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Chapter 1

Introduction

In statistical practice, for investigations involving a large number of observed variables,

it is often useful to simplify the analysis by considering a small number of linear com-

binations of the original variables. For example, scholastic achievement tests usually

consist of a number of examinations in different subject areas. In attempting to rate

students applying for admission, college administrators frequently attempt to reduce

the scores from all subject areas to a single, overall score.If the reduction can be

done with minimal information loss, it is better. PrincipalComponent Analysis (PCA)

is a method for data reduction. It is used to find linear combinations of the original

variables which account for most of the variance in the original sample [2].

In many scientific fields, notably psychology and other social sciences, we are

often interested in quantities, such as intelligence or social status, that are not directly

measurable. However, it is often possible to measure other quantities which reflect the

underlying variable of interest. Factor analysis is an attempt to explain the correlations

between observable variables in terms of underlying factors, which are themselves not

directly observable. For example, measurable quantities such as performance on a

series of tests can be explained in terms of an underlying factor such as intelligence.

At first glimpse, factor analysis closely resembles principal components analy-
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sis. Both use linear combinations of variables to explain sets of observations of many

variables. In principal component analysis, the observed variables are themselves the

quantities of interest. The combination of these variablesin the principal components

is primarily a tool for simplifying the interpretation of the observed variables. Princi-

pal components analysis is merely a transformation of the data. No assumptions are

made about the form of the covariance matrix of the data. On the other hand, factor

analysis assumes that the data comes from a statistical model which can be expressed

in terms of a few underlying, but unobservable, random quantities calledfactorsand

some additional sources of variation callederror. Factor analysis can be considered

as an extension of principal components analysis. Both can beviewed as attempts

to approximate the covariance matrix. Applications of PCA and factor analysis have

become very popular in many fields such as psychology, economics, sociology, mete-

orology, medicine, political science, taxonomy and archaeology. Both of them have

been successfully used in acoustic and phonetic research ontongue position by Harsh-

man et al. (1977) , Jackson (1988), Nix et al. (1996), and Stone et al. (1997).

The PARAFAC model was pioneered by Harshman et al. (1977). It is a tech-

nique for extracting “articulatory prime” shapes from dataallowing non-orthogonal

components to scale differently for different speakers. The main concern underlying

the PARAFAC model is how to modify the small set of prime shapeswith large vari-

ance of sound production for different speakers, without requiring large numbers of

parameters for all speaker and sound combinations. PCA mightdo well in reducing

the dimension without extracting the behaviors for individual speaker differences. On

the other hand, the PARAFAC model succeeds in decomposing tongue shape data into

tongue shape factors. In my thesis, PCA, Factor Analysis and the PARAFAC model

are introduced. A model hierarchy is defined, and then is applied to coronal tongue
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cross-section ultrasound data of multiple subjects collected in the laboratory of Dr. M.

Stone [22]. We also discuss the interpretation for the tongue data of the assumptions

defining the models presented. Then we present data analyticresults to distinguish

which model is adequate.

1.1 Principal Component Analysis

PCA is concerned with explaining the variance-covariance structure through a few

linear combinations of the original variables. The definition of Principal Components

in the population is as follows.

Suppose the random vector

Y =




Y1
...

Yp




has the covariance matrixΣ. Since we will be interested only in the variance-covariance

structure, we assume that the mean vector is0. Let l be ap-component column vector

such thatltl = 1. The variance ofltY is

E(ltY Y tl) = ltΣl. (1.1)

The i’th Principal Component, usually denoted byPCi, can be defined inductively.

The first principal componentPC1 is the linear combinationlt1Y wherel1 is the vector

which maximizesV ar(lt1Y ) subject tolt1l1 = 1. The second principal component

PC2 is the linear combinationlt2Y wherel2 maximizesV ar(lt2Y ) subject tolt2l2 = 1

andCov(lt1Y, l
t
2Y ) = 0. Similarly, thei’th principal componentPCi= ltiY whereli

maximizesV ar(ltiY ) subject toltili = 1 andCov(ltkY, l
t
iY ) = 0 for k < i. Thus,

the first principal component has the largest variance amongall standardized linear
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combinations ofY . Similarly, the second principal component has the largestvariance

among all standardized linear combinations ofY uncorrelated with the first principal

component, and so on.

By the method of Lagrange multipliers, we can obtain thatPCi = vtiY , where

(λ1, v1), (λ2, v2), . . ., (λp, vp) are the eigenvalue-eigenvector pairs ofΣ with

λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0

and

Cov(PCi, PCj) = λiδij (1.2)
p∑

i=1

V ar(Yi) = λ1 + . . .+ λp. (1.3)

Equation (1.3) is true when all the eigenvectors are distinct. It can be arranged to be

true by the following two lemmas if some eigenvalues are the same [2].

Lemma 1. Supposeλr+1 = λr+2 = . . . = λr+m = t; then(Σ − tI) is of rankp−m.

Furthermore, thep ×m matrix whose columns consist of an m-tuple of orthonormal

eigenvectorsv∗=(vr+1 . . . vr+m) of (Σ−tI) is uniquely determined up to multiplication

on the right by an orthogonal matrix.

Lemma 2. An orthogonal transformationV = CY of a random vectorY leaves

invariant the generalized variance and the sum of the variances of the components.

The generalized variance ofY is defined as the determinant ofEY Y t if EY = 0.

The proof can be found in (Anderson 1984). The proportion of total variance due

to the k’th principal component is

λk
λ1 + . . .+ λp

, k = 1, . . . , p
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The vectorsvi used in defining thei’th principal component of the original variables

are called Principal Directions. In general, there are as many principal components as

variables. However, because of the way they are calculated,it is usually desirable to

consider only a few of the principal components, which together explain most of the

original variation. The most popular criterion to determine the numberq of principal

components to retain in describing data is

∑q
k=1 λk∑p
j=1 λj

≥ 1 − α (1.4)

for suitably defined constantα, usually,.05 or .10.

1.2 Factor Analysis

Factor analysis is a branch of statistical science. The origin of factor analysis is as-

cribed to Charles Spearman (1904). He was called the father offactor analysis because

of his remarkable work in developing psychological theories involving factor analysis

(Harman 1976). The further development of psychological theories and mathemati-

cal foundations of factor analysis was continued by Cyril Burt, Karl Pearson, Godfrey

Thomson, etc. Applications of factor analysis in fields other than psychology have

become very popular since 1950, along with the development of fast computers. The

main applications of factor analytic techniques are to reduce the number of variables

and to detect structure in the relationships between variables, that is, to classify vari-

ables. Therefore, factor analysis is applied as a data reduction or structure detection

method. In order to analyze observed data, one approach is toprovide a statistical

model, to explain the underlying behavior of the data.

The general factor analysis model is defined as follows: let the observable vector
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Y be written as

Y = µ+ Λf + U (1.5)

whereY , µ, andU are column vectors ofp components,Λ is ap×q matrix of constants

with q fixed and less thanp, andf is a q × 1 random vector. The elements ofΛ are

calledfactor loadings and the matrixΛ is called theloading matrix. The elements

of f are calledcommon factors and the elements ofU are calledunique factors. We

assume thatf ∼ N(0, Iq), U ∼ N(0,Ψ), f andU are independent, andΨ is ap × p

diagonal matrix. Therefore, the general random-effect factor model can be expressed

as

Y ∼ N(µ, Λ Λt + Ψ).

We will present the parameter space of this model (M0) in the next chapter.

1.3 Overview of the Thesis

In Chapter 2, we introduce the general factor models and construct a model hierarchy

(Figure 1.1 and Figure 1.2) for the application to tongue image data. For each model,

we introduce the model assumptions and the parameter spaces, and then give a proof

of identifiability of the model from data. The general sufficient condition for identifi-

ability in the general random effect factor model (M0) has not been accomplished yet,

but we find some new results related to the non-identifiable models and the parameters

in the boundary of the parameter space.

In Chapter 3, we find the maximum likelihood estimators for theparameters (Λ,Ψ)

in the factor models with error-matrixΨ proportional toIp (model M1) or todiag(e)

for a vectore with entries0 or 1 (model M1R). In Section 3.2, we introduce the idea
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of profile likelihood and use it to find the maximum likelihoodestimators for the pa-

rameters under (M1R). In Section 3.3, we discuss profile likelihood optimization in

(M0). In Section 3.4, we find a necessary condition to check the local maximum like-

lihood estimate. In Section 3.5, we consider the score test within (M1) for the problem

H0 : ψjj = 0 vs HA : ψjj > 0. In Section 3.6, we discuss the likelihood ratio

test for testing fit of the PARAFAC (M4a) against the fixed-effect factor model (M3).

The PARAFAC model is a restricted model of (M3) in which each component of the

fixed-effect factor is decomposed as a product of two terms. Details are in Chapter 2.

In Chapter 4, we introduce the EM algorithm and Newton-Raphsonoptimization

method and develop an EM algorithm to compute the maximum likelihood estimator

(MLE) for (M0). The performance of the algorithm on simulated data is described, par-

ticularly in relation to approximate non-identifiability.The Newton-Raphson method

is also used to calculate the MLE of the profile likelihood function lp(Ψ) and is shown

to give results for random effect factor models (M0) that agree with the EM algorithm.

We find a new result that an MLE can be found on the boundary of the parameter space

when the model is non-identifiable. Details of computationsin MATLAB for (M4a)

and Splus for (M3), are also given in this chapter.

In Chapter 5, we introduce a real data set of ultrasound cross-sectional images of

the human tongue during speech. The PARAFAC (M4a) model had been successfully

used in some tongue image data. However, Slud et al. [22] actually found (M4) which

is similar to PARAFAC but with orthogonal loading matrix is inadequate to represent

the data. Therefore, a more general model such as PARAFAC model (M4a) or fully

general fixed effect factor model (M3) is needed for representing cross-classified data.

Thus, the well-defined model hierarchy we constructed may help to rationalize the

choice of models. In this chapter, the Likelihood Ratio Test (LRT) is used to test
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whether the more general models (M3) or (M4a) represent the coronal tongue data

better. We construct an algorithm and use a MATLAB toolbox toget the MLE for

(M4a). We find that the more general model (M3) fits the coronaltongue data better

than the PARAFAC (M4a) model.

In Chapter 6, we summarize the results from this research, anddiscuss future work.

1.4 Some Definitions and Notations

In this section, we define some notations that will be used in this thesis.

Notation 1.1. Let Mab denote the space of reala × b matrices and letM+
ab denote

the subset of matrices inMab satisfying the additional constraint that the first nonzero

element in each column is positive.

Notation 1.2. The notationM t for a matrixM ∈ Mab denotes the transpose ofM .

Notation 1.3. LetRp denote the Euclideanp-dimensional space consists of all ordered

p-tuples of real numbers. Symbolically,

Rp = {(v1, . . . , vp) : v1, . . . , vp ∈ R}

We denoteRp
+ as a subspace ofRp which consists of all orderedp-tuples of positive

real numbers.

Notation 1.4. The notationdiag(v) for a vectorv ≡ (v1, . . . , vp) ∈ Rp denotes the

square diagonalp× p matrix with(v1, . . . , vp) on the diagonal.
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Notation 1.5. Letw1,w2, . . . ,wq beq vectors inRp. The matrixW consisting of the

q vectorsw1,w2, . . . ,wq as its column vectors is denoted byW = (w1|w2| . . . |wq).

Thus,W ∈ Mpq.

Notation 1.6. Let W ≡ (w1|w2| . . . |wq). The notationcol(W ) for the matrixW

denotes the column spaceW . Thencol(W ) = span{w1,w2, . . . ,wq}, which is the

space spanned by the column vectors ofW .

Notation 1.7. Let Opq denote the space ofp × q matricesM with real components

and orthogonal columns, ordered by decreasing norm, (i.e.,matrices satisfyingM tM

= diag(v1, v2, . . . , vq) with v1 > v2 > . . . > vq > 0), and letO+
pq denote the subset

of matrices inOpq satisfying the additional constraint that the first nonzeroelement in

each column is positive.

Notation 1.8. LetM ∈ Mpq. The notationrange(M) ≡ {Mv : v ∈ Rq} is the range

of the matrixM .

Definition 1.9. LetM ∈ Mpp. If vtMv > 0 for all non-zero vectorsv ∈ Rp, thenM

is said to be positive definite onRp. If vtMv ≥ 0 for all v ∈ Rp, thenM is said to be

positive semidefinite (or non-negative definite). Positivedefiniteness (semidefiniteness)

of a symmetric matrix is denoted byM ≻ 0 (M � 0).

Definition 1.10. LetA = (aij) ∈ Mpp. The trace ofA, denoted bytr(A), is defined

as tr(A) =
∑p

j=1 ajj.

9



Figure 1.1: Model Hierarchy.
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Figure 1.2: Cross-Classified Model Hierarchy.

11



Chapter 2

Factor Analysis Models and Model Hierarchy

In this chapter, we introduce the general factor models and construct a model hierarchy

for application to tongue image data. In each model, we present the model assumptions

and the parameter spaces, and then give the proof of identifiability.

2.1 General Factor Analysis Models

Let {Y (r); r = 1, . . . , R} be an independent sequence of random column vectors of

p components with meanµ and covariance matrixΣy. Then we say that theq-factor

model [15] holds forY (r) if Y (r) can be written in the form

Y (r) = µ+ Λf (r) + U (r) (M0)

whereµ is a column vector ofp components;Λ is ap × q matrix of constants withq

fixed and less thanp; f (r) is aq × 1 random vector; andU (r) is ap× 1 random vector

for r = 1, . . . , R. The elements ofΛ are calledfactor loadings, the elements off (r)

are calledcommon factors and the elements ofU (r) are calledunique factors.

Assume (as in Mardia Kent Bibby [15]) thatf (r) ∼ N(0, Iq), U (r) ∼ N(0,Ψ), and

f (r) andU (r) are independent whereΨ = diag(ψ) is ap× p diagonal matrix with the

vectorψ ≡ (ψ1, . . . , ψp) ∈ Rp on the diagonal. Therefore, the General Factor Model
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can be expressed

Y (r) ∼ N(µ, Λ Λt + Ψ)

The observed data always consist of{Y (r); r = 1, . . . , R}. The parameterθ =

(µ, Λ, ψ) is assumed to belong to the space

ΘM0 ≡ Rp ×O+
pq × R

p
+ (2.1)

whereO+
pq is defined in Notation 1.7 andRp

+ is defined in Notation 1.3. This model is

called model (M0).

2.1.1 Generality ofΣY produced by the model

In model (M0),Y (r) is normally distributed with meanµ and covariance

ΣY = ΛΛt + diag(ψ) (2.2)

whereΨ ≡ diag(ψ). In this case, there is a problem of existence of the model: for

a normal population with meanµ∗ and covariance matrixΣ∗, is there a factor model

(M0) that can generate this population? The essential question is whether the equation

Σ∗ = ΛΛt + diag(ψ) can be solved, or what condition is needed to solve the equation.

It is of interest to compare the number of parameters inΣY with the number of

free parameters in the factor model. There arep elements ofψ andpq elements ofΛ.

However, in any solutionΛ can be replaced byΛT , whereT is anyq × q orthogonal

matrix andT hasq(q − 1)/2 independent elements. Thus, a solutionΛ ∈ O+
pq must

satisfyq(q − 1)/2 additional column orthogonality constraints. Since the number of

distinct elements ofΣY is p(p+1)/2, we see that the number of covariance parameters

minus the number of additional independent constraints is

C(p, q) =
1

2
p(p+ 1) − [pq + p− 1

2
q(q − 1)]

=
1

2
[(p− q)2 − (p+ q)] (2.3)
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Usually,C(p, q) > 0, sincep is much larger thanq. In general, a solution(Λ, ψ) under

the additional constraints can be unique only ifC(p, q) ≤ 0. Setting the quadratic

C(p, q) equal to zero and solving forq, the two roots are given by

q =
1

2
[(2p+ 1) ±

√
8p+ 1] (2.4)

For any fixed value ofp, the plot of the quadratic functionC(p, q) is a parabola which

opens up vertically. Hence the values ofq such thatC(p, q) ≤ 0 are given by

1

2
[(2p+ 1) +

√
8p+ 1] ≥ q ≥ max(

1

2
[(2p+ 1) −

√
8p+ 1], 0) (2.5)

2.1.2 Identifiability for (M0) model

A parameterθ for a family of probability density functionsPθ ≡ {pθ : θ ∈ Θ} is said

to be identifiable if the distinct values ofθ correspond to distinct probability densities.

That is,θ is identifiable ifθ 6= θ′ implies pθ 6= pθ′. The existence of a consistent

estimator of a parameterθ (in independent identically distributed samples fromPθ)

implies identifiability ofθ.

In the general factor analysis model (M0),Y (r) is assumed to be multivariate nor-

mally distributed with meanµ and covariance matrixΣY ≡ ΛΛt + diag(ψ). Thus,

identifiability of the model requires precisely that the mapping

(µ,Λ, ψ) 7−→ (µ,ΛΛt + diag(ψ))

be one-to-one. Therefore, given covariance matrixΣ and a numberq of factors, we ask

whether there exists unique(Λ, ψ) to satisfy (2.2). It is clear that if (Λ,ψ) is a solution

of (2.2), then (ΛT ,ψ) is also a solution of (2.2), for anyq × q orthogonal matrixT .

So the problem is whether we can find constraints such that there is a unique solution

under the constraints withinO+
pq.
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As we count the number of equations and number of free parameters in the previous

section, identifiability corresponds roughly to a solutionset of dimension0. However,

the counting of equations does not really give enough information for a sufficient con-

dition. We should investigate the problem more fully. Let usfirst start from observing

some examples of non-identifiable models.

Example 2.1. Let {e1, e2, . . . , ep} denote the canonical basis ofRp, ej the vector

with i-th componentδij, and let(Λ̃, ψ̃) be a solution of equation (2.2) satisfying the

conditions that the columns of̃Λ are orthogonal and the first column ofΛ̃ is a · e1 for

some scalara. Letλ(j) denote thej-th column of̃Λ and writeΛ̃ = (a·e1|λ(2)| . . . |λ(q)),

ψ̃=(ψ1, . . . , ψp), andΣY = (σij). Substitute them in (2.2); then the (1,1) component

of ΣY satisfies the equation

σ11 = a2 + ψ1.

We can decomposeσ11 as

σ11 = (a2 − ǫ) + (ǫ+ ψ1) for anyǫ ∈ (0, a2).

For anyǫ ∈ [−ψ1, a
2), letΛǫ ≡ (

√
a2 − ǫ·e1|λ(2)| . . . |λ(q)) andψǫ ≡ (ǫ+ψ1, ψ2, . . . , ψp).

Then(Λǫ, ψǫ) is also a solution of equation (2.2) and is in a neighborhood of (Λ̃, ψ̃).

Hence, there exist infinitely many solutions of (2.2) in a neighborhood of(Λ̃, ψ̃). Thus,

the model is non-identifiable.

Example 2.2. Consider the dimensionp = 2 and q = 1, so thatp < 2q + 1. Let

Λ0 = (1, 1)t, Λ1 = (
√

1.1,
√

1
1.1

)t, ψ0 = (1, 1), andψ1 = (0.9, 1.2
1.1

). Then

Λ0Λ
t
0 + diag(ψ0) =


 2 1

1 2


 = Λ1Λ

t
1 + diag(ψ1) (2.6)

Hence, there exist two solutions(Λ0, ψ0) and (Λ1, ψ1) of (2.2). Thus, the model is

non-identifiable.
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Example 2.3. Consider the dimensionp = 3 andq = 2 again satisfyingp < 2q + 1.

Let

Λ0 =




1 2

1 −1

1 1



, Λ1 =




1.1
√

3.99

1 −2.1√
3.99

1 1.9√
3.99




(2.7)

ψ0 = (1, 1, 1), andψ1 = (0.8, 3.57
3.99

, 4.37
3.99

). Then

Λ0Λ
t
0 + diag(ψ0) =




6 −1 3

−1 3 0

3 0 3


 = Λ1Λ

t
1 + diag(ψ1) (2.8)

Hence, there exist two solutions(Λ0, ψ0) and (Λ1, ψ1) of (2.2). Thus, the model is

non-identifiable.

In Example 2.2,p = 2 andq = 1. There were4 parameters to solve for but only

3 equations, which is why there was more than one solution of (2.2). In Example

2.3, p = 3 andq = 2. There were8 parameters but only 6 equations. In general,

the equation-counting result in (2.3) suggests that there will be identifiability only if

C(p, q) ≥ 0, or (p− q)2 ≥ p+ q, andp ≥ 2q + 1 is sufficient for this.

In 1956, Anderson and Rubin [1] gave a sufficient condition foridentification of

the general factor analysis model as follows:

Theorem 2.4. A sufficient condition for identification ofψ andΛ up to multiplication

on the right by an orthogonal matrix is that if any row ofΛ is deleted there remain two

disjoint sub-matrices of full rank.

They also found a sufficient condition for local identification, which we now define.

Definition 2.5. (Λ, ψ) is said to be locally identifiable within a subsetU ofO+
pq ×R

p
+

if there exists a neighborhoodN of (Λ, ψ) withinO+
pq ×R

p
+ such thatΛΛt + diag(ψ)

= Λ1Λ
t
1 + diag(ψ1) has the unique solution (Λ1, ψ1) = (Λ, ψ) within U ⋂N .
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Now the sufficient condition for local identification proposed by Anderson and

Rubin [1] is as follows:

Theorem 2.6. LetΨ ≡ diag(ψ) andΦ ≡ Ψ − Λ(Λt Ψ−1Λ)−1Λt. If |φ2
ij| 6= 0, that is,

the matrixΞ with elementsξij = φ2
ij is nonsingular, thenΛ andψ are locally identified

under the restriction thatΛt Ψ−1Λ is diagonal and the non-diagonal elements are

different and arranged in descending order of size.

However, the condition for local identification in the previous theorem is hard to

check. We should find other more practical conditions on the parameter space such

that the parameter in this parameter space is identifiable under (M0).

We start with a special case, denoted (M0a), of the (M0) modelwhenµ = µ1:

Y = µ1 + Λf + U (M0a)

Let p ≥ 2q + 1 and let the parameterθ ≡ (µ, Λ, ψ). We define the parameter space

of (M0a) as

ΘM0a ≡ R ×O+
pq × R

p
+ (2.9)

whereO+
pq is defined in Notation 1.7. However, the parameter in the parameter space

ΘM0a is not identifiable under (M0a). Thus, we need additional constraints onΛ such

that the model (M0a) is identifiable. The constraint could beone of the following two

cases:

(i) Λ contains a column proportional to1 (2.10)

(ii) Λt1 = 0 (2.11)

Therefore, we can redefine the parameter space as either of the two spaces:

ΘM0a1 = ΘM0a ∩ {Λ contains a column proportional to1} (2.12)

ΘM0a2 = ΘM0a ∩ {Λt1 = 0}. (2.13)
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We will show identifiability under (M0a).

Lemma 2.7. The model (M0a) is identifiable in eitherΘM0a1 or ΘM0a2.

Proof. Suppose there exist two pairs(Λ, ψ), (Λ∗, ψ∗) both in eitherΘM0a1 or

ΘM0a2 and satisfying (2.2), and letΨ ≡ diag(ψ), Ψ∗ ≡ diag(ψ∗). Then

ΣY = ΛΛt + Ψ = Λ∗Λ∗ t + Ψ∗ (2.14)

and

(ΛΛt − Λ∗Λ∗ t)1 = (Ψ∗ − Ψ)1. (2.15)

Now the left hand side of this equation is either0, if both (Λ, ψ), (Λ∗, ψ∗) ∈ ΘM0a2, or

is a constant times1, if both (Λ, ψ), (Λ∗, ψ∗) ∈ ΘM0a1. In the first case, we conclude

that the diagonal matrixΨ∗ − Ψ is the zero matrix, and then from (2.14) it follows

also thatΛΛt = Λ∗Λ∗ t. Since bothΛ andΛ∗ belong to the spaceO+
pq, it follows that

Λ = Λ∗.

In the second case (if (2.10) holds for bothΛ, Λ∗), we have1 as an eigenvector

of ΛΛt − Λ∗Λ∗ t with possibly nonzero eigenvalue, which is a contradictionunless

Ψ∗ − Ψ = cIp for some possibly nonzero constantc. Sincep > 2q, this is possible

only if c = 0, Ψ∗ = Ψ, ΛΛt = Λ∗Λ∗ t because

rank(ΛΛt), rank(Λ∗Λ∗ t) < p/2

implies

rank(ΛΛt − Λ∗Λ∗ t) < p = rank(Ip).

Thus, we conclude in either case thatΨ = Ψ∗, ΛΛt = Λ∗Λ∗ t. Since bothΛ and

Λ∗ belong toO+
pq, it follows thatΛ = Λ∗. �
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Remark 2.8. The vector1 could be replaced by any other vectorv0 with all non-zero

entries which is known in the sense that it is written into the parameter space into

conditions like (2.10) or (2.11), playing the same role for bothΛ and any potentialΛ∗

in (2.14).

Remark 2.9. The assumption in (2.13) automatically implies that the canonical basis

vectors cannot lie in the column space ofΛ. In the case (2.12), the restriction to

Λ matrices containing a column proportional to1 means that we have identifiability

despite allowing possibly that a canonical basis vector might lie in the column space

of Λ.

2.1.3 Identifiability for (M0) (continued)

Now, let us go back to model (M0) and give some conditions suchthat the parameter

is identifiable under (M0). In Example 2.1, we explained thatif Λ contains a column

proportional to any element of the canonical basis, then theparameter is not identifiable

under (M0). Thus, in order to make the model identifiable, thecanonical basis must be

excluded from the column space ofΛ. Therefore, we have the the following Lemma.

Lemma 2.10.If p ≥ 2q+1 and if, for someµ ∈ Rp, there exist(µ,Λ0, ψ0), (µ,Λ1, ψ1)

∈ ΘM0 defined in (2.1) such that that{e1, e2, . . . , ep} ∩ col(Λj) = ∅ for j = 0, 1,

col(Λ0) ⊆ col(Λ1), and satisfying the condition (2.2), then(Λ0, ψ0)=(Λ1, ψ1).

Proof. Suppose there exist(µ,Λ0, ψ0), (µ,Λ1, ψ1) for someµ ∈ Rp such that

{e1, e2, . . . , ep} ∩ col(Λj)=∅ for j = 0, 1, col(Λ0) ⊆ col(Λ1), and satisfying the con-

dition

ΣY = ΛjΛ
t
j + diag(ψj) (2.16)
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Let Ψ0 ≡ diag(ψ0) andΨ1 ≡ diag(ψ1). Then

Λ0Λ
t
0 − Λ1Λ

t
1 = Ψ1 − Ψ0 (2.17)

which implies that the range of(Ψ1 − Ψ0) must be contained in the space spanned by

the columns ofΛ0 andΛ1. That is,

range(Ψ1 − Ψ0) ⊆ span{col(Λ0), col(Λ1)}. (2.18)

Here(Ψ1 − Ψ0) is diagonal since bothΨ0 andΨ1 are diagonal. Thus,

range(Ψ1 − Ψ0) = span{ej : (Ψ1 − Ψ0)jj 6= 0}. (2.19)

Through equation (2.18) and (2.19), we have

span{ej : (Ψ1 − Ψ0)jj 6= 0} ⊆ span{col(Λ0), col(Λ1)}. (2.20)

Under the restrictioncol(Λ0) ⊆ col(Λ1), the above equation becomes

span{ej : (Ψ1 − Ψ0)jj 6= 0} ⊆ col(Λ1). (2.21)

This contradicts the assumption that{e1, e2, . . . , ep} ∩ col(Λ1) = ∅. �

The spacesOpq andO+
pq have been defined in Notation 1.7. We now define more

general spacesO∗
pq andO∗ +

pq .

Notation 2.11. LetO∗
pq denote the space ofp × q matricesM with real components

and orthogonal columns, ordered by non-increasing norm, (i.e., satisfyingM tM =

diag(v1, v2, . . ., vq) with v1 ≥ v2 ≥ . . . ≥ vq ≥ 0), and letO∗ +
pq denote the subset

of matrices inO∗
pq satisfying the additional constraint that the first nonzeroelement in

each column is positive.
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The spaceOpq is a subspace ofO∗
pq, andO+

pq is a subspace ofO∗ +
pq . Now, we define

a more general parameter space. Letθ ≡ (µ, Λ, ψ). The parameter spaceΘ∗
M0, which

containsΘM0, is defined as

Θ∗
M0 ≡ Rp ×O∗ +

pq × R
p
+. (2.22)

The parameterθ ∈ ΘM0 in (2.1) was shown non-identifiable under (M0) ifej ∈

col(Λ) for any j = 1, 2, . . . , q. We now have the following Lemma connecting the

non-identifiability to a solution of (2.2) in the boundary ofthe parameter spaceΘ∗
M0.

Lemma 2.12.If ej ∈ col(Λ) and if(Λ, ψ) satisfies the condition (2.2), then there exists

(Λ∗, ψ∗) in the boundary of the parameter spaceΘ∗
M0, possibly with largerq, and also

satisfying the condition (2.2).

Proof. Since(Λ, ψ) satisfies the condition (2.2), we can decomposeΣY as

ΣY = ΛΛt + diag(ψ)

= (ΛΛt + ψjeje
t
j) + (−ψjejetj + diag(ψ))

= (ΛΛt + ψjeje
t
j)

+ diag(ψ − ψj−1, 0, ψj+1, . . . , ψp) (2.23)

The first term in (2.23) is positive definite and symmetric. By the spectral decomposi-

tion theorem, it can be written as

ΛΛt + ψjeje
t
j = Λ1Λ

t
1 (2.24)

whereΛ1 has orthogonal columns and positive norms of columns, but the norms of

columns may not be all distinct and ordered. The norms can be made ordered non-

increasing if we multiplyΛ1 by a permutation matrixR from the right. That is,

Λ∗Λ∗ t = (Λ1R)(Λ1R)t = Λ1Λ
t
1 = ΛΛt + ψjeje

t
j (2.25)
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whereΛ∗ ≡ Λ1R ∈ O∗ +
pq .

DenoteΨ ≡ diag(ψ) and denote the second term in (2.23) as

Ψ∗ ≡ diag(ψ∗) (2.26)

whereψ∗ ≡ (ψ1, . . . , ψj−1, 0, ψj+1, . . . , ψp). The p × p diagonal matrixΨ∗ is just

like Ψ but thej-th diagonal element is0. This reduces the number of parameters in

Ψ from p to (p − 1). Therefore, if(Λ, ψ) ∈ ΘM0 is a solution ofΣY = ΛΛt + Ψ

with Ψ = diag(ψ), then there exists(Λ∗, ψ∗) in the boundary ofΘ∗
M0 such that, with

Ψ∗ = diag(ψ∗),

ΣY = ΛΛt + Ψ = Λ∗Λ∗ t + Ψ∗. (2.27)

That is, if e1 ∈ col(Λ) and(Λ, ψ) ∈ ΘM0 is a solution ofΣY = ΛΛt + Ψ, then there

exists another solution(Λ∗, ψ∗) in the boundary ofΘ∗
M0. �

Now we will explore a relationship between a non-identifiable model and the pa-

rameterization in which not the dimension ofΨ but the column space ofΛ is reduced.

We need the following Lemma for this purpose.

Lemma 2.13.LetA � 0 be ap× p symmetric, positive semidefinite matrix (cf Defini-

tion 1.9) and letv ∈ Rp be a vector in the range ofA, v 6= 0. Then

sup{α ∈ R : A− αvvt � 0} > 0

Proof. SinceA is nonnegative definite and symmetric, using the singular value

decomposition,A can be decomposed as

A = WDW t (2.28)
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whereD = diag(d1, . . . , ds) andd1, . . . , ds are the non-zero eigenvalues ofA with the

corresponding unit eigenvectorsw1, w2, . . . , ws, andW = (w1|w2| . . . |ws). Note that

range(A) = span{w1, . . . , ws} = col(W ).

Note that

inf{xtAx : x ∈ range(A), ‖x‖ = 1} = min
1≤k≤s

dk (2.29)

Also,A : range(A) → range(A) is linear, symmetric, invertible and positive definite.

Then anyα with 0 < α < min{dj : 1 ≤ j ≤ s} results inA − αIp : range(A) →

range(A) which is invertible and positive definite by (2.28).

Given any vectorv in the range ofA, we can construct an orthonormal basis{v, v2,

v3, . . ., vs} of range(A) such thatIp = vvt +
∑s

j=2 vjv
t
j as an operator onrange(A).

Therefore,A− αvvt can be decomposed as

A− αvvt = (A− αIp) + α
s∑

j=2

vjv
t
j (2.30)

which is positive definite onrange(A) sinceA−αIp is positive definite onrange(A)

andα
∑s

j=2 vjv
t
j is nonnegative definite. Let(range(A))⊥ denote the orthogonal com-

plement ofrange(A). SinceA− αvvt maps(range(A))⊥ to 0 andA− αvvt � 0 on

range(A), we haveA− αvvt � 0. �

We can now make a statement on the relationship between non-identifiable models

(M0) involving parameters with reduced column space forΛ. We have the following

lemma.

Lemma 2.14. If (Λ, ψ) ∈ ΘM0, and satisfies (2.2), and ifej ∈ col(Λ), then there

exists another solution(Λ∗, ψ∗) ∈ Θ∗
M0, which is defined in (2.37), such thatej does

not belong tocol(Λ∗).

23



Proof. If ej ∈ col(Λ), then we haveej ∈ Range(ΛΛt). By Lemma 2.13, there

exists a number̂α ≡ sup{α : ΛΛt − αeje
t
j � 0} which is positive. LetQ ≡ ΛΛt −

α̂eje
t
j. ThenQ is non-negative definite andej 6∈ col(Q) as we shall prove below. The

covariance matrixΣy = ΛΛt + Ψ can be decomposed as

Σ = ΛΛt + Ψ

= Q+ (α̂eje
t
j + Ψ) (2.31)

The matrixQ is symmetric and non-negative definite. By the spectral decomposition

theorem, and using the same idea as in the proof of Lemma 2.12,it can be written as

Q = Λ∗Λ∗ t (2.32)

whereΛ∗ ∈ O∗ +
pq .

Next, we show thatej does not belong torange(Q). If ej ∈ range(Q), then by

Lemma 2.13, there existsα > 0 such that(Q − αeje
t
j) � 0 which contradicts the

definition ofQ. Therefore,ej does not belong torange(Q) = col(Λ∗). Hence,Λ∗

does not containej in its column space. �

We defined the parameter spacesΘM0 in (2.1) andΘ∗
M0 in (2.37). To prevent

confusion in the dimension ofcol(Λ), we redefine the notations

Θq
M0 ≡ ΘM0 andΘ∗ q

M0 ≡ Θ∗
M0 (2.33)

to specifydim(col(Λ)) = q in ΘM0 andΘ∗
M0, respectively.

Based on Lemma 2.12 and Lemma 2.14, we conclude that, ifej ∈ col(Λ) and

(Λ,Ψ) is a solution ofΣ = ΛΛt + Ψ, then there exist two other solutions(Λ∗,Ψ∗).

One hasΨ∗ = diag(ψ1, . . ., ψj−1, 0 , ψj+1, . . ., ψp) in the boundary, and for the other,

Λ∗ does not containej in its column space. Therefore, we have the following lemma.
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Lemma 2.15. If p > 2q andΣY = ΛΛt + diag(ψ) for model (M0) parameters which

are non-identifiable, then there exists(Λ∗, ψ∗) in the boundary of the parameter space

Θ∗ eq
M0, for somẽq ≥ q, satisfying the condition (2.2).

Proof. If the model is non-identifiable, then there exist two distinct pairs(Λ0, ψ0),

(Λ1, ψ1), with Ψ0 ≡ diag(ψ0) andΨ1 ≡ diag(ψ1), satisfying the condition (2.2).

Then we have

ΣY = Λ0Λ
t
0 + Ψ0 = Λ1Λ

t
1 + Ψ1. (2.34)

Given anys ∈ (0, 1), the convex mixture(1 − s)(Λ0Λ
t
0) + s(Λ1Λ

t
1) is non-negative

definite. Therefore, using the Singular Value Decomposition theorem, we can define

Λs ∈ O∗ +
pq such that

ΛsΛ
t
s ≡ (1 − s) · (Λ0Λ

t
0) + s · (Λ1Λ

t
1). (2.35)

Also, define

ψs ≡ (1 − s) · ψ0 + s · ψ1 andΨs ≡ diag(ψs) (2.36)

Then(Λs, ψs) is also a solution of (2.2). Letqs ≡ dim(col(Λs)). Note thatq0 = q.

Thencol(Λ0) ⊆ col(Λs) andq ≤ qs by (2.35). Applying Lemma 2.10, there must exist

ej ∈ col(Λs) for somej. Then, by Lemma 2.12, there exists(Λ∗, ψ∗) in the boundary

of the parameter spaceΘ∗ qs
M0 also satisfying the condition (2.2), where

Θ∗ qs
M0 ≡ Rp ×O∗ +

p,qs × R
p
+. (2.37)

which is the same asΘ∗
M0, but with possibly different dimension ofcol(Λ). �
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2.2 Factor Model (M1)

Consider the special case of (M0) whenΨ = σ2Ip andµ = 0:

Y = Λf + U (M1)

wheref ∼ N(0, Iq), U ∼ N(0, σ2Ip), and whereΛ is ap× q matrix such thatΛtΛ is

diagonal with distinct ordered-decreasing elements.

Under (M1), the covarianceΣ can be expressed in terms ofΛ andσ2 through the

equation

Σ = ΛΛt + σ2Ip (2.38)

Now, let us define the parameter space for (M1).

Let θ = (Λ, σ2). We define the parameter space as

ΘM1 = O+
pq × R+ (2.39)

whereR+ denotes the set of all positive real numbers. We first show that our parameter

θ is identifiable from the observed data in (M1).

Lemma 2.16. Model (M1) is identifiable if the parameterθ is assumed to belong to

ΘM1.

Proof. In model (M1), the covariance matrix ofY (r) is given by (2.38). Hereσ2

can be identified by the minimum eigenvalue ofΣy sinceq < p. Therefore,ΛΛt is

identifiable. By the uniqueness of the Singular Value Decomposition, Λ is identified

in O+
pq. Therefore, model (M1) is identifiable.�
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2.3 Factor Model (M1R)

Consider the reduced form of the (M1) model:

Y = Λf + U (M1R)

wheref ∼ N(0, Iq), U ∼ N(0,Ψ), Λ is ap by q matrix and

Ψ =




0r O

Ot σ2Ip−r


 (2.40)

wherer < q < p, 0r is ther × r zero matrix,O is a r × (p − r) zero matrix and

Ot denotes the transpose ofO. Under (M1R), the covariance parameterΣY can be

expressed in terms ofΛ andΨ through (2.2). For simplicity of notation, partition

ΣY =




Σ11 Σ12

Σ21 Σ22


 and Λ =




Λ11 Λ12

Λ21 Λ22


 (2.41)

whereΣ11, Σ12 andΣ22 arer × r, r × (p − r) and(p − r) × (p − r) sub-matrices of

ΣY , respectively, andΛ11, Λ12, Λ21 andΛ22 arer × r, r × (q − r), (p − r) × r and

(p− r)× (q− r) sub-matrices ofΛ. Now, let us define the parameter space for (M1R).

Let θ = (Λ, σ2) whereΛ is partitioned as in (2.41). We define the parameter space

as

ΘM1R = { θ = (Λ, σ2) : Λ11 ∈ O+
rr, Λ12 = 0, Λ21 ∈ Mp−r,r,

Λ22 ∈ O+
p−r, q−r, 0 < σ2 <∞}. (2.42)

whereMab is defined in Notation 1.1. Thus,ΘM1R is a subset ofRpq × R+. We next

show that our parameterθ is identifiable from the observed data in (M1R).

Theorem 2.17. The parameterθ ≡ (Λ, σ2) ∈ ΘM1R is identifiable under model

(M1R).
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Proof. Write ΣY = ΛΛt + Ψ, and partitionΣY andΛ as in (2.41), obtaining



Σ11 Σ12

Σ21 Σ22


 =




Λ11Λ
t
11 + Λ12Λ

t
12 Λ11Λ

t
21 + Λ12Λ

t
22

Λ21Λ
t
11 + Λ22Λ

t
12 Λ21Λ

t
21 + Λ22Λ

t
22 + σ2Ip−r




Thus,Σ11 = Λ11Λ
t
11 + Λ12Λ

t
12. SinceΛ12 = 0, we haveΣ11 = Λ11Λ

t
11. By the

uniqueness of singular value decomposition ofΛ11 ∈ O+
rr, Λ11 is uniquely determined

such thatΛt
11Λ11 = B whereB ≡ diag(b1, . . . , br) with b1 > b2 > . . . > br > 0.

Moreover, sinceΛ12 = 0, alsoΣ21 = Λ21Λ
t
11 + Λ22Λ

t
12 = Λ21 Λt

11. Multiplying the

last equation byΛ11 from the right, we have

Σ21Λ11 = Λ21Λ
t
11Λ11 = Λ21B. (2.43)

Therefore,

Λ21 = Σ21Λ11(Λ
t
11Λ11)

−1 = Σ21Λ11B
−1 (2.44)

is also uniquely determined. SinceΛ11 has full rank,(Λt
11Λ11)

−1=(Λ11)
−1 (Λt

11)
−1.

Then (2.44) can be simplified as

Λ21 = Σ21(Λ
t
11)

−1. (2.45)

Finally,

Σ22 = Λ21Λ
t
21 + Λ22Λ

t
22 + σ2Ip−r. (2.46)

SubstitutingΛ21 = Σ21(Λ
t
11)

−1 in equation (2.46), we have

Σ22 = Σ21(Λ
t
11)

−1Λ−1
11 Σt

21 + Λ22Λ
t
22 + σ2Ip−r

= Σ21Σ
−1
11 Σ12 + Λ22Λ

t
22 + σ2Ip−r. (2.47)

SubtractΣ21Σ
−1
11 Σ12 from (2.47) on both sides, leaving

Λ22Λ
t
22 + σ2Ip−r = Σ22 − Σ21Σ

−1
11 Σ12

= Σ22.1. (2.48)
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Next we show thatΛ22Λ
t
22 andΛt

22Λ22 have the same the nonzero eigenvalues, and

the nonzero eigenvalues are distinct. Applying the singular value decomposition of

Λ22, we haveΛ22 = UDV t, whereU ((p− r)× (q− r)) andV ((q− r)× (q− r)) are

column orthonormal matrices (U tU = V tV = Iq−r) andD=diag(d1, . . . , dq−r) with

positive elementsdj for 1 ≤ j ≤ (q − r). SinceΛ22 ∈ O+
p−r,q−r, d1 ≥ . . . ≥ dq−r.

ThenΛ22Λ
t
22 = UD2U t andΛt

22Λ22 = V D2V t. Therefore,Λ22Λ
t
22 andΛt

22Λ22 have

the same the nonzero eigenvaluesd2
1, . . ., d

2
q−r, and

d2
1 ≥ . . . ≥ d2

q−r. (2.49)

Let Σ22.1 = Q∆Qt be the singular value decomposition ofΣ22.1, whereQ ∈

Mp−r,q−r, ∆=diag(δ1, δ2, . . . , δq−r). The valuesδ1, δ2, . . . , δq−r are the eigenvalues of

Σ22.1 and the columns ofQ are the corresponding standardized eigenvectors. By (2.48)

and (2.49), we haveU = Q and the eigenvalues ofΣ22.1, {δj = d2
j+σ

2, 1 ≤ j ≤ q−r},

are all distinct. Thenσ2 can be identified by the minimum eigenvalueδq−r, and then

Λ22Λ
t
22 = Σ22.1 − σ2Ip−r

= Q∆Qt −Qσ2Ip−rQ
t

= Q(∆ − σ2Ip−r)Q
t

is identifiable. By the uniqueness of singular-value-decomposition of Σ22.1, Λ22 is

identifiable inO+
p−r,q−r. �

Remark 2.18. The matrixΛ in the parameterθ ∈ ΘM1R which is defined in (2.42)

does not have orthogonal columns any more. We can always transform Λ to have

orthogonal columns by applying the singular-value-decomposition toΛΛt.

29



2.4 Cross-Classified Factor Model (M2)

In this section, we start to formulate a cross-classified or multi-group model. Let

{y(r,m) : r = 1, . . . , R;m = 1, . . . ,M} be a set of vector observations, where the

observationsy(r,m) are vectors inRp which represent vector measurements on an ex-

perimental system ; letr = 1, . . . , R index the identically distributed replications and

m = 1, 2, . . . ,M index the experimental settings. We are interested in the common

situation where experimental settings are doubly indexed by (a, s), for example, to

reflect cross-classification bytreatmentandsubject. The models we consider all have

the following structure:

Y (r,a,s) =




y1ras
...

ypras


 = µas




1
...

1


 + Λf (r,a,s) + U (r,a,s) (2.50)

That is,

yiras = µas +

q∑

k=1

λikfkras + uiras (2.51)

We assume thatf (r,a,s) ∼ N(Gas, Iq), andF (r)
q×AS = (f (r,1,1)|f (r,1,2)| · · · |f (r,A,S)) is a

sequence ofq × AS matrices wherer = 1, . . . , R. The elements ofU (r,a,s), uiras are

independentN(0, σ2
u,as). Now let us define the parameter space for (M2) by

ΘM2 = {(µ,Λ, G, ψ) : Λ ∈ O+
pq andΛt1 = 0,

µ = {µas : a = 1, . . . , A, s = 1, . . . , S} ∈ RAS,

ψ = (σ2
u,as, (a, s) ∈ {1, . . . , A} × {1, . . . , S}) ∈ RAS

+ ,

G = (Gas) ∈ Mq,AS}. (2.52)

The model in (2.50) under this parameter space is called model (M2). We will show

that the parameterθ is identifiable from the observed data in (M2).
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Lemma 2.19.Model (M2) is identifiable.

Proof. In model (M2), the expectation ofY (r,a,s) is

E(Y (r,a,s)) = µas1 + ΛG(a,s), (2.53)

and the covariance matrix ofY (r,a,s) is

Σ
(a,s)
Y = ΛΛt + σ2

u,asI. (2.54)

Hereµas can be estimated consistently by

µ̃as =
1

pR

R∑

r=1

p∑

i=1

yiras

whenR → ∞. In equation (2.54),σ2
u,as can be identified by the minimum eigenvalues

of Σ
(a,s)
Y sinceq < p. Therefore,ΛΛt is also identifiable.

Next, we want to identifyΛ. Using the uniqueness of the Singular Value Decom-

position in Lemma A.3 forΛ ∈ O+
pq, we can uniquely determineΛ.

Finally, we want to identifyG(a,s). Multiplying (2.53) byΛt from the left on both

sides and using the fact that the columns ofΛ are orthogonal to the1 vector, we have

E(ΛtY (r,a,s)) = ΛtΛG(a,s). (2.55)

Therefore,G(a,s) = E[(ΛtΛ)−1(ΛtY (r,a,s))] is identifiable. �

2.5 Cross-Classified Factor Model (M3)

In (M2), we are interested in the common situation where experimental settings are

doubly indexed by(a, s), for example, to reflect cross-classification bytreatmentand

subject. The common factorsf (r,a,s) in (M0)-(M2) are considered asrandom effects,
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that is, random variables. Then the specificf (r,a,s) would not be of interest in them-

selves, because another set of batches in a subsequent experiment would provide differ-

entf (r,a,s). What might be of interest is the size of the variation in thef (r,a,s). In (M3),

we will think of the factorsf (r,a,s) as beingfixed effects, each associated specifically

with one of the experimental settings. Then the specificf (r,a,s) would be of interest.

In the case of fixed factors, we assume thatf (r,a,s) ≡ f (a,s), and

F = (f (1,1)|f (1,2)| · · · |f (A,S))

defines a non-randomq × AS matrix. Define the parameter space to be

ΘM3 = {(µ,Λ, F, ψ) : Λ ∈ O+
pq andΛt1 = 0,

µ = {µas : a = 1, . . . , A, s = 1, . . . , S} ∈ RAS,

ψ = (σ2
u,as, (a, s) ∈ {1, . . . , A} × {1, . . . , S}) ∈ RAS

+ ,

F = (f (a,s)) ∈ Mq,AS with rows orthonormal,

rank(F ) = rank(Λ) = rank(ΛF ) = q}. (2.56)

The model in (2.50) under this parameter space is called model (M3). We will show

that our parameterθ ∈ ΘM3 is identifiable from the observed data in (M3).

Lemma 2.20.Model (M3) is identifiable.

Proof. In model (M3), the expectation ofY (r,a,s) is

E(Y (r,a,s)) = µas1 + Λf (a,s) (2.57)

and the covariance matrix ofY (r,a,s) is

Σ
(a,s)
Y = σ2

u,asI. (2.58)
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Hereσ2
u,as can be identified by the minimum eigenvalues ofΣ

(a,s)
Y sinceq < p. In

equation (2.57), the parameterµas can be estimated consistently by

µ̃as =
1

pR

R∑

r=1

p∑

i=1

yiras

whenR → ∞. Therefore,Λf (a,s) is also identifiable. That is,ΛF is identifiable.

Now we identifyΛ andF . Note thatΛ andF arep × q andq × AS matrices,

respectively. Applying the singular value decomposition on ΛF , there exist unique

matricesU ,D andV (expect for possible changes of sign of the columns) such that

ΛF = U DV t (2.59)

whereD = diag(d1, . . . , dq) such thatd2
1, . . . , d

2
q are eigenvalues ofΛF (ΛF )t, U is a

p× q matrix and the columns ofU are standardized eigenvectors ofΛF (ΛF )t, andV

is aAS × q matrix with columns are standardized eigenvectors of(ΛF )t ΛF . Since

F has orthonormal rows inΘM3, by the uniqueness of singular value decomposition

in (2.59),Λ andF are uniquely determined. Therefore, the model (M3) is identifiable.

�

2.6 Factor Model (M4)

Assume that the fixed effectsf (a,s) now have the factorized form

f (a,s) =




f1as
...

fqas


 andfkas = wakvsk for k = 1, . . . , q (2.60)
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The parameter space is defined as

ΘM4 = {(µ,Λ,W, V, ψ) : Λ ∈ O+
pq andΛt1 = 0,

µ = {µas : a = 1, . . . , A, s = 1, . . . , S} ∈ RAS,

ψ = (σ2
u,as, (a, s) ∈ {1, . . . , A} × {1, . . . , S}) ∈ RAS

+ ,

W = (wak) ∈ M+
Aq with

A∑

a=1

w2
ak = 1,

V = (vsk) ∈ MSq with
S∑

s=1

v2
sk = 1,

rank(Λ) = rank(W ) = rank(V ) = q ≤ A, S}. (2.61)

whereMAq andM+
Aq are defined in Notation 1.1. The model in (2.50) under this

parameter space is called (M4) model, which can be written as

yiras = µas +

q∑

k=1

λikwakvsk + uiras. (M4)

We next show that our parameterθ is identifiable from the observed dataY in (M4).

Lemma 2.21.Model (M4) is identifiable.

Proof. In model (M4), the expectation ofY (r,a,s) is

E(Y (r,a,s)) = µas1 + Λ




wa1vs1
...

waqvsq


 (2.62)

and the covariance matrix ofY (r,a,s) is

Σ
(a,s)
Y = σ2

u,asI. (2.63)

Hereσ2
u,as can be identified by the minimum eigenvalue ofΣ

(a,s)
Y for each (a,s) since

p > q. Thenµas can be estimated consistently by

µ̃as =
1

pR

R∑

r=1

p∑

i=1

yiras
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whenR → ∞, and thenΛ




wa1vs1
...

waqvsq


 is identified through the equation (2.62). That

is,
∑q

k=1 λikwakvsk is identified for alla = 1, . . . , A, s = 1, . . . , S, i = 1, . . . , p.

Next, we identifyΛ,W andV using Jennrich’s Basic Uniqueness Theorem stated

in Lemma A.4. Suppose that there existλik, wak, vsk andλ∗ik, w
∗
ak, v

∗
sk such that

q∑

k=1

λikwakvsk =

q∑

k=1

λ∗ikw
∗
akv

∗
sk

whereΛtΛ = diag(b1, . . . , bq ), b1 > b2 > . . . > bq > 0, Λ∗ tΛ∗ = diag(b∗1, . . . , b
∗
q ),

b∗1 > b∗2 > . . . > b∗q > 0,
∑A

a=1w
2
ak = 1 =

∑A
a=1(w

∗
ak)

2,
∑S

s=1 v
2
sk = 1 =

∑S
s=1(v

∗
sk)

2,

andrank(Λ) = rank(W ) = rank(V ) = rank(Λ∗) = rank(W ∗) = rank(V ∗) =

q ≤ A, S. By Jennrich’s Uniqueness Theorem, we have

Λ∗ = ΛRD1,W
∗ = WRD2, V

∗ = V RD3 (2.64)

whereR is a permutation matrix andD1, D2, D3 are diagonal matrices withD1D2D3 =

I. Let w(k) be thek-th column vector ofW , w(k)∗ be thek-th column vector ofW ∗

andR = (Rjk). SinceW ∗ = WRD2, we have

(w(1)∗|w(2)∗| · · · |w(q)∗) = (w(1)|w(2)| · · · |w(q))RD2

whereRD2 is a row permuted matrix ofD2. This impliesw(k)∗ = (D2)kkw
(j) for some

j which depends on the permutation matrixR such thatRkj = 1. Using the condition

that
∑A

a=1w
2
ak = 1 =

∑A
a=1(w

∗
ak)

2, we have

1 =
A∑

a=1

(w∗
ak)

2 = ‖w(k)∗‖2 = (D2)
2
kk‖w(j)‖2 = (D2)

2
kk. (2.65)

Therefore,D2 = diag(d
(2)
1 , d

(2)
2 , · · · , d(2)

q ) whered(2)
k = +1 or −1. Similarly, we

haveD3 = diag(d
(3)
1 , d

(3)
2 , · · · , d(3)

q ) whered(3)
k = +1 or −1. ThenD1D2D3 = I
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implies1 = d
(1)
k d

(2)
k d

(3)
k whereD1 = diag(d

(1)
1 , d

(1)
2 , · · · , d(1)

q ). Therefore,d(1)
k = +1

or −1. By the conditions thatΛtΛ = diag(b1, . . . , bq ), b1 > b2 > . . . > bq > 0, and

(Λ∗)t(Λ∗) = diag(b∗1, . . . , b
∗
q ), b∗1 > b∗2 > . . . > b∗q > 0, we have

diag(b∗1, . . . , b
∗
q) = (Λ∗)tΛ∗

= (ΛRD1)
t(ΛRD1)

= D1R
t diag(b1, . . . , bq)RD1

= (D1)
2Rt diag(b1, . . . , bq)R

= Rt diag(b1, . . . , bq)R. (2.66)

Applying the uniqueness of the Singular Value Decomposition Theorem to equation

(2.66), we haveR = I. Therefore,Λ∗ = ΛRD1 = ΛD1 whereD1 is a diagonal

matrix with+1 or−1 as the diagonal elements. Since we assume that the first nonzero

element in each column ofΛ andΛ∗ is positive, thenD1 = I. Similarly, sinceW ∗ =

WD2 and the first nonzero element in each column ofW andW ∗ is positive,D2 = I

andW = W ∗.

Finally, V is identified onceD1 = D2 = I andD1D2D3 = I, so thatD3 = I and

V ∗ = V D3 = V3. �

2.7 PARAFAC Model (M4a)

In this section, we consider a model which is similar to (M4) having fixed common

factorsf (a,s) but without the orthogonality of columns of loading matrixΛ. Consider

the model

Y (r,a,s) = µas 1 + Λ⋆ f
(a,s) + U (r,a,s) (2.67)

36



whereΛ⋆ is ap × q matrix with non-orthogonalized columns. Assume that the fixed

factorsf (a,s) can be written as

f (a,s) =




f1as
...

fqas


 andfkas = wakvsk for k = 1, . . . , q. (2.68)

The elements ofU (r,a,s), uiras are independentN(0, σ2
u,as). We define the parameter

space

ΘM4a = {(µ,Λ⋆,W, V, ψ) : µ = {µas : a = 1, . . . , A, s = 1, . . . , S} ∈ RAS,

Λ⋆ ∈ M+
pq, Λt

⋆1 = 0, with column norms in decreasing order,

ψ = (σ2
u,as, (a, s) ∈ {1, . . . , A} × {1, . . . , S}) ∈ RAS

+ ,

W = (wak) ∈ M+
Aq with

A∑

a=1

w2
ak = 1,

V = (vsk) ∈ MSq with
S∑

s=1

v2
ks = 1,

rank(Λ⋆) = rank(W ) = rank(V ) = q ≤ A, S}. (2.69)

Model in (5.2) under this parameter spaceΘM4a is called the PARAFAC model [?],

denoted by (M4a), which can be written as

yiras = µas +

q∑

k=1

(λik ⋆)wakvsk + uiras. (M4a)

Lemma 2.22.Model (M4a) is identifiable.

Proof. Using the same proof as in Lemma 2.21, we can identifyµ, Ψ(a,s), and

thenΛ⋆




wa1vs1
...

waqvsq


 is identified. That is,

∑q
k=1 λik ⋆wakvsk is identified for alla =

1, . . . , A, s = 1, . . . , S, i = 1, . . . , p.

Suppose that there existλik ⋆, wak, vsk andλ̄ik ⋆, w̄ak, v̄sk such that
q∑

k=1

λik ⋆wakvsk =

q∑

k=1

λ̄ik ⋆w̄akv̄sk
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where bothΛ⋆ andΛ̄⋆ are inM+
pq and have column norms ordered decreasing,

∑A
a=1w

2
ak =

1 =
∑A

a=1(w̄ak)
2,

∑S
s=1 v

2
sk = 1 =

∑S
s=1(v̄sk)

2, rank(Λ⋆) = rank(W ) = rank(V ) =

rank(Λ̄⋆) = rank(W̄ ) = rank(V̄ ) = q ≤ A, S. By Jennrich’s Uniqueness Theorem

(Lemma A.4), we have

Λ̄⋆ = Λ⋆RD1, W̄ = WRD2, V̄ = V RD3 (2.70)

whereR is a permutation matrix andD1, D2, D3 are diagonal matrices withD1D2D3 =

I. Following the same proof as in Lemma 2.21 and using (2.65), impliesDi is a diago-

nal matrix with+1 or−1 as the diagonal elements, fori = 1, 2, 3. SinceΛ̄⋆ = Λ⋆RD1

and we assume that, inΘM4a, the first nonzero element in each column ofΛ⋆ andΛ̄⋆

is positive, thenD1 = I. Also we assume that the column norms of bothΛ⋆ andΛ̄⋆

are ordered decreasing, this implies the permutationR = Iq. Therefore,Λ̄⋆ = Λ⋆.

Similarly, we haveW̄ = WD2 and the first nonzero element in each column ofW is

positive, so thatD2 = I andW̄ = W . Finally,V is identified onceD1 = D2 = I and

D1D2D3 = I, so thatD3 = I andV̄ = V . �

2.8 PARAFAC Random Model (M4′)

In this section, we are interested in the case that the commonfactors consist both of

fixed and random effects. We assume that

f (r,a,s) =




f1ras
...

fqras


 andfkras = wakvsk + ekras for k = 1, . . . , q (2.71)

where the elements{ekras, k = 1, . . . , q} are independentN(0, σ2
e,kas). That is,

f (r,a,s) ∼ N(Gas,Σ(a,s)
e ) (2.72)

38



where

Gas =




g1as
...

gqas


 =




wa1vs1
...

waqvsq


 andΣ(a,s)

e = diag(σ2
e,1as, . . . , σ

2
e,qas). (2.73)

Define the parameter space by

ΘM4′ = {(µ,Λ,W, V, ψ, ǫ) : Λ ∈ O+
pq andΛt1 = 0,

µ = {µas : a = 1, . . . , A, s = 1, . . . , S} ∈ RAS,

ψ = (σ2
u,as, (a, s) ∈ {1, . . . , A} × {1, . . . , S}) ∈ RAS

+ ,

ǫ = (σ2
e,kas, (k, a, s) ∈ {1, . . . , q} × {1, . . . , A} × {1, . . . , S}) ∈ R

qAS
+ ,

W = (wak) ∈ M+
Aq with

A∑

a=1

w2
ak = 1,

V = (vsk) ∈ MSq with
S∑

s=1

v2
sk = 1,

rank(Λ) = rank(W ) = rank(V ) = q ≤ A, S}. (2.74)

The model in (2.50) under this parameter space is called PARAFAC random model,

denoted by (M4′). We next show that our parameterθ is identifiable from the observed

data in (M4′).

Lemma 2.23.Model (M4′) is identifiable.

Proof. In model (M4′), the expectation ofY (r,a,s) is

E(Y (r,a,s)) = µas1 + Λ




wa1vs1
...

waqvsq


 (2.75)

and the covariance matrix ofY (r,a,s) is

Σ
(a,s)
Y = ΛΣ(a,s)

e Λt + σ2
u,asI (2.76)
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whereΣ
(a,s)
e = diag(σ2

e,1as, σ
2
e,2as, . . . , σ

2
e,qas). Hereσ2

u,as can be identified by the min-

imum eigenvalue ofΣ(a,s)
Y for eacha ands sincep > q. Hence,ΛΣ

(a,s)
e Λt is identified

through equation (2.76). The parameterµas can be estimated consistently by

µ̃as =
1

pR

R∑

r=1

p∑

i=1

yiras

whenR → ∞. ThenΛ




wa1vs1
...

waqvsq


 is identified through the equation (2.75). That is,

∑q
k=1 λikwakvsk is identified for alla = 1, . . . , A, s = 1, . . . , S, i = 1, . . . , p.

Using Jennrich’s Uniqueness Theorem (Theorem A.4), we can identifyΛ,W andV as

we did in Lemma 2.21.

Finally, we need to identifyΣ(a,s)
e . Sinceσ2

u,as is identified by the minimum eigen-

value ofΣ(a,s)
Y for eacha ands, the equation in (2.76) can be written as

Σ
(a,s)
Y − σ2

u,asI = ΛΣ(a,s)
e Λt. (2.77)

SinceΛ is identified andΛtΛ = diag(b1, . . . , bq ), with b1 > b2 > . . . > bq > 0, the

equation (2.77) can be written as

Λt(Σ
(a,s)
Y − σ2

u,asI)Λ = (ΛtΛ)Σ(a,s)
e (ΛtΛ)

= diag(b21, . . . , b
2
q) Σ(a,s)

e . (2.78)

SinceΛt(Σ
(a,s)
Y − σ2

u,asI)Λ anddiag(b21, . . . , b
2
q) are identified, so isΣ(a,s)

e . �

2.9 Relationship among models in the model hierarchy

For application purposes, we have constructed a hierarchical family of factor models

in this chapter. The model (M0) is the most general factor analysis model with the
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form in (1.5). The model (M0a) is a special case of (M0) in which the mean level of

the observations is proportional to the1 vector. The model (M1) is a more restrictive

model of (M0a) in which the mean levelµ is assumed to be zero andΨ is a scalar

multiple of Ip. The model (M1R) is called the reduced model of (M1) which means

that the covariance matrix of the error measurement under (M1R) has lower rank than

the one under (M1). The hierarchy of models (M2), (M3), (M4),(M4a) and (M4′) are

models for cross-classified data and can be applied to tongueimage data. In model

(M2), the common factors are considered as random effects. Model (M3) is similar to

(M2) but the common factors are fixed for a specific experimental setting. The models

(M4) and (M4a) have similar model assumptions. Both of them have fixed factors

which can be decomposed in a specified form, so that both are nested in (M3). The

difference between (M4) and (M4a) lies in the model assumption on the factor loading

matrix. The loading matrix is assumed to have orthogonal columns in model (M4),

but could have non-orthogonal columns in the PARAFAC model (M4a). Thus, (M4) is

nested in (M4a). The model (M4′) differs from (M4) in having common factors which

have both fixed and random effects.

Let “(Mb) ⊂ (Ma)” denotes the model (Mb) is nested in (Ma). The relationships

among the models are as follows: (M1R)⊂ (M1) ⊂ (M0a)⊂ (M0). In cross-classified

models, we have (M4)⊂ (M4a)⊂ (M3), and (M4′) ⊂ (M2).
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Chapter 3

ML Estimates for Factor Analysis Models

In this chapter, we find the maximum likelihood (ML) estimators for the parameters

(Λ, ψ) under the models (M1) and (M1R) defined in Sections 2.2 and 2.3. In Section

3.2, we introduce the idea of profile likelihood and use it to find the maximum like-

lihood estimators for the parameters under (M1R). In Section3.3, we discuss profile

likelihood optimization in (M0). In Section 3.4, we find a necessary condition to check

the local maximum likelihood estimate. In Section 3.5, we consider the score test for

the problemH0 : ψjj = 0 vsHA : ψjj > 0. In Section 3.6, we discuss the likelihood

ratio test for testing the adequacy of the PARAFAC model versus the general fixed

effect factor model (M3).

3.1 Maximum likelihood estimate for (M1)

Consider the special case, denoted (M1), of the model (M0) when µ = 0 andΨ =

σ2Ip:

Y = Λf + U (M1)

wheref ∼ N(0, Iq), U ∼ N(0, σ2Ip), and whereΛ ∈ O+
pq.

The parameter spaceΘM1 for (M1) is defined in (2.39). The probability density
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function ofY under (M1) is

f(y) =
exp{−1

2
yt(ΛΛt + σ2Ip)

−1y}
(2π)p/2|ΛΛt + σ2Ip|1/2

(3.1)

where|A| means the determinant of the matrixA.

The maximum likelihood estimator forΛ andσ can be uniquely determined by the

following lemma [24].

Lemma 3.1. Consider the model

Y = µ+ Λf + U

wheref ∼ N(0, Iq), U ∼ N(0, σ2I), andΛ has orthogonal columns. The maximum

likelihood estimators forµ, Λ andσ2 are given by

µ̂ = (1/n)
n∑

i=1

yi ≡ ȳ, (3.2)

Λ̂ = Qq(Wq − σ2Iq)
1

2R, (3.3)

and

σ̂2 =
1

p− q

p∑

j=q+1

wj. (3.4)

whereQq ∈ Mpq has the columns which are the principal eigenvectors ofCyy; Wq =

diag(w1, . . . , wq) such that the entrieswj are the corresponding eigenvalues ofCyy;

andR is an arbitraryq × q orthogonal matrix. HereCyy is defined as

Cyy =
1

n

n∑

i=1

(Yi − ȳ)(Yi − ȳ)t

Remark 3.2. The equation in (3.4) has a clear interpretation as the variance “lost”

in the projection, averaged over the lost dimensions.
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3.2 Maximum likelihood estimate for (M1R)

Consider the reduced form of the (M1) model:

Y = Λf + U (M1R)

wheref ∼ N(0, Iq), U ∼ N(0,Ψ), Λ is ap by q matrix and

Ψ =


 0r O

Ot σ2Ip−r


 (3.5)

wherer < q < p, 0r is a r × r matrix of zeroes, andO is a r × (p − r) matrix

of zeroes. The parameter spaceΘM1R is defined in (2.42). To find the maximum

likelihood estimators for the parametersΛ andσ2 under the model (M1R), we start

with the probability density function ofY .

3.2.1 Simplifying the probability density function for model (M1R)

The probability density function ofY under (M1R) is

f(y) =
exp{−1

2
yt(ΛΛt + σ2Ip)

−1y}
(2π)p/2|ΛΛt + σ2Ip|1/2

. (3.6)

For simplicity of notation, partition

Y =


 Y1

Y2


 , Λ =


 Λ1

Λ2


 =


 Λ11 Λ12

Λ21 Λ22


 and U =


 0r

U2


 (3.7)

so that

Y =


 Y1

Y2


 =


 Λ1

Λ2


 f +


 0r

U2


 (3.8)

HereY1 ∈ Rr, Y2 ∈ Rp−r, Λ1 is ar × q matrix andΛ2 is a(p− r) × q matrix.

ProjectingΛ2 to the space generated by rows ofΛ1, we can writeΛ2 uniquely as

Λ2 = BΛ1 + Λ∗
2 (3.9)
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whereB ∈ Mp−r,r and the rows ofΛ1 are orthogonal to the rows ofΛ∗
2, i.e.,Λ∗

2Λ
t
1 = 0.

ThenY can be split into

Y1 = Λ1f (3.10)

Y2 = Λ2f + U2 = BY1 + Λ∗
2f + U2 (3.11)

It follows that the conditional probability distribution of Y2 givenY1 is

Y2|Y1 ∼ Np−r(BY1,Λ
∗
2(Λ

∗
2)
t + σ2Ip−r). (3.12)

Therefore, the probability density function ofY under (M1R) model can be written as

fY1,Y2
(y1, y2) = fY1

(y1)fY2|Y1
(y2|y1) with

fY1
(y1) =

exp{−1
2
yt1(Λ1Λ

t
1)

−1y1}
(2π)r/2|Λ1Λt

1|1/2
(3.13)

and

fY2|Y1
(y2|y1)

=
exp{−1

2
(y2 −By1)

t(Λ∗
2(Λ

∗
2)
t + σ2Ip−r)

−1(y2 −By1)}
(2π)(p−r)/2|Λ∗

2(Λ
∗
2)
t + σ2Ip−r|1/2

. (3.14)

So we have

fY1,Y2
(y1, y2)

=
exp{−1

2
yt1(Λ1Λ

t
1)

−1y1}
(2π)r/2|Λ1Λt

1|1/2

× exp{−1
2
(y2 −By1)

t(Λ∗
2(Λ

∗
2)
t + σ2Ip−r)

−1(y2 −By1)}
(2π)(p−r)/2|Λ∗

2(Λ
∗
2)
t + σ2Ip−r|1/2

(3.15)

=
exp{−1

2
yt1(Λ1Λ

t
1)

−1y1}
(2π)r/2|Λ1Λt

1|1/2

× exp{−1
2
(y2 −By1)

t(Λ22Λ
t
22 + σ2Ip−r)

−1(y2 −By1)}
(2π)(p−r)/2|Λ22Λt

22 + σ2Ip−r|1/2
(3.16)

To show that the equations (3.15) and (3.16) are equivalent,we need to show that

Λ∗
2(Λ

∗
2)
t = Λ22Λ

t
22. First, we note that in the parameter space under (M1R),Λ11 is a
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r× r matrix with rankr andΛ12 is ar× (q− r) zero matrix. UsingΛ∗
2Λ

t
1 = 0 and the

equation (3.9), we have

0 = Λ∗
2Λ

t
1

= (Λ2 −BΛ1)Λ
t
1

= [(Λ21|Λ22) −B(Λ11|0)](Λ11|0)t

= Λ21Λ
t
11 −B(Λ11Λ

t
11)

= (Λ21 −BΛ11)Λ
t
11. (3.17)

SinceΛ11 is ar× r matrix with full rank and therefore invertible, the last equation can

be simplified as

Λ21 −BΛ11 = 0. (3.18)

Now, let us show thatΛ∗
2(Λ

∗
2)
t = Λ22Λ

t
22 using the equation (3.18):

Λ∗
2(Λ

∗
2)
t = [(Λ21|Λ22) −B(Λ11|0)][(Λ21|Λ22) −B(Λ11|0)]t

= [(Λ21 −BΛ11|Λ22)][(Λ21 −BΛ11|Λ22)]
t

= [(0|Λ22)][(0|Λ22)]
t

= Λ22Λ
t
22 (3.19)

Therefore, the equations (3.15) and (3.16) are equivalent.

3.2.2 Likelihood function and ML equation

Let y1, . . . , yn be a sample ofn independent observations of Y. The joint probability

density functionf(y1, θ) · · · f(yn, θ), evaluated aty = (y1, . . . , yn), can be considered

as a function ofθ, sayL(θ). We call it the likelihood function. Let{yi, i = 1, . . . n}
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be a sample. Partition

yi =


 y1i

y2i


 (3.20)

wherey1i andy2i areq×1 and(p−q)×1 column vectors, respectively. Under (M1R),

the likelihood function for this sample is

L(θ) =
n∏

i=1

f(yi, θ) =
n∏

i=1

fY1iY2i
(y1i, y2i; θ) (3.21)

The maximum likelihood estimates ofθ are valueŝθ of θ which maximize the likeli-

hood functionL(θ), or equivalently, maximize the logarithm of the likelihoodfunction,

denoted byl(θ) with

l(θ) ≡ log(L(θ)) =
n∑

i=1

log(fY1iY2i
(y1i, y2i; θ))

= −np
2
log(2π) − n

2
log(|Λ11Λ

t
11|) −

1

2

n∑

i=1

yt1i(Λ11Λ
t
11)

−1y1i

−n
2
log(|Λ22Λ

t
22 + σ2Ip−r|)

−1

2

n∑

i=1

(y2i −By1i)
t(Λ22Λ

t
22 + σ2Ip−r)

−1(y2i −By1i) (3.22)

To get maximum likelihood estimates for model (M1R), we first optimize the log-

likelihood onB with the other parameters,Λ andσ2 fixed. Once we get̂B = B̂(Λ, σ2),

we plug it into the log-likelihoodl(Λ, σ2, B̂(Λ, σ2)) and then optimize the likelihood

onΛ, σ2. This is the idea of theprofile log-likelihood.

3.2.3 The profile log-likelihood

The idea of the profile log-likelihood is similar to the concentrated likelihood from

Anderson (1984). The profile likelihood approach is as follows. Let Θ be the pa-

rameter space. We decompose the parameter spaceΘ into two subspacesΘ1 andΘ2
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such thatΘ = Θ1 × Θ2. Let l(θ) be the log-likelihood function onΘ. We optimize

the log-likelihood on one subspace, sayΘ1, first with the other parameter component

fixed. Let θ̂1(θ2) be the maximum likelihood estimate ofθ1 for fixed θ2. The profile

log-likelihood for θ2 is defined as

l(θ2) = l(θ̂1(θ2), θ2). (3.23)

The maximum likelihood estimatêθ1(θ2) is unique for many generalized linear

models. Under certain conditions, the profile log-likelihood may be used just like any

other log-likelihood as a function of the remaining parameterθ2. Also, the maximized

profile likelihood is equal to the overall maximized likelihood. That is,

sup
θ∈Θ

l(θ) = sup
θ2∈Θ2

{max
θ1∈Θ1

l(θ|θ2)} = sup
θ2∈Θ2

l(θ̂1(θ2), θ2). (3.24)

The following Lemma (Cheng [4]) shows that a sufficient condition for equation

(3.24) to hold is that a unique maximum likelihood estimateθ̂1(θ2) exists whenθ2 is

given.

Lemma 3.3. Let l(θ) be a continuous log-likelihood function andθ = (θ1, θ2). If there

exists a unique continuous function̂θ1(θ2) such that

max
θ1∈Θ1

l(θ1; θ2) = l(θ̂1(θ2), θ2) ≡ lp(θ2) (3.25)

then we have

sup
θ∈Θ

l(θ) = sup
θ2∈Θ2

lp(θ2). (3.26)

Furthermore, iflp(θ2) is continuous, andΘ2 is compact, then the right hand side of

equation (3.26) is a maximum. That is,

sup
θ2∈Θ2

lp(θ2) = max
θ2∈Θ2

lp(θ2). (3.27)
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Now we will maximize the log-likelihood function in (3.22) for B with Λ andσ2

fixed. This is equivalent to minimizing

n∑

i=1

(y2i −By1i)
t(Λ22Λ

t
22 + σ2Ip−r)

−1(y2i −By1i). (3.28)

As shown in Theorem 2.17,Λ22Λ
t
22 +σ2Ip−r = Σ22.1 whereΣ22.1 is defined asΣ22.1 =

Σ22 − Σ21Σ
−1
11 Σ12. Expand the formula in (3.28) to get

n∑

i=1

[yt2i(Σ
−1
22.1)y2i − 2yt1iB

t(Σ−1
22.1)y2i + yt1iB

t(Σ−1
22.1)By1i]. (3.29)

The first summand is a constant independent ofB, so minimizing (3.29) is equivalent

to minimize the functiong(B) which is given by

g(B) =
n∑

i=1

[yt1iB
t(Σ−1

22.1)By1i − 2yt2iB
t(Σ−1

22.1)y1i]. (3.30)

Next, findB̂ = arg minB g(B) by setting∇Bg = 0. Let B and K be two(p − r) × r

matrices andδ be very small. Consider a small perturbationB + δK of B. Then

< ∇Bg,K >=
d

dδ
g(B + δK)|δ=0 (3.31)

=
∑n

i=1[ yt1iK
t(Σ−1

22.1)By1i + yt1iB
t(Σ−1

22.1)Ky1i

−2yt2i(Σ
−1
22.1)Ky1i] + δ

n∑

i=1

[yt1iK
t(Σ−1

22.1)Ky1i]|δ=0 (3.32)

yielding

1

n

n∑

i=1

yt1i[K
t(Σ−1

22.1)B +Bt(Σ−1
22.1)K]y1i =

2

n

n∑

i=1

yt2i(Σ
−1
22.1)Ky1i. (3.33)

Let Clm = 1
n

∑n
i=1 yliy

t
mi for l = 1, 2 andm = 1, 2, where{yi, i = 1, . . . n} is a

sample and eachyti = (y1i, y2i)
t is partitioned as in (3.20) withy1i andy2i areq×1 and

(p− q) × 1 column vectors, respectively. Note that bothC11 andΣ−1
22.1 are symmetric.

49



By definition of trace in Definition 1.10, the left hand side of (3.33) can be written as

1

n

n∑

i=1

yt1i[K
t(Σ−1

22.1)B +Bt(Σ−1
22.1)K]y1i

=
1

n

n∑

i=1

tr{[Kt(Σ−1
22.1)B +Bt(Σ−1

22.1)K]y1iy
t
1i}

= tr{[Kt(Σ−1
22.1)B +Bt(Σ−1

22.1)K]C11}

= 2 tr{[Kt(Σ−1
22.1)B]C11}. (3.34)

Similarly, the right hand side of (3.33) can be written as

2

n

n∑

i=1

yt2i(Σ
−1
22.1)Ky1i =

2

n

n∑

i=1

tr{(Σ−1
22.1)Ky1iy

t
2i}

= 2 tr{(Σ−1
22.1)KC12} (3.35)

SinceK is an arbitrary matrix, (3.34) and (3.35) gives us

(Σ−1
22.1)BC11 = (Σ−1

22.1)C
t
12 (3.36)

Since bothC11 andΣ−1
22.1 are invertible, the solution of equation (3.36) is

B̂ = Ct
12C

−1
11 (3.37)

which is totally independent ofΛ andΨ.

Next, pluggingB̂ into the log-likelihood in (3.22), we can writelp(θ2) = l(θ̂1(θ2), θ2) =

constant+ logL1 + logL2 with

logL1 = −n
2

log(|Λ11Λ
t
11|) −

1

2

n∑

i=1

yt1i(Λ11Λ
t
11)

−1y1i (3.38)

and

logL2 = −n
2

log(|Λ22Λ
t
22 + σ2Ip−r|)

−1

2

n∑

i=1

(y2i − B̂y1i)
t(Λ22Λ

t
22 + σ2Ip−r)

−1(y2i − B̂y1i). (3.39)
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Now let us simplifylogL2 after substitution ofΣ22.1 = Λ22Λ
t
22 + σ2Ip−r into expres-

sion (3.39) and using the definition of trace, we have

logL2 = −n
2
{log(|Σ22.1|) +

1

n

n∑

i=1

(y2i − B̂y1i)
t(Σ−1

22.1)(y2i − B̂y1i)}

= −n
2
{log(|Σ22.1|) + tr[(Σ−1

22.1) ·
1

n

n∑

i=1

(y2i − B̂y1i)(y2i − B̂y1i)
t]}

= −n
2
{log(|Σ22.1|) + tr[(Σ−1

22.1)Cxx]} (3.40)

where

Cxx =
1

n

n∑

i=1

(y2i − B̂y1i)(y2i − B̂y1i)
t.

Note thatlogL1 is a function only depending on data and the parametersΛ11, while

logL2 is a function ofΛ22 andσ2 only. Thus, optimizinglp(θ2) is equivalent to opti-

mizing logL1 for Λ11 and to optimizinglogL2 for (Λ22, σ
2).

In logL1, the log-likelihood is maximized, according to Lemma 3.1 [24], when

Λ̂11 = UrD
1/2
r

where we decomposeΛ11Λ
t
11 = UrDrU

t
r,Dr is ar× r diagonal matrix of eigenvalues

d1, d2, . . . , dr with d1 > d2 > . . . > dr, and the columns ofUr are standardized

eigenvectors ofΛ11Λ
t
11 with the first nonzero element in each column being positive.

In logL2, the maximum-likelihood estimator forΛ22 andσ2 can be uniquely deter-

mined by Lemma 3.1 [24] with

Λ̂22 = Uq−r(Wq−r − σ2Iq−r)
1

2R

σ̂2 =
1

p− q

p−r∑

j=q+1−r
wj
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whereUq−r ∈ O+
p−r,q−r, Wq−r = diag(w1, . . . , wq−r) andR is an arbitrary(q − r) ×

(q− r) permutation matrix. The column vectors ofUq−r are the principal eigenvectors

of Cxx corresponding to the eigenvaluesw1, . . . , wq−r.

3.3 Profile likelihood optimization in (M0)

Consider the (M0) model as defined in Chapter 2, Section 1:

Y (r) = µ+ Λf (r) + U (r) (M0)

wheref (r) ∼ N(0, Iq), U (r) ∼ N(0,Ψ), f (r) andU (r) are independent. The matrix

Ψ = diag(ψ), is ap × p diagonal matrix with the vectorψ ≡ (ψ1, . . . , ψp) ∈ Rp on

the diagonal. Therefore, the general factor model can be expressed

Y (r) ∼ N(µ, Λ Λt + Ψ).

The observed data consists of{Y (r); r = 1, . . . , R}. The log-likelihood is

lR(µ,Λ, ψ) = −Rp
2

log 2π − R

2
log |Σy|

− 1

2

R∑

r=1

(y(r) − µ)t Σ−1
y (y(r) − µ). (3.41)

Maximizing lR(µ,Λ, ψ) with respect toµ yields

µ̂ = (1/R)
R∑

r=1

y(r) ≡ ȳ. (3.42)

Substitutingµ̂ into (3.41) yields the profile likelihood

lR,prof (µ,Λ, ψ) = −Rp
2

log 2π − R

2
(log |Σy| + tr(Σ−1

y Cyy)) (3.43)

with

Cyy = (1/R)
R∑

r=1

(y(r) − ȳ)(y(r) − ȳ)t. (3.44)
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Clearly maximizing (3.43) is equivalent to minimizinglog |Σy| + tr(Σ−1
y Cyy) with

respect toΛ andψ.

Now we considerΨ = σ2Γ with Γ known and diagonal. SinceΓ is known, we can

multiply Y (r) by Γ−1/2 from the left and transform the (M0) model to

Y (r)∗ = µ∗ + Λ∗f (r) + U (r)∗ (3.45)

whereY (r)∗ = Γ−1/2 Y (r), µ∗ = Γ−1/2 µ, Λ∗ = Γ−1/2 Λ andU (r)∗ = Γ−1/2 U (r).

ThenU (r)∗ ∼ Np(0, σ
2Ip) just as in (M1). The covariance matrix ofY (r)∗ is

Σ∗
Y = Λ∗Λ∗ t + σ2Ip. (3.46)

The log-likelihood is

l∗R(µ∗,Λ∗,Ψ∗) = −Rp
2

log 2π − R

2
log |Σ∗

y|

− 1

2

R∑

r=1

(y(r)∗ − µ)t (Σ∗
y)

−1 (y(r)∗ − µ). (3.47)

By Lemma 3.1, we obtain, for the model (M0) on{Y (r)∗} with Γ known,

µ̂∗ = (1/R)
R∑

r=1

y(r)∗, (3.48)

Λ̂∗ = Qq(Wq − σ2Iq)
1

2T, (3.49)

and

σ̂2 =
1

p− q

p∑

j=q+1

wj (3.50)

whereQq ∈ Mpq has the columns which are the principal eigenvectors ofC∗
yy; Wq =

diag(w1, . . . , wq) such that the entrieswj are the corresponding eigenvalues ofC∗
yy;

andT is an arbitraryq × q orthogonal matrix. HereC∗
yy is a function ofΓ defined as

C∗
yy ≡ C∗

yy(Γ) = Γ−1/2 Cyy Γ−1/2
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with

Cyy ≡ (1/R)
R∑

r=1

(y(r) − ȳ)(y(r) − ȳ)t.

Therefore, the estimators ofµ∗ in (3.48),Λ∗ in (3.49), andσ2 in (3.50) are all functions

of Γ.

Substitutingµ̂∗ into (3.47) yields the profile likelihood

l∗prof (Γ) ≡ lR,prof (Λ
∗(Γ), ψ∗(Γ))

= −Rp
2

log 2π − R

2
(log |Σ∗

y| + tr((Σ∗
y)

−1C∗
yy)). (3.51)

The idea of profile likelihood maximization in the general factor analysis model in

terms ofΓ for the vectorψ is discussed by Magnus and Neudecker [14].

Maximizing (3.51) is equivalent to minimizing

gprof (Λ
∗(Γ), σ2(Γ)) ≡ (log |Σ∗

y| + tr((Σ∗
y)

−1C∗
yy) (3.52)

with respect toΓ. Substituting (3.49) and (3.50) in (3.52), and using the Newton-

Raphson method to minimizegprof (Λ̂∗, σ̂2) iteratively overΓ so that the current value

of Γ is used as above, we can finally getΓ̂. The Newton-Raphson method will be

introduced in the next chapter.

3.3.1 Why it is good to use the profile likelihood?

The profile likelihood method allowed us to reduce the parameter dimension by work-

ing on the two separate subspaces of parameters when we deal with high dimensional

problems. For example, in (M0), we optimize log-likelihoodl(θ) on Λ first with the

other parameter componentψ fixed. LetΛ̂(ψ) be the maximum likelihood estimate of

Λ for fixed ψ. Then the profile log-likelihood forψ is defined asl(ψ) = l(Λ̂(ψ), ψ)

which is only dependent onψ. SinceΛ ∈ O+
pq andψ is a vector withp components,
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the number of free parameters inΛ and inψ arep ·q− q(q−1)
2

andp, respectively. Thus,

the parameter dimension is reduced fromp · q − q(q−1)
2

+p to p if the profile likelihood

method is used.

In model (M1R), we will be able to find the maximum likelihood estimator through

the profile likelihood method. However, as in most multivariate analysis problems, the

maximum of the profile log-likelihood does not have a closed-form analytic form for

θ2. That is, the profile log-likelihood equation can not be solved directly. We will

use a numerical procedure to compute the maximum likelihoodestimates iteratively.

There are various iterative procedures such as the Newton-Raphson method, the EM

(expectation-maximization) algorithm, and the steepest descent method. We will dis-

cuss these in the next chapter.

3.4 Condition to check the local maximum likelihood

estimate

In Lemma 2.15, we show that ifp > 2q and the model is non-identifiable, then there

exists(Λ∗, ψ∗) in the boundary of the parameter space satisfying the condition (2.2).

We found the same situation in our simulated data, that is, the maximum likelihood

estimator(Λ∗, ψ∗) may haveψ∗
j = 0 for somej, whereψ∗ = (ψ∗

1, . . . , ψ
∗
p). Therefore,

we want to ask whether the estimator that we found in the boundary of the parameter

space achieves the local maximum of the likelihood function. To verify this, we need

the condition to check whether the log-likelihood is decreasing when we approach in

a certain direction, for example, approach from the interior of the parameter space.

Suppose thatθ∗ ≡ (Λ∗, ψ∗) in the boundary of the parameter spaceΘ andψ∗ =

(ψ∗
1, . . . , ψ

∗
p) with ψ∗

1 = . . . = ψ∗
r = 0. Denote the log-likelihood function asl(θ) and
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define

∇ψr l(θ̂r) ≡ (
∂l(θ)

∂ψ1

, . . . ,
∂l(θ)

∂ψr
)t |θ=bθr (3.53)

whereθ̂r is the maximum likelihood estimator in the restricted model(M1R) defined

in (2.42) withΨ ≡ diag(ψ) andψ = diag(0, . . . , 0, ψr+1, . . . , ψp). To verify whether

the log-likelihood is decreasing when we approach in a certain direction is equivalent

to checking the condition

∇ψr l(θ̂r) · ej < 0 for j = 1, . . . , r (3.54)

where{e1, . . . , ep} is the canonical basis ofRp.

In (M0), the log-likelihood function is

l(θ) = −pR
2

log 2π − R

2
log |Σy| −

R

2
tr(Cyy Σ−1

y ). (3.55)

HereCyy ≡ 1
R

∑R
r=1(y

(r) − ȳ)(y(r) − ȳ)t. Then the partial derivative of (3.55) with

regard toψj is (Anderson 1984)

∂l(θ)

∂ψj
= −R

2
[σjj −

p∑

k=1

p∑

m=1

ckmσ
mjσjk], j = 1, . . . , r. (3.56)

whereΣ−1
y = (σij) andCyy = (cij). Thus, the condition in (3.54) is equivalent to

(Σ̂y

−1 − Σ̂y

−1
CyyΣ̂y

−1
)jj > 0 for j = 1, 2, . . . , r (3.57)

whereΣ̂y = Λ̂r Λ̂t
r + Ψ̂r and(Λ̂r, ψ̂r) = θ̂r.

3.5 Score Test forH0 : ψj = 0 versusHA : ψj > 0

The efficient score test (Cox and Hinkley [5], p. 324), also calledLocally Most Power-

ful (LMP) test(Lehmann [12]), is a widely applicable method of test construction that
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provides a convenient alternative to the likelihood ratio test. Based on the likelihood,

score tests are asymptotically equivalent to likelihood ratio tests but do not require cal-

culation of maximum likelihood estimates from the full, unconstrained model. This

property makes the score test an ideal alternative to the likelihood ratio tests when

maximum likelihood estimates from the full model are difficult to obtain. Especially

when parameter is not in the interior of the parameter but on the boundary, LRT is

non-standard and has different distribution (Self and Liang [20]).

This section summarizes briefly the theory of likelihood score tests. Further back-

ground on score test can be found in Cox and Hinkley [5]. Letl(y; θ1, θ2) be a log-

likelihood function depending on a response vectory and parameter vectorsθ1 andθ2.

We wish to test the composite hypothesisH0 : θ1 = θ10 against the general alternative

HA : θ1 is unrestricted. The components ofθ2 are so-called nuisance parameters be-

cause they are not of interest in the test but values must be estimated for them in order

for a test statistic to be computed. The likelihood score vectors forθ1 andθ2 are the

partial derivatives

S1 =
∂l

∂θ1

and S2 =
∂l

∂θ2

(3.58)

respectively. The observed information matrix for the parameters is−H(θ) with

H(θ) =
∂2l

∂θ∂θt
=


 H11 H12

H21 H22


 . (3.59)

The Fisher information matrix isI = E(−H), which is partitioned into the same

blocks asH, yielding

I =


 I11 I12

I21 I22


 . (3.60)

The score test statistic is based on the fact that the score vector S = (S1, S2) has

mean zero and covariance matrixI. If the nuisance vectorθ2 is known, then the score
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test statistic ofH0 is

Z = I−1/2
11 S1, (3.61)

whereI1/2
11 stands for any factor such thatI1/2

11 (I1/2
11 )t = I11, or equivalently

T = Zt Z = St1 I−1
11 S1 (3.62)

with S1 andI11 evaluated atθ1 = θ10. The score vectorS is a sum of independent

terms corresponding to individual observations and so is asymptotically normal under

standard regularity conditions. It follows thatZ is asymptotically a standard normalp1-

vector under the null hypothesisH0 and thatT is asymptotically chi-square distributed

onp1 degrees of freedom, wherep1 is the dimension ofθ1.

If the nuisance parameters are not known, then the score testsubstitutes for them

their so-called ‘restricted’ maximum likelihood estimators θ̂(r)
2 under the null hypoth-

esis. Settingθ2 = θ̂
(r)
2 is equivalent to settingS2 = 0, so we need the asymptotic

distribution ofS1 conditional onS2 = 0, which is normal with mean zero and covari-

ance matrix

I11.2 = I11 − I12 I−1
22 I21. (3.63)

The score test statistic becomes

T = St1 I−1
11.2 S1 (3.64)

with S1 andI11.2 evaluated atθ2 = θ̂2 andθ1 = θ10. Under the null hypothesisH0,

T is asymptotically chi-square distributed onp1 degrees of freedom, wherep1 is the

dimension ofθ1.

Neyman [16] and Neyman and Scott [17] show that the asymptotic distribution and

efficiency of the score statisticT is unchanged if an estimator other than the maximum
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likelihood estimator is used for the nuisance parameters, provided that the estimator is

consistent with convergence rate at leastO(n−1/3), wheren is the number of observa-

tions.

If I21 = 0, thenθ1 andθ2 are said to be orthogonal. In this case,S1 andS2 are

asymptotically independent andI11.2 = I11, meaning that the information matrixI11

does not need to be adjusted for estimation ofθ2.

Thep-value is defined as

Pr(Tn ≥ t)|t=T ∗

n

whereTn is defined in (3.64) andT ∗
n = St1n(0, θ̂20)[I11.2(0, θ̂20)]

−1S1(0, θ̂20). Letα be

the level of significance. If thep-value≤ α, then we rejectH0.

3.5.1 Score Test forH0 : ψj = 0 vsHA : ψj > 0 under (M0) with

µ = 0

In this section, we will find the score test statistic and Fisher information under (M0)

with µ = 0. To test the composite hypothesisH0 : ψj = 0 againstHA : ψj > 0, we

start by calculating the score statistic. The parameter isθ ≡ (Λ, ψ), whereΛ = (λij)

is the loading matrix andψ = (ψ1, . . . , ψp) is a vector such that the covariance of the

error isΨ ≡ diag(ψ). Let θ1 = ψj andθ2 be the vector with components{λij, ψk :

i = 1, . . . , p ; j = 1, . . . q ; k = 1, . . . , j − 1, j + 1, . . . p}. The log-likelihood function

of θ is

l(θ) = −Rp
2

log(2π) − R

2
log |Σ| − R

2
tr[Cyy(Σ)−1]
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whereΣ = ΛΛt + Ψ. The derivative ofΣ with respect toλlm is

∂σij
∂λlm

=





2λlm if i = j = l

λjm if i = l, i 6= j

λim if j = l, i 6= j

0 otherwise.

(3.65)

The derivative ofΣ with respect toψi is

∂σij
∂ψi

= diag(ei). (3.66)

FromΣΣ−1 = I, we obtain for any parameterθ

∂Σ−1

∂θ
= −Σ−1 ∂Σ

∂θ
Σ−1. (3.67)

Let Σ−1 = (σij) and use (3.67) to get the partial derivative ofΣ−1 with regard toψj

∂σkm

∂ψj
= −σkj σjm. (3.68)

Similarly, the partial derivative ofΣ−1 with respect toλmk is

∂σkm

∂λij
= −[(Σ−1)im (Σ−1Λ)kj + (Σ−1)ik (Σ−1Λ)mj]. (3.69)

By A.6, we have
∂ log |Σ|
∂Σ

= 2Σ−1 −DΣ−1

whereDΣ−1 is a diagonal matrix withi’th diagonal element equal to that ofΣ−1. Thus,

the derivative oflog |Σ| with respect toψi is

∂ log |Σ|
∂ψi

=
∑

j,k

∂ log |Σ|
∂σjk

· ∂σjk
∂ψi

= tr[
∂ log |Σ|
∂Σ

∂Σ

∂ψi
]

= tr[(2Σ−1 −DΣ−1)(diag(ei))]

=
∑

j,k

(2σjk − σjk δjk) · (diag(ei))jk

= 2σii − σii

= σii. (3.70)
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Using (3.65) and the same idea as in the last equation, the derivative of log |Σ| with

respect toλlm is

∂ log |Σ|
∂λlm

= tr[ (2Σ−1 −DΣ−1) (
∂Σ

∂λlm
) ]

=

p∑

j=1

σlj λjm. (3.71)

Then the partial derivative of log-likelihoodl(θ) with respect toψj is

∂l(θ)

∂ψj
= −R

2
· (Σ−1 − Σ−1CyyΣ

−1)jj, 1 ≤ j ≤ q (3.72)

and the partial derivative of log-likelihoodl(θ) with respect toλmk is

∂l(θ)

∂λmk
= −R · (Σ−1 Λ − Σ−1CyyΣ

−1 Λ)mk, 1 ≤ m ≤ p, 1 ≤ k ≤ q. (3.73)

The score statistic

S1(θ1, θ2) =
∂l(θ)

∂ψj
= −R

2
· (Σ−1 − Σ−1CyyΣ

−1)jj (3.74)

and

S2(θ1, θ2) =
∂l(θ)

∂θ2

(3.75)

can be obtained through (3.72) and (3.73).

Similarly, we can calculate the second partial derivative of log-likelihood l(θ) to

get

∂2l(θ)

∂ψ2
j

=
R

2
[(Σ−1)2

jj − (Σ−1CyyΣ
−1)jj (Σ−1)jj], (3.76)

for j = 1 . . . p,

∂2l(θ)

∂λmk∂ψj
= R[(Σ−1)mj (Σ−1Λ)jk − (Σ−1)mj (Σ−1CyyΣ

−1Λ)jk

−(Σ−1CyyΣ
−1)mj (Σ−1Λ)jk], (3.77)

61



for m = 1 . . . p, k = 1 . . . q, andj = 1 . . . p, and

∂2l(θ)

∂λij∂λmk
= R[(Σ−1Λ)mj (Σ−1Λ)ik + (Σ−1)im (Λt Σ−1Λ)kj

− (Σ−1Λ)mj (Σ−1CyyΣ
−1Λ)ik − (Σ−1)mi δk=j

− (Σ−1)im (Λt Σ−1CyyΣ
−1Λ)jk − (Σ−1CyyΣ

−1Λ)mj (Σ−1Λ)ik

− (Σ−1CyyΣ
−1)mi (ΛtΣ−1Λ)kj

+ (Σ−1CyyΣ
−1)mi δ{k=j} ] (3.78)

for i = 1 . . . p,m = 1 . . . p, k = 1 . . . q, andj = 1 . . . q.

Taking the expectation on (3.76), (3.77) and (3.78), we get

E[
∂2l(θ)

∂ψ2
j

] = −R
2

[(Σ−1)jj]
2 (3.79)

for j = 1 . . . p,

E[
∂2l(θ)

∂λmk∂ψj
] = −R[(Σ−1)mj (Σ−1Λ)jk] (3.80)

for m = 1 . . . p, k = 1 . . . q, andj = 1 . . . p.

E[
∂2l(θ)

∂λij∂λmk
] = −R[(Σ−1Λ)mj (Σ−1Λ)ik + (Σ−1)im (Λt Σ−1Λ)kj] (3.81)

for 1 ≤ i,m ≤ p and1 ≤ j, k ≤ q. Therefore, the Fisher information matrixI =

E[−H] can be estimated through (3.79), (3.80) and (3.81), where

H(θ) =
∂2l

∂θ∂θt
=


 H11 H12

H21 H22


 . (3.82)

The score test statistic isT = St1 I−1
11.2 S1 with S1 andI11.2 evaluated atθ2 = θ̂2

andθ1(= ψj) = 0.
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3.6 Test of Fit for the PARAFAC Model

Slud et al. [22] found in a specific data example closely related to that explored in

Chapter 5 below that the restricted PARAFAC model (M4) did lesswell, the more

highly cross-classified the data were. Due to the highly constrained form and inade-

quacy of PARAFAC, a more general model such as 3-mode factor analysis model (T3)

is needed for representing cross-classified data. The 3-mode factor analysis model,

also called Tucker 3 model (T3), was introduced by Tucker [25] and can be written as

y
(r)
ias =

L∑

l=1

M∑

m=1

N∑

n=1

λilwamvsnglmn + u
(r)
ias (3.83)

whereglmn is the element of a three-mode matrixG which is called thecore matrix.

The PARAFAC model (M4a) is a special case of the T3 model when

glmn =





1 if l = m = n

0 otherwise.

Zheng et al. [27] mentioned in other tongue and speech related data sets that the T3

model fits better than PARAFAC (M4a), but it tends to use excessparameters. Thus,

the well-defined model hierarchy we constructed may help to rationalize the choice of

models. Model (M3) in the model hierarchy we constructed is amore general model

than (T3). Thus, we have (M4)⊂ (M4a) ⊂ (T3) ⊂ (M3). In this section, we will

construct a likelihood ratio test of whether the more general models (M3) or (M4a)

better represent a statistical data set.

3.6.1 The Likelihood Ratio Test

We derive the likelihood ratio test (LRT) that the model fits.For a specifiedq, the

covariance matrix can be written asΣY = ΛΛt + Ψ for somep × q matrix Λ and
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somep × p diagonal positive definite matrixΨ. The general strategy of the LRT

is to maximize the likelihood under the null hypothesisH0, and also to maximize

the likelihood under the alternative hypothesisH1. If the distribution of the random

sampleY = (y1, . . . , yn) depends on a parameter vectorθ, and ifH0 : θ ∈ Θ0 and

H1 : θ ∈ Θ1 are any two nested hypotheses, then the likelihood ratio (LR)statistic for

testingH0 againstH1 is defined as

λ(y) = L0(θ̂0)/L1(θ̂1) (3.84)

whereLi(θ̂i) is the largest value which the likelihood function takes in the parameter

spaceΘi, i = 0, 1. Equivalently, we may use the statistic

−2 log λ = 2(l1(θ̂1) − l0(θ̂0)), (3.85)

whereli(θ̂i) = logLi(θ̂i), i = 0, 1. In general, one tends to favorH1 when the LR

statistic (3.84) is low, andH0 when it is high. A test procedure based on the LR

statistic is as follows:

The LRT of sizeα for testingH0 againstH1 has as its rejection region

Rc = {y : λ(y) < c} (3.86)

wherec is determined so that

sup
θ∈Θ0

Prθ(y ∈ Rc) = α. (3.87)

However, it may not be possible to obtain exact sizeα, especially whenλ(Y ) is a

discrete random variable. If such ac does not exist, we choose an integerc∗ such that

Prθ(y ∈ Rc∗) ≤ α andPrθ(y ∈ Rc∗−1) > α. (3.88)

The LRT has the following very important asymptotic property [21].
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Theorem 3.4. (Wald Theorem) In the notation of (3.85), ifΘ1 is a region inRd, and

if Θ0 is an r-dimensional subregion ofΘ1, then under suitable regularity conditions

including θ ∈ int(Θ0) ∩ int(Θ1), −2 log λ has an asymptoticχ2
d−r distribution as

n→ ∞.

Remark 3.5. For degrees of freedomd > 100,
√

2χ2
d

D≈ N(
√

2d− 1, 1).

3.6.2 The LRT for (M4a) against (M3)

In this section, we shall test whether the more general model(M3) fits better than

PARAFAC (M4a). Consider the hypothesesH0 : θ ∈ ΘM4a againstH1 : θ ∈ ΘM3,

whereΘM3 is defined in (2.56), andΘM4a is defined in (2.69).

Maximizing the likelihood under H1 : θ ∈ ΘM3

To maximize the likelihood under the alternativeH1, we use Newton-Raphson method

to minimize−2logL ≡ −2ly(θ), whereθ ∈ ΘM3. For reducing the parameter dimen-

sion, we use the profile likelihood method. We first fixΛ, the (M3) model in (2.50)

under the parameter spaceΘM3. The model can be written as

Y (r,a,s) = Λ∗f (a,s)∗ + U (r,a,s)∗ (3.89)

whereY (r,a,s) is ap×1 vector,Λ∗ = (1|Λ) is ap×(q+1) matrix,f (a,s)∗ =


 µas

f (a,s)


,

andU(r)∗ is a p × AS matrix. DefineF ∗ ≡ (f (1,1)∗|f (1,2)∗| · · · |f (A,S)∗) which is a

(q + 1) × AS matrix.

The log-likelihood functionl(θ) is

l(θ) = −1

2

A∑

a=1

S∑

s=1

[ pR log(σ2
as) +

1

σ2
as

R∑

r=1

‖Y (r,a,s) − Λ∗f (a,s)∗‖2] (3.90)
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The second term on the right hand side of (3.90) can be decomposed as

R∑

r=1

‖Y (r,a,s) − Λ∗f (a,s)∗‖2 =
R∑

r=1

(‖Y (r,a,s) − Ȳ (·,a,s)‖2)

+ R(‖Ȳ (·,a,s) − Λ∗f (a,s)∗‖2) (3.91)

where

Ȳ (·,a,s) ≡ 1

R

R∑

r=1

Y (r,a,s).

Minimizing the second term in (3.91), we get

f̂ (a,s)∗ = (Λ∗ t Λ∗)−1 Λ∗ t Ȳ (·,a,s) (3.92)

Pluggingf̂ (a,s)∗ into the log-likelihood functionl(θ) and maximizing it with respect to

σ2
as, we have

σ̂2
as =

1

pR

R∑

r=1

‖Y (r,a,s) − Λ̂∗f̂ (a,s)∗‖2 (3.93)

Therefore, the maximized log-likelihood functionl(θ̂) under (M3) is

l(θ̂) = −RAS
2

− pR

2

A∑

a=1

S∑

s=1

log(σ̂2
as). (3.94)

Maximizing the likelihood under H0 : θ ∈ ΘM4a

To get the maximum likelihood estimator in (M4a), we can use MATLAB and the N-

way Toolbox which can be downloaded from

http://www.models.kvl.dk/courses/. We will discuss it inthe next chapter.
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Chapter 4

Computational Methods

4.1 EM Algorithm

4.1.1 Introduction

The EM (expectation-maximization) algorithm was first advocated by Dempster, Laird,

and Rubin in 1977 [6] for deriving maximum likelihood estimators from incomplete

data. It is a very popular and widely applicable computational tool in various statistical

models. The attractive features of EM algorithm are its simplicity and stability (e.g.

automatic monotone convergence in likelihood). It is oftenused as an alternative to

the Newton-Raphson method, Fisher-scoring method and otheroptimization methods

when the latter are too expensive to use or too complicated toimplement. However,

the EM algorithms often suffer from slow convergence. Whether this is a real prob-

lem in practice depends on models, data sizes, and programs used. Many acceleration

methods have been proposed to speed up the convergence of theEM algorithm since

Dempster, Laird, and Rubin (1977). Jamshidian and Jennrich [11] classify the ac-

celeration methods into three groups: pure, hybrid, and EM-type accelerators. For

accelerating the slow convergence of EM with stability and global convergence, a line

search needs to be employed with any acceleration method, which may ruin the sim-
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plicity of the EM algorithm. In fact, the simplicity of the EMalgorithm is a much more

attractive feature if we consider the operating efficiency from the stage of formulating

the likelihood to the stages of deriving and implementing analgorithm.

The idea of the EM algorithm is to treat the unobservable common factors as miss-

ing data and the complete data to comprise the observations together with these un-

observable factors. LetY be a p-dimensional random vector corresponding to the

observed data andpY (y, θ) be the probability density function, whereθ is a vector

of unknown parameters within the parameter spaceΘ. Let Z be the random vector

containing the missing data portion. ThenX = (Y, Z) denotes the vector containing

both the observed and missing data, called the complete data, andpX(x, θ) denotes the

probability density function ofX.

Let lX(θ) = log pX(X, θ), which is the log likelihood function based on the com-

plete data andlY (θ) = log pY (Y, θ), which is the log likelihood function based on

the incomplete data. The goal of the EM algorithm is to find themaximum likelihood

estimate ofθ, which is the point achieving the maximum oflY (θ).

The EM algorithm approaches indirectly the problem of maximizing the log likeli-

hoodlY (θ) based on incomplete data by proceeding iteratively in termsof the log like-

lihood based on the complete data,lX(θ). SincelX(θ) is unobservable, it is replaced

by the conditional expectation given the observation and the values of parameters in

mth iteration:

θ(m+1) = arg max
θ∈Θ

E[lX(θ)|Y, θ(m)]. (4.1)

Thus, starting with an initial valueθ(0) ∈ Θ, one findsθ∗, a stationary point oflY (θ),

by alternating between the following two steps (m = 0, 1, . . .):

E-step: impute the complete data log likelihoodlX(θ) by

Q(θ, θ(m)) = E[lX(θ)|Y, θ(m)] (4.2)
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M-step: determineθ(m+1) by maximizing the imputed log likelihoodQ(θ, θ(m)) re-

garded as a function ofθ with θ(m) fixed:

Q(θ(m+1), θ(m)) ≥ Q(θ, θ(m)) for all θ ∈ Θ. (4.3)

The E-step and M-step are repeated by turns until they converge in a specified

sense, such as the smallness of changes in|θ(m+1) − θ(m)|. Dempster, Laird and Rubin

(1977) pointed out that the incomplete data log likelihoodlY (θ) is non-decreasing on

each iteration of an EM algorithm, that is,

lY (θ(m+1)) ≥ lY (θ(m)) (4.4)

for m = 0, 1, 2, . . . This property is useful for debugging the program code for the EM

algorithm. Moreover, if the log likelihoodlY (θ) based on incomplete datay is bounded

above, the value of the log likelihood in the iteration processlY (θ(m)) converges to a

stationary value oflY (θ).

Under general conditions, ifθ(m) converges, the limiting value can be proved to be

either a local maximum or a saddle point oflY (θ) (Boyles, 1983; Wu, 1983). There-

fore, if the likelihood function is unimodal and the first derivative of the functionQ

defined in equation (3.1.2) is continuous with respect toθ(m) andθ, the EM algorithm

converges to the only local maximum. Generally speaking, however, the likelihood

function of the incomplete data is not necessarily unimodal. Therefore, it is necessary

to compare the values of the log likelihood of the convergence value, starting with

many initial values.

4.1.2 EM algorithm and (M0) model

The random effect factor model (M0) is

Y (r) = µ+ Λf (r) + U (r) (M0)
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where all assumptions regarding toY (r),Λ, f (r), andU (r) are specified in Chapter 1.

We consider the special case of (M0) model whenµ is a zero vector. LetX be the

complete data, which includes observation vectorsY (r) and unobservable vectorsf (r),

r = 1, 2, . . . , R. That is,X = (Y, f). Thus, the complete dataX becomes a(p + q)-

dimensional vector. It is assumed thatX(1), X(2), . . . , X(R) are independently and

identically distributed, and that thecommon factorsf (1), f (2), . . . , f (R) independently

and identically normally distributed with zero mean and identity covariance matrixIq;

that is,

f (r) ∼ Nq(0, Iq). (4.5)

The vectorsf (r) are independent of the errorsU (r), which are assumed to be inde-

pendently and identically distributed asNp(0,Ψ) whereΨ is ap× p diagonal matrix.

Given the unobservable random effectf (r), the conditional probability distribution over

Y (r) is given by

Y (r)|f (r) ∼ Np(µ+ Λf (r),Ψ), (4.6)

whereΨ = diag(ψ). Unconditionally,{Y (r)} is independently and identically dis-

tributed with

Y (r) ∼ Np(µ,ΛΛt + Ψ). (4.7)

In (M0), the log-likelihood function is

l(θ) = −pR
2

log 2π − R

2
log |Σy| −

R

2
tr [ Σ−1

y

1

R

R∑

r=1

(y(r) − µ)(y(r) − µ)t]. (4.8)
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Since

R∑

r=1

(y(r) − µ)(y(r) − µ)t

=
R∑

r=1

[ (y(r) − ȳ) + (ȳ − µ)] [ (y(r) − ȳ) + (ȳ − µ)]t

=
R∑

r=1

[ (y(r) − ȳ)(y(r) − ȳ)t] + 2
R∑

r=1

[(y(r) − ȳ)(ȳ − µ)t] +R (ȳ − µ)(ȳ − µ)t

=
R∑

r=1

[ (y(r) − ȳ)(y(r) − ȳ)t] +R (ȳ − µ)(ȳ − µ)t, (4.9)

the MLE of µ is µ̂ = ȳ (by Anderson [2] p60-63). Since the probability density

function of the complete dataX can be written asp(x) = p(y|f)p(f) with

p(y|f) =
1

(2π)p/2
|Ψ|− 1

2 exp{−1

2
(y − µ− Λf)tΨ−1(y − µ− Λf)} (4.10)

and

p(f) =
1

(2π)q/2
exp{−1

2
(f tf)} (4.11)

then

p(x) =
1

(2π)p/2
|Ψ|− 1

2 exp{−1

2
(y − µ− Λf)tΨ−1(y − µ− Λf)}

× 1

(2π)q/2
exp{−1

2
(f tf)} (4.12)
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The complete data log likelihood function is

lX(θ) = log
R∏

r=1

p(x(r))

= −R(p+ q)

2
log(2π) − R

2
log|Ψ| − 1

2

R∑

r=1

tr[(f (r))(f (r))t]

−1

2

R∑

r=1

(y(r) − µ− Λf (r))t Ψ−1(y(r) − µ− Λf (r))

= −R(p+ q)

2
log(2π) − R

2
log|Ψ| − R

2
tr[Cff ]

−R
2
tr[Ψ−1 1

R

R∑

r=1

(y(r) − µ− Λf (r))(y(r) − µ− Λf (r))t] (4.13)

whereCff = 1
R

∑R
r=1 f

(r)(f (r))t.

Pluggingµ̂ into (4.13), we have

lX(Λ, ψ) = lX(µ̂,Λ, ψ)

= −R(p+ q)

2
log(2π) − R

2
log|Ψ| − R

2
tr[Cff ]

−R
2
tr[Ψ−1 1

R

R∑

r=1

(y(r) − ȳ − Λf (r))(y(r) − ȳ − Λf (r))t]

= −R(p+ q)

2
log(2π) − R

2
log|Ψ| − R

2
tr[Cff ] −

R

2
tr[Ψ−1 Cyy]

+R · tr[Ψ−1 ΛCfy] −
R

2
tr[Ψ−1 ΛCffΛ

t] (4.14)

whereΨ = diag(ψ),Cyy = 1
R

∑R
r=1(y

(r)−ȳ)(y(r)−ȳ)t, andCfy = 1
R

∑R
r=1 f

(r)(y(r)−

µ)t. Suppose thatΛ(m) andΨ(m) denote the current values ofΛ andΨ afterm cycles of

the algorithm andθ(m) ≡ (µ(m),Λ(m),Ψ(m)) with µ(m) substituted bŷµ. By Rubin and

Thayer [18], the basis of the EM algorithm for maximum likelihood factor analysis is:

E-step: ComputeE[f (r)|y(r)] andE[f (r)(f (r))t|y(r)] for each data pointy(r), given

Λ(m) andΨ(m).
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M-step:

Λ(m+1) = (
R∑

r=1

(y(r) − ȳ)E[f (r)|y(r), θ(m)]t) (
R∑

r=1

E[f (r)(f (r))t|y(r), θ(m)])−1 (4.15)

and

ψ(m+1) ≡ diag(Ψ(m+1))

=
1

R
diag{

R∑

r=1

[(y(r) − ȳ)(y(r) − ȳ)t

−Λ(m+1)E[f (r)|y(r), θ(m)](y(r) − ȳ)t ] }. (4.16)

For simplifying the notations, we define

B ≡ 1

R

R∑

r=1

(y(r) − ȳ)E[f (r)|y(r), θ(m)]t (4.17)

and

C ≡ 1

R

R∑

r=1

E[f (r)(f (r))t|y(r), θ(m)]. (4.18)

Then the equations (4.15) and (4.16) can be simplified as

Λ(m+1) = B C−1 (4.19)

and

ψ(m+1) ≡ diag(Ψ(m+1)) = diag{Cyy − Λ(m+1) Bt}. (4.20)

Now we will expressB andC in terms ofΛ(m) andΨ(m) by calculatingE[ f (r) | y(r), θ(m)]

andE[ f (r) f (r)t |y(r), θ(m)]. Since



Y (r)

f (r)


 ∼ N






µ

0


 ,




ΛΛt + Ψ Λ

Λt Iq





 (4.21)

The conditional distribution off (r) givenY (r) is

f (r)|Y (r) ∼ Nq( µf + Σ21Σ
−1
11 (Y (r) − µY ) , Σ22.1) (4.22)
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whereµY = µ, µf = 0, Σ11 = ΛΛt + Ψ, Σ21 = Λt, andΣ22.1 = Σ22 − Σ21Σ
−1
11 Σ12

= Iq − Λt (ΛΛt + Ψ)−1Λ. Then

E[f (r)|y(r), θ(m)] = Σ21Σ
−1
11 (y(r) − ȳ)

= (Λ(m))t (Λ(m)(Λ(m))t + Ψ(m))−1 (y(r) − ȳ)

= (K(m))t (y(r) − ȳ) (4.23)

where

K(m) = (Λ(m)(Λ(m))t + Ψ(m))−1Λ(m) (4.24)

Similarly,

E[f (r)(f (r))t|y(r), θ(m)]

= E[f (r)|y(r), θ(m)] E[f (r)|y(r), θ(m)]t

+ V ar(f (r)|y(r), θ(m))

= Λ(m) t(Λ(m)Λ(m) t + Ψ(m))−1(y(r) − ȳ)(y(r) − ȳ)t(Λ(m)Λ(m) t + Ψ(m))−1Λ(m)

+ Iq − Λ(m) t(Λ(m)(Λ(m))t + Ψ(m))−1Λ(m)

= (K(m))t (y(r) − ȳ)(y(r) − ȳ)t K(m) + Iq − (Λ(m))t K(m) (4.25)

Therefore, from (4.17) and (4.23),

B = Cyy(Λ
(m)(Λ(m))t + Ψ(m))−1Λ(m) = Cyy K

(m) (4.26)

and from (4.18) and (4.25),

C = Iq − Λ(m)′(Λ(m)Λ(m)′ + Ψ(m))−1Λ(m)

+ Λ(m)′(Λ(m)Λ(m)′ + Ψ(m))−1Cyy(Λ
(m)Λ(m)′ + Ψ(m))−1Λ(m)

= Iq − (Λ(m))t K(m) + (K(m))t Cyy K
(m) (4.27)

Thus, the new estimated parameter(Λ(m+1),Ψ(m+1)) is given in equations (4.19) and

(4.20) throughB andC as a function ofCyy, Λ(m), andΨ(m).
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4.2 Newton-Raphson method

For a functiong : Rp → R, the gradient is the vector

∇g(θ) = (
∂g(θ)

∂θ1

, . . . ,
∂g(θ)

∂θp
)t (4.28)

and the Hessian matrix is the matrix of second partial derivatives

∇⊗2g(θ) ≡ (
∂2g(θ)

∂θi ∂θj
), 1 ≤ i, j ≤ p. (4.29)

The directional derivative of a functiong : Rp → R atx in the directionv is defined

by

lim
δ→0

g(x+ δv) − g(x)

δ
=

∂

∂δ
g(x+ δv) |δ=0= v t ∇g(x) (4.30)

For smooth functions,g is convex on a setΘ if ∇⊗2g(θ) is nonnegative definite for all

θ ∈ Θ. If ∇⊗2g(θ) is positive definite for allθ ∈ Θ, theng is strictly convex onΘ.

The general unconstrained minimization problem for a smooth functiong is to find

a θ̂ such that

g(θ̂) = min
θ
g(θ), (4.31)

where the minimum is over allθ ∈ Θ. In general such âθ need not exist. Another

problem is that there may be multiple local minima. Generally, it is impossible to guar-

antee convergence of a numerical algorithm to a global minimum, unless the function

is convex everywhere inΘ. For this reason, the problem considered will be to find a

local minimum. Maximum likelihood estimates for a log likelihood l(θ) can be found

by minimizing−l(θ).

For a smooth functiong, if θ̂ is a local minimum, then∇g(θ̂) = 0. If g(θ̂) = 0

and∇⊗2g(θ) is nonnegative definite, then̂θ is a local minimum. Thus the search for a
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minimum can be to find pointŝθ satisfying∇g(θ̂) = 0. Such points need not be local

minima, since they could also be local maxima or saddle points.

Many algorithms for searching for a local minimum are similar to the following

outline:

1. Given the current pointx0, choose a directionv in which to move next.

2. Find a pointx1 = x0 + sv such thatg(x1) < g(x0).

3. Setx0 = x1, and repeat the first two steps until convergence.

For getting successful convergence, it is important that the directionv chosen at

each stage be a descent direction forg. A directionv is a descent direction forg atx0

if

g(x0 + sv) < g(x0) for 0 < s < δ, (4.32)

for someδ > 0. It is clear thatv is a descent direction forg atx0 if v t ∇g(x0) < 0 for

δ small enough. We denote the vector of parameter values afterthek’th iteration by

θ(k) and its converged point byθ∗. Therefore, consider the iteration stopping criterion

according to

(1) ‖∇g(θ(k))‖ < 10−6 (4.33)

(2) ‖θ(k+1) − θ(k)‖ < 10−6. (4.34)

To maximize the log likelihood functionl(θ; y), we takeg(θ) = −l(θ; y). The

Newton-Raphson method approximates the objective function(the incomplete data

log likelihood function) by a quadratic function and takes its maximizer as the next

parameter value. Its formula is:

θ(k+1) = θ(k) + I−1(θ(k); y)∇θl(θ
(k); y) (4.35)
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An iterative numerical method is said to converge linearly if it holds that with some

constantc (0 < c < 1) and positive integerk0,

‖θ(k+1) − θ∗‖ ≤ c‖θ(k) − θ∗‖ for anyk ≥ k0. (4.36)

The constantc is called the convergence rate. If it holds that with some sequence{ck}

converging to0 and positive integerk0,

‖θ(k+1) − θ∗‖ ≤ ck‖θ(k) − θ∗‖ for anyk ≥ k0, (4.37)

then the method is said to converge superlinearly. if it holds that with some constantc

(0 < c < 1) and positive integerk0,

‖θ(k+1) − θ∗‖ ≤ c‖θ(k) − θ∗‖2 for anyk ≥ k0, (4.38)

then the method is said to converge quadratically. A numerical method with the super-

linear or quadratic convergence property converges rapidly after the parameter value

comes close toθ∗, while a method with the linear convergence property might take a

fairly large number of iterations even after the parameter value comes close toθ∗. The

Newton-Raphson method converges quadratically, which is extremely fast and is an

attractive feature. On the other hand, the Newton-Raphson method requires the ob-

served information matrix, and calculating the Hessian of the objective function takes

much more computational time when the parameter dimension increases.

Lindstrom and Bates [13] employed the better quasi-Newton method which do not

require calculation of second derivatives and a approximate Hessian matrix is always

non-singular. Its update formula is:

θ(k+1) = θ(k) + αkB
−1
k (θ(k); y)∇θl(θ

(k); y) (4.39)

where the matrixBk is updated using only the change in gradientqk = ∇θl(θ
(k); y) −

∇θl(θ
(k−1); y) and the change in parameter valuesk = θ(k) − θ(k−1). Quasi-Newton
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method is like Newton’s method with line search, except thatHessian matrix is ap-

proximated by a symmetric positive definite matrix which is updated at each iteration.

The convergence speed of quasi-Newton algorithms is superlinear [13].

4.2.1 Newton-Raphson method on the profile likelihood

If the likelihood has a unique local maximum, then the maximum likelihood estimators

should be the same no matter which numerical approach is used. Thus, we use the

Newton-Raphson method on the profile likelihood to verify theresults we got from the

EM algorithm on the simulated data.

There is an R functionnlm which finds a local minimum of a nonlinear function

using a general Newton-Raphson method optimizer for an inputR function. Based on

nlm, we wrote another R functionProfileLik whose input is a data set, a starting point

of θ2, a few control parameters, and whose output is the MLEθ̂2, the maximized value

of the profile log-likelihood, and the restricted MLÊθ1(θ̂2).

4.3 Computational results on simulated data

In this section, we implement Splus/R functions on simulated data. In our examples,

the dimensions arep = 6, q = 2, the sample size isn = 100, and the parameter is

θ = (Λ, ψ) as described below. SinceY ∼ Np(0,ΛΛt + diag(ψ)), we can use the

Splus commandrmvnormto randomly generate multiple data samples.

First, as true parametersθ0 = (Λ0, ψ0) we choseΛ0 ∈ O+
pq such thatΛt

01 = 0 and

satisfying the condition in Theorem 2.4, and chose the entries ofψ0 as independent

Unif([0, 0.5]) variates. Thus, the parameterθ0 is identifiable from the observed data.

Using this(Λ0, ψ0), we randomly generated4 sample data sets, specified to be cases
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(A)-(D) in Figure 4.1. The values of(Λ0, ψ0) are listed in Appendix B.

Second, consider the true parametersθ1 = (Λ1, ψ1) and chooseΛ1 with ej ∈

col(Λ). The entries ofψ1 were chosen in the same way as the entries ofψ0. Therefore,

the parameter(Λ1, ψ1) is non-identifiable from the data set, by Lemma 2.12. Using

this (Λ1, ψ1), we randomly generated4 sample data sets, specified to be cases (O)-(R)

in Figure 4.1. The values of(Λ1, ψ1) are listed in Appendix B.
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Figure 4.1: Number of iterations needed for EM convergence based on data samples

generated by(Λs, ψs). The x coordinate is the degree of non-identifiability, denoted

by s, which is a parameter of convex combination between identifiability and non-

identifiability. The points above10, 000 iterations have y-coordinate plotted arbitrarily,

indicating that EM does not converges up to10, 000 iterations for these data samples.
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Finally, consider the convex curvesΛs = (1−s)Λ0+sΛ1 for s ∈ (0, 1) and choose

ψs0 such that the entries ofψs0 are independentUnif([0, 0.5]) variates. We used this

fixedψs0 and the matricesΛs which are different for each different values, to generate

data samples. Whens is close to1, Λs is close toΛ1, and then the parameter(Λs, ψs0)

is close to non-identifiable. Since we wanted to explore the behavior of EM algorithm

and Newton-Raphson method when the parameter was close to non-identifiable, we

specifically choses = 1/2, 2/3, 5/6 and11/12. Whens = 1/2, we generated one

data set using(Λs, ψs0) as the true parameter, called case (E). Whens = 2/3, the

data set we generated was called case (F). Choosings = 5/6, we generated three data

sets, specified to be cases (G)-(I). Finally, withs = 11/12, we used the corresponding

(Λs, ψs0) to generate five data samples, called cases (J)-(N) in Figure4.1.

Using the true parameters as starting points, for each illustrative data set, we iter-

ated10000 times in the EM algorithm using formulas in (4.15) and (4.16). Applying

the profile likelihood method in (3.24), we can expressΛ̂ = Λ̂(ψ) as a function ofψ.

We substituted it into the log likelihood function, used theNewton-Raphson optimiza-

tion in R with commandnlm, and chose various initial parameters from which to find

the maximum likelihood estimates. We used theψ values at the300’th iteration or

5000’th iteration of the EM algorithm as the initial values of thenlm function. Based

on the stopping criterion in (4.33), we obtained an MLE(Λ̂, ψ̂) in each case.

We followed the further steps in each data set:

Step 1.Check if the MLE is in the interior or boundary of the parameterspace.

Step 2.Use the Hessian matrix we got from the output ofnlm and calculate the maxi-

mum and minimum eigenvalues of the Hessian at the converged value of the parameter.

Observe thecondition number

r =
α1

α2

(4.40)
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whereα1 andα2 are maximum and minimum eigenvalues of the negative Hessianma-

trix, respectively. If the ratior is too large orα2 is too small, then the Hessian is close

to singular.

Step 3.Use the MLE, denoted bŷθ, obtained fromnlm to check whether the EM con-

verges and check the quality of convergence of EM algorithm.The iteration stopping

criterion for EM algorithm is

|θ(k) − θ̂| < 10−3 for all k ≥ m. (4.41)

whereθ(k) denotes the current values ofθ afterk iteration of the EM algorithm.

Step 4.Observe the convergence of EM to see whether it is approaching the boundary

or remains in the interior of the parameter space.

4.3.1 Comparison of EM and Newton-Raphson algorithms

First, we observe the results of using the Newton-Raphson method with the profile

likelihood strategy to find the MLE. We found that the Newton-Raphson algorithm

converged in all of the19 cases (cases (A)-(R)). The converged values of the param-

eters were in the interior of the parameter spaces in cases (A)-(C), (E)-(G), (J)-(K),

that is, the∗ points in Figure 4.1. In each of these cases, the gradient at the estimated

maximum of log-likelihood was less than10−6, so the converged values are the ML

estimators. In cases (D), (H), (I), (L)-(R), we found that theconverged values of the

parameters were very close to the boundary of the parameter space, that is, at least one

of the components, sayψj, of the estimated entries ofψ was very close to0. These

points are indicated as△ points in Figure 4.1. After forcingψj = 0 and applying the

same Newton-Raphson method with profile likelihood strategyin the reduced model

(M1R) and using the condition introduced in Section 3.4, we found that the converged
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values are the ML estimators and the MLEθ̂ ≡ (Λ̂, ψ̂) is in the boundary of the param-

eter space. Thus, our findings are as follows. The ML estimators were obtained in all

of the cases using the Newton-Raphson algorithm. When the parameter is identifiable,

the MLE was in the interior of the parameter space except in case (D). The MLE was

on the boundary whenever the parameter(Λ0, ψ0) was non-identifiable (cases (O)-(R)).

When the parameter was close to a non-identifiable value, the MLE had more chance

to lie on the boundary. When the parameter was identifiable, the MLE was in the in-

terior of the parameter space. We will discuss the exceptional case (D) later in this

section.

Second, we observe the results of using the EM algorithm. Consider the number

of iterations needed for EM to be convergent. We found (in Figure 4.1) that the EM

algorithm did not converge up to10000 iterations when the model was non-identifiable

(cases (O)-(R)). When the model was identifiable, fewer iterations were needed. When

the model was close to a non-identifiable parameter value, more iterations were needed

for EM convergence or the EM algorithm had not converged evenup to10000 itera-

tions. However, there are some exceptions. For example, in case (D), the EM algorithm

did not converge even though the parameter was identifiable from the data. In case (J),

the model is close to non-identifiable, but it only took1200 iterations to get the EM

algorithm to converge.

Now, we explore the reason why the EM algorithm did not converge even though

the parameter was identifiable. In each of cases (A)-(D), theparameter(Λ0, ψ0) was

identifiable. The values of the components ofψ0 were not close to zero (Appendix B),

so neither were their ML estimators. We found that only500 iterations were needed to

get the EM algorithm to converge, and the converged values are very close to the MLE

obtained from the Newton-Raphson algorithm. In case (C), the minimum value of
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the components ofψ0 was0.03667 and the MLE was in the interior of the parameter

space. We found that700 iterations were needed to get EM algorithm to converge

and the convergent values were also very close to the MLE. In case (D), there were

two components ofψ0, 0.01616 and0.02967, close to0, and the MLE was on the

boundary of the parameter space. We found that the EM algorithm did not converge

up to10, 000 iterations. We also found thatθ(k), the values of parameter atk’th EM

iteration, approached the same MLE even though the speed of approach was very slow.

Thus, the number of iterations needed for EM to converge was associated with whether

ψ is close to the boundary when the model is identifiable.

We next compare the estimate we got from the EM algorithm withthe MLE from

Newton-Raphson method. The Newton-Raphson method on the profile likelihood was

shown to give results for each data set that agreed with the EMalgorithm. That is,

when the MLE we got fromnlm function was in the interior of the parameter space,

then the estimate from the EM algorithm was also in the interior of the parameter space

and was close to the MLE.

Now, we explore in cases (E)-(N) the convergence of the EM algorithm when the

model was close to non-identifiable. Especially, we are interested in case (J) where

the model is close to non-identifiable, but it only took1200 iterations to get the EM

algorithm to converge. Let us observe the condition numberr for each case: In Table

4.3.1, we record the condition numberr in each case. We found that when the MLE

approaches the boundary of the parameter space, the numberr is extremely large (r >

107). That is, the hessian matrix at the estimate maximum of log-likelihood is close to

singular. In case (D), the condition numberr > 107 and the EM algorithm does not

converge up to10000 iterations even though the model is identifiable. When a modelis

nearly non-identifiable, we expect that the EM algorithm will not be able to converge

83



Case (A) (B) (C) (D) (E)

r 20.26 31.89 40.48 390985.4 712.27

EM/nlm △ ♠

Case (F) (G) (H) (I) (J)

r 126663.8 9747.19 2245182.00 3365352.00 629.05

EM/nlm △ ♠ △ ♠ △ ♠

Case (K) (L) (M) (N) (O)

r 1253.02 1530232.00 8697203.00 2002751.00 4923976.00

EM/nlm △ ♠ △♠ △ ♠ △♠

Table 4.1: Table for cases (A)-(O) with the condition numberr. The symbol△ indi-

cates the EM algorithm failed to converge and♠ indicates that the MLE was on the

boundary of the parameter space.

up to 10000 iterations and the MLE we get fromnlm should be in the boundary of

the parameter space. However, that is not true in case (J). Observe that the condition

numberr in case (J) was629.05 which is small compared to107 and the EM algorithm

converges after 1200 iteration. Also, in case (J), both the MLE from nlm and EM

are close to each other and in the interior of parameter space. Thus, we found that

thecondition numberr is strongly associated with the behavior of EM algorithm and

Newton Raphson method.

The convergence of the EM algorithm is based on the followingcriterion:

‖θ(k) − θ̂‖ < 10−3 (4.42)

whereθ(k) is the value of the parameter atk’th EM iteration and̂θ is the MLE obtained
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from the Newton Raphson method. The symbol△ in the following table indicates the

EM algorithm failed to converge and♠ indicates that the MLE was on the boundary

of the parameter space.

4.4 The LRT for (M4a) against (M3)

We introduced in chapter 3 the general idea of the LikelihoodRatio Test (LRT) and

discussed the problem of maximizing the likelihood underH1 : θ ∈ ΘM3. Now we

discuss how to maximize the likelihood underH0 : θ ∈ ΘM4a.

4.4.1 Maximize the likelihood underH0 : θ ∈ ΘM4a

To get the maximum likelihood estimator in (M4a), we can use MATLAB and the

N-way Toolbox which can be downloaded from http://www.models.kvl.dk/courses/.

The N-way Toolbox is compatible with MATLAB 5.x and higher, and can be used to

fit “multi-way” models including PARAFAC (M4a) and (M4) and Tucker (T3). The

freely downloadable reference is:

R. Bro The N-way on-line course on PARAFAC and PLS

http://www.models.kvl.dk/courses/; 1998-2002.

To fit a PARAFAC model and investigate the model, we use the MATLAB function

parafacin the N-way Toolbox. The input is a data array, the number of factors sought,

and a few optional constraints. The optional constraints can be put on the loadings of

the different modes for obtaining orthogonal, nonnegative, or unimodal solutions. If

the constraint is not defined, then no constraints are used. In (M4a),Λ⋆ need not have

orthogonal columns, so we can use the default of no constraint. We can also set the

optional inputs for the convergence criterion. The PARAFAC model is fit in a least
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square sense, that is, by minimizing the norm‖Y −M‖2 whereY is the input data and

M is the PARAFAC model. The fit of a model is measured by the sum of squares of

residuals. From the data and the model, the fit may thus be obtained.

The algorithm for fitting the PARAFAC model is a so-called alternating least squares

algorithm. It is iterative and stops when the relative difference in fit between two suc-

cessive iterations is below a certain limit. For most types of data this limit can be set

to 10−6 (default in the algorithm), which will ensure that the modelis correct and that

not too many iterations are used. For some data, the model is very difficult to fit and

a lower convergence criterion may therefore be needed. To assess convergence, the

following steps may be used:

(1) Fit the models several times using random initialization.

(2) If all models have the same fit (i.e. loss function value) the models have converged.

(3) If all but a small fraction of the fitted models have the same (and best) fit, the model

have converged and the few models with lower fit may be discarded as accidental local

minima.

(4) If all models have different fit values, the model is difficult to fit (maybe too many

components) and the convergence criterion has to be lowered.

(5) If the models converge to a few different but distinct fit-values, i.e. there are sev-

eral models with the same fit values, then there are multiple local minima, which is a

tricky situation. Likely, it is possible to circumvent thiseither by using some additional

constraints (e.g., non-negativity) or otherwise slightlyre-specifying the model.

To convert the output parameters to score and loadings matrices, we use the func-

tion fac2let. The loading matrices,W andV , are normalized, that is

A∑

a=1

w2
ak = 1 =

S∑

s=1

v2
sk

which is expressed by saying that “all variance is kept in thefirst modeΛ”.
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The MATLAB function parafac is used to fit the restricted PARAFAC model in

which each component of the errorU (r,a,s), uiras, has equal varianceσ2
as = σ2. How-

ever, since the variances of the error are different in (M4a), we cannot directly apply

the function in this toolbox. We should transform our model to a model that has equal

variance as follows. If the model for (M4a) is

Y (r,a,s) = Λf (a,s) + U (r,a,s) (4.43)

andU (r,a,s) ∼ Np(0, σ
2
asIp), then we re-scale the model byαas with

αas ≡
σ2
as∑A

b=1

∑S
t=1 σ

2
bt/AS

(4.44)

Then the model in (4.43) can be transformed to

Ỹ (r,a,s) ≡ Y (r,a,s)/
√
αas = Λf̃ (a,s) + Ũ (r,a,s) (4.45)

where f̃ (a,s) ≡ f (a,s)/
√
αas and Ũ (r,a,s) ≡ U (r,a,s)/

√
αas. Then Ũ (r,a,s) ∼ N(0, σ2Ip)

with

σ2 = σ2
as/αas =

A∑

b=1

S∑

t=1

σ2
bt/AS. (4.46)

The log-likelihood function for (4.43) is

l(θ) = −1

2

A∑

a=1

S∑

s=1

[ pR log(σ2
as) +

1

σ2
as

R∑

r=1

‖Y (r,a,s) − Λf (a,s)‖2] (4.47)

and the log-likelihood function for (4.45) is

lr(θ) ≡ lrescaled(θ)

= −1

2

A∑

a=1

S∑

s=1

[ pR log(σ2) +
1

σ2

R∑

r=1

‖Ỹ (r,a,s) − Λf̃ (a,s)‖2] (4.48)

Plugging (4.46) into (4.48), we get

lr(θ) = −1

2

A∑

a=1

S∑

s=1

[ pR log(σ2
as /αas) +

1

σ2
as

R∑

r=1

‖Y (r,a,s) − Λf (a,s)‖2]

= l(θ) +
1

2

A∑

a=1

S∑

s=1

[ pR log(αas)] (4.49)
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Thus, the log-likelihood function for (4.43) isl(θ), given by

l(θ) = lr(θ) −
1

2

A∑

a=1

S∑

s=1

[ pR log(αas)]. (4.50)

Now we can apply theparafactoolbox to our data in the following steps:

The mean levelµas can be consistently estimated by1
p

∑p
i=1 yiras. Project the data

Y (r,a,s) to the space orthogonal to1, denoted by

Y (r,a,s)∗ ≡ Y (r,a,s) − 1

p

p∑

i=1

yiras1,

and then take the average over the pure replicationsr = 1, . . . , R onY (r,a,s)∗, to obtain

Ȳ (·,a,s)∗ = Λ⋆f
(a,s) + Ū (a,s) (4.51)

ThenȲ ≡ (ȳias) is ap× A× S three-way array.

Initial input: the data arrayY (r,a,s)∗ and theA × S re-scaling matrix(α(0)
as ) with

α
(0)
as ≡ 1, for 1 ≤ a ≤ A and1 ≤ s ≤ S.

Step 1:Use the MATLAB functionparafacin the N-way toolbox, to get estimates

(Λ̂⋆, Ŵ , V̂ ) based onU (r,a,s) ∼ Np(0, σ
2Ip).

Step 2: Calculate

σ̂2
as =

1

pR

R∑

r=1

‖Y (r,a,s)∗ − Λ̂⋆ f̂
(a,s)‖2 (4.52)

where thek’th component of the vector̂f (a,s) is given byf̂kas = ŵakv̂ks.

Step 3: Calculate the log-likelihood functionl(θ̂)

l(θ̂) = −RAS
2

− pR

2

A∑

a=1

S∑

s=1

log(σ̂2
as) (4.53)

Step 4: Calculate the new re-scaling matrix(α̂
(1)
as )

α̂(1)
as ≡ σ̂2

as∑A
b=1

∑S
t=1 σ̂

2
bt/AS

(4.54)
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and re-define

α̂(1)
as ≡ α̂(1)

as · α̂(0)
as (4.55)

Step 5: Re-scale the dataY (r,a,s)∗ by α̂(1)
as to get

Y (r,a,s)∗(1) ≡ Y (r,a,s)∗/

√
α̂

(1)
as (4.56)

such thatY (r,a,s)∗(1) satisfies the following model

Y (r,a,s)∗(1) = Λ(1)
⋆ f (a,s) (1) + U (r,a,s) (1) (4.57)

andU (r,a,s) (1) ∼ Np(0, (σ
(1))2 Ip)

Step 6: Repeat Steps 1-3 with the neŵα(1)
as , but calculate the alternative log-

likelihood function in step 3 given by

l(1)(θ̂, α̂) = −RAS
2

− pR

2

A∑

a=1

S∑

s=1

log(σ̂2
as) −

pR

2

A∑

a=1

S∑

s=1

log(α̂(1)
as ) (4.58)

Repeat the steps until the relative difference of the log-likelihood function on suc-

cessive iterations is less than10−6 and the differences in estimated parameter values

are small, for example,

‖θ(k+1) − θ(k)‖ < 10−3. (4.59)

We will apply this algorithm in the real tongue image data in the next chapter to test

the hypothesis that the PARAFAC model fits.

4.5 Recommendations based on computational results

Based on our computational experience, we recommend to use the Newton type meth-

ods, such as Newton-Raphson method, quasi-Newton method, orthe Broyden-Fletcher-

Goldfarb-Shanno (BFGS) update, using a profile likelihood strategy. There are Splus

89



function nlmin and R functionnlm which find a local minimum of a nonlinear func-

tion using a general Newton-Raphson method optimizer for an input Splus/R function.

Based onnlminor nlm, we wrote another Splus/R functionProfileLikwhose input is a

data set, a starting point ofθ2, a few control parameters, and whose output is the MLE

θ̂2, the maximized value of the profile log-likelihood, and the restricted MLEθ̂1(θ̂2).

An advantage of the profile Newton-Raphson method is the reduction of the di-

mension of the parameter space. The convergence speed of Newton type methods is

very fast. If we compare simply the numbers of iterations until algorithms converge,

the Newton type methods would take fewest iterations. An attractive feature of the

quasi-Newton method is that it automatically produces the observed information ma-

trix.

It is often objected that the quasi-Newton methods perform poorly at the beginning

of iterations. One can use the EM algorithm for the forst several iterations and then

switch to quasi-Newton method (Watanable and Yamaguchi [26]). For example, one

can use the values at the300’th EM iteration as the initial input of the quasi-Newton

method. Then we can get the converged values ofθ2 in the full model, denoted bŷθfull2 .

If the converged values are in the interior of the parameter spaces and the gradient at

the estimated maximum of log-likelihood is less than10−6, then the converged values

are the ML estimators. If we find that the converged values of the parameters are very

close to the boundary of the parameter space, that is, at least one of the component,

sayθ2j, of the estimated values ofθ2 is very close to0, then we consider to fit the data

with the restricted model (M1R). In this situation, we first forceθ2j to be0 and apply

the same Newton-Raphson method with the profile likelihood strategy in the reduced

model (M1R). Then we can get the converged values ofθ2 in the restricted model,

denoted bŷθr2. Then we can follow the same steps as we previously described.
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Chapter 5

Application to 2-D Coronal Tongue Surface

In this chapter, we first introduce a real data set of ultrasound cross-sectional images

of the human tongue during speech. Then we apply factor analysis models (M3) and

(M4a) to the tongue image data. Finally, we use the Likelihood Ratio Test (LRT) to

test whether the more general models (M3) or (M4a) representthe tongue data better.

5.1 Data Set

The cross-sectional tongue surface was recorded and measured for six normal, adult,

native speakers of American English (3 Caucasian females, 2 African-American males,

1 Hispanic male) by ultrasound, VCR and theµ-Tongue software package in the Vo-

cal Tract Visualization Laboratory of M. Stone in Baltimore.Each subject attended

three recording sessions and repeated the speech materialsfive times while ultrasound

and acoustic recordings were made. Methods for the ultrasound recordings of tongue

movement are discussed in detail in Stone et al.(1997). The eleven vowels sounds of

English ae, ah, aw, e, eh, ih, iy, o, uh, uu, uuh, with respective phonetic symbols (æ,a,

⊃, e,ε, I, i, o, ℧, u,∧), were produced in∂CVC∂ utterances (vowel sounds sandwished

between consonants with “shwa” sounds∂ as break points) using two consonant con-
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texts (/s/, /l/). The coronal section was recorded in the region of the palatal vault to

support the largest variation of tongue movement and shape.In the vault region there

is room for upward tongue motion, and on the palatal contact the tongue will reflect its

archlike shape.

The cross-sectional tongue surface for six subjects (MS, MD, SG, CS, GW, and

LG) were extracted from recorded ultrasound images. Thus, we obtained6 subjects

× 11 vowels ×2 contexts×5 replications×3 sessions, for a total of1980 cross-

sectional tongue images. Each image curve, whatever its length along the x-dimension,

is represented by120 pairs (x, y), and different curves do not necessarily have the

same range ofx values. Pre-processing strategies were introduced and implemented

by Slud et al. (2002), involving translation in thex andy direction, extension, padding

or truncation within session, and subtracting a mean level for each speaker and sound.

After preprocessing, the number of points per curve was chosen to be 101 based on the

degree of padding chosen.

Let (xabcdi, yabcdi), for a = 1,. . ., 6, b = 1, 2, 3, c = 1, 2, . . . , 22, d = 1, . . . , 5, i =

1, . . . 120, be our raw data set, wherea indexes subject,b indexes session,c in-

dexes sound/context,d indexes replications within session, andi indexes observa-

tions (points) on the image curves. After preprocessing, the final data set on a common

(x, y) coordinate system based on five replicated measurements in three sessions for

each of the six subjects is(xi, yabcdi), where subject is indexed bya = 1,. . ., 6, ses-

sion byb = 1, 2, 3, vowel/consonant byc = 1, 2, . . . , 22, replication byd = 1, . . . , 5,

and observations (points) along the image curve byi = 1, . . . 101.

We now focus only on the eleven vowels and six subjects and treat the two con-

sonants as pure replications. Then the pure replications are 2 consonant contexts

× 5 replications × 3 sessions, for a total of30 replications. Therefore, the data
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can be rewritten as(xi, yiras), where subject is indexed bya = 1,. . ., 6, vowel by

s = 1, 2, . . . , 11, pure replication byr = 1, . . . , 30, and observations (points) along

the image curve byi = 1, . . . 101. For convenience, letA denote the total number of

subjects,S denote the total number of vowels,R denote the number of replications,

andp denote the number of points per curve. ThenA = 6, S = 11, R = 30, and

p = 101.

5.2 Application of Factor Analysis Models to Tongue

Image Data

The hierarchical family of models (M2), (M3), (M4), (M4a) and (M4′) we constructed

can be used on real data involving coronal cross-sectional pictures of the human tongue

surface during speech. The PARAFAC model (M4a) has been used previously to an-

alyze tongue images data but with different imaging technology (X-ray instead of ul-

trasound) and different cross-section (lengthwise instead of transverse to the tongue).

Harshman and Lundy [8] reported that the success of a PARAFAC analysis depends

on the use of adequate statistical pre-processing. Slud et al. [22] actually found that

the PARAFAC (M4) modelling approach did not adequately represent the coronal

tongue data. They found that the PARAFAC model did less well, the more highly

cross-classified the data were. Due to the highly constrained form and inadequacy

of PARAFAC, a more general model such as the 3-mode factor analysis model (T3),

defined in (3.83), is needed for representing cross-classified data. The model T3 fits

better than PARAFAC on some data, but it tends to use excess parameters (Zheng et al.

[27]. Thus, the model hierarchy we constructed in Chapter 2 may help to rationalize

the choice of models. In this section, the PARAFAC (M4a) modeland a more general
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model (M3) extending (T3) are applied to coronal tongue data. The likelihood ratio

test (LRT) is used to test whether the more general models (M3) or (M4a) represent

the coronal tongue data better. MATLAB and the N-ways toolbox are used to get the

MLE in (M4a).

In (M3), the tongue image data satisfies the equation (2.50):

Y (r,a,s) =




y1ras
...

ypras


 = µas




1
...

1


 + Λf (r,a,s) + U (r,a,s)

That is,

yiras = µas +

q∑

k=1

λikfkras + uiras (5.1)

The unknown parameterµas is the mean level of the surface measurementsyiras for

the speakera and vowels.

In PARAFAC (M4a), the model we consider is

Y (r,a,s) = µas 1 + Λ⋆ f
(a,s) + U (r,a,s)

whereΛ⋆ is ap × q matrix with non-orthogonalized columns. The fixed effectf (a,s)

can be written as

f (a,s) =




f1as
...

fqas


 andfkas = wakvsk for k = 1, . . . , q

The factor weightfkas is represented in PARAFAC as the product of a vowel-independent

speaker weightwak and a speaker-independent vowel weightvks.

5.2.1 Principal Component Analysis of Tongue Data

Since the coronal tongue data vectorY (r,a,s) is in a high dimensional spaceR101, it is

a good idea to reduce dimension before we analyze the data. Using principal compo-
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nent analysis, we can project the coronal tongue data fromp dimensions down tom0

dimensions. That is,

Y (r,a,s) → X(r,a,s) = LtY (r,a,s) (5.2)

whereL is ap×m0 loading matrix orthogonal to1 and the columns ofL are the first

m0 eigenvectors corresponding to the firstm0 largest eigenvalues of the covariance

matrix ofY (r,a,s) − (1t 1
p
Ȳ (·,a,s)) 1. We now determine the numberm0 so that it will

retain most of the data information after the dimension reduction by the PCA.

Let us consider the ratio

R(m) ≡
∑p

k=m+1 λk∑p
k=1 λk

(5.3)

whereλ1, . . . , λp are eigenvalues of the covariance of the Coronal tongue dataY (r,a,s).

The values of100 · (1−R(m)) are the percent of the total sum of squares for ordinate

values. It can be used to determine the numberq of principal components to retain in

describing data as we described in (1.4). The percentage of the cumulated variance

accounted for by the successive PC’s are:69.377%, 90.391%, 96.617%, 98.863%,

99.553%, 99.830%, 99.933%, 99.975%, 99.990%, 99.996%. So we simply choose

m0 = 10.

We can also determine the minimum numberm0 of m such that− logR(m) ex-

ceeds the threshold 7 to retain99.9% of the data information. That is,

m0 = min{m ∈ N : − logR(m) > 7} (5.4)

Figure 5.1 shows the graph that− logR(m) againstm. We see thatm0 = 7 was good

enough to retain99.9% of the data information, but we simply chosem0 = 10 and

projected the coronal tongue dataY (r,a,s) from 101 dimensions down to10 dimensions.
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Figure 5.1: Graph of− logR(m) againstm for the coronal tongue data.

5.2.2 Test of the Hypothesis that the PARAFAC Model Fits

We use the Likelihood Ratio Test (LRT) to test which model fits the tongue data better.

The null hypothesis isH0 : θ ∈ ΘM4a, against alternativeH1 : θ ∈ ΘM3, whereΘM3

andΘM4a are defined in (2.56) and (2.69), respectively.

Using the Newton-Raphson method based on a profile likelihoodstrategy, we find

the maximum log-likelihood in (M3) isl(θ̂)M3 = −21677.48. Using the MATLAB

functionparafacin the N-way toolbox together with the algorithm we constructed in

Chapter 4, we find the maximized log-likelihood in (M4a) isl(θ̂)M4a = −22570. The

likelihood ratio statistic

−2 log λ = 2(l(θ̂)M3 − l(θ̂)M4a) = 1785.04 (5.5)

Let dim(Θ) denote the dimension of the parameter spaceΘ. Since it is impossible

for a subject to speak a sound always exactly the same way, alwaysσ2
as > 0 in the real

tongue data. Thus, the true parameter is in the interior of the parameter space in both
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PARAFAC and (M3). By Theorem 3.4, under suitable regularity conditions, for each

θ ∈ Θ0,

−2 log λ→ χ2
d−r whenR → ∞

where

d− r = dim(ΘM3) − dim(ΘM4a)

= qAS − (Aq − q + Sq − q) = 102 (5.6)

By Remark 3.5,
√

2χ2
102

D≈ N(
√

203, 1). Let X ≡ −2 log λ(y) and letZ ∼

N(0, 1). The rejection region is

R = {λ(y) < c} = {X > −2 log c}

= {
√

2X >
√

−4 log c }

= {
√

2X −
√

203 >
√
−4 log c −

√
203}

= {Z >
√
−4 log c −

√
203} (5.7)

Then
√
−4 log λ(y) −

√
203 =

√
2 · 1785.04 −

√
203 = 45.50219. Since this is repre-

sents a very extreme quantile forN(0, 1), we reject the null hypothesis. Therefore, the

(M3) model fits the coronal tongue data better than the PARAFAC(M4a) model.

5.2.3 Comparison of fitted loading matrices among (M3), (M4a),

and PCA

We choseq = 2 and used the Newton-Raphson method based on a profile likelihood

strategy and the MATLAB functionparafac to get the estimatedΛ in model (M3)
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Figure 5.2: First Principal Direction for coronal tongue data based on (PCA), (M3)

and (M4a).

and the PARAFAC model (M4a), respectively. The first column ofΛ̂ is called the

first Principal Direction and the second column ofΛ̂ is called the second Principal

Direction. We also get the first two Principal Directions, denoted by PC1 and PC2,

based on the Principal Component Analysis (PCA) or equivalently by model (M1).

Figure 5.2 shows the curves of the first Principal Directionsbased on PCA, the model

(M3), and the PARAFAC model (M4a). Since we knew from the LRT inSection 5.2.2

that (M3) fits the data better than (M4a), we think that the first principal direction

(dotted line) based on the model (M3) in Figure 5.2 should represent the data better

than the principal direction (dashed line) based on PARAFAC (M4a). By Slud et al.

[22], the percent of variance (after subtraction of curve mean) accounted for by the two
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Second Principal Direction
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Figure 5.3: Second Principal Direction for coronal tongue data based on (PCA) and

(M3).

PCs was69.4 and21.0, respectively. Thus, we think that PC1 plays the more important

role in describing the data than PC2. In Figure 5.2, the first principal direction (dotted

line) based on the model (M3) is very close to PC1 (solid line) and the dash line based

on the PARAFAC model is far from the other two curves. So this indicates that the

PARAFAC model did not adequately represent the data. Thus, the result in Figure

5.2 agrees with the result of LRT. The second Principal Direction can be compared in

Figure 5.3.
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5.2.4 Identification of vowels and subjects

The values in Table 5.1 arêα(k)
as , the estimated values of the scaled parametersαas at the

10’th iteration convergence based on the MATLAB functionparafacand the algorithm

we constructed in Section 4.4. The values ofα̂
(k)
as are very stable up to the3rd digital

place after the8’th iteration. For a specific subjecta and vowels, the valueα̂(k)
as can

be viewed as the variance of speakera and vowels relative to all of the subjects and

vowels. Based on these estimated values ofαas in Table 5.1, we can try to distinguish

particular vowels or subjects. For example, we found that the vowel “iy” has very

largeα̂as values for most of the subjects. The vowel “uu” could be a vowel sound also

having larger̂αas values. Now, let us focus on the subjects. We found that the subject

“C.S.” tends to speak vowels consistently (ie, with relatively small variance).

The other information such aŝΛ andσ̂2 is listed in Appendix B.
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k=10

M.S. M.D. S.G. C.S. G.W. L.G.

ae 1.033 0.955 0.793 0.788 1.161 0.443

ah 0.583 0.663 1.073 0.901 0.843 0.996

aw 0.683 0.370 0.922 0.703 0.554 1.312

e 1.421 1.418 0.832 0.400 1.543 1.307

eh 0.738 0.962 1.002 0.650 1.199 0.691

ih 1.828 1.003 0.920 0.735 1.119 0.498

iy 1.147 3.082 2.784 0.304 3.615 2.241

o 0.548 0.530 0.767 0.634 0.804 1.092

uh 0.593 0.372 1.081 0.714 0.539 1.218

uu 2.096 0.976 1.569 0.722 1.110 0.677

uuh 0.480 0.480 1.240 0.655 0.643 1.564

Table 5.1: The estimated values of the scaled parametersαas.
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Chapter 6

Summary and Future Work

We have constructed a new model hierarchy related to Factor Analysis, in which vector

measurements are linearly decomposed into a relatively small set of hypothetical prin-

cipal directions, for purposes of dimension reduction. A hierarchical family of cross-

classified factor models has been built for the application to a real tongue data set.

We unified the mathematical specification of unknown parameters in the models and

established that in the right parameterizations, the unknown parameters were uniquely

identifiable from the data. We found some new results relatedto non-identifiable mod-

els and parameter values in the boundary of the parameter space: There exists a so-

lution of ΣY = ΛΛt + diag(ψ) on the boundary of the parameter spaceΘ∗ when the

model is non-identifiable.

We found and implemented computationally effective maximum likelihood esti-

mators for the unknown parameters using the Newton-Raphson method with a profile

likelihood strategy. This method is much faster computationally since the dimension

is sharply reduced. It is also very effective since the MLE can be always obtained

in our simulated data samples while the EM algorithm converges extremely slowly or

sometimes does not converge. We found the MLE from the profilelikelihood method

and the converged values of the EM algorithm agree if the EM algorithm converges.
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We found a condition combined with the restricted model (M1R)to check whether the

converged point on the boundary of the parameter space is theMLE.

We ultimately established statistical tests of goodness offit of the models to data. In

this research, we only focused on testing the fit of the PARAFACmodel against (M3)

and built the Likelihood Ratio Test (LRT). In (M3), we maximized the log-likelihood

using the Newton-Raphson method with profile likelihood strategy. In the PARAFAC

model (M4a), we used the MATLAB functionparafacand established a two-step pro-

file likelihood algorithm to transform our model to be compatible with theparafac

function. The algorithm we constructed starting from the MATLAB toolbox is ex-

tremely efficient. The speed of convergence is very fast. TheN-way toolbox can also

be used to get the MLE for (M4) or (T3).

We applied the LRT to a real data set involving coronal cross-sectional pictures of

the human tongue surface during speech. We found that the PARAFAC model (M4a) is

inadequate to represent the data. The more general model (M3) fits the coronal tongue

data better than the PARAFAC model.

In the next stage of work, we will focus on the following. First, we will test the

inadequacy of (M4) and check whether (T3) is adequate. This part should be easy to

test since the N-way toolbox provides the option to add the constraint onΛ to have

orthogonal columns. Also the N-way toolbox contains a function to fit the model (T3).

Second, we would like to test the adequacy of (M1) and (M2). Weknow that the

model (M3) is a very general fixed effect cross-classified factor model and we found

that (M3) fits a coronal tongue data set better than (M4a), butwe don’t know whether

(M3) is adequate to present the data. It is possible that (M3)is also inadequate for this

coronal tongue data and a more general random effect cross-classified factor model,

such as (M2), might fit the data better. However, (M3) is not nested in (M2) since
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one is fixed effect and the other is random effect. Since we found in Figure 5.2 that

the first Principal Direction in (M3) is very close to PC1 basedon PCA and the PC1

can be interpreted as the first Principal Direction in (M3) byLemma 3.1, we can test

the goodness of fit for (M1) against (M2) instead of (M3). Third, we did not prove

the convergence of the alternating algorithms in Section 4.4.1, and we intend to do so.

Finally, we want to apply our research to real sagittal tongue data. Since there are only

five replications in the tongue data, we might need to consider bootstrapping strategy

to deal with estimation of variability.
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Appendix A

Matrix Algebra

Theorem A.1. (Graybill [7], p 88) LetA be ap× q matrix. Then the null space ofAt

is the orthogonal component of the column space ofA. That is,

NS(A) = {v ∈ V :< v,w >= 0 for all w ∈ col(A)}

wherecol(A) denotes the column space ofA.

Lemma A.2. (Singular value decomposition theorem)[15] IfA is anp × q matrix of

rank r, thenA can be written as

A = UDV t (A.1)

whereU (p× r) andV (q × r) are column orthonormal matrices (U tU = V tV = Ir)

andD is a r × r diagonal matrix with positive elements.

Lemma A.3. [1] Given a positive definite symmetric matrixA ∈ Rp×p, there is

a uniquely determined orthogonal matrixU (except for possible changes of sign of

the columns) such thatU tAU is diagonal with diagonal elements arranged in non-

increasing order.

Lemma A.4. (Jennrich’s Basic Uniqueness Theorem [10])

If
∑

l UilVjlWkl =
∑

l U
∗
ilV

∗
jlW

∗
kl and if the respectivelyI × L, J × L, andK × L,
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matricesU, V,W each have rankL ≤ I, J,K, then

U∗ = URD1, V
∗ = V RD2,W

∗ = WRD3 (A.2)

whereR is a permutation matrix andD1, D2, andD3 are diagonal matrices with

D1D2D3 = I.

Lemma A.5. (Graybill [7], p 266) LetA be ak × k symmetric matrix of independent

real variables (subject only toaij = aji); then

∂|A|
∂A

= 2[Aij] −D[Aij ]

whereAij is the cofactor ofaij andD[Aij ] is a diagonal matrix withi’th diagonal

element equal toAii, the cofactor ofaii.

Lemma A.6. (Graybill [7], p 267) LetA be ak × k symmetric nonsingular matrix of

independent real variables (subject only toaij = aji); then

∂(log |A|)
∂A

= 2A−1 −DA−1

whereDA−1 is a diagonal matrix withi’th diagonal element equal to that ofA−1.

106



Appendix B

Technical Appendix

B.1 Computational results on simulated data

In Section 4.3, we discussed computational results based onsimulated data. We list the

values of(Λ0, ψ0) and(Λ1, ψ1) for Cases (A)-(D) and (O)-(R) in the following tables.

The notationΛ(k)
i denotes thek’th column ofΛi, for i = 0, 1.

The reason for choosing the values ofΛ0 listed in Table B.1 was to construct a

Λ0 satisfying the conditions inΘM0a2: orthogonal columns, column norms in de-

creasing order, andΛt
01 = 0. Then the parameter(Λ0, ψ0) is identifiable in model

(M0a) in the caseµ = 0. Starting from a6 × 2 matrix Λ00 with the first column

Λ
(1)
00 = (3, 2, 1,−1,−2,−3) and the second columnΛ(2)

00 = (1, 2,−3,−1, 3,−2),

thenΛt
001 = 0, but Λ00 does not have orthogonal columns. So we used the Gram-

Schmidt orthogonalization process to getΛ0 in Table B.1 which satisfies the conditions

in ΘM0a2.

In Cases (E)-(N), we chooses ∈ (0, 1), let Λs = (1 − s) · Λ0 + s · Λ1 be the

convex combination betweenΛ0 and Λ1 and fix the entries ofψs0 as independent

Unif([0, 0.5]) variates, simulated asψs0 = (0.11654, 0.37053, 0.05444, 0.46252,

0.00746, 0.44479). We generated a data sample, called Case (E), based on the pa-
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rameter(Λs, ψs0) with s = 1/2; generated a data sample, called Case (F), based on

the parameter(Λs, ψs0) with s = 2/3; generated3 data samples, called Cases (G)-(I),

based on the parameter(Λs, ψs0) with s = 5/6; and generated5 data samples, called

Cases (J)-(N), based on the parameter(Λs, ψs0) with s = 11/12.

B.2 Computational result on coronal tongue data

The Sum of Squares of residuals (SSR) at10’th iteration is1300.148474. Thus, theσ2,

defined in (4.46), isσ2= SSR/(pR) = 1300.148474/(10 ∗ 30) = 4.333828.

The values in Table B.3 are the ML estimates ofΛ in model (M3) and (M4a), and

the first two principal Directions from PCA.
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(A)-(D) (A)-(D) (A) (B) (C) (D)

Λ
(1)
0 Λ

(2)
0 ψ0 ψ0 ψ0 ψ0

3 0.46429 0.22186 0.46202 0.08430 0.02967

2 1.64286 0.33539 0.11055 0.31064 0.40038

1 -3.17857 0.29213 0.18112 0.49082 0.30020

-1 -0.82143 0.09462 0.21458 0.03677 0.46742

-2 3.35714 0.36865 0.33569 0.24644 0.01616

-3 -1.46429 0.33451 0.24978 0.03667 0.39166

Table B.1: The simulated values of the first two columns ofΛ0 andψ0 in cases (A)-(D)

(O)-(R) (O)-(R) (O) (P) (Q) (R)

Λ
(1)
1 Λ

(2)
1 ψ1 ψ1 ψ1 ψ1

2 0 0.29273 0.47350 0.42129 0.29987

0 1 0.03241 0.33326 0.45984 0.04459

0 0 0.27562 0.25244 0.46000 0.11360

0 0 0.46130 0.20707 0.10466 0.09580

0 0 0.34056 0.12609 0.15538 0.30627

0 0 0.14803 0.04231 0.20651 0.35284

Table B.2: The simulated values of the first two columns ofΛ0 andψ0 in cases (O)-(R)
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PC1 Λ̂
(1)
M3 Λ̂

(1)
M4a PC2 Λ̂

(2)
M3 Λ̂

(2)
M4a

1.000 0.997 0.959 0.000 0.076 0.902

0.000 -0.076 0.251 1.000 0.981 -0.410

0.000 0.000 0.133 0.000 0.170 -0.131

0.000 -0.019 -0.001 0.000 0.054 -0.037

0.000 -0.002 -0.008 0.000 0.008 0.000

0.000 0.003 0.002 0.000 0.005 0.006

0.000 0.002 0.002 0.000 -0.008 0.001

0.000 0.000 0.000 0.000 -0.003 0.000

0.000 -0.001 -0.001 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000

Table B.3: The MLEs ofΛ in model (M3) and (M4a), and the first two principal

directions from PCA.̂Λ(k)
M3 denotes thek’th column of the MLE ofΛ in model (M3),

andΛ̂
(k)
M4a denotes thek’th column of the MLE ofΛ in model (M4a)
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