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This dissertation research investigated LiDAR and SAR remote sensing for 

assessing aboveground biomass and monitoring changes from anthropogenic forest 

disturbance and post-disturbance recovery.  First, waveform LiDAR data were 

applied to map forest biomass and its changes at different key map scales for the two 

study sites: Howland Forest and Penobscot Experimental Forest.  Results indicated 

that the prediction model at the scale of individual LVIS footprints is reliable when 

the geolocation errors are minimized.  The evaluation showed that the predictions 

were improved markedly (20% R
2
 and 10% RMSE) with the increase of plot sizes 

from 0.25 ha to 1.0 ha.  The effect of disturbance on the prediction model was strong 

at the footprint level but weak at the 1.0 ha plot-level.  Errors reached minimum when 

footprint coverage approached about 50% of the area of 1.0 ha plots (16 footprints) 

with no improvement beyond that.  



 

 

Then, a sensitivity analysis was conducted for multi-source L-band SAR 

signatures, to change in forest biomass and related factors such as incidence angle, 

soil moisture, and disturbance type.  The effect of incidence angle on SAR 

backscatter was reduced by an empirical model. A cross-image normalization was 

used to reduce the radiometric distortions due to changes in acquisition conditions 

such as soil moisture.  Results demonstrated that the normalization ensured that the 

derived biomass of regrowth forests was cross-calibrated, and thus made the detection 

of biomass change possible. 

Further, the forest biomass was mapped for 1989, 1994 and 2009 using multi-

source SAR data, and changes in biomass were derived for a 15- and a 20-year 

period.  Results improved our understanding of issues concerning the mapping of 

biomass dynamic using L-ban SAR data.  With the increase of plot sizes, the speckle 

noise and geolocations errors were reduced.  Multivariable models were found to 

outperform the single-term models developed for biomass estimation. 

The main contribution of this research was an improved knowledge 

concerning waveform LiDAR and L-band SARôs ability in monitoring the changes in 

biomass in a temperate forest.  Results from this study provide calibration and 

validation methods as a foundation for improving the performance of current and 

future spaceborne systems.  
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Chapter 1  Introduction       

  

1.1 Background 

1.1.1 Relevance of forest biomass to terrestrial ecosystems and carbon budget  

Terrestrial carbon storage is an critical component in the global carbon budget, 

and is essential to understanding climate change and ecosystem responses to human 

activities, however, current estimates contains high levels of uncertainties (Le Quere 

et al., 2014).  The global carbon dioxide budget is described by emissions and sinks 

divided proportionally among atmosphere, ocean and land:  

EFF + ELULUC = GATM + SOCEAN + SLAND   Equation 1-1 

Where EFF , ELULCC are the carbon sources from fossil fuel & cement, and land use 

and land-cover (LULUC) change; GATM is the carbon growth in the atmosphere; 

SLAND, SOCEAN are the carbon sinks from land and ocean (Figure 1-1).  Note that the 

SLAND and ELULUC have the largest uncertainties of 2.9±0.8 GtC/yr and 0.9±0. 5 GtC/yr, 

and both are associated with changes in forest carbon stocks.  

Forest carbon stocks are generally stored in the form of biomass, which 

includes the above- and below- ground biomass (AGB and BGB), such as trees, 

shrubs, vines, roots, and the dead mass of fine and coarse litter associated with the 

soil.  Forest aboveground biomass (hereafter biomass) can be converted into carbon 

stocks by multiplying a simple carbon fraction (about 0.5 in many cases).  It is an 

important component in temperate and tropical forest ecosystems, and is a relatively 

smaller part in boreal forest ecosystems (Malhi et al., 1999).   
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Anthropogenic disturbance and management, including deforestation and 

forest degradation from management manipulations, have led to changes in biomass 

and thus the carbon budget (Hall et al., 2011; Houghton et al., 2012).  Yet the loss of 

carbon from forest disturbance and the gain from post-disturbance recovery have not 

been well assessed.  Accurate surface measures of spatial and temporal variations in 

biomass change will support climate treaty frameworks such as Reduced Emissions 

from Deforestation and Forest Degradation Plus (REDD+).   

Forest management might increase or decrease carbon storage (Figure 1-2), 

and applying the former will help to reduce climate disruption as well as increase 

forestsô resilience in the face of climate change (Evans and Perschel, 2009).  There is 

a debate regarding the net effect of forest management on the carbon budget (Nunery 

and Keeton, 2010), because it is difficult to accurately quantify how much of the 

forest carbon changes are due to stand-scale management and landscape-scale 

strategies (Canadell and Raupach, 2008).  Forest management has been incorporated 

into estimates in net flux of carbon in forest only recently (Houghton et al., 2012).  

Therefore, accurately quantifying biomass and changes after forest 

disturbance is desirable in order to reduce the uncertainties in the carbon budget, and 

thus to inform the policy and decision-making community. 
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Figure 1-1. Conceptual diagram of global carbon dioxide budget. Global Carbon 

Project 2014 (Le Quere et al., 2014). 

 
Figure 1-2. Conceptual relationship between changes in forest and carbon budget. 
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1.1.2 Current approaches to estimate forest carbon stocks and changes 

Three approaches summarized by Houghton et al. (2012) have been applied to 

estimating forest biomass density (MgĀha
-1

) and changes in density due to LULUC: 1) 

field inventory, 2) remote sensing-based estimates, and 3) modeled estimates.  

 A. Field inventory 

 

Table 1-1. Comparison of the forest biomass from field inventory 

Category Approach Description Advantages Disadvantages 

Direct Destructive 

sampling 

Harvest of all or 

representative trees  

Accurate and direct 

measure;  

Time-consuming & 

labor-intensive; 

Fresh/dry masses 

weighted 

Essential for 

development of 

allometric equations 

Relationship 

applied for limited 

regions 

Indirect Allometric 

equations 

Species based 

relationship between 

biomass and dbh, tree 

height, and wood density 

Easy to conduct 

measurements in the 

field 

Relationship varied 

due to 

environmental and 

climate conditions 

Component 

ratio method 

Biomass converted from 

volume 

With many sampled 

plots from national 

forest inventory 

Relationship varied 

due to 

environmental and 

species 

composition 

 

Field inventory, either directly or indirectly conducted, is the most accurate 

approach for measuring forest biomass (Table 1-1).  Specifically, direct measurement 

requires harvest of all materials, average stands, or individual representative trees 

(Monk et al., 1970).  Many regional studies usually destructively sample individual 

trees to build up an allometric relationship between biomass and field measured tree 

attributes such as height and dbh (diameter at breast height) through regression 

analysis.  On the other hand, indirect field inventories consist of allometric methods 

(i.e., regional or national allometric equations (Jenkins et al., 2003) and volume based 

methods (i.e., component ratio method (Heath et al., 2008).  These field inventories 
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form the basis for many national forest inventories and can be combined with 

LULCC to track changes in carbon using an empirical bookkeeping method which 

assigns averaged values for each type of forest.  However, these ground-only 

inventories are labor and time intensive, and are unable to reflect the spatial variation 

of biomass within forest (Houghton et al., 2012).   

B. Remote sensing  

 

Field inventories are accurate if properly conducted, however they are labor-

intensive and time-consuming.  Moreover, no method is currently capable of 

measuring forest biomass directly in a spatial continuous content, therefore a 

combination of remotely sensed data and a well-established field inventory is 

considered suitable for informing programs such as REDD+ (Langner et al., 2014; 

Næsset et al., 2013).  

A variety of remote sensing techniques have been investigated for estimation 

and monitoring of forest carbon stocks (Goetz and Dubayah, 2011; Lu, 2006; Lu et 

al., 2014), and can be generally classified into three major groups based on the sensor 

systems used: 1) passive multispectral and hyperspectral sensor, 2) LiDAR (Light 

Detection and Ranging), and 3) radar (Radio Detection and Ranging) (Table 1-2).  

Passive multispectral and hyperspectral imagery can provide mapping of spatially 

continuous content, but with limited sensitivity to forest biomass unless associated 

with canopy vertical structure from LiDAR and radar.  The capability of LiDAR in 

estimating forest biomass is promising, yet LiDAR has inherent limited spatial 

coverage and temporal resolution.  Current LiDAR systems either provide data with 

limited spatial coverage and temporal resolutions (airborne systems such as small 
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footprint discrete-return and large footprint waveform systems), or sampling data 

with sparse temporal observations (spaceborne large footprint waveform systems).  

Radar such as Synthetic Aperture Radar (SAR) compensates for this limitation with 

global coverage and more frequent repeated observations, showing the ability to 

monitor deforestation and forest degradation (Almeida-Filho et al., 2009; Rosenqvist 

et al., 2003).  But many factors other than the change in forest structure and biomass, 

such as radar incidence angle and looking direction, as well as surface and 

environmental conditions, also affect the radar backscattering.  

Table 1-2. Comparison of the forest biomass from remote sensing-based estimation 

Category Sensor Variables Advantages Disadvantages 

Passive Multi -

spectral 

Spectral bands Wall-to-wall Saturation observed 

  Vegetation index   

 Hyper-

spectral 

Multiple bands Accurate for species 

classification 

Saturation observed 

Active SAR Backscatter 

coefficients 

Wall-to-wall Limited by 

environmental conditions 

(i.e., Soil moisture); 

Saturation observed 

 InSAR Coherence Repeat observations Saturation observed 

  Height of phase 

center 

Canopy height 

  

 LiDAR Sampling of 

target attributes 

No saturation Limited observations 

 

Due to issues with each sensor system, few studies have looked into the 

potential for monitoring changes in biomass after forest disturbance and post-

disturbance recovery, only a limited studies have assessed the net effect on changes in 

carbon budget using remote sensing techniques (Dubayah et al., 2010; Hudak et al., 

2012).   Two sets of methods used for mapping changes in forest biomass using 

remote sensing are: 1) the direct method which relates field-derived changes in 
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estimated biomass to temporal changes in remote sensing signatures directly; and 2) 

the indirect method (or time-for-space method) which first develops one or two sets 

of models to retrieve forest biomass from remote sensing observations, and then 

calculates change by subtracting one from another.  The direct method requires two or 

more co-incident sets of estimated biomass from field measurements (Dubayah et al., 

2010), which is rare and limits its applications.  On the other hand, the indirect 

method is less efficient than the direct method in terms of accuracy (Rowland et al., 

2008), but is more applicable with current field measurements once the repeated 

remote sensing observations are available.  Recently, studies have looked into the 

possibility of monitoring biomass dynamic using LiDAR and SAR remote sensing 

(Mitchard et al., 2011b; Rowland et al., 2008).  The potential method and key issues 

of using LiDAR and SAR data for assessing forest biomass and monitoring changes 

in biomass after forest disturbance were investigated by empirical approaches in this 

study.  In addition, various factors affect the relationship of remote sensing 

observations to forest biomass, leading to a large uncertainty in estimates.  Important 

sources of uncertainty are found in mapping biomass and changes in biomass from 

remote sensing: (1) uncertainties in the estimate of remotely sensed measurements,  

(2) uncertainties resulting from the biomass prediction models, (3) uncertainties in the 

in-situ estimates of forest attributes, and (4) uncertainties due to time-shift  between 

in situ estimate and remotely sensed measurements (Weisbin et al., 2013).  

Uncertainties from these sources in using LiDAR and SAR data will be addressed in 

this study. 

C. Modeled estimates  
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A third approach employs physical-based inversion via Radiative Transfer 

Model (RTM) or process-based ecosystem models that calculate internally the carbon 

density of vegetation and soils in different types of ecosystem initialized by climate 

drivers (Peddle et al., 2011; Ranson et al., 2001).  Results from remote sensing such 

as vegetation types and canopy vertical structure are a critical input for these forest 

ecosystem models, and forest biomass is an essential product for validation of output 

from these models.  

1.2 Research questions and objectives 

This dissertation will address the following two major questions: 1) what is 

the level of sensitivity of remotely sensed signatures (i.e., from waveform LiDAR and 

SAR) to changes in forest biomass caused by disturbance and post-disturbance 

recovery?  And 2) what are the key factors to be considered in monitoring and 

assessing the net change in forest biomass, including loss from forest disturbance and 

gain from post-disturbance recovery, via LiDAR and radar remote sensing?   

The overall goal of this study is to monitor forest biomass and assess its 

change after disturbance using LiDAR and radar remote sensing.  Specifically, 

1) Mapping forest biomass from waveform LiDAR data, and assessing the 

loss from disturbance and gain from post-disturbance recovery. 

2) Analyzing the sensitivity of SAR signatures to forest disturbance and major 

influence factors, including incidence angle, soil moisture, and disturbance type. 

3) Mapping aboveground biomass data, and assessing the changes after 

disturbance using multi-source SAR data from spaceborne and airborne platforms. 
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1.3 Howland Forest and Penobscot Experimental Forest 

Forest management strategies are changing over time and have distinct 

impacts on the forest structures and thus on biomass.  Statistics reported by the U.S. 

Forest Service (Figure 1-3) show that total harvest wood volume at the State level 

(solid line with filled dot) is relatively stable, but partial harvest (dark grey filled bars) 

has increased dramatically and becomes a major management strategy over the last 

two decades in Maine (Scott et al., 2004).  The use of clear-cut will result in a 

regrowth similar to natural forest.  On the other hand, shelterwood harvest, which 

allows a natural regeneration by increasing light penetration from an opened forest 

canopy, can maintain the same maximum tree height with decreased total biomass at 

stand-level.   

 

Figure 1-3. Forest Harvest Trend in Maine, data from Maine Forest Service. Types of 

harvest: partial=harvest where trees are removed individually or in small (<5 acre) 

patches; shelterwood=harvest of mature trees from a forest site in two or more stages (5-

15 years apart); clear-cut=harvest on a site larger than 5 acres that results in a residual 

basal area of acceptable growing stock trees >4.5" DBH of less than 30". 
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Howland Forest (HF) (45Á08ô ~ 45Á14ô N, 68Á42ô ~ 68Á45ô W), and the 

Penobscot Experimental Forest (PEF) (45Á49ô ~ 45Á52.5ô N, 68Á30ô ~ 68Á38.5ô W) 

are located in south-central Maine.  These forests belong to a transition zone between 

eastern broadleaf and northern forest.  They are essential ecological research stations 

in support of multi-disciplinary studies such as biodiversity, conservation, forest-

atmosphere-soil carbon exchange, and forest management for timber production. 

Most importantly, they provide ground-truth data dating back to the mid-20
th
 century 

for forest biomass studies.  HF has an AmeriFlux Tower within an intermediate aged 

forest, and the surrounding areas are privately land owned by a timber production 

company (International Paper®, IP) with different forest management manipulations 

over the last three decades, such as clear-cuts and plantation during the 1980s, strip-

cuts during the 1990s, and select-cuts (shelterwood harvest and reestablishment) after 

2000.  Harvests since 2000 mostly employ the shelterwood method which typically 

consists of 3 separate entries spaced 10 years apart, with each entry removing about 

1/3 of the basal area (Scott et al., 2004). 

HF and PEF sites consist of sub-boreal forest with mixed deciduous and 

coniferous tree species (Hollinger et al., 1999; Safford et al., 1969).  The dominant 

species include Tsuga canadensis (eastern hemlock), Picea rubens (red spruce), Acer 

rubrum (red maple), Abies balsamea (balsam fir), Thuja occidentalis (northern white 

cedar), Betula papyrifera (paper birch), Fagus grandifolia (Beech), Betula 

alleghaniensis (yellow birch), and Larix laricina (Tamarack) (see Table 5-1 for 

details).  The region features relatively level and gently rolling topography. 
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According to USGS 1/3-Arc Second National Elevation Dataset (NED) published in 

2009, the elevation ranges from 40 m to 178 m at HF, and from 29 m to 83 m at PEF.  

These two sites were selected for this study mostly due to the abundant 

ground measurements as well as the large number of remotely sensed datasets that 

have been collected. Details about the field campaign and remotely sensed datasets 

are given in the following chapters.   

 
Figure 1-4. Location of study area and field sites: the site to the north is Howland 

Forest (HF), and the site to the south is Penobscot Experimental Forest (PEF).   
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1.4 Dissertation outline 

This dissertation contains 5 chapters.  This, the first chapter, summarizes the 

relevance of biomass estimation to the broader discipline of Climate Change and 

current approaches that are applied for mapping and monitoring forest biomass.  

Chapter 2 demonstrates the ability of repeat LiDAR measurements to map the 

changes in forest biomass, and thereby to evaluate the loss from forest disturbance 

and the gain from recovery.  Within the study sites, regression models developed at 

the footprint scale (~0.06 ha) were evaluated with independent plot-level data (up to 1 

ha), and footprint-level models were applied within the study sites.  The effects of 

forest disturbance on prediction models were investigated.  The influence of footprint 

density on biomass predictions is discussed, and average annual biomass reduction 

rate from forest disturbance are given.  

Chapter 3 analyzes the sensitivity of SAR signatures to forest biomass and 

changes due to disturbance.  Sensitivity analysis was conducted to investigate the 

influence of radiometric distortion caused by incidence angle, and the backscatter 

variation caused by soil moisture.  Feasibility of cross-image normalization between 

multi-temporal and multi-sensor SAR data is demonstrated; and the possibility of 

applying normalized backscatter to detect biomass changes due to forest disturbance 

and post-disturbance recovery is discussed.  

Chapter 4 focuses on the application of multi-temporal and multi-sensor SAR 

data to map biomass and biomass changes after forest disturbance.  Cross-image 

normalization proposed in Chapter 3 is applied to airborne and spaceborne multi-

temporal SAR data, and single-term and multi-variable regression models are 
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developed. Results from leave-one-out cross-validation are summarized, comparison 

to lidar-derived biomass map is given, and the changes in biomass from for a 15- and 

20- year period from spaceborne and airborne SAR data are reported.  

Chapter 5 summarizes the main findings and contributions from the previous 

chapters.  Future research directions are also discussed based on the results from this 

dissertation study in relation to subsequent spaceborne LiDAR and SAR missions. 
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Chapter 2  Mapping Biomass Change after Forest Disturbance 

using waveform LiDAR
1
       

  

2.1 Introduction 

Aboveground biomass (AGB, here after biomass) stock from forest represents 

a significant component of the global carbon cycle (Goetz and Dubayah, 2011).  A 

variety of passive and active remote sensing techniques have been investigated for 

measuring and monitoring forest carbon stocks (Goetz and Dubayah, 2011; Lu, 2006). 

Light detection and ranging (LiDAR) is promising because of its ability to directly 

measure canopy vertical profile, providing canopy height information which is highly 

correlated with the forest biomass.  LiDAR systems are categorized as small- or 

large-footprint based on the size of the illuminated ground area. Small-footprint 

LiDAR systems (5-30 cm diameter) provide dense samples for detailed representation 

of the canopy structure, but their use is restricted to low-altitude airborne platforms. 

Small footprint full waveform systems have appeared in recent years with ability to 

record the complete waveform (Mallet and Bretar, 2009).  Large-footprint laser 

systems (10-70 m diameter) record a continuous, vertical profile of returned signal.  

Although large-footprint LiDAR data is not able to capture the very fine spatial 

details of forest canopies, structural attributes can be derived from vertical profiles of 

return energy for application in ecology studies (Mather, 2004).  LiDAR derived 

metrics from small-footprint discrete return LiDAR (Asner et al., 2010; Gonzalez et 

                                                 
1
 The presented material has been previously published in: Huang, W., Sun, G., Dubayah, R., Cook, 

B.D., Montesano, P.M., Ni, W., & Zhang, Z. (2013). Mapping biomass change after forest disturbance: 

applying LiDAR footprint-derived models at key map scales. Remote Sensing of Environment, 134, 

319-332.  http://dx.doi.org/10.1016/j.rse.2013.03.017. 

http://dx.doi.org/10.1016/j.rse.2013.03.017
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al., 2010; Næsset and Gobakken, 2008; Nilsson, 1996; Pang et al., 2008; Zhao et al., 

2011) and continuous returned full-waveform LiDAR (Drake et al., 2002; Drake et 

al., 2003; Dubayah et al., 2010; Lefsky, 2010; Lefsky et al., 2002b; Lefsky et al., 1999; 

Lefsky et al., 2005a; Lefsky et al., 2007; Means et al., 1999; Ni-Meister et al., 2010)  

have been used for estimation of forest canopy height and biomass.  Various multi-

sensor fusion (Asner et al., 2012; Asner et al., 2010; Kellndorfer et al., 2010; Lefsky 

et al., 2005b; Nelson et al., 2009; Saatchi et al., 2011b; Sun et al., 2011; Swatantran 

et al., 2011) used LiDAR samples and optical or radar imagery data for regional to 

continental mapping of forest attributes.  

Laser Vegetation Imaging Sensor (LVIS) (Blair and Hofton, 1999) with a 

footprint size of 10-25 m, records the entire profile (waveform) of the return signal in 

~30 cm vertical bins (Dubayah and Drake, 2000; Dubayah et al., 2010).  Because the 

footprint size is larger than the diameter of a tree crown and the laser beam can pass 

gaps between trees, a waveform can capture the tree top and ground surface in a 

forest stand. Studies have confirmed the ability of LVIS-derived metrics to estimate 

biomass, even in dense tropical forests.  Drake et al. (2002) reported that height of 

mean energy (HOME or RH50) is the best single term predictor for estimating 

tropical forest biomass at the LVIS footprint-level (~0.05 ha, 25 m diameter) and the 

plot-level (~0.5 ha).  The issue of sampling sizes has also been discussed by several 

studies with small- to large-footprint LiDAR system.  They compared regression 

models at the footprint-level and the plot-level for a tropical wet forest at La Selva, 

Costa Rica, and found that because of geolocation uncertainties, large tree location, 

and species composition, the prediction model was better at plot-level with the R2 of 
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0.73 and RMSE of 60.02 MgĀha
-1

.  Results from Hyde et al. (2005) indicated a strong 

agreement between field data and LVIS measurements for height (R
2
=0.75; 

RMSD=8.2m) and biomass (R
2
=0.83; RMSD=73.5 MgĀha

-1
) at Sierra Nevada sites in 

California, but not for canopy cover.  Anderson et al. (2006) found good relationship 

between LVIS metrics and height (R2=0.80), but the relationship is weaker between 

metrics and biomass (R
2
=0.61, RMSE=58 MgĀha

-1
) at Bartlett Experimental Forest 

(BEF) in New Hampshire, USA.  According to Anderson et al. (2008), the possible 

factors for a weaker correlation include geolocation error, species composition, and 

intensity of disturbance.  Dubayah et al. (2010) applied the LVIS data for mapping 

biomass change.  They found various issues that need to be considered in detecting 

and mapping the biomass change with LVIS data, and suggested using range-distance 

based ȹRHE metrics to develop the uniform biomass change equation at plot-level to 

avoid errors caused by ground detection and two sets of regression models. Asner et 

al. (2010) noted the scaling issue that the small-footprint LiDAR prediction errors 

decrease with the increase of plot size.  Mascaro et al. (2011) proposed a ñcrown-

distributedò approach to address the plot and edge scaling issues caused by the 

disagreement between LiDAR and field measurements. 

The effects of disturbance on the relationship between biomass and height 

metrics were investigated by field observations and model simulation.  Drake et al. 

(2003) investigated the relationships of simple LiDAR metrics (i.e., RH50) with 

estimated biomass, and indicated that there are significant differences between 

different types of forest (i.e., tropical wet forest and tropical moist forest). Ni-Meister 

et al. (2010) indicated that combined height and gap fraction could improve the 
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estimation of biomass particularly for coniferous.  Ranson and Sun (2010) simulated 

the waveforms RH metrics from different stands (disturbed and undisturbed forest) by 

a 3D-LiDAR model, and showed that the relationships between forest biomass and 

LiDAR metrics were distinguishable. Asner et al. (2011) found that the fitted curves 

between forest carbon stocks and LiDAR signals are different from plantations and 

natural regrowth after disturbance because of stocking differences. Inventory data and 

modeling results also demonstrated that young forests accumulated biomass much 

faster than the matured forest for the first 10 to 20 years after disturbance (Chazdon, 

2003).  Vegetation change tracker (VCT) algorithm was designed for detecting forest 

disturbance (Huang et al., 2010) via spectral-temporal information from Landsat time 

series stack (LTSS).  The products of yearly disturbance maps from LTSS-VCT were 

used in this study.  

The biomass prediction models can be developed at the scale of footprints and 

larger plots.  To facilitate regional and global biomass mapping using LiDAR 

waveform data, models at footprint-level are desirable because sampling large plots is 

much more time consuming than footprint-level sampling.  The accuracy of biomass 

estimation at coarser scales will depend on the accuracy of the footprint-level models 

and the number of samples (footprints) at this scale. In this study we will investigate 1) 

if the model at footprint-level can be developed with desirable accuracy in our study 

sites, 2) if the forest management practices in term of disturbances will affect the 

models, and 3) what will be the proper scale with concern of uncertainties for 

mapping biomass from LVIS data in our study sites.  Forest biomass map at 1.0 ha 
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pixel size was produced from LVIS acquired in 2003 and 2009.  The changes of 

biomass from 2003 to 2009 were analyzed in this study. 

2.2 Data  

2.2.1 Field campaign 

Field measurements for this chapter were conducted during August 2009 to 

2011. Both footprint-level (~0.03 ha, 20 m diameter) and plot-level (0.25 ha - 1.0 ha) 

plots (see Figure 2-1 for typical layout) were measured.  Differential Global Position 

System (DGPS) instruments were used to locate LVIS footprints and establish 

sampling plots.  

Twenty-four 1.0 ha plots (hectare plot, 200m × 50 m, Figure 2-1a) and ten 0.5 

ha plots (half hectare plot, 100m × 50m, Figure 2-1b) were established in 2009 and 

2010, respectively.  The longer edges of these plots were in the range direction of the 

NASA/JPL Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) flight 

lines.  The layout of these plots is illustrated in, where each plot consists of sixteen 

0.25 ha (quarter hectare plot, 25m × 25m) subplots.  Ninety-one circular plots with 

20m diameter (Figure 2-1c) centered at each LVIS footprint were measured in 2010 

and 2011.  Forty-seven footprints were measured in August, 2010 and forty-four were 

measured during January and August of 2011.   

Twenty forest inventory samples across the HF site were collected in October, 

2003 for biomass and other forest parameters.  For each inventory sample, three to 

four plots with radius of 4 m, 7 m or 10 m were arranged in the center, 30 m north, 

south-west, and south-east from the center.  The diameter at breast height (DBH, 

diameter at 1.3 m above ground) for every tree with a DBH Ó 3 cm were recorded 
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along with the species in both years.  The relative canopy position (i.e., dominant, co-

dominant, intermediate, suppressed, or dead), heights of two dominant trees were 

measured for each plot in 1992.  The height, crown length and width of 8 trees in 

each plot were measured in 2003.  Details about collections of field data during the 

October 2003 campaign were described by Sun et al. (2011).  Seventeen forest 

inventory samples within the HF study site were used for the evaluation of 2003 

biomass map.  

From 2009 to 2011, the DBH, species of ever tree with DBH Ó 10 cm, top 

height, height of crown base and crown width of the three highest trees in each 

subplot were recorded.  A census of stems below the established size threshold (DBH 

< 10 cm) and height Ó1.3 m were sampled within a 2 m transect along the center of 

the rectangular plot, and from north-to-south in footprint-level circular plots.  The 

number of stems falling into four diameter categories (i.e., 0-2 cm; 2-5 cm, 5-8 cm 

and 8-10 cm) was counted and used as a representative sample of all small stems in 

the plot.  Biomass values at HF and PEF span from 0.3 to 361.4 Mg ha
-1

 for 0.25 ha 

plots, 0.6 to 316 Mg ha
-1

 for 0.5 ha plots, and from 1.0 to 278.9 Mg ha
-1

 for 1.0 ha 

plots. 

 
Figure 2-1. Layout of typical field plot in 2003, 2009, and 2010. (a) stand plot (80 

diameter) in 2003; (b) 1-ha (50m by 200m) plot in 2009; (c) 0.5-ha (50m x 100m) 

plot in 2010. Black dots are LVIS footprint center.   
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2.2.2 LiDAR data 

The Laser Vegetation Imaging Sensor (LVIS) is a large footprint airborne 

scanning laser altimeter developed by NASA Goddard Space Flight Center (GSFC) 

(Blair et al., 2006; Blair et al., 1999).  LVIS data of study area were acquired during 

leaf-on season in August of 2003 and 2009.  For both years, the footprints had a 

nominal diameter of 20 m.  The 2003 data was reprocessed in 2008, thus it is more 

consistent with the 2009 data. 

LVIS products of version 1.02 provide three types of datasets: LVIS Canopy 

Elevation (LCE), LVIS Geolocated Elevation (LGE), and LVIS Ground Waveforms 

(LGW) (Blair et al., 2006).  From the waveform, mean elevation of the lowest 

detected mode is defined as ground elevation (zg).  Then, relative heights (RH) to the 

ground elevation are calculated at quartile percentage of cumulative waveform energy 

(i.e., 25%, 50%, 75%, and 100%).  The footprint density varies at different locations 

in the study area because of overlapping flight lines during the campaign.  

2.2.3 Auxiliary data 

LTSS-VCT disturbance products were used in this study to identify disturbed 

forests from undisturbed ones (Huang et al., 2010).  The study area is located in the 

center of Landsat p011/r029 of the World Reference System (WRS) with good 

quality images.  Subset product maps are used in this study to differentiate the year of 

disturbances (Figure 2-2).  The product detects most of clear-cuts events, however, it 

has missed some strip-cutting around 1990-1995 and select-cut (shelterwood harvest) 

after 2000 at HF site.  Similar problem has been noticed and documented at other 

validation sites in USA (Thomas et al., 2011).  Therefore, a further forest 
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management map was created from operation information from the private owner 

(International Paper®, IP Company) and Google images at HF site.  Several patches 

of disturbed forest were digitized from Google Earth images and combined with 

digitized version of management operation maps in different year.  These maps were 

used to identify the occurrence of disturbance, and will be explained in details in 

sections of results and discussion. 

 
Figure 2-2. Year of disturbance from LTSS-VCT product at the HF and PEF study 

sites. Pink polygon is the near matured forest at HF site; and dark blue polygon is the 

outline of reserved area at both sites.  

2.3 Method 

2.3.1 Allometric-based biomass calculation 

The diameter-based allometric equations used for large stems (DBH Ó 10 cm) 

and small stems (DBH < 10 cm) came from the comprehensive report of USDA on 

North American forest (Jenkins et al., 2003; Jenkins et al., 2004).  Biomass of large 

stems was calculated by corresponding species-specific allometric equations.   

Biomass of the small stems was calculated by mixed hardwoods equations using the 

midpoint of the diameter class (i.e., 1.0 cm, 2.5 cm, 6.5 cm and 9.0 cm) as the DBH 
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times the number of stems in each category. Biomass was first calculated for each 

stem, and then total biomass was aggregated from subplot to plot levels.  

2.3.2 LiDAR data processing 

Relative height metrics (RH25, RH50, RH75 and RH100) of LVIS waveform 

were retrieved from LVIS LGE datasets for all sampling plots and measured 

footprints.  The LVIS RH metrics of the study sites (HF and PEF) in 2009 were 

shown in Figure 2-3 as false color images (R: RH50, G: RH100, B: RH25).  Images 

were created by interpolating of point data into 15m grid with a Delaunay 

triangulation method (TRIGRID function) provided by IDL Version 7.1 (Exelis, 

Boulder, CO).  

The change in canopy profiles in waveform reveals the biomass change 

between 2003 and 2009.  Waveforms acquired in 2003 and 2009 at HF site are shown 

in Figure 2-4.  The distances between the waveform centers in 2003 and 2009 were 

less than 2 m.  These waveforms represent the disturbed forest with (a) near-mature 

forest with neutral changes, (b) disturbed forest with negative change in RH metrics, 

and (c) forest with positive change in RH metrics, respectively.  
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Figure 2-3. Images of gridded RH (R: RH50, G: RH100, B: RH25) metrics over study 

sites in 2009. Left - HF; right - PEF. Red lines are major roads. Dark blue rectangle in 

HF is the stem-map site. Field measurements are labeled with different colors for 

2003 (red), 2009 (cyan), 2010 (yellow) and 2011 (orange). 

 

 

 

 
Figure 2-4. Typical co-incidence waveforms (center within 2m) from LVIS 2003 and 

2009 data. (a) RHs relatively unchanged; (b) RHs have significant negative changes; 

(c) RHs with positive change.  Black solid waveform is from 2009, gold dash 

waveform is from 2003. Red solid line is the detected ground in LGE, dashed straight 

lines are the RH100, dashed with dot lines are the RH50. 
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The density of LVIS waveforms in each field plot varied depending on 

number of overlapping flightlines at a given portion of forest.  The nominal spacing 

of LVIS footprint is 20 m both along and cross track.  Ideally, the nominal footprint 

density within a plot would be 9, 18, and 36 at sizes of 0.25 ha (50 m × 50 m), 0.5 ha 

(50 m × 100 m) to 1.0 ha (50 m × 200 m).  However, two factors lead to a varied 

footprint density.  First, there were overlapping LVIS flight lines for our study site. 

Similar issues have been mentioned at other LVIS study sites such as Sierra site in 

California (Hyde et al., 2005), Bartlett site in New Hampshire (Anderson et al., 2008), 

and La Selva site in Costa Rica (Dubayah et al., 2010).  In addition, the long edges of 

50m × 200m field plots were set along the range direction of the UAVSAR data, 

which has a 10-20° angle to the LVISôs flight direction as shown in Figure 2-4 b-c. 

Therefore, the averaged footprint density within the measured plots in 2009 and 2010 

was not consistent and varied from 14, 27, and 53 footprints per plot from 0.25 ha, 

0.5 ha to 1.0 ha plot-levels.  

While processing the footprint-level field samples, two samples in the near 

matured old-growth forest region were found with wrong ground elevations (zg from 

LVIS LGE product) values.  This discrepancy has been mentioned in LVIS known 

data set issues (http://lvis.gsfc.nasa.gov/DataDisclaimer.html), which is caused by 

insufficient energy returned from the ground and errors associated with the automated 

peak-finding algorithm.  These two points were corrected in this study by finding a 

mean ground elevation of their neighboring footprints. 

http://lvis.gsfc.nasa.gov/DataDisclaimer.html
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2.3.3 Forest disturbance identification 

All sampled plots were classified as undisturbed or disturbed based on LTSS-

VCT yearly disturbance product (1984 to 2010), high-resolution images and field 

notes.  Forest disturbance maps were generated to show the disturbances prior to 2003, 

during 2003 to 2009 and after 2009 using the abovementioned data and forest 

management information from the owner.  Most of the disturbed plots in HF site were 

those disturbed by management activities (Sun et al., 2011), including clear-cut stands 

in the 1980s, strip-cuts in the 1990s and select-cuts (shelter-wood harvest) after 2000.  

A few tree plantations in our study site were also labeled as disturbed forest, as they 

were mainly planted after clear-cut.  While the disturbance data we used relied 

heavily on the LTSS-VCT, we enhanced the classification using visual interpretation 

of high resolution imagery and field notes to refine the boundaries of forest 

disturbance patches.  In addition, National Land Cover Data (NLCD) products in 

2001 and 2006 were used to discriminate forest and non-forest for the entire study 

area.  Woody forestlands and wetlands were included as forests in our analysis.  

The sampled footprints consist of 47 undisturbed (51.6%) and 44 disturbed 

(48.4%) samples.  The mean biomass value of undisturbed field samples (157.1 

MgĀha
-1

) was higher than that of disturbed ones (87.4 MgĀha
-1

).  At 0.25 ha plot-level, 

there were 41 undisturbed and 64 disturbed plots. At 0.5 ha plot-level, there were 18 

undisturbed and 34 disturbed plots.  At 1.0 ha plot-level, there were 10 undisturbed 

and 12 disturbed plots.  
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2.3.4 Mapping forest biomass and biomass changes 

The mapping procedure consists of four steps: 1) develop the biomass 

estimation models from 2009 LVIS waveform data at the footprint-level and choose 

the best one; 2) evaluate the model performance with the plot-level observation data 

in 2009 and 2003, and determine the pixel size of the biomass map to be generated; 3) 

apply the selected model to generate biomass maps in both 2009 and 2003 with LVIS 

waveform data; and 4) detect the change in biomass from 2003 to 2009.  The first two 

steps are shown in a conceptual workflow in Figure 2-5. 

 
Figure 2-5. Workflow of model development and evaluation for biomass mapping. 

 

This study employed several widely used statistical indicators to evaluate the 

accuracy of different regression models.  Indicators included coefficient of 

determination (R
2
), root mean square error (RMSE), and RMSE (%) which is the ratio 

of RMSE to mean observed value:  

y

RMSE
RMSE =(%)       Equation 2-1  

wherey is the mean biomass.  
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A. Development of Regression Models 

 

Linear regression models were developed relating field-measured biomass and 

LVIS metrics at footprint-level and evaluated at different plot-level (i.e., 0.25 ha, 0.5 

ha and 1.0 ha rectangular plot). Two types of models were developed, i.e., combined 

model without consideration of disturbances and disturbance-specific models. RHs 

metrics are highly correlated as shown in Table 2-1, so we only develop the single 

term regression models.  

Table 2-1. Correlation between RH metrics of LVIS footprint samples 

 RH25 RH50 RH75 RH100 

RH25 1.00    

RH50 0.90 1.00   

RH75 0.79 0.96 1.00  

RH100 0.72 0.87 0.95 1.00 

 

A dummy variable was introduced into the linear regression model to test the 

effect of disturbances on intercepts and slopes (Solberg, 2010).  This dummy variable 

is used to indicate the occurrence of disturbance, where the truth is represented by a 

numerical value of 1. Then the equation becomes: 

Biomass = ɓ1+ ɓ2X1+ ɓ3X2+ ɓ4X1X2+ei    Equation 2-2 

 

where ɓ1 ~ɓ4 are estimated parameters, X1 is the RH metrics in meters, X2 is the 

dummy variable with values 0 (undisturbed ) or 1(disturbed), and ei is the error item.  

The hypothesis is H0: Bundisturbd - Bdisturbed = 0 or ɓ4 = 0. If ɓ4 = 0 then we will reject the 

H0 which means that the undisturbed and disturbed models are the same, otherwise 

they are different.   
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B. Evaluation of prediction models by field biomass data 

 

Biomass of LVIS footprints within field plots was predicted from the 

footprint-level model and aggregated to the plot-levels.  Then it was compared with 

corresponding field measurement.  For 2009 data, the predicted biomass was 

evaluated with field measurements aggregated at three scales of plot-levels: 0.25 ha, 

0.5 ha and 1.0 ha.  For 2003 data, the field biomass was measured with FIA-style 

field measurements at ~0.5 ha plot-level.  The predicted biomass was an average of 

the biomass from the footprints within a circle of 80 m diameter.  The best mapping 

pixel size was determined by the plot-level model evaluation.  Generally the 

aggregation footprint-level samples to larger plots reduced the overall variance and 

impact of geolocation errors (Hall et al., 2011).  Two recently studies have shown 

similar pattern that LiDAR prediction errors were reduced at larger plot sizes (Frazer 

et al., 2011; Mascaro et al., 2011).  The optimized pixel size for biomass mapping 

was selected based on statistical measurements including averaged prediction value, 

R
2
, RMSE, and bias.   

2.3.5 Biomass mapping from LVIS data 

The mapping procedure is illustrated in Figure 2-6. First, two masks were 

created. A persistent non-forest mask was generated from NLCD product in 2001 and 

2006. Non-forest pixels in both years were excluded from the mapping in this study. 

In addition, a data coverage mask was created for the area common to both LVIS data 

in 2003 and 2009. These masks were gridded into the selected optimized pixel size to 

match the biomass mapping scale. Next, the regression model was applied to the 
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LVIS footprints of entire study area in 2003 and 2009. Finally, the mean value of the 

footprint-level biomass within each grid cell was calculated and assigned to the pixel. 

The biomass change map was generated by subtracting 2003 biomass from that in 

2009 within the forested area common to both LVIS data collections.  

 
Figure 2-6. Biomass mapping and change detection from LVIS data. 

 

2.4 Result 

2.4.1 Model performance at the LVIS footprint-level 

 A. Single term regression model 

 



 30 

 

Table 2-2 shows the biomass prediction from single term regression models. 

The biomass models at the footprint-level by all four RH metrics have high R
2
 values 

ranging from 0.70 to 0.86.  For all groups, there were strong and significant 

correlations (p < 0.005) between biomass and RH metrics.  The RH50 and RH75 

metrics perform similarly in terms of R
2
, RMSE and RMSE (%).  Averaged field 

biomass of 91 sampled footprints was 123.4 MgĀha
-1

. As mentioned above RH 

metrics are highly correlated.  The correlation is as high as 0.96 between RH75 and 

RH50.  Therefore, the single term regression model using RH50 was selected for the 

combined prediction model at the footprint-level for all data as it explains the greatest 

proportion of variance (R
2
 = 0.86), and has the lowest residual error (RMSE = 31.0 

MgĀha
-1

, and a relative error 25.1%).   

Table 2-2. Summary of single term regression models at footprint-level 

Model   
(ft -level)  

Intercept  Slope R2 
RMSE 
(-ÇϽÈÁ-1) 

RMSE  
(%) 

Bio ~ RH25 90.8 22.0 0.70 45.1 36.5 

Bio ~ RH50 30.3 16.1 0.86 31.0 25.1 

Bio ~ RH75 -3.3 13.5 0.84 33.0 26.6 

Bio ~ RH100 -51.9 11.1 0.74 42.1 34.2 

*For 2009 data, Bolded is the selected model for mapping 
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Figure 2-7. Relationship between field biomass and LVIS relative height metric 

RH50 at footprint-level: (a) Combined model; (b) Disturbance-specific models. 
Different colors indicate different models: rectangle dots (green) represent the undisturbed group, and 

triangle dots (red) represent the disturbed group. 

 

Figure 2-7 shows the relationship between field biomass and RH50 and the 

contrast between undisturbed and disturbed groups at footprint-level.  From Figure 

2-7 (b), we could visually observe the two groups with different slopes of their trend 

lines.  A statistical measurement was used to test the disturbance effect on intercepts 

and slopes in the next section.  

 B. Disturbance effect test 

 

Following equation is from the regression when a dummy variable ñdisturbò 

with value 0 for disturbed and 1 for undisturbed forest was added for RH50 model: 

Bio = 33.2 + 16.9*RH50 -3.7*disturb - 4.6*RH50*disturb  Equation 2-3 

 

with Multiple R
2
: 0.94, standard error: 28.7 Mgӎha

-1
, F-statistic: 224.7 on 3 and 87 

degrees of freedom, and a p<0.001. 
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Since the coefficient for the dummy variable (ɓ4 = -4.6) is not equal to zero, 

we reject the H0 hypothesis.  The effect of disturbances on biomass estimation model 

from RH50 is significant.  

The dummy variable was also added to RH75 model and the regression 

equation was: 

Bio = -8.6 + 15.4*RH75 -22.7*disturb - 6.0*RH75*disturb  Equation 2-4 

 

with Multiple R
2
: 0.95, standard error: 24.7 Mgӎha

-1
, F-statistic: 309.3 on 3 and 87 

degrees of freedom, and a p<0.001. 

Hence, we also rejected the H0 hypothesis for the RH75 model.  

A student T-test with two tails, unequal sample sizes, and unequal variance 

was employed to measure the disturbance effect on the predicted biomass. The T-test 

showed that disturbance has a significant effect on the predicted biomass from both 

RH50 (p<0.001) model and RH75 (p<0.001) model.  

Thus, footprint-level single term models were developed for undisturbed and 

disturbed forest with RH50 and RH75 models.  As shown in Table 2-3, both the 

RMSE and RMSE (%) were reduced for the disturbance-specific RH50 and RH75 

models.  Even though the R
2
 and RMSE of the disturbance-specific models were not 

always better than the combined model, the comparisons between the field biomass 

and predicted biomass of all sample footprints showed better results from 

disturbance-specific models.  The third lines in RH50 and RH75 of the disturbance-

specific models are the results of comparing predicted biomass with field biomass of 

all sampling footprints.  Disturbance-specific models explained higher predicted 

variance (RH50, R
2
=0.89; RH75, R

2
=0.91) than the combined model (RH50, R

2
=0.86; 
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RH75, R
2
=0.84). RMSE (RH50, 27.9 from 31.0 MgĀha

-1
; RH75, 24.2 from 32.9 

MgĀha
-1

) as well as RMSE (%) (RH50, 22.6% from 25.1%; RH75, 19.6% from 26.6%) 

were reduced.  The large differences in RMSE (%) for different groups (disturbed, 

undisturbed and all) are partially caused by the differences of mean biomass.  The 

mean biomass of the undisturbed forest (157.1 MgĀha
-1

) is over 50% larger than that 

of the disturbed (87.4 MgĀha
-1

), and also larger than that of the combined plots (123.4 

MgĀha
-1

). 

Table 2-3. Combined and disturbance-specific models at footprint-level 

Model  Variable  N 
GP
# 

 
Intercept  Slope R2 

RMSE 

ɉ-ÇϽÈÁ-1) 
RMSE 
(%) 

Combined  RH50  91 all   30.3 16.1 0.86* 31.0 25.1 

 RH75  91 all  -3.3 13.5 0.84* 32.9 26.6 

 
 
Disturbance - 
specific  

RH50 

47 1  33.2 16.9 0.88* 32.3 20.5 

44 2  36.9 12.3 0.80* 22.4 25.7 

91 all  - - 0.89* 27.9 22.6 

RH75 

47 1  -8.6 15.4 0.89* 30.0 19.1 

44 2  14.1  9.4 0.90* 15.9 18.2 

 91 all   -  - 0.91* 24.2 19.6 

GP#: 1 is undisturbed plots group, 2 is disturbed plots group; N: number of sample; *P-value < 0.005. 

Bolded are models with best performance by evaluation at corresponding scale; 

 

2.4.2 Evaluation of prediction model 

 A. Evaluation of combined prediction model in 2009 and 2003 

 

The footprint-level RH50 model from the combined data 

(Bio=30.3+16.1*RH50) was applied to 2009 LVIS data and evaluated at three plot-

levels: 1) 0.25 ha plot (50m × 50m), 2) 0.5 ha plot (50m × 100m), and 3) 1.0 ha plot 

(50m × 200m), respectively.  The evaluation plots were also divided into disturbed 

and undisturbed plots using LTSS-VCT and Google Earth images.  

The evaluation of the combined footprint-level models with plot-level field 

data was shown in Table 2-4.  As expected, the best model at three plot-levels in 2009 
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is RH50 model with higher explanation of total variance, lower RMSE and lower bias.  

The overall model performance improved with larger plot size from 0.25 ha, 0.5 ha to 

1.0 ha. At 1.0 ha plot-level, the combined RH50 model explained 91% of the total 

variance with a positive bias of 2.0 MgĀha
-1 

(1.4%) and RMSE of 22.4 MgĀha
-1 

(15.6%).  

Figure 2-8 shows the scatter plot of predictions versus field measurements 

from the best combined footprint-level prediction model.  In 2009, the combined 

RH50 model has better performance than RH75 model from evaluations at all three 

plot-levels.  While in 2003, the combined RH75 model was better than combined 

RH50 model.  There is almost no bias (less than ±1.3%) observed for predictions in 

2009, but the evaluation of 2003 biomass prediction at sampling sites showed worse 

results.  In 2003, the combined RH75 prediction model overestimates the biomass 

with a positive bias of 11.9 Mgӎha
-1

 (+7.9%).  It has lower explanation of total 

variance (54%) and higher RMSE of 46.6 Mgӎha
-1

.  The combined RH50 model also 

overestimates the biomass and has similar explanation of total variance (53%) and 

higher RMSE.  A part of the reason is that the plot size and shape in 2003 (80m 

diameter circle, ~0.5 ha) were different from 2009 (rectangular) which leads to an 

inconsistency.  The number of sample in 2003 is relatively small compared with that 

of 0.5 ha plot-level samples in 2009.  In addition, the GPS unit used in 2003 for field-

sampled plot wasnôt as good as the one for 2009, which leads to geolocation errors. 
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Table 2-4. Evaluation of the footprint-level combined RH50 and RH75 models by 

plot-level field data in 2009 and 2003 

N: number of sample; Mean of field: mean biomass averaged over samples at plot-level; Mean of 

predict: mean predicted biomass averaged over samples at plot-level; Bolded are models with best 

performance at corresponding scale and year; 

 

 

Table 2-5. Evaluation of the footprint-level disturbance-specific RH50 and RH75 

models by plot-level field data in 2009 and 2003 

Model  Year 
Plot -
size 

N 
Mean 
field  

Mean 
predict  

R2 RMSE Bias 

  ha  MgϽha-1 MgϽha-1  MgϽha-1 % MgϽha-1 % 

RH50 
2009  

0.5 52 142.7 139.7 0.80 31.3 21.9 -2.9 -2.1 

1.0 22 143.8 145.8 0.91 23.1 16.1 +0.9 +0.6 

2003  0.5 17 151.0 170.9 0.51 54.6 36.2 +19.9 +13.2 

RH75 
2009 

0.25 105 143.6 142.0 0.73 37.8 26.3 -1.7 -1.2 

0.5 52 142.7 140.9 0.75 35.4 24.8 -1.9 -1.3 

1.0 22 143.8 145.4 0.86 27.9 19.4 +1.6 +1.1 

2003 0.5 17 151.0 171.3 0.48 57.4 38.0 +20.3 +13.4 

N: number of sample; Mean of field: mean biomass averaged over samples at plot-level; Mean of 

predict: mean predicted biomass averaged over samples at plot-level; Bolded are models with best 

performance at corresponding scale and year; 

  

Model  Year 
Plot -
size 

N 
Mean 
field  

Mean 
predict  

R2 RMSE Bias 

  ha  MgϽha-1 MgϽha-1  MgϽha-1 % MgϽha-1 % 

RH50 
2009  

0.25  105 143.6 144.5 0.79 32.6 22.7 +0.8 +0.6 

0.5 52 142.7 144.4 0.83 28.5 20.0 +2.2 +1.5 

1.0 22 143.8 145.8 0.91 22.4 15.6 +2.0 +1.4 

2003 0.5  17 151.0 168.0 0.53 50.4 33.4 +17.0 +11.2 

RH75 
2009 

0.25 105 143.6 147.1 0.72 37.3 26.0 +3.5 +2.4 

0.5 52 142.7 147.7 0.76 33.8 23.7 +4.9 +3.5 

1.0 22 143.8 144.6 0.84 28.5 19.8 +0.8 +0.5 

2003  0.5 17 151.0 162.9 0.54 46.6 30.9 +11.9 +7.9 
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 B. Evaluation of disturbance-specific prediction models in 2003 and 2009 

 

Similar steps were conducted to evaluate the disturbance-specific models by 

different plot-level data.  Evaluation results were shown in Table 2-5. It can be seen 

from comparing the R
2
 listed in the Table 2-4 and Table 2-5 that the disturbance-

specific models preformed slightly better than common models.  The disturbance-

specific RH50 model has almost the same values of explanation of variance and 

RMSE as the combined RH50 model.  At 1.0 ha plot-level, the disturbance-specific 

RH50 model explained 91% of the total variance, with a positive bias of 0.9 MgĀha
-1 

(0.6%) and RMSE of 23.1 MgĀha
-1

 (16.1%).  The bias was reduced from -3.0 MgĀha
-1 

to 0.9 MgĀha
-1

 from 0.25 ha to 1.0 ha plot-levels.  
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Figure 2-8. Evaluation of combined footprint-level RH50 model in 2009, with the 

solid line for y=x. (a) 0.25 ha field plots; (b) 0.5 ha field plots; (c) 1 ha field plots in 2009; (d) 0.5 

ha field plots in 2003. All results were from the application of combined model. Rectangle dots 

represent the undisturbed points, and triangle dots represent the disturbed points. 
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Figure 2-9. Evaluations of disturbance-specific RH50 footprint-level biomass model, 

with solid line for y=x.  (a) 0.25 ha field plots; (b) 0.5 ha field plots; (c) 1.0 ha field 

plots in 2009; (d) ~ 0.5 ha field plots in 2003. Different colors indicate the different 

models were used: rectangle dots (green) represent the undisturbed group, and 

triangle dots (red) represent the disturbed group. 
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Figure 2-9 shows the scatter plots of predictions versus field measurements 

from the best disturbance-specific footprint-level models at various plot sizes.  The 

RH50 model has the best performance at all plot levels and in both 2009 and 2003.  

Again, there is almost no bias (less than ±2.0%) observed for predictions in 2009 and 

a less than +13.5% bias in 2003.  Similar to the combined RH models, the 

disturbance-specific models overestimated the biomass for 2003. 

Even though the statistical tests of prediction models at footprint level showed 

significant effect of disturbance, the evaluation of the predicted biomass 

demonstrated that the disturbance effect is reduced in a larger sampling area.  For 

further biomass mapping and change detection the combined RH50 model was used 

and the biomass maps were generated at 1.0 ha (100 m) spatial resolution.  

2.4.3 Biomass mapping from LVIS data 

Figure 2-10 shows the biomass maps from LVIS data for year 2003 and 2009 

were produced using the RH50 regression model and were averaged to 1.0 ha spatial 

resolution.  The biomass ranges up to 350 Mgӎha
-1

, with a color of orange (0ῐ50 Mgӎ

ha
-1

) to dark green (>300 Mgӎha
-1

) indicates an increase of biomass. Grey color 

represents the areas of no data and non-forest.  The overall similar patterns of 

biomass can be seen from both years of 2003 and 2009.  As shown in Figure 2-10, the 

north-west region with biomass less than 100 MgĀha
-1

 at HF site in 2009 was mostly 

caused by select-cut (i.e., shelter-wood harvest, removed large trees accounting for 

about 1/3 of the basal area) and strip-cut (i.e., systematically removed stems in rows). 

The undisturbed forests in the center of the map (outlined by pink polygon in dotted 
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line) were with high value of biomass (>300 MgĀha
-1

).  For PEF in 2003 and 2009, 

high biomass regions were observed in the south and west region of the map.  Low 

biomass regions with less than 50 MgĀha
-1

 in the north-east were the woody wetland 

along the Penobscot River. 

2.4.4 Biomass change mapping 

Figure 2-11 (a) and (b) shows the changes of biomass (green to red color) 

from 2003 to 2009 at the two study sites, corresponding to the disturbance maps of 

Figure 2-11 (c), (d), and (e). In addition, a confidence interval (CI) was applied for 

the predictions from LVIS data in 2003 and 2009 as shown in Figure 2-12, where 

only predicted values within the 95% CI were kept (Figure 2-12h). It can be seen that 

most of the changes are consistent with the forest disturbance patterns detected by the 

LTSS-VCT product and the historical management map.  
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Figure 2-10. Biomass map for HF site (a) and (b), and PEF site (c) and (d) in 2003 

and 2009 at 1.0 ha level by the combined RH50 models. A color of orange to dark 

green indicates an increase of biomass. At HF site, pink polygon is near matured old-

growth forest; and dark blue polygon is the outline of reserve area. 
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Figure 2-11. Change in biomass for HF site (a) and PEF site (b) from 2003 to 2009 at 

1.0 ha level by the combined RH50 models. The (c) and (e) are the years of 

disturbances: disturbances prior to 2002 (yellow), between 2003 and 2008 (red), and 

after the 2009 (purple). (d) is the forest management map of HF created from 

information from private owner (international paper company) and Google images. 

The plantation is represented with green solid filled polygons. The clear-, select-, and 

strip-cuts prior to 2002 are outlined with dark red solid lines with gray cross-hatched 

pattern, purple long dotted lines, and red double long dashed lines with gray stripes, 

respectively. The select-cut during 2003 to 2008 is outlined by red double dashed 

lines with irregular dots. At HF site, pink polygon is the near matured forest; and dark 

blue polygon is the outline of reserved area. The select-cut during 2003 to 2008 is 

outlined by red double dashed lines with irregular dots. 
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At HF site, biomass changes in the undisturbed near-mature forests (center of 

the map, highlighted by pink polygon in dotted line) were mostly positive (5 to 15 

MgĀha
-1

) or near neutral (-5 to 5 MgĀha
-1

).  The average annual biomass accumulation 

from undisturbed forest and regrowth is +4.4 MgĀha
-1

.  The area surrounding this 

undisturbed forest shows strong negative change (in red, represent < -50 MgĀha
-1

). 

Most areas along the roads are the degraded forests from select-cut between 2003 and 

2008 (filled irregular dots) as shown in Figure 2-11 (d).  The average annual biomass 

reduction rate from forest disturbance is -7.0 MgĀha
-1

.  Several patches highlighted 

with yellow in Figure 2-11 (c) show an increasing biomass during 2003 to 2009, due 

to the forest regrowth after clear-cut in the 1980s or strip-cut in the 1990s.  At PEF 

site, patches of strong negative biomass changes with red color in Figure 2-11 (e) 

were sparsely distributed over the study region.  Most of them were detected by 

LTSS-VCT disturbance product in Figure 2-11 (d).  The average annual biomass 

reduction rate from forest disturbance is -6.2 MgĀha
-1

.  The woody wetlands with low 

biomass along the Penobscot River were regrowth from clear-cut prior to 2002.  The 

average annual biomass accumulation from regrowth is +4.4 MgĀha
-1

.  

Regression model developed in 2009 were applied to two years LVIS data, 

and change in biomass were mapped from 2003 to 2009 (Figure 2-12).  Prediction 

intervals (i.e., 95% confidence interval) were calculated for estimated biomass in 

2003 and 2009, and cells with overlapped predictions were masked out (Figure 2-12 d) 

as neutral (statistically indistinguishable from zero).  A detailed comparison is given 

for HF site.  The patterns of biomass change (Figure 2-12 h) are consistent with VCT 

product (Figure 2-12 e) and local forest management (Figure 2-12 d), where most of 
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the near matured area as neutral and positive change in biomass are mostly from 

plantation as well as forest recovery after disturbance (i.e., disturbed between 1984 

and 2002). 

 
Figure 2-12. Changes in biomass from LVIS 2003-2009. The (a) and (b) are biomass 

maps at 1.0 ha level by the combined RH50 models using all LVIS from 2003 to 

2009footprints in Maine, non-forest cells are maksed out (in white). (c) is the change 

in biomass from 2003 to 2009, and (d) is the change map that masked out cells (in 

grey) where in two years overlapped in predictions (95% confidence interval). (e) ~ 

(h) are the zoom-in maps over HF sites, where (e) is the year of disturbance: 

disturbance between 1984 and 2002 (dark green), disturbance between 2003 and 2008 

(red), and non-changed forest (grey); (f) is the forest management of HF; (g) is the 

HF biomass change map from 2003 to 2009; and (h) is the map excluding cells with 

overlapped predictions in 2003 and 2009, respectively.  
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2.5 Discussion 

Our results highlight four important issues concerning biomass mapping from 

waveform LiDAR: (1) the feasibility of the prediction model at the LiDAR footprint, 

(2) the effect of forest disturbances on the biomass prediction model, (3) the effect of 

map scale and footprint density on the biomass estimation, and (4) the application of 

the footprint-level model for biomass change detection. 

2.5.1 Prediction model at LiDAR footprint-level 

The results in our study sites demonstrate that LiDAR footprint-level models 

could be developed and applied to map biomass, with 91% explanation of total 

variance, a RMSE of 22.4 MgĀha
-1

 (15.6%) for the combined RH50 model at 1.0 ha 

plot-level.  Two main factors lead to this conclusion.  First, the accurate location 

provided by DGPS and high quality LVIS data reduced the geolocation errors.  On 

the one hand, in our study, all footprint-level field measurements and sampling plots 

at HF in 2010 and 2011 and at PEF in 2009 were located using DGPS with a 

measurement error of 0.5-3.0 m (best case was 0.5-1.0 m).  On the other hand, 

increased accuracy of the geolocation has been reported for the LVIS product 

released after 2003 by improved post data processing.  Reprocessed 2003 LVIS data 

which using the same waveform analysis method are more consistent with 2009 LVIS 

data. Therefore geolocation errors are mostly avoided for the data used in the study. 

Secondly, the footprint size of LVIS facilitates the application of models at the 

footprint-level. LVIS data has a 20m diameter footprint, which generally corresponds 
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to the largest tree crowns, and thus can capture canopy characteristics (Dubayah and 

Drake, 2000).  

2.5.2 Disturbance effect 

Footprint-level regression models differed between undisturbed and disturbed 

forest, different species composition.  Previous study (Anderson et al., 2006, 2008) 

has mentioned the effect of species composition to the biomass estimation.  Forest 

disturbances change the spatial structure as well as the species composition.  The 

statistical tests reveal a significant difference at 95% confidence level between 

models for the disturbed and undisturbed forests.  The disturbance-specific models 

performed slightly better for biomass estimation than the combined model (Table 2-3).   

But the evaluations results (Table 2-4 and Table 2-5) at different plot-levels from 0.25 

ha, 0.5 ha to 1.0 ha show almost the same biomass estimation accuracies for the 

combined and disturbance-specific models.  The evaluation of biomass estimation 

shows that the combined RH50 model overpasses the combined RH75 model, and the 

disturbance-specific RH50 and RH75 models regardless of scale.  These results 

weaken the importance of introducing disturbance factor into footprint-level model.  

It is reasonable for the effect of disturbance weaker at plot levels because averaging 

of LVIS footprints in plot will reduce the disturbance effect.  The combined model 

was used for biomass mapping in this study.  However, we still recommend 

considering the disturbance effect in area with more complicated species composition. 

On the other hand, it is important to note the potential error that can be 

introduced by the classification of disturbance from LTSS-VCT.  Based on field notes, 

recent Google Earth imagery and LTSS-VCT product, we are confident in the 
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accurate classification of disturbance for our field samples.  For a broader region 

more efforts are need to guarantee the accuracy in identification of disturbance.  

Careful application of a disturbance dataset is recommended when conducting forest 

biomass change assessments. 

2.5.3 Map scale and footprint density 

Biomass maps were produced by application of prediction models developed 

at the footprint-level (~0.03 ha; 20 m diameter circle plot) and re-sample the footprint 

biomass into map grids.  The field biomass samples at different plot-levels (0.25 ha, 

0.5 ha, and 1.0 ha; rectangular plot) served as independent data for evaluation of the 

accuracies of biomass maps.  

Figure 2-13 shows the RMSE (%) of the biomass prediction models 

developed at footprint level, and the evaluations at 0.25 ha, 0.5 ha and 1.0 ha plot-

level.  We can see a decreasing trend for RMSE (%) with increasing size of plots.  At 

1.0 ha plot, the RMSE (%) from disturbance-specific and combined models is similar 

and is much lower than at other smaller plot levels.  Recent studies (Frazer et al., 

2011; Mascaro et al., 2011) have indicated that 1.0 ha plots could capture biomass 

with low and stable errors close to 10%.  Therefore, we used a 1.0 ha scale for the 

biomass mapping and change detection using the combined RH50 models.  
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Figure 2-13. RMSE (%) of the RH50 biomass prediction models developed at 

footprint-level and the evaluations at 0.25, 0.5 and 1.0 ha scales. Bars from left to 

right represent best models for disturbed (pink), undisturbed (green), disturbance-

specific (light blue), and combined (dark blue). 

 

Figure 2-14 shows the sensitivity of (a) RMSE (%) and (b) R
2
 to the footprint 

density (pt·ha
-1

) from 0.25 ha, 0.5 ha and 1.0 ha plot-level.  With the increasing of 

footprint density, there is a decreasing trend for RMSE (%), and an increasing trend 

of R
2
 at 0.25 ha, 0.5 ha and 1.0 ha plot-levels.  At all three plot-levels, a critical 

inflection point where point density equals to 16 pt·ha
-1

 was observed regardless of 

scale.  The relationship between RMSE (%) and point density become stable after 

reaching this inflection point. This is the same to the trend of R
2
.  Therefore, optimal 

point density of 16 is suggested for a high quality of biomass estimation at 1.0 ha 

plot-level.  This is feasible because the average footprint density within our field 
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sampled plots was over 50 pt·ha
-1

 with a 20 m nominal spacing both along and across 

track. 

 
Figure 2-14. Sensitivity of RMSE% (a) and R

2
 (b) to the density of footprints within 

the plot (pt ha
-1

) at 0.25 ha, 0.5 ha and 1.0 ha plot-levels; RMSE (%) and R
2
 values 

were from the combined RH50 footprint-level biomass prediction model. 

 

2.5.4 Application of footprint-level model for biomass change mapping 

The footprint-level models were developed using 2009 data in this study and 

then applied to both 2009 and 2003 data for mapping forest biomass and its change.  

Repeat acquisition of LiDAR data has been used for detecting changes of canopy 

height and biomass. Dubayah et al. (2010) recommended using the relationship 

between the biomass change and change in LVIS-derived range-based forest canopy 

height metrics for biomass change studies to avoid using two sets of biomass 

estimation models.  However, due to limited co-incidence field measurements at 

either footprint or plot level, we couldnôt develop the similar equations.  Instead, 

footprint-level plots were selected to develop a uniform biomass equation and then 

this equation was applied to LVIS data in both 2003 and 2009.  In addition to the 

forest spatial structural variations from disturbances, other factors such as species 

composition, seasonal changes of leaf area index, reflectance of ground surface, etc. 

will also affect the LiDAR waveform metrics and the biomass prediction model.  This 
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should be considered in applying prediction model developed at a place at certain 

time to other places or data acquired at different seasons.  The LiDAR waveform data 

used in this study were acquired using the same instrument (LVIS) and at the same 

season (August) in 2003 and 2009.  The processing of the LVIS data is also the same 

for 2003 and 2009 data.  Therefore the common relationship between biomass and 

LiDAR waveform metrics should keep consistent from 2003 to 2009. 

2.6 Conclusion 

1) Prediction model at the scale of individual LVIS footprints is reliable when the 

geolocations of the measured footprints were determined by DGPS with a best 

accuracy of 0.5-1.0 m.  

2) The differences between biomass prediction models for disturbed and undisturbed 

forests were statistically significant (P<0.001) at the scale of footprint, and the 

disturbance-specific models performed slightly better (R
2
=0.89, RMSE=27.9 Mg ha

-1
, 

and relative error of 22.6%) than the combined model (R
2
=0.86, RMSE=31.0 Mg ha

-1
, 

25.1%).  

3) The evaluation using field plot data showed that the predictions of biomass were 

improved markedly with the increase of plot sizes from 0.25 ha to 1.0 ha and that the 

effect of disturbance was not strong. At 1.0 ha plot-level, both disturbance-specific 

and combined models agreed well with field estimates (R
2
=0.91, 23.1 MgĀha

-1
, 16.1%; 

and R
2
=0.91, 22.4 MgĀha

-1
, 15.6%).  

4) Sensitivity analysis on levels of variation and error to footprint density suggests 

that a certain density of LVIS footprints is required for biomass mapping. The errors 
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were minimized when footprint coverage approached about 50% of the area of 1.0 ha 

plots (16 footprints).  

5) By applying the footprint-level models developed from 2009 LVIS data to both 

2009 and 2003 LVIS data, the change in biomass from 2003 to 2009 could be 

assessed. The average annual biomass reduction rate from forest disturbance at two 

sites is -7.0 MgĀha
-1

 and -6.2 MgĀha
-1

, the average annual biomass accumulation from 

regrowth is +4.4 MgĀha
-1

 and +5.2 MgĀha
-1

, respectively.  

Estimating biomass dynamics over relatively short time scales is a difficult 

task, yet is central to obtaining a better understanding of the effects of disturbance 

and subsequent regrowth on the terrestrial carbon cycle.  There is additionally a 

strong and growing need to develop effective mapping and monitoring in support of 

climate treaty frameworks such as REDD+ (Goetz and Dubayah, 2011).  The work 

presented here gives some examples of LiDAR remote sensing approach to this 

problem.  

Change studies using LiDAR remote sensing are also dependent on having 

sufficient LiDAR coverage to develop spatially meaningful maps.  Ideally such 

coverage would be wall-to-wall, but practically that may not be achievable nor may it 

be entirely necessary.  Our errors were minimized when footprint coverage 

approached about 50% of the area of 1.0 ha plots (16 footprints) with no 

improvement beyond that.  This is a particularly important point when considering 

monitoring from space-based LiDAR, which is unlikely to have swath-mapping 

capability in the near term. 
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While our experiment showed improvement in biomass prediction when 

disturbance was included, the results were not compelling.  We doubt that this 

conclusion is generalizable beyond the present study.  While canopy metrics must 

implicitly i nclude the effects of disturbance as reflected in height, other factors also 

control height, most notably climate and edaphic factors.  Thus more work is needed 

to untangle the relationships between these factors, disturbance, and their 

manifestation in height metrics.  That said, the fusion of Landsat disturbance products 

with time series of LiDAR data is a powerful approach to quantifying landscape level 

changes in vegetation structure and will certainly be exploited with increasing 

frequency in future studies. 

Ultimately, there is distance to travel before we can confidently monitor 

biomass and canopy structure dynamics at policy-relevant scales with the requisite 

accuracy in a consistent and transparent framework from remote sensing.  LiDAR 

remote sensing is so new that only now are we able to evaluate data sets with 

sufficient time intervals between them, and for which contemporaneous field 

estimates are available.  We anticipate that as more investigations undertake such 

studies, rapid progress will result in this important capability. 
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Chapter 3  Sensitivity of Multi-Source SAR Backscatter to 

Changes in Forest Aboveground Biomass
2
    

  

3.1 Introduction 

The carbon budget of terrestrial ecosystems contains large uncertainties at 

both global and regional scales (Goetz and Dubayah, 2011).  Aboveground biomass 

(AGB, hereafter biomass) stock from forest represents an important component of the 

global carbon cycle and related carbon policy (Houghton et al., 2009).  

Anthropogenic disturbance including deforestation and forest degradation due to 

management has led to significant changes in biomass and thus the carbon budget 

(Hall et al., 2011).  However, the loss of carbon due to deforestation and forest 

degradation, and the gain from post-disturbance recovery have not been sufficiently 

assessed.  The use of active remote sensing techniques such as Synthetic Aperture 

Radar (SAR) is a promising approach for measuring and monitoring the spatial and 

temporal variation of forest carbon stock (Hall et al., 2011; Kasischke et al., 1997; Lu, 

2006).  

Imaging with SAR has advantages over optical imagery in its capacity to 

penetrate clouds, rain, smoke, and haze, which are known problem for optical sensors.  

The ability to penetrate the forest canopy makes it possible to retrieve the forest 

structure as a function of backscatter mechanisms (Kasischke et al., 1997).  Generally, 

studies have reported that SAR backscatter is more sensitive to canopy biomass 

(especially tree trunks) at longer wavelengths.  Full polarimetric SAR (PolSAR) 

                                                 
2
 The presented material has been previously published in: Huang, W., Sun, G., Ni, W., Zhang, Z., 

Dubayah, R. (2015). Sensitivity of Multi-Source SAR Backscatter to Changes in Forest Aboveground 

Biomass, Remote Sensing. 7(8): 9587-9609; doi: 10.3390/rs70809587. 
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provide four combinations of transmitted and received polarizations: co-polarized 

bands HH (horizontal transmitted and horizontal received) and VV (vertical 

transmitted and vertical received), as well as cross-polarized bands HV (horizontal 

transmitted and vertical received) and VH (vertical transmitted and horizontal 

received).  Longer SAR wavelengths such as P- (30-100 cm) and L- (15-30 cm) 

bands penetrate farther into the forest canopy and capture more vertical structure than 

C- (4.8-7.7 cm) and X- (2.8-5.2 cm) bands, while HV backscatter from dual-

polarization (e.g., HH, HV) or full-polarization (i.e., HH, VV, HV, and VH) are more 

sensitive to woody biomass. 

A series studies suggested that a widely applicable relationship exists between 

biomass and backscatter from L-band SAR for woody vegetation with lower levels of 

biomass (Ò150 MgĿha
-1

) in tropical (Collins et al., 2009; Englhart et al., 2011; 

Mitchard et al., 2011a; Mitchard et al., 2009b; Pope et al., 1994; Saatchi et al., 

2011b), temperate and boreal biomes (Botkin and Simpson, 1990; Kurvonen et al., 

1999; Ranson et al., 1995; Sandberg et al., 2011).  Both airborne and spaceborne 

systems were involved in these studies. These including airborne instruments such as 

AIRborne SAR (AIRSAR) and Uninhabited Aerial Vehicle SAR (UAVSAR) 

developed by NASA, Experimental-SAR (E-SAR) operated by the German 

Aerospace Center (DLR), as well as spaceborne instruments such as Spaceborne 

Imaging Radar-C and X-B and SAR (SIR-C/XSAR), and Phased Array type L-band 

SAR (PALSAR) on board the Advanced Land Observing Satellite (ALOS).  Ranson 

et al. (1995) investigated the use of multi-frequency, multi-polarization and multi-

season image data from SIR-C/XSAR to map forest cover type and estimate 
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aboveground biomass for a Boreal Ecosystem-Atmosphere Study (BOREAS) site in 

Saskatchewan, Canada.  Santos et al. (2002) utilized the L-HH channel of JERS-1 

data in tropical forest-savanna contact zones, and found that the logarithmic and 

sigmoid functions were adequate to explain the SAR backscatter as a function of 

forest biomass.  Collins et al. (2009) indicated that the L-HV channel of polarimetric 

SAR backscatter intensity from AIRSAR was best suited (R
2
=0.92) for modeling 

biomass (both above- and below-ground) of the tropical savannahs in North Australia.  

Mitchard et al. (2009a) examined the relationships between field-measured biomass 

at four study sites in Cameroon, Uganda and Mozambique and data from 

ALOS/PALSAR, and found that biomass estimates based on these relationships were 

highly significant and similar among sites.  Sandburg et al. (2011) explored the 

relationship between SAR backscatter from E-SAR data and forest biomass in 

southern Sweden, and found that for L-band data the best results were obtained from 

HV-polarized backscatter. Robinson et al.(2013) studied the variation in field 

estimated biomass at different scales (0.0625, 0.25, 0.5, and 1.0 ha) in a temperate to 

boreal transitional region (Howland, ME), and found that the cross-polarized HV had 

the highest sensitivity to field estimated biomass (R
2
=0.68).  

Nevertheless, a number of important factors can affect the relationship 

between radar backscatter and forest biomass, including change in forest structure 

(Dobson et al., 1995), radar incidence angle (Sun et al., 1991; Wang et al., 1993) and 

look direction (Sun and Ranson, 1998), surface and environmental conditions (i.e., 

soil moisture) (Harrell et al., 1997; Kasischke et al., 2011), trunk dielectric properties 

(Way et al., 1991) and saturation (Dobson et al., 1992; Kasischke et al., 1997; Ranson 
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and Sun, 1997).  Backscatter from vegetated areas depends on a combination of 

canopy structure and underlying surface conditions (Ranson and Sun, 2000).  The 

former is related to water content of the vegetation, while the latter is linked to soil 

moisture (SM) changes.  Both (vegetation and soil) are affected by environmental 

factors such as temperature and moisture that will affect the dielectric constants of the 

target. These effects (i.e., temperature and moisture) need to be removed before any 

further analysis of changes caused by forest disturbances. 

However, few studies have been focused on analyzing sensitivity of multi-

source SAR backscatter to changes of forest biomass after forest disturbances.   

Ranson and Sun (2000) reported up to a 7 dB change in backscatter coefficient 

between frozen and non-frozen conditions and suggested multi-year comparisons 

under similar temperature conditions should be made such during in the summer 

growing season.  In addition, saturation in SAR backscatter varies among different 

bands.  Dobson et al. (1992) indicated biomass saturation levels of ~200 Mg·ha
-1

 and 

~100 Mg·ha
-1

 for P-band and L-band polarimetric SAR (PolSAR), respectively.   

Imhoff (1995) reported that the radar signal saturation was ~100 Mg·ha
-1

 for the P-

band, ~40 Mg·ha
-1

 for the L-band, and ~20 Mg·ha
-1

 for the C-band by comparing 

SAR backscatter and forest biomass relationships over a tropical broadleaf evergreen 

forest in Hawaii and coniferous forest stands in North America and Europe.  Ranson 

and Sun (1997) indicated that SAR backscatter from AIRSAR and SIR-C/XSAR 

could provide estimates of biomass up to ~150 Mg·ha
-1

 with an average of 97 Mg·ha
-

1
.  Lucas et al. (2010) studied the relationship between PALSAR data and biomass in 

Australia, and concluded that PALSAR data acquired when surface moisture and 
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rainfall are minimal allow better estimation of the biomass of woody vegetation and 

that retrieval algorithms ideally need to consider differences in surface moisture 

conditions and vegetation structure. 

This chapter will describe the analysis of the sensitivity of multi-sensor and 

multi-temporal SAR signatures to changes in forest biomass.  The objectives were to 

investigate: 1) a procedure to reduce the distortion in SAR backscatter caused by 

incidence angle and soil moisture; 2) the feasibility of cross-image calibration 

between multi-temporal and multi-sensor SAR data; and 3) the possibility of applying 

normalized backscatter to detect changes in biomass due to forest disturbance and 

post-disturbance recovery.  This chapter is organized as follows. First, the study area 

and data are described.  Then the factors that influence changes in SAR backscatter 

are described and discussed.  A cross-image normalization method is proposed to 

reduce the offset between multi-temporal and multi-sensor data.  The performance of 

our correction is evaluated and applied to selected stands after forest disturbance.  A 

biomass-backscatter regression model is developed from field measurements, and 

applied to map changes in forest biomass in the study area.  Finally, the significance 

and limitations of the results are discussed and conclusions are drawn. 
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3.2 Data 

 
Figure 3-1. Map of study sites, and coverage of Landsat ETM+ scene (red dashed line, 

p011/r029), ALOS PALSAR FBD scene (blue solid line) and PLR scene (purple 

dashed line). (a) 0.5 ha FIA style plot in 1992 and 2003, (b) 1.0 ha field plot in 2009. 

 

3.2.1 SAR data 

All SAR data used in this study were collected during middle April to early 

October and by systems operating at the L-band (23.6 cm wavelength or 1.3 GHz 

frequency).  Key parameters for SAR data used in this study site (HF, Figure 3-1) are 

given in Table 3-1.  Airborne Synthetic Aperture Radar (AIRSAR) L-band data with 

full polarizations (i.e., HH, VV, HV, VH) and multi-look angles (i.e., target at 25°, 

35°, 45°) were collected in 1989 and 1994. Uninhabited Aerial Vehicle SAR 

(UAVSAR) data were gleaned for the study area on August 5
th
, 6

th
, 7

th
 and 14

th
 in 

2009, with looking angle ranges from 20° to 60°, and headings of 167х and 347х.  

Meanwhile, Spaceborne Imaging Radar C- and X-Band SAR (SIR-C/XSAR) data 

with full polarizations at L-band and C-band were collected in April and October 

1994. Phased Array type L-band SAR (PALSAR) on board the Advanced Land 
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Observing Satellite (ALOS) is an enhanced version of JERS-1 SAR instruments 

launched in 2006 with a 46-day recurrent period. PALSAR data were collected for 

study area from 2007 to 2010 with fine beam dual mode (FDB: HH, HV) and 

polarimetric mode (PLR: HH, HV, VH, VV).  The Japan Space Exploration Agency 

(JAXA) has reported a geometric accuracy of 70 m and a radiometric accuracy of 

0.22 dB for measurements done in the Amazon forest areas (Shimada et al., 2009).   

Detail information about the SAR data selected for this study are listed in Table 3-2, 

including acquisition date, center incidence angle, and environmental conditions such 

as temperature and precipitation. 

 

Table 3-1. Key instrument parameters of SAR system in this study  

Parameter AIRSAR UAVSAR 
SIR-C/   

XSAR 
JERS-1 

PALSAR 

FBD 

PALSAR 

PLR 

Platform Airborne Airborne Spaceborne Spaceborne Spaceborne 

Available date 1994 2009 1994 1995, 1998 2007-2010 

Frequency 1.26GHz 1.26GHz 1.26GHz 1.3 GHz 1.27 GHz 

Polarization HH, HV, 

VH, VV 

HH, HV, 

VH, VV 

HH, HV, 

VH, VV 

HH HH, HV HH, HV, 

VH, VV 

Look angle 25-64 25-65 17-63 35 10-50 

Swath width 15km 16km 15km 75km 70km 30km 

Pixel size 10m 6m 12.5m 18m 20m 30m 

*Pixel size for multi-looked ground-projected product. FBD=Fine beam dual; PLR=Polarimetric. 

Technical specs from https://www.asf.alaska.edu/sar-data  

 

https://www.asf.alaska.edu/sar-data
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Table 3-2. SAR data selected for sensitivity analysis  

Sensor Scene  

id  

Acquisition  

date 

Pixel  

size* 

  

(m)  

Incidence  

angle
#  

 

(Ǔ) 

Environmental conditions 

Temperature 

(°C ) 

Precipitation  

(mm) 

3day 7day 14day 

SIR-C 

/XSAR 

PR12331 04/13/1994 12.5  31.7 T ~ 5.5 °C  17.3 42.1 50.9 

SIR-C 

/XSAR 

PR47494 10/04/1994 12.5  31.7 T ~ 10.1 °C  0 0.2 76 

AIRSAR 

 

/ 09/02/1989 10  35.0 T ~ 10.1 °C  16.8 18.6 27.6 

AIRSAR 

 

CM6221 10/07/1994 10  35.0 T ~ 10.1 °C  0 0.2 76 

UAVSAR 16702_ 

09054_016 

08/05/2009 6  48.0 T ~ 21.6 °C  11.5 49.6 94.4 

PALSAR 

/FBD 

ALPSRP 

191680890 

08/30/2009 20  34.3 T ~ 14.8 °C  20.4 32 34.2 

 

*Pixel size for the multi-looked ground-projected product. 
#
incidence angles are at scene center; for technical specifications see 

https://www.asf.alaska.edu/sar-data  

https://www.asf.alaska.edu/sar-data
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3.2.2 Auxiliary data 

Local forest management maps, Landsat derived disturbance maps, and 

climate data were prepared as referenced dataset for the study site.  Specifically, 

forest management maps were digitized and composited from scanned American 

Forest Management (AFM) maps for the study site during 1980 to 2011 (Figure 3-2).  

Three management maps were used: 1) AFM forest property map (1980-2011), 2) 

Edinburg, and 3) Howland cut map (manage unit map with harvest dates) in 2000 

rectified to road map and satellite images with UTM/WGS84 map projection.  The 

products of yearly forest disturbance map from Landsat time series stack vegetation 

change tracker (LTSS-VCT) (Huang et al., 2010) were obtained for the study area 

(see details in Chapter 2). 

In addition, with an AmeriFlux tower in the HF study site, various climate 

data were collected from 1987 including daily air temperature, total precipitation, 

wind speed, etc.  The soil near the AmeriFlux tower consists with 50.35% sand, 33.75% 

silt, and 15.9% clay.  From autumn of 1999, soil moisture, temperature and salinity 

were collected by five Hydra-Vitel probes and thermistors buried at depths of ~5 cm, 

10 cm, 20 cm, 50 cm, and 100 cm.  Figure 3-3 shows the variation of water fraction 

by content (WFC, %) versus precipitation (mm) in 2009. 
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Figure 3-2. Forest management map at the HF study site. Solid dark blue line polygon 

is the outline of the reserved area, and the solid green line is the near mature forest. 

PLT=plantation; CC=clear-cut; SC/STC=strip-cut; SEL=select-cut; SH=shelterwood-

harvest, 1 and 2 denotes 1
st
 and 2

nd
 entry of shelterwood-harvest; OB/OR= overstory 

removal; IMP=intensive management plot. Number inside the polygon denotes the 

year of management. 

 
Figure 3-3. Water fraction by Volume (WFV, %) and precipitation (mm) as a 

function of date. WFV measured at depths of 2 inches (~=5 cm). 
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3.3 Method 

Sensitivity analysis in this study includes three steps: incidence angle effect 

reduction, reduction of soil moisture effect, and determination of sensitivity to forest 

biomass (Figure 3-4).  First, a theoretical model and field measurements are 

employed to illustrate relationship between SAR backscatter and forest biomass.  

Then, an empirical model is applied to reduce incidence angle effects on SAR 

backscatter .  The influence of soil moisture on SAR backscatter is analyzed through 

in-situ soil moisture and field biomass studies.  A cross-image normalization 

procedure is proposed to lessen the environmental effect on SAR backscatter.  Lastly, 

the sensitivity of SAR backscatter to biomass is determined using normalized SAR 

data and field measurements. 

 
Figure 3-4. Flowchart of SAR data processing and sensitivity analysis. 
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3.3.1 Sensitivity of SAR backscatter to biomass 

We employed a theoretical model to show the sensitivity of L-band SAR 

backscatter to forest biomass.  ZELIG (Urban, 1990) is an individual tree-based 

forest gap model with the ability to simulate the forest ecosystem with complex 

species composition over a long-term period.  Driven by temperature and 

precipitation data, as well as growth and environmental response parameters of each 

tree species and soil characteristics (Levine et al., 1994), the model was 

parameterized for Howland Forest (Ranson et al., 2001).  The output of ZELIG model 

are forest stand parameters, including biomass density, forest height and leaf area 

index (LAI ), and the size of each tree.  Then, a radar model that simulated L-band 

radar backscatter of PolSAR data was implemented based on the output of ZELIG 

model (Ni et al., 2013a; Sun et al., 1991).  A look-up table (LUT) was generated from 

the physical-based forest backscatter model and was used in this study.  

Based on model simulations as well as field measurements, the relationship 

between SAR backscatter and forest biomass is strong (Figure 3-5).  However, the 

SAR backscatter has a wider dynamic range when the level of biomass density is high. 

The simulated SAR attributes for co-polarization (HH) and cross-polarization (HV) 

were plotted as a function of simulated forest biomass from the look-up table (Figure 

3-5), where different soil types reflected differences in hydrological condition related 

to soil moisture and ground roughness (Levine et al., 1994; Ni et al., 2013a).  The 

SAR backscatter data from airborne (i.e., UAVSAR) and spaceborne observations 

(i.e., PALSAR) were plotted as a function of field measured biomass (Figure 3-5, in 

blue circles).  The figure shows that when biomass increases from 0 to 50 Mg·ha
-1

, 
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the backscatter ranges from -20 dB to -13 dB (~7 dB) at HV polarization, and from -

14 dB to -9 dB at HH polarization (~5 dB).  This is consistent with conclusions in the 

aforementioned literatures that HV is more sensitive to forest disturbance than HH; 

and that HV is sensitive to structures of post-disturbance tree regrowth, while HH is 

more sensitive to moisture content of the soils.  

 
Figure 3-5. SAR backscatter as a function of forest aboveground biomass from model 

simulation and remote sensing observation. Simulation from ZELIG plotted with (a) 

PALSAR HH, (b) PALSAR HV, (c) UAVSAR HH, and (d) UAVSAR HV. ADAMS 

to WESTBURY are different type of soil based on drainage and taxonomic 

classification (Levine et al., 1994).  

 

The above analysis indicates that changes in forest biomass after disturbance 

are detectable from SAR backscatter.  However, many factors other than the change 

in forest structure and biomass, such as radar incidence angle and surface conditions, 



 66 

 

also affect the radar backscattering.  The influence of these factors will be discussed 

in the following sections. 

3.3.2 Incidence-angle based correction for airborne SAR backscatter 

Numerous studies have indicated that incident angle (IA) lead to changes in 

backscatter (Sun et al., 1991; Wang et al., 1993), and model-based correction was 

effective in reducing IA influence on SAR backscatter (Menges et al., 2001; Sun et 

al., 2002).  Thus for airborne SAR data (AIRSAR and UAVSAR), two set of 

empirical models are developed for IA correction:   

HH and HV polarization: n
c

o
c

o
raw )cos/(cos qqss Ö=   Equation 3-1 

    VV polarization: 
n

c
o
c

o
raw )/( qqss Ö=  

where o

raws is the raw backscatter before correction,cq is the radar incidence angle at 

the center of the image, and q is the local incidence angle, and n is the power 

exponent coefficient with a range of [1, 2] determined by target attributes.  The local 

incidence angle is defined as the angle between the radar line-of-sight and the local 

vertical with respect to geoid. If topography is gentle (i.e., slope near to zero), then 

local incidence angle can be assumed equal to incidence angle.  

Then, the correction models are applied to all pixels: 

HH and HV polarization:  n
c

o
raw

o
corr )cos/(cos qqss Ö=   Equation 3-2 

         VV polarization:  
noo

corr )/( craw qqss Ö=   

where o

corrs is the corrected radar backscatter coefficients. 
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3.3.3 Sensitivity of SAR backscatter to soil moisture and cross-image normalization 

To study the effect of surface environments such as soil moisture (SM) on 

changes in SAR backscatter, relationship between SAR signatures and soil moisture 

for the period of 2007-2010 over the selected stands was analyzed.  Based on the 

forest management map, SAR signatures near the Main AmeriFlux tower (S1, near 

mature forest with biomass >200 Mg·ha
-1

) and near the non-forested area (S2, clear-

cut with biomass <10 Mg·ha
-1

) were extracted from PALSAR collected during the 

growth season (May to October in 2009).  The relationship between SAR signatures 

and soil moisture is analyzed for the period of 2007 to 2010 (Figure 3-6).  

A conceptual diagram of the cross-image normalization is shown in Figure 

3-6.  The existence of radar ñsaturationò and different mechanisms from soil and 

canopy vegetation were utilized to conduct the cross-image normalization for multi-

temporal and multi-sensor SAR data.  Model simulations (Ni et al., 2013a) have  

indicated that SAR backscatter from soil is stronger than that from canopy in low 

biomass areas (non-forest areas), but weaker in high biomass areas (near mature 

forest).  The objective of the normalization was to produce SAR signatures, acquired 

from different time and/or by different sensor, with similar patterns with regard to 

their SAR backscatter- biomass.   
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The following two-step normalization was developed for both airborne and 

spaceborne SAR data.  First, the one-point normalization makes use the saturation 

point at higher levels of biomass (i.e., near-mature forest).  The first-step of  the 

normalization can be expressed as: 

o

o

o

oS

o

tS

o

o ssss Ö=¡ )/( 11       Equation 3-3 

where o
os  (sigma naught) is the original SAR backscatter before normalization.  

Both o
tS1s and o

oS1s are the SAR backscatter of a near-mature forest (S1) from the 

target (S1t) or reference image and the original image (S1o) that need to be 

normalized.  The variables o
tS2s and o

oS2s are the SAR backscatter of the non-forested 

area (S2) from the target (S2t) or reference image and the image (S2o) that need to be 

normalized. 

Figure 3-6. Conceptual diagram of the cross-image normalization. Figure units are in 

power domain (m
2
·m

-2
) for backscatter (ů), and density per hectare (MgĿha

-1
) for 

AGB. S1 is the saturation point in a near-mature forest; S2 is the maximum soil effect 

point in a non-forested area. Dashed blue line (Veg) is the fitted backscatter versus 

AGB received from vegetation canopy without soil influences in theory. Brown 

dashed and dotted lines are backscatter from soil surfaces. Green dotted lines are 

backscatter from vegetation canopy plus soil. ŵŶŷ denotes backscatter from data 

with different surface and soil moisture conditions. 
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Then, the two-point normalization is applied to reduce the environmental 

effect of the soil component by subtracting it from the total signature.  Normalized 

SAR backscatter after the second-step normalization can be expressed as:  

ba o

o

o

oo

o

o

o

+¡Ö=D

D+¡=¡¡

ss

sss

      Equation 3-4 

where
osD is the difference between SAR backscatter at two different soil moisture 

conditions, and the coefficients a and b are derived from linear fitting of the data: 

oStSSoStSS

oSoSoSSSS

oSoSSS

b

a

222111

121211

2121

,

)/()(

)/()(

ssssss

ssssss

ssss

¡-¡=D¡-¡=D

¡Ö¡-¡D-D-D=

¡-¡D-D=

  Equation 3-5  

where t1Ss¡and oS1s¡ are the target and the original SAR backscatter, respectively, of 

mature forest (S1) from Equation 3-3.  The variables t2Ss¡ and oS2s¡ are the target and 

the original SAR backscatter of the non-forested area (S2) from Equation 3-3.  Finally, 

1SsD and 2SsD are the differences between SAR backscatter of near-mature forest 

and non-forested area at two different soil moisture conditions. 

Stands with select-cut and clear-cut trees were selected with assistance from 

forest management map (Figure 3-7a), to test the proposed normalization algorithm, 

and to analyze the  sensitivity of normalized changes in backscatter to forest biomass 

over time.  Figure 3-7a shows representative plots on the AIRSAR image (October 

7,1994, R: HH, G: HV, B: VV).  Figure 3-7b shows forest management map of 

logging activities from 1984 to 2011, where patches with different color denote types 

and years of disturbance.  To make the management map comparable to the SAR 

images, the disturbances were reclassified into plantation before 1994 (1984ï1993), 
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plantation after 1994 (1994ï1995), natural regrowth after prior clear-cut, select-cut 

and strip-cut events (1984ï1993), and recent select-cut (1994ï2008). 

 
Figure 3-7. (a) Selected plots on AIRSAR image (10/07/1994, R: HH, G: HV, B: VV), and (b) 

Forest management map at study site. Pink polygon is the near-mature forest; and dark blue 

polygon is the outline of the reserved area. Solid line polygons with labels (i.e., PLT89 = 

plantation in 1989; CC86 = clear-cut in 1986; STC92 = strip-cut in 1992; SHL08 = 

shelterwood-harvest in 2008) are the plots selected for sensitivity analysis. S1 is the 

saturation point in a near-mature forest  (biomass >200 Mg·ha
-1
), S2 is the maximum soil 

effect point in a non-forested area (biomass <10 Mg·ha
-1
). 

3.4 Result 

3.4.1 Sensitivity of SAR backscatter to incidence angle 

Table 3-3. Correction model parameters and coefficients of determinant for three 

polarizations 

Polarization Correction Model n R
2
 

HH 
n

c

o

raw

o

corr )cos/(cos rawqqss Ö=  
1.5940 0.9733 

HV 1.5250 0.9665 

VV n

raw

oo

corr )/( craw qqss Ö=  -1.3293 0.9777 

 

The correction models and coefficients of determination derived from 

UAVSAR data for three polarizations are given in Table 3-3.  Cosine models were 



 71 

 

applied to normalize backscatter at HH and HV polarizations, and linear model is 

selected for VV polarization.  

 

Figure 3-8. Mean backscatter in three polarizations (R:HH, G:HV, B: VV) as a function of 

incidence angle. AISSAR data acquired on 10/07/1994before (a) and after incidence angle 

normalization (b), UAVSAR data acquired on 08/05/2009 before (c) and after incidence 

angle normalization (d).   

 

A plot of SAR backscatter data as a function of incidence angle (Figure 3-8) 

illustrates the trend of SAR backscatter before and after the incidence angle based 

radiometric correction.  Before correction, there are significant decreasing trends 

along the incidence angle for both AIRSAR (Figure 3-8a) and UAVSAR data (Figure 
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3-8c).  After incidence angle correction, the overall trends of backscatter along the 

incidence angle were mostly removed (Figure 3-8b and Figure 3-8d).  Although there 

is slightly decreasing trend from 20Á to 30Á, the corrected values keep relatively 

stable (less than 1 dB variation) from 30Á to 60Á in all three polarizations (i.e., R: HH, 

G: HV, B: VV).  

The incidence angle contamination from both AIRSAR (Figure 3-10) and 

UAVSAR (Figure 3-9) can be seen clearly in the near range (i.e., left edge of images 

in the upper row), and there is a systematic decreasing from near range to far range.  

The effect of correction on AIRSAR image is very similar to that of UAVSAR 

(Figure 3-10 and Figure 3-9).  

 

 

Figure 3-9. Polarized AIRSAR image acquired on 1994/10/07 in three polarizations 

and composite (R: HH, G: HV, B: VV). The above images (a)-(d) show the image 

requested from JPL archive, and the below images (e)-(h) are after correction for 

incident angle. 
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3.4.2 Sensitivity of SAR backscatter to soil moisture 

Two plots with field measurements taken in 2009 were selected to show the 

sensitivity of backscatter to soil moisture (Figure 3-11).  Soil water fraction by 

volume (WFV) data was collected at 5 cm (2 inches) depth from the Main Tower, 

Howland.  The SAR backscatter (sigma) was extracted from PALSAR data collected 

during the 2007 to 2010 grown seasons with incidence angle ranging from 37° to 40°.   

Scatter plots show an increase in backscatter with increasing soil moisture at HH 

polarization for the low biomass plot (Figure 3-11b).  A correction of radiometric 

distortion due to different soil moisture conditions is possible.  

Figure 3-10. Polarized UAVSAR image acquired on 2009/08/05 in three polarizations 

and composite (R: HH, G: HV, B: VV). The above images (a)-(d) show the calibrated 

image distributed by JPL, and the below images (e)-(h) are after correction for 

incident angle. 
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3.4.3 Sensitivity of normalized SAR backscatter to forest biomass 

A two-step normalization was conducted to both airborne and spaceborne 

SAR data.  First, spaceborne SIR-C/XSAR data obtained on April 13 (PR12331) and 

October 4 (PR47494), 1994 were chosen to test the effectiveness of the proposed 

algorithm. Specifically, the SIR-C/XSAR data acquired on April was normalized to 

the data acquired in October.  Changes in backscatter from the two SIR-C/XSAR 

scenes were illustrated for the selected plots (Figure 3-12).  The patch of forest near 

the flux tower was selected as the saturation point (S1), and the clear-cut (CC86) with 

no canopy in 1994 was selected as the low biomass point (S2).  The two selected 

scenes had similar sensor conditions (i.e., same looking direction and incidence 

angle).  However, environmental conditions changed from April to October, including 

temperature increased from 5.5 °C  to 21.6 °C , and an increase in surface soil moisture.  

The soil surface was very wet in April not only due to cumulative rainfall that fell 

three to seven days prior to the SAR acquisition, but also due to the presence of snow.   

While rainfall totals were higher in October two weeks prior to the SAR acquisitions 

(76 mm vs. 50.9 mm, Table 3-2), melting snow and lower air temperature in April 

(a) High biomass stand (b) Low biomass stand 

Figure 3-11. Mean backscatter (Sigma) plotted as a function of water fraction by volume 

(WFV, %): (a) High biomass stand, (b) Low biomass stand. 
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would have resulted in higher surface moisture.   In fact, field crews in 1994 reported 

running water (small streams and ponds) at numerous locations in the forest.  Finally, 

deciduous trees had not yet leafed out in April, while deciduous trees had retained 

their leaves in October, suggesting that sap flow (and thus stem dielectric properties) 

would have been lower in April than in October. 

Before the normalization, we saw an increasing trend of backscatter (~2 dB) 

for all plots from April to October due to the changes in environmental conditions 

(Figure 3-12a).  After normalization, the trend was removed for most plots (i.e., S1, 

S2, and PLT89), and reduced for the select-cut plots (i.e., SHL08 and STC89) with 

subtle changes (<1dB).  The proposed two-step normalization algorithm successfully 

removed 50% to 100% of the effects of environmental conditions on SAR backscatter 

(Figure 3-13b).  Therefore, the following section analyzes the sensitivity of 

normalized changes in backscatter to forest biomass over time using multi-sources 

SAR data. 

Changes in multi-sensor SAR backscatter over time were analyzed for 

selected plots (Figure 3-13).  Airborne AIRSAR data from 1989 and 1994 were 

normalized to UAVSAR data in 2009 (Figure 3-13a).  Spaceborne SIR-C/XSAR data 

in Oct 1994 were normalized to PALSAR data in 2009 (Figure 3-13b).  As expected, 

the change in biomass with time varies for different types of forest disturbance. 

Whole-stand disturbance (plantation after clear-cut) before the 1990s could be 

effectively detected its backscatter signature.  Plantation (PLT89) and natural 

recovery (CC86) are good examples to show post-disturbance recovery from clear-cut 

events before the 1990s.   
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On the other hand, changes after partial-stand disturbance (i.e., shelterwood-

harvest and strip-cut) could be detected by SAR signatures only under certain 

conditions.  The strip-cut stand, occurred in 1990s (STC92), shows a relatively slow 

recovery rate, which is not sensitive to SAR signatures.  However, the decrease of 

biomass from shelterwood-cut between 1994 and 2009 (SHL08) is detectable. For 

example, SHL08 means the 1
st
 entry was in 1998 and the 2

nd
 entry was in 2008, when 

each time ~1/3 of the total biomass was removed.  Previous model simulation (Sun 

and Ranson, 1998) showed that when radar looks perpendicular to the strip-cut 

direction, the radar signature doesnôt change significantly.  Meanwhile, the reason for 

radar not being able to detect the regrowth may be that radar signal after the strip-cut 

was still strong.  

 
Figure 3-12. Changes in SAR backscatter (HV) from SIR-C/XSAR 1994 at 

represented plots: (a) before normalization, (b) after normalization. 
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3.5 Discussion 

Our objectives were to investigate the influence of incidence angle (IA), soil 

moisture (SM), and changes in forest biomass on SAR backscatter.  Knowledge from 

these analyzes forms the base for the cross-image normalization.  Results from both 

spaceborne- and airborne- systems demonstrated that normalization ensured the 

derived biomass of regrowth forests was cross-calibrated, making the detection of 

Figure 3-13. Original and normalized multi-sources backscatter (1989 2009) from 

airborne- and spaceborne- SAR systems at represented stands: (a) and (c) are from 

original data, and (c) and (d) are from normalized data. Airborne data include AIRSAR 

89/09/02, 94/10/07, and UAVSAR 09/08/05. Spaceborne data include SIR-C/XSAR 

94/10/07 and PALSAR 09/08/30. 
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biomass changes from multi-source SAR data possible. Several main factors lead to 

this conclusion. 

Results from airborne systems indicated that the influence of IA on SAR 

backscatter could be reduced to less than 1 dB using an empirical model (Figure 3-8).  

We chose an empirical method for incidence angle correction because it is efficient 

and only needs basic sensor parameters (i.e., near range distance, instrument height, 

incident angle at near range and slant range resolution).  Thus, this procedure was 

suitable for this study area, which has with a relatively flat topography and limited 

information in terms of sensor parameters in the archived data (AIRSAR).  However, 

a more advanced radiometric correction that integrated terrain variations (Small, 2011) 

should be applied in regions with large terrain variation to improve the precision of 

the correction. 

Second, the sensitivity of SAR backscatter to soil moisture was analyzed via 

spaceborne PALSAR data and in situ measurements from April 2007 to October in 

2010.  A cross-image normalization procedure was used to reduce the influence of 

environmental and acquisition conditions among multi-source SAR data.  This 

procedure successfully reduced the temporal changes in backscatter for SIR-C/XSAR 

data collected between April and October 1994 by 50% to 100% (Figure 3-12).  

Assuming that surface roughness was the same in April and October, increased 

surface wetness would have increased direct backscattering from soil and double-

bounce backscattering.  More sap flow and higher temperatures in October increased 

the dielectric constant of the tree trunks, increasing direct backscatter from the trunk 

and the trunk-ground double bounce.  A further application to multi-sensor SAR data 



 79 

 

indicated that the proposed procedure successfully reduced radiometric distortions 

due to different acquisition conditions (Figure 3-13).  We chose near-mature forest 

stands and non-forested area because they met the requirements for high and low 

biomass in the conceptual diagram (Figure 3-6Figure 3-6).  Future work needs to 

incorporate physical-based models and develop according normalization algorithms. 

In addition, the influence of incidence angle and soil moisture depends on the 

area and location of study area.  For instance, previous studies suggests that 

correction of incidence angle effect is essential for study area with a range of 

incidence angle greater than 10° across the landscape (Menges et al., 2001).  While 

the effects of soil moisture will become more important as a study area approaching 

national to continental scale, because of the increasing spatial variation in soil 

moisture. However, current soil moisture products derived from interpolation of 

meteorological station data or available satellite observation have limited spatial and 

temporal resolution.  For example, the Aqua Advanced Microwave Scanning 

Radiometer-EOS (AMSE-E) is with a nominal spatial resolution of 25 km (Lucas et 

al., 2010), which is beyond the scale of our study site.  The relationship between SAR 

backscatter and soil moisture for the forested and non-forested areas is still under 

exploration because of limited observational as well as high-temporal SAR data.  

Thirdly, the ability to detect forest biomass reduction and regrowth using SAR 

backscatter also depends on numerous factors such as the level of disturbance, model 

uncertainties, radar looking directions, forest structures, trunk dielectric properties, 

and tree species. Forest recovery from whole-stand disturbance (>50% removal), such 

as natural regrowth and plantation after clear-cut events, could effectively be detected 
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by backscatter signatures.  Depending on the magnitude of change and radar looking 

direction, the recovery from partial-stand disturbance (shelterwood harvest and strip-

cut with <50% removal) was not always captured by SAR signatures.  Uncertainty in 

biomass estimation from single-date models will affect this ability.  We were able to 

detect changes for pixels with changes greater than 100 Mg·ha
-1

 or above 50% of 150 

Mg·ha
-1

, although with a ~50 Mg·ha
-1

 prediction error from the model.  This is 

consistent with our analysis of selected plots (Figure 3-13), indicating that the level of 

disturbance has an influence on SAR detection ability.  A previous study (Robinson et 

al., 2013) had mentioned the effect of forest structure and tree species composition on 

the biomass estimation.  The model developed for biomass mapping in this study did 

not take these effects into account because of a relatively simple species composition 

in the study area.  However, we still recommend considering structure and species 

effects in areas with more complicated composition. 

Lastly, previous studies have indicated that a combination of multiple 

observations could improve the accuracy of biomass estimation from SAR data 

because multiple images provide more samples and using them together could reduce 

the radar speckle noise (Englhart et al., 2011; Zhang, 2011).  For example, Zhang 

(2011) indicated that models developed using multi-direction SAR backscatter (i.e., 

left and right look) achieved the best performance in estimation of forest biomass.   

Moreover, Englhart et al. (2011) demonstrated that regression models developed 

from multiple observations with multiple frequencies such as SAR data from 

PALSAR (L-band) and TerraSAR-X (X-band) are more accurate than regression 

models developed from single observation.  There is a trade-off between pixel size 
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and the ability to detect disturbance.  Therefore for biomass estimation, the data were 

resampled to a 100 m resolution, and a mean value was calculated for each cell so 

that it was large enough to reduce the speckle noise in the SAR data used in this study.   

Airborne SAR data (i.e., UAVSAR and AIRSAR) with higher spatial resolution 

revealed more detail than spaceborne data (i.e., PALASAR and SIR-C/XSAR) in 

terms of changes in forest biomass. 

3.6 Conclusion 

This chapter analyzed the sensitivities of multi-sensor and multi-temporal 

SAR signatures to changes in forest biomass.  Knowledge from these sensitivity 

analyses and corresponding correction is the base to the cross-image radiometric 

normalization.  Results from both spaceborne- and airborne- systems demonstrated 

the normalization ensured the derived biomass of regrowth forests were cross-

calibrated, and thus make the detection of biomass changes possible. 

Findings from this study indicate that the use of a correction model can reduce 

incidence angle effects on SAR backscatter to less than 1 dB, and that cross-image 

normalization can reduce the effect of soil moisture on changes in backscatter to less 

than 50%.  Thus, the changes in forest biomass greater than 100 Mg·ha
-1

 or above 

50% of 150 Mg·ha
-1

 are detectable using cross-normalized SAR data. 
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Chapter 4  Mapping Biomass Change after Forest Disturbance 

from Multi-source SAR
3
                        

4.1 Introduction 

 A series of studies have utilized airborne instruments such as AIRSAR (Ranson 

and Sun, 1997; Saatchi et al., 2011a) and UAVSAR (Robinson et al., 2013) to estimate 

forest biomass; and spaceborne instruments such as PALSAR (Mitchard et al., 2009a; 

Santoro et al., 2010), to detect clear-cut areas, evaluate forest biomass (Lucas et al., 

2010), and retrieve soil moisture for bare land (Guo et al., 2013) and post-burned forest 

(Bourgeau-Chavez et al., 2013).  Specifically, L-band SAR imagery can be used to 

monitor the changes in biomass and carbon stocks for early stages of secondary 

succession (Ustin et al., 1991) and post-disturbance recovery (Hall et al., 2011).  Ustin et 

al. (1991) indicated that changes in biomass during the early stages of secondary 

succession could be monitored by L-band airborne SAR data for two datasets with an 

interval of five years.  Their study also demonstrated that cross-image normalization is 

feasible for radar data obtained through stable systems under similar conditions.  Ranson 

and Sun (1997c) developed a cube root regression model to estimate biomass density for 

a temperate forest using SIR-C/XSAR and AIRSAR data.  Salas et al. (2002) evaluated 

the spatial and temporal variability in JERS-1 data and characterized the overall structure 

of clearings and secondary vegetation with age information derived from Landsat.  

Baltzer et al. (2003) utilized multi-sensor L-band SAR data (i.e., spaceborne SEASAT 

and JERS-1) to map regrowth of a conifer plantation in the Thetford Forest, UK.  

Luckman et al. (1997) compared biomass estimated from spaceborne SAR instruments 

                                                 
3
 The presented material is under preparation for publication: Huang, W., Sun, G., Ni, W., Zhang, Z., 

Dubayah, R. Mapping Biomass Change after Forest Disturbance using Multi -source SAR data.  
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(SIR-C/XSAR and JERS-1) and concluded that L-band SAR data were suitable for 

detecting regeneration in tropical regions. Santoro et al. (2010) utilized airborne and 

spaceborne data such as PALSAR to detect clearcutting of a boreal forest from July 2007 

to October 2008 and found a temporal consistency in the time series of L-HV backscatter 

measurements and developed a detection algorithm for clear-cut areas.  

However, few studies quantify the changes in forest biomass using multi-source 

L-band SAR data, because of issues such as limited SAR data acquisition over time, 

changes in forest structure (Dobson et al., 1995), radar incidence angle (Sun et al., 1991; 

Wang et al., 1993) and look direction (Sun and Ranson, 1998), variations in surface 

conditions (Harrell et al., 1997; Kasischke et al., 2011; Lucas et al., 2010) and trunk 

dielectric properties (Way et al., 1991), and saturation (Dobson et al., 1992; Kasischke et 

al., 1997; Ranson and Sun, 1997).  These issues have been discussed in the last chapter.  

Sandberg et al. (2014) estimated biomass change in a hemi-boreal forest from 2007 to 

2010 using airborne P-band SAR data, and concluded that growth and thinning in a forest 

can be measured with 64 equivalent number of look (ENL) in SAR imagery and a 50% 

change in biomass.  Ahmed et al. (Ahmed et al., 2014) indicated that the combined error 

from field measurements and remote sensing could be as much as 100% at sub-plot level 

(0.25 ha) for Howland and Harvard Forest sites, and recommended at least a 1 ha (100 m) 

spatial resolution for mapping of forest biomass.   

In this chapter we will investigate: 1) what will be the proper scale for mapping 

biomass from SAR data, 2) what are the uncertainties in the mapping of forest biomass 

using data from spaceborne and airborne systems, and 3) at which level predictions are 

reliable in terms of the changes in biomass.  The changes in forest biomass for the study 
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sites were analyzed using SAR data from spaceborne (1994 2009) and airborne (1989

1994 2009) SAR systems.  

4.2 Data 

Spaceborne and airborne SAR data (Figure 4-1) are employed to map the change 

in biomass over a 15-year period (1994 2009) and a 20-year period (1989 2009).   

Details about the study site, SAR data, and auxiliary data have been introduced in the last 

two chapters, and are not described herein.  The field data used for training and validation 

are summarized in Table 4-1. 

LTSS-VCT year of disturbance 
map (1984-2010)

SIRC/XS (94/10/04) PALSAR(2007-2010)

UAVSAR(09/08/05)AIRSAR (89/09/02) AIRSAR(94/10/07)

Clear-cut (1980s)

Stripe-cut (1990s)

Selective-cut (2000s)

JERS1(98/08/30)

SAR Data Timeline

Forest Disturbance
(Local management maps)    

Optical Observation

Airborne

Spaceborne      

 
Figure 4-1. Timeline of SAR data at HF site. Optical data are acquired during the leaf-on 

season, and SAR data are from L-band. Forest management maps are digitized from local 

management maps. 

 

Table 4-1. Summary of field estimated biomass in 2009 at different plot-level 

Plot-size N Mean Min  Max 

ha 
 

MgĀha
-1
 MgĀha

-1
 MgĀha

-1
 

0.25 ha 115 141.1 0.3 361.4 

0.5 ha 57 140.3 0.6 316.0 

1.0 ha 24 143.3 1.0 278.9 

All  196 141.2 0.3 361.4 
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4.3 Method 

The overall procedure consists of multi-source data processing, radiometric 

normalization, model development, and biomass mapping (Figure 4-2).    

 
Figure 4-2. Flowchart of SAR data preparation, normalization and mapping. 

4.3.1 Multi -source SAR data processing 

Current radar derived products for surface conditions such as soil moisture are 

still under development and are often with large uncertainties in estimates.  In order to 

limit the influence of surface conditions on the retrieval of forest biomass from radar 

backscatter attributes, SAR images with very low or no precipitation within three days 

around acquisition date were selected for further analysis.  

Archived AIRSAR data in the 1990s were provided by JPL in the compressed 

strokes matrix (CM) format (JPL, 2003).  The 4 x 4 Stokes matrix data was compressed 

into 10-byte format, to reduce the original 1.92 GB data to 37.5 Mbytes per scene 

(Dubois and Norikane, 1987).  SIR-C/XSAR data in 1994 were provided in the 

compressed SIR-C format (JPL, 1994) with a CEOS header file.  For both AIRSAR and 
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SIR-C/XSAR systems, multi-looked complex (MLC) data were used in this study.  The 

compressed AIRSAR and SIR-C/XSAR data were processed to coherency elements (T3) 

from quad polarimetric data and to covariance elements (C3) from dual polarimetric data.  

These datasets were processed using the PolSARPro Polarimetric SAR Data Processing 

and Educational Tool developed by the European Space Agency (Version 4.2.0)  (Pottier 

et al., 2009).  

Slant range AIRSAR layers were converted to ground range images using ñSlant 

Range Correctionò function in ENVI 4.8.  This step converts the distance from the radar 

(slant range, SR) to distance along the ground (i.e., ground range, GR) and samples data 

to a desired output pixel spacing as follows:  

ɗsin/SRGR
AA gg =        Equation 4-1 

where ɗ is the incidence angle.  

Then, the ground range layers of AIRSAR and SIR-C were manually registered to a 

Landsat7 ETM+ image (path011/row029) acquired on Sept 9, 2000, using a first-degree 

polynomial model. 

PALSAR operates in several modes, including two fine-beam modes: single 

polarization (FBS) and dual polarization (FBD); and a full polarization mode (PLR). The 

FBD mode with HH and HV data at the 34.3° incidence angle (image center) were used 

in this study.  PALSAR FBD and PLR data from 2007 to 2009 were acquired at Level 

1.1/1.5 and were processed to normalized radar cross section (NRCS). These datasets 

were processed using the MapReady Remote Sensing Toolkit (Version 3.1.22) (Gens and 

Logan, 2003) supported by Alaska Satellite Facility (ASF) and the terrain information 
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from National Elevation DEM (NED).  NRCS of the polarization component is derived 

from following equations with a single calibration factor (CF): 

L1.5 product:  NRCS (dB) = 10log10(<DN
2
>) + CF   Equation 4-2 

 

L1.1 product:  NRCS (dB) = 10log10(<R
2 
+ I

2
>) + CF - 32.0  Equation 4-3 

 

where DN is the digital number value (amplitude) in the image; R and I are intensity and 

phase values; and CF is listed in Table 4-2 provide by JAXA. 

(http://www.eorc.jaxa.jp/en/about/distribution/info/alos/20090109en_3.html).  

Table 4-2. The calibration factor (CF) for ALOS/PALSAR data 

Processing  

date 

Before  

Jan. 8, 2009 

After  

Jan. 9, 2009 

FBD34.3 HH -83.2 -83 

FBD34.3 HV -80.2 -83 

PLR21.5 -83.4 -83 

 

UAVSAR polarimetric (PolSAR) data in 2009 were acquired from JPL in ground 

range grid (GRD) format in geographic coordinate system (WGS 84).  These datasets 

were then projected into a common frame of reference (UTM 19N WGS 84) used in this 

study.  

 

http://www.eorc.jaxa.jp/en/about/distribution/info/alos/20090109en_3.html
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Table 4-3. Co-registration accuracies for the selected SAR data the test sites  

   

RMS 

Sensor Scene id 

Acquisition 

date #Point X Y Resolution (m) 

PALSAR/FBD ALPSRP198390890 10/15/2009 31 0.4510 0.4045 12.5 

PALSAR/FBD ALPSRP191680890 8/30/2009 29 0.4005 0.3541 12.5 

PALSAR/PLR ALPSRP179280900 6/6/2009 57 0.4575 0.3957 12.5 

PALSAR/PLR ALPSRP172570900 4/21/2009 76 0.4240 0.4826 12.5 

PALSAR/FBD ALPSRP131290890 7/12/2008 31 0.4985 0.4066 12.5 

PALSAR/FBD ALPSRP124580890 5/27/2008 46 0.4179 0.3250 12.5 

PALSAR/FBD ALPSRP120350890 4/28/2008 38 0.3237 0.3979 12.5 

PALSAR/FBD ALPSRP091030890 10/10/2007 30 0.3866 0.3505 12.5 

PALSAR/FBD ALPSRP086800890 9/11/2007 41 0.4251 0.4156 12.5 

PALSAR/FBD ALPSRP084320890 8/25/2007 41 0.4193 0.4483 12.5 

PALSAR/FBD ALPSRP080090890 7/27/2007 30 0.4840 0.4593 12.5 

PALSAR/FBD ALPSRP077610890 7/10/2007 39 0.4495 0.4778 12.5 

PALSAR/FBD ALPSRP073380890 6/11/2007 37 0.4806 0.4431 12.5 

PALSAR/PLR ALPSRP071920900 6/1/2007 47 0.4185 0.4019 12.5 

PALSAR/FBD ALPSRP068932710 5/11/2007 65 0.4345 0.4079 12.5 

PALSAR/FBD ALPSRP065210900 4/16/2007 71 0.4477 0.4872 12.5 

SIR-C/XSAR PR12331 4/13/1994 32 0.2816 0.4851 30 

SIR-C/XSAR PR47494 10/4/1994 22 0.3878 0.4410 30 

AIRSAR CM6220 10/7/1997 31 0.3549 0.3759 10 

*PALSAR data used in this study involved two modes: FBD= Fine beam dual mode, and PLR=Polarimetric mode. 
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Finally, all SAR data including AIRSAR, SIR-C/XSAR, PALSAR were co-

registered to the same Landsat image (September 09, 2000, path011/row029,) using a 

modified ROI_PAC script for precise co-registrations (Ni et al., 2013b).  The registration 

errors (RMS) were minimized (<1 pixel) to reduce the influence of geolocation errors in 

SAR data (Table 4-3).  All conversions were processed in power domain (m
2
 m

-2
), and 

the arithmetic mean values were used when aggregating SAR data to different scales.   

Backscatter coefficients were converted into dB domain for biomass estimation: 

)m(mů(dB)ů 22
10log10 -= AA      Equation 4-4  

 

Airborne SAR data (i.e., AIRSAR and UAVSAR) were normalized by the 

correction models as described in Chapter 3 to reduce the effect of incidence angle. 

4.3.2 Modeling approaches for biomass estimation 

SAR backscatter coefficients, band ratios, and relevant indices are found to be 

sensitive to canopy structural variables and biomass (Gonçalves et al., 2011; Henderson 

and Lewis, 1998; Pope et al., 1994; Saatchi et al., 2010).  Specifically, Table 4-4 

summarizes the indices used in this study as predictors in biomass modeling.  We utilized 

indices including single polarization backscattering coefficients (i.e., HH, HV, and VV), 

cross-polarized indices, and full -polarized indices.  The single-polarized indices are 

applicable for all SAR data in this study, while the full -polarized indices are not available 

for either PALSAR FBS or PALSAR FBD due to the lack of full-polarization (absent HV 

and/or VV).  All statistical calculations were performed using R with packages ócaToolsô, 

óforecastô and ócaretô (Liaw and Wiener, 2002).  
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Table 4-4. SAR backscatter coefficient, cross- and full - polarized indices 

Attributes Equation Function and reference 

o
ks  

)(10log20][

10 10

][

jk
o
k

dB

FSdB

o
k

=s

s

 Backscattering coefficient*  

Henderson and Lewis (1998)  

   

R
cross

 
HH

HV

0

0

s

s

 

Cross-polarized ratio 

Henderson and Lewis (1998) 

RFDI 
HVHH

HVHH

00

00

ss

ss

+

-

 

Radar forest degradation index  

Saatchi et al. (2010)  

   

BMI 
2

00
VVHH ss +

 

Biomass index 

Pope et al. (1994) 

VSI 
BMIo

HV

o
HV

+s

s  Volume scattering index 

Pope et al. (1994) 

   
*
Expressed in the intensity format. |Sk| is the amplitude response (k = HH, VV, or HV) 

and Fj is a calibration factor for column j, determined from data collected over the 

trihedral corner reflectors (Gonçalves et al., 2011). 
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Forest biomass values are related to SAR backscatter (
o

ps ) as: 

)( o

e pba
AGB

s+
=     Equation 4-5 

where 
o

ps  represents backscatter value (i.e., sigma naught) at different polarizations (i.e., 

HH and HV) and a and b are the exponential coefficients.  To improve the fitting process, 

we estimated coefficients using linear regression: 

oy pba s+=      Equation 4-6 

where y=ln(AGB) and a and b are the linear coefficients.  

4.3.3 Accuracy assessment of regression models 

We assessed the regression models using leave-one-out cross-validation (LOOCV) 

performed with R (Version 2.14.2) (Kuhn, 2008).  The predicted values were regressed 

against the field-measured values to quantify the accuracy of the model using statistical 

indicators such as root mean square error from cross-validation (RMSEcv), relative error 

of RMSEcv (RMSEcv%), and coefficient of determination (R
2
).  

The LOOCV is an effective solution to evaluate the regression models when there 

are a small number of samples to test the model (Zhao and Popescu, 2009). The general 

procedure of LOOCV is described as follows:  

1) Select observation i from a test set (i.e., n independent observations y1, é, yn) 

and fit the model using the remaining data. Then compute the predicted residual for the 

omitted observation: 

ii
*
i yye

%
-=       Equation 4-7 

2) Repeat step 1 for i=1, é, n. 

3) Compute the RMSE from 
** ee n1 ̆3̆ , which is called cvRMSE . 
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The ratio of cvRMSE to the mean observed value is also calculated:  

y

RMSEcv
RMSEcv =(%)     Equation 4-8 

wherey is the mean biomass. 

 

4.3.4 Mapping forest biomass and changes 

The mapping procedure consists of four steps (Figure 4-2): 1) normalize the SAR 

data; 2) develop the prediction model; 3) evaluate the model performance; and 4) map the 

biomass and changes. 

To normalize the SAR data, a two-step radiometric normalization was conducted 

to spaceborne and airborne SAR data.  Specifically, airborne AIRSAR data in 1989 and 

1994 were normalized to UAVSAR data in 2009, and spaceborne SIR-C/XSAR data in 

1994 were normalized to PALSAR data in 2009.  Then, the developed biomass-

backscatter regression models were applied to multi-year SAR data to generate biomass 

maps for spaceborne and airborne data from 1989, 1994 and 2009 for the study area.  

Finally, maps of the changes in biomass were created for 15- and 20-year periods from 

airborne SAR data, and for a 15-year period from spaceborne SAR data. 

 

4.4 Result 

4.4.1 SAR backscatter sensitivity to biomass 

The backscatter-biomass regression models show strong correlation across 

different spatial scales (Table 4-5).  The SAR backscatter values at all polarizations (HH, 

HV, and VV) were regressed to field-measured biomass at three scales (0.25 ha, 0.5 ha, 
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and 1.0 ha).  At all polarizations, the R
2
 of this relationship increased as the plot size 

increased, where the least variability was observed at 1.0 ha plot-scale.  This biomass-HV 

relationship had the highest coefficient of determinations (R
2
) at all spatial scales for 

UAVSAR (0.47, 0.48, and 0.60) and PALSAR (0.50, 0.57, and 0.68) as plot size 

increased.  The biomass-backscatter relationship derived from airborne UAVSAR data is 

stronger than that from spaceborne PALSAR data.  This is not unexpected, given the 

finer spatial resolution and the higher signal to noise ratio in airborne data.  Since more 

equivalent ólooksô average values over field plots, there was a better agreement at 1.0 ha 

plot-scale despite the variability at 0.25 ha plot-scale. 

 

4.4.2 Evaluation of prediction models 

The predictions models from PALSAR 2009 data were evaluated across three 

plot-levels (Table 4-5, Table 4-6, and Table 4-7).  The best model at all three plot-levels 

is the HV model, and overall model accuracy improved with larger plot size.  The best 

single-term model is the HV model at 1.0 ha plot-level with the highest explanation of 

total variance (68%) and the lowest RMSECV of 45.5 MgĀha
-1

 (31.7%).   

The predictions models from UAVSAR data in 2009 were evaluated across three 

plot-levels: 1) 0.25 ha, 2) 0.5 ha, and 3) 1.0 ha, respectively (Figure 4-3, Figure 4-4, 

Figure 4-5, and Figure 4-6).  This is similar to the trends observed from the PALSAR 

data.  As expected, the best model at all three plot-levels is the HV model with higher 

explanation of total variance (R
2
), and lower RMSECV.  The overall model performance 

improved as the plot-size increased.  The HV model at 1.0 ha (equivalent to 100 m pixel 

size) explained 60% of the total variance and had a RMSECV of 49.0 MgĀha
-1

 (34.2%).  



 94 

 

Moreover, the best multi-variable model is the HH+HV+VV model at 1.0 ha plot-level 

with the highest explanation of total variance (72%) and the lowest RMSECV of 40.9 

MgĀha
-1

 (28.5%).  

Therefore, the multi-variable models (Table 4-7) derived from PALSAR data (HH 

and HV) and UAVSAR data (HH, HV, and VV) at 1.0 ha plot-level were selected to 

predict biomass.  The selected models were applied to all SAR data (i.e., UAVSAR, 

AIRSAR, PALSAR, and SIR-C/XSAR) and the biomass maps were generated at 100 m 

spatial resolution. 
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Table 4-5. Summary of single term regression models at different plot-level 

Instrument 

/Year 
Variable 

Plot-size 
a b R

2
 

RMSEcv RMSEcv 

(ha) (MgĀha
-1
) (%) 

PALSAR 

2009 

HH 

0.25 8.37±0.88 0.56±0.13 0.24 75.9 53.8% 

0.50 8.65±1.25 0.60±0.18 0.26 72.0 51.3% 

1.0 9.26±2.06 0.69±0.31 0.34 65.6 45.8% 

HV  

0.25 11.64±0.83 0.57±0.07 0.50 63.0 44.6% 

0.50 11.79±1.10 0.59±0.09 0.57 53.8 38.4% 

1.0 12.37±1.54 0.64±0.13 0.68 45.5 31.7% 

UAVSAR 

2009 

HH 

0.25 8.11±0.48 0.63±0.08 0.20 91.2 64.6% 

0.50 8.24±0.66 0.66±0.12 0.19 84.4 60.2% 

1.0 8.63±0.95 0.72±0.17 0.27 78.1 54.5% 

HV 

0.25 11.16±0.50 0.57±0.04 0.47 59.5 42.2% 

0.50 11.27±0.62 0.57±0.05 0.48 55.8 39.7% 

1.0 11.42±0.82 0.59±0.07 0.60 49.0 34.2% 

VV 

0.25 10.26±0.58 0.75±0.08 0.44 67.2 47.6% 

0.50 10.44±0.75 0.78±0.10 0.45 62.0 44.2% 

1.0 10.87±1.03 0.83±0.14 0.64 46.9 32.7% 

*  bolded is the best models; equations in form of AGB=exp(a+bx); 
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Table 4-6. Summary of single index regression models at different plot-level 

Instrument 

/Year 
Variable 

Plot-size 
a b R

2
 

RMSEcv RMSEcv 

(ha) (MgĀha
-1
) (%) 

PALSAR 

2009 

Rcross  

0.25 8.90±0.94 0.78±0.17 0.15 103.6 73.4% 

0.50 9.84±1.33 0.94±0.24 0.27 90.3 64.4% 

1.0 10.81±1.98 1.13±0.36 0.30 93.1 64.9% 

RFDI 

0.25 1.98±0.82 -1.03±0.31 0.09 132.7 94.0% 

0.50 1.03±1.24 -1.41±0.47 0.23 107.1 76.3% 

1.0 -0.08±2.03 -1.82±0.77 0.25 119.5 83.4% 

UAVSAR 

2009 

Rcross 

0.25 11.32±1.18 1.10±0.19 0.30 92.7 65.6% 

0.50 11.84±1.64 1.19±0.27 0.37 97.9 69.8% 

1.0 13.20±2.42 1.42±0.40 0.41 92.3 64.4% 

RFDI 

0.25 0.22±0.95 -1.98±0.42 0.26 116.8 82.7% 

0.50 -0.03±1.33 -2.10±0.59 0.33 121.6 86.7% 

1.0 -1.44±2.13 -2.72±0.94 0.35 126.0 87.9% 

BMI 

0.25 9.26±0.51 0.73±0.08 0.28 85.4 60.5% 

0.50 9.43±0.67 0.76±0.10 0.28 77.2 55.0% 

1.0 9.80±0.92 0.81±0.14 0.40 66.4 46.3% 

VSI 

0.25 16.02±1.38 1.79±0.22 0.28 74.1 52.5% 

0.50 16.39±1.86 1.85±0.29 0.32 66.2 47.2% 

1.0 17.57±2.41 2.04±0.38 0.42 62.3 43.5% 

*  bolded is the best models; equations in form of AGB=exp(a+bx); 

Rcross=HV/HH, RFDI=(HH+HV)/(HH-HV), BMI=(HH+VV)/2, VSI=HV/(HV+BMI).  

 

 

 

 

 

 

 

  



 97 

 

 

 

 

Table 4-7. Summary of multi-variable regression models at different plot-level 

Instrument 

/Year 
Variable 

Plot-

size a b c d R
2
 

RMSEcv RMSEcv 

(ha) (MgĀha
-1
) (%) 

PALSAR 2009 HH, HV 

0.25 11.84±0.82 -0.20±0.15 0.70±0.12 
 

0.46 68.2 48.3% 

0.5 12.14±1.07 -0.32±0.22 0.79±0.17 
 

0.56 59.2 42.2% 

1.0 12.77±1.41 -0.42±0.33 0.90±0.24 
 

0.62 55.8 38.9% 

UAVSAR 2009 

HH, HV 

0.25 11.92±0.61 -0.26±0.14 0.75±0.11 
 

0.56 53.2 37.7% 

0.5 12.10±0.77 -0.29±0.18 0.79±0.14 
 

0.61 47.5 33.8% 

1.0 12.34±1.08 -0.34±0.29 0.83±0.22 
 

0.70 41.9 29.2% 

HH, 

HV,VV  

0.25 11.90±0.62 -0.26±0.14 0.72±0.16 0.04±0.16 0.56 52.9 37.5% 

0.5 12.05±0.77 -0.28±0.18 0.70±0.20 0.11±0.20 0.62 46.7 33.3% 

1.0 12.28±1.13 -0.32±0.31 0.76±0.35 0.09±0.32 0.72 40.9 28.5% 

*bolded is the best models; equations in form of AGB=exp(a+bx1+cx2+dx3); 
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Figure 4-3. Model evaluation across different scales for UAVSAR 2009 data: HH and 

HV polarizations. UAVSAR 0.25 ha, 0.5 ha, and 1.0 ha plot-levels: (a) 0.25 ha HH, 

(b) 0.25 ha HV (c) 0.25 ha Rcross, (d) 0.25 ha RFDI, (e) 0.5 ha HH, (f) 0.5 ha HV (g) 

0.5 ha Rcross, (h) 0.25 ha RFDI, (i) 1.0 ha HH, (j) 1.0 ha HV (k) 1.0 ha Rcross, and 

(l) 1.0 ha RFDI.  X axis is the field-measured AGB density (Mgӎha
-1

). Y axis is 

predicted AGB density (Mgӎha
-1

). Red solid line is 1:1 line.  
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Figure 4-4. Model evaluation across different scale for UAVSAR 2009 data: VV 

polarization. UAVSAR 0.25 ha, 0.5 ha, and 1.0 ha plot-levels: (a) 0.25 ha VV, (b) 

0.25 ha BMI (c) 0.25 ha VSI, (d) 0.5 ha VV, (e) 0.5 ha BMI, (f) 0.5 ha VSI, (g) 1.0 ha 

VV, (h) 1.0 ha BMI, and (i) 1.0 ha VSI.  X axis is the field-measured AGB density 

(Mgӎha-1). Y axis is predicted AGB density (Mgӎha-1). Red solid line is 1:1 line. 












































































