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Some of the longest population records of jellyfish are collected from visual shore-

based surveys. As surface counting is inexpensive and simple, it is of interest to 

determine what can be learned from such records as well as the usefulness of the 

method. A 4-year time series of Chrysaora chesapeakei (formerly quinquecirrha) 

medusa counts collected using three sampling methods was analyzed. Medusa 

abundance was modeled by change points and was highly correlated between the 

sampling methods. The remaining signal was random, and indices indicated that 

medusae were aggregated.  This study suggests more monitoring from visual shore-

based surveys is an effective, low-cost method to increase information on jellyfish.  



 

 

Data from another long-term visual survey show that C. chesapeakei in the 

Cheasapeake Bay have declined since the 1960s.  It is hypothesized that their loss 

results in a trophic cascade and increases in phytoplankton.   However, due to 

confounding factors, it is not clear that C. chesapeakei drives the changes 

observed.  A new 0-dimensional mechanistic model was formulated to include 

jellyfish.  A data assimilation method, Approximate Bayesian Computation, was used 

to objectively calibrate the model and guide its development.  The model fit to 

observations was improved by the addition of refractory non-living organic 

materials.  Additionally, comments and suggestions related to the model development 

process are provided. 

Using the model, perturbation experiments were conducted to study the effect of 

changing modeled C. chesapeakei (CHRY).  Then, sensitivity experiments of the 

environmental and ecological parameters were conducted to understand the 

conditions that are important in driving the response.  The change in CHRY had the 

potential to affect every state variable and throughflow but the response did not 

always conform to the trophic cascade concept and was highly dependent on the 

parameters.  The parameters that were most important in varying the response were 

related to the energetics of the zooplankton and parameters related to alternative 

pathways of loss or gains of the state variables.  The resulting complexity highlights 

the far-reaching ecosystem effects of C. chesapeakei as well as the need for new 

frameworks to understand the response of ecosystems to perturbations. 
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Due to flexible, annual life histories, gelatinous zooplankton (also referred to as 

“jellyfish” herein) populations readily fluctuate in response to climate oscillations 

(Attrill et al., 2007; Purcell & Decker, 2005), and likewise, to human 

disturbance.  Anthropogenic impacts such as climate change, eutrophication, 

development, and overfishing tend to favor jellyfish (Purcell et al. 2007, Purcell 

2012), leading to the hypothesis that jellyfish have and will continue to increase 

globally.  Due to a lack of long-term monitoring for jellyfish populations worldwide, 

the answer is thus far inconclusive (Brotz et al., 2012; Condon et al., 2012; Condon et 

al., 2012).  Undoubtedly, there are regions where populations are increasing such as 

in the East China Sea (Brotz et al., 2012; Dong et al., 2010), likely due to human 

impacts.  Conversely, there are species that are declining, such as the sea nettle, 

Chrysaora chesapeakei (formerly Chrysaora quinquecirrha), in the Chesapeake 

Bay.  Their populations have declined since the 1960s, possibly due to overfishing of 

oysters that reduces the habitat available for the sea nettle’s overwintering benthic 

polyp (Breitberg & Fulford, 2006).  

Generally, long-term data on jellyfish populations are lacking in part due to 

difficulties sampling with net tows (Haddock, 2004) and as a result, some of the 

longest records of jellyfish are from visual shore-based surveys (Purcell, 2009). One 

example is the time series of C. chesapeakei from the Chesapeake Biological 

Laboratory pier that started in 1960 in the Patuxent River, a tributary of the 

Chesapeake Bay (Cargo & King, 1990). This time series has been used to assess 
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inter-annual variability (Cargo & King, 1990) and long-term change (Breitburg & 

Fulford, 2006) of C. chesapeakei abundance and has also been included in analyses of 

global jellyfish populations (Brotz et al., 2012; Condon et al., 2012).  However, there 

is a great deal of unexplained high-frequency variability captured in these time series 

(Decker et al., 2007; Sexton 2012).    Because shore-based surveys have been widely 

used and are the most practical, cost efficient method to collect information on 

jellyfish, it is of interest to fully understand the information captured by surface 

counting at a fixed-station.  Chapter 1 addresses this problem by using time series 

analysis to describe the signals of abundance and patchiness that contribute to the 

patterns in a fixed-station time series and the suitability of surface counts in 

estimating water column abundance.   

In part due to striking changes in jellyfish populations, there has been growing 

interest in jellyfish, especially considering that they may impart strong control over 

marine plankton dynamics (Richardson et al., 2009; Robinson et al., 2014).  As highly 

efficient feeders, jellyfish can substantially impact their prey populations by direct 

predation.  Jellyfish anatomy is highly adapted for efficient feeding.  Jellyfish are 

non-visual predators that capture prey by direct contact (using nematocycts or 

colloblasts in cnidarians and ctenophores, respectively), enabling them to feed in dark 

or turbid environments.  Due to their high water content, jellyfish can grow very 

quickly, allowing them to capture more food with their large bodies (Acuna et al., 

2011).  Additionally, jellyfish feeding tends not to saturate at high food 
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concentrations and thus they will continually consume more at higher prey densities 

(Purcell & Arai, 2001).   

In Chesapeake Bay, both sea nettles and ctenophores can consume high amounts of 

mesozooplankton and fish eggs and larvae, clearing 13-94% of the copepod standing 

stocks per day (Purcell, 1997) and 7-32 % and 4-38% of the fish egg and larvae 

population per day, respectively (Purcell et al., 1994; Purcell, 1997). In the 

Chesapeake Bay, sea nettles are largely thought to be top predators and also consume 

ctenophores and can eliminate them within the tributaries (Purcell & Cowan, 

1995).  Unlike the sea nettle, ctenophores consume oyster larvae and 

microzooplankton as well (Purcell et al., 1991; Sullivan & Gifford, 2004).  These 

direct pairwise predatory relationships are relatively easy to quantify in feeding 

experiments, however, indirect effects, or those that emerge in multispecies 

assemblages are more difficult to study (Wootton, 1994; Wootton, 2002).  

Observations suggest that one indirect effect of the decline in sea nettles is a trophic 

cascade that results in an undesirable ecosystem with low mesozooplankton and high 

phytoplankton biomass (Feigenbaum & Kelly, 1984; Kimmel et al., 2012; Purcell & 

Decker, 2005; Testa et al., 2008). Since the decrease in sea nettles in the 1960s, the 

summertime abundance of the ctenophore has increased (Breitberg & Fulford, 2006) 

and the dominant crustacean mesozooplankton, Acartia tonsa, has declined (Kimmel 

et al., 2012; Testa et al., 2008), presumably due to increased predation.  Indeed, the 

combined clearance of copepods by gelatinous predators is higher in years with low 
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sea nettle abundance (Purcell & Decker, 2005).  Additionally, the trophic cascade 

may also reach the level of phytoplankton as long-term monitoring has shown that 

chlorophyll a has increased over the concomitant time period, despite the reduction of 

inorganic nutrients (Testa et al., 2008).  However, as these are correlations, it is not 

clear whether declines in the sea nettle are the actual cause of these changes in the 

lower food web.   

Trophic cascades, like all indirect effects, are complex to study (Terbough & Estes, 

2010; Wootton, 1994; Wootton, 2002) and difficult to assess solely through 

experiment or observation.  Mechanistic models are an ideal tool to look at the system 

holistically in order to manipulate components in isolation to establish causal 

linkages.  However, there are no governing equations for ecological systems and the 

choice of the structure and equations can be rather subjective (as mentioned by 

Anderson et al., 2015; Fennel & Neumann, 2004; Jopp et al., 2011).  The structural 

complexity of process-based aquatic ecosystem models (also called biogeochemical 

or nutrient-phytoplankton-zooplankton (NPZ) models) may include between 2 to 90 

state variables (Arhonditsis & Brett, 2004) and various combinations of linkages 

between variables.  The functional form of the linkages of the main NPZ processes 

may be formulated using between 5 to 20 commonly used equations (Tian, 2006). 
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Once an ecosystem model is formulated, a large number of parameters, which 

commonly represent process rates, must be assigned values. These parameters are 

often largely unconstrained (Schartau et al., 2017) due to the difficulty in directly 

measuring these processes or the differing scales between models and experiments or 

measurements. In order to specify parameter values, models are most commonly 

calibrated manually (91.5% of models reviewed in Arhonditsis & Brett, 2004) by 

changing the parameters values (often one-at-a-time) until the model output 

reasonably matches the observational data. The problem with manual tuning is that 

this method does not search the parameter space extensively and is subjective, relying 

on the modeler’s intuition and expertise, and thus doesn’t ensure that the resulting 

parameter value set is optimal.   

To ensure that a model is adequate to address ecological problems, it is desirable to 

objectively calibrate models, which may also reveal problems with the model 

formulation (Kennedy & O’Hagan, 2001; Spitz et al., 2001; Vallino, 2000). Chapter 2 

develops a new model to include jellyfish and uses a Bayesian data assimilation 

method to enhance objectivity in the calibration stage. With the model developed in 

Chapter 2, Chapter 3 explores the question of trophic cascades and ecosystem effects 

imparted by changes in sea nettle populations in the Chesapeake Bay.    
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Chapter 2: Abundance and patchiness of Chrysaora 

quinquecirrha medusae from a high-frequency time series in the 

Choptank River, Chesapeake Bay * 
 

 

 

 

 

 

 

*Reprinted with minor modifications from “Abundance and patchiness of Chrysaora quinquecirrha 

medusae from a high-frequency time series in the Choptank River, Chesapeake Bay” by Tay, J. T & R. 

R. Hood, 2017, Hydrobiologia, 792: 227-242. 2016 by Springer International Publishing. 

 

The species name Chrysaora quinquecirrha is retained in this chapter for consistency with the 

published manuscript, which was published prior to the species name change. 
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Abstract 

Despite strong control over marine plankton dynamics and negative impacts on 

human activities, jellyfish are not well quantified due primarily to sampling 

difficulties with nets. Therefore, some of the longest records of jellyfish are visual 

shore-based surveys.  As surface counting is inexpensive and simple, it is of interest 

to determine what can be learned from such records as well as the usefulness of the 

method.  I analyzed a 4-year high-frequency time series of Chrysaora quinquecirrha 

medusae counts collected using three sampling methods in the Choptank River, 

Chesapeake Bay.  Medusa abundance was modeled by change points and was highly 

correlated between the sampling methods.  The remaining signal was random and 

indices of aggregation (fit to the Poisson distribution, Taylor’s Power Law (TPL) and 

Morisita’s Index) indicated that medusae were aggregated.  An idealized 

conceptualization of the temporal sampling scheme into space suggests that the upper 

bound of the patch size is on the order of kilometers.  TPL indicated that patches 

grew in the number of individuals as abundance increased.  Our results enhance 

knowledge of local C. quinquecirrha abundance and patchiness, alluding to processes 

that generate these patterns. This study also provides direction for improving 

population monitoring from visual shore-based surveys. 
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Introduction 

There is growing interest in jellyfish, among the scientific community as well as the 

general public, as we learn more about their strong control over marine plankton 

dynamics (Richardson et al., 2009; Robinson et al., 2014) and as their negative 

impacts on human commercial and recreational activities increase (Purcell et al., 

2007; Purcell, 2012).  In Chesapeake Bay, the scyphozoan medusa, Chrysaora 

quinquecirrha (Desor, 1848), is a keystone predator that consumes crustacean 

mesozooplankton, fish eggs and larvae, and ctenophores (Purcell et al., 1994; Purcell, 

1997; Feigenbaum & Kelly, 1984; Purcell & Cowan, 1995; Purcell & Decker, 2005), 

strongly impacting the flow of carbon within the food web (Baird & Ulanowicz, 

1989; Libralato et al., 2006). Aside from the consequences for fisheries, C. 

quinquecirrha is a common nuisance to swimmers and watermen and their blooms 

have even disrupted operations at a nuclear power plant (the Calvert Cliffs Nuclear 

Power Plant on the western shore of Chesapeake Bay).  However, advances in our 

understanding of the ecological and human impacts of jellyfish have been hampered 

by the lack of information of jellyfish abundance or biomass (Purcell, 2009; Pauly et 

al., 2009).    

Generally, long-term data on jellyfish populations are lacking in part due to 

difficulties sampling with net tows (Haddock, 2004) and as a result, some of the 

longest records of jellyfish are from visual shore-based surveys (Purcell, 2009).  One 

example is the time series of C. quinquecirrha from the Chesapeake Biological 
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Laboratory pier that started in 1960 in the Patuxent River, a tributary of the 

Chesapeake Bay (Cargo & King, 1990).  This time series has been used to assess 

inter-annual variability (Cargo & King, 1990) and long-term change (Breitburg & 

Fulford, 2006) of C. quinquecirrha abundance and has also been included in analyses 

of global jellyfish populations (Brotz et al., 2012; Condon et al., 2012).  Thus, it is of 

interest to fully understand the information captured by surface counting at a fixed 

station.  Such methods capture two signals: abundance as well as spatial 

patchiness.  Spatial patchiness may be observed due to behavior of medusae 

swimming horizontally or vertically into the sampling region but is also due to tidal 

and estuarine advection that moves different parcels of water in and out of the survey 

area (Lee & McAlice, 1979). 

Jellyfish, like all zooplankton (Haury et al., 1978), exhibit spatial patchiness at 

multiple scales.  C. quinquecirrha medusae are heterogeneous at the Bay-wide scale, 

most likely found in the mesohaline portion of the Bay at salinities between 10 to 16 

(Decker et al., 2007).  This pattern may be generated by both the salinity 

requirements of benthic polyps for optimal strobilation (Cargo & Schultz, 1967; 

Purcell et al., 1999; Black & Webb, 1973), and possibly behaviors that retain 

medusae in suitable habitat (Kimmerer & McKinnon, 1987; Kimmerer et al., 1998; 

Albert, 2007).  It has also been recognized that C. quinquecirrha form smaller-scale 

aggregations and/or swarms (Hamner & Dawson, 2008; Mayer, 1910), however C. 

quinquecirrha aggregations specifically have not been studied.  Previous studies of 
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jellyfish aggregations have utilized intensive sampling methods, such as blue-water 

SCUBA (Hamner et al., 1975; Zavodnik, 1987; Costello et al., 1998), plane (Purcell 

et al., 2000) or acoustic and optical technologies (Graham et al., 2003).   

Count data collected from quadrats, such as those collected from a fixed-station, or 

net tows can also be used to understand patchiness.  The most common method is to 

compare the counts against the null hypothesis of complete spatial randomness 

(CSR), which is modeled by the Poisson distribution (Krebs, 1999).  Many other 

indices of aggregation have been developed and are widely used in both terrestrial 

and aquatic studies to detect patchiness.  The exponent of Taylor’s Power Law (TPL; 

Taylor, 1961) is also based on deviations from CSR.  Because of the ubiquity of TPL 

(Eisler et al., 2013), there has been a great deal of theoretical work on mechanisms 

that may generate patchiness that adheres to the scaling law (Taylor & Taylor, 1977; 

Kilpatrick & Ives, 2003; Hanski, 1980; Perry, 1988; Anderson et al., 1982; Kendal, 

1995).  Additionally, Morisita’s Index (Im; Morisita, 1959) has been championed 

because, in addition to detecting aggregation, it can also distinguish the degree of 

aggregation and can be compared across different densities (Hurlbert, 1990; Pinel-

Alloul, 1995).   

The goal of this work was to describe the signals of abundance and patchiness present 

in a fixed-station record.  I analyzed a 4-year time series of C. quinquecirrha medusa 

counts collected twice per day in the Choptank River, Chesapeake Bay (Sexton, 

2012).  This time series contains an unprecedented amount of intra-seasonal data for 
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C. quinquecirrha, ideal for understanding the signal of spatial patchiness in a fixed-

station time series.  The change in abundance over time was described using a change 

point model and the fit was analyzed using autocorrelation analysis.  Each of the 

segments was then summarized using indices of aggregation to detect and quantify 

patchiness.  I also compared abundance and patchiness across three sampling methods 

that sample across two horizontal grains and in the vertical dimension.  I used a 

simple model of tidal and estuarine advection to conceptualize how water moves past 

the fixed station over time in order to understand the spatial context of the 

results.  These analyses showed that seasonal medusa abundance changed in steps and 

that the bloom progressed differently year-to-year.  The abundance from the three 

sampling methods were highly correlated, showing that the surface counting methods 

can be used as an index of local water column abundance.  Additionally, medusae are 

patchy and the aggregations were smaller than the scale of kilometers.  This study 

highlights the benefits and drawbacks to fixed-station sampling and gives 

recommendations to improve the monitoring of C. quinquecirrha.   

Materials and Methods 

Study area 

The Choptank River is a wide, relatively shallow tributary on the eastern side of the 

Chesapeake Bay, USA (Fig. 2. 1).  The surface area is approximately 300 km2 and 

mean depth is 3.6 meters (Fisher et al., 2006).  The salt-intrusion length is 60-70 km 

(Fisher et al., 2006) and the median monthly streamflow (Jun-Aug) is 1.25 m3 s-1 

(USGS Greensboro, MD), which can drive two-layer estuarine circulation (Goodwin, 
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2015).  The river experiences semi-diurnal tides.  Samples were collected from the 

east side of the Horn Point Laboratory pier, in Cambridge, Maryland, which is on the 

southeast side of the Choptank River (38° 35.610’ N, 76° 7.725’ W; Fig. 2. 1 

Conceptual diagram of sampling location).  The mean, minimum and maximum 

summer salinity for 2005 was 10.0, 8.1, and 12.3, respectively.  The mean depth at 

the sampling location is 2.3 m.     

Data description 

The available high-frequency time series counts of Chrysaora quinquecirrha 

medusae spanned the years 2005 to 2008 and were collected by Margaret Sexton 

(Sexton, 2012).  Beginning in 2005, counts were made twice daily at 7 AM and 7 PM 

until 16 September 2005, when scheduling was changed to sunrise and 20 minutes 

before sunset in order to control for light conditions and to make observations before 

dark.  Calculated sunrise and sunset times for Cambridge, Maryland, USA were 

downloaded from the United States Naval Observatory 

(http://aa.usno.navy.mil/data/docs/RS_OneYear.php). Each year, observations ceased 

when no medusa had been observed for ten consecutive days.  

At each time point, C. quinquecirrha medusae were counted using three different 

sampling methods (Fig. 2. 1).  An observer counted the number of medusae visible at 

the surface within a 183 m2 area (3 m width x 61 m length, hereinafter referred to as 

the ‘dock count’) and a 9 m2 area (3 m width x 3 m length, hereinafter referred to as 

the ‘visual count’).  Additionally, the medusae in the water column were counted 
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using a 9 m2  square flat net (0.6 cm nylon mesh; hereinafter referred to as the ‘net 

count’) that laid on the bottom at the same location as the visual count and was raised 

slowly, vertically through the water column.  The dock count is a comparable method 

to how C. quinquecirrha have been monitored since the 1960s in the Chesapeake Bay 

(Cargo & King 1990).  The visual and net counts provide information for a smaller 

horizontal grain and the vertical dimension, respectively.  Additionally, medusae 

were crudely categorized as small (approximately <4 cm), medium (approximately 4-

8 cm), or large (approximately >8 cm) using visual estimation.   

Software 

All analyses were performed in R 3.1.0.  Specific packages and arguments are 

indicated where applicable.   

Time series analysis 

The purpose of the time series analysis was to describe the abundance change over 

time.  Cursory examination of the time series suggested that the abundance changed 

in steps, so change point analysis (also called segmentation) was used to detect 

changes in the time series of dock counts using the Segmentor3IsBack package 

(Cleynen et al., 2014).  The function Segmentor efficiently estimates the optimal 

breakpoint locations, using the minimal negative log-likelihood, for each 

segmentation of 1 to K segments.  The function SelectModel chose the optimal 

number of segments (from 1 to K) using oracle penalties (argument: penalty = 

“oracle”; Cleynen & Lebarbier, 2013).  The threshold for the largest complexity 



 

  19 

 

 

(argument: seuil) was set to n/(2*log(n)) (Arlot & Massart, 2009), where n is the 

number of data points.  The identified change points were used to segment the visual 

and net count time series as well.  Each resulting time series segment was analyzed 

for temporal autocorrelation to confirm that the model was a good description of the 

data.   

Abundance estimates and comparison 

Abundance was estimated as area or volume-weighted mean population density 

(Craig, 1984; Stehman & Salzer, 2000) in units of number m-2 and number m-3, 

respectively.  To calculate area-weighted mean density, �̅�, the mean count for each 

time series segment was scaled by the mean area of the relevant sampling method:  

�̅�  =   
Σ𝑎𝑟𝑒𝑎𝑖𝑑𝑖

Σ𝑎𝑟𝑒𝑎𝑖
=  

Σ𝑐𝑜𝑢𝑛𝑡𝑖

Σ𝑎𝑟𝑒𝑎𝑖
=  

1
𝑛 Σ𝑐𝑜𝑢𝑛𝑡𝑖

1
𝑛 Σ𝑎𝑟𝑒𝑎𝑖

     

where 𝑎𝑟𝑒𝑎𝑖, 𝑑𝑖, and 𝑐𝑜𝑢𝑛𝑡𝑖 are the area, medusae density, and count of the ith 

segment, respectively. 

The areas for the dock and visual counts were 183 m2  and 9 m2, respectively.  To 

compare the abundance of the net counts, volume-weighted density was calculated for 

all sampling methods.  Net counts were scaled by 9 m2 * 2.3 m, the surface area 

multiplied by the average depth of the net haul.  Dock and visual surface counts were 

scaled by their respective volumes, calculated as surface area multiplied by both 0.1 

m (diameter of large C. quinquecirrha medusae) and 1 m (mean secchi depth for 

2005) because the depth to which surface counting methods sample is unknown (Fig. 
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2. 1).  This resulted in a maximum and minimum abundance as measured by the dock 

and visual counts.  Three segments were removed from the comparison between the 

surface and net counts that corresponded to periods when the methods were known to 

be incomparable due to cold temperatures that caused medusae to sink to the bottom 

(Sexton et al., 2010).  Abundances for each sampling method were compared by 

linear regression.  The resulting time series were plotted to visualize the intra-annual 

changes in abundance and the inter-annual differences in bloom progression.  The 

size distribution of medusae for each time series segment was calculated by scaling 

the number of medusae in each size category by the total number of medusae 

observed within the respective segment.  

Patchiness characterization 

To assess whether medusae were aggregated, counts for each data segment were fit 

by maximum likelihood to both the Poisson distribution, as specified by the null 

hypothesis of Complete Spatial Randomness (CSR), and Negative Binomial 

distribution, as a model for aggregation.  The fits were assessed using Pearson’s chi-

square goodness-of-fit (function: chisq.test).  Due to small counts in each bin, p-

values were computed by Monte Carlo simulation (argument: simulate.p.value = 

TRUE).  Aggregation was also detected using the exponent from Taylor’s Power Law 

(TPL) and Morisita’s Index (Im).  The power exponent, b, of TPL (variance = 

a*meanb) was estimated as the slope of the multiple linear regression of the log-

transform of both of the variables (log variance ~ sampling method * log mean). 

Difference in the regression for each of the three sampling methods was determined 
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by the interaction term in the multiple linear regression (ANCOVA).  Im is defined as 

the probability of sampling two individuals in the same quadrat as compared to that 

probability as sampled from a population distributed at random: 

Im = n ∑(
xi

X
)(

xi−1

X−1
), where xi is the count in the ith quadrat, X is the total count, and n 

is the number of observations.  Im was estimated by: 

 Im̂ =  
s2−m

m2−(
s2

n
)

+ 1 , where s2 is variance, m is mean, and n is as above (Hurlbert, 

1990). 

Segments with less than 25 data points were removed from the analysis due to 

negative bias in Im calculated from small samples (Ricklefs & Law, 1980). Three net 

count segments were removed, corresponding to periods of cold temperatures that 

cause medusae to sink to the bottom (Sexton et al., 2010), as their aggregation was 

likely different under these circumstances.  Im was compared across mean density 

and between sampling methods using weighted least squares regression, which 

corrected for heterogeneity of variance between the sampling methods.  Reciprocal of 

the variance of Im of each sampling method was used as the weights.  Tukey post-hoc 

tests were used to compare between sampling groups using the multcomp package 

(Hothorn et al., 2008).  Non-parametric Kruskal-Wallis tests were also computed, 

followed by Conover’s test for post-hoc pairwise comparisons (PMCMR package; 

Pohlert, 2014). 
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Idealized modeling of sampling scheme 

The data are a time series but contain spatial information as patches move in and out 

of the sampling area.  In order to better understand the scales of patchiness, I use a 

conceptual model to describe how the temporal sampling scheme maps onto space.  I 

assume that the surface waters in the Choptank River can be described as a 1-

dimensional rigid object that moves past the fixed station due to tides and 

advection.  The distance that any one point at the surface is advected in a given 

amount of time, x(t), is a function of semi-diurnal tides (A = 5 km for a 10 km tidal 

extent and  = 2pi/12.42 hours) and of downstream residual circulation (s = 0.036 

km/hour (0.01 m/s)): 

𝑥(𝑡) = 𝐴 ∗ sin(𝜔𝑡) +  𝑠𝑡. 

 t represents the time lapsed from the time of the first sample and x represents the 

distance moved in that time.  The distance between any two sampling times is ∆𝑥 =

𝑥(𝑡𝑚) − 𝑥(𝑡𝑛), where m and n are different sampling times.  Times were taken from 

the field sampling scheme for 2006, which is representative of any of the years.  This 

simple model shows whether sampling is random or non-random in space and 

provides order-of-magnitude estimates for the spatial scales of the sampling, such as 

the distance between samples.  
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Results 

Time series analysis 

The high-frequency time series of C. quinquecirrha dock counts was well modeled by 

change points (Fig. 2. 2), demonstrated by the general lack of temporal 

autocorrelation in each resulting time series segment (Fig. 2. 3).  The number of 

change point segments was different in each of the sampled years: 9 segments in 

2005, 6 in 2006 and 2007, and 4 in 2008 (Fig. 2. 2).  The median segment length was 

26 data points (13 days).  The minimum segment length was 9 data points (4.5 days) 

and the maximum length was 99 data points (45.5 days; Online Resource 

1).  Although the change points were chosen based on the dock data, similar lack of 

autocorrelation of the segments suggest that the segmentation was valid for the visual 

and net counts as well.  However, there were some exceptions, as some segments 

showed temporal autocorrelation.  For dock counts, there was significant temporal 

autocorrelation (r > .5) found at a lag of 2 for segment number 2 in 2006 (Fig. 2. 

3).  A similar pattern was seen in the ACF for the visual and net counts.  In addition, 

for net counts a significant temporal autocorrelation was found in 2005 for segment 9 

and in 2006 for segments 5 and 6 (not shown), which started at lag 1 and decreased 

over time.  For visual and net counts, a few other segments showed weak but 

significant autocorrelation, mostly at lag 1 or 2. 
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Abundance estimates and comparison 

Abundances from both surface counting methods (dock and visual counts) were 

highly positively related (r^2(21) = .96, p < 2 e-16) with a slope that was not 

significantly different from 1 (b = 1.03, 95% CI = 0.93 - 1.12; Fig. 2. 4a), which 

suggests both methods result in equivalent abundance estimates.  Minimum and 

maximum abundance for each time series segment, calculated from surface counts 

using maximum (1 m) and minimum (0.1 m) depths, respectively, were also highly 

correlated to abundance from the net counts (Table 1), however, the regression slopes 

were not 1 (Fig. 2. 4b, Table 2. 1). The minimum surface counts resulted in estimates 

that were approximately 1/3 of the net estimates and maximum surface counts 

resulted in estimates 3.8 times greater than net estimates.  Although the range in 

estimates is wide, the 1:1 line fell between the estimates of minimum abundance and 

maximum abundance (Fig. 2. 4b).   

Due to high correlations between the three abundance estimates (calculated from the 

dock, visual, and net count sampling methods), the three annual abundance time 

series generally showed the same patterns.  The abundance time series estimated from 

the dock counts is shown for conciseness (Fig. 2. 5a).  The blooms in 2005 and 2006 

were large and prolonged.  In 2005, the abundance increased to a peak that began on 

year day 249 and lasted 34 days, after which, abundance declined.  However, 

medusae were observed until year day 319.  In 2006, the abundance increased faster, 

with high abundances beginning on year day 187 that plateaued before 
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declining.  Medusae were observed until year day 302.  In 2007, both the peak and 

the season duration were the shortest of the 4 years; the peak started on year day 234, 

lasting 6 days before declining, and the last medusa was observed on year day 

252.  In 2008, there was relatively low abundance throughout the season.  The peak 

abundance was at least 3-4x lower than the 3 previous years and began on year day 

222, lasting over 1 month.  Medusae were observed until year day 284.  The 

abundance dropped within the season in years 2005 (Segments 4 and 6), 2006 

(Segment 3) and 2007 (Segment 3).   Every year had a high proportion of small 

medusae at the beginning of each season, which declined as the season progressed 

(Fig. 2. 5b).  2005 and 2008 had a second period with an increased proportion of 

small medusae.  Compared to the other years, 2005 had a high and 2006 had a low 

proportion of small medusae throughout the respective seasons.  Un-scaled, the 

abundance of medium and large medusae generally exceeded that of small medusae at 

concurrent and previous time segments. 

Patchiness characterization 

Generally, C. quinquecirrha were aggregated as demonstrated by three indices of 

aggregation (fit to the Poisson, TPL, and Im).  Most segments did not fit the Poisson 

distribution (p < .05; Fig. 2. 6), thereby rejecting CSR.  Further, the Negative 

Binomial distribution provided an adequate description of these data, as shown 

through goodness-of-fit and quantile-quantile plots, suggesting that medusae are 

clumped rather than random uniform or regularly spaced.  However, segments with 
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low counts (generally less than 5) fit the Poisson distribution and therefore failed to 

reject CSR. Similarly, the TPL regression line mostly fell above the 1:1 line, 

suggesting the counts were aggregated, but fell below the 1:1 line at low counts, 

suggesting TPL failed to reject CSR at low counts (Fig. 2. 7).  TPL failed to reject 

CSR at mean counts less than 1, which was lower than found by distribution 

fitting.  Likewise, most all segments were considered aggregated according to 

Morisita’s Index (Im) (Fig. 2. 8). The mean of Im was 3.06 ± 0.7 s.e., suggesting that 

two jellyfish are approximately 3 times more likely to be found in the same quadrat 

than if distributed randomly.   

Further analysis of TPL showed that there was significant difference in the slopes of 

the TPL regression (power exponent) between sampling methods  (F(2,63) = 5.09, p 

= .0089; Fig. 2. 7a), however, this difference was driven by low means in visual and 

net counts.  The slope for the dock data was 1.92 ± 0.05 s.e. and was not significantly 

different from 2 (1.80 - 2.04 95% CI).  The slopes for the visual and net count data 

were 1.62 ± 0.075 s.e. and 1.64 ± 0.090 s.e., respectively, and both slopes were 

significantly less than 2 (1.46 - 1.78 and 1.46 - 1.83 95% CI).  Removal of cases with 

means less than 1 resulted in slopes that were not significantly different between 

sampling methods (F(2,43) = 0.71, p = .5; Fig. 2. 7b) and not different from 2 (1.71 – 

2.03 95% CI).  This demonstrates that low counts, which are captured by the visual 

and net methods, inflate the variance and lower the TPL slope.   
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Further comparison of Im revealed that the index did not have a relationship with 

mean count (beta = 0.001, p = .89) but was different between the three sampling 

methods (F(2,25) = 4.27, p = .025; Fig. 8).  However, individual post-hoc tests failed 

to detect significant differences between groups, likely due to lack of power in the 

available dataset.  Although insignificant at the .05 level, Im for the net count was 0.6 

less than Im for the dock count (t = -2.18, p = .085) and 1.6 less than the visual count 

(t = 2.23, p = .077), suggesting that the net counts were less aggregated than the 

counts of the other two methods.  Non-parametric tests gave similar results, showing 

differences in Im between sampling methods (Kruskal-wallis chi-sq(2) = 6.18, p = 

.045).  Non-parametric post-hoc comparisons with Conover’s test showed that the Im 

for the net count was significantly different from the visual count (p = .042), but did 

not detect significant differences between the other pairwise comparisons. 

Idealized modeling 

Idealized modeling of tidal and estuarine advection revealed that the temporal 

sampling procedure resulted in non-random sampling, tracing three patterns in space 

(Fig. 2. 9).  The first pattern was that later time points sample locations that are 

upstream from the location sampled at the fixed-station at t = 0.  This is due to 

constant downstream estuarine advection in the surface layer.  After 28 days (4 

weeks), the samples were of water that was approximately 30 km upstream, 

referenced to t = 0.  The second pattern was a sinusoid in space, with a period of 

approximately 2 weeks, revealing that the samples taken about 14 days apart are 
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closer in space in relation to their location in the tidal cycle.  The third pattern was a 

day-night pattern in that the location of the sample one morning was closer in space 

to the sample of the next morning than to the evening in between.  Samples taken 

approximately 24 hours apart were on the order of kilometers apart.  The latter two 

patterns were caused by aliasing due to sampling at a different frequency than the 

semi-diurnal tides and are not present in a continuous temporal sampling scheme 

(grey line in Fig. 2. 9).  

Discussion 

Medusa abundance 

Seasonal medusa abundance was well described using a change point model since the 

resulting segments lacked temporal autocorrelation.  This model suggests that 

abundance was constant and changed as a step change after approximately every 13 

days, which was the median segment length.  Within-season drops in abundance may 

have been spuriously generated by the segmentation routine due to some chance of 

not observing medusae for several consecutive days.  It was not a priori evident that 

the seasonal abundance of medusae should change in steps (Sexton, 2012). I 

hypothesize that two mechanisms may give rise to this model at a fixed station.  First, 

the constancy in abundance through the duration of each segment may be due to 

behavior, such as DVM, which retains medusae in the sampling region (Bosch & 

Taylor, 1973; Kimmerer et al., 2014).  Supplementary analysis of the data showed 

that there was a higher proportion of medusae in the surface in the evening than in the 



 

  29 

 

 

morning (Fig. 2. 10), demonstrating that C. quinquecirrha exhibit DVM in the field, 

an extension from previous laboratory studies (Schuyler & Sullivan, 1997).  Second, 

the step change in abundance may be due to pulsed strobilation (Cargo & Schultz, 

1967; Calder, 1974).  Strobilation of C. quinquecirrha exhibits semilunar periodicity 

(Calder, 1974), which is consistent with the median segment length detected by 

change point analysis.  Given that more large than small medusae were observed, it is 

likely that a high proportion of the medusae are not produced locally but in smaller 

creeks elsewhere (Feigenbaum & Kelly 1984; Breitburg & Burrell 2014).  Together, 

these mechanisms suggest that the fixed station is sampling a population that is 

retained by behavior and grows due to pulsed birth over the season.   

The seasonal progression of medusa abundance was different for each of the sampled 

years from 2005 to 2008.  The magnitude of the peak was largest in 2005 and 2006 

due to recruitment of medusae over the season (Fig. 2. 5a).  Relative to the other 

years, 2005 and 2006 had a higher and lower proportion of small medusae, 

respectively (Fig. 2. 5b).  Differences in the size distribution may reflect differences 

in sources of medusae and/or growth rate between years.  2007 also had high 

recruitment and a bloom, but the population declined much earlier than the other three 

years.  The phenomenon of early decline is also observed in the Patuxent River record 

(Sexton et al., 2010; Sexton 2012) and is preceded by observations of medusae with 

degenerating oral arms (Doores & Cook, 1976; Sexton et al., 2012).  2008 had low 

recruitment and the population seemed to plateau.  The reasons for this lack of 
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population growth are not clear; and explanations may include lowered rates of 

strobilation (Purcell et al., 1999) and/or poor recruitment of ephyrae to the adult 

stage.  The length of the peak lasted from 1 week (2007) to over 1 month (2008) and 

occurred as early as year day 187 (July 7) in 2006 and as late as year day 249 (Sep 7) 

in 2005 (Fig. 2. 5a).  Past studies of C. quinquecirrha have utilized definitions of 

peak abundance based on fixed dates and/or fixed windows of time (Cargo & King, 

1990; Breitburg & Fulford, 2006; Sexton, 2012).  Our method extracts the true local 

peak using change point analysis, which allows for inter-annual variability in the 

duration and timing of the seasonal cycle of medusae. 

The seasonal cycle in 2006 had some anomalies that illustrate that a fixed station 

provides only a limited view of the C. quinquecirrha bloom.  Segment 2 in 2006 had 

temporal autocorrelation at lag 2, approximately 24 hours apart (Fig. 2. 3).  This 

autocorrelation is likely not due to DVM, as it was only detected in this one 

segment.  Instead, at this time, there was extreme streamflow, greater than 56.6 m3 s-1 

compared to the 66-year median of less than 1.13 m3 s-1 (USGS 

Greensboro).  Extreme streamflow could have created a large-scale gradient from low 

to high medusae and could explain the temporal autocorrelation at lag 2.  Idealized 

modeling showed that time points at lag 2 were closest in horizontal space (samples 

approximately 1 day apart were collected kilometers apart; Fig. 2. 9) and this means 

that the non-random sampling scheme would alternate sampling within regions of low 

then high medusae, generating an autocorrelation at this scale.  After, the population 
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appeared to rebound at Segment 4 (Fig. 2. 5), which could be due to medusae moving 

back upstream or due to new recruitment.  If there was new recruitment, then the 

bloom could be underestimated in this year.  This demonstrates that extreme or long-

term changes in streamflow can shift the observable population intra- or inter-

annually, which could cause patterns in abundance that are the result of observer bias 

from sampling in only one location. 

Although fixed-station sampling may be susceptible to bias, the main advantage is 

that surface sampling is inexpensive and simple.  This study shows that surface 

counting can provide an index of water column abundance since abundance measured 

by surface counts and the net haul were highly correlated.  Surface counts may be 

representative of the water column at this station because it is shallow (2.3 m) and the 

water is generally well mixed, without a distinct pycnocline.  However, surface 

counts may not reflect water column abundance when measured in deeper waters of 

Chesapeake Bay, especially where there is a distinct pycnocline that may aggregate or 

restrict the vertical distribution of medusae (Graham et al., 2003; Suzuki et al., 2016; 

Moriarty et al., 2012; Rakow & Graham, 2006).  As fixed-stations are generally 

located in shallow waters, increasing these stations could help increase the amount of 

Bay-wide information on medusae abundance and variability.  Additionally, 

abundance measured by the two surface counting methods, dock and visual counts, 

are highly related.  It has been noted that different sampling grains can often lead to 

similar abundance estimates (Dungan et al., 2002).  The small sampling grain (3 x 3 
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m) is conducive to a citizen science project and may provide a feasible way to 

increase spatial sampling of C. quinquecirrha medusae.   

Patchiness of Medusae 

Fit to a change point model made separating the signal of abundance and patchiness 

straightforward; indices of aggregation were used to summarize the patchiness signal 

within each of the time series segments.  The indices of aggregation (lack of fit to 

Poisson, power exponent of TPL, and Im) all generally showed that the spatial 

structure of C. quinquecirrha medusae was patchy, which was expected as they, like 

most scyphozoans, form conspicuous aggregations (Mayer, 1910; Hamner & 

Dawson, 2008).  Two medusae are on average 3 times more likely to be found in the 

same quadrat than if distributed randomly, according to the interpretation of 

Im.  Goodness-of-fit tests had some difficulty detecting aggregation in segments with 

low counts.  The data fit both the Poisson or Negative Binomial distributions when 

counts were less than 5 because the distributions are very similar at low densities 

(Fig. 2. 6f).  TPL and Im were more sensitive at detecting aggregation at low 

densities, but they also indicated lack of aggregation at the lowest densities (Taylor, 

1961; Taylor et al., 1978).  With one exception, these non-aggregated cases occurred 

in the visual count during the beginning or end of a season.  This suggests that at low-

density periods, patches were larger than the scale of the visual count area 

(individuals were spaced greater than 3 m apart) because aggregation was detected in 

the dock and net count methods at these times.    
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As these data were a time series, I used idealized modeling to infer the patch 

size.  Idealized modeling showed that the closest samples were collected at scales of 

kilometers apart (at lag 2; Fig. 2. 9), thus, lack of autocorrelation at lag 2 implies that 

regions on the order of kilometers apart are uncorrelated and patches should be 

smaller than this scale.  Kilometer scales are the upper bound on patch size because 

that is the scale of the minimum distance between samples and we cannot determine 

if the lack of autocorrelation is due to smaller-scale variability.  There may be 

patchiness at the scale of 1-10 meters due to similarity of Im between the dock and 

visual counts, which may suggest nested patchiness (patches within patches) at these 

scales.  Indeed, jellyfish have generally been observed in fine-scaled aggregations 

(10-100 meters; Miyao et al., 2014; Purcell et al., 2000).  Small-scale patchiness is 

predominately generated by behavioral processes (reviewed in Pinel-Alloul, 

1995).  Medusae behave in response to a wide range of physical (Graham et al., 2001; 

Costello et al., 1998; Rakow & Graham, 2006; Magome et al., 2007; Fossette et al., 

2015), chemical (Albert, 2011) and biological (Matanoski et al., 2001; Hamner et al., 

1994) stimuli that may generate aggregations.  The observed scales of C. 

quinquecirrha patchiness are smaller than the 10s of kilometer-scale patchiness 

observed for crustacean mesozooplankton in Chesapeake Bay (Zhang et al., 

2006).  This difference may be expected since medusae are stronger swimmers and 

less abundant than mesozooplankton.    
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Results from TPL allude to the dynamics of medusae aggregations.  The TPL 

exponent was found to be 2 (Fig. 2. 7), which results if, as the population grows, 

aggregations have proportionally more individuals as opposed to the spatial 

distribution becoming more uniformly random or evenly dispersed.  Numerous 

studies have considered the processes that may generate the TPL relationship (Taylor 

& Taylor, 1977; Kilpatrick & Ives, 2003; Hanski, 1980; Perry, 1988; Anderson et al., 

1982; Kendal, 1995).  However, many of these models consider patchiness due to 

population dynamic processes, such as variability in birth, death, and 

immigration.  However, the mechanisms that generate patchiness depend on the time 

and space scales of sampling (Soberón & Loevinsohn, 1987) as well as the species’ 

life history.  Aggregations of C. quinquecirrha do not grow due to reproduction of 

medusae within patches because C. quinquecirrha has a bipartite lifecycle.  Instead, 

aggregations are formed due to medusae that “find” each other after benthic 

strobilation of ephyrae.  Kendall (1995) proposed a probabilistic model for TPL in 

which small patches of organisms migrate randomly through their environment until 

they become associated with larger groups, which may provide a good description of 

how aggregations of medusae grow across the season.  Behavior is likely important in 

maintaining cohesion between individuals.    

Conclusions 

This work extends previous efforts that monitor C. quinquecirrha in the Chesapeake 

Bay (Cargo & King, 1990; Breitburg & Fulford, 2006; Sexton et al., 2010; Sexton, 
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2012).  I found that a change point model was a good description of seasonal 

abundance at a fixed-station.  This model suggests that the fixed-station is sampling a 

local population that is retained by behavior and that grows due to pulsed birth over 

the season.  Thus, sampling at a fixed station is likely not representative of the larger 

Chesapeake Bay population and may be affected by bias.  However, high-frequency 

surface sampling, even within a small area (3 x 3 m), can provide an index for water-

column abundance.  Using citizen scientists may allow increased spatial sampling of 

C. quinquecirrha medusae across Chesapeake Bay and other Atlantic estuaries 

(Mayer, 1910).  Ideally, this work will encourage increased spatial sampling of 

medusae to improve our understanding of seasonal and long-term changes of C. 

quinquecirrha as they respond rapidly to natural and anthropogenic perturbations 

(Purcell et al., 2007; Purcell, 2012).  Additionally, improved Bay-wide abundance 

estimates will allow for the inclusion of keystone gelatinous predators in ecosystem-

based fisheries management models  (Purcell, 2009; Pauly et al., 2009).    

This is the first known attempt to quantify aggregation of C. quinquecirrha medusae 

in Chesapeake Bay.  Lack of fit to the Poisson distribution and the indices, Im and 

TPL, suggest that medusae are aggregated.  Understanding patchiness is important for 

accurately assessing abundance (Haury et al., 1978), and in fact, attention to this 

“nuisance” signal led us to choose the change point model.  Additionally, quantifying 

patterns of patchiness is the first step towards understanding the processes that drive 

it.  Further experimental work and individual-based modeling studies will help 
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elucidate the behaviors that generate and maintain aggregation.  Furthermore, 

studying patchiness is of interest for fully understanding the effect of gelatinous 

predators on ecosystem dynamics, diversity, and stability (Wiens, 2000; Levin, 1994; 

Steele, 1974).  While coarse-scale patterns (Decker et al., 2007) determine the range 

of C. quinquecirrha influence on plankton dynamics, smaller scale aggregations can 

affect the magnitude of this influence.  The TPL relationship determined in this study 

can be used in modeling studies to specify medusae patchiness across a range of mean 

densities in order to understand the impact of spatial variability of keystone predators 

on ecosystem dynamics.  
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Tables and  Figures 

Table 2. 1  Regression of abundance measured by surface counting and net haul 

methods 
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Fig. 2. 1 Conceptual diagram of sampling location 

a. Chesapeake Bay, USA with the sampling location at Horn Point Laboratory (HPL) 

in the Choptank River denoted by the dot b. Counts of medusae were collected using 

three sampling methods - two surface counting (dock and visual) methods and a 

vertical net haul (net).  The values reflect the dimensions that are sampled by each of 

the methods.  To compare the abundances sampled by surface (dock and visual) 

counts with those sampled by net counts, a minimum, 0.1 m, and maximum, 1 m, 

depth was used to calculate maximum and minimum abundance, respectively 
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Fig. 2. 2 Twice daily Chrysaora quinquecirrha medusa counts for three different 

sampling methods (dock, visual, net) 

Counts collected at Horn Point Laboratory from 2005 to 2008 for three different 

sampling methods Dotted vertical lines represent change points detected using the 

Segmentor3IsBack package (Cleynen et al., 2014) in R.  Numbers refer to segment 

numbers 
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Fig. 2. 3  Autocorrelation function for each 2006 segment for dock counts 

Lag is in units of sampling points (2 sampling points per day).  Blue dashed lines 

denote significance (p = .05).  Most segments had no significant 

autocorrelation.  Segment 2 in 2006 was an exception and showed high correlation at 

lag 2 
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Fig. 2. 4 Linear regressions of abundance as collected by different sampling 

methods 

Dotted line represents 1:1 line that is expected if two methods give the same estimate 

of abundance. a. Regression between abundances in number m-2 collected by the two 

surface counting methods. The slope was not significantly different from 1. b. 

Regression between the abundances in number m-3 collected by the net count and the 

surface counting methods. Because the depth to which medusae were observed from 

surface counting was ambiguous, a minimum, 0.1 m, and maximum, 1 m, depth were 

used to calculate a maximum (high) and minimum (low) abundance, respectively, for 

the two surface counting methods. The abundances were significantly related (see 

text) 
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Fig. 2. 5 Abundance and size distribution of medusae 

a. Abundance medusae per square meter as measured by dock counts.  The abundance 

for each segment is denoted by diamonds.  Grey boxplots show median, interquartile 

range, and extreme values of abundances collected during each time series 

segment.  b. Proportion of total medusae that fall within each size category for each 

segment as measured by dock counts. Medusae were categorized as small (<4 cm), 

medium (4-8 cm), or large (>8 cm) using visual estimation.  Width of the boxplot 

denotes the duration of the segment for both panels 
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Fig. 2. 6 Histograms for each 2006 segment for dock counts and maximum 

likelihood fits to both the Poisson (dotted line) and Negative Binomial (solid line) 

distributions 

Units of density are probability per count.  a-f represent Segments 1-6, respectively 
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Fig. 2. 7 Taylor’s Power Law (TPL) for Chrysaora quinquecirrha medusae 

Each point is the relationship between the log(mean) and log(variance) of one 

segment.  a.  TPL for all data  b. TPL with low counts (log(mean) less than 0 

removed).  The power exponent (slope) was 2 (F(2,43) = .71, p = .5, 1.71 – 2.03 95% 

CI) 
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Fig. 2. 8 Morisita’s Index (Im) for each sampling method 

Points represent Im for individual segments.  Boxplots show median and interquartile 

range.  Diamonds represent the mean. Im is different between sampling methods as 

shown through weighted-least squares regression and Kruskal-wallis (F(2,25) = 4.27, 

p = .025, Kruskal-wallis chi-sq(2) = 6.18, p = .045).  Conover’s test shows that Im for 

the net count was significantly different from the visual count (p = .042), but other 

post-hoc pairwise comparisons failed to detect differences 
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Fig. 2. 9 Conceptual diagram showing how the temporal sampling scheme maps 

onto space assuming simple 1-dimensional motion of surface water due to 

advection and tides 

The distance from x0 (the sampling location at time 0) is plotted over time.  Grey 

lines show continuous sampling and black points show actual sampling.  Three non-

random spatial patterns are traced by the sampling scheme: downstream advection 

and two patterns generated by aliasing in which samples collected 1 and 14 days apart 

are closer with respect to their location in the tidal extent   
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Fig. 2. 10 Comparison of medusae counts between morning and evening 

a.  Ratio of medusa numbers sampled from the visual and net count methods 

separated into morning and evening samples. A higher proportion of medusae are 

found in the surface in the evening than in the morning (Wilcox = 40610, p = 1.92 e-

05).  b. Medusae counts sampled by the net, showing that the difference in a. is not 

due to difference in water column counts between the morning and evening (Wilcox 

= 90102, p = 0.67).  Boxplots for both panels show median, interquartile range, and 

extreme values 
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Chapter 3: Model development and calibration using 

Approximate Bayesian Computation: An estuarine ecosystem 

model with jellyfish as an example  
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Abstract 

Ecological models are not based on fundamental governing laws, but rather rely on 

the knowledge and judgement of the modeler.  Data assimilation may help calibrate 

the model more objectively, which would highlight inadequacies in the model 

formulation.  Therefore, I use a data assimilation method, Approximate Bayesian 

Computation, to calibrate and guide the development of a process-based aquatic 

ecosystem model, specifically to represent gelatinous top predators in the Chesapeake 

Bay, USA.  Using the development workflow, the model fidelity to observations was 

improved by the addition of refractory non-living organic materials.  I found the form 

of the cost function and the metrics of skill assessment should be carefully 

considered.  Additionally, improvements in documentation of both structure and 

process would be helpful to improve model transparency and assessment.  Overall, 

these issues highlight the need for continued improvements in understanding the 

uncertainty and adequacy of models.  

Introduction 

Numerical models are important for understanding and, increasingly, predicting the 

dynamics of nature, however there are no fundamental governing laws for ecological 

systems. Therefore, model developers must use their judgement and intuition in 

choosing model complexity and structure, equations, and parameters.  One large class 

of ecological models are process-based aquatic ecosystem models (also called 

biogeochemical or nutrient-phytoplankton-zooplankton (NPZ) models).  Model 
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complexity may be between 2 to 90 state variables (Arhonditsis & Brett, 2004) with 

various combinations of fluxes.  The main NPZ processes may be formulated using 

between 5 to 20 commonly used equations (Tian, 2006).  Lastly, there are often a 

large number of process rate parameters, which must be assigned values.  These 

parameters are often largely unconstrained or unidentifiable (Schartau et al., 2017) 

due the difficulty in directly measuring these processes, the differing scales between 

models and experiments or measurements, and/or insufficient data.  

Furthermore, the evidence is overwhelming that small changes in model complexity, 

structure, equations, and parameters can fundamentally alter the response of the 

model system to external forcing, leading to different results and conclusions (e.g. 

Anderson et al., 2010; Davidson, 1996; Edwards, 2001; Gentleman et al., 2003; 

Keohane et al., 2019; Lignell et al., 2013; Löptien, 2011; Mitra, 2009; Mitra et al., 

2014; Spitz et al., 2001; Steele & Henderson, 1992; Steele & Henderson, 1995; 

Taucher & Oschlies, 2011).  Ultimately, the modeler and other users want to be 

assured that the model is adequate to address the questions of interest and to ascertain 

the uncertainty in the results.  Both adequacy and uncertainty are often assessed by 

calculating model-observation error through a metric(s) of model skill, and ideally, 

using data that is independent from that used to calibrate the model.  Poor model skill 

results from inadequacies in the model formulation (defined here as the complexity or 

number of state variables, the structure or linkages between state variables, and the 
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equations) as well as poor parameter choice (described in Vallino, 2000; Beven, 

2005).  

It has been proposed that formulation and parameter error can be separated by using 

data assimilation (Kennedy & O’Hagan, 2001; Vallino, 2000; Spitz et al., 2001).  As 

opposed to the typical method of manual tuning, which relies on modelers’ intuition 

and expertise, data assimilation should objectively select the parameters that result in 

the best fit to observations (described in Arhonditsis & Brett, 2004; Rothstein et al., 

2006). Because the parameter space is well searched, any lack of fit between the 

model and observations is less likely to be a problem with the parameters and more 

likely to be inadequacy in the model formulation.  The model can then be 

reformulated to better represent the system (Kawamiya, 2002; Kennedy & O’Hagan 

2001; Spitz et al., 2001). 

While several data assimilation schemes exist (Dowd et al., 2014; Vallino, 2000), 

Bayesian approaches do not search for a single optimum parameter value, but instead 

return the posterior distribution of the parameter, which is the probability of the 

parameter given the model and the data.  Having this distribution of parameters is 

beneficial in that it has the potential to take into account the uncertainty in the 

calibration data.  Additionally, returning a suite of parameter sets takes into account 

the problem of parameter identifiability, when the parameters cannot be constrained 

to a unique set by the available data.  Of the Bayesian parameter estimation methods, 

Approximate Bayesian Computation (ABC) has gained recent attention and is being 
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used in diverse fields (Beaumont, 2010; Csillery et al., 2010; Lintusaari et al., 2016; 

Toni et al., 2009).  ABC is a method that should approximate the posterior 

distribution when the distance between the observed and predicted data is small and 

converges to the posterior distribution as the difference approaches zero. ABC is 

useful when models are complex and the evaluation of the likelihood is 

computationally prohibitive.  There are several ABC algorithms, and the ABC-

rejection scheme is the simplest to implement. 

While data assimilation has been used to guide model development (Spitz et al., 

2001) and Bayesian methods have been used for calibration (Arhonditsis et al., 2011), 

to my knowledge, Bayesian methods have not yet been used in a workflow to 

calibrate and guide the development of an ecological model. Therefore, my goal was 

to use Bayesian methods (the ABC-rejection scheme) for objective calibration that 

would isolate structural inadequacies and guide a workflow to develop a suitable 

model for the given question.  The structure of this paper deviates slightly from many 

other modeling papers in that the model description is presented in the results, as the 

model formulation was a result of the workflow laid forth in the methods 

section.  The discussion comments on both the model formulation as well as the 

development workflow more generally.   

Methods 

Our goal was to use Approximate Bayesian Computation (ABC) to calibrate 

parameters and guide the development of a mechanistic ecosystem model.  Existing 
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model development workflows (Jakeman et al., 2006; Jorgensen & Fath, 2011; 

Soetaert & Herman, 2009) contain four main steps that are iterated through until the 

model adequately represents the observations: defining the problem of interest, 

conceptualizing and formulating the model, calibration, and skill assessment. 

Step 0: Define the problem 

The modeling workflow began with defining the problem of interest and specifying 

the available data resources. 

Step 1: Conceptualize and formulate model 

The initial model formulation was chosen based on past observational and modeling 

studies in the region. The ranges for each parameter in the model were determined 

through a search of the literature. For parameters with highly uncertain bounds, the 

range was set to span at least 1 order of magnitude. 

The models were written in Fortran and numerically solved using the function “ode” 

from the R (version 3.4.1) package deSolve (Soetaert & Herman, 2009). The function 

ode was set to use the solver method lsoda, which switches between stiff and non-stiff 

methods automatically. The minimum and maximum value of the integration step size 

(parameter: hmin and hmax) were set to 0 and 1e-3 days, respectively. The absolute 

and relative error tolerances (parameters atol and rtol) were set to 1e-8. The 

maximum number of steps per output interval (maxsteps) was set to 400,000 steps. 



 

  61 

 

 

All simulations were run to steady state.  Simulations that were oscillating or did not 

reach steady state were removed from the analysis.    

Step 2: Calibration using ABC 

The ABC-rejection scheme was used to calibrate the model. First, Monte Carlo model 

simulations were generated from 1e6 randomly-generated parameter sets. To develop 

parameter sets, each parameter was sampled independently from a uniform or a log 

distribution, and the latter was chosen if the parameter’s range spanned several orders 

of magnitude to most efficiently sample the parameter space. Second, in the rejection 

step, the steady state model results were compared to the observations and the 

parameter sets with the lowest total cost were accepted.  To understand the effect of 

cost function choice, two cost functions were used: the squared percentage error 

(SPE): 

 

and the Reliability Index (RI; Leggett & Williams, 1981; Stow et al., 2009): 

 

,where i represents the state variable and N represents the total number of 

observations.  In order to assess the effect of the acceptance threshold on the results, 
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the 10, 100, and 1000 parameter sets with lowest total cost were selected for each cost 

function. 

Step 3: Assess skill  

In order to assess whether the model was capturing the properties of the system, plots 

comparing the simulated steady state biomasses and observations were 

examined.  The model structure was deemed inadequate if the range of the predictions 

did not fall within the region of the observed mean +/- 1 S.D. (also referred to herein 

as the observed range or range of observations).  The mismatch represents the 

inability of the model  to capture processes in the observations.  And ideally, for an 

adequate model, the median of the predictions, which represent the most likely result, 

would fall within the observed error.  Skill was assessed using the observations used 

for calibration as well as an independent set of observations. 

Step 4: Go back to step 1 (reconceptualize and reformulate the model) or Stop when model is 

satisfactory 

In order to improve model behavior, hypotheses were made about the causes of the 

mismatch and the experimental, observational, and modeling literature was surveyed 

to look for guidance and solutions. Once a new model was conceptualized and 

formulated, the calibration step was repeated. This process was iterated with the goal 

of obtaining an adequate model as described in the skill assessment (Step 3).   
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Results 

Step 0: Define the problem 

The model in this paper was developed to explore the role of the gelatinous top 

predator, Chrysaora chesapeakei (the sea nettle), in the Chesapeake Bay.  C. 

chesapeakei populations have decreased since the 1960s (Breitburg & Fulford, 

2006).  It is hypothesized that their decline in the mesohaline mainstem of the Bay 

triggers a trophic cascade that results in an undesirable planktonic ecosystem with 

low mesozooplankton (Feigenbaum & Kelly, 1994; Purcell & Decker, 2005) and high 

phytoplankton biomass (Kimmel et al., 2012; Testa et al., 2008).  This hypothesis is 

based on field observations, where other confounding factors are changing 

simultaneously, making it unclear whether the changes are solely due to declines in 

sea nettles.  Furthermore, the complexity in the Chesapeake Bay planktonic food web, 

including microzooplankton and microbes, may alter or minimize the effects of 

changes in C. chesapeakei.  Due to the time (interannual) and spatial (Chesapeake 

Bay mainstem) scales and complexity (the planktonic ecosystem), a model is an ideal 

tool to isolate and study the effect of changes in the population of the top predator. 

Data from the Chesapeake Bay Program (CBP) Water Quality and Plankton 

Monitoring Program for the years 1990-2000 were available to force as well as 

calibrate and assess the skill of the model.  Water quality parameters included: nitrate 

and nitrite, ammonium, dissolved and particulate organic nitrogen (in mmol N m-3), 

chlorophyll (ug l-1), total suspended solids (mg l-1), and salinity.  Plankton 
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observations included:  mesozooplankton and microzooplankton (individuals per m-

3).  All zooplankton were converted to nitrogen units.  Mesozooplankton observations 

were separated into 3 biomass pools: large zooplankton (LZ; which consisted of the 

copepod taxa Acartia and Eurytemora), Mnemiopsis (MNE), and Chrysaora 

(CHRY).  A biomass pool named small zooplankton (SZ) was calculated from the 

three dominant taxa in the microzooplankton observations (ciliophora, rotifera, and 

copepoda nauplii).  Additionally, as heterotrophic microflagellates were not sampled 

by the monitoring program, their biomass was included using a statistical relationship 

between heterotrophic microflagellates and ciliates (Dolan & Coats, 1990).  All 

observed quantities were averaged for the summer (days 182-273) either for the 

bottom layer or the surface layer and above pycnocline locations. Data from Station 

CB2.2, representing the oligohaline boundary, and CB4.3C, representing the 

mesohaline region of the mainstem of Chesapeake Bay, were used to force and 

calibrate the model, respectively.     

Step 1: Conceptualize and formulate the model 

As the features of interest were gelatinous predators as well as the complexity of the 

food web, the initial iteration of the model formulation (Fig. 3. 1 Visual adjacency 

matrices of the initial (left), final (middle), and difference between  the two versions 

model of the summer mesohaline Chesapeake Bay planktonic food web, which 

includes gelatinous predatorsleft) was based on models with similar state variables 

and levels of complexity:  
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Oguz et al. 2001, which includes five zooplankton state variables, including two 

gelatinous zooplankton, and bacteria; Keller and Hood 2011, which includes two 

zooplankton compartments, DON and bacteria; and Fasham et al. 1990, which 

contains DON and bacteria.  The resulting 11-state variable model tracks nitrogen 

mass in units of mmol N m-3 (equivalent to umol N l-1).  Six state variables represent 

living functional groups or species: phytoplankton (P), bacteria (B), 

microzooplankton (SZ), mesozooplankton (LZ), Mnemiopsis (MNE), and Chrysaora 

(CHRY).  Three state variables represent nutrients: dissolved inorganic nitrogen 

(NH4 and NO3) and labile dissolved organic nitrogen (DON). The final two state 

variables represent solids: organic detritus (DET) and inorganic suspended solids 

(ISS).  ISS (mg L-1) is not a nitrogen-based state variable and does not directly 

interact with the other state variables but is included to modulate the light field. 

While the Chesapeake Bay is a physically dynamic system, the focus of the research 

is on ecological processes, thus physical processes are represented simply as flows in 

and out of the system. The 0-dimensional model was implemented similarly to Keller 

and Hood 2011, Kemp et al. 2001, Stickney et al. 1999, Keohane et al. 

2019.  However, the flows were calculated using a 2-D box model of a salt wedge 

estuary (Officer 1980; Pritchard, 1969) and include cross-pycnocline exchange.  

For brevity, only the representation of the zooplankton are described in detail 

here.  The Supplemental Materials contains the full set of model equations.  
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Grazing  

Small and large zooplankton graze on multiple prey types according to: 

 

where Nj represents the predator (LZ or SZ), Ni represents the resource, Nr is the 

resource available to Nj, pi,j is the preference of j on i, gmax,j is the maximum grazing 

rate of j, R is weighted available resource density (as in Gentleman et al., 2003; 

Keller & Hood, 2011).  This is an extension of the single-resource Michaelis-Menten 

functional form where preference for a given prey type is fixed (no switching) and the 

half saturation coefficients (k) for all prey types are the same (Class 1A; Gentleman et 

al., 2003).  This formulation assumes that predators attack and handle only one 

resource at a time and that there is no dependence of the handling time and attack rate 

success due to density (Gentleman et al., 2003). Small zooplankton graze on B, P, SZ 

(cannibalism/ intraguild predation), and DET.  Large zooplankton graze on P, SZ, LZ, 

and DET.     

MNE and CHRY also graze on multiple prey types, however, their functional 

response is linear (Class 1D; Gentleman et al., 2003), as jellyfish tend not to saturate 

in grazing under natural prey conditions (Clifford & Cargo, 1978): 
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Where Nj represents the biomass of MNE or CHRY, Ni represents the resource, gmax,j 

is the maximum grazing rate of j, ptot is used to scale the preferences to 1.  Their prey 

preference is also fixed (no switching).  The preferences are scaled such that ∑ 𝑝𝑖 = 1 

in order for the parameter for (max) grazing rate to be the same for all prey types and 

as such, more easily interpretable. MNE  graze on SZ, LZ and DET.  CHRY graze on 

SZ, LZ, MNE and DET.   

The grazed material has two fates: to increase zooplankton biomass due to growth or 

to move to non-living pools due to egestion and sloppy feeding.  This fate is 

partitioned using one parameter for assimilation efficiency for each of the grazers.   

Mortality and excretion 

The 4 zooplankton compartments are lost due to non-predatory mortality that is 

modeled as a linear loss (Oguz et al., 2001).  Each zooplankton excretes NH4 waste, 

which is also modeled as a linear loss. 

Step 2: Calibration using ABC 

The ranges for each parameter in the model were determined through a search of the 

literature and are fully documented in the Supplemental Materials.  The model was 

calibrated using an ABC-rejection scheme with two different cost functions and three 

thresholds for acceptance.  The two cost functions resulted in different predictions for 

the state variables (Fig. 3. 2, Fig. 3. 3), which will be described in more detail in the 

next section on assessing skill.  Generally, the predictions from SPE had less 
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variability than those from RI for a given year.  Additionally, the number of 

parameter sets accepted did not drastically alter the predictions of the state 

variables.  As expected, the widest acceptance (1000 parameter sets) resulted in the 

widest variance in the predictions.   

Steps 3: Assess skill 

In the initial version of the model, the predictions of zooplankton (SZ, LZ, MNE, and 

CHRY) were systematically lower than the observations regardless of the cost 

function used to select parameter sets and the threshold of acceptance (Fig. 3. 2).  For 

both cost functions, the predictions of NH4 and NO3 fell within the range of 

observations (except NO3 for 1990, which was  under-predicted).  CHLA was well-

predicted for some years but over-predicted for others, and was better for more years 

for the RI compared to SPE.  PON and TSS were also predicted well in some years 

for RI but were mostly under-predicted for SPE.  DON was over-predicted for both 

cost functions.  However for RI, the range of DON predictions selected using the 

larger tolerance did overlap with the observed range. 

Step 4: Reconceptualize and reformulate model 

Through iterations, I implemented many changes ranging from adding or removing 

state variables, connections, and modification of the flux equations (which included 

adding new parameters to the formulation). Based on the variability between models 

in the literature, most of my attempts were related to changing the structure (linkages) 

or the form of the equations.  I attempted to keep the model as simple as possible and 
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chose to keep only the modifications that either improved the simulations 

substantially or were processes that I deemed were overlooked during the initial 

formulation of the model (such as fish predation). I built the simplest model based on 

the pragmatic recognition that the ability to understand why the model behaves as it 

does is greater for reduced dimensionality (not on the belief that nature must be 

simple).   

End: Stop when the model is satisfactory   

The final version of the model, which contains representation of refractory detritus 

and DON (Fig. 3. 1), made predictions for the tuned state variables that fell within the 

range of observed uncertainty (Fig. 3. 3).  Notably, the zooplankton predictions 

overlapped with the range of observations. The median of the predictions was more 

likely to fall within the range for the RI compared to SPE, which systematically 

under-predicted the zooplankton observations.  CLHA, PON, and TSS were predicted 

well for most years and both cost functions, however, for some years, the median was 

predicted to be lower than the observed range.  DON was captured well across years 

and cost functions.  I concluded that the model was adequate as the range of 

observations was captured across state variables, especially using the 

RI.  Additionally, the final version also performed better than the initial version of the 

model for years that were not used in the calibration stage (1995-2000; Fig. 3. 4a).  

Although the predictions for many of the calibrated (non-zooplankton) state variables 

were relatively comparable between the initial and final versions of the model, there 
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were large differences between the predictions made for variables that weren’t used in 

the tuning process, such as bacteria and gross primary productivity (Fig. 3. 4b).  DON 

and B were several times higher and lower, respectively, in the final versus initial 

version of the model.  Additionally, gross primary production was about an order of 

magnitude lower for the final compared to the first version. 

Discussion 

The expectation was to use ABC to systematically search the parameter space in 

order to minimize errors due to poor parameter choice as well as provide uncertainty 

in the parameters.  This would allow us to detect problems with model formulation 

that could then be improved upon (Kennedy & O’Hagan, 2001; Spitz et al., 2001; 

Vallino, 2000).  However, there were different predictions between cost functions 

(Fig. 3. 2 and Fig. 3. 3) that may suggest that the results were not converging to the 

posterior distribution, making it somewhat more difficult to isolate the problems due 

to formulation inadequacies.  Nonetheless, the structured approach to model 

calibration helped us to develop a model formulation that predicted the observations 

better than the initial version of the model, which was based on previously established 

formulations.  Additionally, we encountered other issues in the model development 

process that should be further considered in order to improve model development and 

understanding of model uncertainty.  I discuss the resulting model and then comment 

briefly on each of the model development steps. 
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Model of Chesapeake Bay planktonic food web in the summertime 

The model’s ability to predict the observations was improved by adding refractory 

non-living organic matter (DETR and DONR;  Fig. 3. 1).  The initial model without 

refractory pools had high levels of primary production (compared to both 

observations and the final version), likely leading to high top-level predation by 

CHRY which kept the zooplankton at low biomass compared to the 

observations.  The final version of the model with refractory pools captured observed 

zooplankton biomass and had more realistic predictions of primary 

productivity.  However, refractory matter is relatively uncommon in aquatic 

biogeochemical models as they often only carry labile DON and DET pools, as 

established in Fasham et al., 1990.  Modeling the refractory components may be 

important for properly capturing nutrient cycling and rates in ecosystem models.  This 

result is concordant with the importance and large size of non-living organic matter in 

ecosystems (Lindeman, 1942). 

Step 1: Conceptualize and formulate the model  

I used equations and structure based on other modeling studies that included 

processes relevant to my questions, which is common practice.  To compare and 

understand the full set of model equations from even a select number of papers was 

time consuming.  Some problems included that equations were not always fully or 

clearly documented (reviewed in Anderson et al., 2015) and notation and symbols 

differ between papers.  In this paper, I displayed the model complexity and structure 
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using a visual interpretation of the adjacency matrix (Fig. 3. 1), which I have not yet 

seen used to document ecological models. This documentation is simple, with the 

minimum amount of data needed being an adjacency matrix (the state variable names 

and the presence of linkages).  Additionally, the plot is easy to generate, interpret, and 

helps to make comparisons across models.  This is one simple approach to improve 

documentation, which is needed for transparency and to facilitate communication 

between researchers (Benz & Knorrenschild, 1997; Benz et al., 2001; Crosier et al., 

2003; Grimm et al., 2006; Hoch et al., 1998; Martinez-Moyano, 2012).  

Step 2: Calibration using ABC 

The goal was to use ABC to objectively calibrate the model in order to separate the 

error due to parameter misspecification versus formulation deficiencies.  However, I 

found that separating error to be less-straightforward because the predictions 

depended on the choice of the cost function (there was uncertainty between the cost 

functions). For the initial version of the model, neither cost function predicted 

zooplankton within the observed range (Fig. 3. 2), making it simple to conclude that 

there were structural issues.  However, for the final version of the model, while the 

difference-based cost function (SPE) under-estimated the value of zooplankton, the 

log-based cost function (RI) was able to better capture the zooplankton observations 

(Fig. 3. 3).  It was not immediately clear how to assess adequacy of the model 

structure if one cost function deemed the model acceptable, while the other did 
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not.  While it was obvious that the cost functions have different forms, which 

generated more “correct” results? 

In attempting to address this question, I came across two different but likely 

overlapping perspectives related to cost functions.  The first perspective is that there 

is no objectively “correct” cost function, but that cost functions are metrics that 

translate a researchers’ informal and subjective interest into the formal language of 

mathematics (Hennig & Kutlukaya, 2007).  The SPE fails to penalize errors between 

0 and the observed value (Fig. 3. 5a, c), which may lead to errors of the zooplankton 

state variables, which are small in magnitude, to be mostly ignored.  Conversely, the 

RI will penalize the errors in both directions of the observed values equally (Fig. 3. 

5b, d), which may make it more appropriate when calibrating using data that spans 

several orders of magnitude and includes very small values.   

The second issue is from the lens that the difference in between the cost functions is 

due to deficiencies in ABC to return a proper posterior distribution.  ABC may fail 

because of the information loss in a cost function, also known as insufficiency of 

summary statistics.  This idea is likely related to the idea discussed above.  Another 

reason ABC may fail is due to the prior distribution and how the cost function 

interacts with the prior.  For this model, the distribution of the full set of unfiltered 

results, which is driven by the random parameter input and the model equations, was 

not uniform but were right skewed and underestimated the observed zooplankton 

biomass (Fig. 3. 6).  This skew together with the tendency for the SPE to under-
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penalize small values may be leading to systematic under prediction in the accepted 

simulations.   

Despite some difficulties assuming that the ABC-rejection method returns results 

with rigorous Bayesian statistical properties of a proper posterior distribution, this 

method is still deemed useful in detecting structural issues.  The systematic search of 

the parameter space is more repeatable, and more comprehensive and complete, than 

manual tuning.  Additionally, the task of setting a cost function is a mathematical 

formalization of modelers’ project goals and the resulting model strengths and 

weaknesses.  Furthermore, using several cost functions helped increase the 

confidence that the error was due to the model misspecification when both cost 

functions failed to find good agreement between the model and the observations.   

Step 3: Assess skill or Stop 

Skill was assessed using two cost functions (goodness-of-fit) but also by a more 

qualitative assessment of the predictions’ ability to overlap with the range of the 

observations (Fig. 3. 2 and Fig. 3. 3).  Many quantitative and qualitative assessments 

exist (Jakeman et al., 2006; Jorgensen & Fath, 2011; Olsen et al., 2016; Stow et al., 

2009) and multiple metrics are likely required to describe different aspects of the 

model’s ability to capture different features of the system.  In this study, skill was 

assessed using 10 variables, including zooplankton, which is not the norm.  In fact, 

often there may only be observations for nutrients and CHLA, and if these were the 

only variables in the assessment, the initial version of the model may have been 
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deemed adequate (Fig. 3. 2).  Therefore, assessment is limited by data 

availability.  Furthermore, models are impossible to fully evaluate or “validate” due 

to unknown processes as well as the inability to close natural systems (Beven, 2002; 

Oreskes et al., 1994).  Some solutions to addressing this model uncertainty have been 

to  assess the process by which a model is produced (described in Jakeman et al., 

2006; Ravetz, 1997) or to compare different models (perhaps that differ in their first 

principles) (Beven, 2002; Journel, 1997).  Methods and philosophies for 

understanding model structural error and adequacy is an area in need of continued 

study (Beven, 2002). 

Step 4: Reconceptualize and reformulate the model 

Through many iterations, I implemented changes ranging from adding or removing 

state variables, connections, and modification of the flux equations (which included 

adding new parameters to the formulation).  Based on the type of variability between 

models in the literature, most of my attempts were related to changing the structure 

(linkages) or the form of the equations (Anderson et al., 2010; Gentleman et al., 2003; 

Keohane et al., 2019; Mitra, 2009; Mitra et al., 2014; Steele & Henderson 1992; 

Steele & Henderson, 1995).  However, changing the model complexity (adding 

DETR and DONR) was more effective in improving the results.  The addition of 

detritus has previously been shown to alter model behavior (Edwards, 2001), but this 

finding could also reflect a more general principle regarding the importance of 

complexity versus equation form in driving model variability. 
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Initially, I assumed that by finding structural deficiencies, it would be clear which 

changes would need to be made to improve the representation of the system. I quickly 

realized that there was no rational unbiased method for choosing how to solve the 

structural problems and we defaulted to trial-and-error, making changes based on 

intuition, discussion with colleagues, and searches through the observational, 

experimental, and modeling literature for suggestions.  In retrospect, I see the use of 

keeping and publishing a modeling log that entails the formulations tried during 

development.  Each “failed” model represents a hypothesis that was rejected 

(Anderson & Mitra 2010; Franks, 2009), which is useful for further understanding 

how we model natural processes.  Additionally, a log would make the model building 

process more reproducible (similar to efforts to improve the literature review process; 

Wolfswinkel et al., 2013) and also capture the immense amount of modeling effort 

and expertise that is largely undocumented. 

Conclusions 

This work documents the development of an adequate aquatic ecosystem model to 

address questions related to gelatinous top predators.  The model fidelity to 

observations was improved by the addition of refractory non-living organic 

materials.  The primary thrust was to use Approximate Bayesian Calibration as a data 

assimilation method to minimize error due to parameter choice and separate out 

formulation inadequacy.  I found the form of the cost function and the metrics of skill 

assessment should be carefully considered.  Additionally, improvements in 
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documentation of both structure and process would be helpful to improve model 

transparency and assessment.  Overall, these issues highlight the need for continued 

improvement related to understanding the uncertainty and adequacy of models.  
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Tables and Figures 

 

 

Fig. 3. 1 Visual adjacency matrices of the initial (left), final (middle), and 

difference between  the two versions model of the summer mesohaline 

Chesapeake Bay planktonic food web, which includes gelatinous predators 

Filled boxes represent the receivers (x axis) of flow from donors (y axis).  Unfilled 

boxes represent no flow between the two compartments.  The model currency is 

nitrogen (NO3, NH4) and contains four zooplankton (SZ, LZ, MNE, and CHRY) 

state variables, bacteria and two non-living organic compartments (DET, DON).  The 

final version also includes refractory detritus and DON (DETR and DONR), which 

were added state variables that allowed this version to better capture observed 

zooplankton biomass than the initial version. “External” represents flows forcing into 

or outflow from the model domain 
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Fig. 3. 2 Steady state predictions (boxplots) from the initial version of the model 

using the Reliability Index (RI) and squared percentage error (SPE) as cost 

functions compared to the observations 

The colors represent 10, 100, and 1000 accepted parameter sets for each of the cost 

functions. The observation mean is represented by the black point and the grey ribbon 

represents +/- 1 S.D. from the mean 
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Fig. 3. 3 Steady state predictions (boxplots) from the final version of the model 

using the Reliability Index (RI) and squared percentage error (SPE) as cost 

functions compared to the observations 

The colors represent 10, 100, and 1000 accepted parameter sets for each of the cost 

functions. The observation mean is represented by the black point and the grey ribbon 

represents +/- 1 S.D. from the mean 
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a

 

b 

 

Fig. 3. 4 Comparison between the predictions of the first and final model 

versions (represented by color) for the variables with calibration observations 

(a) and those without (b).  

The predictions are for the best 100 parameter sets selected by the Reliability Index 

(RI). The observation mean (in a) is represented by the black point and the grey 

ribbon represents +/- 1 S.D. from the mean.  Boxplots with no fill were used in the 
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calibration stage and those with grey fill were used for model assessment only 

(validation = TRUE). 
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Fig. 3. 5 The cost (y-axis) for the squared percentage error (SPE; top) compared 

to the Reliability Index (RI; bottom).  

The error (x-axis) is displayed in terms of difference (left) compared to the log ratio 

(right).   
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Fig. 3. 6 Histogram of steady state biomass results of the runs prior to rejection 

for the first (red) and final (blue) versions of the model 

For ease of plotting, only 5% of 1e6 simulations for each model and the year 1991 are 

shown. The vertical black line represents the observed mean. 
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Table S 1 Parameter ranges used for calibration of the final version of the 

model.   

The parameter names are given as in the body of the manuscript and the indexed 

names are to correspond to the notation in the ODEs in the supplemental materials  
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Parameter Names, indexed

(equations)

Parameter Names

(plots)
Minimum Maximum Reference Units

NitriR NitriR 1e-03 1e-01
Fennel et al.
2006 d-1

Vp0 Vp0 1e-02 4
Harding et al.
1986, Fennel et
al. 2006

d-1

PhyIS PhyIS 1e-02 1e-01
Harding et al.
1986, Fennel et
al. 2006

(Wm-2)-1

d-1

kNO3 kNO3 2 10
Fisher et al.
1988

mmol N

m-3

kNH4 kNH4 2 10
Fisher et al.
1988

mmol N

m-3

PhyEP PhyEP 1e-03 4e-01
Bronk et al.
1994

nd

PhyMR PhyMR 1e-03 2e-01
Fennel et al.
2006 d-1

PhyMin PhyMin 1e-04 1e-02
mmol N

m-3

graze_rateB maxBgraze 1e-01 4

Bronk et al.
1998 from urea
uptake, and
assuming 4uM
of bacterial
biomass

d-1

graze_rateLZ maxLZgraze 1e-01 2

Houde and
Roman 1987,
Stoecker and
Egloff 1987,
Kiorboe et al.
1985

d-1

graze_rateSZ maxSZgraze 1e-01 4

Gallegos 1989,
Johnson et al.
2003,
McManus and
Ederington-
Cantrell 1992

d-1

graze_rateMNE maxMNEgraze 1e-02 2
Kremer and
Reeve 1989

m3

(mmol

N)-1 d-1

graze_rateCHRY maxCHRYgraze 1e-02 2

Purcell 1992,
Clifford and

m3

(mmol



 

  96 

 

 

 

  

Cargo 1978 N)-1 d-1

fish_graze_lz maxFISHpred 1e-02 1
Wang and
Houde 1995

mmol N

m-3 d-1

prefB,DONR bprefdonr 0 1e-02
max
constrained

nd

prefLZ,SZ lzprefsz 1e-01 1
max
constrained

nd

prefLZ,LZ lzpreflz 1e-01 1
max
constrained

nd

prefLZ,DET lzprefdet 1e-01 1
max
constrained

nd

prefSZ,B szprefb 1e-01 1
max
constrained

nd

prefSZ,P szprefp 1e-01 1
max
constrained

nd

prefSZ,SZ szprefsz 1e-01 1
max
constrained

nd

prefSZ,DET szprefdet 1e-01 1
max
constrained

nd

prefMNE,LZ mnepreflz 1e-01 1
max
constrained

nd

prefMNE,SZ mneprefsz 1e-01 1
max
constrained

nd

prefMNE,DET mneprefdet 1e-01 1
max
constrained

nd

prefCHRY,LZ chrypreflz 1e-01 1
max
constrained

nd

prefCHRY,SZ chryprefsz 1e-01 1
max
constrained

nd

prefCHRY,MNE chryprefmne 1e-01 1
max
constrained

nd

prefCHRY,DET chryprefdet 1e-01 1
max
constrained

nd

assimB,i bassim 1e-01 1
max
constrained

nd

assimSZ,living szassim 1e-01 1
max
constrained

nd

assimMNE,living mneassim 1e-01 1
max
constrained

nd

assimCHRY,living chryassim 1e-01 1
max
constrained

nd

assimLZ,DET szassimdet 0 1
max
constrained nd
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assimSZ,DET lzassimdet 0 1
max
constrained

nd

assimMNE,DET mneassimdet 0 1
max
constrained

nd

assimCHRY,DET chryassimdet 0 1
max
constrained

nd

mort_rateB bmortrate 1e-02 1e-01 d-1

mort_rateLZ lzmortrate 1e-03 1e-01
Elliot and Tang
2011 d-1

mort_rateSZ szmortrate 1e-03 1e-01

based on
lzmortrate and
Oguz et al.
2001

d-1

mort_rateMNE mnemortrate 1e-03 1e-01

based on
lzmortrate and
Oguz et al.
2001

d-1

mort_rateCHRY chrymortrate 1e-03 1e-01

based on
lzmortrate and
Oguz et al.
2001

d-1

excret_rateB bexcretrate 1e-02 8 Glibert 1982 d-1

excret_rateLZ lzexcretrate 1e-02 5e-01
Kiorboe et al.
1985 d-1

excret_rateSZ szexcretrate 1e-02 8

Glibert 1982,
Verity 1985,
Sherr et al.
1983

d-1

excret_rateMNE mneexcretrate 1e-02 5e-01
Kremer and
Reeve 1989 d-1

excret_rateCHRY chryexcretrate 1e-02 5e-01 Purcell 1992 d-1

excretFish splitfishpred2nh4 1e-01 7e-01
Luo and Brandt
1993, Fasham
et al. 1990

nd

half_satB,DON bhalfsatgrazing 1e-01 10
based on
szhalfsatgrazing

mmol N

m-3

half_satB,DONR bhalfsatgrazingdonr 1e-01 10
based on
bhalfsatgrazing

mmol N

m-3

half_satSZ,j szhalfsatgrazing 1e-01 10
Chen et al.
2014

mmol N

m-3

Steele and
Henderson
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half_satLZ,j lzhalfsatgrazing 1e-01 5 1992, Kiorboe
et al. 1985,
Houde and
Roman 1987

mmol N

m-3

half_satFish,LZ fishhalfsatgrazing 1e-02 1
Politikos et al.
2011

mmol N

m-3

detrr detrr 1e-02 8

based on
bexcretrate,
Fennel et al.
2006

d-1

split_pari_dissolved,DON splitexmo2don 0 1
max
constrained

nd

split_pari,solid splitegmo2solid 0 1
max
constrained

nd

split_pari_solid,DET splitegmosolid2lab 0 1
max
constrained

nd

split_pari_dissolved,DON splitegmodis2lab 0 1
max
constrained

nd

split_parDET,solid splitegdet2solid 0 1
max
constrained

nd

split_parDET_solid,DET splitegdetsolid2lab 0 1
max

constrained
nd

split_parDET_dissolved,DON splitegdetdis2lab 0 1
max
constrained

nd

split_reminDET,labile splitdetremin2lab 0 1
max
constrained

nd

split_reminDET_labile,NH4 splitdetreminlab2nh4 0 1
max
constrained

nd

split_reminDET_refractory,DETR splitdetreminr2detr 0 1
max
constrained

nd

splitdonextracell2don splitdonextracell2don 0 1
max
constrained

nd

chry_inflowrate chryinflowrate 1e-06 1 d-1

cchla cchla 15 50
Geider et al.
1997

g C: g
CHLA

pon2oss pon2oss 6.625 20

assume redfield
and
1mgOSS:mgC;
assume 8
molC:molN and
2.5OSS:mgC

(mmol
C)(mg
OSS)
(mmol

N) -1

(mg C)-1

keb keb 1e-03 7e-01
Cerco and
Meyers 2000 m-1
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a_iss a_iss 1e-03 1
Cerco and
Meyers 2000 m2 g-1

b_oss b_oss 1e-03 2e-01
Cerco and
Meyers 2000 m2 g-1

c_don c_don 1e-03 2e-01
m2

mmol N
-1

sinking_velocityISS ISSsinkingvelocity 1e-01 10
Fennel et al.
2006 m d-1

sinking_velocityDET detsinkingvelocity 1e-01 10
Fennel et al.
2006, Fasham
et al. 1990

m d-1

sinking_velocityDETR detrsinkingvelocity 0 1
Fennel et al.
2006 m d-1

sinking_velocityP psinkingvelocity 0 1
Fennel et al.
2006 m d-1

splitdetinflow2det splitdetinflow2det 0 1
max
constrained

nd

splitDONinflow1 splitDONinflow1 0 1
max
constrained

nd

splitDONinflow2 splitDONinflow2 0 1
max
constrained

nd
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Chapter 4: Studying the trophic cascade concept in a model of 

the Chesapeake Bay planktonic ecosystem  
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Abstract 

The trophic cascade, while an important concept in acknowledging the role of top 

predators, may not be actualized or may be dampened due to the complexity of 

ecosystems.  A trophic cascade is hypothesized to occur in the planktonic ecosystem 

of the Chesapeake Bay, USA due to the loss of the gelatinous predator, Chrysaora 

chesapeakei.  However, due to confounding factors, it is not clear that C. chesapeakei 

drives the changes observed in the lower food web.  This study uses a 0-dimensional 

ecosystem model that contains representation of several zooplankton pools as well as 

bacteria and non-living organic matter.  Perturbation experiments were conducted to 

study the effect of changing modeled C. chesapeakei (CHRY).  Sensitivity 

experiments of the environmental and ecological parameters were conducted to 

understand the conditions that are important in driving the response.  The change in 

CHRY had the potential to affect every state variable and throughflow but the 

response did not always conform to the trophic cascade concept and was highly 

dependent on the parameters.  The parameters that were most important in varying the 

response were related to the energetics of the zooplankton and parameters related to 

alternative pathways of loss or gains of the state variables. 

Introduction 

The trophic cascade concept, although simple and having been in the ecological 

literature dating back to The Origin of Species, has important implications for 

understanding the controls on the structure and functioning of ecosystems (Hairston 
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et al., 1960; Pace et al., 1999; Paine, 1980; Terbough & Estes, 2010).  Pressingly, the 

trophic cascade concept is of interest for fully understanding the ramifications of the 

loss of top predators (Terbough & Estes, 2010) as well as the suitability and effects of 

conservation efforts. In the quintessential trophic cascade, carnivores suppress 

herbivores, thus indirectly allowing plants to grow unimpeded by grazing (Hairston et 

al., 1960).  The trophic cascade, as defined by early work from Hairston et al., 1960 

and Carpenter et al., 1985, has two predictions that are of particular interest regarding 

cascading top-down control: first, that each trophic level of a food web is “inversely 

and directly related to trophic levels above and below it” (Brett & Goldman, 1997); 

second, that the control reaches down to primary producers.  It should be noted that 

trophic cascades have not been well defined in the literature, often with different or 

vague usage (Polis et al., 2000; Ripple et al., 2016).  

Although the trophic cascade concept is deeply ingrained in ecological thinking, “the 

extent and importance of trophic cascades in nature have been hotly debated” 

(Persson, 1999; Terbough & Estes, 2010).  Some of the discussion questioned 

whether trophic cascades were a common ecological feature or a pattern relegated to 

certain, simplified systems that could be best represented by discrete trophic levels 

(e.g. lakes) (Polis et al., 2000; Polis & Strong, 1996).  Currently, it is still not entirely 

clear what conditions result in a trophic cascade in nature (Persson, 1999; Power, 

2000).  The discussion has shifted to understanding the variables that control the 

strength of the trophic cascade (Power, 2000).  The hypotheses include: resource 
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availability (productivity, nutrient availability), food webs that deviate from linear 

food chains (omnivory, recycling), predator and herbivore strength and efficiency, 

spatial heterogeneity (refugia for herbivores, external subsidy), and/or study duration 

(reviewed in Borer et al., 2005).  Generally, there is conflicting evidence for the 

hypotheses and practically, many efforts at biomanipulation of predators using 

predictions from the trophic cascade concept have been unsuccessful, suggesting 

there is still work in order to fully understand the concept across systems 

A trophic cascade has been hypothesized to have occurred in the Chesapeake Bay, 

USA (Testa et al., 2008), due to declines in populations of the gelatinous predator 

(Breitburg & Fulford, 2006), Chrysaora chesapeakei (the sea nettle), since the 

1960s.  Observations suggest the loss of the sea nettles releases predation pressure on 

the ctenophore, Mnemiopsis leidyi, which results in an undesirable ecosystem with 

low mesozooplankton (Feigenbaum & Kelly, 1994; Purcell & Decker, 2005) and high 

phytoplankton biomass (Kimmel et al., 2012; Testa et al., 2008).  However, the 

Chesapeake Bay planktonic food web contains much complexity, with 

microzooplankton and microbial food webs.  Therefore, it is not clear whether 

declines in the sea nettle and the trophic cascade are the actual cause of these changes 

in the lower food web as opposed to being caused by other confounding factors. 

Trophic cascades, like all indirect effects, are complex to study and difficult to assess 

solely through experiment or observation.  Mechanistic models are an ideal tool to 

look at the system holistically in order to manipulate the change in C. chesapeakei in 
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isolation to establish causal linkages.  Therefore, this paper uses a 0-dimensional 

numerical ecosystem model to test the effect of changing C. chesapeakei on the 

Chesapeake Bay planktonic ecosystem.  To understand the conditions of the response, 

we tested the effect under different predator forcing and environmental conditions, as 

well as ecosystem dynamics (differences in parameter choice).   

Methods 

To understand the effect of changes in the Chrysaora population in the Chesapeake 

pelagic ecosystem, Chrysaora press perturbation experiments (Bender et al., 1984) 

were conducted within a numerical ecosystem model.  The model is of relatively high 

complexity, especially compared to previous theoretical work on trophic cascades 

(Oksanen et al., 1981; Pimm, 1979; Rosenzweig, 1973; Scheffer, 1991; Scheffer et 

al., 2000; Scheffer & Rinaldi, 2000), and was designed to represent the planktonic 

food web in the mesohaline region of the Chesapeake Bay for the summer.  The 

nitrogen-based model contains 11 state variables, including four zooplankton 

compartments:  small and large zooplankton (SZ and SZ, respectively) and two 

gelatinous predators, Mnemiopsis (MNE) and Chrysaora (CHRY).  The model also 

contains inorganic nitrogen (NH4 and NO3) and labile and refractory organic detrital 

and dissolved pools (DET, DON, DETR and DONR).  Additionally, there is a pool 

that represents free-living bacteria (B). The equations are fully described in Tay et al. 

(in prep), largely based on equations from Oguz et al. 2001, Keller and Hood 2011, 
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and Fasham et al. 1990.  Physical processes are simply represented using a chemostat 

formulation to represent flow into and out of the mesohaline.  

The perturbation experiments were conducted by holding environmental and 

ecological parameter values constant and only perturbing the value of the CHRY 

forcing by 1e-5 uM day-1.  Choosing to perturb the external CHRY forcing (as 

opposed to e.g. CHRY grazing rate) was based on the assumption that the differences 

in interannual Chrysaora populations are largely due environmental factors that affect 

their birth rate from the benthos (Calder, 1974; Cargo & King, 1990) and that 

Chrysaora may primarily reach the mainstem via transport from the tributaries 

(Breitberg & Burrell, 2014), which are external to the modeled region.  Three metrics 

were calculated to describe the response of each state variable and throughflow to a 

change in CHRY for each perturbation experiment - the sign of the response (also 

referred to as the directional response) and two metrics of the magnitude of the 

response to a change in CHRY: 𝑚𝑥 =  
∆𝑋

∆ 𝐶𝐻𝑅𝑌
, referred to as the slope and 𝑚𝑥,𝑠𝑐𝑎𝑙𝑒𝑑 =

 
𝐶𝐻𝑅𝑌

𝑋

∆𝑋

∆ 𝐶𝐻𝑅𝑌
,, referred to as the scaled slope, where X represents a state variable or 

throughflow.  To test the response under different conditions, the perturbation 

experiments were conducted for 5 levels of CHRY forcing, 11 years (1990-2000) of 

physical environmental conditions, and 100 parameter sets that were accepted to 

adequately describe the Chesapeake Bay pelagic ecosystem (Chapter 3) for a total of 

5500 perturbation experiments. 
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In order to determine how the changes in state variables co-occurred for a given 

perturbation experiment, a machine learning algorithm, t-distributed Stochastic 

Neighbor Embedding (t-SNE), was used to visualize the responses of the MNE, LZ, 

SZ, and P for all of the experiments simultaneously.  Additionally, to compare the 

response to that predicted by the trophic cascade concept, the direction of the 

response of the plankton state variables were grouped for each simulation (and this 

combined response is referred to as the “community response” or “CR” throughout 

this paper). 

In order to understand the effect of individual environmental and ecological 

parameters on the ecosystem response to a change in CHRY, sensitivity experiments 

were performed. Each sensitivity experiment consisted of performing CHRY press 

perturbations at the base level of one parameter (base perturbation experiment) and at 

50% increase or decrease of that given parameter (sensitivity perturbation 

experiment).  For a given parameter, a set of sensitivity experiments were performed 

for 11 years, 100 parameter sets, and 1 CHRY forcing level in order to assess the 

sensitivity across a range of parameter and forcing combinations. 

The difference between the base and sensitivity perturbation experiments were 

summarized to study the effect of the parameters on three responses: the change in the 

community response, the change in the directional response of each state variable, 

and the change in the magnitude of the response of each state variable.  First, the 
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proportion of experiments that lead to a change in the CR due to the change in the 

parameter was calculated: 

 

where k is the index of the experiment for a total of nj sensitivity experiments for 

parameter j and CRj, kis 1 if the community response changed and 0 if not. 

Second, the proportion of the experiments that lead to a change in the directional 

response of each state variable due to the change in the parameter was calculated: 

 

Additionally, the absolute change of the slope due to the change in the parameter was 

calculated: 

 

Both of the above metrics were also calculated for the scaled slope and follow the 

same form.   

Thirdly, the proportion of experiments that lead to an increase in the absolute 

response of each state variable due to the change in the parameter (only for the 

sensitivity experiment in which the parameters were increased so as to not cancel out 

effects) was calculated: 
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where  

 

is the change in the absolute slope due to the change in the parameter j.  Both of the 

above metrics were also calculated for the scaled slope and followed the same form. 

Results 

In order to determine the effect of changing Chrysaora biomass on the Chesapeake 

Bay ecosystem, 5500 perturbation experiments (increasing CHRY inflow) were run 

across 11 years, 5 levels of CHRY inflow, and 100 parameter sets. The direction of 

the response of every state variable and throughflow was variable, with the capacity 

to increase or decrease with an increase in CHRY depending on the conditions of the 

perturbation experiment (Fig. 4. 1).  Some state variables and throughflows did not 

respond in some experiments, although this was less likely than an increase or 

decrease.  State variables and throughflows mostly increased in a higher proportion of 

the experiments rather than decreased. The exception was MNE, NO3, and the 

throughflow through MNE, which decreased in a higher proportion of the 

experiments.  NO3, SZ, and LZ were the state variables that were the least 

determined in that the experiments were split more evenly between increasing and 
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decreasing.  Overall, the throughflows were generally more determined in their 

likelihood to increase than their respective state variable.   

The magnitude of the response of each state variable, calculated as the absolute slope 

and absolute scaled slope, was variable, spanning several orders of magnitude for the 

suite of perturbation experiments (Fig. 4. 2).  P and DONR had the largest absolute 

slopes of the state variables.  The median and maximum absolute slopes were 0.79 

and 114, respectively, for P and .95 and 117, respectively for DONR.  DET had the 

smallest median and maximum absolute slopes of 2.5 e-03 and 17, 

respectively.  However, MNE, LZ, and SZ had the largest absolute scaled 

slopes.  The median and maximum absolute scaled slopes were 4.9e-3 and 51 for 

MNE, 2.4e-3 and 44 for LZ and 2.9e-3 and 11 for SZ.  Assuming that there is linear 

change (which may not be completely appropriate), the absolute scaled slope can be 

interpreted as a percentage change: a 100% change in CHRY corresponds to between 

0.49 to 5,100% change for MNE, 0.24 to 4,400% change for LZ, 0.29 to 1,100% 

change for SZ, and 0.17 to 2,000% change in P.   

Similar to the biomass response, the magnitude change for each throughflow was also 

variable, depending on the perturbation experiment (Fig. 4. 2).  NH4 and P 

throughflows had the largest median absolute slopes of 7.8e-2 and 8.1e-2, 

respectively. Whereas, LZ, DET, and SZ throughflows had the largest maximum 

absolute slope of all the throughflows (5.8, 2.9, and 1.8, respectively).  The median 

absolute scaled slope was the largest for the throughflows through NH4 and LZ (2.6e-
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3, 2.4e-3), corresponding to 0.26% and 0.24% change for a 100% change in CHRY. 

The largest maximum absolute scaled slope was the largest for the throughflows 

through MNE, LZ and SZ (51, 40, 10) corresponding to 5,100, 4,000, and 1,000 % 

for a 100% increase in CHRY. 

In order to determine how the state variables co-varied, t-SNE was used to visualize 

the responses from all experiments simultaneously. The t-SNE did not reveal any 

clear clustering (Fig. 4. 3) and increases or decreases of one state variable did not 

correspond solely to an increase or decrease in another state variable (as would be 

predicted by the trophic cascade concept).  Categorizing each response by the 

combined directional response of MNE, LZ, SZ, and P to the increase in CHRY 

resulted in 29 distinct “community responses” (CR; Fig. 4. 4).  None of the CR 

resulted in no change for all of the state variables (i.e. CR of 0000).  The CR realized 

in the most perturbation experiments were -+++, -+-+, ---+, --++, -++-. The t-SNE of 

the slopes suggested that the magnitude of the responses of the state variables were 

not related.  For example, it was possible for P to respond strongly in experiments in 

which there was apparently small change in the MNE, LZ and SZ.  However, the t-

SNE of the scaled slopes suggested that the magnitude of the scaled responses were 

related (Fig. 4. 3).  The proportional response of all the state variables tended to be 

strong in the same experiments.   

Given the variability in the responses, sensitivity experiments were conducted to 

determine the effect of each ecological and environmental parameter on the response 
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of the individual state variables and the community response.  All of the parameters 

had the capability to change the community response (e.g. change the direction of at 

least one state variable in at least one sensitivity experiment; Fig. 4. 5). Changes in 

the zooplankton maximum grazing, assimilation, and excretion rates, as well as 

grazing preferences caused a change in the CR in the highest proportion of their 

respective sensitivity experiments.  e.g. Changing the maximum grazing parameter of 

LZ (maxLZgraze) changed the CR in 51% of the maxLZgraze sensitivity 

experiments.  NO3 inflow, the most important of the environmental parameters, fish 

and phytoplankton-related parameters were of intermediate importance for changing 

the CR.  Among the parameters of lowest importance, were parameters that affect 

refractory pools.  Unexpectedly, CHRY assimilation of living and non -living food 

and CHRY mortality were among the least likely parameters to change the 

community response, changing the CR in less than 3% of their respective sensitivity 

experiments. 

The capability of parameters to change the response was then determined for each 

state variable individually.  MNE and LZ grazing and LZ assimilation were in the top 

10 parameters for their capacity to change the direction of the response of MNE, LZ, 

SZ, and P to an increase in CHRY (Fig. 4. 6).  Interestingly, these parameters also 

were in the top 10 parameters for changing the sign of all of the other model state 

variables.  MNE excretion and SZ assimilation were also in the top 10 for MNE, LZ, 

SZ, and P.  Largely, the parameters that were most likely to change the direction of 
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the MNE, LZ, SZ, and P were the parameters that elicited the strongest median 

response in those state variables.  However, for other state variables, some parameters 

elicited strong change in the magnitude of the response but were not the most likely 

parameters to switch the sign of the response.  LZ and SZ had the highest probability 

of switching signs in the sensitivity experiments, which corresponds to the high 

indeterminacy observed in the perturbation experiments. 

In order to explore the effect of parameters on the strength of the response, the change 

in the absolute slopes were calculated.  For the absolute slope, the parameters that 

elicited the most change in the magnitude of the response differed for each state 

variable, however, some general patterns emerged.  The effect of CHRY on P, SZ, 

and MNE was reduced when the parameters that control the non-consumptive loss of 

each state variable was increased (e.g. p sinking, exudations, mortality, and excretion; 

Fig. 4. 7a).  Additionally, the absolute slope was altered for SZ and LZ when their 

predators were altered. For LZ, increasing MNE grazing and assimilation could 

dampen the response of LZ to CHRY.  Whereas, for SZ, increasing LZ natural 

mortality or fish predation could strengthen the response of SZ to CHRY.   

The parameters that affected the absolute scaled slopes for MNE, LZ, SZ, and P were 

largely related to increasing CHRY biomass accumulation (Fig. 4. 7b).  Increasing the 

value of parameters that increase CHRY (CHRY assimilation of living and non-living 

material and maximum grazing) led to stronger response in the plankton, whereas the 

increase of parameters that decrease CHRY (CHRY excretion and mortality rates) 
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resulted in a weaker response in the plankton.  Furthermore, increased CHRY 

preference for detritus had the capability to reduce the response of the plankton to 

CHRY.  Additionally, enhanced external nutrient or forcing had the capability to 

reduce the absolute scaled slope of the state variables to an increase in 

CHRY.  Increases in both inorganic and organic nutrient sources, and inflow of P 

reduced the response of P.  Similarly, increases in LZ and MNE forcing reduced the 

response of their respective state variables.  Lastly, “cannibalism” parameters (LZ 

preference for LZ and SZ preference for SZ) were also important in dampening the 

response of the LZ and SZ, respectively, to CHRY. 

Discussion 

This paper used a 0-dimensional numerical ecosystem model to test the effect of 

changing modeled C. chesapeakei (CHRY) on the Chesapeake Bay planktonic 

ecosystem, with additional focus on the conditions that drive cascading responses. 

While complexity is thought to dampen trophic cascades (Polis et al., 2000; Polis & 

Strong, 1996), this work demonstrated that in a relatively complex ecosystem model, 

the change in CHRY had the potential to affect every state variable and throughflow 

(Fig. 4. 1).  The change in CHRY had the largest proportional effect on MNE and the 

effect decreased down the food chain to P (Fig. 4. 2).  This finding agrees with the 

“Bottom up-Top down hypothesis” which predicts that top-down forces are the 

strongest at the top of the food chain (Loreau, 2010; McQueen et al., 1986; McQueen 

et al., 1989; Persson, 1999).  Additionally, it is well demonstrated that Chrysaora spp. 
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can affect zooplankton populations (Feigenbaum & Kelly, 1984; Purcell & Decker, 

2005) and the results corroborate the finding that changing CHRY populations may 

affect P in the Chesapeake Bay (Testa et al., 2008), although the direction of the 

response is unclear.  

The largest unscaled effect of changing CHRY was on DONR, P, and the 

throughflows through P and NH4 (Fig. 4. 2), which are ecosystem components that 

are not generally the primary focus of research related to top predators.  As the largest 

storage pools, DONR and P have the capacity for the greatest change and may reflect 

a mechanism by which systems can be resilient to change.  Previous work has found 

that Chrysaora and Mnemiopsis release high amounts of DOM (Condon et al., 2009; 

Condon et al., 2011) that shifts bacterial community composition (which is beyond 

the scope of this work).  The increase of NH4 throughflow may be caused by the 

method used in this study of increasing CHRY through forcing.  Indeed, predators 

have been noted as agents of nutrient transfer between spatially-separated systems 

(Schmitz et al., 2010; Vanni et al., 2006).  Additionally, the increase in throughflow 

may represent a more general role of predators as maximizers of flow in ecosystems 

(Loreau, 1995).  These effects on disparate parts of the ecosystem agree with the 

current understanding that top predators can have ramifying effects through food 

webs and that their role is broader than solely as “top-down” consumers (Terbough & 

Estes, 2010).  
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Although the change in CHRY could affect the plankton down to the level of 

phytoplankton, the response did not always align with that predicted by the trophic 

cascade concept (Fig. 4. 4), defined here as inverse relationships between adjacent 

trophic levels reaching phytoplankton (sensu Brett & Goldman, 1997; Carpenter et 

al., 1985; Hairston et al., 1960).  While the second most frequent community response 

reflected mutualism between non-adjacent levels (-+-+), 28 other possible responses 

were also recorded.  Our model contains a relatively high amount of ecological 

complexity, departing from the assumptions of the trophic cascade concept (HSS) and 

other trophic cascade models of simple 3-level chains (Pimm, 1979; Rosenzweig, 

1973).  More complex models that contain recycling, omnivory, and detrital subsidy 

(Attayde et al. 2010; Herendeen, 1995) have found similar responses - primarily that 

state variables could respond by either increasing or decreasing to perturbations in top 

predators.  Complexity allows indirect effects to propagate along many different 

paths, leading to different responses than that predicted by one trophic chain.  The 

great diversity in the system response underscores the problems with the trophic 

cascade concept (Polis et al., 2000; Polis & Strong, 1996).    

Aside from model complexity, differences in parameter values alter the system’s 

directional response to a change in the top predator. This highlights the result of 

previous work (Taucher & Oschlies, 2011; Yodzis, 1988) that the uncertainty in 

parameters leads to the inability to predict the direction that state variables will 

respond to a perturbation.  While every ecological and environmental parameter had 
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the capacity to influence the community response to a change in CHRY inflow, the 

most important parameters were related to zooplankton growth and efficiency (MNE 

and LZ grazing, LZ and SZ assimilation, and MNE excretion; Fig. 4. 5).  The 

importance of these parameters likely reflects the importance of the basic ecological 

principle of trophic efficiency (Hutchinson, 1941; Lindeman, 1942) in understanding 

how systems respond to changes in top predators (DeBruyn et al., 2007).  These 

parameters influence the efficiency of the system to support top predators (Oksanen et 

al., 1981) as well as the paths of nutrient flow (Stibor et al., 2004).  Additionally, LZ 

and SZ were the most sensitive of the state variables to parameter choice in the 

sensitivity experiments, suggesting they could be useful aggregate indicators of 

ecosystem function in modeling and observational studies (Dolbeth et al., 2012).  

An array of other parameters were important in dictating the strength of the response 

of individual state variables to a change in CHRY.  Parameters that affect CHRY 

biomass accumulation were important in modulating the proportional state variable 

response to CHRY (Fig. 4. 7b).  CHRY biomass could be increased by increasing 

CHRY grazing or assimilation or by decreasing CHRY natural mortality or 

excretion.  It is important to note that MNE and CHRY predation were modeled with 

linear functions, which may have allowed for particularly strong control over the 

system in this study and their classification as “keystone” predators in others 

(Libralato et al., 2006).  The presence of keystone predators has been indicated as 

important for driving trophic cascades (Paine, 1980).  Therefore, it is still an open 
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question whether other predators, with saturating functional responses, may stimulate 

the same community level effects (sensu Polis) as observed in this study.  

The other suite of parameters that were important in modulating the state variable 

response to CHRY were those related to alternative pathways of loss or gains of the 

state variables.  The unscaled response of P was strongly determined by non-grazing 

losses of P (e.g. increases in P sinking, P mortality or exudation would decrease the 

effect of CHRY on P; Fig. 4. 7a).  Additionally,  increasing self-cannibalism (lzpreflz 

and szprefsz) also reduced the effect of CHRY on LZ and SZ, respectively.  Lzpreflz 

and szprefsz are parameters that simply parameterize food web complexity or 

diversity while retaining highly aggregated compartments and the result supports the 

idea that omnivory or complexity does dampen the magnitude of, but does not 

eliminate, top down control.  The scaled responses of P, SZ, and MNE to a change in 

CHRY were dampened by external subsidy and nutrients, which is counter to theory 

(reviewed in Borer et al., 2005; Leroux & Loreau, 2008) but agrees with past 

experimental studies (Borer et al., 2005; Chase, 2003). 

In conclusion, although complexity has called into question the importance of trophic 

cascades (Polis et al., 2000; Polis & Strong, 1996), this work demonstrates that 

changes in top gelatinous predators can still have effects that ramify through the food 

web.  However, the great diversity in the system response underscores the problems 

with the simplicity of the trophic cascade concept.  Both model complexity, which 

more closely reflects natural systems, as well as parameter uncertainty, which reflects 
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differences in process rate across and within systems, cause the system to respond in 

ways that are not readily predicted by the trophic cascade concept.  Both complexity 

and uncertainty are challenges for ecologists making predictions as the earth 

undergoes large environmental change.    

The results of this work suggest herbivore and predator energetics as well as alternate 

sources of loss and gains are important components in understanding the role of top 

predators (Borer et al., 2005; Shurin et al., 2002).  It should be noted that the 

parameters that were deemed most important were dependent on the metric of change 

(direction, unscaled or scaled magnitude) and the state variable, highlighting the need 

for studies to clearly define their usage of the term “trophic cascade” (Polis et al., 

2000; Ripple et al., 2016).  This work highlights the need to include complexity and 

energetics in the development of new frameworks (Barbier & Loreau, 2019)  to fully 

understand the trophic cascade and other patterns that emerge from perturbations 

through complex systems.   

  



 

  122 

 

 

References 

Attayde, J. L., E. H. van Nes, A. I. L. Araujo, G. Corso & M. Scheffer, 2010. 

Omnivory by planktivores stabilizes plankton dynamics, but may either 

promote or reduce algal biomass. Ecosystems 13: 410–420. 

Barbier, M. & M. Loreau, 2019. Pyramids and cascades: A synthesis of food chain 

functioning and stability. Ecology Letters 22: 405–419. 

Bender, E. A., T. J. Case & M. E. Gilpin, 1984. Perturbation experiments in 

community ecology: Theory and practice. Ecology 65: 1–13. 

Borer, E.T., E.W. Seabloom, K.E. Anderson, C.A. Blanchette, B. Broitman, S.D. 

Cooper & B.S. Halpern, 2005. What determines the strength of a trophic 

cascade? Ecological Society of America 86: 528-537. 

Breitburg, D. & R. Burrell, 2014. Predator-mediated landscape structure: seasonal 

patterns of spatial expansion and prey control by Chrysaora quinquecirrha 

and Mnemiopsis leidyi. Marine Ecology Progress Series 510: 183–200. 

Breitburg, D. L. & R. S. Fulford, 2006. Oyster-sea nettle interdependence and altered 

control within the Chesapeake Bay ecosystem. Estuaries and Coasts 29: 776–

784. 

Brett, M. T. & C. R. Goldman, 1997. Consumer versus resource control in freshwater 

pelagic food webs. Science 275: 384–386. 

Calder, D., 1974. Strobilation of the sea nettle, Chrysaora quinquecirrha, under field 

conditions. Biological Bulletin 146: 326–334. 

Cargo, D. G. & D. R. King, 1990. Forecasting the abundance of the sea nettle, 

Chrysaora quinquecirrha, in the Chesapeake Bay. Estuaries 13: 486–491. 

Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions 

and lake productivity. BioScience 35: 634–639. 

Chase, J. M., 2003. Strong and weak trophic cascades along a productivity gradient. 

Oikos 101: 187–195. 

Condon, R. H., D. K. Steinberg & D. A. Bronk, 2009. Production of dissolved 

organic matter and inorganic nutrients by gelatinous zooplankton in the York 

River Estuary, Chesapeake Bay. Journal of Plankton Research 32: 153–170. 

Condon, R.H., D. K. Steinberg, P.A. del Giorgio, T. C. Bouvier, D. A. Bronk, W. M. 

Graham & H.W. Ducklow, 2011. Jellyfish blooms result in a major microbial 



 

  123 

 

 

respiratory sink of carbon in marine systems. Proceedings of the National 

Academy of Sciences 108: 10225–10230. 

DeBruyn, A.M.H., K. S. McCann, J. C. Moore & D. R. Strong, 2006. An energetic 

framework for trophic control in Rooney. In N., K. S. McCann, & D. L. G. 

Noakes (eds), From Energetics to Ecosystems: The Dynamics and Structure of 

Ecological Systems. Springer, Netherlands: 65–85. 

Dolbeth, M., M. Cusson, R. Sousa & M. A. Pardal, 2012. Secondary production as a 

tool for better understanding of aquatic ecosystems. Canadian Journal of 

Fisheries and Aquatic Sciences 69: 1230–1253. 

Feigenbaum, D. & M. Kelly, 1984. Changes in the lower Chesapeake Bay food chain 

in presence of the sea nettle Chrysaora quinquecirrha. Marine Ecology 

Progress Series 19: 39–47. 

Hairston, N.G., F.E. Smith & L.B. Slobodkin, 1960. Community structure, population 

control, and competition. The American Naturalist 94: 421–425. 

Herendeen, R.A., 1995. A unified quantitative approach to trophic cascade and 

bottom-up: top-down hypotheses. Journal of Theoretical Biology 176: 13–26. 

Kimmel, D. G., W. R. Boynton & M. R. Roman, 2012. Long-term decline in the 

calanoid copepod Acartia tonsa in central Chesapeake Bay, USA: An indirect 

effect of eutrophication? Estuarine, Coastal and Shelf Science 101: 76–85. 

Leroux, S. J. & M. Loreau, 2008. Subsidy hypothesis and strength of trophic cascades 

across ecosystems: Subsidies and trophic cascades. Ecology Letters 11: 1147–

1156. 

Libralato, S., V. Christensen & D. Pauly, 2006. A method for identifying keystone 

species in food web models. Ecological Modelling 195: 153–171. 

Lindeman, R., 1942. The trophic-dynamic aspect of ecology. Ecology 23: 399-417. 

Loreau, M., 1995. Consumers as maximizers of matter and energy flow in 

ecosystems. The American Naturalist 145: 22–42. 

Loreau, M., 2010. From populations to ecosystems: theoretical foundations for a new 

ecological synthesis. Princeton University Press, Princeton. 

McQueen, D. J., M. R. S. Johannes, J. R. Post, T. J. Stewart & D. R. S. Lean, 1989. 

Bottom-up and top-down impacts on freshwater pelagic community structure. 

Ecological Monographs 59: 289–309. 



 

  124 

 

 

McQueen, D. J., J. R. Post & E. L. Mills, 1986. Trophic relationships in freshwater 

pelagic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 43: 

1571–1581. 

Oksanen, L., S. D. Fretwell, J. Arruda & P. Niemela, 1981. Exploitation ecosystems 

in gradients of primary productivity. The American Naturalist 118: 240–261. 

Pace, M. L., J. J. Cole, S. R. Carpenter & J. F. Kitchell, 1999. Trophic cascades 

revealed in diverse ecosystems. Trends in Ecology & Evolution 14: 483–488. 

Paine, R. T., 1980. Food webs: Linkage, interaction strength and community 

infrastructure. Journal of Animal Ecology 49: 667–685. 

Persson, L., 1999. Trophic cascades: Abiding heterogeneity and the trophic level 

concept at the end of the road. Oikos 85: 385. 

Pimm, S. L., 1979. The structure of food webs. Theoretical Population Biology 16: 

144–158.  

Polis, G. A., A. L. Sears, G. R. Huxel, D. R. Strong & J. Maron, 2000. When is a 

trophic cascade a trophic cascade? Trends in Ecology & Evolution 15: 473–

475. 

Polis, G. A., & D. R. Strong, 1996. Food web complexity and community dynamics. 

The American Naturalist 147: 813–846. 

Power, M. E., 2000. What enables trophic cascades? Commentary on Polis et al. 

Trends in Ecology and Evolution 15: 443–444. 

Purcell, J. E., & M. B. Decker, 2005. Effects of climate on relative predation by 

scyphomedusae and ctenophores on copepods in Chesapeake Bay during 

1987-2000. Limnology and Oceanography 50: 376–387. 

Ripple, W. J., J. A. Estes, O. J. Schmitz, V. Constant, M. J. Kaylor, A. Lenz, J. L. 

Motley, K. E. Self, D. S. Taylor & C. Wolf, 2016. What is a trophic cascade? 

Trends in Ecology & Evolution 31: 842–849. 

Rosenzweig, M. L., 1973. Evolution of the predator isocline. Evolution 27: 84–94. 

Scheffer, M., 1991. Fish and nutrients interplay determines algal biomass: A minimal 

model. Oikos 62: 271. 

Scheffer, M., & S. Rinaldi, 2000. Minimal models of top-down control of 

phytoplankton. Freshwater Biology 45: 265–283. 



 

  125 

 

 

Scheffer, M., S. Rinaldi & Y. A. Kuznetsov, 2000. Effects of fish on plankton 

dynamics: a theoretical analysis. Canadian Journal of Fisheries and Aquatic 

Sciences 57: 1208-1219. 

Schmitz, O. J., D. Hawlena & G. C. Trussell, 2010. Predator control of ecosystem 

nutrient dynamics: Predator control of ecosystem nutrient dynamics. Ecology 

Letters 13: 1199–1209. 

Shurin, J. B., E. T. Borer, E. W. Seabloom, K. Anderson, C. A. Blanchette, B. 

Broitman, S. D. Cooper & B. S. Halpern, 2002. A cross-ecosystem 

comparison of the strength of trophic cascades: Strength of cascades. Ecology 

Letters 5: 785–791. 

Stibor, H., O. Vadstein, S. Diehl, A. Gelzleichter, T. Hansen, F. Hantzsche, A. 

Katechakis, B. Lippert, K. Løseth, C. Peters, W. Roederer, M. Sandow, L. 

Sundt-Hansen & Y. Olsen, 2004. Copepods act as a switch between 

alternative trophic cascades in marine pelagic food webs: Trophic cascades in 

marine plankton. Ecology Letters 7: 321–328. 

Taucher, J. & A. Oschlies, 2011. Can we predict the direction of marine primary 

production change under global warming? Geophysical Research Letters 38: 

L02603, doi: 10.1029/2010GL045934 

Terborgh, J., & J. A. Estes (eds), 2010. Trophic cascades: predators, prey, and the 

changing dynamics of nature. Island Press, Washington DC. 

Testa, J. M., W. M. Kemp, W. R. Boynton, & J. D. Hagy, 2008. Long-term changes 

in water quality and productivity in the Patuxent River Estuary: 1985 to 2003. 

Estuaries and Coasts 31: 1021–1037. 

Vanni, M. J., A. M. Bowling, E. M. Dickman, R. S. Hale, K. A. Higgins, M. J. 

Horgan, L. B. Knoll, W. H. Renwick & R. A. Stein, 2006. Nutrient cycling by 

fish supports relatively more primary production as lake productivity 

increases. Ecology 87: 1696–1709. 

Yodzis, P., 1988. The indeterminacy of ecological interactions as perceived through 

perturbation experiments. Ecology 69: 508–515. 

 

   



 

  126 

 

 

Tables and Figures 

 

Fig. 4. 1  Proportion of the simulated Chrysaora (CHRY) perturbation 

experiments in which each state variable (top panel) or throughflow (bottom 

panel) decreased (red), increased (teal) or had no response (grey) in response to 

increase in CHRY inflow 
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Fig. 4. 2  Absolute value of the response of each state variable (top panel) and 

throughflow (bottom panel) in response to increasing CHRY 

Left column reports the absolute value of the slope and the right column reports the 

absolute value of the proportion slope.  Note split axes and scale differences between 

panels. 
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Fig. 4. 3  t-SNE visualization of the press perturbation experiments using the a) 

slope and b) scaled slope 

Each panel reports the response of one state variable and each point represents the 

response for one perturbation experiment.  The color represents the direction of the 

response of the state variable and the intensity of the color is the order of magnitude 

strength of the response.  The axes have no meaning. 
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Fig. 4. 4 The number of simulated Chrysaora (CHRY) perturbation experiments 

that resulted in a given community response 

The community response is defined as the combined directional response of MNE, 

LZ, SZ, and P in response to an increase in CHRY (e.g. ++++ represents that each 

state variable increased).  Each experiment was run with a different set of 

environmental and ecological parameters.     
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Fig. 4. 5 The proportion of sensitivity experiments in which the community 

response changed 

The sensitivity experiments consisted of running simulated Chrysaora (CHRY) 

perturbation experiments for base levels of the given parameter and +/- 50% of that 

parameter for 11 years and 100 parameter sets.   The community response is defined 



 

  131 

 

 

as the combined directional response of MNE, LZ, SZ, and P in response to an 

increase in CHRY. 
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Fig. 4. 6 The proportion of experiments in which the directional response of a 

given state variable (panel) changed due to a change in the parameter versus the 

median of the absolute slopes 

Each point represents the summary for the suite of sensitivity experiments for one 

parameter.  Each panel represents one state variable.  The 10 parameters that changed 

the highest proportion of experiments or with the greatest magnitude were 

labeled.  Green, blue, and red denote that the parameter was in the top 10 parameters 

for its importance in changing both the proportion and magnitude, only the 

proportion, and only the magnitude, respectively. 
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Fig. 4. 7 The proportion of sensitivity experiments that lead to an increase in the 

absolute a) slope and b) scaled slope when the parameter was increased by 50% 

versus the median value of the response 

A proportion of 1 represents that all of the experiments resulted in an increase for a 

given state variable (panels), whereas 0 represents that all of the experiments led to a 

decrease in the magnitude of the response.  The sensitivity experiments consisted of 

running simulated Chrysaora (CHRY) perturbation experiments for base levels of the 

given parameter and +/- 50% of that parameter for 11 years and 100 parameter 

sets.  Parameters for which >= 75% of the experiments increased or decreased in the 

absolute response were labeled. 
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Chapter 5:  Conclusion 
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The goals of this dissertation were to understand the previously undescribed high-

frequency signal in a fixed-station, visual shore-based time series of Chrysaora 

chesapeakei (Chapter 2), to use a Bayesian data assimilation method to enhance 

objectivity in calibrating and formulating a mechanistic model to include jellyfish 

(Chapter 3), and using that model, to explore the trophic cascade concept triggered by 

jellyfish in the Chesapeake Bay (Chapter 4).    

In Chapter 2, I analyzed a 4-year high-frequency time series of C. chesapeakei 

medusa counts collected using three sampling methods in the Choptank River, 

Chesapeake Bay.  Medusae abundance was modeled by change points and was highly 

correlated between the sampling methods, suggesting that shore-based surveys are an 

inexpensive and effective method to collect information on jellyfish.  The remaining 

signal was random, and indices of aggregation (fit to the Poisson distribution, 

Taylor’s Power Law (TPL), and Morisita’s Index) indicated that medusae were 

aggregated. TPL suggested that patches grew in the number of individuals as 

abundance increased. A simple conceptualization of where the time series sampled in 

space revealed that the upper bound of patch size was on the order of kilometers.   

The finding that the high-frequency temporal variability reflects spatial patchiness of 

the sea nettles as they move into and out of the sampling region is not unexpected as 

many species of jellyfish exhibit patchiness at fine (1 to 102 m) to coarse (103-104 m) 

scales (reviewed in Hamner & Dawson, 2008).  And while “spatial heterogeneity is 

scarcely a new or novel concept in ecology (Wiens, 2000),” there are still many 
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unknowns related to spatial patterns and the basic population ecology of C. 

chesapeakei (Shahrestani, 2018).  As demonstrated in this study, understanding 

patchiness affects the ability to estimate abundance and to accurately detect 

demographic changes (Haury et al., 1978).  Furthermore, patchiness has important 

implications for ecosystem dynamics as aggregations of organisms may have vastly 

different effects than predicted by their average abundance (reviewed in Wiens, 

2000).  Overall, this study suggests that more shore-based surveys, such as through a 

citizen science project, would help to gather more information on C. chesapeakei, 

which is needed to fully understand and predict the role of jellyfish in the Chesapeake 

Bay ecosystem. 

In Chapter 3, I developed a 0-dimensional process-based model of the Chesapeake 

Bay mesohaline region that includes the additional complexity of jellyfish and the 

microbial food web.  The ability to simulate zooplankton biomass was improved 

mainly by adding representation of refractory non-living organic materials, which is 

not generally included in aquatic ecosystem models.  Although the purpose of this 

research was to develop this model, the main contribution of this chapter was in the 

use of a data assimilation method, Approximate Bayesian Computation (ABC - 

rejection method), to calibrate and guide the model’s development.  This more 

objective means of calibration highlighted inability for the model formulation to 

represent observations.  However, the model error remaining after calibration was not 

solely due to inadequacies in model structure but also due to the cost function choice. 
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The dependence of the results of data assimilation on the cost function highlights the 

need for care when using cost functions.  The Reliability Index (RI) chose parameters 

that resulted in better predictions than the squared percentage error (SPE).  The RI is 

likely a more appropriate cost function, if calibrating over small-valued variables 

and/or if the uncertainty in the variables span orders of magnitude.  However, in 

ABC, the outcome of the calibration is due the relationship between cost function and 

the prior parameter distribution, making it difficult to fully predict the appropriateness 

of a cost function.  Some efforts have begun in automating the choice of cost 

functions (Fearnhead & Prangle, 2012).  However, a simple and pragmatic 

recommendation is to apply different cost functions to determine the sensitivity to its 

choice in the calibration stage.  

Besides the considerations related to calibration, this chapter underscores that other 

stages of the modeling process can benefit from continued improvements 

(Alexandrov et al., 2011; Jakeman et al., 2006).  Further attention to the 

documentation of both model structure and the development processes would help 

researchers learn from and build on past work (Alexandrov et al., 2011; Benz et al., 

2001; Benz & Knorrenschild, 1997; Crosier et al., 2003; Grimm et al., 2006; Hoch et 

al., 1998; Martinez-Moyano, 2012).  Model documentation should focus on 

developing methods that are information rich, as well simple for developers to 

generate and for users to interpret.  I suggest a visual adjacency matrix (Fig. 3. 1) to 

replace or supplement spaghetti or other network-like visualizations.  The field may 
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also benefit from a central repository to store such model structures for ease of 

searching and comparison  (Benz et al. 2001).   

Documentation of the model development process is important for researchers to 

learn from the huge amount of currently undocumented expert knowledge but also for 

transparency.  Generally, the models that are published are those that “work,” so the 

many tested and rejected hypotheses are not available to the greater modeling 

community (Anderson & Mitra 2010; Franks, 2009).  The form of such a 

development log may include the literature (models, experiments, and observations) 

reviewed, the processes (linkages or equations) or state variables that were tested, and 

the reasons features were or were not eventually incorporated into the model 

formulation.  This documentation would help to save developers effort as well as to 

guide them in determining features that may be important in their 

models.  Additionally, such documentation would improve transparency, allowing for 

assessment of the process by which a model is developed.  Assessment of the process 

may be a more pragmatic means to assess model adequacy than testing of the final 

product (Ravetz, 1997, Jakeman et al., 2006).   

Lastly, in Chapter 4, I used the model developed in the previous chapter, which 

represents several zooplankton pools as well as bacteria and non-living organic 

matter, to probe the trophic cascade concept.  There has been much scientific debate 

regarding whether the trophic cascade is actualized due to the complexity of 

ecosystems, which would dampen top down effects.  Simulation experiments 
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demonstrated that a change in modeled C. chespeakei (CHRY) had the potential to 

affect every state variable and throughflow, but that the response did not always 

conform to the trophic cascade concept.  This finding demonstrates the importance of 

the trophic cascade concept in focusing attention on top predators (as opposed the 

historical focus on bottom-up processes), as well as, highlights that continued work is 

needed to more fully understand the roles of predators in structuring ecosystems. 

This work contributes to that understanding by highlighting that the ecosystem 

response to a perturbation of the top predator was highly dependent on the ecological 

and environmental parameters.  Every parameter could alter the response of the 

system, which may explain, in part, the confusion within the literature regarding the 

pervasiveness of the trophic cascade.  That disparate features of the ecosystem can 

alter the system response emphasizes the importance of network and ecosystem 

perspectives.  Analysis of static ecological networks have provided valuable insights 

into the importance of C. chesapeakei (Baird & Ulanowicz 1989), however, future 

work on a general understanding of how networks respond to perturbations is still 

needed (Barzel & Barabasi, 2013).   

The most important parameters in altering the response of the ecosystem to the 

change in CHRY were those related to the energetics of the zooplankton and those 

related to loss or gains of state variables that were not related to the linear grazing 

food chain.  Our findings largely agree with past work on the importance of herbivore 

and predator efficiency in generating strong cascading responses (Borer et al., 
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2005).  In fact, several new ideas have been proposed that frame the trophic cascade 

in a larger theory related to energetics (Barbier & Loreau, 2019; DeBruyn et al., 

2007).  However, because many ecological and environmental parameters were 

important in determining the response, combining energetics with the study of 

networks may be a fruitful path to more fully understanding how ecosystems respond 

to changes in top predators. 
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