that the conditional expectation 

of 𝑍𝑖 given these previous earnings is equal to the unconditional expectation of 𝑍𝑖, which is zero. 

Moreover, the expectation 𝑀𝑛+1 of the gambler's winnings at the end of the (𝑛 + 1) 𝑡ℎ  game, 

given all previous outcomes, is equal to the winnings at the end of the nth game. Thus, the 

conditional expectation of the random variable 𝑀𝑛+1 is simply the value of the current random 

variable 𝑀𝑛. Such relation ensures a martingale, as a sequence of random variables, remains stable 

in value with some fluctuation if the process of 𝑍𝑖 is random. 

 

A formal definition of martingales is as follows. A sequence of random variables {𝑀𝑖: 0 <=  𝑢 <

 ∞} is a martingale with respect to the sequence of random variables {𝑍𝑖: 0 <= 𝑖 < ∞}, if, for all 

𝑖 >= 0, the following conditions hold (Ho et al., 2019): 
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● 𝑀𝑖 is a measurable function of 𝑍1, 𝑍2, . . . , 𝑍𝑖, 

● The expectation of the absolute value of 𝑀𝑖 is finite, i.e., 𝐸(|𝑀𝑖|)  <  ∞, 

● Given 𝑍1, 𝑍2, . . . , 𝑍𝑛, the conditional expectation of 𝑀𝑛+1 is the previous martingale value 

𝑀𝑛, i.e., 𝐸(𝑀𝑛+1|𝑍1, . . . , 𝑍𝑛) = 𝑀𝑛 

4.3.2 Martingale test 

Event detection based on martingales performs a martingale test that examines the null hypothesis 

that “exchangeability holds” when every new data point is observed (Vovk et al., 2003). Unlike 

the gambling example, a martingale value within event detection provides evidence to reject the 

null hypothesis. Thus, the term strangeness measure is introduced to score the difference from a 

new value compared to the other previous values. Strangeness is defined on the type of event and 

input data, so a variety of possible strangeness measures related to classification, clustering, and 

regression could be used. A specific definition of regression-based strangeness for spatial 

interaction processes is elaborated in the session 4.3.3. 

 

A martingale test over a sequence of input is a loop-like algorithm as shown in Figure 15. 

Specifically, strangeness is calculated from the residual of the spatial interaction model as the 

deviance from the current input to the known regression model. The current strangeness value is 

added to a list of previous strangeness values and then a p-value is computed for the current state 

using this list. The p-value plays the role of a random variable 𝑍𝑖 in the definition of martingale is 

calculated from strangeness for all the available strangeness in the training set as  

𝑝𝑖({(𝑥1, 𝑦1 ), . . . , (𝑥𝑖 , 𝑦𝑖)}, 𝜃𝑖)      =    
#{𝑗∶ 𝑠𝑗>𝑠𝑖}+𝜃𝑖{𝑗∶ 𝑠𝑗=𝑠𝑖}

𝑖
   Equation 4.1 
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where 𝜃𝑖 is a random number from [0, 1], the symbol # means the cardinality of a set, and 𝑠𝑖 is the 

strangeness of sample 𝑖. 

 

Martingale value M calculated from existing p-values has been proposed in two forms in previous 

work (Fedorova et al., 2012), e.g., randomized power martingale in product form and simple 

mixture martingale in integral form. In the product form, the power martingale for some 𝜖  , 

denoted as 𝑀𝑛
𝜖  , is defined as 

𝑀𝑛
𝜖 = ∏ 𝜖𝑝𝑖

𝜖−1𝑛
𝑖=1      Equation 4.2 

where 𝜖 ∈  [0,1], with empirical choice of 0.92 in one previous example (Ho, 2005). The integral-

form simple mixture martingale, denoted as 𝑀𝑛, is the mixture of power martingales over different 

𝜖 ∈  [0,1]: 

𝑀𝑛   =  ∫ 𝑀𝑛
𝜖𝑑𝜖

1

0
     Equation 4.3 

This study focuses on the mixture martingale as the default option for its simplicity. The alternative 

form using power martingales has the capability to adjust the sensitivity of the event detection 

algorithm. Detailed differences from the two forms of calculation are compared in the result 

session. 

 

The martingale test will reject the null hypothesis if M is larger than a threshold 𝜆 which is another 

parameter that influences the algorithm. The last step of a sample processed in the algorithm is 

either to update the regression model with the new data point or to reset the training set after a 

change is detected. 
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Figure 15. Algorithm of event detection based on martingale test. 

 

4.3.3 Adaptations 

Before applying the martingale framework for spatial interaction data streams in event detection, 

the proposed method must address two crucial adaptations. First is the definition of strangeness 

for regression-based event detection. Given the training set 𝑇 =  {(𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑛, 𝑦𝑛)}, 

where 𝑦𝑖  ∈ ℝ , the strangeness of an example (𝑥𝑖 , 𝑦𝑖) with respect to a regression model is defined 

as 

𝑠(𝑇, (𝑥𝑖, 𝑦𝑖))  =  
|𝑦𝑖   −  𝑓(𝑥𝑖)|

𝑒𝑥𝑝(𝑔(𝑥𝑖))
    Equation 4.4 
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where the numerator function 𝑓 is the fitted regression function. In this study, a spatial interaction 

model is used here, which is essentially just a particularly structured regression model. The 

denominator 𝑒𝑥𝑝(𝑔(𝑥𝑖)) is an estimate of the accuracy of the regression function 𝑓 on 𝑥𝑖, where 

function 𝒈 is the prediction of the value 𝑙𝑛(|𝑦𝑖 − 𝑓(𝑥𝑖)|) for the example 𝑥𝑖 (Papadopoulos et al., 

2002). Both Gaussian regression and Poisson regression have been tested as 𝑔  and Gaussian 

regression provided better results in sensitivity experiments.  

 

The second adaptation is the dimension reduction of the origin-destination (OD) network into a 

single-valued martingale. Imagine a fully connected OD network with 𝑛 sites, every time 𝑡 it may 

generate a matrix of OD flows with the size of 𝑛2 and the same dimension for the strangeness of 

each OD pair residual. However, the original martingale framework expects one strangeness value 

to calculate the scalar value of a martingale for the current time 𝑡 . Thus, a representative 

strangeness should be extracted from the 𝑛2-dim strangeness. Taking the median value of the 

strangeness was the most effective solution, outperforming the mean or using the maximum value. 

This is because the mean and max functions can more easily be influenced by extreme values, 

whereas the median value better reflects the overall distribution of strangeness values. Therefore, 

using the median value enables a more accurate representation of the collective strangeness of each 

OD pair while reducing the dimensionality of the OD network to a scalar-valued martingale. 

4.3.4 Simulation design 

Before conducting the empirical work, simulated data are used to manipulate changes in the data 

generating process and validate the framework in detecting artificial changes. The simplest spatial 

interaction model from Equation 3.1 is used with one variable for origins and destinations that 

represents population. The choice of total trips is made to approximate the daily statistics observed 
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in the empirical work in the NYC system. Specifically, a set of 25 sites were randomly generated 

in the plane (0,100) × (0,100), with 600 possible OD pairs (Figure 16). The cost factor 𝑑𝑖𝑗 is 

calculated from the Euclidean distance between the two points for each OD pair. A random 

population value from a uniform distribution from the interval [50000,500000] is assigned to 

each site. A sequential data stream with length of 200 is generated with one or more parameters 

(i.e., processes) changed in the middle of the stream. Specifically, each time 𝑡 , using the 

multinomial distribution, 50000 flows are distributed to each OD pair based on the probability 

calculated from the spatial interaction model that is obtained by dividing the predicted number of 

trips for an OD pair by the total number of predicted trips. The data generating process was 

replicated 100 times (𝑡 = 1,2, … ,100) with the parameters of the spatial interaction model as 𝑘 =

1, 𝜇 = 1, 𝛼 = 1, 𝛽 = 1 , for ‘pre-event’ data. A similar process was used for another 100 

replications for times (𝑡 = 101,102, … ,200) by changing one or more parameters in the spatial 

interaction for ‘post-event’ data. This strategy was repeated 50 times using the proposed 

framework and mean time delay between the true and predicted time of the parameter change (i.e., 

event) as one benchmark of performance.  

 

Event detection based on martingale test depends on p-value which is a random variable. The 

uncertainty within p-values means a possibility that event detection practices generate results other 

than true positives that an event is detected after the changed time, including false negative cases 

that the artificial change is not detected and false positive cases that are false alarms for non-

existing changes. In the event detection applications, recall rate is imperative that is defined as 

# 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

# 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + # 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
. Thus, sensitivity analysis was performed on the relationship 

of delay time and recall rate with 1) the changed time of the events and 2) the magnitude of changes 



 

 86 

as complementary results to gain more insights on how the framework performs with the simulated 

data. 

 
Figure 16. A demonstration of random distribution of 25 simulated sites. 

4.3.5 Empirical design 

 

Figure 17. Relationship between OD pairs with non-zero flows and proportion (p) of time 

periods, e.g., weekdays, in the NYC system. 
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The empirical work involves utilizing bike trips that are aggregated over a given time period, such 

as weekly or daily. In the case of NYC, experiments showed that aggregation over a week or a day 

results in a large proportion of OD pairs with zero flows. Including all the OD pairs in the input 

often leads to failure in event detection. One explanation is that the unbalanced training set carries 

large variance at the stations that occasionally have positive flows but most have zero flows. 

Therefore, the algorithm requires observations that are not consistently zero valued and so it is 

important to only include OD pairs that are consistently non-zero. However, the definition of 

consistency is subjective as a consistent OD pair should have M time periods with non-zero flows 

among total N time periods. Therefore, a threshold proportion 𝑝 is used to filter the OD pairs, 

termed “consistent OD pairs” thereafter, meeting the proportion condition that 𝑝 >= 𝑀/𝑁. Figure 

17 demonstrates such a relationship of the number of OD pairs changing with the proportion 𝑝 of 

time periods to help choose the proper threshold. The graph illustrates a logarithmic decreasing 

pattern when the threshold is below 0.85, followed by a linear decrease. An ideal choice for the 

consistency threshold is when 𝑝 is 1.0, but the plot shows no such OD pairs have positive flows 

every weekday in the NYC system, so the threshold should be set lower than 1.0. For the empirical 

work in the NYC system, a spatial subset of consistent OD flows that have positive values in 85% 

of weekday sampling periods (e.g., 𝑝 = 0.85 for NYC data) is used. Figure 18 demonstrates 

distribution of bike stations (Left) as well as the consistent OD pairs and the flow intensity of the 

NYC system (Right). The majority of consistent OD pairs are located around Central Park and in 

lower Manhattan. Strong connections can be seen in the west rim of Manhattan, while some 

isolated OD pairs are spotted in the west NYC. Different sampling windows, such as weekly, daily, 

and subsets of weekdays, have been tested from a temporal perspective. Overall, selecting a spatial 
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subset of consistent OD flows and using appropriate sampling windows is crucial to the reliability 

and effectiveness of event detection in the context of bike trip flow networks. 

 

 
Figure 18. Left: Station distribution in NYC Citi Bike. Right: Illustrations of consistent OD 

flows in NYC Citi Bike with 85% time periods having positive flows. 

 

To further highlight the significance of the proposed martingale framework, martingale values that 

are used for event detection are compared with the dynamic determinants that describe the potential 

behavioral changes in bike trip generating processes. Then they are compared with event detection 

outcomes for a previous tool that detects events from trip number dynamics. Both comparisons are 

expected to provide evidence in the capability of the framework to capture the potential behavioral 

changes which is not obvious from the trip numbers. 
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4.4 Results 

4.4.1 Simulation 

Simulated data from a gravity-type spatial interaction models are generated using different 

controlled settings. Table 8 displays the settings used in the simulations and the mean delay time 

for each setting. Any single change in the generating process can be reliably detected with a similar 

delay time. The changing of two parameters (row 3 and 4 in Table 8) theoretically results in larger 

model residuals, but the mean delay time only has a small improvement, which implies that 

increasing the magnitude of changes does not improve the delay performance. The right side of 

Figure 19 shows how martingale values grow with time for one distance cost change test with a 

red vertical line marking the time of the actual change. The plot illustrates how martingale values 

change over time before and after a controlled event occurs. Initially, martingale values will 

decrease and present some fluctuations, which will eventually cease as more data is received. 

When the event occurs, it requires extra data points to stimulate a peak in the martingale values, 

but the current model gets retrained after the threshold is exceeded, and the martingale values 

repeat the pattern observed at the left side of the plot. The distribution of mean delay time in four 

sets of experiments is shown in the left boxplot of Figure 19. The distribution of the delay times 

seems to decrease with large changes in the parameters, but the median values are not significantly 

different from each other. 
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Table 8. Simulation results for each setting, and mean delay time for detecting the true change 

event. 

Parameter changed Changes Mean time delay 

Origin 1 to 2 10.2 

Cost 1 to 2 10.0 

Origin, Cost (Double) 1 to 2 9.6 

Origin, Cost (Double+) 1 to 4 9.2 

 

 

Figure 19. Left: Summary of 50 runs for four simulations. Right: A set of martingale test values 

by time in one sample experiment of “cost” change, with a red line marking the time of change. 
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Relationship between change time and delay 

 

Figure 20. Delay times and recall rates from an experiment on the relationship of the delay time 

and parameter change. 

 

This subsection describes the results of experiments conducted to investigate the impact of delay 

time on event detection. Model parameters were changed at different times (from t=10 to t=110), 

and the results are presented in Figure 20. The mean delay time did not vary significantly with 

different times of intended changes after t=30, ranging between 5 and 10. However, there were 

large fluctuations in the delay measured before t=30, possibly due to the regression model in the 

martingale framework requiring more time to stabilize. As a result, the initial frames may not have 

sufficiently trained the spatial interaction model before encountering the event. Additionally, the 

lower recall rate for earlier events indicated that the changes were not successfully recognized in 

those cases. This simulation suggests that quickly occurring events may be more challenging to 

detect. 
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Relationship between change magnitude and recall rate 

 

Figure 21. Recall and false positive rate from experiments with magnitude of event using the cost 

factor. 

 

Figure 21 shows how the recall rate changed events associated with different magnitude changes 

in the process associated with distance decay (i.e., cost). The recall rate is almost 100% for changes 

larger than 10%, indicated by the region beyond the scale of the X-axis. For example, when the 

cost factor changes from -1 to lower than -1.1 or higher than -0.9. However, when the changes are 

less than 0.05 (5%), the recall rate drops, forming a U-shaped curve. This suggests that event 

detection is likely to miss an event if the process change is very small. The false positive line 

(orange) plots the false events triggered during the frames before the true events. These results 

convey that there is a small chance (0 or 1 out of 50) of false positives in the simulation. So multiple 

trials are recommended in case of false positives in a single trial. Overall, the examination of the 

recall rate for weaker events indicates that the strength of an event is important for this method. 
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The experiments with simulated data demonstrated that an artificial event causing changes in the 

spatial interaction generating processes can be detected with the proposed framework, despite 

small defects in the chance of missing an event when the events are weak or occurring quickly. 

The delay time and a small chance of false positives requires a careful interpretation from the real-

world results in order to get robust results. Overall, the method might not be perfectly out-of-box, 

the simulation results support the fact that the method can detect events from empirical datasets. 

 

4.4.2 Empirical work in NYC 

Previous studies (Noland et al., 2019; Oshan, 2020; Shen et al., 2018; Y. Yang et al., 2019) have 

identified variance in the intra-city bike share usage between weekdays and weekends. To better 

capture different signals, the analysis focused on daily samples for either weekdays (Monday, 

Tuesday, Wednesday, Thursday, Friday), or weekends (Saturday, Sunday). Figure 22 shows 

martingale values as well as events of interest from the NYC bike share weekday data. 

Environmental contexts such as weather, social media of the bike share operator, and COVID-19 

cases are examined to understand these events as shown in Table 9. Martingale values reveal that 

the first event (marker A) corresponds to heavy snow in March 2018 with no delay in detection. 

Shortly after, an increase in temperature in May 2018 showed a peak (marker B). Another smaller 

peak (marker C) is related to a thunderstorm that disrupted bike trips heavily on May 15, 2018. 

Peaks D and E refer to holiday breaks at the end of 2018. The last cluster of peaks (marker F) in 

the data stream are pandemic-related events in 2020 and 2021. The first peak in this cluster (marker 

F) is related to trip changes due to lockdown, showing a peak 18 frames after the start of lockdown. 

Overall, this weekday example demonstrates that a variety of events can be identified in the 
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martingale values. The causes include extreme weather changes that lead to increases and 

decreases in trips, holiday breaks, and pandemic lockdowns. 

 

 

Figure 22. Martingale values and events of interest (marker A-F) from weekday samples in the 

NYC system. 
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Table 9. Highlighted markers in the sequence of martingale values from the NYC experiment 

and associated events, with occurrence time, cause of the event, and the delay compared to the 

occurrence time (if applicable). 

Marker Date, weekday Cause of the event(s) Delay 

(days) 

A 03/02/18, Friday Heavy snow and rain on March 2nd, 2018. 0 

B 05/09/18, Wednesday Warm weather starting May 2nd, 2018.  5 

C 05/15/18, Tuesday Extreme weather: one single day with high 

temperature and thunderstorm 

0 

D 11/26/18, Monday Holiday break: Thanksgiving 2 

E 12/24/18, Monday Holiday break: Christmas 0 

F 04/09/20, Thursday Covid-19 pandemic: lockdown started 18 

 

Relationship between detected events and potential behavioral changes 

To further investigate the relationship between a detected event and potentially associated 

behavioral changes, the time series of martingale values were aligned with the dynamic 

determinants (i.e., coefficient estimates) using the same features from study 2 but for the weekday 

samples used here. Figure 23 shows martingale values for the weekday samples and trends of the 

distance decay factor from the weekday spatial interaction models. Detected events, including 

marker A, B, D, E, and F, can be matched with a change in the distance decay as shown in red 

vertical lines. This means the events in the martingale can be associated with the behavioral 

changes regarding travel distance for bike trips. However, there are additional spikes in the 

dynamics of distance decay that exhibit similar changes to the detected events marked in red lines 

but do not appear as a peak in the martingale values. Furthermore, the trends of the distance decay 

factor after the initial lockdown shifted back to the pre-pandemic level but did not trigger an event 

in the martingale values, as it moved away from the pre-pandemic level during the lockdown. 
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Figure 23. Martingale test value for weekday samples and distance decay from daily spatial 

interaction models. Red lines mark the events from A to F except for C in Table 9. 

 

Comparing martingale values with trip numbers and Change Scores 

A comparison of trip numbers and an event detection algorithm based on trip numbers with 

martingale values is shown in Figure 24. In the comparison between martingale values and trip 

numbers, an increasing or decreasing trend in the trip numbers seems to visually match one or 

more peaks in the martingale values. Events like the COVID-19 pandemic and holiday breaks at 

the end of a year can be visually identified in the trip number dynamics, but events that did not last 

a long time due to extreme weather are difficult to identify. The martingale framework seems to 

work better in detecting an event that didn’t change the trip number obviously, such as event B 
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and C in Table 9. The ChangeFinder10 algorithm by Takeuchi and Yamanishi (2006) is an online 

change point detection algorithm that uses a Sequentially Discounting Auto Regressive learning 

algorithm. The algorithm takes initial frames (such as first 10 frames) of input series as a training 

set and outputs a scalar value Change Score to indicate the possibility or intensity of change 

happening at each time. Figure 24 shows how the change score compares with the martingale value 

from the martingale framework. The zig-zag change score provides limited information towards 

detecting change scores, probably because daily trip numbers fluctuate so much that the 

ChangeFinder method highlights every small fluctuation as events. It can be observed that the 

martingale framework tends to suppress noise and stimulate spikes during periods with notable 

changes. This comparison showed that the martingale values from the spatial interaction model 

are better for detecting outstanding events than the Change Scores from the dynamics of trip 

numbers. For simplicity, this section only applies one of existing change detection method. To get 

a better insight in the sensitivity of the martingale framework, further comparisons may be 

performed.  

 

 

10 https://pypi.org/project/changefinder/ 
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Figure 24. Martingale values (log-scaled) (Top) compared with trip numbers (Middle) and 

change scores from the changefinder algorithm (Bottom) using the weekday samples. 

 

4.4.3 Comparison with additional US cities - Washington, DC and San Francisco 

In order to test the robustness and generalization of the proposed method, more US cities are 

included in the empirical work in addition to NYC. The largest bike share systems in the US other 

than NYC include Chicago, DC, and San Francisco. Both Chicago and NYC have substantial 

seasonal changes that impact bike trips and result in detected events while Washington, DC and 
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San Francisco have milder winter seasons than Chicago and NYC. Hence, the same procedure was 

applied to analyze DC and San Francisco data as was used for NYC, and the results are presented 

below. In all cities, the data sources and variable selection process were replicated with those used 

in NYC. The selected variables of three datasets are largely overlapping but have slight differences. 

A full list of variables used in the spatial interaction models of three cities can be found in Table 

B.1 of Appendix B. 

 

Washington, DC 

The Capital Bikes system in DC is the second-largest bike share system in the US, with more than 

600 running stations and ten thousand daily trips as of the end of 2021. In comparison, the NYC 

system has 1000 stations and 50 thousand daily trips. However, bike share trips in DC result in a 

sparser OD matrix than in NYC with fewer consistent OD pairs. When choosing the same threshold 

of 0.85 used in NYC for the consistent OD pairs, only about 20 pairs meet the specified number 

of time periods. Those pairs consist of too few trips to represent the entire system. Therefore, a 

lower threshold is needed to satisfy two conditions: (1) the number of OD pairs are numerous 

enough to represent the system; and (2) non-zero flows between the OD pairs are numerous enough 

to detect events from. Empirically, setting the threshold at 0.7 resulted in more than 100 OD pairs 

and reasonable results. The distribution of the consistent OD pairs is shown in Figure 25, with 

consistent bike trips happening around the National Mall and the Tidal Basin, where many tourist 

sites are located. The remaining consistent OD pairs are located in the east and north parts of DC, 

which are mainly residential areas. Compared to the NYC system, popular trips in DC are 
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disconnected from each other, leaving a gap around central DC. This is surprising given the well-

planned bike lanes in those areas11. 

 

The consistent bike trips around tourism destinations suggest the role of bike share for recreational 

purposes. This observation is further supported by the bike trip distribution by weekdays, which 

shows Saturday as the day with the most bike trips out of seven weekdays. This pattern is unique 

to the DC system, as the other two systems have a weekday from Monday to Friday as the busiest 

day of the week. As a result, the daily spatial interaction data frames for DC consist of weekends 

only e.g., the subset of (𝑆𝑎𝑡𝑢𝑟𝑑𝑎𝑦, 𝑆𝑢𝑛𝑑𝑎𝑦). Figure 26 shows the martingale values for the 

weekend samples in DC. Compared to the results from NYC, the peaks of the martingales are 

lower and appear as a cluster of peaks rather than single spikes. Four events are identified and 

interpreted in Table 10. Despite the possibility of false positive signals generated by early frames 

(as shown in Figure 21), the first event (A) detected in DC is validated using a training set that 

starts much earlier in late 2017 to minimize the chances of false positives. Event A involved an 

abnormal increase in trips on a Saturday and was possibly caused by a promotional event by the 

bike share operator, which was identified on the social media platform Twitter using the hashtag 

"bikeinbloom". This event coincided with the yearly cherry blossom season in DC, which attracts 

many visitors to the Tidal Basin. Subsequent events in DC are similar in type to those identified 

in the NYC system, such as holiday breaks, extreme weather, and the COVID-19 pandemic. 

 

 

 

11 https://ddot.dc.gov/page/bicycle-maps 
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Figure 25. Bottom: Bike station distribution in Washington, DC Capital Bikeshare. Top: 

Illustrations of consistent OD flows in Washington, DC Capital Bikeshare with 70% time periods 

having positive flows 
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Figure 26. Martingale values and events of interest (marker A-D) from weekday samples in the 

Washington, DC system. 

 

Table 10. Highlighted markers in the sequence of martingale values from the Washington, DC 

experiment and associated events, with occurrence time, cause of the event, and the delay 

compared to the occurrence time (if applicable). 

Marker Date, weekday Cause of the event(s) Delay 

(days) 

A 03/31/18, Saturday Special bike promotion events and cherry 

blossom 

0 

B 01/19/19, Saturday Holiday breaks 16 

C 05/17/20, Sunday Covid-19 pandemic: lockdown started 18 

D 02/28/21, Sunday Holiday break and snow on 01/31/21 NA 
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San Francisco 

The San Francisco Baywheels system operates in the great Bay Area, California, with bike stations 

distributed across three service areas: San Francisco downtown, East Bay including Berkeley and 

Oakland, and San Jose. The system has about 500 dock stations in total, with daily bike trips 

ranging from 4000 to 5000, approximately half of the trips in the DC system. The OD matrix for 

the San Francisco system is slightly sparser than Capital Bikes in DC, requiring an even lower 

threshold of 0.60 to collect more than 100 OD pairs with a higher percentage of positive flows. 

Unlike the systems in NYC and DC, the San Francisco system essentially consists of three separate 

service areas with very few trips crossing between them. Using a threshold of 0.60, consistent OD 

pairs (shown in Figure 27) mainly connect transportation hubs and residential areas, indicating that 

the function of the system is primarily for commuting trips. 

 



 

 104 

                             

 
Figure 27. Bike station distribution in San Francisco Baywheels (Bottom-Left) and illustrations 

of consistent OD flows in the areas of downtown (Top-Left), East Bay (Top-Right), and San Jose 

(Bottom-Right) with 60% time periods having positive flows. 
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Figure 28. Martingale values and events of interest (marker A-G) from weekday samples in the 

San Francisco system. Top: values calculated from mixture martingales. Bottom: values 

calculated from power martingales (ϵ=0.92). 
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Table 11. Highlighted markers in the sequence of martingale values from the San Francisco 

experiment and associated events, with occurrence time, cause of the event, and the delay 

compared to the occurrence time (if applicable). 

Marker Date, weekday Cause of the event(s) Delay (days) 

A 02/26/18, Friday Cold day on Feb 19, 2018. 5 

B 07/04/18, Wednesday Decreased trips during July 4th 0 

C 01/01/19, Tuesday Holiday break: Christmas 6 

D 09/02/19, Monday Decreased trips during Labor Day 27 

E 11/28/19, Monday Holiday break: Thanksgiving 0 

F 03/30/20, Thursday Covid-19 pandemic: lockdown started 11 

G 08/16/21, Monday Covid-19 pandemic: increased trips 

after vaccination 

NA 

 

San Francisco's warmer weather results in fewer fluctuations in trip numbers throughout the year 

compared to the two east coast metropolitan areas. However, the milder weather and lower 

threshold for consistent origin-destination pairs create another challenge in event detection. When 

using the default parameter setting from the NYC system, San Francisco generates fewer and 

smaller peaks in the martingale values, as shown in the top of Figure 28. To address this, the 

empirical work for San Francisco also explored an alternative method for calculating the 

martingale values, specifically the randomized power martingales. This approach proves to 

increase the sensitivity of martingales towards detecting unusual events. The parameter 𝜖 ranges 

from 0 to 1 and can be used to adjust the sensitivity of the martingale. Higher values of 𝜖 tend to 

trigger higher martingale values and detect more events. Conversely, lower 𝜖 values generate less 

sensitive martingale sequences more similar to the mixture martingale. A value of 0.92 was 

employed, as was previously suggested in an example by Ho and Wechsler (2010), and the results 
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are shown in the bottom of Figure 28. Table 11 presents the interpretation of events, which includes 

three spikes in the latter half of 2018 and 2019 (Markers A, B, and C) that are not captured by the 

mixture martingales. The mid-2018 spike is caused by the break in the trend due to Independence 

Day on Wednesday, July 4th, which received much fewer trips compared to other weekdays. This 

event highlights the commuting function of the bike share system, as observed from the consistent 

OD pairs. Another event (D) was detected that is linked to Labor Day in 2019, showing a delayed 

effect. Additionally, two events in 2021 (Markers E and G) were observed, with the latter event 

being related to the increase in bike trips following the massive vaccination campaign during mid-

2021. These events demonstrate the usefulness of the power martingales in capturing a wider range 

of events in the San Francisco bike share system. 

 

4.5 Discussion 

The flexibility of bike share systems allows them to update their infrastructures as needed to better 

accommodate demand and costs. For instance, Capital Bikes in DC deployed bike corrals and pop-

up valets to temporarily increase station capacity at certain popular destinations during the Cherry 

Blossom festival when regular docks quickly filled up 12 . Thus, detecting abnormal bike trip 

demand is essential to the versatile operation strategy of bike share systems. Events that affect bike 

trip demand can be as long as the COVID-19 pandemic, or as short as thunderstorms lasting a few 

hours. Therefore, event detection methods are crucial towards maintaining the resilience of bike 

share systems. This study aims to explore a new method for event detection in the bike trip 

 

 

12 https://twitter.com/bikeshare 
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generating processes, which can assist bike share operators in managing demand and improving 

system performance. 

 

This study adapted the martingale framework with spatial interaction data. The process of 

adaptation provided insights into the calculation and data transformation needed to effectively 

utilize spatial interaction data. The study also discusses the appropriate regression functions for 

optimal results while allowing flexibility for more advanced spatial interaction models beyond the 

gravity-type models used here. However, a major challenge in the adaptation process was the 

dimension reduction from the origin-destination matrix to a scalar value for the martingale. To 

address this, various reduction methods were tested, including mean, max, and quantiles, with the 

median quantile proving to be the most effective. However, the reduction function may undermine 

the framework's ability to detect local events that only pertain to a portion of the system network. 

The remaining adaptation process was straightforward, as the default parameter settings were 

found to work well with both simulated and empirical data from New York City. These insights 

gained from the adaptation process can be helpful for future applications and provide guidance for 

overcoming potential challenges. 

 

To gain a better understanding of the methodology, a wide range of simulations were conducted 

using controlled spatial interaction data streams. Specifically, spatial interaction data frames 

generated from two sets of parameters were concatenated to simulate a stream containing an event 

that is associated with a model-based proxy for changing processes. The simulated spatial 

interaction data frames had the same total volumes, so no changes could be inferred from the 

number of trips. The results showed that for a single parameter change in magnitude larger than 

10% were likely to trigger events using the proposed framework. The simulated data also revealed 
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a delay time after the actual changes. While the calculation of the p-value included some degree 

of randomness, empirical work has demonstrated that this randomness only resulted in subtle 

variations in the martingale values across different trials. These variations did not significantly 

impact the detection of events. Lastly, the magnitude and timing of changes seemed to have little 

correlation with the delay time with only minor improvements for increasingly larger parameter 

changes. However, this may have been due to the simulation design as in practice there was not 

typically a delay between detected events and potential ground truth events. Overall, these 

simulation results validated the adaptation of the martingale framework with spatial interaction 

data and highlighted features that are essential in the interpretation process, such as the extent of 

changes that can be reliably detected, recall rate, and delay time. However, it also highlighted that 

the framework has a potential limitation in detecting rapid events. 

 

Experiments with spatial interaction data from the NYC system supported two purposes: (1) the 

effectiveness of the framework to detect real-world events; and (2) the types of events to be 

captured. Using the p-values definition that includes a random component within the calculation 

of martingale values means there is randomness in the event detection process as the algorithm 

produces slightly different martingale value sequences using the same input. Nevertheless, 

multiple trials of the method highlighted some events leading to system-wide impact on the travel 

behavior, including extreme weather, holiday breaks, and the COVID-19 pandemic. The 

martingale values were then compared with dynamic determinants and trip numbers from the same 

scale of time periods. A number of behavioral changes (Figure 23) or trip number drops (Figure 

24) are captured as peaks in the martingale values. The former results showed that the proposed 

framework can detect events that are associated with model-based behavioral changes. And the 

latter results showed the framework can detect events that are not obvious in the trip number 
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fluctuation. Upon comparison between the proposed framework and an alternative event detection 

algorithm that uses trip numbers, it can be inferred that the latter method is more prone to 

generating false positive events by marking all fluctuations as highlighted events, while failing to 

detect actual events. All of these results support the need for the proposed method. However, some 

events may be missed by the martingale framework due to the aforementioned feature of the 

framework: a cluster of multiple rapid events and may be detected as a single peak (event). 

Evaluation with data from NYC also showed the complexity of real-world events that may vary 

widely in the length of time and the intensity of changes in the trip generation processes.  

 

Event detection results with real-world data were also compared for three US cities with substantial 

bike share usage. Commonly detected events are caused by extreme weather, which results in both 

decreases and increases in trip numbers, holiday breaks during Thanksgiving, Christmas, and New 

Year, and the COVID-19 pandemic. Due to different social and geographical contexts among New 

York City, Washington DC, and San Francisco, this comparison identified unique sets of events 

for each city. For example, New York City is often affected by the extreme weather from snow, 

while DC has the seasonal cherry blossom festival. With less extreme weather, bike share usage 

from San Francisco is depicted as commuting-centered so that holidays happening within the 

weekdays can be detected as events. Differences in the trip number of the three systems also drives 

differences amongst the results. With fewer trip numbers, San Francisco data requires a more 

sensitive setting for the algorithm by using the power-form martingales, as previous literature on 

model tuning gives options for changing the way a martingale is calculated to adjust the sensitivity 

of event detection. Results here demonstrated the difference in the impact factors that may 

experience abnormal usage in a bike share system. Detected events may guide system operators in 

short-term operations and long-term planning. For example, during the start of the warmer months, 
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increased rebalancing operations may be needed to meet the sudden increasing trip demand in the 

NYC system. While in the San Francisco system, system expansion planning could involve 

infrastructure in recreation areas to increase its usage during the holiday breaks. However, the 

empirical work is still at an early stage as only a subset of peaks in the martingale values are 

identified and interpreted. In future work, more events may be identified and interpreted after 

further tuning the sensitivity of the framework. 

 

Limitation 

Real-world data are more complex than simulated data and the events often come with changes in 

different magnitudes and lengths of duration. Simulation design in this chapter aimed to 

approximate the setting with the real world but could benefit from more elaborate configurations. 

The simulation specified the distributions of origin and destination factors using a uniform 

distribution and the flow generation using a multinomial distribution based on the output of spatial 

interaction model. So, the variance of simulated data is determined by these distributions, which 

may not reflect reality. The different characteristics of the input data may affect the delay time and 

the sensitivity of event detection. This may possibly explain why simulation experiments yielded 

a mean delay of 10 frames but in the experiments with the real-world bike share data, the delay is 

often 0 or 1. Future work can further explore this issue. 

 

Another limitation is the use of a consistent subset of origin-destination pairs in the system. A 

consistent set of origin-destination pairs is needed to avoid the noise of too many zero flows but 

this limits in representing the entire system and could possibly cause bias in the event detection. 

For example, local events caused by transport disruptions from constructions or sport events like 

marathons are not detected with the current model specification. Future work may integrate a 
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model specification that can better account for zero flows so that without compromising on the 

consistent OD pairs, the regression model may better address the entire system. Alternatively, 

demonstrated by F. Cai and E. Koutsoukos (2020) in their analysis of image input streams, the 

idea of using generative models to retain local differences could be explored by converting spatial 

interactions into a model that can generate pseudo OD flow matrices that approximate all previous 

input OD flow matrices. Then strangeness can be effectively calculated with the mathematical 

distance between the generated OD matrices and input matrix, where any local changes may 

increase the strangeness measure. 

 

The proposed framework can fit any regression model which gives great capacity for extending 

the framework. In this study, a gravity-type spatial interaction model was used but has limitations 

in explaining the trip generating processes. Results of LASSO regression in the second study 

showed that the gravity-type models with all available variables before variable selection can 

explain up to 60% of deviance in the spatial interactions. The unexplained deviance produces 

significant residuals even during normal times and leaves less room for events. Future work may 

adopt advanced trip prediction models, such as LSTM or Transformer, to get a more precise 

explanation of the input spatial interaction data and thus increase the sensitivity of the event 

detection process (i.e., deviations from the learned model). 

 

4.6 Conclusion 

To meet the increasing need to understand the high-frequency changes in the bike share system 

that may cause trend breaks in the trip demand generation, this study introduced and evaluated an 

event detection method by combining the martingale framework with spatial interaction data and 
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models. As the first-ever application of the martingale framework in the spatial interaction domain, 

essential adaptations were deployed, including the selection of regression function in the 

strangeness metric and dimension reduction of the residual matrix. Simulations were designed to 

validate that changes from a model-based proxy for behavioral events using the spatial interaction 

model could be detected effectively with simple adaptations. Simulation results were also 

informative about the basic characteristics of the martingale framework in the event detection task 

of spatial interaction data streams. Characteristics included the recall rate of known events when 

the changes are subtle as well as the delay time that reflects how prompt an event could be 

identified in a continuous deployment. Empirical work in NYC, Washington DC, and San 

Francisco showed a variety of events can be detected, such as extreme weather changes, holiday 

breaks, and different pandemic phases. Furthermore, detected events can be associated with 

behavioral changes from dynamic determinants using the same model from the second study. 

Detected events from different cities also highlight the subtle differences in the role of the bike 

share systems. With the highest usage of bike share in the US, NYC is carrying both recreational 

and commute trips. DC has more concentration on recreational trips around the National Mall, 

while San Francisco bears more commuting trips that are stable during the weekdays except for 

public holidays. Options to tune the proposed framework for different sensitivities were also 

discussed as an important takeaway in future applications. Future work in updating the regression 

function, optimizing the adaptations, and experimenting with more datasets are suggested to 

continue exploring the proposed framework. Detected events may further inform the bike share 

operators or researchers toward a more robust event prediction model by including the variables 

that have not been considered. 
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Chapter 5: Conclusion 

5.1 Review of dissertation  

Ongoing global urbanization creates a demand for an in-depth understanding of spatial interactions 

that describe origin-destination flows within urban systems. Advances in information technology 

and IOTs have resulted in new forms of transportation, such as bike share systems. The 

infrastructures of bike share systems are often lightweight and more affordable to upgrade or 

expand than traditional transportation such as metro stations. Meanwhile, methods used for 

traditional transportation cannot address the need to understand and predict the dynamic demand 

within bike share systems. With the availability of geo-located and detailed time information, bike 

share trips are often used to study urban mobility, especially the high-frequency changes in human 

activities. Existing methods are limited for analyzing more modern systems. This dissertation 

identified three challenges and related research objectives for three essays in Chapter 2, 3, and 4. 

New methodological and analytical frameworks were proposed and evaluated with real-world bike 

share data to increase understanding of spatial interaction processes, especially high-frequency 

changes. Spatial interaction modeling not only served as the theoretical and conceptual framework 

throughout the dissertation, but also was practically expanded. Bike share trip records were 

collected from the New York City Citi Bike system used in Chapter 2, 3, and 4. Trip records from 

other systems with substantial usage such as Washington, DC and San Francisco were used in 

Chapter 4. 

 

The first study of the dissertation (Chapter 2) proposed a hybrid approach to address the 'cold start' 

problem that predicts trip demand at new stations. Flow interpolation models based on Kriging 

statistics were proposed for the first time in the flow domain and compared to areal interpolation 
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models. Exploratory data analysis revealed that the majority of the bike stations in NYC were 

added at a later time, between 2015 and the present, revealing the prediction of ‘cold start’ trips at 

newly added stations as an important research question. A group of flow interpolation and spatial 

interaction methods were examined at those ‘cold start’ stations, including areal natural neighbor, 

ordinary kriging, regression kriging, and gravity-type spatial interaction model. Results showed 

that a regression kriging method that used a spatial interaction model as the regression model and 

used the residual from the regression model as the kriging interpolation input can adaptively 

balance between the local effect and the global trend. By selecting the best method for each ‘cold 

start’ station, a spatially aware strategy can be summarized as: 1) stations added within the range 

of system coverage can benefit more from spatial dependence from nearby stations, so 

interpolation methods are preferred; 2) stations added to the new areas beyond the existing spatial 

range of the system can hardly rely on the spatial dependence with no nearby stations, so spatial 

interaction models are preferred.  

 

The second study of the dissertation (Chapter 3) focused on the changes of determinants of bike 

share trips from the spatial interaction models in the context of the COVID-19 pandemic. Bike 

share trip numbers in NYC experienced a decrease during the lockdown period but recovered with 

more trips in 2021 than the pre-pandemic reference in 2019. This study deployed a disaggregated 

comparative framework to discover the long-term and short-term dynamics of determinants in the 

bike trip generating process underlying the up and down of the trip numbers. This comparative 

framework calibrated spatial interaction model with important variables over time periods across 

either years or weeks. Yearly models implied the determinants of trips in 2021 were different from 

the 2019 levels while more dynamic evolution paths of determinants can be extracted from weekly 

models. The weekly dynamics of determinants changed according to the development of the 
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COVID-19 pandemic with different impacts on each determinant. For example, the relationship 

between bike trips and stations with more recreation opportunities almost recovered to the pre-

pandemic level. However, the absolute value of the distance decay factor remained lower than pre-

pandemic levels, suggesting a long-term impact of COVID-19 on the travel behaviors regarding 

travel distance by the end of 2021. 

 

The third and the last study (Chapter 4) is motivated by the trend breaks in spatial interaction 

behavior that are related to specific events. The research objective for this chapter was 

conceptualized as event detection in the spatial interaction data stream. This study combined the 

martingale test with the spatial interaction data and models and implemented essential adaptations 

to the input of spatial interaction data streams. As a novel approach in the domain of spatial 

interactions, the framework was first evaluated with simulated data to measure its basic 

performance to provide basic intuition to apply to real-world datasets. Empirical work with bike 

share trips from multiple US cities was performed to compare results. Event detection results not 

only revealed common events, such as holiday breaks and the COVID-19 pandemic, but also 

differed in other types of events due to the discrepancy in the geography and functional role of the 

bike share systems. Selected results demonstrated that the NYC system is more sensitive to 

extreme weather; local events like cherry blossoms are highlighted in Washington, DC; San 

Francisco experiences fewer fluctuations from the weather, but is more sensitive to public holidays 

as the key function of the system is for daily commuting. 
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5.2 Significant contributions 

A number of significant findings about bike share usage and methodological innovations for the 

spatial interaction modeling framework are significant contributions from this dissertation. 

 

Significant contribution 1: Chapter 2 focused on the 'cold start' problem which is under-discussed 

in a dock-based bike share system. The method presented here to solve the problem advances flow 

interpolation with kriging methods that are novel in the flow domain. Ordinary kriging and 

regression kriging methods for flow interpolation were implemented by establishing a relationship 

of flows to/from all the other stations from nearby stations. The proposed kriging implementation 

gave comparative or better results when compared to existing methods like areal natural neighbor 

interpolation and spatial interaction models. Being able to capture the spatial dependence from 

spatial interaction at nearby stations, the proposed kriging models can benefit future work when 

spatial interactions for higher spatial resolution become available. 

 

Significant contribution 2: Chapter 2 suggested a spatially aware strategy in finding the best 

method for each 'cold start' station, e.g., for the stations within the system coverage, interpolation 

methods could achieve better results than a spatial interaction model. For the stations added beyond 

the system coverage, spatial dependence from the closest stations in the system are too far for 

interpolation methods to rely on. Regression-based spatial interaction models from exogenous 

variables are more accurate. Out of the proposed kriging-based interpolation methods from 

Chapter 2, regression kriging has demonstrated its advantage as an adaptive approach that can 

provide decent prediction at both inner and outer stations in terms of the location of the added 

station. 
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Significant contribution 3: Bike share usage was heavily impacted by the COVID-19 pandemic, 

but the determinants of the trip generation processes are not fully examined for the time period 

after the lockdown and compared to the pre-pandemic routine. In the second study (Chapter 3), a 

disaggregated comparative framework is proposed to track the dynamic determinants of bike trips 

at long-term and short-term intervals. The short-term weekly dynamics revealed more detailed 

changes in the trip generation processes associated with the COVID-19 pandemic, suggesting the 

necessity of exhaustive modeling over a refined time resolution to match the scale of the event. 

Comparison between the long-term and short-term results also showed changes from a shorter time 

scale may be hidden under the long-term horizon. Variable selection and collinearity analysis for 

the model determinants are shown as necessary steps in the framework because including variables 

that are correlated to each other risks biased conclusions. 

 

Significant contribution 4: Determinants of bike share trips in NYC have shown long-term 

behavioral changes despite the recovery in bike trip volume. A “new normal” pattern can be seen 

as evidence from Chapter 3 showed at least by the end of 2021, impacts of the COVID-19 

pandemic were still steering the bike trip generation in multiple factors. For instance, work-from-

home opportunities likely affected the association between trips and places with more jobs for an 

extended period before resuming the pre-pandemic routine relationship. 

 

Significant contribution 5: The final study (Chapter 4) proposed an event detection framework 

combining martingale test with spatial interaction data. After reviewing the past studies on the 

martingale framework, essential adaptations are integrated to accommodate the framework for 

event detection within spatial interaction data streams. The simulated data with controlled changes 
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was used to evaluate the performance of the method. Both the adaptation process and simulation 

experiments helped prepare for empirical applications. The simplicity and scalability of the method 

are advantages. 

 

Significant contribution 6: Empirical results from three bike share systems have   demonstrated 

the generalization ability of the proposed framework and that similar events can be captured with 

a few adjustments in the model configuration. In addition, the discrepancy in the detected events 

also reflected the heterogeneity in the functional role of bike share systems in human mobility 

across different metropolitan areas. The consistent spatial interaction origin and destination pairs 

showed NYC as a well-developed system with participation from both commuting and recreational 

trips. DC results highlight the recreational trips around the National Mall while the San Francisco 

system mainly supports commuting trips from and to train stations.  

 

5.3 Future work 

At the time of the dissertation, docked bike share systems keep thriving and are contributing to 

transportation systems, along with the other micro-mobility options of electric-powered scooters 

and bikes. This dissertation plays an important role in helping researchers and urban planners 

understand and predict bike share usage as human mobility. The dissertation focuses only on bike 

share given that micro mobility data often comes from a limited proportion of population but could 

be applied with other sources of spatial interaction, such as with the general mobility dataset from 

SafeGraph (2020). Future work with less biased data would contribute to the understanding of 

urban mobility at a higher level of accuracy and significance. 
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The entire dissertation is conducted with open data from the bike share systems and with support 

on places of interest from the commercial data providers during the COVID-19 pandemic. 

However, urban mobility studies are still restrained by the availability of dynamic data, as the 

prevalent open data for population and employment are only updated yearly from the US Census. 

As population experienced changes in NYC during the COVID-1913, spatial interaction models 

with fix population may produce different results from the model with actual dynamics of 

population. Another constraint for data quality is also reflected in the collinearity between 

variables constructed from different type of locations. Techniques to unpack the association 

between POIs or extra information on each bike trip would enhance the data quality in Chapter 3. 

One goal of the dissertation is to keep promoting the openness and timeliness of geospatial data. 

With better accessibility of high-frequency data, wider applications of the methods proposed in 

the dissertation can be achieved in future work. 

 

Apart from the suggested future work discussed in each chapter, an integrated framework 

connecting the proposed methods for trip demand modeling of bike share trips could be developed 

in future studies. Specifically, underlying Chapter 2 and Chapter 4 are the pathways to clearing 

roadblocks that hinder the deployment of a spatial interaction prediction framework from bike 

share and general spatial interaction. In future work, a spatial interaction demand model could take 

the method from Chapter 2 to produce pseudo flows at the new stations in order to leverage the 

temporal dependence from the deep neural networks like LSTMs or Transformers. By using the 

 

 

13  https://www.thecity.nyc/2022/5/31/23145072/nycs-population-plummeted-during-peak-covid-and-its-still-likely-

shrinking 
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method from Chapter 4, such a model can help to locate the events that can result in long-term or 

short-term impact on the spatial interaction processes and instruct the deployment and operation 

of such spatial interaction models by alarming the model failure to those events. Lastly, Chapter 

three's framework could enhance the explainability of this integrated framework, providing 

insights into dynamic human mobility patterns. Limitations from using the gravity model as the 

only spatial interaction model also urges further work using advanced spatial interaction models 

that carry better accuracy without sacrificing interpretation ability. 

 

5.4 Concluding remarks 

Bike share systems are an important and increasingly popular transportation mode, providing 

detailed time and location data that can shed new light on the dynamics of spatial interaction 

processes and the interconnectedness of different transportation modes within cities. This 

dissertation advances innovations in spatial interaction theory and tools that can be applied to a 

complex and dynamic transportation system. These methods and strategies could be reused and 

extended to another study area to meet the increasing demand for the development of a bike share 

system in different urban environments all around the world. Furthermore, proposed methods for 

high-frequency spatial interaction modeling are not restricted to the application scenario of a bike 

share system but could be extended to application scenarios like charging stations for electric 

vehicles, providing great potential for future validation and application of the methodologies 

proposed in the dissertation. 
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Appendices 

Appendix A. Supplementary materials for Chapter 3 

 

Figure A.1. Cumulative daily number of individuals fully vaccinated against COVID-19 in New 

York City in 2021 

 

Appendix B. Supplementary materials for Chapter 4 

Table B.1. Results of variable selection for three different cities using the method in section 

3.3.4. 

Cities  New York City Washington, DC San Francisco 

Variable names Distance cost Distance cost Distance cost 

 Station capacity Station capacity Station capacity 

 Recreation Recreation Recreation 

 Employment Employment Subway access 

  Population Population 

   Housing 
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