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Chapterll nt r oducti on

1.1 Background

1.1.1 Relevance of forest biomassterrestrial ecosystenasd carbon budget

Terrestrial carbon storage is aritical component irtheglobal carbon budget,
and is essential to understanding climate change and ecosystem responses to human
activities,however current estimatesontainshigh levels ofuncertaintiegLe Quere
et al., 2014. The global carbon dioxide budge described by emissions and sinks
divided proportionallyamongatmosphereocean and land:

Ere + ELuLuc = Gatm + Socean + Stanp Equation 1-1
WhereErr, E uLcc are the carbon sources from fossil fuel & cement, and land use
and landcover(LULUC) changeGarw is the carbon growth in the atmosphere;

S anD, Socean are the carbon sinks froland andocean(Figurel1-1). Note thatthe
S ano andE,yuc havethe largestincertainies of 2.94.8 GtC/yr and0.940. 5 GtClyr,
and both are associated with changes in forest carbon stocks

Forest carbon stocksegenerally stored itheform of homass which
includesthe aboveand below groundbiomass(AGB and BGB) such as trees,
shrubs, vines, roots, and the dead mass of fine and coarse litter associated with the
soil. Forest aboveground biomdkereafter mmass)an be converted into carbon
stocks by multipling a simple carbon fraction (about 0.5 in many casks¥ an
importantcomponent itemperate and tropicédrest ecosystemand is a relativig

smallerpartin boreal foresiecosystemgéMalhi et al., 1999.



Anthropogenic disturban@nd managemenincluding deforestation and
forest degradation from managemergnipulations, hee led to changes in biomass
and thughecarbon budgetHall et al., 2011 Houghton et al., 2002 Yet the loss of
carbon from forest disturbance and the gain from-gsstirbance recovery have not
been well assessedccurate surface measures of spatial and temporal variations in
biomasschangewill supportclimate treaty frameworks such Reduced Emissions
from Deforestation and Forest Degradatitins REDD+).

Forest nanagement might increase or decrease carbon siéragee 1-2),
andapplying the former will help to reduce climate disruption as well as increase
foress tesilience in the face of climate char({@vans and Perschel, 2009There is
a debate regarding the net effect of forest managemehecarbon budgetNunery
and Keeton, 20)0becauset is difficult to accurately quantify how much of the
forest carbon changes are due to stscale management and landscapale
strategiegCanadell and Raupach, 2008Forest management has beecorporated
into estimates in net flux of carbon in forestly recently(Houghton et al., 2012

Therefore, acurately quantifng biomass angdhanges after forest
disturbances desirable in ordeto reduce the uncertaintiestime carbonbudget and

thus to inform the policy and diemn-making community.
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1.1.2 Currentapproaches testimateforestcarbon stocks and changes

Three approachesimmarized byHoughton et al(2012) have been applied to
estimaing forestbiomass densityM g A and changes in density due to LULUC: 1)

field inventory, 2yemote sensingased estimates, and 3) modeled estimates.
A. Field inventory

Table1-1. Comparisorof the forest biomass from field inventory

Category  Approach Description Advantages Disadvantages
Direct Destructive  Harvest of all or Accurate and direct  Time-consuming
sampling representative trees measure; laborintensive;
Fresh/dry masses Essential for Relationship
weighted development of applied for limited
allometric equations  regions
Indirect Allometric Species based Easyto conduct Relationship varied
equations relationship between measurements in the due to
biomass and dbh, tree field environmental and
height, and wood densit climate conditions
Component Biomass converted from With many sampled  Relationship varied
ratio method volume plots from national due to
forest inventory environmental and
species
composition

Field inventory, either directly or indirectly conducted, is the most accurate
approach for measuring forest biomg@Bable1-1). Specifically drect measurement
requires harvesiof all materials, average standsjndividual representative trees
(Monk et al., 1970 Many regional studies usually destructivempleindividual
trees to build uanallometric relationship between biomass and field measured tree
attributes such as height and dbh (diameter at breast height) tmemugbsion
analysis On the other handndirectfield inventories consigtf allometricmethod
(i.e. regional or national allometric equatiofd®nkins et al., 200&and volume based

methods (i.e., component rationethod(Heath et al., 2008 Thesefield inventories



form the basis for many national forest inventoaadcan becombined with
LULCC to track changes in carbaisinganempiricalbookkeeping methoahich
assigns averagedes for each type of foregtiowever, these grounohly
inventories are labor and time intensigadare unable to refle¢he spatial variation

of biomasswithin forest(Houghton et al., 2012

B. Remote sensing

Fieldinventoiesare accurate if properly condted howeverthey ardabor
intensiveandtime-consuming Moreover,no methods currently capable of
measuring forest biomass directlyarspatial continuous contetttereforea
combination ofemotely sensedataand a weHestablished fieléghventory is
considered suitable for informing programs such as REQRRmgner et al., 2014
Neesset et al., 20)3

A variety of remote sensing techniques/e been investigated festimation
andmonitoringof forest carbon stock€oetz and Dubayah, 2010Lu, 2006 Lu et
al., 2014, andcan ke generallyclassifiedinto three majogroups based on the sensor
systemaused 1) passive multispectral and hyperspectral sensor, 2) LIDAR (Light
Detection and Rangingand3) radar (Radio Detection and Rangiigablel1-2).
Passive multispectral and hyperspectral imageany provide mapping of spatially
continuous content, but with limited sensitivity to forest biomass unless associated
with canopy verticastructurefrom LIDAR and radar.The capability of LIDARIn
estimating foresbiomassgs promising yet LIDAR hasinherentlimited spatial
coverageandtemporal resolutionCurrent LIDAR systems either provide data with

limited spatial coverage and temporal resolutions (airborne systems such as small



footprintdiscretereturn and large footprint waveform systems), or sampling data
with sparse temporal observations (spaceborne large footprint waveform systems)
Radar such aSynthetic Aperture Radé8AR) compensate®r this limitation with
global coverage anahore frequentepeated observatiorshowng theability to

monitor deforestation and forest degradagi@dimeidaFilho et al., 2009 Rosenqvist

et al., 2003. But many factors other than tisbange irforest structure anbiomass,
such as radar incideaangle andooking direction,as well asurface and
environmental conditions, also affect the radar backscattering

Table1-2. Comparisorof the forest biomass from remote sendiaged estimation

Category  Sensor Variables Advantages Disadvantages
Passive Multi - Spectral bands  Wall-to-wall Saturation observed
spectral
Vegetation index
Hyper Multiple bands  Accurate for species Saturation observed
spectral classification
Active SAR Backscatter Wall-to-wall Limited by
coefficients environmental condition:
(i.e., Soil moisture);
Saturatiorobserved
INSAR Coherence Repeat observations Saturatiorobserved
Height of phase
center
Canopy height
LiDAR Sampling of No saturation Limited observations

target attributes

Due to issues with each sensor system, few studies have looked into the
potential formonitoiing changes iiomassafterforest disturbance and pest
disturbance recovergnly a limitedstudieshaveassesadthe net effecon changes in
carbon budgetisingremote sensintechniquegDubayah et al., 201(Hudak et al.
2012. Two sets of methaslusedfor mappingchanges iforestbiomassusing

remote sensingre 1) thedirect methodwvhich relatesfield-derived changes in



estimated biomags temporal changan remote sensingignaturegslirectly, and2)
theindirect methodor time-for-space methgdvhich first develops one or two set
of models to retrieve forest biomass from remote sensing observations, and then
calculates change by subtracting one from anothke drect method requires two or
moreco-incidentsets of estimated biomass from field measurenm(@ntbayah et al.,
2010, which is rare antimits its applications On theother hand, thendirect

method idessefficient than the direct method in tesmaf accuracyRowland et al.,
2008, but is moreapplicablewith current fieldmeasuremergtonce the repeated
remote sensingbservations aravailable. Recently studieshavelooked into the
possibilityof monitoring biomasdynamicusing LIDAR and SAR remote sensing
(Mitchard et al., 2011pRowland et al., 2008 The potential method ariety issues
of using LIDAR and SAR data fassessindorestbiomassand monitoring changes
in biomassafterforest disturbance weravestigated by empiricapproaches in this
study. In addition,variousfactorsaffect the relationship of remote sensing
observationso forest biomass, le@uy to alarge uncertainty iestimaes Important
source®f uncertaintyare found ilfmappingbiomassandchange in biomasdrom
remote sensing: (ncertaintiesn the estimate of remotely sensed measurements
(2) uncertaintiesesuling from the biomass prediction models, (Bicertaintiesn the
in-situ estimates of forest attributeand (4)uncertaintieslue totime-shift between

in situ estimate and remotely sensed measureniéfeisbin et al., 2013
Uncertaintiesrom these sources in using LIDAR and SAR dailabe addressed in

this study.

C. Modeled estimates



A third approactemploys physicatbased inversion via Radiative Transfer
Model (RTM)or processhased eosystem modelthat calculate internally the carbon
density of vegetation and soils in different types of ecosysi#ialized by climate
drivers(Peddle et al., 20%,1Ranson et al., 2001 Results from remote sensing such
as vegetation types and cayoverticalstructureareacritical input forthese forest
ecosystem models, and forest biomasaessential product for validation of output

from thesamodels.

1.2 Researchquestionsand objectives

This dissertation will address the following twajorquestions: 1) whas
the level ofsensitivily of remotely sensed signature® ( from waveform LIiDAR and
SAR) tochanges iforestbiomass caused ljsturbance and poslisturbance
recovery? And 2) what are the key factors to be considered in monitoring and
assessing the net change in forest biomass, including loss from forest disturbance and
gain from postisturbance recovery, via LIDAR and radanmote sensing?

The overaligoal of this studyis to monitor forest biomasand assess its
changeafterdisturbancaisingLiDAR and radar remote sensin§pecifically,

1) Mapping forest biomass from waveform LIDAR data, and assessing the
loss from distupance and gain from pedisturbance recovery.

2) Analyzing the sensitivity of SAR signatures to forest disturbance and major
influence factors, including incidence angle, soil moisture, and disturbance type.

3) Mapping aboveground biomass data, and assessing the changes after

disturbance using muisource SAR datikom spaceborne and airborne platforms.



1.3 Howland Forest and Penobscot Experimental Forest

Forest management strategies are changing over timeaaadlistinct
impacts on the forest structurasd thuson biomass. Statistiagportecby theU.S.
Forest Servic¢Figure 1-3) show that total harvest wood volume at the State level
(solid line with filled dot) is relatively stable, but partiarvestdark grey filled bars)
has increased dramaticaliypd beomes a majormanagement strate@yer thelast
two decads inMaine(Scott et al., 2004 The use of learcut will result in a
regrowth similar to natural foresOn the other hanghelterwood harvesivhich
allows a natural regeneration by increasing light penetration from an opened forest

canopy.,can maintain the same maximum tree height with deedet@dal biomass at

standlevel.
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Howland Forest HF) 4 5 A086 ~ 42%A+4&8M4568A4 , and
PenobscbExperimental ForePEF)( 4 5A496 ~ 45A52.56) N, 68A30
are located isouthcentral Maine These forests belong to a transition zone between
eastern broadleaf and northern foreheyare essential ecolocal research stations
in supportof multi-disciplinary studies such as biodiversity, conservation, forest
atmospheraoil carbon exchangand forest management for timber production
Mostimportantly they provide groundtuth datadatingback tothe mid-20" century
for forest biomass studie$iF has an AmeFRlux Tower withinanintermediate aged
forest, and the surrounding areas are priydéand owned by a timber production
company(International Paper@®P) with different forest management manipulations
over the last three decadssch as cleacutsandplantationduringthe 1980s strip-
cutsduringthe 1990s and selectuts(shelterwood harvest and reestablishmaftgr
200Q Harvess since2000mostlyemploy the shelterwood method which typically
consists of 3 separate entrgggmced 10 years apantith each entry remawng about
1/3 of the basal arg&cott et al., 2004

HF and PEFsites consist odubboreal forest with mixed deciduous and
coniferoudree speciegHollinger et al., 1999 Safford et al., 1969 The dominant
speciesncludeTsuga canadensigasterrmemlock) Picea rubengred spruce)Acer
rubrum (red maple)Abies balsameébalsam fir),Thujaoccidentalisinorthern white
cedar) Betula papyrifera(paper birch, Fagusgrandifolia (Beech), Betula
alleghaniensigyellow birch),andLarix laricina (Tamarack) (se&able 51 for

details) The regiorfeaturegelativdy level and gently rollingopography.
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According to USGS 1/3rc Second National Elevation DatagRED) published in

2009, the elevation ranges fratim to 178 m atHF, and from29 m to 83 m at PEF.
These twasites wereselectedor this studymostlydue tothe abundant

ground measuremenas well aghe large number oEmotdy sensed datasthat

have been collecte®etails about the field campaign and remotely sensed datasets

are given in théollowing chapters

Penobscot
County

PEF site

2003 77 LVIS2003
+ 2009 ] LVIS2009
2010 SRTM (m)
2011 g 318 0 5 10 km
- L 1 |

Figurel-4. Location of study area and field sites: the stdenorth is Howland
Forest (HF), and thsiteto the southis Penobscot Experimental Forest (PEF).
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1.4 Dissertationoutline

This dissertatiorcontains 5 chaptersrhis, the first chapter, summarizibe
relevanceof biomassestimationto the broader discipline of Climate Charayed
current approaches thateapplied formapping and monitorinfprest biomass.

Chapter 2Zdlemonstratethe ability of repeatLiDAR measurement® mapthe
changes iriorest biomassand therebyo evaluate theokss from forest disturbance
and the gain from recoveryVithin the study sitesegression models developed at
thefootprintscale(~0.06 ha)were evaluated with independent pletel data(up to 1
ha), and footprirlevel models were applied within tkeudy sites.The effects of
forestdisturbancen prediction models were investigatethe influenceof footprint
density on biomass predictioissdiscussegdand averagannualbiomass reduction
ratefrom forest disturbance are given.

Chapter 3analyzesthe sensitivity of SAR signatures fiarest biomass and
changes due to disturbancgensitivity analysis was conducted to investighte
influence ofradiometricdistortion caused bycidenceangle and the backscatter
variation caused bsoil moisture Feasibility of crossmagenormalizationbetween
multi-temporal and muksensor SAR datis demonstratecandthe possibility of
applying normalized backscatter to detgicimass changes dueftwrest disturbance
andpostdisturbance recovelg discussed

Chapter 4ocusesonthe gplicationof multi-temporal and muksensor SAR
data to mappiomassandbiomasschanges afteorestdisturbance.Crossimage
normalization proposed @hapter 3s applied to airborne and spaceborne multi

temporal SAR data, and singlerm and multivariable regression models are

12



developed. Results from leav@eout crossvalidationare summarizedomparison
to lidar-derivedbiomass map is giveand he changes biomass fronfor a 15 and
20- year periodrom spaceborne and airborne SAR datareported

Chapter lsummarize themain findings and contributions frothe previous
chapters Futureresearch directions are also discussed based on the fesulthis

dissertation studin relation tosubsequergpaceborne LIDAR and SAR missions.
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Chapter2ZMappi ng Bi oahabaer @besatnurebance
us i wagv e f oDrAMR L i

2.1 Introduction

Aboveground lbmass(AGB, here after biomass}ockfrom forest represest
a significant componemf the globalkcarbon cycldGoetz and Dubayah, 201L1A
variety of passive and active remote sensing techniques have been investigated for
measuring and monitoring forest carbon stg¢ksetz and Dubayah, 20,1Lu, 200§.
Light detection and rangind.iDAR) is promising because of its ability directly
measure canopy vertical profile, providing canopy height information which is highly
correlated with the forest biomassiDAR systems are categorized as smatl
largefootprint based on the size of the illuminated ground area. Sowafirint
LiDAR systems (530 cm diameter) provide dense samples for detailed representation
of the canopy structure, but their use is restricted teditude airborne platforms.
Small footprint full waveform systems have appeared in recent years with ability to
record the complete wavefortilallet and Bretar, 2000 Large-footprint laser
systems (170 m diameter) record a continuous, vertical profile of returned signal.
Although largefootprint LIDAR data is not able to capture the very fine spatial
details of forest canopies, structural attributes can be derivedverdioal profiles of
return energy foapplicationin ecology studiegMather, 2004. LIDAR derived

metrics from smaifootprint discrete returbiDAR (Asner et al., 201,0Gonzalez et

! The presented material has been previously publishétlizng, W., Sun, G., Dubayah, R., Cook,

B.D., Montesano, P.M., Ni, W., &hang, Z. (2013). Mapping biomass change after forest disturbance:
applying LiDAR footprintderived models at key map scalBemote Sensing of Environmeh4,

319332 http://dx.doi.org/10.106/j.rse.2013.03.017
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al., 2010 Naesset and Gobakken, 20MdIsson, 1996Pang et al., 2008Zhao et al.,
2011 and continuous returned fullaveformLIiDAR (Drake et al., 2002Drake et

al., 2003 Dubayah et al., 201Q_efsky, 2010Lefsky et al., 2002l_efsky et al., 1999
Lefsky et al., 2005d_efsky et al., 20QMeans et al., 199Ni-Meister et al., 2010
havebeen used for @mation of forest canopy height and biomassrious multt
sensor fusiorfAsner et al., 20L2Asner et al., 201,Kellndorfer et al., 2010Lefsky

et al., 2005bNelson et al., 20Q%aatchi et al., 2011l5un et al., 201;1Swatantran
et al.,2011) usedLiDAR samples and optical or radar imagery data for regional to
continentaimappingof forest attributes.

Laser Vegetation Imaging SengaIS) (Blair and Hofton, 199Bwith a
footprint size ofL0-25m, records theentireprofile (waveform)of thereturn signal in
~30 cm vertical bingDubayah and Drake, 20Q0@ubayah et al., 2010 Because the
footprint size idarger tharthediameterof atree crowrand the laserdam can pass
gaps between treeawaveformcan capturg¢hetree topand ground surfade a
forest standStudies haveconfirmed the ability of LVISderived metrics to estimate
biomass, even in dense tropical foredbsake et al.(2002 reported that height of
mean energy (HOME or RH»®s the best single term predictor for estimating
tropical forest biomass at the LVIS footprievel (~0.05 ha, 25 m diameter) and the
plot-level (~0.5 ha).The issue of samplingjzes hasalsobeen discussed by several
studieswith small to largefootprint LIDAR system.Theycompared regression
modelsatthe footprintlevel and the pletevel for a tropical wet forest at La Selva,
CostaRica andfound that because of geolocation uncertainties, large tree location,

and species composition, the prediction model was better depitwith theR2 of
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0.73 and RMSE of 60.01 g A*h Resuls from Hyde et al(2005 indicatel a strong
agreemenbetweerfield data and LVIS measurements fmight %=0.75;

RMSD=8.2m)and biomassR?=0.83; RMSD=73.%M g A & Sierra Nevada sién
California,but not forcanopy cover.Anderson et al(2006 foundgood relationship

between LVIS metrics anaeight R2=0.80) but the relationship iweakerbetween

metrics andiomass R?=0.61, RMSE=58/g A at Bartlett Experimental Forest

(BEF)in New Hampshire, USAAccording toAnderson et al(2008) the possible

factorsfor aweaker correlatiomclude geolocation errorspecies compositigrand

intensity of disturbanceDubayahet al. (2010)applied the LVIS data for mapping

biomass changeThey found various issuéisatneed to be considered in detecting

and mapping the biomass change with LVIS data, and suggested usingistagee

b a s e dE nptRdd to develop the uniformdmass change equation at pletel to

avoid errors caused by ground detection and two sets of regression rAsdelset

al. (2010)noted the scaling issue that the srfiaditprint LIDAR prediction errors

decrease with the increase of plot sixéascao etal. (2011pr oposed- a Acr own
di stributedod approach to address the plot
disagreement between LiDAR and field measurements.

The effects of disturbance on the relationship between biomass and height
metrics were investigated by field observations and model simuldiicake et al.
(2003)investigated theelationships of simple LIDAR metricg€., RH50) with
estimated biomasandindicated that there are significant differences between
different types of foresi.€., tropical wet foresand tropical moist forestNi-Meister

et al. (2010)ndicatedthat combined height and gap fractmwuld improvethe
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estimaton ofbiomassarticularly br coniferous.Ranson and Sun (2018imulated
the waveform®&kH metrics from different stands (disturbed and undisturbed forest) by
a 3D-LIDAR model, and showed that the relationships between forest biomass and
LiDAR metrics were distinguisible.Asner et al. (2011fpund that the fitted curves
between forest carbon stocks and LIDAR signals are different from plantations and
natural regrowth after disturbance because of stocking differdngestory data and
modeling results also demonségdtthat young foreseccumulatediomass much
faster than the matured forest for the first 10 to 20 years after distur(@zmezdon,
2003) Vegetation change tracker (VCT) algorithm was designed for detecting forest
disturbancéHuang et al., 2010Yia spectraltemporal information from Landsat time
series stack (LTSS)Theproducts of yearly disturbance maps from LT&ST were
usedin this study.

The biomasgrediction models can be developed at the scale of footprints and
larger plots. To facilitateregional and globadiomass mapping using LIiDAR
waveform data, models at footprietvel are desirable because sampling large plots is
much more time consuming than footp#devel sampling.The accuracy of biomass
estimation at coarser scales will degpem the accuracy of the footprigtvel models
and the number of samples (footprints) at this scale. In this study we will investigate 1)
if the model at footprintevel can be developed with desirable accuracy in our study
sites, 2) if the forest managent practices in term of disturbances will affect the
modek, and 3) what will be the proper scale with concern of uncertainties for

mapping biomass from LVIS data in our study sitesrest biomass map at 1.0 ha
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pixel size was produced from LVEEquired in 2003 and 2009.he changes of

biomass from 2003 to 2009 were analyzed in this study.

2.2 Data

2.2.1 Field campaign

Field measurementsr this chaptewere conducted during August 2009 to
2011. Both footprintevel (~0.03 ha, 20 m diameter) and dietel (0.25ha- 1.0 ha)
plots (sed-igure2-1 for typical layout) were measure®ifferential Global Position
System(DGPS) instruments were used dcédte LVIS footprints andstablish
sampling plots

Twenty-four 1.0 ha plotstfectare plot200mx 50 m, Figure2-1a) and ter0.5
ha plots kalf hectare plot100m x50m Figure2-1b) were establisheith 2009 and
2010, respectivelyThe longer edges of these plots weréhimrange direabin of the
NASA/JPL Uninhabited Aeria¥ehicle Synthetic Aperture RadduAVSAR) flight
lines. The layout of these plots is illustrated in, wherehgaot consiss of sixteen
0.25 ha (quarter hectare pl@agmx 25m) subplots Ninety-one circular plots wth
20m diamete(Figure2-1c) centered at each LVIS footprint wareeasured in 2010
and 2011 Forty-seven footprints were measured in August, 2010 and-foaywere
measured during January and Augus2@f1.

Twenty forest inventory samplescrosshe HF sitewerecollectedin October,
2003for biomassand other forest parametetSor eachinventorysample,three to
four plots with radius of 4n, 7 mor 10 m were arranged in the cent8f m north,
southwest,andsoutheast from the centelhediameter abreastheight (DBH,

diameter afl.3 m above grounddr every tree witra DBHO3 cmwere recorded
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along with the species in both yeafhe relative canopy positiond., dominant, ce
dominant, intermediatsuppressedr dead), heights of two dominant trees were
measured for each plot in 199Zhe height, crown length and width of 8 trees in
each plot were measured2003 Details about allections of field data during the
October 2003 campaign were délsed bySun et al(2011). Severieenforest
inventory samples within thidF studysitewere usedor theevaluation of 2003
biomass map.

From 2009 to 2011, theBH, speciesf ever tree with DBHO10 cm, top
height height of crown base and crown widththethree highest treea each
subplotwere recorded A census of stems below the established size threshold (DBH
<10cm) and height O1. 82nmranseetralenths eemgrbfed wi t hi
therectangulaplot, and from nortko-south in footpririevel circular plots The
number ofstemsfalling into four diameter categorsHi.e., 0-2cm; 25cm, 58 cm
and 810cm) wascounted and used as a representative sample of all small stems in
the plot Biomass values at HF and PEF span froBt®361.4Mg ha for 0.25 ha

plots,0.6 to 316Mg ha for 0.5 ha plotsand from1.0 t0278.9Mg ha for 1.0 ha

plots.
2003 2009 2010
N
A
,.':..':_'. s\
0 25 50m
B ———

Figure2-1. Layout of typical field plot in 2003, 2009, and 20{#) standlot (80
diameter) in 2003; (b)-ha (50m by 200m) plot in 2009; (c) e (50m x 100m)
plot in 2010. Black dots are LVIS footprint center.
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2.2.2 LiDAR data

ThelLaser Vegetation Imaging SengaWV1S) is a large footprint airborne
scanning laser altimeterdgoped by NASAGoddard Space Flight Ceni@@SFC)
(Blair et al., 2M@6; Blair et al., 1999. LVIS dataof study area weracquiredduring
leaf-on season ikugust 0f2003 and 2009For both years, the footprints had a
nominal diameter of 20 mThe 2003 data was reprocessed in 2008, thus it is more
consistent with the 2009 data.

LVIS productsof version 1.02 provide three types of datade¥dS Canopy
Elevation LCE), LVIS Geolocated Elevation.GE), and LVIS GroundVaveforms
(LGW) (Blair et al., 2006. From the waveform, mean elevation of the lowest
detected mode is defined giound elevation (zg)Then, relative heights (RH) to the
ground elevation are calculated at quartile percentage of cumulative waveform energy
(i.e., 25%, 50%, 75%, and 100%]Jhe footprint density varies at different locations

in the study arebecause obverlappindflight linesduring the campaign

2.2.3 Auxiliary data

LTSS VCT disturbance products were used in this study to identify disturbed
forests from undisturbed on@suang et al., 2010 The study area is located in the
center of Landsat p011/r029 of the World Referencée®8y$WRS)with good
guality images Subset product magse used in this study thfferentiatethe year of
disturbanceg¢Figure2-2). The product detects most of clearts events, however, it
has missed sonsrip-cutting around 1990995 and seleatut (shelterwood harvest)
after 2000at HF site. Similar problem has been noticed and documented at other

validationsitesin USA (Thomas et al., 2031 Therefore, a further forest
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management map was created froperationinformation fromthe private owner
(InternationalPape®, IP Company and Google images Hif site. Several patches
of disturbed forest were digitized from Google Earth images antioewch with
digitized version of management operation mapdifferent year.These maps were
used to identify theccurrencef disturbance, and will be explained in details in

sections ofesuls and discussion.

Howland Site Penobscot Site
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Figure2-2. Year of disturbance from LTS@CT product at the HF and PEF study

sites.Pink polygon is the near matured forestHF site and dark blue polygon is the
outline of reserved ared both sites.

2.3 Method

2.3.1 Allometric-basediomasscalculation

The diametebased allometric equations used for large st&@Bd4(O10 cm)
and small stem@BH < 10 cm)came from the comprehensive reportd8DA on
North American foresJenkins et al., 2003 enkins et al., 2004 Biomass of large
stems was calculated by corresponding spespesific allometric equations.
Biomass of the small stems was calculatednibyed hardwoods equations using the

midpoint of the diameter classg(, 1.0 cm, 2.5 cm, 6.5 cm and 9.0 cm) as the DBH
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times the number of stems in each category. Biomass was first calculated for each

stem, and then total biomass was aggesyjiom subpt to plot levels.

2.3.2 LIDAR dataprocessing

Relative heightmetrics(RH25 RH50, RH75 and RH)Q) of LVIS waveform
wereretrieved from LVISLGE datasetsfor all sampling plotsand measured
footprints The LVIS RH metrics of the study sites (HF and PBR)009 were
shown inFigure2-3 as false color images (R: RH50, G: RH100, B: RH3B)ages
were created by interpolating of point data into 15m grid witlelaihay
triangulationmethod (TRIGRID function) provided WpL Version 7.1 (Exelis,
Boulder, CO).

The change ianopy profiles irwaveform reveals the biomass change
between 200and 2009. Waveforms acquired in 2003 and 2009 at Hargtshown
in Figure2-4. The distances Iween the waveform centers in 2003 and 2009 were
less than 2 mThesewaveforms represent the disturbed forest wajméarmature
forest with reutralchanges(b) disturbed forest with negativahange irRH metrics

and (c) forest witlpositivechangem RH metrics, respectively
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Figure2-3. Images of gridded RH (R: RH50, G: RH100, B: RH25) metrics sty
sites in 2009Left - HF; right- PEF. Red lines are major roads. Dark blue rectangle in
HF is the stemmap site. Field measurements are labeled with different colors for
2003 (red), 2009 (cyan), 2010 (yellow) and 2011 (orange).
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Figure2-4. Typical caeincidencewaveforms (center within 2m) from LVIS 2003 and
2009 data(a) RHs relatively unchanged; (b) RHs have significant negative changes;
(c) RHs with positive change. Black solid waveform is from 2009, gold dash
waveform is from 2003. Red solid line is the detected ground in LGE, dashed straight
lines are the RH100, dashed with dot lines are the RH50.
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The density of.VIS waveformsin each field plot variedepending on
number of overlappinflightlines at a giverportion of forest. The nominal spacing
of LVIS footprint is 20 m both along and cross trad#ieally, the nominal footprint
density within a plot would be 981and36 at sizes of 0.2%a (50m x 50 m), 0.5ha
(50 m x100 m)to 1.0 ha 60 m x 200m). However, two factors lead to a varied
footprint density.First, there were overlapping LVIS flight lines for our study site.
Similar issues have been mentioned at other LVIS study sites such as Sierra site in
California(Hyde et al., 2006 Bartlet site in New HampshiréAnderson et al., 2008
and La Selva site in Costa Riaubayah et al., 2070 In addition, the long edgeof
50m x200m field plots were set along the range direction of the UAVSAR data,
which has a 120°angle to the LVISs flight direction as shown iRigure2-4 b-c.
Therefore, he averaged footprint density withinghmeasured plots in 2009 and 2010
was not consistent and varig)]dm 14, 27,and53 footprints per plofrom0.25ha,
0.5hato 1.0 haplot-levels.

While processing the footpritevel field samples, two samples in the near
matured olegrowth forestregionwere found with wrong ground elevations (zg from

LVIS LGE product) valuesThis discrepancy has been mentioned in LVIS known

data set issuesitp://Ilvis.gsfc.nasa.gov/DataDisclaimer.Hymwhich is caused by
insufficient energy returned from the ground and errors associatetheigtutomated
peakfinding algorithm. These two points were corrected in this study by finding a

mean ground elevation of their neighboring footprints.
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2.3.3 Forestdisturbancadentification

All sampled plots were classified asdisturbed or disturbed based on LTSS
VCT yearly disturbance product (1984 to 2010), higbolution images and field
notes. Forest disturbance maps wegenerated to show the disturbancasmo 2003,
during 2003 to 2009 and after 2009 using the abovementioned data and forest
management information from the ownédost of the disturbed plots in HF siigere
those disturbed by management activi{iésn et al., 201)] including cleafcut stands
in the 1980s, striguts in the 1990s and selaxits (sheltewood harvest) after 2000.
A few tree plantations in our study site were also labeled as disturbed forest, as they
weremainly planted after cleazut. While the disturbance data we used relied
heavily on the LTSS/CT, we enhanced the classification using visual interpretation
of high resolution imagery and field notes to refine the boundaries of forest
disturbance patclse In addition,National Land Cover DatdNLCD) products in
2001 and 2006 were used to discriminate forest andarest for the entire study
area. Woody forestlands and wetland®re included as forests in our analysis.

The sampledootprints consisbf 47 undisturbed (51.6%) and 44 disturbed
(48.4%) samplesThe mean biomass value of undisturbed fsglthpleg157.1
Mg A eas higher than that of disturbed ones (81 @ A™. &t 0.25 ha plotevel,
there were 41 undisturbeahd 64 disturbed platé\t 0.5 ha plotlevel, there were 18
undisturbed and 34 disturbed plost 1.0 ha plotlevel, there were 10 undisturbed

and 12 disturbeglots.
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2.3.4 Mappingforestbiomass andthiomasshanges

The mapping procedumnsists of four steps: 1) develop the biomass
estimation models from 2009 LVIS waveform data at the footewdl and choose
the best one; 2) evaluate the model performance with théepkeltobservation data
in 2009 and 2003, and determine the pixat ®f the biomass map to be generated; 3)
apply the selected model to generate biomass mdugh 2009 and 2003 with LVIS
waveform data; and 4) detect the change in biomass from 2003 to PB@%irst two

steps are shown in a conceptual workflowrigure 2-5.

Development Evaluatlon
Field Biomass & RH : : Predicted Biomass Field Biomass
(Footprint-Level) : (Footprmt Level) (Plot- Level)
. e Model Evaluatlon
Regression Models E E Apply Models (Various plot sizes)

A 3§ l
Coefficients / : : T .

(Footprint-Level) / Optimized pixel size

Flgure2 -5. Workflow of model development and evaluation for biomass mapplng

This study employed severaldely used statistical indicators evaluate the
accuracy of different regression modelsdicators included coefficient of
determination®), root mean square errdRi1SH, andRMSE (%)which is theratio

of RMSE tomean observed value

RMSE

RMSH%) = Equation 2-1

whereyis the mean biomass.
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A. Development of Regression Models

Linear regression models were developetating fieldmeasured biomass and
LVIS metrics at footprirdevel and evaluated different plotlevel (.e., 0.25 ha, 0.5
ha and 1.0 ha rectangular pldfo typesof models were developeide., combined
model wthout considerationf disturbanceand disturbancepecific moded. RHs
metrics are highly correlated as showTable2-1, so we only develoghe single
term regression models.

Table2-1. Correlation between RH metrics of LVIS footprint samples
RH25 RH50 RH75 RH100
RH25  1.00
RH50 0.90 1.00
RH75 0.79 0.96 1.00
RH100 0.72 0.87 0.95 1.00

A dummy variable was introduced into the linear regression model to test the
effect of disturbances on intercepts and sldfegberg, 2010 This dummy variable
is used to indiate the occurrence of disturbance, where the truth is represented by a
numerical value of 1. Then the equation becomes:

Biomass =h1+ K+ K+ KXote Equation 2-2

whereb; ~ hare estimated parameteXg,is the RH metrics in meterX; is the

dummy variablewvith values O (undisturbed ) or 1(disturbed), &nid the error item.

The hypothesis iBlo: Bungisturba- Buisturbed= 0 Or b4 = 0. If by = 0 then we will reject the

Ho which means that the undisturbed and disturbed models are the same, otherwise

they are different.
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B. Evaluation of prediction models by field biomass data

Biomass of LVIS footprints within field plots was predicfeoim the
footprint-level model and agyegated to the pldevels. Then itvascompared with
corresponding field measuremeriior 2009 data, the predicted biomass was
evaluated with field measurements aggregated at three scaleslef/plet 0.25ha,
0.5ha and 1.0 haFor 2003 data, thigeld biomassvas measured witRIA-style
field measurementst ~0.5 halot-level. Thepredicted biomass was an average of
the biomas$rom the footprintswithin acircle of 80 m diameterThe best mapping
pixel size wasletermined by thplot-level model evaluation Generally the
aggregation footprintevel samples to larger plots reduced the overall variance and
impact of geolocation errofsiall et al., 201). Two recently studiebave shown
similar patten that LIDAR prediction errora/ierereduced at larger plot siz@srazer
et al., 2011 Mascaro et al., 2011 The optimized pixel size for biomass mapping
was selected based on statistical measurements including averaged prediction value,

R2, RMSE, and bias.

2.3.5 Biomass mapping from LVIS data

The mapping procedure is illustratedrigure2-6. First, two masks were
created. A persistent ndarest mask was generated from NLCD product in 2001 and
2006. Nonrforest pixels in both yars were excluded from the mapping in this study.
In addition, a data coverage mask was created for the area common to both LVIS data
in 2003 and 2009. These masks were gridded into the selected optimized pixel size to

match the biomass mapping scale. Néxt regression model was applied to the
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LVIS footprints of entire study area in 2003 and 2009. Finally, the mean value of the
footprintlevel biomass within each grid cell was calculated and assigned to the pixel.
The biomass change map was generatesibjracting 2003 biomass from that in

2009 within the forested area common to both LVIS data collections.

LGE 2003
(Footpri

Non-forest 2006

Biomass 2009 Biomass 2003 , : Non-forest 2001
(Footprint) (Footprint) : : (30m)

(30m)
Point to Raster Point to Raster P »{ [ntersect [
Persistent non-forest
(30m)
------------------------------------------------------------------------------
...................................... Ty
Subtract
/ Change of Biomass /
(100m) Data Mask
(100m)
\
Extract by Mask |
i E | [ntersect [«
\ Pl
Change of Forest Biomass : H
(100m) P Data 2003 Mask Data 2009 Mask
E ' (100m) (100m)

EMappmg for Change of Biomass

Figure2-6. Biomass mapping and change detectlon from LVIS.data

2.4 Result

2.4.1 Model performance at tHeVIS footprint-level

A. Single term regression model

29



Table2-2 shows the biomass predictidrom single term regression models
The biomass models tite footprintlevel by all four RH metrics have higH Ralues
ranging from 0.70 to 0.86For all groups, there were strong and significant
correlations (p < 0.005) betwebiomassand RH metrics.The RH50 and RH75
metrics perform similarly in terms ofRRMSE and RMSE (%)Averaged field
biomass of 91 sampled footprints w23 4 My A Imantioned abovieH
metrics are highly correlated he correlation is as high as 0.96 between RH75 and
RH50. Therefore, the single term regression model uRH§0 was selected for the
combined prediction model at the footpriavel for all data as it explains the greatest
proportion of variance (R= 0.86), and has the lowest residual error (RMSE = 31.0
Mg Ahand a relative error 25.1%).

Table2-2. Summary of single term regression models at footbewe!

'(\Aﬂci?eevlel) Intercept Slope R2 I(?Mg EOB A @JA)SE
Bio ~ RH25 90.8 22.0 0.70 45.1 36.5
Bio ~ RH50 30.3 16.1 0.86 31.0 25.1
Bio ~ RH75 -3.3 135 0.84 33.0 26.6
Bio ~ RH100 -51.9 111 0.74 42.1 34.2

*For 2009 dataBolded is the selected model for mapping
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(a) Combined

Bio = 16.1*RH50 + 30.3
n=91

300 r
R? = 0.86 0
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Biormass (Mg/ha) - 2009 Field Measurements

RMSE = 30.1 {25.1%) -

o
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w
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Biomass (Mg/ha) - 2009 Field Measurements

w
(=]
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(b) Disturbance-specific

4+ undisturbed

Bio = 16.9*RH50 + 33.2

I n=47

RMSE = 32.3 (20.5%) ) 4

R*=0.88

disturbed

Bio = 12.3*RH50 + 36.9

n=44

RMSE = 22.4 (25.7%)

R?=0.80

RHS50 (m) - 2009 LVIS

Figure2-7. Relationship between field biomass and LVIS relative height metric

RH50 at footprirdevel: (a) Combined model; (b) Disturbarsecific models.

Different colors indicate different models: rectangle dots (green) represent the undisturbed group, and

triangle dots (red) represent the disturbed group.

Figure2-7 shows the relationship between field biomass and RH50 and the

contrast between undisturbed and disturbed groups at foelgwrait From Figure

2-7 (b), we could visually observe the two groups with different slopes of their trend

lines. A statistical measuremewnias used to test the disturbance effect on intercepts

and slopes in the next section.

B. Disturbance effect test

Foll owing equat.

from t he

regressi

with value O for disturbed and 1 for undisturbed forest was added for RH50: model

Bio = 33.2 + 16.9*RH503.7*disturb- 4.6*RH50*disturb

Equation 2-3

with Multiple R 0.94, standard error: 28.7 Mg, F-statistic: 224.7 on 3 and 87

degrees of freedom, ang«0.001.



Since the coefficient for the dummy variabbg € -4.6) is not equal to zero,
we reject the plhypothesis.The efect of disturbances on biomass estimation model
from RH50 is significant.

The dummy variable was also added to RH75 model and the regression
equation was:

Bio =-8.6 + 15.4*RH7522.7*disturb- 6.0*RH75*disturb Equation 2-4

with Multiple R?: 0.95, standard error: 24.7 Mg, F-statistic: 309.3 on 3 and 87

degrees of freedom, ang«0.001.

Hence, we also rejected thg kypothesis for the RH75 model.

A student Festwith two tails, unequal sample sizeandunequal variance
was employed to measure the disturbance effect ooréaictecbiomass. Th&-test
showed that disturbance has a significant effect oprigictecbiomass from both
RH50(p<0.001)model and RH750<0.00) model

Thus, footprintlevel single term modelsere developed for undisturbed and
disturbed forest with RH50 and RH75 magleAs shown inTable2-3, both the
RMSE and RMSE (%) were reduced for the disturbaapeeific RH50 and RH75
models. Even though th&® and RMSE of the disturbanspecific models were not
always better than the combined model, the comparisons between the field biomass
and prediadd biomass of all sample footprints showed better results from
disturbancespecific models.The third lines in RH50 and RH75 of the disturbance
specific models are the results of comparing predicted biomass with field biomass of
all sampling footprints Disturbancespecific modelexplainedhigherpredicted

variance(RH50, R=0.89; RH75, R=0.91) thanthe combined model (RH50R0.86;
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RH75,R=0. 84) .
Mg A as well as RMSE (%) (RH50, 22.6% fror.2%; RH75, 19.6% from 26.6%)

were reducedThe large differences in RMSE (%) for different groups (disturbed,

RMSE

( RH50 ;% RR75,282 ffom82@ 3 1. 0

undisturbed and all) are partially caussdhedifferences ofmeanbiomass The

mean bi omass

of

t he

u n'Jis avet 50% largedthan that e s t

of the di st u',éndalso arger thah thad gf &é @mbined plots (123.4
Mg Ah. a
Table2-3. Combined and disturbanspecific models at footpridevel
_ GP RMSE RMSE
Model Variable N # Intercept Slope R2 i - COE (%)
Combined RH50 91 all 30.3 16.1  0.86* 31.0 25.1
RH75 91 all -3.3 135 0.84* 329 26.6
47 1 332 16.9  088* 323 20.5
RH50 44 2 36.9 123 0.80* 224 25.7
Disturbance - 91 all 0.89* 27.9 22.6
specific 47 1 -8.6 154 0.89* 30.0 19.1
RH75 44 2 14.1 9.4 0.90* 15.9 18.2
91 all 0.91* 242 19.6

GP#: 1 is undisturbed plots group, 2 is disturbed plots group; N: number of sampkdugR< 0.005.
Bolded are models with begerformance by evaluation at corresponding scale;

2.4.2 Evaluation ofpredictionmodel
A. Evaluation of combined prediction model in 2009 and 2003

The footprintlevel RH50 model from the combined data
(Bio=30.3+16.1*RH50 was applied to 2009 LVIS data and evaluated at three plot
levels: 1) 0.25 ha plot (50m x50m), 2) 0.5 ha plot (50m x100m), and 3) 1.0 ha plot
(50m x200m), respectivelyThe evaluation plots were aldovided into disturbed
andundisturbed plots usingTSS'VCT and Google Earth images.

The evaluation ofthe combined footprinevel modek with plot-level field

data was shown ifable2-4. As expected, the best model at three-fdotls in 2009
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is RH50 model with highezxplanation of total variancéwer RMSE and lower bias.
Theoverall modeperformancemprowed with larger plot size fror.25 ha, 0.5 h&o
1.0 ha At 1.0 ha plotlevel, the combined RH50 model explained 91% of the total
variance with a positive bias @0Mg AHlad%)and RMSE of!' 22. 4
(15.6%).

Figure2-8 shows the scatter plot of predictgwersusfield measurements
from the best combined footpritevel prediction modelln 2009, the combined
RH50 model has better performance than RH75 model from evalsiatiafi three
plot-levels. While in 2003, the combed RH75 model wasetter than combined
RH50 model There is almost no bigkess than 1.3%) observed for predictiona
2009 but he evaluation of 2003 biomass predictiosanplingsites showed worse
results. In 2003, the combined RH75 prediction modeérestimates the biomass
with a positive bias of 19.Mgvha® (+7.9%). It has lower explanation of total
variance(54%) and higher RMSE ofé46 Mgvha'. The combined RH5@hodelalso
overestimates the biomass and has similar explanation of total variance (53%) and
higher RMSE. A part of the reason is that the plot size and shape in 2003 (80m
diameter circle, ~0.5 haveredifferent from 2009 (rectangular) which leads to an
inconsisteng. The number of sample in 20@3relativelysmall compareavith that
of 0.5 ha plofevel samples in 2009n addition, he GPS unit used in 2003 fdield-

sampled plotvasrit as god as the one for 2009, which |lsdad geolocation errors.
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Table2-4. Evaluation of the footpriatevel combined RH50 and RH75 models by
plot-level field data in 2009 and 2003

Plot -

Mean

Mean

Model  Year size field predict Re RMSE
ha Mgdat Mgdat Mgdhal % Mgdal %
0.25 105 143.6 1445 0.79 326 227 +0.8 +0.6
RH50 2009 0.5 52 1427 144.4 0.83 285 200 +2.2 +1.5
1.0 22 14338 145.8 091 224 156 +2.0 +1.4
2003 0.5 17  151.0 168.0 053 504 334 +17.0 +112
0.25 105 143.6 147.1 072 373 26.0 +35 +2.4
RH75 2009 05 52 1427 147.7 076 33.8 237 +4.9 +3.5
1.0 22 14338 1446 084 285 198 +0.8 +0.5
2003 0.5 17 151.0 162.9 0.54 46.6 309 +11.9 +7.9

N: number of sample; Meaaof field: mean biomass averaged over samples atlglet; Mean of
predict: mean predicted biomass averaged over samples dévyabtBolded are models with best
performance at corresponding scale and year;

Table2-5. Evaluation of the footprinkevel disturbancepecific RH50 and RH75
models by plofevel field data in 2009 and 2003

Plot -

Mean

Mean

Model Year size field oredict 2 RMSE Bias
ha Mgbal Mgdhal Mgdal % Mgdal %
2009 0.5 52 142.7 139.7 0.80 31.3 219 2.9 2.1
RH50 1.0 22 143.8 145.8 091 231 16.1 +0.9 +0.6
2003 0.5 17 151.0 170.9 051 546 36.2 +19.9 +13.2
0.25 105 143.6 142.0 073 37.8 26.3 -1.7 -1.2
RH75 2009 0.5 52 142.7 140.9 075 354 24.8 -1.9 -1.3
1.0 22 143.8 1454 086 27.9 194 +1.6 +1.1
2003 0.5 17 151.0 171.3 048 574 38.0 +203 +13.4

N: number of sample; Mean of field: mean biomass averaged over samples-lavgiloMean of
predict: mean predicted biomass averaged over samplgietdével, Bolded are models with best
performance at corresponding scale and yeatr;
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B. Evaluation of disturbanespecific prediction models in 2003 and 2009

Similar steps were conducted to evaluate the disturbspeefic models by
different plotlevel data.Evaluationresultswereshown inTable2-5. It can be seen
from comparing the Risted in theTable2-4 andTable2-5 that the disturbanee
specific models preformed slightly better than common modéiedisturbance
specific RH50 model has almost the same valuexpifination of variancand
RMSE aghe combined RH5Model At 1.0 ha plotlevel, the disturbanespecific
RH50 model explained 91% of the total variance, with a positive bias M §.%"h a
(0.6%)and RMSE o f!(1B.8%).The MigsAvasaeduced fro®.0Mg Ah a

to 0.9M g A’tfram 0.25 ha to 1.0 ha pkevess.
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Figure2-9. Evaluations of disturbanesgpecific RH50 footprintevel biomass model,
with solid line for yx. (a) 0.25na field plots; (b) 0.5 ha field plots; (c) 1.0 ha field
plots in 2009; (d) ~ 0.5 ha field plots in 2003. Differealors indicate the different
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triangle dots (red) represent the disturbed group
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Figure2-9 shows the scatter pkof predictions versaifield measurements
from the best disturbanegpecific footprintlevel modelsat various plot sizesThe
RH50 model hathe besperformance at all pldevels andin both2009 and 2003.
Again, therds almost no bias (less tha@.8%) observed for prections in 2009 and
a less thar13.5% bias in 2003.Similar to the combined RH models, the
disturbancespecific models overestimated the biomass for 2003.

Even thoughhe statistical testsf prediction models at footprint level showed
significant effecof disturbance, the evaluation of the predicted biomass
demonstratethat thedisturbance effeds reduced in a larger sampling aréar
further biomassnappingand change detectidghe combined RH50 model was used

and the biomass maps were generatddtaha {00m) spatial resolution.

2.4.3 Biomass mapping from LVIS data
Figure2-10 showsthe biomass maps from LVIS data for year 2003 and 2009
were poduced using the RH50 regression model and were averaged tosp&tiah
resolution The biomass ranges up380 Mgvha', with acolor of orangd0i50 Mgm
ha') to dark greer{>300Mgnha?) indicates an increase of biomass. Grey color
represents the areas of no data andfoogst. The overall similar patterns of
biomass can be seen from both years of 2003 and 2808hown inFigure2-10, the
nothwest regi on with bi o'@aF siteih2089svastmiosilyn 1 0 0
caused byelectcut (.e., shelterwood harvestremoved large trees accounting for
about 1/3 of the basal ajeand stripcut (.e., systematically removed stems in rows).

Theundsturbed forests thecenter of the mafoutlinedby pink polygon in dotted
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line) werewith high value of biomass (>300g A. &or PEF in 200Zind 2009
high biomass regions weobservedn the south and wesggionof the map.Low
biomass regionwith less thars 0  MGitheanortheast werehewoody wetland

along the Penobscot River

2.4.4 Biomass change mapping

Figure2-11 (a) and(b) showsthe changes of biomaggreen to red colgr
from 2003 to 2009 at the two study sites, corresponding to the disturbance maps of
Figure2-11(c), (d),and €). In addition, a confidence interval (Cl) was applied for
the predictions from LVIS data in 2003 and 2@33shown irFigure2-12, where
only predicted values within the 95% CI were kdpg(re2-12h). It can be seen that
most ofthe changes are consistent with the forest disturbzettterns detectday the

LTSS VCT productandthe historical management map
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Figure2-10. Biomass map for HF site (a) and (b), and PEF site (c) and (d) in 2003
and 2009 at 1.0 ha level by the combined RH50 models. A color of orange to dark
green indicates an increase of biomass. At HF site, pink polyg@arsnaturedld-
growth forest; and d& blue polygon is the outline of reserve area

41



(a) HF (change of biomass, 2003-2009) Year of Disturbance (b) PEF (change of biomass, 2003-2009)
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Figure2-11. Changdn biomass for HF site (a) and PEF site (b) from 2003 to 2009 at
1.0 ha level by the combined RH50 models. The (c) and (e) are theofears
disturbances: disturbances prior to 2002 (yellow), between 2003 and 2008 (red), and
after the 2009 (purple). (d) is the forest management map of HF created from
information from private owner (international paper compamgd Google images.
The plantabn is represented with green solid filled polygons. The glsatect, and
strip-cuts prior to 2002 are outlined with dark red solid lines with gray dragshed
pattern, purple long dotted lines, and red double long dashed lines with gray stripes,
regectively. The seleatut during 2003 to 2008 is outlined by red double dashed
lines with irregular dots. At HF site, pink polygon is the near matured forest; and dark
blue polygon is the outline of reserved area. The selgaiuring 2003 to 2008 is
outlined by red double dashed lines with irregular dots.
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At HF site, biomass changes in the undisturbed-nmedure forests (center of
the map, highlighted by pink polygon in dotted line) were mostly pos#ive 15
Mg A a nearneutrat6 t o 5). TWegdvéragannual biomass accumulation
from undisturbed forest aneégrowth is +4.4M g A*h &he area surrounding this
undisturbed forest shows strong negative chaimgesd, represent<s 0 MY.Ah a
Most areas along the roads Hredegradedorests from seleetut betweer2003and
2008(filled irregular dotsyas shown irFigure2-11 (d). Theaverageannualbiomass
reductionratefrom forest disturbance i§.0M g A’h Several patches highlighted
with yellow in Figure2-11 (c) show an increasing biomass during 2003 to 2009, due
to the forest regrowth aftetearcut in the 1980s or striput in the 1990sAt PEF
site, patches dftrong negative biomass chasgeith red color irFigure2-11 (e)
were sparsely distributed over the study regibtast of them were detected by
LTSS VCT disturbance product iRigure2-11 (d). Theaverageannualbiomass
reductionratefrom forest disturbance i6.2M g A’h @he woody wetlandsith low
biomass along the Penobs&uaver were regrowth from cleasut priorto 2002. The
average annual biomass accumulation from regrowth isM4.4h a

Regession modeatlevelopedn 2009 were applied to two years LVIS data,
and chang@ biomass were mapped from 2003 to 200@re2-12). Prediction
intervals(i.e., 95% confidence intervalwere calculated for estimated biomass in
2003 and 2009, and cells with overlapped predictions were mask@eguie2-12 d)
as neutra(statisticallyindistinguishabldrom zero) A detailed comparison is given
for HF site. The patterns of biomass charn(@égure2-12 h) areconsistentwith VCT

product(Figure2-12 e) and local forest managemefiqure2-12 d), wheremost of
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the near matured area aeutralind positive changa biomass are mostly from

plantation as well as forest recovery after disturbanegdisturbed between 1984

and 2002)
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Figure2- 12 Changesn biomass from VIS 20032009.The (a) and (b) are biomass
mapsat 1.0 ha level by the combined RH50 modeisg all LVISfrom 2003 to
200%ootprints in Maine, notiorest cells are maksed out (in whit@) is the change

in biomass from 2003 to 2009, and (d) is the change map #s&eohout cellgin
grey)wherein two yearsoverlapped in prediction®%% confidence interval(e) ~

(h) are the zoorm maps over HF sites, where (e) is the year of disturbance:
disturbance between 1984 and 2002 (dark green), disturbance between®@08&n
(red), and northanged forest (grey); (f) is the forest management of HF; (g) is the
HF biomass change map from 2003 to 2009; and (h) is the map excluding cells with
overlapped predictions in 2003 and 2009, respectively.
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2.5 Discussion

Our results lghlight four important issues concerning biomass mapping from
waveform LIDAR: (1) the feasibility of the prediction model at the LiDAR footprint,
(2) the effect of forest disturbances on the biomass prediction model, (3) the effect of
mapscale and footmt density on the biomass estimatiamd (4)he applicationof

thefootprintlevel modelfor biomass change detection

2.5.1 Prediction model at LiDAR footpriAevel

The results in our study sites demonstrate that LIDAR footfeirdl models
could be develped andapplied to map biomass, with® explanation of total
variancea RMSE of 2.4 Mgha* (15.6%) for thecombined RH50 model 4t0 ha
plot-level. Two main factors lead to this conclusiofirst, the accurate location
provided by DGPS and higjuality LVIS data reduced the geolocatiemors. On
the one hand, in our study, all footprletel field measurements and sampling plots
at HF in 2010 and 2011 and at PEF in 2009 were located using DGPS with a
measurement error of 30 m (best case as 0.51.0m). On the other hand,
increased accuracy of the geolocation has been reported for the LVIS product
released after 2003 by improved post data proces§tegrocessed 2003 LVIS data
which using the same waveform analysis method are more @risigth 2009 LVIS
data. Therefore geolocation errors are mostly avoided for the data used in the study.
Secondly, the footprint size of LVIS facilitates the application of models at the

footprint-level. LVIS data has a 20m diameter footprint, which gdlyecarresponds
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to the largest tree crowns, and thus can capture canopy charactépisbagah and

Drake, 2000.

2.5.2 Disturbancesffect

Footprintlevel regression models differed between undisturbed and disturbed
forest, different species compositioRrevious studyAnderson et al., 2006, 2008)
has mentioned the effect of species cosipmn to the biomass estimatioforest
disturbance change the spatial structure as well as the species compositien.
statistical testseveal a significant difference at 95% confidence level between
models forthe disturbed and undisturbed forestéie disturbancspecific models
performed slightlybetter for biomass estimation than the combined mdasd|€2-3).
But theevaluations resultST@ble2-4 andTable2-5) at different plotlevels from 0.25
ha, 0.5ha to 1.0 ha shoalmost thesame biomass estimation accuracies for the
combined and disturbanspecific models.The evaluation of biomass estimation
shows thathie combined RH50 model overpasses the combined RH75 model, and the
disturbancespecific RH50 and RH75 models regardlessaafle. These results
weaken thémportance of introducing disturbanfaetorinto footprint-level model
It is reasonable for thefect of disturbance weakat plot levels because@aging
of LVIS footprints in plotwill reduce thadisturbancesffect. The combined model
was used for biomass mapping in this studlpwever, we still recommend
considering the disturbance effect ire@a with more complicated species composition.
On the other hand, it is important to note the potential error that can be
introduced by the classification of disturbance from LTSI, Based on field notes,

recent Google Earth imagery and LTFSST product we are confident in the
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accurate classification of disturbance for our field samdes.a broader region
more efforts are need to guarantee the accuracy in identification of disturbance.
Careful application of a disturbance dataset is recommendedaoneucting forest

biomass change assessments.

2.5.3 Map scale andootprintdensity

Biomass maps were produced by application of prediction models developed
at the footprirdevel (~0.03 ha; 20 m diameter circle plot) angample the footprint
biomass into map gridsThe field biomass samples at different gitels (0.25 ha,

0.5 ha,and 1.0 ha; rectangular plot) served as independent data for evaluation of the
accuracies of biomass maps.

Figure2-13 shows the RMSE (%) of the biomass prediction models
developed at footprint level, and the evaloas at 0.25 ha, 0.5 ha and 1.0 ha-plot
level. We can see a decreasing trend for RMSE (%) with increasing size of ptots.
1.0 ha plot, the RMSE (%) from disturbarggecific and combined modeasssimilar
andis much lower than at other smaller plotéés. Recent studie@-razer et al.,

2011 Mascaro et al., 20D)lhave indicated that 1.0 ha plots could capture biomass
with low and stable errors close to 10%herefore, we used a 1.0 ha scale for the

biomass mappingnd change detection usitige combinedRH50 models
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Figure2-13. RMSE (%) of the RH50 biomass prediction models developed at
footprint-level and the evaluations at 0.25, 0.5 and 1.0 ha scales. Bars from left to
right represent best models for disturbed (pink), undistufipeen), disturbanee
specific (light blue), and combined (dark blue).

Figure2-14 shows the sensitivity of (RMSE (%)and (b) R to the footprint
density (ptha®) from 0.25 ha, 0.5 ha and 1.0 ha gitel. With the increasing of
footprintdensity, there is a decreasing trend for RMSE (%), and an increasing trend
of R*at 0.25 ha, 0.5 ha and 1.0 ha giotels. At all three plotlevels, a critical
inflection pointwherepoint densityequalsto 16 ptha’ was obsered regardless of
scale. The relationship between RMSE (%) and point density become stable after
reaching this inflection point. This is the same to the trendt.offRerefore, optimal

point density of 16 is suggested for a high quality of biomass a&stimat 1.0 ha

plot-level. This is feasible because the average footprint density within our field
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sampled plots was over 50t with a 20 m nominal spacing both along and across

track.
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Figure2-14. Sensitivity of RMSE% (a) and®Rb) to the density of footprints within
the plot (ptha®) at 0.25 ha, 0.5 ha and 1.0 ha giotels; RMSE (%) and Rvalues
were from the combined RH50 footprievel biomass prediction model.

2.5.4 Application offootprintlevel model forbiomass change mapping

The footprintlevel models were developed using 2009 data in this study and
then applied to both 2009 and 2003 data for mapping forest biomass and its change.
Repeat acquisition of LIDAR data has been used for detediizugges of canopy
heightand biomassDubayah et al(2010 recommended using the retatship
between the biomass change and change in0éi8/ed rangdased forest canopy
height metrics for biomass change studies to avoid using two sets of biomass
estimation modelsHowever, due to limited emcidencefield measurements at
eitherfootpr nt or pl ot | evel, we colUnbtehth6t develo
footprint-level plots were selected to develop a uniform biomass equation and then
this equation was applied to LVIS data in both 2003 and 20608ddition to the
forest spatial stietural variations from disturbances, other factors such as species
composition, seasonal changes of leaf area index, reflectance of ground surface, etc.

will also affect the LIDAR waveforrmetrics andhe biomass prediction moderlhis
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should be considedan applying prediction model developed at a place at certain
time to other places or data acquired at different seadoresLiDAR waveform data
used in this studwere acquired using the same instrument (LVIS) and at the same
season (August) in 2003 @2009. The processing of the LVIS data is also the same
for 2003 and 2009 datalherefore the common relationship between biomass and

LiDAR waveformmetricsshould keep consistent from 2003 to 2009.

2.6 Conclusion

1) Prediction model at the scale of indivial LVIS footprints is reliable when the
geolocation®f the measumkfootprints were determined IDGPS with a best

accuracy of 0.8..0 m.

2) The differences between biomass prediction models for disturbed and undisturbed
forests were statistically sigidant (P<0.001) at the scale of footprint, and the
disturbancespecific models performed slightly bette4R.89, RMSE=27.9 Mg h4

and relative error 0c22.6%) than the combined modef¢R.86, RMSE=31.0 Mg hg
25.1%).

3) The evaluation using field plot data showed thatpredictions of biomass were
improved markedly with the increase of plot sizes from 0.25 ha to 1.0 ha and that the
effect of disturbance was not strong. At 1.0 ha-fdael, both disturbanespecific

and combined models agreed well with field estimatés ®. 9 1, 2'316.1%; Mg Ah a
andR=0. 91, 2'2158%).MgAh a

4) Sensitivity analysis on levels of variation and error to footprint density suggests

that a ertain density of LVIS footprints requred for biomass mappind.he errors
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were minimized when footprint coverage approached about 50% of the area of 1.0 ha
plots (16 footprints).

5) By applying the footprintevel models developgdom 2009 LVIS data to both

2009 and 2008VIS data, thecharge inbiomass from 2003 to 2009 could be

assessed heaverageannualbiomass reductioratefrom forest disturbancat two

sitesis -7.0MgAa' and-6.2 Mgha®, the average annual biomass accumulation from
regrowth is +4.Mgha* and +5.2Mgha’, respectively.

Estimating biomass dynamics over relatively short time scales is a difficult
task, yet is central to obtaining a better understanding of the effects of disturbance
and subsequent regrowth on the terrestrial carbon cytlete is additionally a
strong and growing need to develop effective mapping and monitoring in support of
climate treaty frameworks such as RED{@30etz and Dubayah, 2011Thework
presented hergivessomeexample of LIDAR remote sensing approach to this
problem.

Change studiessing LIiDAR remote sensg are also dependent on having
sufficient LIDAR coverage to develop spatially meaningful mapeally such
coverage would be watb-wall, but practically that may not be achievable nor may it
be entirely necessarurerrors were minimized when fooipt coverage
approached about 50% of the area of 1.0 ha plots (16 footprints) with no
improvement beyond thatlhis is a particularly important point when considering
monitoring from spacéased LIDAR, which is unlikely to have swatiapping

capability n the near term.
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While our experiment showed improvement in biomass prediction when
disturbance was included, the results were not compelivig doubtthatthis
conclusion is generalizable beyond the present stdyile canopy metrics must
implicitly include the effects of disturbance as reflected in height, other factors also
control height, most notably climate and edaphic factdrais more work is needed
to untangle the relationships between these factors, disturbance, and their
manifestation in hght metrics. That said, the fusion of Landsat disturbance products
with time series of LIDAR data is a powerful approach to quantifying landscape level
changes in vegetation structure and will certainly be exploited with increasing
frequency in future stdies.

Ultimately, there is distance to travel before we can confidently monitor
biomass and canopy structure dynamics at poktgvant scales with the requisite
accuracy in a consistent and transparent framework from remote sei§dddR
remote sensmis so new that only now are we able to evaluate data sets with
sufficient time intervals between them, and for which contemporaneous field
estimates are availabl&Ve anticipate that as more investigations undertake such

studies, rapid progress will rdsin this important capability.
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Chapter3Sensi ti viSowrafe MBWAIRt Backscat
Chanigeesr est Above@round Bi omass

3.1 Introduction

The arbonbudget of terrestriadcosystermcontaindarge uncertainties at
both global and regionakcalegGoetz and Dubayah, 2011Aboveground biomass
(AGB, hereafter biomajstockfrom forest represestan important componenf the
global carbon cycle and related carbon po{idgughton et al., 2009
Anthropogenic disturbance including deforestation and forest degradagcio
management has led to significant changes in biomass antthélfuasbon budget
(Hall et al., 201). However the loss of carbodue todeforestation antbrest
degradationand the gain from postisturbance recovery have not beseifficiently
assessedThe use of activeemote sensing technigusuch as Synthetic Aperture
Radar (SAR)s apromisingapproach fomeasuring and monitoring the spatial and
temporal variation of forest carbon stdekall et al., 2011; Kasischke et al., 199T.u,
2006).

Imagingwith SAR hasadvantages over opticahageryin its capacity to
penetrate clowsl rain, smoke andhaze which areknown problenfor optical sensors
The ability topenetrateheforest canop makesit possible taetrievetheforest
structureas a function of backscatter mechanigiKasischke et al., 1997 Generally,
studies have reportatiat SARbackscatters more sensitive to canopy bi@ss

(especially tree trunkgt longer waveangtts. Full polarimetricSAR (PolISAR)

2 The presented materiaas been previously published tuang, W., Sun, G., Ni, W., Zhang, Z.,
Dubayah, R.Z015. Sensitivity of MultiSource SAR Backscatter to Change&orest Aboveground
BiomassRemote Sensing(8): 95879609; doi: 10.3390/rs70809587.
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provide four combinations ofransmittecand received polarizationsoolarized
bandsHH (horizontal transmitted and horizontal receivaddVV (vertical
transmitted andertical received)as well asrosspolarizedbandsHV (horizontal
transmitted and vertical receieandVH (vertical transmitted and horizontal
received) LongerSAR wavelengths such & (30-100 cm) and £(15-30 cm)
bandspenetratdartherinto theforest canopynd capture more vertical structabhan
C- (4.87.7 cm) and X(2.85.2 cm) bandswhile HV backscattefrom duat
polarization €.g.,HH, HV) or full-polarization {.e., HH, VV, HV, and VH) are more
sensitive to woody biomass

A seriesstudies suggestithat a widely applicable relationship exists between
biomassand backscattdrom L-bandSAR for woodyvegetation with lower levslof
bi omass ( ©ih&dpicaN@pllns et al., 2009Englhart et al., 2011
Mitchard et al., 2011aMitchard et al., 2009pPope et al., 1994Saatchi et al.,
20110, temperat@and boreal biome@otkin and Simpson, 199RBurvonen et al.,
1999 Ranson et al., 199%andberg et al 201). Both airborne and spacelner
systems were involved in theseidies These including airborne instruments such as
AlIRborne #R (AIRSAR) andUninhabited Aerial Vehicle SARUAVSAR)
developed by NASAExperimentalSAR (ESAR) operated byhe German
Aerospace Center (DLR&s well as spaceborne instruments suc®paseborne
Imaging RadaC and XB and SAR(SIR-C/XSAR), andPhased Array typk-band
SAR (PALSAR) on boardhe Advanced Land Observing Satell{fgLOS). Ranson
et al. (1999 investigated the use of muftequency, multipolarization and mukHi

season image data from SEGIXSAR tomap forest cover type and estimate
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aboveground biomagser aBoreal EcosysterAtmosphere Study (BOREAS)te in
Saskatchewan, Canad&antos et al(2002) utilized the L-HH channel ofJERS1
datain tropical forestsavannaontact zones, and found that the logarithmic and
sigmoid functions were adequate to explain the SARdzatier as a function of
forest biomassCollins et al.(2009 indicatedthatthe L-HV channel of parimetric
SAR backscatter intensifyom AIRSAR wasbest suited (R=0.92) formodelng
biomass (both abovand belowground) of the tropicadavannahsn North Austalia
Mitchard et al.(20099 examined the relationships between figldasuredbiomass
at four study sitesy Cameroon, Uganda and Mozambigunel datdrom
ALOS/PALSAR,and foundhatbiomass estimates based on thetationships were
highly significant and similar among siteSandburg et al(2011) exploredthe
relatiorshipbetween SAR backscatttom E-SAR dataand forest biomass in
southern Swedemand found that for band data thbest results were obtained from
HV-polarized backscatteRobinson et a(2013 studied therariation infield
estimated biomass at different scales (0.0625, 0.25a008,.0 ha)in a temperate to
boreal transitional region (Howland, MEndfoundthatthe crosgpoarized HV had
the highest sensitivity to field estimateibmasgR*=0.68).

Neverthelessa number ofmportant factorganaffect the relationship
between radar backscatter and forest biomaslsiding change irforest structure
(Dobson et al., 1995radarincidenceangle(Sun et al., 1991Wang et al., 1993and
look direction(Sun and Ranson, 199&urface and environmental conditions.(
soil moisture)Harrell et al., 1997 Kasischle et al., 201}, trunk dielectricproperties

(Way et al., 1991land saturatioiDobson et al., 199XKasischke et al., 199’ Ranson
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and Sun, 1997 Backscattefrom vegetated arsalepends on a combination of
canopy structure and underlying surfaoaditions (Ranson and Sun, 2000The
former is related to water contasftthevegetationwhile the lateris linked to sd
moisture(SM) changes.Both (vegetation and soil) are affectegenvironmental
factors such as temperature and moistureviiiatiffect the dielectric constants thie
target These effects.g., temperatureand moisture) need to be removed before
further analysis of changes causeddrgstdisturbances.

However few studies have been focused on analyzing sensitivity of-multi
source SAR backscatter to chasgéforestbiomassafter forest disturbanse
Ranson and Suf2000 reportedup toa 7 dB change in backscatteoefficient
between frozen and ndrozenconditionsandsuggesteanulti-yearcomparisos
under similar temperature conditiosisould bemadesuchduringin the summer
growing seasanln addition,saturatiorin SAR backscatter varies among different
bands Dobson et al(1992 indicated biomass saturation levef~200 Mgha® and
~100 Mgha* for P-band and tband polarimetric SARPoISAR), respectively
Imhoff (1995 reported that the radar signal saturation was M@®a* for the P-
band, ~4QMg-ha* for the L-band and ~20Mg-ha” for the C-band by comparing
SAR backscatter and forest biomass relationshipsaivepical broadleaf evergreen
fored in Hawaii and coniferous forest stanid$North America and EuropeRanson
and Sun1997 indicated that SAR backscatter from AIRSAR and-8IRSAR
could provideestimates of biomass up+450 Mgha* with an averagef 97 Mgha
! Lucas et al(2010 studied the reitionship between PALSAR data and biomass in

Australia, and concludithat PALSAR data acquired when surface moisture and
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rainfall are minimal allow better estimation of the biomass of woody vegetation and
that retrieval algorithms ideally need to considéierences in surface moisture
conditions and vegetation structure.

This chapter will describe thenalysis of the sensitivily of multi-sensor and
multi-temporalSAR signatureso changsin forestbiomass The objectivesvereto
investigate: 1p procelure to reduce theistortionin SAR backscatteraused by
incidenceangleand soil moisture?) thefeasibility of crosamage calibration
between multtemporal and muksensor SAR data; and Bie possibility of applying
normalized backscatter to detebanges in biomass due to forest disturbamce
postdisturbance recoveryThis chapteis organized as followsirst, the study area
and dataredescribed Thenthefactors that influence changesSAR backscatter
aredescribed andiscussed A crossimage normalization method is proposed to
reduce theffset between muliemporal and muksensor dataThe performance of
our correction is evaluateahdappledto selectedstands afteforestdisturbance.A
biomassbackscatter regression moaedevelopedfrom field measurments and
appliedto map changginforestbiomassn thestudyarea Finally, the significance

and limitations of the reswlare discussed and conclusions are drawn

57



— - L
w%z
479 5

Canada

(@) ~0.5 ha FIA style plot

200 m >

1.0 ha field plot
50 100 km

72°W 7Ol°W ' 68|"W
Figure3-1. Map of study sites, and coverage of LandSEY+ scene (red dashed line,
p011/r029), ALOS PALSAR FBD scene (blue solid line) and PLR scene (purple
dashed line)(a) 0.5 ha FIA style plotin 1992 and 2003, (b) 1.0 ha fiétd jm 2009.

3.2.1 SAR data

All SAR dataused in this studwere collected duringriddle April to early
Octoberand by systems operating #te L-band(23.6 cmwavelengtior 1.3 GHz
frequency).Key parameters for SAR data used in this ssitl/(HF,Figure3-1) are
given inTable3-1. AirborneSynthetic Aperture Radar (AIRSAR}band datavith
full polarizatiors (i.e., HH, VV, HV, VH) and multilook angles (i.e., target at 25,
35°, 45°) werecollected in 189 and1994 Uninhabited Aerial Vehicle SAR
(UAVSAR) data veregleaned for the study area August5™, 6", 7" and 14'in
2009, with looking angle ranges from 20%o §@hdheadings of 16¢and 34%.
Meanwhile, Spaceborne Imaging Radarm@d XBand SAR §IR-C/XSAR) data
with full polarizationsat L-band and ébandwere collected ipril and October

1994.Phased Array type-bandSAR (PALSAR) on boardhe Advanced Land
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Observing Satellit¢ALOS) is an enhanced version of JERSAR instruments
launched in 2006@vith a 46day lecurrent periodPALSAR datawerecollectedfor

study aredrom 2007 to 2010 with fine beam dual mode (EB#8B1, HV) and
polarimetricmode (PLR: HH, HV, VH, VV).TheJapan Space Exploration Agency
(JAXA) has reported a geometric accuracy@im and a radiometraccuracy of

0.22 dB for measurements done in the Amakmest areagShimada et al., 2009
Detailinformation about th&AR data selected for this study are listedafle3-2,
includingacquisition date, ceet incidence angle, and environmental conditions such

as temperature amecipitation

Table3-1. Key instrument parameteos SAR system in this study

SIR-C/ PALSAR PALSAR

Parameter AIRSAR UAVSAR XSAR JERS1 EBD PLR
Platform Airborne  Airborne Spaceborne Spaceborne Spaceborne
Available date 1994 2009 1994 1995, 1998 20072010
Frequency 1.26GHz 1.26GHz  1.26GHz 1.3 GHz 1.27 GHz
Polarization HH, HV, HH, HV, HH, HV, HH HH, HV  HH, HV,

VH,VV  VH, WV VH, WV VH, VWV
Look angle 2564 2565 17-63 35 10-50
Swath width 15km 16km 15km 75km 70km 30km
Pixel size 10m 6m 12.5m 18m 20m 30m

*Pixel size for multilooked grouneprojected productFBD=Fine beam dualPLR=Polarimetric
Technical speckom https://www.asf.alaska.edu/sdata
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Table3-2. SAR dataselected fosensitivityanalysis

Sensor Scene Acquisition Pixel  Incidence Environmental conditions
id date size*  anglé’ —
Temperature Precipitation
(m) © (€) (mm)
3day 7day 14day
SIR-C PR12331 04/13/1994 125 317 T~55C 17.3 42.1 50.9
IXSAR
SIR-C PR47494 10/04/1994 125 31.7 T~10.1C 0 0.2 76
IXSAR
AIRSAR / 09/02/1989 10 35.0 T~10.1€C 16.8 18.6 27.6
AIRSAR CM6221 10/07/1994 10 35.0 T~10.1C 0 0.2 76
UAVSAR 16702_ 08/05/2009 6 48.0 T~21.6C 115 49.6 94.4
09054 016
PALSAR ALPSRP 08/30/2009 20 34.3 T~14.8C 20.4 32 34.2
/FBD 191680890

*Pixel size forthemulti-looked grounebrojected producfincidence angkeare at scene centdor technicalkpecifications see
https://www.asf.alaska.edu/sdata
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3.2.2 Auxiliary data

Local forest management mapsandsat derived disturbance maps, and
climate datavereprepareds referenced dataset for the study. sBpecifically,
forest management maperedigitized andcompositedrom scanned American
Forest Management (AFM) maps for the study site during 1®2011(Figure3-2).
Three management mapere usedl) AFM forest property map (1982011), 2)
Edinburg and 3) Howland cut mafmanage unit map with harvest dates2000
rectified to road map and satellite images with UTM/WGS84 map projeclibe.
products ofyearlyforestdisturbance map fromandsat time series stagkgetation
change tracker (LTSSCT) (Huang et al., 2010wereobtainedfor the studyarea
(see details in Chapté&y.

In addition, wth anAmeriFlux tower in the HF study site, various climate
data were collected from 19&Tcludingdaily air temperature, total precipitation,
wind speed, etcThe soilnearthe AmeriFlux towerconsists with 5@5% sand33.75%
silt, and 15.9%clay. From autumn of 1999, soil moisture, temperature and salinity
were collected byjive Hydra Vitel probesandthermistos buriedat depths of-5 cm
10 cm 20 cm 50 cm and100 cm Figure3-3 shows the variation of aterfraction

by content (WFC, %) versyzrecipitation (mm in 2009.
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Howland Forest, ME (1980-2011)

2 ! ) 1993 2003 v ]
% 2003 03 (‘
1993 2003 L
1992 1993 1988\, 2010 ‘2010 N ‘ fl
7 ~ J

o “ 2011
1992 1992 ; ’ :
1988 ]

=T
e
2004 (2004 Y4

EZce
SC
STC
REL
SH
SEL
SH1
SH2
o:]
OR

[ e

ald growth

; reserved

road

river

is the outlire of the reserved area, and the solid green line is the near mature forest.
PLT=plantation; CC=cleatut; SC/STC=strigcut; SEL=selectut; SH=shelterwood
harvest, 1 and 2 denote¥dnd 2 entry of shelterwoodharvest; OB/OR= overstory
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function of date. WFV measured at depth& afiches (~=5 cm)
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3.3 Method

Sensitivity analysisn this studyincludesthreesteps incidence angle effect

reduction, reduction afoil moistureeffect,anddetermination ogensitivity toforest

biomasqFigure3-4). First,atheoreticaimodel and field measurements are

employed to illustrateelationship betweeSAR backscatteaindforestbiomass

Then, @ empiricalmodelis appliedto reducdancidence angle effects @AR

backscatter The influence ofoil mostureon SAR backscattes analyzed through

in-situ soil moistureandfield biomassstudies A crossimage normalization

proceduras proposed ttesserthe environmental effect on SAkckscatter Lastly,

the sensitivity of SARbackscatteto biomass isleterminedusingnormalizedSAR

data and fieldneasurements

UAVSAR*
HH, HV, VW
(2009)

AIRSAR*
HH, HV, WV
(1989/1994

Stacked
Airborne SAR
{HH, HV, W}

v

Incident Angle based
Radiometric
Correction

!

Incident Angle
Corrected

PALSAR*
HH, HY, /v
(2009)

Site Soil
Moisture
(1999-2009

Management Map
(1980-2010) &
Field Measurement

(1992-2011)

Change of Biomass
vs. SAR Backscatter

3

Stacked Change of Soil

Spaceborne SAR Moisture vs.
{HH, HV, /VV} SAR Backscatter

Normalized

Airborne SAR

{HH, HV, WV}
Cross-image Normalized
»| Radiometric » Spaceborne

Airborne SAR

{HH, HV, W}
Incidence Angle
Effect Reduction

Normalization

i {HH, HY, /VV} /

Soil Moisture

Effect Reduction )

Sensitivity to
Biomass

Figure3-4. Flowchart of SAR data processing and sensitivity analysis.
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3.3.1 Sensitivity of SAR backscatter momass

We employedatheoretical model to show the sensitivitylobandSAR
backscatter to forest biomasgELIG (Urban, 1990 is an individuakree-based
forest gap model witthe ability to simulate lie forest ecosystem with complex
species composition over a letgymperiod Driven bytemperature and
precipitation dataas well agrowth and environmentaésponse parameters of each
tree species and soil characteristiosvine et al., 1994 the modeivas
parameterizefor Howland Fores(Ranson et al., 2001 The output of ZELIG model
are forest stand parametars;luding biomass density, forest height deaf area
index LAI), and the sizef each tree.Then, aradar modelhatsimulatel L-band
radar backscatterf PolISARdatawasimplementedased on the output of ZELIG
model(Ni et al., 2013aSun et al., 1991 A look-up table (LUT)wasgenerated from
the physicatbased forest backscatmaodelandwasused in this study

Based on model simulations as well as fimleasurementsherelationship
between SAR backscatter afmlest biomasss strong(Figure3-5). However the
SAR backscattehasa widerdynamicrangewhen thdevel of biomassdensityis high
The smulatedSAR attributedor co-polarization (HH)andcrosspolarization (HV)
were plotted as a function of simulated forest biomass from theupa#ble Figure
3-5), where different soil types reflected differences in higlyiwal condition related
to soil moisture and ground roughnéissvine et al., 1994Ni et al., 2013 The
SAR backscattedatafrom airborne (.e., UAVSAR) and spaceborne observations
(i.e., PALSAR)were plottel as a function of field measured bioméagure3-5, in

bluecircles. The figure showshatwhenbiomassncreases from 0 to 50 Mg,
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thebackscatter ranges frofB0 dB to-13 dB(~7 dB) at HV polarization, anidom -

14 dB to-9 dB at HH polarization (~5 dB)This is consistent with conclusiomsthe
aforementioned literatures that HV is more sensitive to forest disturbance than HH;
and that HV is sensitive to structures of pdisturbance tree regrowth, whitH is

more sensitive tonoisture content ahe soils.
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Figure3-5. SAR backscatteas a function of forest abay@und biomasfom model
simulation and remote sensing observatiimulation from ZELIGplottedwith (a)
PALSAR HH, (b) PALSAR HV, (c) UAVSAR HH, and(d) UAVSAR HV. ADAMS
to WESTBURY are different type of soil based on drainage and taxonomic
classification(Levine et al., 1994

The abovenalysis indicates that changes in forest biomass after disturbance
are detectable from SAR backscattelowever, many factors other than ttenge

in forest structure anbdiomass such as radancidenceangleandsurface conditions,
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also affect the radar backscatterifighe influence othese factors will be discussed

in the following sections.

3.3.2 Incidenceanglebasedcorrection for airborne SAR backscatter

Numerousstudieshave indicated that incident angle (IA) lead to chamges
backscatte(Sun et al., 1991Wang et al., 1993and modebased correction was
effective in reducing IA influence on SABackscatte(Menges et al., 200Sun et
al., 2003. Thus for airborne SAR data (AIRSARJUAVSAR), two set of

empirical models are developed for IA correction

HH and HV psd,l as {eosgitcosgp)i : Equation 3-1
VV polarization s %, =s{ @q /g.)"
wheres ), is the raw backscatter before correcfipn s t hien aiadlengt e a't

the center ogfi s htehiendaogossdd&®ed ds t he power

exponent wioaehflamhagiei [ele,t e2rymi ned by Tharbetahbhttr
incidenceangle is defined as the angle between the radaofisegght and the local

vertical with respect to geoitf.topographyis gentle(i.e., slopenear to zerp then
localincidenceanglecanbe assumedqual toincidenceangle.

Then, the correction modeare applied to all pixels:

HH and HVpolarization Sg, =S {@cosg, /cosg)" Equation 3-2
VV polarization S =S @9:/9 )"

w h e $_gis the corrected radar backscatteefficients.
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3.3.3 Sensitivity of SAR backscatter to soil moistared crossmage normalization

To study the effect of surface environnssuich as soil moistur&M) on
changes iIrBAR backscatter, relationship between SAR signatures @ndaisture
for the period oR0072010 over theelected standsasanalyzed.Based orthe
forest management mapAR signatures near the MadmeriFlux tower(S1, near
mature forest with biomass >200 Mg"') andnear thenonforesedarea(S2, clear
cut with biomas <10 Mgha*) were extracted from PALSAR collected during the
growth seasofMay to October in 2009)The relationshigpetween SAR signatures
andsoil moistures analyzedor the period of 2007 to 2016igure3-6).

A conceptuabiagram of the crossnage normalization is shown kigure
3-6. Theexistence ofadarfisaturatiow and different mechanisms from soil and
canopy vegetatiowereutilized to conducthe crossimagenormalizationfor multi-
temporal and muksensolSAR data. Modelsimulations(Ni et al., 2013ahave
indicated thaBAR backscatter from soil is stronger than that from canopy in low
biomassareagnonforestarea$, butweaker in high biomassreagnear mature
forest). The objective othenormalizatiorwasto produceSAR signaturesacquired
from different time and/oby different sensqwith similar patternsvith regard to

their SAR backscatterbiomass
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Figures-b. LonNceptual alagramr e crossimagenormaiizatuon-igure wits arein
power domaifm™m % f or backscatter (G) Hfoand
AGB. S1 is the saturation poiimt anearmatureforest; S2 is the maximum soil effe
pointin anonforesed areaDashed blue line (Vegs the fitted backscatteevsus
AGB received from vegetation canopythout soil influences in theory. Brown
dashed and dotted lines are backscatter fronsadices. Green dotted lines are
backscatter from vegetation canopy plus sbilt § denotes backstter from data
with different surface and soil moisture conditions

The followingtwo-stepnormalizationwasdeveloped foboth airborne and
spaceborn8AR data. First, theonepoint normalization makes use the satimat
pointat higher leved of biomassi(e., nearmature forest).The firststepof the

normalization can be expressed as:

SP=(5%/50) G Equation 3-3

where s (sigma naught) is the original SAR backscatter before normalization.
Boths g, and s, are the SAR backscatter af nearmature forest (S1) from the

target (S1t) or reference image anthe original image (S1o) that needto be
normalized. The variabless 2,; and s 2,, are the SAR backscatter thie non-foresed

area(S2) from the target (S2t) or reference image and the image (S20) that need to be
normalized.
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Then thetwo-pointnormalizationis applied taeduce theenvironmental
effectof thesoil component by subtractingfrom the total signatureNormalized
SAR backscatteafter the seconrdtep normalizatioman be expressed as:

sj°=sj°+Ds°

Ds* = aC'B;(g" *b Equation 3-4
whereDs °is the difference between SAfackscatteat two different soil moisture

conditions, and the coefficierdsandb arederived from linear fting of thedata:

a=(Dsg - Dsg,) Sk - Siz)
b=Dsg - (Dsg - Dsg,) (S, - sézo)é"&o

DS =Sk - Sk, DSs =Sk - S0 Equation 3-5

where s i, and s g, are the target artie original SAR backscattgrespectivelypf
mature forest (S1) froe @ a t 3-30 Thevariabless §,, and s g, are the target and
theoriginal SAR backscatter dfienonforesed aregS2) fromE g a t 3-30 Rinally,
Ds g;and Ds o, are the differencebetween SAPbackscatteof nearmature forest

andnon-foresed areat two different soil moisture conditions
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3.4.1 Sensitivity of SAR backscatter tocidenceangle

Table3-3. Correction nodelparameters ancbefficientsof determinanfor three
polarizations

Pol ari Correcodelnh M n Rz

HH . 1.5940. 97
HV sgorr:sroancosqc/COSqraw)n 1 ) 5 2 E o ) 9 E
VV s((:)orr :Sr(;w Qqc/qraw)n -1 " 3 2 O * 9 -‘

Th e c or r e candceefiiciemsfdetdrnsinatiorderivedfrom

UAVSAR datafor three polarizationare given infable3-3. Co s mn d evle s e
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3-8c). Af tiemci dagctoer r ecti on, saftheb awles adtet ¢ r eanldo n
i nci daegé&eneoss t & o (Figudk3-8ban drigure3-8d). Al t hbbhghe
islightly decr dasABBetcend&kete@dmredlave el y
st alblleess t han fIr odM GWHWIt thtr ie@n pol aR:i zKMH, ons |
G: HV, .B: VV)

The incidence angl e c onRigareBl@) a tainadn f r om
UAV SAMRguré3-9) can be seen clie.deelfyt iend gteh eo fn a amra
in the wuppherr er avw) ,a asnydsttemati ¢ decreasing f
The effect of correction on Al RSAR i mage i

(Figure3-10a nkigure3-9) .

HV HH + HV + VWV

Figure3-9. Polarized AIRSAR image acquired on 1994/10/07 in three polarizat
and composite (R: HH, G: HV, B: VV). The above imagegd@)xhow the image
requested frondPLarchive andthe below imagesef-(h) are after correction for
incident angle.
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HV vV HH + HV + VWV

Figure3-10. PolarizedUAVSAR image acquired on 2009/08/0bthree polarizatior
and composite (R: HH, G: HV, B: VV). The above ims{gg-(d) show the calibrate
image distributed by JPlandthe below image(e)-(h) areafter correction for
incident anale.

3.4.2 Sensitivity of SAR backscatter to soil moisture

Twopl ot s with fitalkennme®h0s9%e ivesrteesdsow t he
sensitivity of bafkg&hlkSeirl twatsen |f mMmaadtsitan
v 0 | uWwi/) déta was collectedt 5 cm R inche$ depth fromthe Main Tower,

Howland. The SAR backscatter ({gma) wasextractedrom PALSAR data collected

duringthe 2007 to 201@rownseasonsvith incidence angleangingfrom 37°%o 40?

Scatter an oitnscrsehaoswe i n backscatatddHr wi t h i nc
pol ar i ztahteo wn b if o fra sgBrT i}l octor r ect i on of radi on

di stduei oo di fferent soil. moisture condi ti
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Figure3-11. Mean backscattdSigma)plottedas a function ofvater fraction by volume
(WFV, %): (a) High biomass standb) Low biomass stand.

3.4.3 Sensitivity of normalized SAR backscatterféoestbiomass

At wote@r mal i zati on was conducted to botlt
S AR atFast, pacebon e -E/1 RSARbhAt ai ned on Apmd | 13 (P
Oct o R4 1994k ewec hosen to test the effectiwv
al gorithm.t Sp-&t XKEdA®B&add yo,Pmpdvalmor mal i zed to
t hdea & @ g uii m e@c Chargesn backscattefrom thetwo SIR-C/XSAR
scenegvereillustratad for the selecteg@lots (Figure3-12). The patch of forest near
the flux tower was selected as the saturation point éSh)d t hceutc I(eCaO8 6 ) wi t |
nNo canopwas ns €lloOcdt ed as (tS2ehtewswe |beicotneads s poi
scemasdi mskeasor cio,edimtea coknisng dimeicdeémne and
anglHowever, environmental conditions chang
temperature i@te&Lsandanincraase inSurféce sobisture
The soil surface was very wet in April not only due to cumulative rainfall that fell
three to seven days prior to the SAR acquisition, but also due to the presence of snow.
While rainfall totals were higher in October two weeks prior to thR &cquisitions

(76 mm vs. 50.9 mnmlable3-2), melting snow and lower air temperature in April
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would have resulted in higher surface moistute.fact, field crews in 1994 reported
running water (small streams anoingls) at numerous locations in the forest. Finally,
deciduous trees had not yet leafed out in April, while deciduous trees had retained
their leaves in October, suggesting that sap flow (and thus stem dielectric properties)
would have been lower in Aptiihan in October.

Bef obhneor mal i zsaatainoair,eavei ng trnr@® adfB)backs
for alll pl ots duemtdprhé tba®géeoben envirol
(Figure3-12a) Af t er nor mal wasemomedt her (®le,atd pl ot s
S2a,nRILT 8 9 ) ,e daircdk lbeefl-cewctt (p |, 8HISO8 andvi $hC89)
subtl e(&d)BThee pr opsse@r mavioalzgd i iomhm success
remodv0 % t o tl1D&® % foffect s of environmental con
(Figure3-13b). Ther etfhbeo el o wi rag adeggcsteihosnotfi vi ty
nor mal i zedaclkamt@d sba ro mbaesesif o emg-s onut ¢ € s
SAR dat a

Changesn multi-sensofSAR backscatteovertime were analyzed for
selecteglots Figure3-13). Ai r bor ne Af R&@8AR9I9d&aBA wer e
nor mal i zed t o UARQBra3R3ad Sptaac eilbd +NESHW R t a
i @ct1994 were nor mal i z e dFigure3-1BDAASARXxpatca eidn =2
the change i n Dbiomass wi tflorteisrhe dv artiug 9 afnacre
Who-beandt ufpbameat i eony haefftoerre otlbeed rd 99 € s
ef f ecdetveecitadk scatt €1 asit an8a®owmd ¢ PaTur al
recovery g(o@ma8 6ept aammelhedw spaussrtbance recadvovery f

evemea fstomle 90 s .
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On the odhtengdsemndpantitaili beehekt €r wood
har aaesit-cdecduledlet ect edi gpaBSARes only under ¢
condi Thenstuusttigpgadurred i 9p48B8&@sr ISartCi vel y s
recovewlyiicgdatneot sensiti.Ho weed 6EAR exir gmateu rod s
bi omaséelt emubteddveen 190O%KBRBIinsd ReOt0NOct abl e. F
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Figure3-12. Changesn SAR backscatte(HV) from SIR-C/XSAR 1994 at
represented plotga) before normalization, (b) after normalization.
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Figure3-13. Original and mrmalizedmulti-sourcesackscatte(1989 2009 from
airborne and spaceborré&SAR systems atepresented stand@) and (c) are from
original data, and (c) and (d) are from normalized datdofne datancludeAIRSAR
89/09/02, 94/10/07andUAVSAR 09/08/05 Spaceborne dataclude SIRC/XSAR
94/10/07 and PALSAR 09/08/30.

3.5 Discussion

Our objective wereto investigate the influence ofcidence angl€lA), soil
moisture(SM), and changes in forest biomass SAR backscattelKnowledge from
theseanalyzedormsthe basdor the crossimagenormalization Resuls from both
spaceborneand airbornesystems demonstrated thmatrmalizationensuredhe

derived biomass of regrowth foresiascrosscalibrated makingthe detection of
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biomass changdsom multi-source SAR datpossible Several main factors lead to
this conclusion.

Results from airborne systems indicated that the influence of IA on SAR
backscatter could be reduced to less than 1 dB using an empirical Figdet (38).
We chose an empirical method for inciderangle correction because it is efficient
and only needs basic sensor parametersijear range distance, instrument height,
incident angle at near range and slant range resolution). Thus, this procedure was
suitable for this study area, which hashaatrelatively flat topography and limited
information in terms of sensor parameters in the archived data (AIRSAR). However,
a more advanced radiometric correction that integrated terrain variésiorag!, 201}
should be applied in regions with large terrain variation to improve the precision of
the correction.

Secondthe sensitivity of SAR backscatter to soil moisture was analyzed via
spaceborne PALSAR data amdsitu measuremestirom April 2007to October in
2010 A crossimage normalization procedure wasedto reducetheinfluenceof
environmeral and acquisition conditioremong multisource SAR dataThis
procedure successfully reduab@ temporal changes lrackscattefor SIR-C/XSAR
datacollected between April and October 1994 by 50% to 10B%ure3-12).
Assumingthat surface roughness was the same in April and Ociobezased
surfacewetnessvould haveincreasd direct backscattering from soil and double
bounce backscatteringviore sap flow and higher temperatsiia Octoberincreased
the dielectric constant difie tregrunks, increasingdirect backscatter from the trunk

and the truniground double bounceA further application to muksensor SAR data
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indicated thathe proposed procedure successfubisiucedradiometric distortions
due to different acquisition conditiofSigure 313). We chosenearmature forest
standsand norforesed aredecaus¢heymetthe requirements for high and low
biomass in the conceptual diagralaglure3-6Figure3-6). Future work needs to
incorporate physicabased modsland developaccordingnormalizationalgorithns.

In addition, he influenceof incidence angle and soil moisture depends on the
area and location of study areféor instance, previoustudies suggesthat
correction of incidence angle effect is essential for study area with a range of
incidence angle greater than HgtossthelandscapgMenges et al., 2001 While
the effects of soil moisture will become more importard stsidy area approaching
national to continental scale, because of the increasing spatial variation in soil
moisture However, current soil moisture products derived from interpolation of
meteorological station data availablesatellite observatiohavelimited spatial and
temporal resolutionFor example, the Aqua Advanced Microwave Scanning
RadiometeiEOS (AMSEE) is with a nominal spatial resolution of 25 Kibucas et
al., 2010, whichis beyond the scale of our study siféhe relationship between SAR
backscatter and samoisturefor theforesedand norforesedarea is still under
explorationbecause dimited observatioal as well as highemporal SAR data.

Thirdly, the ability to detect forest biomass reduction agitawth using SAR
backscatter also depends on numerous factors such as the level of disturbance, model
uncertainties, radar looking directions, forest structures, trunk dielectric properties,
and tree specieforest recovery from wholstand disturbance50%remova), such

asnaturalregrowth and plantation after cleeut evens, could effectivelybedetected
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by backscatter signatureBepending on the magnitude of change and radar looking
direction, therecovery frompartiatstand disturbanceslieltervood harvest and strip
cutwith <50%remova) wasnot always captured by SAR signaturémncertainty in
biomass estimation from singtlatemodelswill affect this ability. We were able to
detect changefor pixels with changegreater tharl00Mgha ™ or above 8% of 150
Mgha *, although with a ~58gha ™ prediction error fronthemodel This is
consistent with our analystd selectelots Figure 313), indicatingthat thelevel of
disturbance haaninfluence onSAR detectiorability. A previous study(Robinson et
al., 2013 hadmentioned the effect dbrest structure and trespecies compositioon
the biomass estimatiormhe model developed for biomass mapping in stuslydid
not takethese effectgto account because of a relaliwsimple speies composition
in thestudy area.However, we still recommend considering structure and species
effecsin area with more complicated composition

Lastly, previousstudies have indicated thrmtombination of multiple
observations could improve the acacy of biomass estimation from SAR data
because multiple images provide more samples and using them together could reduce
the radar speckle noi¢englhart et al., 2011Zhang, 2011 For exampleZhang
(201)) indicated that models devgled using multdirection SARbackscatte(i.e.,
left and right look) achieved the best performance in estimation of forest biomass.
Moreover,Englhart et al.(2011) demonstrated that regression models developed
from multiple observations with multiple frequencies such as SAR data from
PALSAR (L-band) and TerraSAK (X-band) are more accurate than regression

models developed from single observatidiere is a tradeff between pixel size
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andtheability to detectisturbance Thereforefor biomass estimatigrihe data were
resampled t@ 100 mresolution and amean value was calculated for each sel
thatit waslarge enough to reduce the speckle noiga@BSAR dataused in this study
Airborne SAR datai(e., UAVSAR and AIRSAR) with higher spatial resolution
revealed more detail than spaceborne daaRPALASAR and SIRC/XSAR) in

terms of changes in forest biomass

3.6 Conclusion

This chapteranalyzed the sensitivities of mutensor and multiemporal
SAR signatures to changm forestbiomass Knowledge from these sensitivity
analyses and corresponding correction is the base to theimags radiometric
normalization. Resuls from bothspaceborneand airbornesystems demonstrated
the normalizatiorensuredhederived biomass of regrowth forestsrecross
calibrated andthusmakethe detection of biomass changessible

Findings from this study indicate that thge of acorrectionmodelcanreduce
incidenceangleeffects on SAR backscatterlass tharld Ba ntdhar e snsa g e
nor mal ¢ arreetdiuocne o bei efmecsture on changes
t h B0M6. Thus,thechangesn forest biomassrgaterthan100Mg-ha* or above

50%of 150Mg-ha’ aredetectableisingcrossnormalizedSAR data
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Chapter4Mappi ng Bhaomtpesser For est
fr om Muwlutrict SAR

41 Introduction

A seriesof studies havaetilized airborneinstrumentsuch aAIRSAR (Ranson
and Sun, 1997Saatchi et al., 201)and UAVSAR(Robinson eal., 2013 to estimate
forest biomass; and spacebomgrumentsuch as?ALSAR (Mitchard et al., 2009a
Santoro et al., 2010to detecttlearcutareasevaluatdorest biomasg¢Lucas et al.,
2010, and retrieve soil moisture for bare laf@uo et al., 201Band postburned forest
(BourgeauChavez et al., 2013 Specifically, L-band SAR imagergan be used to
monitorthechanges in biomassd carbon stocki®r early stages of secondary
succasion(Ustin et al., 1991andpostdisturbance recoverfHall et al., 201). Ustin et
al. (199)) indicatedthat changes in biomass during the early stages of secondary
succession could be monitored byand airborne SAR dafar two datasets with an
interval of five years Their study also demonstrated tbabssimagenormalization is
feasible for radar datobtained through stable systems ursi@ilar conditions.Ranson
and Sun19979 developed a cubmot regressiormodelto estimaé biomasslensityfor
a temperate forest usilg)R-C/XSAR and AIRSARdata Salas et al(2002 evaluated
the spatial and temporal variability JERS1 dataand characterized tloverall structure
of clearirgs and secondary vegetation waitpe informatiorderived from Landsat
Baltzer et al(2003 utilized multi-sensoi.-band SARdata(i.e.,spaceborne SEASAT
and JERSL) to map regrowth of a conifer plantationthe ThetfordForest UK.

Luckman et al(1997 comparediomass estimatefrom spaceborne SAR instruments

% The presented material is under preparation for publication: Huang, W., Stfi, ., Zhang, Z.,
Dubayah, RMapping Biomas€£hangeafter Forest DisturbanaesingMulti-source SARJata.
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(SIR-C/XSAR and JERSL) and concluded that-band SAR data were suitable for
detecting regeneratian tropical regionsSantoro et al(2010 utilized airborne and
spacebornédata such aBALSARto detectlearcuting of a boreal forest from July 2007
to October 200&ndfoundatemporal consistency in the tirseries of EHV backscatter
measurementsnddeveloped detection algorithm farlearcutareas

However few studies quantify the changes in forest bionesasgmulti-source
L-band SAR data, becaustissues such dsnited SAR dataacquisition over time,
changes in forest structu@@obson et al., 1995radar incidence ang(&un et al., 1991
Wang et al., 1989) andlook direction(Sun and Ranson, 199&ariations insurface
conditions(Harrell et al., 1997 Kasischke et al., 2011 ucas et al., 2000andtrunk
dielectricpropertiegWay et al., 199j1 and saturatioDobson et al., 199XKasischke et
al., 1997 Ranson and Sun, 1997These issues have begiscussedn the last chapter
Sandberg et al2014) estimated biomasshange ira hemiboreal foestfrom 2007 to
2010 using airborne-Band SAR data, antbncluded that growth and thinningariorest
can be measured with 64 equivalent number of look (ENL) in SAR imagery=0% a
change in biomassAhmed et al(Ahmed et al., 20)4ndicatedthatthe combined error
from field measurements and remote sensing could be as much astl®@8plot level
(0.25 ha)or Howland and Harvard Foresites, andrecommendedt leasta 1 ha {00 m)
spatialresolutionfor mapping of forest biomass.

In this chapter we will investigat&) whatwill be the propeiscale for mapping
biomasdrom SAR data, 2) what are thecertaintiesn the magping of forestbiomass
usingdata fromspaceborne and airboregstemsand 3)atwhich level predictionsare

reliable in terms ofhe changgin biomass The changes forestbiomasdor the study
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sites were analyzed usilgAR data fronspaceborn€l994 2009 and airborng19 8 9

19 94 PSAB Yystems

4.2 Data

Spaceborne and airborne SAR da&tm(re4-1) are employed to map the change
in biomassover a 15year period1994 2009) anda 20-yearperiod(1989 2009).
Details about the study site, SAR data, and auxiliary data have been introdtiesldsh
two chaptersandarenot described hereinThe field datausedfor training and validation

aresummarizedn Table4-1.

SAR Data Timeline

i Optical Observation

CEN

LTSSVCT year of disturbance
map (1984-2010)

* (3 —y
SIRC/XS (94/10/04) JERS1(98/08/30) PALSAR(20072010) S pace borne
— L - L L L o L L
S K Ao Cos o (ngb« BN '29'\& oo
. . .
AIRSAR (89/09/02) AIRSAR(94/10/07) UAVSAR(09/08/05)
Airborne

a Selective-cut (2000s)

P Stri 1990 .
S o 15509 vipee (19209 Forest Disturbance
(Local management map$)

Figure4-1. Timeline of SAR dataat HF site. Optical data aracquiredduringtheleaf-on
season, and SAR data are frorband. Forestnanagement maps are digitized from local
management maps

Table4-1. Summary of field estimated biomass in 2009 at different|picl

Plot-size N Mean Min Max
ha Mg Ahi MgAh. Mg Ah.
0.25 ha 115 141.1 0.3 361.4
0.5 ha 57 140.3 0.6 316.0
1.0 ha 24 143.3 1.0 278.9
All 196 141.2 0.3 361.4
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4.3 Method

The overall procedureonsistof multi-source data processimgdiometric

normalization, model development, and biomass mappilggie4-2).

’ N,

/ Normalization and Mapping
UAVSAR* :
HH, HWV Stacked Normalized
Airborne Airborne SAR
{HH HV.VV}

AIRSAR* (89—9409)

HH, HWV .

Geometric
co-registration
SIRC*
HH, HV, YV Stacked Normalized
Spaceborne Spaceborne
SAR {HHHV,
PALSAR* IVV} (9409)
HH HV, ¥V
Regression Local relationship
developed between
models i—’ AGE and SAR AGBmaps™ PGB bange
ps
backscatter

N,

Figure4-2. Flowchart of SAR datpreparation, normalizatioand mapping

Twosteps
Radiometric
Normalization

4.3.1 Multi-source SAR data processing

Current adar derived produstor surface conditions such as soil moistare
still under development aradeoften with largeuncertainiesin estimates In orderto
limit the influence of arface condition®ntheretrieval offorestbiomassrom radar
backscatter attributeSAR images withvery low or no precipitation within thredays
around acquisition datgereselected for further analysis.

Archived AIRSAR datan the 1990swereprovided by JPL in the compressed
strokes matrix (CM) formatJPL, 2003. The 4x 4 Stokes matrix dat@ascompressed
into 10byte formatto reducehe original 1.92 GB dat@ 37.5 Moytes per scene
(Dubois aml Norikane, 198)f SIR-C/XSAR datain 1994were provided in the

compressed SK format(JPL, 1994 with a CEOS header fileFor both AIRSAR and
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SIR-C/XSAR systemsmulti-lookedcomplex (MLC)data wereausedin this study. The
compressed AIRSAR and SIBXSAR data were processedtoherency elemen(33)
from quad polarimetridataandto covariance elemen{€3) from dual polarimetriclata
Thesedatasetswere processedlang the PolISARProPolarimetric SAR Data Processing
and Educational Toaeveloped byhte European Space Agen¢yersion 4.2.p (Pottier
et al., 2009.

Slant range AIRSAR layers were converted to ground range innggesgi S| a n t
Range Correct i on a THisstapcohverts the distae fEON the radér. 8
(slant range, sr) to distance along the grourice(, ground range, sr) and sampsdata

to a desiredutput pixel spacings follows:

gGRA: gSRA/sind Equation 4-1
whered s the incidence angle.
Then the ground range layeos AIRSAR and SIRC were manually registerdd a
Landsa? ETM+ image(path01Irow029)acquiredon Sept 9200Q using a firstdegree
polynomialmodel

PALSAR operatein severaimodes, including two fireeam modes: single
polarization (FBS) and dugblarization(FBD); and &ull polarization mode (PLR)[he
FBD mode with HH and HV data #te 34.3 incidence angléimage centenvere used
in thisstudy PALSAR FBD and PLRdatafrom 2007 to 2009 weracquiredat Level
1.1/1.5andwereprocessed taormalizedradarcrosssection (NRCS)These datsets
wereprocessedusng the MapReadyrRemote Sensing Toolkf{Version 3.1.22JGens and

Logan, 2003supported byAlaska Satellite Facility (ASRandtheterrain information
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from National Elevation DEM (NED) NRCSof the polarization component is derived
from following equationswith asingle calibratiorfactor (CF)
L1.5 product NRCS(dB) = 10logo(<DN>>) + CF Equation 4-2

L1.1 product NRCS(dB) = 10logo(<R?+ 1%>) + CF - 32.0 Equation 4-3

whereDN is the digital number valu@mplitude)in theimage R andl are intensity and
phase valuesandCF is listed inTable4-2 provide byJAXA.

(http://www.eorc.jaxa.jp/en/about/distributiamib/alos/20090109en 3.htinl

Table4-2. The calibration factor (CHpr ALOS/PALSAR data

Processing Before After

date Jan. 8, 2009 Jan. 9, 2009
FBD34.3 HH -83.2 -83
FBD34.3 HV -80.2 -83
PLR21.5 -83.4 -83

UAVSAR polarimetric (PolSARYatain 2009 were acquired from JPLgnound
range gridGRD) format in geographic coordinate system (WGS 8#)e< datassets
werethenprojectednto acommon frame of referen¢@d TM 19N WGS 84)used in this

study.
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Table4-3. Co-registrationaccuraes for the skectedSAR datahe test sites

RMS
Acquisition

Sensor Scenead #Point X Y Resolution (m)
PALSAR/FBD ALPSRP198390890 10/15/2009 31 0.4510 0.4045 12.5
PALSAR/FBD ALPSRP191680890 8/30/2009 29 0.4005 0.3541 125
PALSAR/PLR ALPSRP179280900 6/6/2009 57 0.4575 0.3957 12.5
PALSAR/PLR ALPSRP172570900 4/21/2009 76 0.4240 0.4826 125
PALSAR/FBD ALPSRP131290890 7/12/2008 31 0.4985 0.4066 12.5
PALSAR/FBD ALPSRP124580890 5/27/2008 46 0.4179 0.3250 125
PALSAR/FBD ALPSRP120350890 4/28/2008 38 0.3237 0.3979 12.5
PALSAR/FBD ALPSRP091030890 10/10/2007 30 0.3866 0.3505 125
PALSAR/FBD ALPSRP086800890 9/11/2007 41 0.4251 0.4156 12.5
PALSAR/FBD ALPSRP084320890 8/25/2007 41 0.4193 0.4483 125
PALSAR/FBD ALPSRP080090890 7127/2007 30 0.4840 0.4593 12.5
PALSAR/FBD ALPSRP077610890 7/10/2007 39 0.4495 0.4778 12.5
PALSAR/FBD ALPSRP073380890 6/11/2007 37 0.4806 0.4431 12.5
PALSAR/PLR ALPSRP071920900 6/1/2007 47 0.4185 0.4019 12.5
PALSAR/FBD ALPSRP068932710 5/11/2007 65 0.4345 0.4079 12.5
PALSAR/FBD ALPSRP065210900 4/16/2007 71 0.4477 0.4872 12.5
SIR-C/XSAR PR12331 4/13/1994 32 0.2816 0.4851 30
SIR-C/XSAR PR47494 10/4/1994 22 0.3878 0.4410 30
AIRSAR CM6220 10/7/1997 31 0.3549 0.3759 10

*PALSAR data used in this study involved two modeBD= Fine beam duahode, and°’LR=Polarimetrianode.
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Finaly, dl SAR dataincluding AIRSAR SIR-C/XSAR, PALSARwere co-
registered tdhe samd.andsaimage(Septembe09, 2000,path011row029) usinga
modified ROI_PAGscriptfor preciseco-registratiors (Ni et al., 2013h The registration
errois (RMS)were minimized (4 pixel) to reduce the influemcofgeolocation errors in
SAR dataTable4-3). All conversions were processetpower domaifm?® m?), and
thearithmeticmeanvalues wereusedwhen aggregatin§AR datato differentscales.

Backscattecoefficiens were converted into dB domdor biomassestimation

8/(dB)=10log; o G AM?m ?) Equation 4-4

Airborne SAR datai.e., AIRSAR and UAVSAR) were normalized by the

correction modelas described in Chapter 3 to reduce the efiertcidence angle

4.3.2 Modeling approache®f biomassestimation

SAR ackscattecoefficients band ratiosandrelevantindices arefound tobe
sensitive tacanopystructuralvariables andiomasgGonalves et al., 201 1Henderson
and Lewis, 1998Pope et al.1994 Saatchi et al., 2010 Specifically, Table4-4
summarizesheindicesusal in this studyas predictors in biomassodeling We utilized
indices includingsingle polarization backscattering coefficients.(HH, HV, and VV),
crosspolarized inices andfull-polarized indices The singlepolarizedindices are
applicable for all SAR data in this studyhile thefull-polarizedindicesare not available
for either PALSAR FBS or PALSAR FBD due to the lack of fufiolarization &bsentHV
and/orVV). All statistical calculations were performed using R with packacgBEool$ |,

6f or ec ast(biawaanmddViedec, 23002 t 6
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Table4-4. SAR backscattecoefficient cross andfull- polarizedindices

Attri bEquati on Function and ref
skldg]
50 10 10 Backscattering c
k o Henderson and Le
sk[dB] = 20log10(S|F;)
S % Cropocsl aratred
Cross o, Hender son and Le
REDI S%m - s%w Radar forest deg
5% +5%y Saatchi Qet al . (
B MI S +5°%W Bi omass i ndex
2 Pope et al (199
VS| S Rv Vol ume scatterini
5%y +BMI Pope et al (199

"Expressed in the intensity format. ||&kthe amplitude response (k = HH, VV, or HV)
and Fj is a calibration factor for column j, determined from data collected over the
trinedral corner reflectorgGona@lves et al., 2011)
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Forest biomass values are related to SAR backscat}¢raé:

AGB=e®"*? Equation 4-5
wheres represents backscatter valiie (sigmanaughj at different polarizations.¢.,

HH andHV) anda andb are theexponentiatoefficients. To improve the fitting process,

we estimated coefficientssinglinearregression
y=a+bs} Equation 4-6

wherey=In(AGB) anda andb are the lineacoefficients

4.3.3 Accuracy assessment of regression models

We assessdthe regression models using leaugeout crossvalidation (LOOCYV)
performed withR (Version 2.14.2(Kuhn, 2008. The predicted values were regressed
against the fieldneasured values to quantify the accuracy of the model gtatigtical
indicatorssuch agoot mean square errfrom crossvalidation RMSEV), relative error
of RMSEcRMSEWA), andcoefficient of determinatiorRP).

TheLOOCYV is aneffective solution to evaluate the regression models \here
area small number of sam@éo testthe modelZhao and Popescu, 2009he general
procedure of LOOCYV is described as follows:

1) Selecbbsevationi fromatest sefi.e., nindeperdent obserationsy;, %),
and fit the model using themaining data. Then copute thepredicted residal for the

omitted obseration:
. o)
g =V - y/,o Equation 4-7
2)Repeatstepfori=1, €&, n

3) Conpute theRMSEfrom € 3~ &,, which is calledRMSE, .
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Theratio of RMSE,, to themean observed valug also calculated

RMSEcv

RMSEc\(%) = Equation 4-8

whereyis the mearbiomass

4.3.4 Mapping foresbiomass and changes

The mapping procedure consists of four stépgure4-2): 1) normalize the SAR
datg 2) develop the prediction model; 3) evaluate the model performandé) mapthe
biomass andhanges

To normalize the SAR datafwo-step radiometricormalization was conducted
to spacebornand airborne SAR date&pecifically, arborne AIRSAR data 1989 and
1994 were normalized to UAVSAR data in 20@8dspaceborne SIEC/XSAR datain
1994 were normalized to PALSAR data in 200%en,thedevelopediomass
backscatteregression modswereappliedd myletair S A B e d alriad reas s
ma @ sosspacebornandairbornedatafrom 1989, 1994 and 200@r the study area.

Finally, maps of th&ehangsin biomass werereatedor 15 and 20year periasfrom

airborne SAR data, and forl&-yearperiod fromspaceé o r n ed HtAR.

4.4 Resul

4.4.1 SAR hackscattesensitivity tobiomass

Thebackscattebiomasgegression models shastrong correlation across
different spatial scale§ &ble4-5). The SAR backscatter values at all polarizations (HH,

HV, and VV) wereregressedo field-measuredhiomassat three scales (0.25 ha, 0.5 ha,
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and 1.0 ha) At all polarizations, the Rof this relationship increased as the plot size
increased, where the least variabilitgsobserved at 1.0 halot-scale ThisbiomassHV
relationship had the highespefficient of determinationd=f) at all spatial scales for
UAVSAR (047, 048, and 060) and PALSAR (0, 057, and 068) as plot size
increased.The biomassbackscatterelationshipderived fromairborne UAVSAR dat#s
strongerthan that fronspaceborne PALSAR data his is not unexpected, given the
finer spatial resolution and tliiegher signal to noise ratia airborne data. Since more
equivalentd | o averag@ values over field pgpthere was a bettaigreemenat 1.0 ha

plot-scale despite theariability at 0.25 ha ploscale

4.4.2 Evaluationof prediction models

Thepredictions models from PALSAR 2009 datareevaluatedacross three
plot-levels Table4-5, Table4-6, andTable4-7). The best model all three plotlevels
is theHV model, and overall model accuracy improved with larger plot sibe best
singleterm model is the HV model at 1.0 ha plevel with the highest explanatiamf
total variancg68%) and the lowest RMSE o f 4 5. 531NM%)A h a

Thepredictions models from UAVSARata in2009were evaluatedcross three
plot-levels: 1)0.25 ha2) 0.5 ha, an®) 1.0 ha respectivelyFigure4-3, Figure4-4,
Figure4-5, andFigure4-6). This is smilar to the trends observddom the PALSAR
data. As expected, the best modekditthree plotlevels isthe HV model with higher
explanation of total variance fg and lower RMSE,. The overall model performance
improvedas the plosize increasedThe HV model at 1.0 ha (equivalent to 100 m pixel

size) explaied 60% of the total variance artitad aRMSEcy 0 f 4 9 . B(B34M%)A h a
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Moreover the best multivariable modeis the HH+HV+VV model at 1.0 ha plefevel
with the highest explanation of total varian@@%) and the lowest RMS§ of 40.9
Mg A'h28.5%).

Therefore, thenulti-variable modelsTable4-7) derivedfrom PALSAR data (HH
and HV) and UAVSAR data (HH, HV, and V\4} 1.0 ha plotevel wereselectedo
predictbiomass.Theselected madek wereapplied toall SAR datai(e., UAVSAR,
AIRSAR, PALSAR, and5IR-C/XSAR) and the biomass maps were generatdd@im

spatial resolution.
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Table4-5. Summary of single term regression models at differentl@let

Instrument _ Plotsize ) RMSEcv RMSEcv
Near Variable a b R ) 0
(ha) ( MgAh (%)
0.25 837488 056013 024 759 53.8%
HH 0.50 8.654.25 0.6040.18 026  72.0 51.3%
PALSAR 1.0 9.262.06 0.690.31 034 656 45.8%
2009 0.25 11.64490.83 05749.07 050  63.0 44.6%
HV 0.50 11.794.10 0.59490.09 057  53.8 38.4%
1.0 12.374.54 0.6440.13 0.68  45.5 31.7%
0.25 8114048 063008 020 912 64.6%
HH 0.50 8.244.66 0.6640.12 019  84.4 60.2%
1.0 8.63#0.95 0.720.17 027 781 54.5%
0.25 11.16#9.50 0.57#90.04 047  59.5 42.2%
UAVSAR — Hy 0.50 11.2749.62 0.57#9.05 048  55.8 39.7%
2009
1.0 11.4249.82 0.5940.07 0.60  49.0 34.2%
0.25 10.2649.58 0.7540.08 0.44  67.2 47.6%
. 0.50 10.4449.75 0.78#9.10 0.45  62.0 44.2%
1.0 10.874.03 0.83#.14 0.64  46.9 32.7%

* polded is thébestmodek; equations in form of AGB=exp(a+bx);
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Table4-6. Summary of single index regression models at differentlplal

Instrument _ Plot-size 5 RMSEcv  RMSEcv
IYear Variable a b R )
(ha) (MgAh (%)
0.25 8.90#.94 0.78#.17 0.15 103.6 73.4%
Rcross 0.50 9.84#1.33 0.94#.24 0.27 90.3 64.4%
PALSAR 1.0 10.81#4.98 1.13#.36 0.30 93.1 64.9%
2009 0.25 1.984#.82 -1.03#©.31 0.09 132.7 94.0%
RFDI 0.50 1.03#.24 -1.4140.47 0.23 107.1 76.3%
1.0 -0.0842.03 -1.82#.77 0.25 1195 83.4%
0.25 11.32#.18 1.10#€.19 0.30 92.7 65.6%
Rcross 0.50 11.84#.64 1.196€.27 0.37 97.9 69.8%
1.0 13.202.42 1.42#4€.40 0.41 923 64.4%
0.25 0.224.95 -1.98#.42 0.26 116.8 82.7%
RFDI 0.50 -0.03#.33 -2.104#6.59 0.33 121.6 86.7%
UAVSAR 1.0 -1.4442.13 -2.724.94 0.35 126.0 87.9%
2009 0.25 9.26#0.51 0.73#.08 0.28 85.4 60.5%
BMI 0.50 9.43#.67 0.76#.10 0.28 77.2 55.0%
1.0 9.80#.92 0.81#.14 040 66.4 46.3%
0.25 16.024.38 1.79#4.22 0.28 74.1 52.5%
VSI 0.50 16.39#.86 1.85#.29 0.32 66.2 47.2%
1.0 17.572.41 2.044€.38 0.42 62.3 43.5%

Rcross=HV/HH, RFDI=(HH+HV)/(HHHV), BMI=(HH+VV)/2, VSI=HV/(HV+BMI).

* boldedis thebestmodek; equations in form of AGB=exp(a+bx);
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Table4-7. Summary of multivariable regression models at different geotel

Plot-
}:](sét;jment Variable Size g b c d R? RMSEcv RMSEcy
(ha) ( Mg Ah (%)
0.25 11.844#.82 -0.20#0.15 0.704#0.12 0.46 68.2 48.3%
PALSAR 2009 HH,HV 05 12.14#4.07 -0.3240.22 0.7940.17 056 59.2 42.2%
1.0 12.774.41 -0.42490.33 0.904.24 0.62 55.8 38.9%
0.25 11.92#.61 -0.264.14 0.7540.11 056 53.2 37.7%
HH, HVY 0.5 12.1046.77 -0.294€.18 0.794#.14 061 47.5 33.8%
1.0 12.3441.08 -0.3440.29 0.83#.22 0.70 41.9 29.2%
UAVSAR 2009 0.25 11.90#6€.62 -0.264.14 0.724.16 0.044#.16 056 52.9 37.5%
:\H/:VV 0.5 12.0586.77 -0.2840.18 0.704.20 0.114#.20 0.62 46.7 33.3%
1.0 12.2841.13 -0.3240.31 0.764.35 0.094#.32 0.72 40.9 28.5%

*bolded is thebestmodek; equations in form of AGB=exp(a+H»Cx+dxs);
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Figure4-4. Model evaluation across different scale for UAVSAR 2009 data: VV
polarization UAVSAR 0.25 ha, 0.5 ha, and 1.0 ha pletels:(a) 0.25 havV, (b)
0.25 haBMI (c) 0.25 havsl, (d) 0.5 havV, (e) 0.5 haBMI, (f) 0.5 haVsl, (g) 1.0 ha
VV, (h) 1.0 haBMI, and(i) 1.0 haVSIl. X axis is the fieldmeasured AGB density

(Mgvhal). Y axis ispredicted AGB densitgMgnvha1). Red solid line id:1 line
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