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Truck travel estimation plays an essential role in the transportation field. Nationwide truck 

flows are particularly important for capturing long-distance truck travels. For the estimation at 

such a scale, the traditional way of conducting surveys is very costly and cumbersome. Nowadays, 

GPS data are getting popular for supporting transportation studies, with advantages of freshness, 

cost-effectiveness, real-world representation, high spatial-temporal coverage and resolution. 

Hence, utilizing GPS data as an alternative data source is worth investigating. This study proposes 

a comprehensive framework for achieving large-scale truck flow estimation from passive GPS 

data, with the United States as a study case. This study enriches the research on GPS-based travel 

estimation and particularly achieves the estimation at a scale as large as the United States for the 

first time using GPS data. The framework begins with thorough data preparation, in which an 

enhanced algorithm is designed for removing data oscillations. Then, truck type classification by 

weight class is conducted through a random forest (RF) algorithm, which enriches GPS-based 

vehicle classification research. The estimation is by truck type, which provides unique travel 



  

patterns by truck type. Then, a comparative trip identification by truck type is conducted and the 

algorithm’s robustness for such identification is investigated. Finally, an innovative weighting 

algorithm that integrates reinforcement learning and iterative origin-destination matrix estimation 

(ODME) is designed to weight the sample truck traffic according to the U.S. truck traffic 

population level and to mitigate the spatial bias of sample GPS data. Nationwide truck flow 

estimation is achieved. The results’ reasonableness is discussed from multiple aspects, such as 

ODME accuracy, spatiotemporal biases, distance distribution, OD distribution, vehicle miles 

traveled, and interstate OD pairs from selected states. The products obtained from the framework 

are useful for many transportation studies, such as planning and operation, safety, transportation 

and environment, and policies. The framework not only enables large-scale truck flow estimation 

but also yields good accuracy and does not require excessive computation cost. It is straightforward 

and has a high generalizability for studies of various scales and areas. It should be widely 

applicable for serving transportation research and practice needs.  
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Chapter 1: Introduction 

1.1. Background 

The trucking industry contributes much towards economic growth. It acts as the 

backbone of domestic freight transportation with the highest share of freight flow 

tonnage among various modes including roadway, railway, airway, waterway, and 

pipelines. The Gross Domestic Product of transportation industry was 505 billion U.S. 

dollars in 2020, in which truck transportation had the highest share of 34% (Bureau of 

Economic Analysis, 2023). According to Freight Analysis Framework 5 (U.S. 

Department of Transportation, 2022), freight tonnage by truck mode is projected to 

grow by 42% by year 2045 from year 2020, which places trucking among the top three 

modes with the highest growth rate. In the development of the trucking industry, truck 

travel estimation plays an essential role in guiding transportation planning and 

operation. Travel demand estimation analyzes trip generation: trip production (trip 

volume produced by an origin zone), trip attraction (trip volume attracted to a 

destination zone), and trip distribution (distribution of trips across origin-destination 

pairs - OD flow). An OD matrix is a major product of travel demand estimation. In an 

OD matrix, columns and rows indicate the origin and destination zones respectively, 

and each cell shows the estimated number of trips from an origin to a destination.  

Truck travel estimation contributes to a reasonable arrangement and an efficient 

utilization of transportation infrastructure, land-use resources, and services, such as 

highways, weigh and inspection stations, gas stations, rest areas, and parking lots. The 

design, performance, operation, and maintenance of a highway system is closely related 
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to truck traffic flow. This interconnection includes various aspects: efficiency, 

economy, safety, and sustainability. As a result of special vehicular parameters 

(weights and dimensions) and operating features (braking distance, acceleration, etc.), 

heavy vehicles such as trucks require specific geometry and capacity design of 

roadways (Harwood 2003). Compared to passenger cars, trucks affect highway 

congestion more (Sarvi 2011; Kong et al. 2016), cause greater damage to roadways 

(Jacob et al. 2020), and their presence increases risks of traffic accidents (Daniel et al. 

2002; Freire et al. 2021). From the environmental perspective, trucks cause a higher 

noise level than passenger cars (Lopatin 2020). They are one of the major sources of 

fuel consumption (Sharpe and Muncrief, 2015) and greenhouse gases, especially 

nitrogen oxides (Abdull et al. 2020; Ross et al. 2011). On truck-dominated highways, 

several operation and management strategies, e.g., truck-only lanes, truck-climbing 

lanes, managed-lane facilities, and variable speed limits, are implemented in practice 

to improve highway systems. Besides highways, other facilities, e.g., rest areas and 

parking lots, whose demand is highly associated with truck flows (Vital 2021), should 

have sufficient availability and good accessibility for truck drivers. Under limited 

budgets, the investment in truck facilities or truck flow control strategies should be 

carefully evaluated. A reliable truck travel estimate is critically important to provide 

correct guidance in practice.  

Additionally, transportation is an integral part of the logistics network with its 

effects on cost, efficiency, and service quality (Tseng et al., 2005). In traditional freight 

modeling, truck OD flow is a necessary component to be assigned to highway network. 

Common freight modeling methods, such as factored truck trip tables, commodity-
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based freight models, and three-step truck models, all necessitate truck trip OD table 

as model inputs (Fischer et al., 2005).  Total logistic cost consists of three major 

sections: inventory-carrying cost, transportation cost, and logistic administration cost, 

among which transportation cost has the largest fraction. Especially, among all 

subcategories of transportation cost by different transportation modes such as rail, air, 

water, and pipelines, trucks account for the highest transportation cost (Advanced 

Solutions International, Inc., 2020, 2021, 2022). In freight movement, trucking has the 

highest fraction of freight ton-miles, i.e. 46% in 2020 (Bureau of Transportation 

Statistics, 2021). Moreover, truck travel is expected to keep growing over the next two 

decades. According to a vehicle miles traveled (VMT) forecast study, there will be 57% 

more combination truck VMT and 101% more single-unit truck VMT by 2049 in the 

United States (Federal Highway Administration, 2022). Nationwide truck travel 

estimation and flow pattern analysis is indispensable for guiding and supporting 

national economic development. 

For the above reasons, truck travel demand estimation is important for 

improving transportation systems, enhancing freight and logistics planning, and 

promoting a nation’s economic growth. State and local agencies or practitioners have 

been implementing various methods for conducting truck travel demand estimation 

while there have been a data gap for nationwide truck travel demand estimation. In 

addition to the aforementioned reasons for the importance of truck travel demand 

estimation, nationwide estimation is particularly important for capturing long-distance 

truck travel across states. It provides a more complete picture from the perspective of 

the whole nation. The planning and operation of each state, instead of being fully 
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independent from other states, can coordinate with each other to be more efficient and 

obtain more benefit. For example, long-distance truck travel usually relies on interstate 

highway system to ensure the efficiency. With the increasing truck shipping demand, 

it is an essential task to enhance the current interstate system or to plan on building new 

interstate highways in future. Heavy truck traffic is an important factor for highway 

congestion. For the mitigation of severe congestion on highways, traffic obtained from 

the sensors is not sufficient for resolving the issue. Knowing the OD pairs generating 

the congestion provides insights into the real causes. Since heavy trucks often travel 

over long distances, statewide analysis may not be able to capture these interstate 

travels involving two or more states. The planning or operation procedures have to be 

based on a joint analysis of travel demand involving two or more states. Transferring a 

fraction of long-distance truck travel demand to other modes such as railway is an 

option for relieving long-distance shipping needs. The building of interstate highways 

or railways is a long-term and costly project. Its demand should be carefully examined. 

Truck travel demand estimation provides an essential information basis for supporting 

such planning and potential coordination with other modes. Nationwide truck travel 

demand estimation also helps improve large-scale logistic systems, especially systems 

that involve multiple states or regions. Both the design and the operation of such large 

logistic systems rely on a thorough understanding of the demand and supply.   

The Commodity Flow Survey (CFS) provides OD commodity values and 

weights across the nation at five years intervals. However, truck flows and commodity 

flows are different. The former is vehicle-based, while the latter is cargo-based. They 

provide different insights into the transportation world. The physical features of cargo 
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influence truck travel. Given a specific vehicle model, moving the same tonnage of two 

types of cargo (e.g., iron and cotton) from an origin to a destination may yield very 

different truck traffic volumes. For transporting the same cargo, different truck types 

can also lead to different truck traffic volume. Some cargo necessitates specific truck 

models for safety and economy consideration. Cement requires trucks with a higher 

weight class such as combination trucks while small single-unit trucks are not capable 

of shipping it. From the perspective of logistic optimization, transportation cost is a 

basic component. Small-size, low-weight, and low-value cargo is relatively 

inexpensive to transport while large-size, high-weight, and high-value cargo requires 

high transportation cost. The loading status also leads to the difference between cargo 

flow and truck travel flow. Less loaded and empty trucks present different flows than 

the related cargo flows. Thus, although the CFS commodity flow survey is a valuable 

nationwide logistics dataset, it cannot substitute for nationwide truck travel flow. 

Neither a nationwide truck travel survey nor an indirect substitutable survey exists for 

supporting nationwide truck travel demand estimation. It is a research gap that has 

existed for years, which is resolved by the framework developed in this study.   

For travel demand estimation, travel surveys are very commonly used. 

However, relying on surveys to fill this nationwide data gap necessitates a substantial 

investment in time, human effort, and resources. Although there have been some travel 

surveys, they aim to collect personal travel patterns while truck-specific travel diaries 

are scarce. Conducting a travel survey is time-consuming, which makes it difficult to 

acquire up-to-date survey data since the update period is usually one or five years. 

Moreover, travel surveys have some shortcomings such as low response rate (Allen et 
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al., 2014), underreporting trips (Bricka et al., 2012), and misreporting trips (Hossan et 

al., 2018). Due to limited funding, some surveys are only conducted in selected time 

periods and regions, i.e., with limited spatiotemporal coverage or resolution. Such 

surveys are unable to capture day of week, monthly, seasonal, and annual patterns and 

unable to serve geographical analysis at a high resolution. However, both temporal and 

spatial patterns are important for truck travel analysis. For instance, day of week and 

season significantly influence truck volumes (Yuksel et al., 2020). With a focus on 

normal travels, a traditional survey is not capable to support special event analysis 

(Kuppam et al. 2013). Instead of directly deriving OD flow from travel surveys, some 

truck travel models have been proposed. However, meeting the data need of these 

models has also been a challenge for a long time (Demissie & Kattan, 2022; Comi et 

al., 2013). Traditionally, travel demand analysis is conducted through an approach 

known as the four-step travel demand model. It mainly includes trip generation, trip 

distribution, and trip assignment. This traditional model may require other types of 

surveys and the traffic assignment on a road network is a complicated optimization 

problem. Neither nationwide surveys nor a feasible traffic assignment model on a 

nationwide road network exists. For all above reasons, an alternative way of filling this 

data gap is needed.  

Recently, truck GPS data have been actively utilized in various transportation 

studies, such as travel time and delay estimation, freight performance measures, and 

truck parking analysis. Truck GPS data have many merits in characterizing truck travel 

patterns in substituting for travel survey or survey-based models. The aforementioned 

drawbacks of surveys can be avoided with GPS data. First, GPS data are less expensive 
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than in previous years. There have been increasing studies developed based on GPS 

data. Compared to traditional travel surveys, GPS data are more cost-effective for 

monitoring truck movements (IBI, 2009). Additionally, large-scale truck GPS data 

usually have several advantages, such as high location accuracy, high spatiotemporal 

resolution, and high spatiotemporal coverage. With automatic technology, the 

collection of GPS data is efficient. It requires less human involvement than surveys. 

Meanwhile, it also depends less on human efforts, so that less human error is involved. 

The stable and mature GPS technology avoids the uncertainty from human side. The 

streaming GPS data collection provides a timely and up-to-date dataset. With sufficient 

spatiotemporal resolution, it can flexibly characterize truck travel features in different 

time periods and at various geographical levels. Given a sufficient scale of GPS data, 

truck travel analysis across the entire nation, at state, county, or even travel analysis 

zone level, becomes achievable. In addition to spatiotemporal patterns, the analysis of 

special events, such as COVID-19 outbreak (Sun et al., 2022; Lee et al., 2020; Zhang 

et al., 2021), hurricanes, and sports events can also be supported by GPS data.  

In spite of all these benefits, GPS data also have drawbacks. Using GPS data to 

estimate truck travel demand is challenging from different aspects. The major reason 

is that currently available large-scale GPS data in the industry are passively collected. 

Unlike a well-designed travel survey with detailed trip information from interviewees 

such as trip origin, destination, and trip distance, passive GPS data are just meaningless 

points without any trip level information and therefore are not ready-to-use for travel 

analysis. In addition, passive GPS data have obvious drawbacks such as inconsistent 

GPS logging frequency and missing observations, which bring difficulties to the 
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process of recovering trip-level information. In the current literature, a complete 

framework for achieving large-scale truck OD flow estimation as large as nationwide 

estimation in the United States from raw GPS points data cannot be found. Because of 

challenges or issues along with the passive GPS data, travel demand estimation requires 

many steps. Briefly, the framework proposed in this study resolves these problems as 

follows. First, raw GPS data may be noisy with data oscillations. Data oscillations, if 

not identified and removed, can be wrongly identified as the intermediate points of a 

trip leading to unreasonable travel statistics, such as very long travel distances. Missing 

observations is a common drawback of passively-collected GPS data. With limited 

observations of a truck, the derived trips become more sensitive to the existence of data 

oscillations. Especially, nationwide truck travel demand estimation contains a 

significant portion of long-distance travel. Data oscillations bring about misleading 

travel patterns. For example, a local delivery truck with data oscillations may show 

longer-than-normal travel distance and brings noises to vehicle type classification, 

which may finally be misidentified as a heavy truck. The data oscillations are carefully 

examined and removed in this study. Second, different truck types present different 

driving behaviors and spatial-temporal mobility features. For instance, local delivery 

trucks usually conduct shorter and more frequency trips while heavy trucks may travel 

for hours and produce longer trips. For algorithms driven by GPS data, it is important 

to measure their robustness in different scenarios by truck type. For such algorithms 

that are sensitive to truck types, parameter values should be carefully tested and 

decided. Generally, passive GPS data usually do not contain truck type information. 

This study fills up the missing truck type information, investigates the robustness of 
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algorithms from aspect of truck type, and finally conduct truck travel demand 

estimation for each truck type. Third, trip is the basic analysis unit for travel analysis, 

which is usually missing from the passive GPS data. To approximate the real-world 

truck travel patterns and activities, raw GPS points need to be converted to meaningful 

trips. There have been numerous trip identification algorithms driven by passive GPS 

data, which are actively applied and perform well in various studies. This study does 

not intend to propose a different trip identification algorithm. Instead, a prevailing type 

of GPS-driven trip identification algorithm is applied. Most importantly, the 

algorithm’s sensitivity to truck type is comprehensively examined, which is a major 

contribution to this field. Fourth, currently available truck GPS data in the industry 

provide a sample from the population. No matter how large the sample data size is, a 

weighting procedure needs to be conducted to produce estimates for the population. 

Otherwise, the derived statistics are not representative of the U.S truck population. 

Weighting has been a challenge for many reasons. Existing weighting methods are not 

applicable to nationwide scenario due to computation complexity of nationwide 

highway network or unavailability of necessary data inputs such as penetration rate that 

is usually missing, unknown, or not provided by data providers. Besides, nationwide 

available ground truth data are very limited. Fifth, passive GPS data collection does not 

follow a strictly-designed sampling procedure, so the sample bias probably exists, 

which should be resolved. Common biases in GPS data are temporal bias and spatial 

bias. Temporal bias mainly results from missing observations of the GPS data. Due to 

the backend technology limitations, it is normal that some GPS observations are 

missing for a while or even for hours. For example, when the GPS device is out of 
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battery or under a long tunnel, the receptor fails to accept the GPS signal. The spatial 

distribution bias mainly comes from the different hauling service areas of the 

companies or organizations providing the GPS data. Since the sample GPS data only 

come from a subset of companies or organizations, the measurement of spatial bias is 

of great importance for deriving reasonable travel demand estimations or statistics. 

Additionally, truck type bias is the third type of bias that must be considered for the 

topic in this study. Trips generated from different truck types have obviously different 

features regarding trip production, trip attraction, and trip distribution. Local delivery 

trucks and long-haul heavy trucks vary greatly regarding service area, hauling distance, 

and on-duty time window, and hence produce very different OD flow patterns. 

Therefore, three types of biases in total are considered in this study.  

In sum, the significance of conducting nationwide truck travel demand, the 

existing data gap of national truck OD flow, and the benefits of utilizing GPS data to 

fill this data gap initiate and motivate this study. All of the challenges or issues 

mentioned above are resolved by the proposed framework and finally a large-scale 

truck OD flow matrix by truck type for the entire United States is derived from 

passively-collected truck GPS data.  

1.2. Objectives 

Nationwide OD truck travel flow data play a very important role in a variety of 

transportation studies and practices. However, currently such data do not exist. In 

comparison to the traditional way of conducting travel survey to fill up this data gap, 

GPS data have shown many advantages. Such a framework that derives nationwide 
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truck travel flows from GPS data does not exist. In summary, this study has the 

following objectives.  

(1) To develop a feasible framework that enables nationwide truck flow estimation 

from passive truck GPS data. Currently existing frameworks are either not 

applicable to the research need of this study or not feasible for such a large 

scale as nationwide case. This study aims to successfully derive nationwide 

truck flows from passive GPS data, which is the major objective. Moreover, 

to ensure the high feasibility in practice, the data utilized are either open-

source or prevailing in this research field. The implementation does not just 

consider the accuracy but also tries to reduce computation cost and improve 

efficiency.  

(2) To develop a complete framework that incorporates all fundamental parts to 

fill research gaps. As previously discussed, several fundamental research tasks 

are needed to derive truck flows from GPS data, along with which research 

gap, especially nationwide weighting method, exists. Based on current 

literature, either improvements are made to existing methods or innovative 

methods are developed if research gap exists.  

(3)  To develop a thorough framework that addresses the previously mentioned 

challenges, such as mitigating sample biases, large-scale weighting, and high 

computation cost.  

(4) To develop a practical framework that is computationally efficient and yields 

desirable accuracy level. The algorithms or methods involved with the 

framework should not require excessive computation cost. Computation cost 

may become a bottleneck for the application of large-scale GPS data in 

practice since some well-defined algorithms cannot ensure both high accuracy 
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and low computation cost. This study aims to achieve a desirable accuracy 

level without much compromise in computation cost. 

(5) To develop a high-generalizability framework that is applicable to various 

spatiotemporal scales. GPS data are advantageous for high spatiotemporal 

resolution. To make the best use of GPS data, a flexible framework that can be 

generalized to studies of different spatiotemporal scales is preferred. The 

framework can be applied to but is not limited to a nationwide scenario. It can 

also be implemented for statewide or regional studies. 

(6) To provide an empirical reference on nationwide truck flow patterns from GPS 

data. These are very valuable information.  

1.3. Contributions 

The major contribution of this study is the achievement of large-scale OD truck 

flow estimation with United States as the case study. To the knowledge of the author, 

no such study has ever been done at a similar scale. The derived OD truck flow matrix 

is a valuable data product that can support studies in many fields. The proposed 

framework not only overcomes the current research gap but also addresses challenges 

and issues along with the application of passive GPS data to truck travel estimation. 

Specifically speaking, this paper has the following contributions. 

(1) A complete framework of estimating truck flows based on passive GPS data is 

specifically designed for large-scale studies, making it feasible to achieve 

nationwide truck OD estimation in the United States for the first time. This 

study fills the data gap of nationwide truck flows and fills the research gap of 

large-scale (e.g. nationwide) truck flow estimation from GPS data. The 
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framework yields good accuracy without heavy computation burden. It has a 

high generalizability, flexibility, and feasibility for studies in different regions 

and scales. It is straightforward and should be widely applied in practice.  

(2) The derived OD matrix is an essential data product that is needed in many 

fields. The derived OD matrix directly reflects the truck traffic flow for each 

OD pair, especially for these long-distance interstate OD pairs. In addition to 

the OD matrix, some other products can be derived with the developed 

framework. For example, the weighted truck trips can be projected to the 

highway network, so that truck travel flows on corridors can be obtained and 

bottleneck areas can be identified. Some statistics such as vehicle miles 

traveled and average daily truck traffic are also obtainable.  

(3) With the United States as the case study, the derived result provides insights 

into the characteristics of nationwide OD truck flow from several aspects. 

These are the unique and empirical references from passive GPS data. In 

addition, the estimation is conducted by vehicle type: (a) light and medium 

weight trucks; (b) heavy trucks. The derived results shed lights into the 

different patterns between light-medium and heavy trucks.  

(4) An elaborated pattern-based method for data oscillation identification is 

designed, which improves the existing pattern-based methods by considering 

more abnormal moving patterns and reducing location uncertainty in an 

efficient way.  
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(5) This study considers three types of biases in passive GPS data for fulfilling 

truck flow estimation - spatial bias, temporal bias, and vehicle type bias. This 

is critical for ensuring the representativeness of result.  

(6) Vehicle type classification is conducted on the raw GPS points through a 

random forest (RF) algorithm. Current vehicle type classification methods are 

mainly designed based on traditional data sources (e.g. radar, loop, and video) 

and GPS-data-based methods are very limited. Hence, this paper enriches this 

study field. To the knowledge of the author, this is also the first study that 

conducts RF-based vehicle classification from GPS data. A comprehensive set 

of input features is explored, among which some new features are 

innovatively designed and prove to be significant for differentiating vehicle 

types through an RF algorithm.  

(7) Truck trip identification is conducted by truck type. A popular type of trip 

identification methods is implemented and, specifically, its application to 

different truck types is discussed. Many studies usually arbitrarily decide the 

threshold values for trip identification from GPS data without investigation of 

truck type. This study for the first time investigates the algorithm’s sensitivity 

to the truck types, which provides a comparative reference.  

(8) An iterative reinforcement-learning-based Origin Destination Matrix 

Estimation (ODME) method is innovatively designed, which weights the 

sample truck flows derived from GPS data to the U.S. truck traffic population 

level. The method achieves a desirable accuracy level. This fills the research 

gap of achieving large-scale ODME from GPS data. The largest scale of 
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current ODME methods is state-level such as for Florida and Indiana. The 

model complexity and dense national road network makes the traditional 

ODME method infeasible for national application. This study provides an 

alternative way of matching with the sensors on the highway network. 

1.4. Outline 

The remainder of this study is organized as follows. Chapter 2 provides a 

comprehensive literature review. Chapter 3 describes the data used for this study and 

preprocessing work. Chapter 4 introduces the heuristics algorithms designed for the 

identification and removal of data oscillations. Chapter 5 presents the classification of 

raw GPS point data into two truck types: light-medium weight trucks and heavy weight 

trucks. Chapter 6 describes the preparation of truck trip profile and specifically explores 

the trip identification algorithm’s robustness in the application of different truck types. 

Chapter 7 proposes an innovative weighting algorithm with the integration of 

reinforcement learning and ODME process. Chapter 8 presents major results and 

discusses the reasonableness and validation of derived results. Chapter 9 summarizes 

the whole study and highlights the practical significance of the developed framework. 

Chapter 10 discusses future work. 

 

  



 

 

16 

 

Chapter 2: Literature Review 

2.1. Research and Practices Based on Truck GPS Data 

With the development of processing GPS data and extracting travel statistics 

from it, more and more studies in truck transportation field have been making the best 

of truck GPS data for various research and studies. Some studies utilize truck GPS data 

to identify trip ends and construct the truck trip profile (Thakur et al., 2015; Aziz et al., 

2016). Along with the trip identification studies, some trip chaining methods are 

developed to complete the trip profile based on different application needs. Instead of 

starting from trip identification, some studies conduct tour identification analysis 

without the need of chaining the trip segments. Both trip identification and tour 

identification studies can serve as the basic of truck travel demand estimation or 

prediction. For example, some studies develop trip- or tour- based models or 

frameworks for supporting travel demand analysis (Kuppam et al., 2014; You and 

Ritchie, 2019; Demissie and Kattan, 2022). Besides, some research estimates or 

forecasts the travel time, travel delay, and the reliability of travel time for selected 

intersections or road segments using the GPS data. Roadway congestion and bottleneck 

analysis is also a major application of the GPS data. Other use cases of the GPS data 

include truck parking analysis, freight activity analysis, truck route choice analysis, 

freight simulation and modeling, policy and investment analysis. 

Government agencies also conducted various projects with regards to truck 

GPS data. The Florida Department of Transportation (FDOT) did an analysis of freight 

performance measurement, modeling, and planning by utilizing truck GPS data early 
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in 2010. It derived a database of truck trips with origin and destination Transportation 

Analysis Zone (TAZ) based on Florida statewide model. Florida Department of 

Transportation (FDOT) Transportation Data and Analytics Office (TDA), in 

coordination with the Freight and Multimodal Operations Office (FMO) and District 

Freight Coordinators (DFCs), conducted a statewide study to analyze parking supply 

and utilization. Their study identified critical truck parking needs and proposed 

corresponding solutions using truck GPS records from the American Transportation 

Research Institute in 2019. FDOT in 2017 conducted a truck route choice modeling 

analysis using the truck GPS data, which measures the diversity of travel paths between 

origin and destination pairs in metropolitan regions of Florida and assesses the 

algorithms of route choice set generation. The Minnesota Department of Transportation 

developed a methodology for analyzing the performance of heavy commercial trucks 

with respect to freight mobility and reliability in the twin cities metro area using the 

truck GPS data in 2014. The Arkansas Department of Transportation conducted a truck 

activity analysis in 2019 for the need of statewide freight modeling and planning, which 

shows several potential usages of truck GPS data – truck parking utilization patterns, 

travel time delays, and impacts of waterway ports. The National Center for Freight and 

Infrastructure Research and Education developed Freight Performance Measures 

(FPMs) to meet Moving Ahead for Progress in the 21st Century Act (MAP-21) 

objectives and to apply the methodology in the National Center for Freight and 

Infrastructure Research and Education (CFIRE) region by utilizing the truck GPS data 

in 2016. A case study was conducted for the state of Tennessee. The Puget Sound 

Regional Council (PSRC), Washington State Department of Transportation (WSDOT), 
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and the University of Washington (UW) cooperated on collecting and making use of 

the truck GPS data from commercial, in-vehicle, fleet management systems in 2011.  

2.2. Truck Travel Demand Estimation Using GPS Data 

A complete framework for estimating truck OD flows from passive truck GPS 

data specifically for a large-scale case, such as the entire United States, cannot be found 

in the literature. There are many studies at smaller scales. Kuppam et al., 2014 make 

some first attempts at developing a tour-based truck travel demand model from ATRI 

GPS data with a case study in Phoenix. It focuses more on the tour generation and stop 

generation along the tours. Expanding the sample travel demand to the population level 

is missing from their work. Bernardin et al., 2011, produce an Indiana statewide truck 

trip OD table from the GPS data using an ODME process to match the truck sensor 

counts. Zanjani et al., 2015 achieves a statewide truck travel estimation from ATRI 

GPS data. It mainly focuses on an ODME optimization algorithm to weight and expand 

the sample trips extracted from GPS data to match with the observed truck counts on 

some road segments. You & Ritchie, 2019, build an optimization model with entropy 

maximization to estimate drayage truck demand at the San Pedro Bay Ports (SPBPs) 

complex in Southern California with GPS data as the data inputs. The entropy 

maximization is a non-linear problem (NP) with linear constraints. The number of 

constraints increase as the case study size increases with more and more OD pairs. This 

limits its application to a small-scale study. All three studies (Bernardin et al., 2011; 

Zanjani et al., 2015; You & Ritchie, 2019) build an optimization model, which is too 

computationally complicated to be applied to a large-scale study such as nationwide 

network. There are some other studies that propose the combination of truck GPS data 
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and the survey data to analyze the truck movements (Laranjeiro et al., 2019; Demissie 

and Kattan, 2022). Demissie and Kattan, 2022, conduct another truck travel estimation 

for the province of Alberta, Canada. They uses a multinomial logit model to estimate 

the trip distribution using both GPS data and the outputs of a provincial travel demand 

model relying on traditional surveys. Its major contribution is its combination of 

passively collected truck GPS data and actively collected survey data to derive truck 

travel demand. However, their study is based on the distribution directly obtained from 

the sample GPS data. Sample bias or weighting is not discussed.  

2.3. Other Related Studies 

Although complete frameworks for large-scale OD truck travel flow from 

passive GPS data are still underdeveloped, there have been studies focusing on some 

fundamental parts. A complete data cleaning and assessment is a prerequisite to ensure 

the data quality. The major task is to identify and remove data oscillations. The second 

essential part is vehicle type identification from GPS data. The third part is recovering 

meaningful trips from meaningless raw GPS points. The last basic part is weighting 

and expanding since the GPS data is just a sample that cannot reflect the population-

level statistics. There are challenges, issues, or research gaps with each of these parts, 

which are discussed in the following sections 2.3.1 – 2.3.4. The pros and cons of current 

methods are also summarized.  

2.3.1. Data Oscillation Detection 

Large stream GPS data are getting popular in many fields. To ensure reliable 

inferences from them, a complete data preprocessing is essential. Otherwise, the 
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mobility inferences from GPS data might be undermined or biased (Wu et al., 2014; 

Wang & Chen, 2018). Studies on data preparation are very few. Based on literature 

review, a major cleaning work that GPS trajectory data particularly needs is the 

detection and removal of data oscillations, also called outliers or data jumps. Most 

outlier detection methods are statistical tests based on the statistical distribution (e.g. 

normal distribution, gamma distribution, etc.) of a single variable (Hawkins, 1980; 

Barnett & Lewis, 1994; Knorr et al, 2000). This method does not work for the passively 

collected GPS data, which usually do not follow a specific distribution. Current outlier 

detection methods for trajectory data or GPS data can be classified as speed-based, 

distance-based, partition-and-detect, density-based, clustering-based, classification, 

and pattern-based methods.  

A speed-based method simply removes points with an extreme high speed from 

its previous point. Several different speed thresholds are used in studies, such as 200 

km/hr and 200 mi/hr (Thiagarajan et al., 2009). This type of method is too simple to be 

reliable. In reality, the cases of data oscillations in GPS data can be much more 

complicated. For a simple example, a point with an extremely high speed from its 

previous point may actually be a normal point. However, this method will remove this 

point and keep removing its following points too. Many false positive cases will be 

caused by this method.  

Knorr et al, 2000 proposes a distance-based outlier detection method, which can 

detect outliers from trajectory data. It first characterizes each trajectory by a multi-

dimension vector with a set of mobility features (i.e. start and end point, number of 



 

 

21 

 

points, heading, and velocity). Then a distance function is built by the weighted sum of 

the difference between the vectors of two trajectories to measure the similarities 

between paths. This method has some limitations. If there is just a small segment 

showing abnormal features in a very long trajectory, this abnormality is probably 

averaged out across the entire trajectory so that cannot be identified (Lee, et al., 2008). 

To make outliers stand out, most of the trajectories in a dataset have to share similar 

mobility behavior. However, in practice, trajectories in the raw GPS data show various 

mobility behavior even if they are not outliers. Lastly, since this method removes the 

entire abnormal trajectory, there may be unnecessary data loss. 

Instead of identifying and removing abnormal trajectories, some studies focus 

on the outlier segments in a trajectory. These studies apply a partition-and-detect model 

(Lee, et al., 2008; Yang and Tang, 2016; Zhang and Wang, 2011; Krishnan, et al., 2017; 

Yu, et al., 2014, Gupta, et al., 2014). Lee, et al., 2008 firstly propose the partition-and-

detect model to first partition trajectories and then remove abnormal sub-trajectories. 

They design an approach to detect abnormal sub-trajectories from aspects of position 

and angle by taking neighboring trajectories as baselines. A major limitation of this 

method is that the detection of outliers is dependent on neighboring trajectories. With 

the absence of neighboring trajectories, the standalone sub-trajectories are determined 

to be outliers and therefore are removed. This method requires a high sampling rate 

from spatial distribution point of view. However, for a nationwide truck GPS dataset, 

this requirement is usually cannot be satisfied and the data loss is excessive in this case.  
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There are also density-based outlier detection methods. Breunig et al., 2000 first 

propose this idea by defining local outlier factor (LOF), which measures how a point 

is isolated from its neighboring points. Points with a high LOF are determined to be 

outliers. Neighborhood size is very critical for this method since if it is very small 

outliers may not be identified and if it is very large much computation cost is required. 

The parameter for defining the neighborhood size turns out to be very sensitive 

(Papadimitriou et al., 2003). This method does not fit the research need in this study. 

The LOF involves too much computation between its neighboring points, which is not 

a good choice for a nationwide GPS dataset. Passively collected GPS data may have 

low frequency for a while making it normal to have standalone points that are 

geographically distant from others. They are not outliers and may become an 

intermediate point on a trip, but will be identified as outliers by density-based method.  

Similarly to density-based methods, some clustering-based methods (Ester et 

al., 1996; Guha et al., 1998) can detect outliers based on the spatial densities. However, 

clustering-based methods are originally intended to produce clusters instead of to 

identify outliers. The points that cannot form or be involved in a cluster are identified 

as outliers, which may actually be normal points in other research contexts. Li et al., 

2007 propose a classification-based method for detecting abnormal trajectories. 

However, a good training dataset is usually unavailable in practice.  

One more type of method for detecting data oscillations is pattern-based 

methods. Lee & Hou, 2006 propose a pattern-based method for identifying the ping-

pong transitions in cellular data (the cell that a mobile connects to changes in a short 
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time making quickly its geographical location changes back and forth). This method 

defines two movement patterns of data oscillations by the sequence of cellular towers. 

Lovan et al., 2013 consider spatial temporal features such as speed in addition to the 

movement patterns to identify ping-pong phenomenon. Wang & Chen, 2018 propose a 

method that first builds clusters from cellular data (triangularized latitude and longitude 

data) to reduce location uncertainty and then identify data oscillations by defining a set 

of movement patterns. Wu et al., 2014 identify data oscillations in cellular data by 

defining the movement patterns based on two major ideas: stable period and impossible 

moving speed. Four heuristics are proposed to define abnormal movement patterns with 

spatial-temporal features including speed, distance, and time. All these methods are 

designed specifically for the data oscillations (ping-pong phenomenon) from cellular 

tower data or cellular data. Since GPS data show more granular and complicated data 

oscillations, these methods are not sufficient. Despite this, the author sees the potential 

of extending such pattern-based method to handle the data oscillations in GPS data 

enlightened by the ideas of reducing location uncertainty, defining movement patterns 

by location sequence, stable time period, and considering the spatial-temporal features. 

So far, this pattern-based method has the greatest flexibility and adaptability to the 

truck GPS dataset used in this research.  

2.3.2. Vehicle Type Classification 

Vehicle classification methods have been investigated in many studies 

(Coifman & Kim, 2009; Eikvil et al., 2009; Kafai and Bhanu, 2012; Ma and Grimson, 

2005). A major factor that differentiates these methods is the input data source. 

Common sources are sensors (e.g. pneumatic tubes, loop detectors, weight sensors, 
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radar technology, infrared and acoustic devices), satellite images, and surveillance 

cameras. Each data type uniquely determines one group of vehicle type identification 

or classification methods. In other words, each group of methods is not-ready-to-use 

for other data types meaning a low generalizability. Moreover, these methods may yield 

errors or show limitations in some cases as comprehensively discussed by Sun and Ban, 

2013. For instance, congestion highly affects the classification when using loop 

sensors. The study scale might be limited due to insufficient application of 

aforementioned technologies. When it comes to large areas, it may be too costly to 

apply these traditional methods (Sun and Ban, 2013).  

With the increasing interest in GPS data, there are a few studies starting to 

classify vehicles through GPS data (Sun and Ban, 2013; Simoncini et al., 2016; 

Simoncini et al., 2018; Dabiri et al., 2020). Overall, these studies first define a set of 

features and then implement a machine learning method as the classifier. Sun and Ban, 

2013 uses a support vector machine (SVM) to classify trucks and passenger cars using 

a small (136 vehicles) and high frequency (at 1 second or 3 seconds intervals) active 

GPS sample from experiments. Since in reality such high-frequency data are usually 

not widely available, Simoncini et al., 2016, claim, for the first time, to address the 

problem of vehicle classification from low-frequency GPS data. They conduct a binary 

classification (i.e. light- and heavy- duty truck) based on an active GPS sample (2000 

vehicles) with a frequency at 90s or 120s interval. Although the same SVM algorithm 

is applied, they propose some new features based on speed, distance and acceleration, 

which show better performance in low-frequency scenario. Simoncini et al., 2018 

further improve the performance of vehicle classification (i.e. light-, mid-, and heavy- 
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duty truck) from low-frequency GPS data through a deep neural network method, 

which is applied to a large active GPS dataset (96,338 vehicles) with an average 90s 

interval. This deep learning method produces a more accurate result than RF and SVM. 

Dabiri et al., 2020 propose another deep neural network method to classify vehicles by 

weight class based on a high frequency (at 17 seconds intervals) and large-scale (20 

million trajectories for four months) GPS dataset. These two deep learning methods 

have two common drawbacks. One is the high computation cost, and the other is the 

low interpretability, since they automatically learn the data without much revelation on 

important features. One more study by Zanjani et al., 2015 divides the identified trips 

from GPS data into medium- and heavy- duty truck trips through arbitrary trip distance 

and trip frequency thresholds. Sun et al., 2020 derive four vehicle types using k-means 

clustering method based on GPS data (68,613 vehicles, at 30s to 60s intervals) from 

floating cars. Unlike above research, their study focuses on mobility patterns (i.e. 

morning-activity, long distance traveling, frequent activity, and evening activity) 

instead of weight classes. The major feature that differentiates the four types is the 

roadway usage. Although not many studies conduct GPS-based vehicle classification, 

some other studies help provide insights into this topic, which aim to extract driving 

behavior features from GPS data (Dong et al., 2016; Guo et al., 2018; Chen et al., 2019). 

Based on all studies discussed above, some significant features that can help 

differentiate vehicle types are as follows: roadway usage, moving angle, aggregated 

statistics (i.e. median, mean, variance, maximum, 25 quartile, and 75 quartile) of speed, 

acceleration, time, and distance, similar statistics over a sliding window, and trip rate. 

These practices also provide the correspondence between vehicle weight classes and 
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the thirteen vehicle categories from FHWA. Simoncini et al., 2016 and Simoncini et 

al., 2018 state that light-duty corresponds to class 2 and 3 and heavy-duty corresponds 

to class 5 and higher. Dabiri et al., 2020 apply the following correspondence based on 

vehicle gross weight: (1) less than 14,000 lbs ~ classes 1-3; (2) between 14,000 lbs and 

26,000 lbs ~ classes 4-6; (3) larger than 26,000 lbs ~ classes 7-12.  

Based on literature review, SVM and deep learning are two state-of-the-art 

methods for vehicle classification. Another popular machine learning classifier is RF. 

As traditional machine learning classifier, RF and SVM have been widely applied for 

various classification problems. It is usually said that RF works better for multi-class 

problems and SVM is better for binary problems. Yet, the two may yield nearly the 

same accuracy levels in some cases. For vehicle classification problem, Simoncini et 

al., 2018, compare the three methods regarding accuracy and computation time. 

Although deep learning yields the highest accuracy, RF runs much faster than deep 

learning and SVM. In their tests, RF takes 20 min while SVM takes at least 10 days; 

RF takes 10 s while deep learning takes 5 min. Since this study necessitates data 

processing on a large-scale dataset, computation cost becomes a critical factor. 

Therefore, RF makes it advantaged for being computationally low-cost. Additionally, 

RF has a higher interpretability than deep learning method. There have been many 

methods for measuring the relative importance of input features and how each input 

feature is interacting with the final output in an RF model. However, deep learning 

method automatically learns from the data, which is done in the hidden layers and 

cannot be explained. In sum, RF has the traits of good classification accuracy, low 

computation cost, and high interpretability and is therefore utilized in this study. 
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Moreover, SVM is set as the baseline model, which shows similar accuracy but requires 

much more computation time.  

2.3.3. Truck Trip Identification 

For many applications of passive GPS data to the transportation field, trip 

identification is an essential step, which is the conversion of raw GPS points into 

meaningful trips. So far, different methods have been proposed. Overall, there are three 

common types of truck trip identification methods. The first type is rule-based methods; 

the second type is clustering methods; the third type is machine learning methods.  

This type of method identifies trip ends by considering the speed, dwell time, 

and distance between two consecutive GPS points. Some studies solely apply the 

average speed to determine truck trip ends (Ma et al., 2011; Gong et al., 2015; Zanjani 

et al., 2015; Gingerich et al., 2016; Sarti et al., 2017). Different speed thresholds are 

applied, such as 1 km/h (Gingerich et al., 2016), 5 km/h (Sarti et al., 2017), and 8km/h 

(Zanjani et al., 2015). These methods may identify false positive truck trip ends since 

the status of being low-speed does not indicate a meaningful trip end in some cases, 

such as waiting for a green signal, stopping due to congestion. Instead of speed, dwell 

time is used for identifying trip ends by some studies (Camargo et al., 2017; Gingerich 

et al., 2016; Laranjeiro et al., 2019; Thakur et al., 2015). It is assumed that if a device 

stays at somewhere for a long time, there is a trip end. The threshold of dwell time 

varies greatly, which mainly relates to the truck type. For example, a local delivery 

truck stops frequently to distribute goods and at each stop it stays for a short time. 

Therefore, smaller threshold values are usually applied to short-haul trucks, such as 3 
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minutes and 5 minutes (Camargo et al., 2017). In contrast, long-haul trucks require 

more stopping time for loading or unloading goods. Some studies apply a larger 

threshold value of dwell time, such as 10 minutes (Aziz et al., 2016), 15 minutes 

(Gingerich et al., 2016; Thakur et al., 2015), and 20 minutes (Laranjeiro et al., 2019). 

A few studies use distance to identify trip ends (Calabrese et al., 2011). Thakur et al., 

2015 design an algorithm involving ten parameters including speed, time, distance, and 

several cumulative features such as cumulated distance and time, origin and destination 

dwell time to identify truck trips. In one previous work co-authored by the author 

(Zhang et al., 2021), a recursive trip identification algorithm is proposed, which 

incorporates speed, dwell time, and distance between any two continuous GPS points 

of a device. On the one hand, rule-based heuristics are straightforward and easy to be 

applied. On the other hand, the determination of threshold values depends on the 

features of GPS dataset and the study setting. In this study, the trip identification 

algorithm co-authored by the author (Zhang et al., 2021) is applied. That previous work 

focuses on personal trip identification from passive GPS data while in this study the 

algorithm is applied to the truck side for the first time. Moreover, trip identification by 

truck type is investigated. This present study provides a good reference on threshold 

values for different truck types in the same context.   

The second popular type of methods for trip identification from GPS data are 

clustering methods. Representative clustering methods include K-means method, 

Density-based Spatial Clustering of Application with Noise (DBSCAN), and 

Hierarchical Density-Based Spatial Clustering of Applications with Noise 

(HDBSCAN). So far, many variations of density-based clustering methods have been 
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applied to identifying trip ends, such as revised DBSCAN (Palma et al., 2008; Tran et 

al., 2011), T-DBSCAN (Chen et al., 2014), C-DBSCAN (Gong et al., 2015), and 

DBSCAN-TE (Gong et al., 2018). K-means method requires the pre-determination of 

the number of clusters. For a nationwide GPS dataset containing device with a wide 

range of travel distance, it is unreasonable to have such pre-determination. Density-

based clustering methods have a high requirement on the GPS data quality. They 

require high-frequency GPS data (Gong et al., 2015). Missing observations are very 

common in the nationwide truck GPS data leading to a biased spatial distribution. This 

phenomenon greatly undermines the performance of density-based methods (Fu et al., 

2016; Gong et al., 2015).  

Recently, some studies apply machine-learning methods to accomplish trip 

identification. Yang et al., 2021 implement a random forest model to identify trip ends 

using cellular phone and points of interest data. Ferreira et al., 2021 implement a neural 

network method to identify trip ends from GPS data. There also some other studies that 

apply machine-learning methods to extract activities from the GPS data (McNally and 

McGowen, 2006; Montini et al., 2014). The major deficiency is that these machine-

learning methods require a validation dataset, which is not available from the passively 

collected GPS data.  

2.3.4. Traffic Weighting and Expansion Methods 

Since GPS data is just a sample of truck movement, estimating truck travel 

demand from it necessitates a weighting and expansion process. Currently, just a few 

studies discuss how sample truck trips can be expanded to the population. On the 
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passenger side, several weighting techniques are proposed. A state-of-the-practice 

method for weighting personal trips is the penetration rate method, which utilizes the 

population data from the United States Census Bureau. The trip profile from the 

National Household Travel Survey provides insights into the population-level statistics 

about personal trips. Hence, Zhang et al., 2021, design a two-fold process that 

accomplishes the weighting at both the device- and trip-level. However, such weighting 

method is not applicable to the truck trips. The home location of personal trips can be 

retrieved by various home location identification methods so that residential sampling 

rate (i.e. penetration rate) can be imputed to help weight up the sample GPS trips. Since 

each truck GPS device is bundled with a truck, penetration rate weighting method needs 

the dataset of the total number of trucks operating at each area. Unfortunately, these 

data are unavailable. The truck GPS data providers do not have the penetration rate 

either.  

Truck sensor counts data collected by sensors installed on highway network are 

the major ground truth data that can be utilized for weighting and expanding the sample 

GPS truck trips. Current studies of utilizing GPS data to estimate truck travel demand 

are usually conducted by first producing a seed OD matrix from the GPS data and then 

conducting an ODME process to match with the observed truck sensor counts 

(Bernardin et al., 2011; Zanjani et al., 2015; Bernardin et al., 2017). ODME means 

origin-destination matrix estimation. It is a traditional approach that has been 

implemented by transportation researchers and practitioners for a long time. An ODME 

process includes the following steps: 1. Preparing a seed OD matrix; 2. Assigning the 

OD matrix to the road network by traffic assignment models; 3. Adjusting the OD 
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matrix by minimizing the difference between assigned traffic flows and the observed 

traffic counts on the road links; 4. Repeating the previous two steps until the difference 

is reduced to a desired level. This ODME-based weighting method involves traffic 

assignment, which estimates the flows on the road network based on the travel cost 

(usually measured by travel time) estimate of alternative paths that can carry the given 

traffic volume. Various traffic assignments models have been developed for remapping 

the traffic volume. A common and essential data input of traffic assignment models is 

the travel cost profile, which is usually only available for small study areas. No such 

travel cost estimate data exists at the nationwide level. Besides, a traffic assignment 

algorithm is usually based on complicated optimization models. With increasing road 

network size, the problem gets so complicated that convergence may not be achieved. 

A national scale traffic assignment is undoubtedly impossible. To serve the research 

need in this study, a revised ODME process that resolves the traffic assignment 

challenges is needed.  

Some other weighting methods utilizing the traffic sensor counts are discussed 

in the literature, including simple scaling to counts and iterative proportional fitting. 

Simple scaling uses one single factor derived from the difference between sample OD 

and observed traffic count to weight up the sample. This method is too simple to ensure 

the accuracy level. Iterative proportional fitting (IPF) repeatedly adjusts the sample OD 

matrix until the marginal totals are matched with a group of observed traffic counts at 

sensor locations. As additional sensor locations are involved, the problem gets 

increasingly complicated. For a nationwide study case, the number of sensor locations 

is in thousands making the IPF method computationally inapplicable. 
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Chapter 3: Data Description 

The data used in this study are from two major truck GPS data providers in the 

United States, whose data have been actively used by many researchers for either static 

or even dynamic studies. Both datasets have a spatial coverage as high as all fifty states 

and Washington D.C. In a streaming format at several seconds or minutes, hour-of-day, 

day-of-the-week, weekly, monthly and seasonal analysis can be feasible. Both datasets 

are passively collected and contain the basic location information including device ID, 

timestamp, instantaneous speed, latitude, and longitude. The two datasets also differ in 

some aspects. First, dataset I additionally provides the vehicle weight class of each 

truck while dataset II does not. Dataset I’s composition by truck type is displayed in 

Table 1, showing that it mainly consists of light- and medium- duty trucks and a small 

fraction of heavy-duty trucks. In comparison, dataset II mainly consists of heavy-duty 

trucks, as described by data provider. The vehicle classification in this study is for 

grouping dataset II into different truck types. Second, dataset I has some trucks that are 

not consistently observed for technology reasons, which leads the change of device ID 

in the data, but this is not an issue in dataset II. For solving this issue in dataset I, a 

probability-based trip chaining algorithm is applied, which is described in trip 

identification section.  

Particularly for this study, one month of (2020 January) truck GPS data across 

the United States from the two providers are used. One-day data are displayed in Figure 

1 with a zoomed-in portion in New York City. It shows that the data have a very high 

spatial coverage and distribution density. Temporally, dataset I devices are observed 



 

 

33 

 

for 3 days on average and dataset II devices are observed for 12 days on average. The 

maximum observed days are 31 and 29 days respectively for dataset I and II. The 

difference in average observed days is consistent with the domination of the two 

datasets by truck type. In total, there are 9 million trucks with 12 billion GPS logging 

points are used for this study.  

Table 1. Truck type composition in dataset I. 

Truck Type Light weight Medium weight Heavy weight 

Percentage 74.9% 24.6% 0.5% 

 

Figure 1. Example of one-day truck GPS data used for this study. 

For a deeper understanding, some quality metrics are designed and summarized 

in Table 2. These metrics are believed to be important for a data-driven travel pattern 
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analysis. Both datasets are low-frequency with a median value of 1 minute interval and 

the distribution is biased to longer time intervals. On average, dataset I truck is 

observed at 4.7 minute intervals and dataset II truck is observed at 2.2 minute intervals. 

Being low-frequency is very common in the industry for saving costs, which makes it 

more practically meaningful to handle low-frequency GPS data. Although low-

frequency, both datasets have a high number of average daily observations (236 and 

509 for dataset I and II respectively) and a high number of average daily active hours 

(7 and 14 for dataset I and II respectively).  Dataset II is higher because it mainly 

contains heavy trucks.  

Table 2. Quality metrics of raw GPS data. 

Quality 

metrics 

Description Dataset I Dataset II 

Mean Median Mean Median 

Frequency Time interval between two 

consecutive sightings in seconds 

287 60 134 60 

Daily 

frequency 

Average daily number of 

sightings by device 

236 193 509 375 

Active 

hours 

Average daily number of 

observed hours by device 

7 6 14 14 

 

Other than GPS data, some other datasets are used for different purposes. 2020 

truck count data from FHWA’s Travel Monitoring Analysis System (TMAS) are used 

as the ground truth data for weighting the sample GPS data and mitigating the spatial 

bias. The 2020 Freight Analysis Framework (FAF) nationwide State-level OD 

commodity flow data, estimated from 2017 CFS data, are used as a major validation 

source. The 2020 Highway Performance Monitoring System (HPMS) road network is 

used for providing roadway usage regarding functional class. 2020 Smart Location 

Database (SLD) is used for extracting built-in environment features to characterize the 
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typology of truck movements and therefore to serve as an important input for vehicle 

classification. It is an open-source dataset. In this study, the nationwide road network 

is obtained from OpenStreetMap (OSM), which is more refined than that from HPMS. 

Both sample GPS trips and truck count sensors are map-matched to OSM network. 

This is the basis for deploying the proposed iterative reinforcement-learning-based 

ODME method. Point of interest (POI) data are used in the step of trip chaining for 

preparing truck trip profile.  

Since the whole study is built upon the GPS dataset, the quality of the dataset 

should be assured before conducting any analysis. Noises, such as duplicate sightings, 

missing values, invalid values and especially data oscillations, are removed since they 

may distort the analysis. Data preprocessing aims to remove irrelevant, incorrect, and 

invalid data records, and to standardize the dataset with the designed format. This work 

is essential for resolving the errors and noises along with the raw dataset. In detail, the 

data preprocessing proceeds through the following steps. 

 Scrubbing irrelevant data: raw GPS data may contain attributes that are 

irrelevant to the research need in this study, such as geospatial type, probe 

source type, and movement type. These attributes should be dropped.  

 Dropping duplicate sightings: if multiple locations for the same timestamp 

exist, then the sighting with the best accuracy is kept if accuracy measure is 

available. 

 Removing missing values: records with null values should be removed. 
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 Removing invalid sightings: the value range of each attribute is imputed and 

the records with values out of the reasonable value range are removed. For 

example, GPS sightings with latitude and longitude equal to zero should be 

eliminated. The UTC timestamp should be on January 2020.  

 Removing data oscillations: oscillations, also known as data jumps, are 

wrongly reported locations. They may seriously distort the travel features by 

mistakenly showing that a device suddenly jumps to a faraway place. The 

identification and removal of data oscillations requires a reasonable algorithm 

differentiating between data jumps and normal points.  

 Standardizing the datasets: the data are formatted with the following attribute 

names and data types - device_id (string), utc_timestamp, i.e., unix time 

(integer), latitude (float), longitude (float), and raw_speed (float).  

All steps except removing data oscillations are straightforward. The step of 

removing data oscillations is separately discussed in the next section.  
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Chapter 4: Identification and Removal of Data Oscillations 

Data oscillations present wrong or biased mobility patterns. For data driven 

research, identifying and removing data oscillations plays a critical role in the data 

preparation pipeline. As discussed in the literature review, previous studies show 

various limitations and deficiencies. Currently, the pattern-based methods have the 

greatest potential to be quantified for GPS data cleaning in this research. Although they 

are designed for cellular data, which present the ping-pong phenomenon caused by the 

change of cellular towers to which a mobile device connects, the core ideas of these 

methods are of significance. By these methods, data oscillations are defined as points 

showing abnormal movement patterns of location sequences and usually show 

impossibly high travel speeds (Wu et al., 2014; Lovan et al., 2013; Wang & Chen, 

2018; Lee & Hou, 2006). The state-of-the-art method is proposed by Wu et al., 2014, 

who design several heuristics for identifying data oscillations from cellular data. In this 

study, their method is revised and expanded for the application to the nationwide raw 

truck GPS data from the following aspects:   

1. A flexible spatial-temporal formulation is constructed by using adaptive 

instead of static parameters, which includes more cases of data oscillations;  

2. Location uncertainty is reduced by using level-7 geohash zones instead of 

raw latitude and longitude coordinates;  

3. Inspired by “stable period”, the definition of “stable community” and “stable 

zone” is proposed to label the points that are believed to be normal points, 



 

 

38 

 

which is more flexible by building local communities is more reliable by 

additionally considering dwell time and frequency; 

4. More movement patterns of data oscillations are included by additionally 

considering data oscillations that continuously occur one-by-one; 

5. Parameters are chosen through sensitivity tests or empirical experience from 

literature review instead of being arbitrarily decided.  

Data oscillations present unreasonable movements. In order to quantify these 

abnormal movements or reduce location uncertainty, studies usually transform the raw 

latitude and longitude location into clusters (Wang and Chen, 2018). Considering the 

computation cost of spatial clustering, another way of aggregating the location data - 

geohash zone system - is applied, which is generated very fast. Instead of latitude and 

longitude coordinates, a geohash zone represents the position of a GPS sighting. This 

greatly reduces the uncertainty of the GPS points’ locations and serves as the basic unit 

for formulating the movement patterns of data oscillations. Specifically, raw GPS 

sightings are projected to level-7 geohash zones (152.9 meters × 152.4 meters). Level-

6 geohash zones (1.2 kilometers x 609.4 meters) are too large to capture data 

oscillations and level-8 geohash zones (38.2 meters x 19 meters) are unnecessarily 

granular. Hence, the raw GPS trace of each truck vehicle is denoted by a sequence of 

level-7 geohash zones. Abnormal movement patterns are identified from these 

simplified movements and data oscillations are removed accordingly.  
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4.1. Stable Communities and Stable Zones 

A major assumption is proposed that if a vehicle is frequently observed 

(multiple GPS sightings) or is observed long enough (long dwell time) at a location, 

this location is believed to be a true visit. The true here does not refer to a level-7 

geohash zone. Instead, a dynamic community is built to represent a location since 

vehicles are not just staying static at a place and in most cases are moving toward 

further destinations. The community here is a temporary group of continuous sightings 

for a given device during a time period. Several different communities can form for a 

device. Each community grows by including more and more continuous sightings that 

are close enough, i.e. less than 𝑑𝑖𝑠𝑡𝑐 miles between two continuous sightings. Since the 

traces of a device are represented by a sequence of level7 geohash zones, a community 

built upon this is also a group of level-7 geohash zones. Sometimes, a community can 

only contain a single geohash zone including one or multiple GPS points. The value of 

𝑑𝑖𝑠𝑡𝑐 reflects the level of tolerance of data oscillations. For example, data oscillations 

that happen within the range of 𝑑𝑖𝑠𝑡𝑐 are included as a part of a community and may 

not be identified as data oscillations in the end.  

Note that a community could be a group of data oscillations. Based on the 

investigation of the raw sightings, when one data oscillation occurs, additional 

oscillations could occur around the first oscillation. For the purpose of differentiating 

true communities and oscillation communities, the definition of a stable community is 

proposed, which means that if a vehicle presents enough occurrences or dwells long 

enough in a community, this community is believed to be a true visit and is determined 

to be a stable community. All geohash zones included by a stable community are 
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defined as stable zones and all GPS points in a stable community are determined to be 

true visits. Each community has two attributes: frequency and duration. Frequency is 

the total number of sightings and duration is the time interval between the first and the 

last sighting. The threshold of frequency is determined to be 5 occurrences since the 

analysis of the raw sightings shows that the mean value of sightings in each level-7 

geohash zone is 5. The duration threshold is determined to be 300 seconds since it is a 

state-of-the-practice dwell time value used for determining trip stops from GPS data. 

The sensitivity analysis in Figure 2 also shows that the number of identified oscillations 

peaks when the duration threshold value is set as 300 seconds. 

 

Figure 2. Sensitivity analysis of the duration threshold. 

4.2. Bi-level Heuristics for Identifying Data Oscillations 

Based on the definition of stable communities and stable zones, two heuristics 

at zone level and at community level separately are developed to identify data 

oscillations. The inspiration of the heuristics comes from Horn et al., 2014 that data 

oscillation moves to a relative faraway place at an abnormal speed. There are some 

revisions and improvements on the algorithms. First, Horn et al., 2014 uses clusters to 
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construct movement patterns while in this study communities and level-7 geohash 

zones are utilized as the representation of the locations, which is more computationally 

efficient when dealing with large-scale datasets. Second, Horn et al., 2014 uses static 

values of spatial-temporal parameters while in this study the corresponding heuristic is 

designed to use dynamic values. This makes the heuristic more flexible, so as to 

identify more cases of data oscillations. Third, the idea of stable communities and stable 

zones is developed and heuristics are accordingly revised to identify oscillations. Four 

heuristics are designed to identify data oscillations at geohash7 level (Heuristic 1a, 1b) 

and at community level (Heuristic 2a, 2b), which are described as below.  

Heuristic 1a: It is assumed that a vehicle cannot finish a round trip within an 

extremely short time interval. For example, if a vehicle, within 30 seconds, starts from 

a stable level-7 geohash zone and returns to the same level-7 geohash zone that is also 

in stable status, all the middle sightings between these two geohash zones are 

determined as data oscillations, and removed. The threshold of 30 seconds is calculated 

as 𝑡𝑚𝑖𝑛 =  2 ∗ 𝑑𝑖𝑠𝑡𝑐/𝑣𝑚𝑎𝑥, where 𝑑𝑖𝑠𝑡𝑐 = 0.5 miles, 𝑣𝑚𝑎𝑥 = 155/1.3 = 120 𝑚𝑖𝑙/ℎ𝑟. 

𝑑𝑖𝑠𝑡𝑐 is used since the middle geohash7 zone(s) are probably unstable zones, which 

have to be at least 𝑑𝑖𝑠𝑡𝑐  far away. Otherwise, the device is in the same stable 

community as its previous community. 155 miles per hour is the twice of the allowed 

driving speed (Horn et al., 2014). Since the geodesic distance instead of road network 

distance is used here, a detour factor of 1.3 is used for making up for the difference.  

Heuristic 1b: Considering that the GPS data are infrequent in some cases, it 

might be too demanding to satisfy the detection criteria mentioned above. Thus, a 
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supplementary check is conducted. It is assumed that a vehicle cannot move to a 

faraway place at an abnormally high speed for ground transportation. For any pair of 

two consecutive level-7 geohash zones, if one is stable while the other is unstable, the 

unstable zone is investigated to see if any oscillation exists. For example, if the distance 

between the two zones exceeds 5 miles and the time interval between the two zones is 

less than 2.5 minutes, then all sightings in the unstable zone are determined to be data 

oscillations and removed. Instead of a single speed parameter, distance and time 

interval are used, because drifting GPS points are common which may show very high 

speed but are actually not true data oscillations. These drifting points do not have bad 

effects on the inferences as data oscillations. Wu et al., 2014 exemplify this heuristic 

by using 5 km and 1 minute for cellular data, which is too high for GPS data. Here, the 

distance threshold of 5 miles and the time threshold of 2.5 minutes are arbitrarily 

determined. The corresponding speed is 120 miles per hour, which is the maximum 

allowed speed with the detour factor considered. 

Heuristic 2a: the oscillations considered here are those that are geometrically 

obvious. Any sequence of three consecutive communities of a device can form a 

triangle. The distance and speed between communities are checked against two 

conditions as shown by equations (1) & (2).  

𝑣1−2 ∗ 𝑣2−3 > 155 ∗ 155 (1) 

𝑑𝑖𝑠𝑡1−3 < 0.25 ∗ min(𝑑𝑖𝑠𝑡1−2, 𝑑𝑖𝑠𝑡2−3) (2) 
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where 𝑣1−2 and 𝑑𝑖𝑠𝑡1−2 are the speed and the distance respectively from the first 

community to the second community; similarly, 𝑣2−3 and 𝑑𝑖𝑠𝑡2−3 are the speed and 

the distance from the second community to the third community; 𝑑𝑖𝑠𝑡1−3 is the 

distance from the first community and the third community. All GPS points in the 

middle community are probably oscillations and are removed.  

Heuristic 2b: sometimes, such oscillations as described by heuristic 3 can 

continuously occur. When there are multiple continuous such data oscillations, true 

oscillations must be decided. Starting from the first community, all such communities 

satisfying the two conditions above are labeled with either an odd or an even position 

number. Either odd or even communities are removed. It is assumed that the 

communities with shorter dwell times are the true oscillations and are removed. If the 

odd and even communities have the same dwell time, either one is removed.  

4.3. Results 

The four heuristics define four types of data oscillations. The percentage of data 

oscillations by each type is summarized in Table 3. After data cleaning, 2.4% of data 

points removed.  

Table 3. Percentage of identified data oscillations by types. 

Data Oscillation Types Percentage Out of All Points 

Type 1a 0.00007% 

Type 1b 0.00042% 

Type 2a 2.38288% 

Type 2b 0.01972% 
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Sum 2.40309% 

 

The proposed heuristics can be applied to the data oscillation removal of not 

only the truck GPS data but also other types of location data, such as mobile location 

data collected by RFID, Wi-Fi, cellular tower, Bluetooth, GPS, and LBS (location 

based service). In the transportation field, another major application of the location data 

is in passenger travel behavior analysis.  
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Chapter 5: Vehicle Type Classification 

The reasons for conducting vehicle type classification in this study is for the 

bias analysis of vehicle type composition and for the differentiated parameter 

specification of the trip identification algorithm by weight classes. First, GPS data are 

a sample from the real world. Various biases can exist. Vehicle type bias is one of the 

major biases since the GPS dataset is usually multi-sourced from various truck 

companies. Dataset I GPS data is collected from private cars and commercial vehicles. 

Dataset II GPS data mainly contain heavy-duty trucking fleets. Both datasets I and II 

are utilized in this study for more complete truck mobility information. The vehicle 

type analysis in this study not only serves as the basics of deriving national truck travel 

demand at population level but also provides insights into other truck-related studies 

by truck types, such as truck travel distance analysis and truck parking analysis. 

Ignoring the unbalanced feature of the dataset would lead to wrong and biased travel 

statistics. In this study, a weighting process specifically for vehicle types is conducted 

later to produce representative results. Second, vehicle type classification is done for a 

better deployment of trip identification algorithm. The trip identification algorithm 

utilized in this study is a trip-end-based algorithm relying on a set of spatial-temporal 

parameters. Considering that vehicles of different weight classes present different 

spatial-temporal behavioral features, the input parameters, i.e., a set of time, distance, 

and speed thresholds, of the algorithm should be investigated for better performance. 

For example, light trucks mainly provide delivery or distribution services in nearby 

areas. They may have more quick stops due to the traffic signals or frequent short-term 

congestions, lower cruising speeds, and a shorter headway between vehicles than long-
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haul heavy trucks. The loading and unloading time is different between some heavy 

trucks and light trucks. Hence, it is important to discuss the parameter values of the trip 

identification algorithm for different truck types.  

5.1. Methodology 

As detailed in the literature review, a Random Forest (RF) algorithm is selected 

for classifying vehicles. It is a powerful classifier with high accuracy in various 

classification problems. It yields the labeling results based on an ensemble of decision 

trees. The theory behind this is ensemble learning, which utilizes the results of multiple 

models. It proves to produce more accurate predictions than any single model 

(Fawagreh et al., 2014). Bootstrap Aggregation / Aggregating, also called as Bagging, 

is an ensemble machine learning algorithm. Random forest is a type of Bootstrap 

Aggregation algorithm. Like the general idea of Bootstrap Aggregation, it first 

randomly selects sample sets with replacement (step 1); then each sample set is used 

for modeling by a decision tree (step 2); lastly, the predictions of all decision trees are 

aggregated by a voting process and the prediction with the highest voting score is 

selected as the final prediction (step 3). It is different from the general Bootstrap 

Aggregation methods since it additionally applies feature bagging when modeling 

decision trees. Only a limited number of features can be used for each decision tree 

modeling, to avoid building trees that are similar to each other. The feature bagging 

process and the bootstrap sampling reduces the dependence between the decision trees. 

Random forest is much more robust and stable than a decision tree. With random forest, 

the variance of decision tree models is reduced by randomly selecting the input data of 

each decision tree in a bootstrapping way and by averaging the predictions of all 
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independent models. With so many different and highly uncorrelated decision trees 

built in a random forest, the overfitting which is concerning in a single decision tree is 

usually not a problem in a random forest. Additionally, random forest runs very fast 

since all decision trees are modelled in parallel. The details of each step are described 

as follows.   

Step 1: constructing sub-datasets by bootstrapping. Bootstrap is a common 

statistical method for making an estimate of a population by averaging the estimates 

from multiple small data samples in such a way that these small data samples are 

constructed by random sampling with replacement. With replacement, each selection 

of samples is fully random. Hence, each decision tree modeling is fully independent 

from others and the prediction accuracy is increased.  

Step 2: modeling by decision trees. A decision tree consists of decision nodes 

(white solid circles), branches (arrows connected two nodes), and leaf nodes (black 

solid circles). The first decision node (e.g. X1 < alpha) is also called as root node. At 

each decision node, one feature is selected and checked against a condition. The feature 

can be continuous or binary. At each decision node, there can be two or more branches. 

The same feature can be repeatedly selected by different decision nodes. For a 

classification problem using a decision tree, the feature selected at each decision node 

is decided by the information gain (IG). It measures the amount of information that a 

feature provides about a category. It is computed by the change of entropy supposing 

the dataset is partitioned by a feature. By splitting, the dataset is divided into two or 

more sub-datasets. For each sub-dataset, an entropy value can be calculated. Suppose 
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that the dataset contains 𝑛 categories in total and, for any sub-dataset 𝑗 from 𝑙 total sub-

datasets, the probability of selecting a sample from category 𝑖  from 𝑛  possible 

categories is 𝑝𝑖. Then the entropy, as a randomness measurement that quantifies the 

impurity of a sub-dataset, is calculated by 𝐸𝑗=1,2,..,𝑚 =  − ∑ 𝑝𝑖𝑙𝑜𝑔2
𝑝𝑖𝑛

𝑖=1 . The impurity 

of a decision node is measured by the weighted entropy from all sub-datasets: 𝐸𝑤 =

 ∑ 𝑤𝑗𝐸𝑗
𝑙
𝑗=1  . The number of samples of each sub-dataset determines the weights: 𝑤𝑗 =

 𝑛𝑗/(𝑛1 + 𝑛2 + ⋯ + 𝑛𝑗 + ⋯ + 𝑛𝑙) . Entropy ranges from 0 to 1. If the dataset is 

balanced with equal numbers of samples from different categories, the entropy is 1, 

meaning the highest impurity; if the dataset only has one category, the entropy is 0, 

meaning complete purity. The initial entropy of a tree is 1. With splitting by a feature, 

the entropy change (i.e. entropy loss) is defined as the information gain. A high 

information gain is desired so that the tree’s entropy is highly reduced. Finally, an 

optimal status of the tree’s splitting is reached when the weighted entropy of the tree is 

very close to zero. At the status, each sub-dataset is very pure, with most of the samples 

belonging to a single category. The tree is always branched by a feature that has the 

most entropy change / loss (i.e. the largest information gain) at the moment. Thus, the 

order of features selected by the decision nodes shows their relative importance with 

regards to information gain. In other words, the entire input dataset for a given decision 

tree is subdivided by multiple sets of branches with each set starting from the root node 

to a leaf node. The depth of a decision tree is the number of branches along with the 

longest path (i.e. the largest set of branches) and the size of a decision tree is the number 

of nodes in the tree. This process of subdividing the input dataset and growing a set of 

branches is known as binary recursive partitioning. It continuously expands the tree 
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until the data within each subdivided data space is homogenous enough (e.g. all data 

points in the current data space have the same category) or some other criteria (e.g. the 

depth of the tree is limited) is satisfied. Then a leaf node is reached. A leaf node denotes 

a classification result decided by a data space refined by a set of branches. Given an 

unlabeled data input, the data space that it falls into determines its classification label. 

In a random forest, there are a number of decision trees that are independently built in 

parallel. Each decision tree is built with a limited number of features, which is called 

feature bagging. Two major parameters in this step are the number of features for each 

decision tree and the number of decision trees. A rule-of-thumb is that the number of 

features that can be used for splitting in a decision tree is decided by 𝑚 =  √𝑝, where 

𝑝  is the number of available input features. Random forest works better if the 

correlation between the decision trees is low. For this purpose, the feature that performs 

well will be internationally avoided for other trees. The second parameter can be 

decided based on test results. 

Step 3: aggregating the predictions of all decision tree models by a voting process. A 

commonly used voting method for a classification problem is the majority method.  

5.2. Data Segmentation 

Although on average there is a clear difference between the two datasets, they 

have trucks that share similar GPS data qualities. This occurs because both datasets are 

passively-collected and mixed GPS data collection techniques are used. In other words, 

even within the same dataset (either I or II), trucks differ from each other regarding the 

GPS data quality. For a data-driven study, it is important to consider the disparities 
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within the raw data. Data segmentation through the K-means clustering method is 

therefore deployed. Input features are listed in the Table 4. In reality, each truck is in 

either static or moving status. Passive truck GPS data may not capture both states. To 

be usable for deriving trips, a truck should provide observations at least in moving 

status. Trucks that only provide static observations are removed. The trucks that 

provide static points in addition to moving points are also useful since in such case 

static points become meaningful for indicating the stop status. Therefore, two cases are 

jointly considered: (1) all observations, whether static or moving, are considered; (2) 

only moving observations are considered. 

Table 4. Data features used for data segmentation. 

Data 

features 

Statistics of 

logging 

frequency 

Mean, 25, 50, 75, and 95 percentile of the frequency: 

𝑓𝑎𝑣𝑔,𝑗 , 𝑓𝑝25,𝑗 , 𝑓𝑝50,𝑗 , 𝑓𝑝75,𝑗 , 𝑓𝑝95,𝑗 . Frequency is the time 

interval between two consecutive points: 𝑓𝑖 =  ∆𝑡𝑖−1,𝑖 . 𝑗 

denotes the two cases above.  

Daily frequency Average daily number of observations for each device: 

𝑜𝑏𝑠̅̅ ̅̅ ̅
𝑑𝑦,𝑗.  

Hourly 

frequency 

Average hourly (date and hour) number of observations 

for each device: : 𝑜𝑏𝑠̅̅ ̅̅ ̅
𝑑𝑦ℎ𝑟,𝑗 

For determining the optimal way of clustering, eight experiments (k=2, 3, …, 

9) are conducted. A Silhouette Score (Rousseeuw, 1987) is calculated to measure the 

clustering performance, i.e., how the data points in a cluster are similar to each other 

and how they are different from points in another cluster. The changes of Silhouette 

Score are plotted in Figure 3, along with which two more groups corresponding to only 

case (1) and only case (2), respectively, are added for comparison. Figure 3 shows that 

jointly considering (1) and (2) having four clusters yields a much-higher-than-others 

score, as shown by the line and the dark bar plots. This optimal score is very close to 1 
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indicating an excellent clustering result. In comparison, if only considering (1) or (2), 

having two clusters is sufficient.  

 
Figure 3. Experiments on K-means clustering. 

 

After clustering by 𝑘 = 4, the distribution by cluster, data source, and truck 

type, is summarized in Table 5. It shows that three clusters (0, 1, 2) contain trucks from 

both datasets and cluster 3 only has trucks from dataset II. All trucks within the same 

cluster should have similar data features. Therefore, in each cluster, dataset I trucks are 

used for training a RF model as described in the next section. Then the trained model 

is applied to dataset II for truck classification. For cluster 2 and 3, dataset I does not 

provide sufficient training data, so the RF classification is not applied to the 

corresponding dataset II. This is a negligible data loss (0.0031%). 

Table 5. Distribution of trucks by cluster, data source, and truck type. 

Cluster Data source Truck type Proportion Sum 

0 
Dataset I Heavy 0.4377% 

99.7306% 
Dataset I Light-medium 83.5331% 
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Dataset II N/A 15.7597% 

1 

Dataset I Heavy 0.0063% 

0.2637% Dataset I Light-medium 0.1545% 

Dataset II N/A 0.1029% 

2 

Dataset I Heavy 0.0001% 

0.0056% Dataset I Light-medium 0.0025% 

Dataset II N/A 0.0030% 

3 Dataset II N/A 0.0001% 0.0001% 

  

5.3. Implementation and Results 

Four groups of features are explored in this study and summarized in Table 6. 

The first group includes cruising features that prove to be significant in current studies, 

including speed, acceleration, and heading direction change. Heading direction is 

usually actively collected while passive GPS data do not include this information. 

Instead of heading direction, angular change and speed are explored. The second group 

includes newly designed activity features including mobility radius and nighttime 

factor. Light trucks mainly serve areas within 50 miles while heavy trucks may serve 

area 200 miles away. Moreover, as discussed by Ma et al., 2012, light trucks are more 

active during daytime while heavy trucks are more active during nighttime. The 

distribution plot of average freight weight per truck by hour of the day in their research 

shows that 7am-5pm is the period with the lowest average weight per truck. Hence, a 

nighttime factor is designed. The third group includes built-in environment factors. It 

is assumed that there is a difference in the land use pattern between truck types. For 

instance, local trucks are mainly active in urban areas while heavy trucks may spend 

much more time on less-populated area. Built-in environment features – street 

intersection density and transit frequency are therefore incorporated. Correlation 
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analysis in Appendix A shows that many features in the cruising group are highly 

correlated. For lower feature redundancy, lower dimensionality, and higher 

interpretability, features in cruising group are sub-grouped and for each group Principal 

Component Analysis (PCA) (Jolliffe, 2002) is implemented to produce two principal 

components. Not every feature is necessarily useful or informative. PCA reduces data 

noise while keeping the maximum information (feature variance). For each subgroup, 

the principal components with at least 10% explained variance are selected as the input 

feature of RF model. For comparison, the union of such principal components from the 

two clusters is finally used. In total, 15 principal components are used, which are 

denoted as 𝑝𝑐𝑗_𝑔𝑘 (the 1st, 2nd, …, jth principal component from group 𝑔𝑘). The PCA 

report of selected principal components is in the Appendix B, which contains the 

percentage of explained variance and loading matrix by each principal components. 

Table 6. A summary of input features. 

Group Input feature Description Sub-group 

Cruising 

Statistics of interval 

speed 

Mean, 25, 50, 75, and 95 percentile of the interval 

speed: �̃�𝑎𝑣𝑔, �̃�𝑝25, �̃�𝑝50, �̃�𝑝75, �̃�𝑝95. Interval speed is 

the average speed between the current point and its 

previous point: �̃�𝑖 =  
∆𝑑𝑖−1,𝑖

∆𝑡𝑖−1,𝑖
 

𝑔1: features 

related to 

speed 

Statistics of point 

speed 

Mean, 25, 50, 75, and 95 percentile of the point 

speed: �̇�𝑎𝑣𝑔, �̇�𝑝25, �̇�𝑝50, �̇�𝑝75, �̇�𝑝95. Point speed is an 

attribute of the raw data.  

 

Statistics of 

acceleration based 

on interval speed 

Mean, 25, 50, 75, and 95 percentile of the 

acceleration based on interval speed: �̃�𝑎𝑣𝑔, �̃�𝑝25, 

�̃�𝑝50, �̃�𝑝75, �̃�𝑝95. Acceleration is defined as the 

absolute value of the difference in interval speed 

divided by the time interval: �̃�𝑖 = 
�̃�𝑖−�̃�𝑖−1

∆𝑡𝑖−1,𝑖
 𝑔2: features 

related to 

acceleration 
Statistics of 

acceleration based 

on point speed 

Mean, 25, 50, 75, and 95 percentile of the 

acceleration based on point speed: �̇�𝑎𝑣𝑔, �̇�𝑝25, �̇�𝑝50, 

�̇�𝑝75, �̇�𝑝95. Acceleration is defined as the absolute 

value of the difference in interval speed divided by 

the time interval: �̇�𝑖 = 
�̇�𝑖−�̇�𝑖−1

∆𝑡𝑖−1,𝑖
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Statistics of the 

difference in 

interval-speed-based 

acceleration 

Mean, 25, 50, 75, and 95 percentile of the difference 

in acceleration based on interval speed: �̃�′
𝑎𝑣𝑔, �̃�′

𝑝25, 

�̃�′
𝑝50, �̃�′

𝑝75, �̃�′
𝑝95. Acceleration is defined as the 

absolute value of the difference in interval speed 

divided by the time interval: �̃�′
𝑖 = 

�̃�𝑖−�̃�𝑖−1

∆𝑡𝑖−1,𝑖
 

𝑔3: features 

related to 

the 

difference of 

acceleration 
Statistics of the 

difference of point-

speed-based 

acceleration 

Mean, 25, 50, 75, and 95 percentile of the difference 

in acceleration based on point speed: �̇�′
𝑎𝑣𝑔, �̇�′

𝑝25, 

�̇�′
𝑝50, �̇�′

𝑝75, �̇�𝑝95. Acceleration is defined as the 

absolute value of the difference in point speed 

divided by the time interval: �̇�′
𝑖 = 

�̇�𝑖−�̇�𝑖−1

∆𝑡𝑖−1,𝑖
 

Statistics of angular 

change 

Mean, 25, 50, 75, and 95 percentile of the absolute 

angular change: ∆𝜃𝑎𝑣𝑔, ∆𝜃𝑝25, ∆𝜃𝑝50, ∆𝜃𝑝75, ∆𝜃𝑝95. 

Angular change is measured by the absolute angle 

between two lines – one is from the current point to 

the next point, the other is from previous point to the 

current point: ∆𝜃𝑖−1,𝑖 

𝑔4: features 

related to 

the angular 

change 

Statistics of angular 

speed 

Mean, 25, 50, 75, and 95 percentile of the angular 

speed: 𝜔𝑎𝑣𝑔, 𝜔𝑝25, 𝜔𝑝50, 𝜔𝑝75, 𝜔𝑝95. Angular speed 

is defined as: 𝜔𝑖 =  
∆𝜃𝑖−1,𝑖

∆𝑡𝑖−1,𝑖
 

𝑔5: features 

related to 

angular 

speed 

Activity 

Mobility radius The maximum distance from the center point: 𝑟 

N/A 

Nighttime factor 

Percentage of GPS records being observed during 

nighttime (the time except 7am-5pm) in moving 

status (non-zero point speed): 𝑛𝑡𝑓 =  ∑ 𝑤𝑛𝐷3𝐵𝑛
𝑁
𝑛 .  

Built-in 

environ

ment 

Street intersection 

density 

Weighted mean of D3B (Street intersection density 

weighted, auto-oriented intersections eliminated) by 

census block group (CBG): 𝑑3𝑏 = ∑ 𝑤𝑛𝐷3𝐵𝑛
𝑁
𝑛 .  

Transit frequency 
Average D4E (Aggregate frequency of transit service 

per capita) by CBG: 𝑑4𝑒 = ∑ 𝑤𝑛𝐷4𝐸𝑛
𝑁
𝑛 . 

For each cluster, balanced data from dataset I with 50% light-medium trucks 

and 50% heavy trucks are used as RF input with a training-testing split ratio of 7:3. A 

five-fold cross validation method is applied to avoid overfitting and ensure the 

generalization ability of the trained model. Three hyperparameters of the RF model are 

considered: ntree (number of trees), max_depth (maximum depth of the tree), and 

max_features (number of features considered at each leaf). Based on a rule of thumb, 

max_features is set as the square root of number of input features. Then, ntree and 

max_depth are determined by experiments. In the model, the heavy type is labeled as 

positive. Considering the relatively limited volume of heavy trucks and the fact that 
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dataset II is dominated by heavy trucks, a Type II error (false negative) should be as 

rare as possible, and so a high recall score is preferred. Besides, sensitivity analysis is 

conducted to show how different hyperparameters influence the prediction result. For 

each experiment, the input is a set of hyperparameter values for cluster 0 and 1, and 

there are two outputs: (1) the recall score based on testing data; (2) the percentage of 

predicted light-medium trucks in dataset II. The results of experiments are presented in 

Figure 4, in which a two-period moving average trending line of (2) is added. The black 

dotted trending line clearly shows that experiment 12 is the “elbow” point with 5.50% 

predicted light-medium trucks. And as the green line shows, experiment 12 has the 

second highest recall score, i.e. 94.44%, which is just slightly lower than the highest 

recall score of 95.00%. A ratio of 5.5% is a reasonable value since it is similar to an 

estimate around 5% of non-heavy trucks in dataset II in another study (Zanjani et al., 

2015) using a different method. Therefore, the set of hyperparameters in experiment 12 

is finally adopted.  

The hyperparameter value and confusion matrix is summarized in Table 7. The 

confusion matrix demonstrates model performance on testing data. With exactly the 

same input features, the RF model of cluster 0 clearly works better. As previously 

discussed, cluster 0 corresponds to high-frequency data while cluster 1 corresponds to 

low-frequency data. This might be the reason for the different RF model performances.  
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Figure 4. Experiments on hyperparameters of RF model. 

Table 7. RF model hyperparameter and confusion matrix. 

Cluster ntree 
max_ 

depth 

max_ 

features 

Confusion 

matrix 

Predictions 

Light-

medium 
Heavy 

0 40 10 4 

True 

Light-

medium 

96.5%(303) 3.5%(11) 

Heavy 2.1%(6) 97.9%(280) 

1 60 20 4 

Light-

medium 
87.3%(69) 12.7%(10) 

Heavy 18.9%(14) 81.1%(60) 

Furthermore, the SVM model is set as the baseline model. It is compared with 

the RF model from four aspects: Receiver Operating Characteristic (ROC) curve and 

Area under the ROC curve (AUC), recall score, accuracy, and precision as shown in 

Figure 5 and Table 8. All these measures are computed from the testing data. First, the 

five-fold cross validation in Figures 5(a)-(d) shows that the ROC curve and AUC value 

of each fold are very similar to each other, which means that there is no overfitting 

issue and the trained model has a high generalization. Second, Figures 5(a) & (c) show 

that RF has very good classification performance with a high AUC value. Third, RF is 

not inferior to SVM and actually performs slightly better than SVM. Regarding recall 
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score, accuracy, and precision, RF yields similar result as SVM for cluster 0 (high-

frequency data) while it is obviously better than SVM for cluster 1(low-frequency 

data). In the literature, the SVM developed by Sun and Ban, 2013 has 0.958 accuracy 

in classifying vehicles from GPS data. The deep learning model of Simoncini et al., 

2018 has an AUC value of 0.939 for low-frequency GPS data. With SVM as baseline 

model, this study demonstrates the high capability of RF model for conducting GPS-

based vehicle classification in both high- and low- frequency scenarios.  

 
Figure 5. Five-fold ROC curves for RF and SVM. 

Table 8. Accuracy measures of RF and SVM. 

Cluster 
RF SVM 

Recall Accuracy Precision Recall Accuracy Precision 

0 0.9790 0.9717 0.9622 0.9790 0.9783 0.9756 

1 0.8108 0.8431 0.8571 0.7568 0.7712 0.7671 



 

 

58 

 

Although the same set of input features is used for both clusters, the RF 

performance varies greatly. It is important to understand how each input feature 

contributes to the prediction in these two different scenarios. Figure 6 shows the 

importance measure of input features. For cluster 0, i.e., high-frequency GPS data, 

acceleration-related features (𝑔2) and difference-in-acceleration-related features (𝑔3) 

contribute most. 𝑝𝑐1_𝑔2 ranks 1st and 𝑝𝑐1_𝑔3 ranks 2nd.. Sun and Ban, 2013 also finds 

that acceleration-related features are very predictive. According to the loading matrix, 

𝑝𝑐1_𝑔2 mainly accounts for the variance of the mean, 75th, and 95th percentile of point-

speed-based acceleration (�̇�𝑎𝑣𝑔, �̇�𝑝75, �̇�𝑝95) and 𝑝𝑐1_𝑔3 mainly accounts for the mean 

of difference in point-speed-based acceleration ( �̇�′
𝑝50 , �̇�′

𝑝75 , �̇�′
𝑎𝑣𝑔 ). The 3rd 

important feature - 𝑝𝑐1_𝑔5 – almost equally accounts for the variance of 𝜔𝑎𝑣𝑔, 𝜔𝑝25, 

𝜔𝑝50 , 𝜔𝑝75 , 𝜔𝑝95  regarding angular speed. In the literature, the change of 

instantaneous heading direction is set as a predictor, which is actively collected. This 

study demonstrates that the speed of heading direction change based on two 

consecutive GPS points is also predictive. For passively collected GPS data, this is a 

good substitution for instantaneous heading change speed. In a high-frequency 

scenario, these mentioned features are highly recommended for RF model inputs. It is 

noted that features derived from interval speed do not show much importance so far 

and the four newly proposed features based on activity space and built-in environment 

are also relatively weak.  

However, for cluster 1, i.e., low-frequency scenario, the three new features - 

transit frequency ( 𝑑4𝑒 ), mobility radius ( 𝑟 ), and nighttime factor ( 𝑛𝑡𝑓 ), play a 
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significant role. Since public transit usage and urban area size are highly correlated 

(Taylor et al., 2009), it is not surprising that transit frequency, as an indicator of 

urbanization degree of a truck’s on-duty traces, ranks 1st. Yet, its importance is very 

similar to the second feature - 𝑝𝑐1_𝑔2. Mobility radius and nighttime factor also exhibit 

their power of discriminating light-medium and heavy trucks with a rank of 4th and 7th 

respectively. Compared to these features derived from interval speed, the newly 

proposed features are less sensitive to data frequency and therefore more stable and 

reliable. Since a majority of cruising features is computed from two consecutive GPS 

points, high- and low- frequency GPS data present different patterns of such cruising 

features. Accordingly, the PCA result differs between cluster 0 and 1. Taking 𝑝𝑐1_𝑔2 

as an instance, in addition to three aforementioned features (�̇�𝑎𝑣𝑔, �̇�𝑝75, and �̇�𝑝95), the 

mean and 95th percentile of interval-speed-based acceleration (�̃�𝑎𝑣𝑔 and �̃�𝑝95) become 

important in cluster 1 as shown by loading matrix. In the low-frequency scenario, 

𝑝𝑐2_𝑔3 ranks 3rd, which mainly accounts for four features regarding the difference in 

interval-speed-based acceleration (�̃�′
𝑝25, �̃�′

𝑝50, �̃�′
𝑝75, and �̃�′

𝑝95) and three features 

regarding the difference in point-speed-based acceleration (�̇�′
𝑝75, �̇�′

𝑝95, and �̇�′
𝑎𝑣𝑔). In 

the high-frequency scenario, features derived from interval speed do not show much 

importance but some of them become highly important in the low-frequency scenario. 

The lower the frequency, the more difference there is between interval speed and point 

speed. As Simoncini et al., 2016 described, point speed is discriminative and sometimes 

noisy while interval speed is smooth and can be more reliable especially for low-

frequency data. For the 5th and 6th important features of both clusters (𝑝𝑐2_𝑔2 and 
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𝑝𝑐4_𝑔2 ), interval-speed-based acceleration features also become significant. All 

important features mentioned so far are highlighted in the PCA report. 

 

 
Figure 6. Feature importance measure. 

For the three new important features, the marginal effect on the probability of 

being predicted as a heavy truck is demonstrated in Figure 7. Figure 7(a) shows that 

transit frequency positively influences the probability of being a heavy truck. Transit 

frequency denotes the urbanization degree of a truck’s trajectories. It conforms to the 

fact that light-medium trucks have more trajectories in urban areas while heavy truck 

have more trajectories in less urban areas, such as inter-state highways. Figure 7 (b) 

shows that at first there is an increasing trend of being predicted as heavy with the 

increase of mobility radius and later on the probability flattens and is not much sensitive 

to the mobility radius. This makes sense since the threshold between light-medium and 

heavy trucks happens in the earlier stage. This threshold seems to be small. There are 
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three reasons. First, it is the radius of activity space. Second, Euclidean distance, 

instead of cumulative travel distance on roadway, is used. Trucks with multiple stops 

can have a very high detour factor. Third, passive GPS data have missing observations, 

so the most faraway stop may not be captured. Figure 7 (c) shows that the relative active 

strength during nighttime has a positive influence on being classified as a heavy truck. 

Overall, Figure 7 shows the sensitivity of these three new features. These features are 

less sensitive to data frequency, and thus can be applied to various GPS datasets.   
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Figure 7. Partial dependence plots. 
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Chapter 6: Truck Trip Profile Preparation 

6.1. Methodology  

As discussed in literature review, state-of-the-practice methods for identifying 

trips from passively collected GPS data are threshold-based methods. Spatial-temporal 

parameters such as speed, dwell time, and distance are usually considered when 

designing the algorithm. In comparison to other types of methods such as clustering-

based methods and machine learning methods, the threshold-based methods are more 

suitable for the application in this study for the following reasons. First, trucks of 

different weight classes show obviously different mobility patterns. An algorithm such 

as a threshold-based one has the potential of treating such differences by setting 

different threshold values for the spatial-temporal parameters. However, clustering-

based methods and machine learning methods do not have such parameters that can 

specifically differentiate the trucks of different weight classes. Although both 

threshold-based and clustering-based methods necessitate predefined parameters, 

threshold-based methods have empirical references from the mobility patterns of truck 

types while clustering-based methods do not have such references. By applying a 

threshold-based method, the mobility differences are elaborated in this study to provide 

guidance for setting different threshold values for different truck types, which is 

missing in current applications. Second, machine-learning methods need validation 

dataset, which is unavailable for passively collected truck GPS data. Third, threshold-

based methods identify the trips to the largest extent without data loss while clustering-

based methods may identify some geographically independent points as outliers. For a 
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low-frequency GPS dataset, such geographically independent points (relatively more 

geographically isolated from other points) probably constitute a significant fraction, 

which should not be omitted.  

There have been numerous threshold-based methods for identifying trips from 

GPS data, which have been performing well and have been widely applied in various 

studies. The major effort in this section is not to propose a different method. Instead, a 

threshold-based method is applied and its performance is investigated in the two 

scenarios: light-medium truck and heavy truck. In the literature, most applications of 

threshold-based algorithm arbitrarily decide the threshold values and no study has 

discussed how different threshold values will influence the model result. This study not 

only conducts many experiments on how identification results change with different 

sets of threshold values, but also compares the two scenarios by truck type. This is the 

major contribution of this chapter to the current research.  

A recursive threshold-based algorithm for identifying trips from mobile 

location data is applied. The algorithm is developed from a previous work (Zhang et 

al., 2021) co-authored by the author, in which the algorithm is applied to passive GPS 

data to identify personal trips in multiple travel modes. In the present study, this 

algorithm is applied to identify truck trips from passive GPS data. This algorithm 

jointly considers the spatial-temporal relation between the current point, its previous 

point and its next point based on speed, distance, and dwell time. The algorithm’s 

results fit well the passively collected location data by identifying trips in a 

conservative way with consideration of the missing points and low frequency. The 
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algorithm also has high applicability to passive truck GPS data. First, passive truck 

GPS data share very similar characteristics with passive passenger GPS data. Second, 

truck GPS data are less complicated and less noisy than passenger GPS data, since only 

a driving mode is involved. This study extends the application of this previously 

developed algorithm to the identification of truck trips. Moreover, parameter 

exploration by truck type is conducted. Light-medium and heavy trucks show 

obviously different spatial-temporal features. Such a difference and the sensitivity of 

parameters to this difference is explored in this study. Since dataset I has trip profiles, 

this algorithm is only applied to dataset II.  

A brief description of the algorithm is as follows. The algorithm is applied at 

the truck level. Given a truck, all of its GPS points are ordered in time sequence with a 

default trip ID - 0 (meaning static status not belonging to any trip). Then the algorithm 

locates the first trip start point and checks all the following points. Each point remains 

in the default static status unless it is identified as (a) starting a new trip or (b) belonging 

to the same trip as its previous point. For each GPS point, the speed, distance, and time 

interval from its previous point (“speed from”, “distance from”, and “time from”) or to 

its next point (“speed to”) are used for deciding the status. Detailed conditions for 

updating the default static status to (a) or (b) are summarized below and plotted in 

Figure 8. The trip identification algorithm may identify some short truck trips that occur 

within a large establishment. Such short trips (e.g. less than 300 meters) are not useful 

and, hence, are removed. 
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(a) Starting a new trip: under one of the three conditions: (1) this current point is 

the first point. (2) its previous point retains the default static status. (3) its 

previous point is on a trip but this current point does not belong to the same 

trip as its previous point, if “speed to” >= speed threshold (s), this current 

point is labeled as the first point on a trip and is updated with a new trip ID; 

(b) Belonging to the same trip as its previous point: under the condition that its 

previous point is already on a trip, there are two cases: (1) if “speed from” >= 

s, this current point belongs to the same trip as its previous point; (2) if “speed 

from” < s, “distance from” < distance threshold (d), and cumulative “time 

from” < time threshold (t), this current point is also identified to be on the 

same trip as its previous point. For both cases, this current point is updated 

with the same trip ID as its previous point. It should be noted that for case 2, if 

“speed from” < s is satisfied while others are not meet, this current point is 

further checked to see if it starts a new trip, i.e. status (a). 
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Figure 8. Flow chart of trip identification algorithm. 

6.2. Specification of the Parameters 

Although current studies use different threshold values when identifying trips 

from GPS data, they are usually arbitrarily decided or referenced from existing 

practices. In this study, comprehensive parameter tests are conducted to present the 

sensitivity of threshold values in different scenarios, i.e., light-medium versus heavy 

weight trucks, as presented in Figure 9. The 2020 FAF OD freight tonnage data by 

truck at the state level are used for Pearson correlation with the sample OD truck traffic 

aggregated from each parameter test result. On the one hand, a high Pearson’s r is 

expected considering the similarity between truck travel flow and truck freight flow. 

On the other hand, FAF data have some deficiencies. First, 2020 FAF dataset is not 

ground truth; instead it is a forecasted product based on 2017 CFS and some other 

ancillary data. Second, FAF truck data mainly account for intercounty commodity flow. 

These intracounty flows that are usually under 50 miles are a data gap (FHWA, 2004, 
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Issues for Improving the FAF). Third, for light-medium- versus heavy- weight 

comparison in Figure 9, corresponding FAF data based on average weighted distance 

of shipment (< 100 miles and >= 100 miles respectively) are used. Such correspondence 

between truck weight class and shipment distance may introduce some error. 

Nevertheless, FAF is the best available data source for nationwide OD truck flow 

validation or calibration. Since the clustering process may bring about unmeasurable 

bias to the OD distribution, cluster-wise correlation with FAF is unreasonable; 

therefore, the threshold value sensitivity test is only conducted by truck type. Table 9 

summarizes the general trends from test results in Figure 9. 

 

 

 
Figure 9. Sensitivity tests on threshold values. 
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Table 9. Discussion of threshold value test result. 

Scenario Pearson’s 

r 

Truck 

ratio 

Trends 

s d t 

Figure 9a: 

light-

medium-

weight 

truck 

0.89~0.9

4 

(SD 0.01) 

7% Regardless d or t, 

as s decreases, 

the p-value 

increases.  

 

A higher d, even 

positive infinite, 

yields much higher 

p-value than a 

lower d. 

When d >= 2000, as 

t increases, the p-

value also 

increases, 

regardless of s. 

Figure 9b: 

heavy-

weight 

truck 

0.84~0.8

7 

(SD 0.01) 

93% Same as above. Same as above. When s <= 14 and 

d >= 2000, t = 10 

yields the highest p-

value. 

It is noted that the pattern of dwell time threshold is different between the two 

truck types and it seems to be counter-intuitive that a longer dwell time threshold is 

preferred for light-medium trucks for closeness to FAF distribution. The major reasons 

for this are: (1) FAF has a data gap of intracounty truck shipments while GPS data 

capture these relatively short intracounty trips. For light-medium truck results (Figure 

9a), a larger dwell time threshold identifies less short trips, making the result closer to 

the FAF data, i.e., a higher p-value. An investigation shows that generally the higher 

p-value is, the fewer identified trips there are and mainly intrastate trips are reduced as 

shown in Figure 10. When increasing the speed threshold or decreasing the dwell time 

threshold, the p-value is smaller. This is consistent with the light-medium truck travel 

feature with a higher cruising speed and more frequent stops (shorter dwell time and 

smaller activity space at stop). (2) FAF’s long-distance OD truck freight tonnage is 

reliable while long-distance truck trips may be partially retrieved when identifying trips 

from GPS data due to missing GPS logs. For closeness to FAF distribution, a higher 

dwell time threshold value is preferred at the beginning but later on a summit point of 

10 min is reached (Figure 9b). Although loading/unloading activities of heavy trucks 
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usually require a longer time such as 30 min, heavy trucks also stop for other purposes 

such as fuel refill, meals, waiting at an intersection, and traffic congestion, which do 

not need a long dwell time. 10 min is acceptable for heavy truck trip identification. 

Very large and even positive infinite distance thresholds yield the highest p-value, 

meaning that releasing the distance limit and just dwell time limit itself is sufficient to 

detect trip ends. Fully relaxing the distance limit is beneficial for identifying longer 

trips. Overall, the p-value changes very slightly with a standard deviation of 0.01 

meaning that the trip identification algorithm is reliable regarding robustness. Since 

light-medium tuck trip identification does not have a good ground truth data for 

deciding thresholds and the fraction of light-medium truck is only 7%. A uniform set 

of threshold values are finally applied to both truck types, which are decided based on 

heavy truck threshold test: s = 2 mph, d = inf, and t = 10 min. If reliable data are 

available in the future for deciding parameters, investigating customized parameters 

for each truck type is recommended. 

  
Figure 10. Pearson's r versus identified trip volume. 

The truck trips identified by the threshold-based algorithm above are trips with 

stops from the moving status point of view. Some types of trips stop because of traffic 
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congestion, resting at truck rest areas, fueling at gas stations, etc., are less important 

than trips that stop for delivery purposes. These stop types are set as intermediate stops 

and trips are chained together at these places through a trip chaining algorithm, which 

is proposed and is peer-reviewed in a previous work co-authored by the present author 

(Zhang et al., 2021). The main idea is that two trips are chained at non-delivery 

locations using a set of truck- and trip- related features. The non-delivery locations 

consist of the selected places from the HERE POI dataset and highway network 

including truck parking lots, truck rest areas, gas stations, and major arterials. The set 

of features used for pairing two trips at a non-delivery location includes truck weight 

class, dwell time, and the differences between two trips regarding GPS point logging 

frequency, OD direction, and average speed. If it is dataset II, two trips with the same 

device ID can be directly chained together at a non-delivery location. If it is dataset I, 

pairing is conducted at each non-delivery location to find the trip pair with the highest 

possibility of coming from the same device ID. The possibility is measured by dwell 

time at the non-delivery location and the features of the two trips as already mentioned. 

Lastly, a post check is conducted to avoid over-chaining, i.e., these chained trips with 

a high detour factor (e.g., 1.5) after chaining are broken down into separate trips. 

6.3. Results 

Finally, the prepared trip profile contains 140 million trips for 8 million trucks. 

The OD truck traffic flow by truck type at county level is produced from the truck trip 

profile. The coverage of origins and destinations is summarized in Table 10 showing a 

very high level of coverage.  
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Table 10. Coverage of the origins and destinations by sample GPS truck flows. 

Truck 

Type 

County-

level OD 

Flow 

Origin Destination 

State County State County 

Light-

medium 

Inter- and 

Intra-

County 

51 3127(99.5%) 51 3127(99.5%) 

Inter-

county 
50(No HI) 3117(99.2%) 50(No HI) 3117(99.2%) 

Heavy Inter- and 

Intra-

County 

51 3127(99.5%) 51 3127(99.5%) 

Inter-

county 

50(No 

Hawaii) 

3119(99.2%) 50(No 

Hawaii) 

3119(99.2%) 

Figure 11 shows the distribution of inter-county truck flows by truck type based 

on the prepared truck profile. It is obvious that heavy trucks present more long-distance 

truck flows. The trip identification and trip chaining algorithms successfully capture 

the difference in spatial pattern between the two truck types.  
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Figure 11. Inter-county truck flow distribution by truck type. 

The hourly distribution of estimated GPS truck trips is compared against TMAS 

annual-level hourly distribution as shown in Figure 12. The corresponding p-values are 

0.91 and 0.95 respectively. Generally, the identified trips from GPS data share a very 

similar trend to the TMAS, except two minor differences: the morning and afternoon 

peaks in light-medium truck GPS trips are less differentiated from each other than that 

of the TMAS; heavy truck GPS trips’ peak around noon is higher than that of the TMAS. 

These differences are acceptable since a moderate but not perfect similarity is expected. 

There is a major difference between TMAS and truck GPS trips. The hourly 

distribution from TMAS is based on observed truck traffic going through sensors and 

the hourly distribution from the identified GPS truck trips is based on the trip start time. 

Despite this difference, there is no ground truth data for the unique features reflected 

from GPS truck trips and TMAS provide the best available data for investigating 
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temporal patterns. Based on this comparison, the temporal bias is not serious in the 

GPS data used for this study. Hence, no technique is applied to adjust the temporal bias.  

 

 
 

Figure 12. Hourly distribution of estimated GPS truck trip. 
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Chapter 7: Iterative Reinforcement-learning-based ODME  

7.1. General Framework of Iterative Reinforcement-learning-based ODME 

Current studies on estimating truck travel demand from GPS data mainly reply 

on an ODME process. In this process, GPS data is used for producing the seed OD 

matrix and truck sensor counts data from FHWA’s Travel Monitoring Analysis System 

(TMAS) is used as the data input of an optimization problem. A major reason for the 

limited framework for truck travel estimation from GPS data is the lack of ground truth 

data. The truck sensor counts data are usually the only available data, the utilization of 

which requires an ODME process. As a recap, the current ODME process of estimating 

truck travel demand from GPS data includes the following four steps:  

1. Preparing a seed OD matrix from truck GPS data;  

2. Assigning the OD matrix to the road network with a traffic assignment model;  

3. Adjusting the OD matrix by minimizing the difference between assigned traffic 

flows and the observed traffic counts on the road links by an optimization 

model;  

4. Repeating the previous two steps until the difference is reduced to a desired 

level. 

A major bottleneck for applying this process to a nationwide truck travel 

demand estimation is the prohibitive computation cost of traffic assignment model in 

step 2 and optimization model in step 3. This process is not ready-to-use for such a 

large area as the national road network in the United States. The traffic assignment 

model and optimization model are too complicated for a nationwide network. So far, 
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the largest scale at which this process has been applied to is Florida by Zanjani et al., 

2015 and Indiana by Bernardin et al., 2011. In addition, the travel cost input for traffic 

assignment does not exist at national level. The optimization model requires powerful 

computation resources. In replace of optimization models, some ODME apply 

feedback-based strategies. These strategies achieve similar accuracy level without 

rigorous computation requirements so they have a higher feasibility. A traffic 

simulation model is usually integrated into the feedback-based strategies to provide 

knowledge for the ODME process, but the traffic simulation models usually have 

deficiency and indeterminacy. Hence, the current ODME framework of utilizing GPS 

data for truck travel estimation is not applicable to this study due to various limitations. 

A novel reinforcement-learning-based ODME algorithm is designed, which 

presents a desirable accuracy level. It integrates the reinforcement learning with a 

feedback-strategy-based ODME process. There are three objectives for this algorithm: 

(1) to weight the trips for matching the observed truck counts collected by sensors on 

highway network; (2) to alleviate the spatial distribution bias; and (3) to avoid truck 

type bias by conducting the weighting process by truck type. Briefly, the algorithm 

assigns weights to the trips based on the grouping of trips by origin-destination-path. 

An origin-destination-path is defined as a sequence of truck count sensors that a trip 

goes through in a time sequence. For the trips that do not go through any sensors, 

different cases are considered and corresponding weighting techniques are applied. The 

overall weighting procedure is shown in Figure 13.  
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Figure 13. The structure of weighting procedure. 

 

Data preprocessing is needed at first to do map matching and routing. Map 

matching is for mapping the trips and truck count sensors to the highway network. 

Routing is needed to fill up the missing trip segments due to unlogged GPS points in 

passive GPS data. Then, the OD-path information is appended to each trip. An OD-

path is defined as a sequence of truck sensors that a trip goes through in time order 

along with the origin and destination of this trip. An initial seed OD-path table is 

therefore obtained, which tabulates each OD pair by paths. This initial seed OD-path 

table along with the observed truck counts at each sensor are the data input for the 

Routing by shortest path 
method 
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iterative reinforcement-learning-based weighting algorithm. The output of the 

algorithm is the weights for all OD-path groups.  

All OD pairs from the seed table are divided into two parts. Part I is the OD 

pairs that have trips going through truck count sensors. Part II is the OD pairs that do 

not have any trip going through truck count sensors. All trips from Part I OD pairs are 

divided into two groups, namely Group A and Group B, while all trips from Part II OD 

pairs are Group C trips. The weighting details for each group of trips are provided 

below.  

Part I - OD pairs containing trips that go through truck count sensors: 

 Group A consists of trips going through sensors: an iterative 

reinforcement-learning-based weighting algorithm is implemented. 

The weighting is conducted at OD-Path level meaning that the trips 

belonging to the same OD-path group are assigned with the same 

OD-path weights. The algorithm is described in detail in later 

sections.  

 Group B consists of trips not going through sensors: for each OD 

pair, an average weight is derived from the corresponding weighted 

Group A trips and is applied to group B trips. 

Part II - OD pairs not containing any trip that goes through truck count sensors: 

 Group C consists of trips all from Part II OD pairs: although a Part 

II OD pair cannot be directly weighted through the algorithm. Its 



 

 

79 

 

origin or destination may be related to a Part I OD pair. In this case, 

an average weight based on origin or/and destination is used. The 

origin or destination weight is the ratio of total weighted traffic to 

total initial traffic of Part I OD pairs given an origin or a destination. 

If either origin or destination weights exist, only that origin or 

destination weight is applied. If both origin and destination weight 

exist, the squared root of the two weights is applied. If neither origin 

nor destination weight exist, an average weight derived from Part I 

OD trips, i.e. the ratio of total weighted traffic to total initial traffic 

of Part I OD pairs, is applied.  

The percentage of OD pairs by weighting technique is summarized in Table 11. 

For both truck types, most of the trips, i.e. 98%, are weighted through the 

reinforcement-learning-based algorithm and a very small fraction of trips is weighted 

by part I trip weights.   

Table 11. Percentage of OD pairs by weighting strategies. 

Group Weighting strategy Light-

medium 

Heavy 

Part I - OD pairs 

containing trips that 

go through truck 

count sensors 

Iterative RF-based weighting 98.027% 97.596% 

Part II - OD pairs 

not containing any 

trip that goes 

through truck count 

sensors 

Proportional weighting based on 

the origin and destination weight 

from part I 

1.970% 2.401% 

Proportional weighting based on 

the origin weight from part I 

0.002% 0.002% 

Proportional weighting based on 

the destination weight from part I 

0.000% 0.000% 
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Proportional weighting based on 

the average weight from part I 

0.001% 0.001% 

7.2. An Iterative Reinforcement-learning-based Weighting Algorithm 

7.2.1. Reinforcement Learning and Q-Learning 

Traditional ODME approaches take constant adjustment rate or adjustments in 

each iteration. This simple algorithm is efficient in finding optimal solutions for small 

network with limited observations. However, a large network with rich observations is 

hard to benefit since the complexity and the otherness of the network usually result in 

the early and incomplete coverage of the optimization process.  As one of the most 

popular learning methods for complex relationship, reinforcement learning (RL) is a 

potential method for addressing complex optimization problems. As one of the three 

basic machine learning methods, reinforcement learning is utilized to train the agent on 

how to taking actions under different environment to maximize the potential benefits. 

Different from supervised learning method that requires accurate labels and explicit 

sub-optimal  actions, reinforcement learning focus more on finding the balance 

between exploration and exploitation.  

A reinforcement method considers the optimization process as a Markov Chain 

Decision process with the assumption that the future state is completely independent of 

the previous states and actions, as indicated by equation (3):  

𝑃(𝑆𝑡+1|𝑆𝑡) = 𝑃(𝑆𝑡+1|𝑆1, … , 𝑆𝑡) (3) 

where 𝑆𝑡 refers to the current state at time 𝑡 and 𝑆𝑡+1 stands for the state of the 

next timestamp.  
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With this kind of relationship, the reinforcement leaning process tends to 

generate a set of sequential decisions under an observable environment. A standard 

reinforcement model consists of three parts: agent, environment, and reward function.  

The agent is a self-learning machine that exchanges information with the environment 

on states, actions, and rewards. Reward function provides the metrics to evaluate the 

performance of the environment under certain states and actions, which is the source 

for the agent to learn and improve. At each time step, the agent perceives the states of 

the environment and takes an action to transfer the environment from one state to 

another state. The actions under states are evaluated using the reward function. The 

state-action-reward information is recorded and updated. After several iterations, the 

agent traverses enough state-action pairs and learns how to find optimal solutions with 

maximum rewards. 

Among various RL approaches, Q-learning (QL) is the most widely used in 

real-world implementations. In the Q-learning process, the self-learning is achieved 

through the Q table, which stores the state-action-reward information and is updated 

iteratively. Without defining a policy, the agent learns and improves through the 

historical information in the Q table.  

7.2.2. Integration of Reinforcement Learning to ODME 

Instead of applying a fixed adjustment rate to all sensors and all iterations, a 

dynamic rate can be determined through QL process. In the QL-based ODME strategy, 

the agent communicates with the environment by receiving states (i.e., weighted mean 

squared error between simulated and observed volume) and taking actions (i.e., 
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implementing the adjustment rates). A reward function evaluates the performance (i.e., 

the change of weighted mean squared error) of state-action pairs. Even though the QL-

based ODME strategies require training time in the offline simulation environment, the 

well-trained agent can take optimal actions under various states without complex 

computation and accurate prediction models. The objective of most ODME strategies 

is minimizing the difference between the observed traffic volumes and the simulated 

traffic volumes, which can be evaluated by the weighted mean squared error.  

In the QL-based strategies, actions change the environment from one state to 

another. A fixed adjustment rate for all the iterations across all the sensors can be 

applied. However, this setup has two obvious drawbacks. Firstly, different OD pairs 

contribute to the system at various degrees. For instance, an OD-path crossing a single 

sensor can adjust this sensor more effectively compared to another OD-path crossing 

multiple sensors with different error rates. The fixed adjustment rate reduces the 

efficiency of the entire system. Secondly, some sensors may quickly reach the bound 

and are hard to be adjusted furthermore with the fixed adjustment rate. Therefore, this 

study separates the OD-paths into three groups based on the number of sensors to which 

they are related: (1) one sensor, (2) two or three sensors, and (3) more than three 

sensors. A dynamic adjustment rate (i.e., 0%, 5%, and 10%) is applied on each group 

of sensors during one iteration. Figure 14 shows the distribution of OD-paths versus 

the number of sensors involved. It is obvious that the OD-paths of heavy truck trips 

generally involve more sensors than those of light-medium truck trips. Very few light-

medium truck trips go through more than 20 sensors. Since heavy-duty trucks also 
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conduct short trips under 50 miles, it is normal to have heavy truck trips going through 

fewer sensors. 

 

Figure 14. Histogram of number of sensors by OD-path. 

The update of Q table is through the equations (4) & (5).  

𝑇𝐷(𝑠𝑡, 𝑎𝑡) =  𝑅𝑠𝑡,𝑎𝑡
+  𝛾 ∗ 𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡, 𝑎𝑡) (4) 

𝑄𝑛𝑒𝑤(𝑠𝑡, 𝑎𝑡) =  𝑄𝑜𝑙𝑑(𝑠𝑡, 𝑎𝑡) +  𝛼 ∗ 𝑇𝐷(𝑠𝑡, 𝑎𝑡) (5) 

where 𝑇𝐷(𝑠𝑡, 𝑎𝑡) is the temporal difference for the action taken in the previous 

state; 𝑅𝑠𝑡,𝑎𝑡
is the reward received for the action taken in the previous state; 𝛾 is the 

discount factor ranging from 0 to 1 (when 𝛾 is close to 0, the agent tends to consider 

only immediate reward; when 𝛾 is close to 1, the agent considers a future reward with 

greater weight), which is set as 0.9; 𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎) is the largest Q-value available 

for any action in the current state (the largest predicted sum of future rewards); 

𝑄(𝑠𝑡, 𝑎𝑡) is the Q-value for the action taken in the previous state; 𝑄𝑛𝑒𝑤(𝑠𝑡, 𝑎𝑡) is the 
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new Q-value for the action taken in the previous state; 𝑄𝑜𝑙𝑑(𝑠𝑡, 𝑎𝑡) is the old Q-value 

for the action taken in the previous state; 𝛼 is the learning rate ranging from 0 to 1, 

which is set as 0.9.  

Each state-action pair is evaluated through the rewards function, which 

represents the environment change from one state to another state under one action. 

The objectives are reducing both the overall weighted mean squared error and the 

inequity of OD-path weights. Therefore, the reward function is formulated as equation 

(6).  

𝑅𝑠𝑡+1, 𝑎𝑡+1
= {

−100 𝑖𝑓 𝑒𝑡+1 <  𝑒𝑡

−1 𝑖𝑓 𝑒𝑡+1 ≥  𝑒𝑡

100 𝑖𝑓 𝑒𝑡 <  𝐸
 

(6) 

where 𝑅𝑠𝑡,𝑎𝑡
 represents the rewards achieved by the state-action pair 𝑠𝑡𝑎𝑡; 𝑒𝑡 

stands for the overall weighted mean squared error; 𝐸 is the final target of weighted 

mean squared error, which is set as 0.15.  

The iterative reinforcement-learning-based weighting algorithm adjusts the 

seed OD-path table by matching with the observed truck traffic from truck sensors in 

an iterative way. The major goal is to reduce the weighted difference between the 

weighted truck traffic and the observed truck counts at sensor locations to a predefined 

accuracy level. At each iteration and each sensor, an adjustment is made for the trips 

of each OD-path group going through this sensor. Adjustments are made 

simultaneously for all sensor locations at each iteration. Reinforcement-learning is 

involved by making differentiated adjustments for trips from different OD-path groups 
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at each iteration. Through a learning process (e.g. 200 rounds running), the best set of 

adjustments in time sequence is learnt by the algorithm to yield the best reward (i.e. the 

smallest weighted difference). This iterative reinforcement-learning-based weighting 

algorithm works as follows: 

 Step 0: An initial expansion factor, i.e. to the ratio of total observed truck 

counts to total sample truck traffic going through sensors (total Group A trips), 

is applied to the initial seed OD-path table for saving computation time. 

 Step 1: An iterative reinforcement-learning-based algorithm is applied at OD-

path level. At each iteration and each sensor, the difference between the sum 

of adjusted OD-path traffic and the observed truck sensor counts is calculated. 

This difference is proportionally distributed to all OD-paths going through this 

sensor. The proportion is the initial sample traffic distribution of all OD-paths 

at this sensor. Each OD-path may receive such assigned adjustments from 

multiple sensors, the mean of which is temporarily set the adjustment for each 

OD-path. For each group of OD-paths, a step size (a percentage of the 

adjustment) is selected from an action set, which includes several options (e.g., 

0, 5%, and 10%). Hence, the step size is different across OD-path groups at 

each iteration. Meanwhile, a marginal control of +/- 10% is included to avoid 

large adjustments at each iteration.  

 Step 3: check if the iteration reaches a predefined accuracy level (e.g., 10%). 

If not, repeat the previous two steps.  

 Step 4: repeat Step 0 – Step 3 for many rounds, e.g. 200, to let the agent fully 

explore the environment. Then an optimal set of actions (step size for each 



 

 

86 

 

sensor at each iteration) is learnt by the algorithm and the smallest weighted 

mean squared error across all sensors is obtained.  
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Chapter 8: Nationwide OD Truck Flow Estimation Results 

8.1. ODME Accuracy Measures 

The weighted truck traffic and observed truck counts are compared at sensor 

level as shown in the Figure 15. The scatter plots show that the weighted truck traffic 

volumes are very close to the truck traffic observed by sensors. The weighting 

algorithm works well to match with the observed truck traffic.  
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Figure 15. Weighted truck traffic versus observed truck traffic by sensor. 

Figure 16 shows the average percentage error for each sensor group regarding 

observed truck traffic volume. For both light-medium and heavy truck traffic 

estimation, most sensors present no more than 0.01 million monthly total observed 

truck traffic volume. The average percentage error for this group of sensors is 4% and 

12% for light-medium and heavy truck trip weighting respectively. This is a desirable 

accuracy level.  
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Figure 16. Error distribution across sensor volume groups. 

8.2. Discussion on Sample Biases 

In addition to accuracy measure, the spatial bias before and after the weighting 

process is measured. For each state, two ratios are calculated: (1) the sum of observed 

truck traffic volumes across sensors to the sum of initial sample GPS truck traffic 

volumes across sensors; (2) the sum of observed truck flows across sensors to the sum 

of weighted GPS truck flows across sensors. These two ratios are displayed in Figure 

17. The ratio (1) in both scenarios show that spatial bias exists. Although many states 

share similar ratios (1), this ratio of some states, such as Alaska and Hawaii, is clearly 

higher than for other states, indicating a relatively lower sampling rate in these states. 
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After the weighting procedure, both scenarios show that all states share a very similar 

ratio (2), which is close to 1 with a standard deviation of 0.01 and 0.02, respectively. 

Overall, the weighting process alleviates the spatial bias.  

  

 
Figure 17. Spatial bias before and after ODME. 

The hourly distribution if compared to TMAS sensor data. Since before the 

weighting procedure, the hourly distribution is investigated through the comparison 

with TMAS, temporal bias is not serious and no treatment is conducted to correct 

temporal bias. After the weighting process, the weighted hourly distribution is 

compared to the unweighted distribution and TMAS distribution as shown in Figure 
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(a) light-medium truck traffic estimation
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(b) heavy truck traffic estimation
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18. First, the weighting process does not change the hourly distribution of the trips 

derived from the GPS. Second, the similarity to the TMAS is acceptable. As already 

mentioned, there is a difference between the two datasets. The TMAS hourly 

distribution is obtained from the through traffic observed by sensors installed on the 

highway system, while the GPS hourly distribution is based on trip start time. There 

should be some discrepancy to some extent. Overall, the correlation coefficients are 

0.92 and 0.96 for light-medium and heavy scenarios respectively. There is no ground 

truth data for the unique features reflected from the GPS-derived truck trips. TMAS is 

the best available data source for temporal pattern comparison.  
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Figure 18. Hourly distribution. 

8.3. Comparison to the Freight Analysis Framework OD Tonnage 

The Freight Analysis Framework provides OD commodity flow by truck for the 

entire nation. 2020 FAF data are used for the comparison. It should be noted that 2020 

FAF is an estimated product based on 2017 Commodity Flow Survey and some other 

data from agriculture, construction, and other sectors. A major issue with FAF is that 

it includes intercounty freight movements by truck mode while intracounty trucking 

movements are missing. Intracounty trucking has a very large share of truck 

movements, especially those under 50 miles. Additionally, FAF OD provides freight 

tonnage flow by truck. As previously discussed, freight OD tonnage flow is very 

different from truck traffic OD flow. Despite all these issues, FAF OD is the best 

available data source for nationwide OD-level information related to truck.  

The Pearson coefficient between final OD truck traffic derived from GPS data 

and FAF OD truck freight tonnage is 0.85 at 99.9% significance level. For a better 

comparison, the FAF OD tonnage table is divided into two parts through the weighted 
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mean distance of shipments. These OD shipments below 100 miles are set as the short-

haul part and those 100 miles or above are set as the long-haul part, which are compared 

to light-medium weight OD truck flows and heavy weight OD truck flows, respectively. 

The p-value in the scenario of light-medium truck is 0.76 while the p-value in the 

scenario of heavy truck is 0.95. The low correlation of 0.76 is very reasonable since the 

intracounty truck movements are not a data gap in the OD truck traffic flow extracted 

from GPS data. Instead, GPS-based truck traffic flow captures a large portion of local 

trucking, which is demonstrated by the distance distribution in section 8.4.  

8.4. Distance Distribution 

The truck trip distance distribution is shown in Figure 19. Light-medium truck 

trips are mainly less than 30 miles. For heavy truck trips, long-distance trips exceeding 

100 miles are captured with (100, 300] as the locally highest distance bin. There is a 

clear difference between the two truck types for trips of longer than 30 miles, indicating 

that the proposed framework captures the different travel features by truck type. Heavy 

truck trips also have a high ratio of trips under 30 miles. It is normal for heavy truck 

trips to have many short-distance trips. First, heavy trucks (>26000lbs), such as garbage 

trucks, livestock transporting trucks, and street sweepers, produce short trips as well. 

Second, trucks are not always fully loaded. When they are empty or partly loaded, the 

corresponding trips are usually short.  
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Figure 19. Distance distribution. 

8.5. Vehicle Miles Traveled Validation 

The VMT of the estimated truck traffic from GPS data is compared against the 

VMT in in Highway Statistics 2020 from FHWA based on Tables VM-2 and VM-4, as 

shown in Figure 20.  The total of single unit and combination truck VMT are used for 

comparison. There are two differences between the two datasets. First, the single unit 

trucks contain vehicle class 4-7 while light-medium weight trucks in this study 

correspond to class 5-6; the combination trucks are vehicle class 8 and above while 

heavy weight trucks in this study correspond to class 7 and above. Hence, separate 

comparison by truck type is not conducted, and instead the total VMT is used for the 

comparison. Second, VMT from FHWA is based on road network for each state while 

the estimated result is based on the trip origin. For a state with a higher inter-state trip 

ratio, the difference between the two VMT computation methods is larger. Third, VMT 

from FHWA is limited to the federal-aid highway system while the passive GPS data 

in this study, as least not specified by data providers, are not limited to highway system. 

It is highly possible that light truck GPS trips occur on local roads, which are not 
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included in federal-aid system. Despite these differences, VMT from FHWA is the best 

available dataset for validating VMT. Overall, the two share a similar spatial trend with 

a strong Pearson correlation of 0.91 at 99.9% significance level.  

 
Figure 20. VMT comparison by state. 

8.6. Discussion on Interstate OD Pairs from Selected States 

Texas, California, Florida, and New York are the states with heavy truck 

activities. The distribution of interstate truck trip volume by truck type and by 

destinations for these states is displayed in Figures 21 - 24. OD pairs with no more than 

one trip on average daily basis are believed to be unrepresentative enough and are 

excluded. For each state, the percentage of interstate trips by each OD is shown. The 

summation of OD percentages in the two subfigures equal to one for each one of 

Figures 21 –24. The four figures present: how well long-distance trips are retrieved by 

the proposed framework, the spatial distribution of destination states from each origin 

state, the truck traffic volume share by each destination, and the difference between 

light-medium weight trucks and heavy trucks regarding interstate trip ratio and other 
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aspects. First, all four figures show that long-distance trips going across states are 

successfully identified by the proposed nationwide truck flow estimation framework. 

This is especially obvious in recovered heavy truck trips. For example, truck flow from 

California to Maine, from Florida to Washington, from New York to Washington, from 

Texas to Maine are all retrieved. Light-medium weight trucks also conduct long-

distance trips across states, which are not just limited to neighboring states. Heavy truck 

trips present a high coverage of destination states. On average, these four origin states 

have 46 destination states while light-medium truck trips have an average of 25 

destination states. For both truck types, closer destination states usually have higher 

truck flow shares. However, some states show strong attraction even though they are 

very far away. For example, Pennsylvania, Ohio, Georgia, and Florida are very far 

away from California, but they all attract moderate truck traffic from California. In 

comparison to other three states, Texas, located in the south of the United States, 

presents widely spread truck traffic flow for both truck types. Given an origin state, the 

traffic flow share by each destination is also easily obtained from the derived OD table. 

The ratio of total heavy interstate truck trips to total light-medium interstate truck trips 

is demonstrated by the width ratio between the two subfigures of each one of Figures 

21-24. Clearly, heavy trucks have a much higher percentage of interstate trips.  
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Figure 21. Distribution of the interstate truck OD flow from Texas. 
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Figure 22. Distribution of the interstate truck OD flow from California. 
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Figure 23. Distribution of the interstate truck OD flow from Florida. 
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Figure 24. Distribution of the interstate truck OD flow from New York State. 
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Chapter 9: Conclusion 

This study develops a comprehensive framework for large-scale truck flow 

estimation based on GPS data, with the entire United States as the case study. Although 

there have been some studies on GPS-based truck flow estimation, they are developed 

for relatively small study scales, such as statewide and citywide, and are inapplicable 

for nationwide estimation. To the knowledge of the author, the OD truck flow 

estimation at a scale as large as the entire United States is achieved for the first time 

through the framework developed in this study. The framework successfully fills the 

data gap of national truck flows in the United States, which are fundamental data bases 

for various transportation research areas, including operation and planning, economics, 

safety, logistics, environment impacts, and enhancing the efficiency, economy, safety, 

and sustainability of transportation systems.  

Planning and operation necessitate the monitoring of truck travel on a regular 

basis to timely diagnose and prevent inadequacy and inefficiency in transportation 

systems. Particularly, more attention to be given to heavy trucks, which significantly 

affect highway congestion. Although sensors installed in highways capture truck flows, 

they are not implemented everywhere and are unable to provide origin and destination 

information. In contrast, the developed framework yields complete truck flows, which 

are a powerful supplement to sensor counts data. Truck flows also undoubtedly play a 

significant role in transportation safety. Special highway designs are required for 

accommodating trucks. Trucks increase the risk of highway accidents due to physical 

features of trucks and possible drowsy driving. Truck accidents tend to cause 
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disproportionately large losses to lives and property. For locations with high and 

especially hazardous truck traffic, some ways of separating truck and passenger traffic 

can be implemented, such as dedicated lanes for trucks and time-of-day restrictions. 

Truck inspection and repair services should also be helpful in promoting truck safety. 

From an environmental perspective, trucks consume large amounts of energy and cause 

substantial noise and greenhouse air pollutants. Truck flows indicate the areas that 

should be given adequate attention, thus helping to guide government agencies in 

appropriately deploying emission regulations and standards, such as setting emission 

limits, carbon pricing, incentive-based trucking, and Green Logistic. Decision makers 

should devote proper investment to alternative fuels and new vehicle technologies such 

as aerodynamic designs and hybrid engines. Thus, the products obtainable from the 

framework developed here are useful for various studies and activities.  

Particularly, in all these aforementioned aspects, heavy trucks play a more 

critical role than light trucks. National truck flow estimation captures interstate long-

distance truck flows, which are mainly due to heavy trucks. The statistics and patterns 

of long-distance travel are valuable but difficult to be derived from statewide or local 

analysis. Nationwide truck flow estimation is an asset for assisting national and 

regional decision-making processes. It provides a comprehensive perspective for 

promoting coordination and cooperation between states. As exemplified by national 

OD truck flows for California, Texas, Florida, and New York, a large fraction of trucks 

travel across several states, but these flows cannot be captured by the statewide analysis 

of intermediate states. Additionally, nationwide estimation promotes the modal shift 

between truck and rail, which may yield safety, energy and environmental benefits. 
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Long-distance truck travel impacts can be mitigated by shifting some of the demand to 

railways.  

With the United States as the case study, the results provide valuable insights 

into the different patterns shown by light-medium and heavy trucks in their distance 

and OD distributions. Additionally, the national spatial and hourly distributions of 

truck traffic and the vehicle miles traveled by state are informative by particularly 

showing the unique empirical references from GPS-based truck flow. 

The framework is developed based on passive truck GPS data since utilizing 

GPS data in substitution for surveys demonstrates many benefits, such as being cost-

effective without a huge investment in human effort and resources, being up-to-date, 

reduced impact of human errors, high temporal resolution to serve different temporal 

analyses (e.g., hourly, daily, and monthly), high spatial resolution to fill dynamic zone 

systems (e.g., census block group and traffic analysis zone), and ability to support 

special event analysis (e.g., hurricanes). The developed framework not only enables 

large-scale truck flow estimation from GPS data but also has strengths in completeness, 

thoroughness, practicability, and high-generalizability. It incorporates all fundamental 

research tasks including data preprocessing, vehicle type classification, truck trip 

identification and chaining, and weighting by truck type. With a comprehensive 

literature review, the algorithms involved in the framework either make improvements 

to existing methods or are innovatively designed to fill research gap. There are 

challenges and difficulties in the application of passive GPS data, which are thoroughly 

handled by this study. The framework is also promising in practical feasibility, since it 
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is straightforward and shows a desirable accuracy level. It shows high generalization 

ability since it is applicable to various study scales or settings. Regional and statewide 

studies in different zone systems or for corridors of interest are also achievable with 

this framework. Some other statistics, such as truck vehicle miles traveled, truck 

average daily traffic, travel distance distribution, travel time distribution, destination 

choice distribution, are all byproducts of the developed framework. 
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Chapter 10: Future Work 

Although overall the developed framework has many strengths, it could be 

further improved as follows. 

In data preprocessing, GPS data from two data providers are merged for 

supporting this research. In practice, studies based on multi-sourced GPS data are very 

common. When the overall sampling rate reaches very high or similarity presents 

between different sources, it is important to measure the duplication issue, i.e., one 

device is repeatedly captured by each data source. This should be a negligible issue in 

this study since the two datasets are dominated by different truck types, but for the 

completeness of framework it is desirable to discuss this and provide practical 

guidance. For the data oscillation identification algorithm, abnormal movement 

patterns are captured and demonstrated, but the underlying reasons are not well-

understood. The ping-pong phenomenon along with cellular tower data is easily 

understood while the reasons for the other oscillation patterns are not investigated. The 

algorithm identifies and removes 2.4% data oscillations, which is a relatively small 

fraction. Although data oscillations result in abnormal travel patterns, their influence 

to the whole production pipeline should be measured. For studies with limited 

computation resource and relatively high data quality, this step could be ignored.  

In vehicle type classification, a random forest algorithm with a support vector 

machine as the baseline model is implemented. Future work could be experiments with 

more machine learning algorithms, such as Extreme Gradient Boosting algorithm - a 

competitive algorithm for classification, to compare the performances. In this study, 
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binary classification, i.e., light-medium and heavy, is conducted for trucks. 

Classification by light, medium, heavy weight truck is also worth investigating. For 

some studies, such as those regarding urban and local delivery trucks, separating 

medium and light trucks may be more useful than combining them as light-medium 

trucks. Future work could extend this study by exploring more algorithms and more 

classification types. Additionally, supervised classification is feasible with the truck 

type information from dataset I and data segmentation (clustering) of dataset I and II. 

In practice, missing truck type information is a more common case from passively-

collected GPS data. Future work could discuss the feasibility and performance of 

unsupervised classification through some other algorithms, such as deep neural 

network.   

In the section on iterative ODME, a Q-learning algorithm is applied with the 

division of OD-paths into three groups, i.e., three agents. The ideal case is having as 

many agents as possible. Due to the extremely long computation time when setting 

numerous agents, this is not implemented in this present study. In the future, this might 

be resolved with the improvement on the algorithm or computation resources. In this 

study, there are three options of action for each OD-path group, i.e., 0%, 5%, 10%. This 

action set is roughly decided based on experience. Future work may include a 

discussion on the setting of action set. For example, the algorithm may perform 

differently regarding accuracy and efficiency with different action sets or with more 

options of action. As for the discussion on spatiotemporal biases of the sample GPS 

truck trips, there are some future work that can be conducted to enhance this research. 

The observed truck flows from truck count sensors on a highway network are used for 
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correcting the spatial bias. Hence, the representativeness of the corrected spatial 

distribution is limited by that of the sensors. Truck sensors are not installed everywhere 

on a highway network, meaning they may affect the spatial distribution bias to some 

extent. Future work could measure the representativeness of the truck count sensors 

and correct the possible spatial distribution bias of sensors before utilizing them to 

adjust the spatial distribution of the GPS truck flows. The temporal biases are not 

thoroughly discussed in the current research. Depending on the research need, temporal 

bias at specific resolution level may be needed. For instance, the present research 

conducts the monthly total estimation for January 2020. Future work may be conducted 

to investigate the daily representativeness of GPS data. It is possible that GPS data have 

inconsistent sampling rate or coverage across days, which should be measured before 

the deployment of the framework. In cases of deriving annual-level statistics from the 

selected month(s), the relation between monthly level statistics and annual level 

statistics should be examined. Additionally, future work can be carried out by 

comparing the developed framework with the existing frameworks for case studies of 

smaller scales. Although there is no comparable framework at a large scale as the 

national level in the U.S., the discussion on the accuracy and computation efficiency of 

the developed framework would be more complete if compared with the existing 

studies in the literature.  

With the United States as the case study, national truck flows are obtained. This 

study discusses some aspects of the results from the validation and reasonableness point 

of view. A future study could investigate the result more thoroughly and try to reveal 

some interesting findings, such as the temporal and spatial patterns by truck type. 
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Interstate bottlenecks and congested corridors are major interests in practice. Future 

work could be carried out to identify these locations by projecting the estimated truck 

traffic flow to the highway network. Some studies attempt to convert truck traffic flow 

from CFS or FAF data. It would be interesting if future work could compare the 

estimated truck flow in this study to the estimated truck flow from CFS or FAF. There 

have been studies on integrating GPS technology with travel surveys. Such data, if 

available, have the merits of both GPS data and surveys. This current framework is 

developed fully based on GPS data. Future research could be conducted to explore the 

application of GPS-based surveys to derive truck traffic flows. Digitalization is getting 

widespread in transportation field. More and more trucking companies are embracing 

connected trucks, which enable a real-time data exchange and communication between 

trucks. The data produced from connected trucks provide not only timestamped 

locations but also speed, engine status, driver behavior, cargo status, fuel consumption, 

etc. As the connected trucks are getting widely applied, utilizing related data to fulfill 

truck travel flow estimation is a worthwhile future study.   
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Appendix A: Correlation Matrix 

 

 
Figure 25. Correlation matrix by subgroup for cluster 0. 

 

 
Figure 26. Correlation matrix by subgroup for cluster 1. 
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Appendix B: Principal Component Analysis Report 

 

Table 12. Principal component analysis report. 

Cluster 0 

g1 �̇�𝑝25 �̇�𝑝50 �̇�𝑝75 �̇�𝑝95 �̇�𝑎𝑣𝑔 �̃�𝑝25 �̃�𝑝50 �̃�𝑝75 �̃�𝑝95 �̃�𝑎𝑣𝑔 

pc1 (79%) 0.33 0.35 0.33 0.27 0.35 0.32 0.35 0.34 0.05 0.35 

pc2 (14%) 0.21 0.07 0.15 0.44 0.04 0.27 0.15 0.14 0.78 0.02 

g2 �̃�𝑝25 �̃�𝑝50 �̃�𝑝75 �̃�𝑝95 �̃�𝑎𝑣𝑔 �̇�𝑝25 �̇�𝑝50 �̇�𝑝75 �̇�𝑝95 �̇�𝑎𝑣𝑔 

pc1 (36%) 0.25 0.20 0.23 0.32 0.29 0.36 0.27 0.39 0.39 0.38 

pc2 (17%) 0.07 0.20 0.45 0.46 0.20 0.28 0.51 0.03 0.18 0.35 

pc3 (11%) 0.64 0.44 0.30 0.09 0.36 0.04 0.22 0.24 0.09 0.22 

pc4 (9%) 0.07 0.62 0.52 0.19 0.25 0.07 0.21 0.14 0.41 0.08 

g3 �̃�′
𝑝25 �̃�′

𝑝50 �̃�′
𝑝75 �̃�′

𝑝95 �̃�′
𝑎𝑣𝑔 �̇�′

𝑝25 �̇�′
𝑝50 �̇�′

𝑝75 �̇�𝑝95 �̇�′
𝑎𝑣𝑔 

pc1 (32%) 0.19 0.17 0.16 0.24 0.23 0.30 0.41 0.42 0.37 0.48 

pc2 (21%) 0.48 0.50 0.23 0.21 0.44 0.28 0.30 0.17 0.03 0.16 

pc3 (16%) 0.29 0.31 0.57 0.56 0.17 0.22 0.18 0.07 0.27 0.01 

pc4 (11%) 0.06 0.07 0.35 0.21 0.07 0.57 0.35 0.25 0.46 0.31 

g4 ∆𝜃𝑝25 ∆𝜃𝑝50 ∆𝜃𝑝75 ∆𝜃𝑝95 ∆𝜃𝑎𝑣𝑔      
pc1 (88%) 0.41 0.46 0.46 0.42 0.48      
pc2 (9%) 0.69 0.26 0.19 0.64 0.10      

g5 𝜔𝑝25 𝜔𝑝50 𝜔𝑝75 𝜔𝑝95 𝜔𝑎𝑣𝑔      
pc1 (56%) 0.43 0.49 0.36 0.45 0.50      
pc2 (24%) 0.57 0.45 0.44 0.50 0.16      
pc3 (13%) 0.18 0.06 0.78 0.26 0.53      

Cluster 1 

g1 �̇�𝑝25 �̇�𝑝50 �̇�𝑝75 �̇�𝑝95 �̇�𝑎𝑣𝑔 �̃�𝑝25 �̃�𝑝50 �̃�𝑝75 �̃�𝑝95 �̃�𝑎𝑣𝑔 

pc1 (71%) 0.30 0.34 0.34 0.31 0.36 0.23 0.32 0.32 0.28 0.35 

pc2 (10%) 0.10 0.23 0.33 0.35 0.28 0.65 0.32 0.20 0.15 0.20 

g2 �̃�𝑝25 �̃�𝑝50 �̃�𝑝75 �̃�𝑝95 �̃�𝑎𝑣𝑔 �̇�𝑝25 �̇�𝑝50 �̇�𝑝75 �̇�𝑝95 �̇�𝑎𝑣𝑔 

pc1 (26%) 0.17 0.07 0.31 0.41 0.39 0.20 0.16 0.37 0.41 0.42 

pc2 (18%) 0.06 0.16 0.42 0.06 0.09 0.49 0.49 0.37 0.21 0.33 

pc3 (17%) 0.55 0.05 0.23 0.19 0.56 0.24 0.31 0.32 0.13 0.12 

pc4 (10%) 0.56 0.00 0.39 0.39 0.01 0.22 0.27 0.27 0.30 0.30 

g3 �̃�′
𝑝25 �̃�′

𝑝50 �̃�′
𝑝75 �̃�′

𝑝95 �̃�′
𝑎𝑣𝑔 �̇�′

𝑝25 �̇�′
𝑝50 �̇�′

𝑝75 �̇�𝑝95 �̇�′
𝑎𝑣𝑔 

pc1 (36%) 0.42 0.41 0.14 0.21 0.46 0.33 0.33 0.18 0.25 0.26 

pc2 (25%) 0.33 0.33 0.35 0.37 0.14 0.16 0.03 0.35 0.46 0.37 

pc3 (15%) 0.08 0.08 0.45 0.26 0.24 0.33 0.39 0.47 0.28 0.32 

pc4 (13%) 0.25 0.25 0.41 0.04 0.20 0.47 0.50 0.30 0.10 0.30 

g4 ∆𝜃𝑝25 ∆𝜃𝑝50 ∆𝜃𝑝75 ∆𝜃𝑝95 ∆𝜃𝑎𝑣𝑔      
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pc1 (66%) 0.44 0.50 0.44 0.29 0.53      

pc2 (20%) 0.48 0.23 0.34 0.77 0.11      

g5 𝜔𝑝25 𝜔𝑝50 𝜔𝑝75 𝜔𝑝95 𝜔𝑎𝑣𝑔      

pc1 (46%) 0.26 0.33 0.45 0.56 0.55      

pc2 (28%) 0.66 0.60 0.34 0.25 0.16      

pc3 (12%) 0.14 0.07 0.81 0.24 0.52      
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