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Similarly, from Equation (3.43), the source voltage terms cancel out, and we have 

!!!!

!!!!
! !

!!!
!!

!!!!!!!!!!!!!!!!! 

For the drain currents of MOS transistor M5 and M6, we have 

!!
!

!!
! ! !

!
!!

!!!"!!!!!"! !!!!
!!

!!!!"!!!!!"!! 

And since the gates of M5 and M6 are connected together and the sources of M5 and M6 

are both grounded, we have 

!!! ! !!!!! !!! ! !!!!! !!"! ! !!"!! 

And therefore, Equation (3.46) becomes 

!!
!

!!
! ! !

!!!
!!

!!!!!!!!!!! 

From Fig. 3.9, we see that the back gates of M1, M5, and M3 are connected together as 

well as the back gates of M2, M6, and M4. So we have 

!!! ! !!! ! !!!!! !!! ! !!! ! !!! 

And the Equation (3.45) can be written as: 

!!!!

𝐼!𝐼!
= 𝑒

!!!
!!

(!!!!!!!!!!!!!!!) 

From Equation (3.48) and Equation (3.50), we have 

𝐼!𝐼!
𝐼!𝐼!

=
𝐼!!

𝐼!!
 

 

 

 

 

(3.45)	

(3.46)	

(3.47)	

(3.48)	

(3.49)	

(3.50)	

(3.51)	
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Let’s set the drain currents of the six MOS transistors to these values 

𝐼! = 𝐼! − 𝐼!" − 𝐼!"# 

𝐼! = 𝐼! + 𝐼!" + 𝐼!"# 

𝐼! = 𝐼! + 𝐼!" 

𝐼! = 𝐼! − 𝐼!" 

𝐼! = 𝐼! = 𝐼! 

Where the Iin is the input current, Iout is the output current, and Ib is the bias current. So 

the output current becomes 

𝐼!"# =
1
2 (𝐼! − 𝐼! − 2𝐼!") 

If we plug the drain current expressions (3.52a)-(3.52e) to left-hand side and right-hand 

side of Equation (3.51), then we have 

𝐼!𝐼!
𝐼!𝐼!

=
𝐼!(𝐼! + 𝐼!"# + 𝐼!")
(𝐼! − 𝐼!"# − 𝐼!")𝐼!

=
1+ 𝐼!"#𝐼!

+ 𝐼!"𝐼!
1− 𝐼!"#𝐼!

− 𝐼!"𝐼!

 

and  

𝐼!!

𝐼!!
=
(𝐼! + 𝐼!")!

(𝐼! − 𝐼!")!
=
(1+ 𝐼!"𝐼!

)!

(1− 𝐼!"𝐼!
)!

 

From Equation (3.51), the right hand sides of Equation (3.54) and Equation (3.55) are 

equal to each other, so we get 

1+ 𝐼!"#𝐼!
+ 𝐼!"𝐼!

1− 𝐼!"#𝐼!
− 𝐼!"𝐼!

=
(1+ 𝐼!"𝐼!

)!

(1− 𝐼!"𝐼!
)!

 

 

 

(3.52a)	

(3.52b)	

(3.52c)	

(3.52d)	

(3.52e)	

(3.53)	

(3.54)	

(3.56)	

(3.54)	
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If we normalize the input and out put current as follows:  

𝑦 =
𝐼!"#
𝐼!

, 𝑥 =
𝐼!"
𝐼!

 

Then the Equation (3.57) becomes:  

1+ 𝑦 + 𝑥
1− 𝑦 − 𝑥 =

1+ 𝑥 !

1− 𝑥 ! 

By simplifying the Equation (3.58), it can be equated to 

𝑦 =
𝑥 − 𝑥!

1+ 𝑥! 

Since the sine function can be approximated by a rational function [5] 

0.3sin𝜋𝑥 ≈
𝑥 − 𝑥!

1+ 𝑥! 

So from Equation (3.59) and Equation (3.60), we have 

𝑦 ≈ 0.3sin𝜋𝑥 

And therefore the normalized output current is the sine function of the normalized input 

current: 

𝐼!"#
𝐼!

≈ 0.3 sin𝜋(
𝐼!"
𝐼!
) 

The plots of the sine function (3.61) and the rational approximation of the sine function 

(3.59) are shown in the Fig. 3.10 and Fig. 3.11 over |x|<5 and |x|<1, respectively. From 

Fig. 3.10, we can see that the equation (3.59) only fits to the sine function (3.61) when x 

is ranging from -1 to 1. However, when x is within the [-1, 1] range, the rational 

approximation function (3.59) fits to the sine function (3.61) very well. Therefore, if the 

drain currents of circuit in Fig. 3.9 satisfy the equation (3.52a)-(3.52e), then when the 

input current Iin is ranging from –Ib to Ib, the output current Iout has the shape of the sine 

wave.  

(3.57)	

(3.58)	

(3.59)	

(3.60)	

(3.61)	

(3.62)	
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Fig. 3.10 Matlab plots of function 𝑦 = !!!!

!!!!
 and 𝑦 = 0.3 sin(𝜋𝑥) when -5 < x < 5 

 

Fig. 3.11 Matlab plots of function 𝑦 = !!!!

!!!!
 and 𝑦 = 0.3 sin(𝜋𝑥) when -1 < x < 1 

 



	 49	

3.3 Simulations of MOS Translinear sin(x)-Circuits 

Mulder et.al. have built a breadboard version of the sine translinear circuit and 

experimentally verified the theory [5]. However, due to the breadboard realization, the 

mismatch in their results is quite large. To verify the derivation above, I created the 

circuit shown in Fig. 3.12 and the completely designed version in Fig. 3.13 using PSpice 

and ran simulation on this ideal sine translinear MOS circuit. The values of the currents, 

voltages, and W/L ratios of the MOS transistors in Fig. 3.12 and Fig. 3.13 are discussed 

in detail in section 3.3.1 and section 3.3.2.  

 

 

Fig. 3.12 Ideal MOS translinear circuit realizing sine-approximation function 
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Fig. 3.13 MOS translinear circuit realizing sine-approximation function  
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From the derivation above, we know that to generate the sine output current, two 

conditions should be satisfied. The first condition is that all the MOS transistors should 

work in the region where Equation (3.13) holds. Therefore, all the MOS transistors 

should work in the saturation region and subthreshold region. So, we should set 

𝑉!" > 𝑉!" − 𝑉!! , and  𝑉!" < 𝑉!! 

for all MOS transistors. However, we still need to satisfy Equation (3.12), i.e. 

𝑉!" > 4𝑈! 

for all transistors to neglect the VDS in Equation (3.11) in order to get Equation (3.13). 

The second condition is that the drain currents of the six MOS transistors have to satisfy 

the relationship in Equation (3.52a) – (3.52e) to get the rational sine approximation 

function (3.59) between the input and output currents. Also note that this approximation 

is only valid when the input current is within the range [-Ib, Ib]. 

 

3.3.1 Ideal Model 

To satisfy the two conditions in the simulation, the current sources with the desired 

values in Equation (3.52a)-(3.52e) are used to supply currents of the MOS transistors. 

The two MOS transistors M7 and M8 are used to keep M5 and M6 in saturation [5] and the 

two voltage sources at the drains of M2 and M3 are used to keep VDS > 4UT [13]. 

The ideal translinear sine circuit is depicted in Fig. 3.12. The supply voltages VDD and 

VSS are +1 V and -1 V respectively. The bias voltage Vb at the gates of M5 and M6 is 350 

mV. The two voltage sources at the drains of M2 and M3 are set to 500 mV. The bias 

current Ib is 4 nA and therefore the input current Iin is set to vary from -4 nA to 4 nA. The 

output current Iout is the current in the voltage source Vd at the drains of M2 and M3. The 

(3.12)	

(3.63)	
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model of the MOS transistor used in this simulation is mnmosis in the bicmos12 library 

and we set W/L = 108u/7u. We define the input current Iin as a global parameter and use 

the linear DC sweep to let it vary from -4.5 nA to 4.5 nA with the increment of 0.001nA. 

The simulation results of the output current are shown in Fig. 3.14. The black line is the 

current in the voltage source at the drain of M2, which equals to the output current Iout and 

the red line represent the current in the voltage source at the drain of M3, which is the 

negative of the output current. We can see that the absolute values of the two currents are 

equal and they have the shape similar to the sine wave. Also, the peaks of the curves are 

around the theory value 0.3Ib, which is 1.2 nA.  Therefore, we can say that the simulation 

results match the theory very well.  

 

 

Fig. 3.14 Output currents of the Ideal MOS translinear sin(x)-circuit 

 

Red	Black	
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3.3.2 Realistic Model 

To simulate a more realistic model, we substitute the current sources to current mirrors to 

supply the currents of the translinear sine circuit and the new circuit is shown in Fig. 3.13. 

The supply voltages VDD and VSS are +1 V and -1 V respectively. The bias voltage Vb is 

350 mV and the two voltage sources at the drains of M2 and M3 are 500 mV. The bias 

current Ib is still 4 nA. However, we set the input current Iin to vary from -1 nA to 10 nA 

with the increment of 0.001nA due to the phase shift of the output current in this sine 

circuit. And now Iin is not a global parameter but just a current source and we still use 

the linear DC sweep for this simulation. The model of the nMOS transistors is mnmosis 

in the bicmos12 library with W/L ratio of 108u/7u and the model of pMOS transistors is 

mpmosis in the same library.  

In Fig. 3.15, the output currents Iout and - Iout in the voltage sources at the drains of 

M2 and M3 are depicted in black and red lines respectively. Similar to the simulation 

results of the ideal translinear sine circuit, the two currents are of the sine-like shape and 

their peak values are around the theory value 0.3Ib ( =1.2 nA).  However, there is a phase 

shift in this simulation. This phase shift results from the fact that the drain currents do not 

exactly satisfy the Equation (3.52a)-(3.52e). And the little distortion in the output current 

plot seems to result from the saturation of some MOS transistors. 
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Fig. 3.15 Output currents of the MOS translinear sin(x)-circuit 

 

3.4 Creation of Sine-Gordon Lattice Circuit 

Since the third sine-Gordon lattice system that realizes the sine-lattice equation gives the 

best simulation results, we will create the circuit for the basic cell of this system. 

However, there are three sine functions in each cell of this system, so we will use the 2-

sine cell structure shown in Fig. 2.26 instead of the 3-sine cell structure used in the 

simulation.  

For the two sine functions in this sine-Gordon cell, we use Mulder’s MOS 

translinear sin(x)-circuit shown in Fig. 3.13, which gives a good approximation of the 

sine function within the [-π, π] range. We could use the current mirrors to realize the 

current adder and subtractor; a current subtractor is shown in Fig. 3.16.  

Red	Black	
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Fig. 3.16 Current subtractor 

 
For each of the two integrators, we use a capacitor and an operational transconductance 

amplifier as the current integrator. The equation for this current integrator is 

𝐼!"# = 𝑔!𝑣! = 𝑔!
1
𝐶 𝐼!"d𝜏

!

!
+ 𝑔!𝑣(0) 

and the current integrator is shown in Fig. 3.17. By connecting these functional circuits 

together using the method in Fig. 2.26, the complete circuit for a sine-Gordon cell is 

obtained and depicted in Fig. 3.18, where W/L = 108u/7u for all 101 MOS transistors. 

 

Fig. 3.17 Integrator circuit 

(3.64)	
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Fig. 3.18 Complete circuit for the nth cell of the third sine-Gordon lattice system  
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3.5 Conclusions 

Two MOS translinear circuits realizing sin(x) approximation function have been 

simulated using PSpice. Both simulation results showed that the differential output 

current is approximately the sine function of the input current when the input is within 

the range [-bias current, bias current]. The input current, bias current and voltages sources 

in this design are all very low, and therefore we use this sin(x)-circuit to create the circuit 

for the cell of the sine-Gordon lattice system that realize the sine-lattice equation. We 

also use the current mirrors for current addition and subtraction, and capacitor and 

operational transconductance amplifier as integrator circuits to construct this sine-Gordon 

cell. The complete sine-Gordon cell circuit contains 101 MOS transistors and 2 

capacitors.  
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Chapter 4 Conclusions 

4.1 Summary 

In chapter 2, we introduced three forms of sine-Gordon equation, namely conventional 

discrete sine-Gordon equation, Orfanidis’s discrete sine-Gordon equation, and sine-lattice 

equation. We also discussed the solutions for each discrete sine-Gordon equation and 

made plots of these solutions or the differences between solutions of adjacent modes. 

Then, based on the three discrete equations, we used Matlab Simulink to create the nth 

cell of the sine-Gordon lattice systems and then connected the cells together to obtain the 

entire lattice system. The inputs of the sine-Gordon lattice systems are the exact solutions 

of each discrete equation. From the plots of the discrete sine-Gordon equation solutions, 

we take the difference between the adjacent outputs as the transmitting signal. The 

simulation results are presented by the Amplitude versus Time plots of the outputs of 

basic cells and the outputs of the subtractors, i.e. the transmitting signals. The simulation 

results show that all three systems could propagate the bell-shaped signal constantly 

without too much amplitude loss and distortion and the third system gives the best results. 

And therefore, we prefer to use the sine-lattice equation to construct the sine-Gordon 

lattice system. And for the third lattice system, another method to create the basic cell 

was also discussed in order to decrease the number of the sine functions in the lattice 

system.  

In chapter 3, first, a brief review of translinear circuits and translinear principle 

was given with some simple examples. Next, we introduced the translinear principle for 

MOS translinear circuits and discussed the MOS translinear circuits utilizing back gates. 

We also gave some examples of the MOS translinear circuits. Several bipolar or MOS 
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translinear circuits that realize the sine function were introduced. In the next part, we 

mainly discussed a MOS translinear sin(x)-circuit in Mulder’s paper [5]. First, we 

presented the principle of operation of this sin(x)-circuit with derivation and plots. Then 

we used PSpice to create and simulate the ideal and realistic models of this circuit. The 

simulation results of two MOS translinear circuits realizing sin(x) approximation function 

were shown to result by the output current verses input current plots and it was shown 

that the differential output current is approximately the sine function of the input current 

when the input is ranging from negative bias current to positive bias current. The input 

current, bias current and voltages sources in this design are all very low, and therefore 

this sin(x)-circuit structure is suitable for realizing the sine functions in  our Sine-Gordon 

lattice circuit. Then we used the MOS translinear circuit above to create the 2-sine basic 

cell of the third sine-Gordon system in chapter 2 since this system gives the best 

simulation results. The complete circuit that contains two MOS translinear sin(x)-

circuitsis, two operational transconductance amplifier integrator circuits, and several 

current mirrors for current addition and subtraction was presented in Fig. 1.18 and it 

contains 101 MOS transistors and 2 capacitors for each cell. 

 

4.2 Future Directions 

For the three sine-Gordon lattice systems in chapter 2, we can try different forms of the 

inputs, change the initial conditions of the integrators, vary the amplitude, phase, 

frequency, and bias of the sine functions, and alter the structure of the nth cells to obtain 

better results. Other discrete forms of the sine-Gordon equation could be utilized to create 

the nth cell in the system as well. Besides the sine-Gordon equation, we could discretize 
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the sinh-Gordon equation and create the sinh-Gordon lattice system using the similar 

methods. 

For the sin(x)-Circuit part, we could try other MOS transistor models, for example, 

the 0.35u MOS transistor, which is much more appropriate in term of application, or 

make some changes to the MOS translinear circuits to get better sine-shaped outputs. We 

could create the sin(x)-circuits based on other sine approximation methods. Besides 

utilizing the bulk voltages of MOS transistor under weak inversion, we could use the 

front gate voltages as well. Also, there are many other sine circuits that consist of bipolar 

transistors that might be suitable for our sine-Gordon lattice system as well. 

Another open problem about the MOS translinear sin(x)-circuit is that besides the 

bias voltage at the gate, we still have two bias voltages at the drains of two MOS 

transistor to keep them in weak inversion and output the sine current. So, in future works, 

we should try to use only one bias voltage in the entire sin(x)-circuit. 

Besides the creation of the sine-Gordon lattice system and the sin(x)-circuit, we 

could also research on the proper circuits to realize the integrators, adders, subtractors, 

and amplifiers in the sine-Gordon lattice system to obtain better performance of the cell 

circuit when transmitting soliton signals.  

After that, we could connect the circuits for sine-Gordon cell together to obtain 

the complete circuit for sine-Gordon lattice system and simulate this complete circuit for 

the solition transmission.   

In Hirota’s paper [21], an exact solution of sine-Gordon for the case of multiple-

soliton propagation was obtained. We could use the n-soliton solution as the input of our 

sine-Gordon lattice system for multiple-soliton transmission. 
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