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The demand for exploring thermodynamic and structural properties of complex

fluids and their mixtures using molecular simulation methods sparks the need for

efficient computational techniques. One such method is the fine-lattice discretiza-

tion technique, for which these calculations can run up to two orders of magnitude

faster than the off-lattice calculations. Generally, a major obstacle to simulat-

ing real systems is the computational time required for evaluating the potential

energy. In fine-lattice discretization techniques, the potentials of intermolecular

interactions are calculated once at the beginning of the simulation and are used

repeatedly during the simulation. In this thesis, this technique is used along with

grand canonical histogram reweighting Monte Carlo calculations to obtain the



coexistence properties of various non-polar and polar real and model fluids. More-

over, mixed-field finite-size scaling methods have been used to determine critical

parameters of the systems studied.

New intermolecular potential models have been developed for diatomic molecules

using off-lattice calculations to reproduce experimentally observed coexistence den-

sities, vapor pressures, and critical parameters. The goal was to investigate an

important problem in fine-lattice discretization technique, namely, how to build

fine-lattice models reproducing properties of diatomic molecules and other sys-

tems of interest. The results reported indicate that it is possible to obtain a good

description of the phase behavior of models of real systems such as nitrogen, car-

bon dioxide, and water over a broad range of temperatures. It has been observed

that the structural properties of lattice models depend heavily on the lattice dis-

cretization parameter, which controls how closely the lattice system approaches

the continuum behavior.

We have found that deviations of the critical temperatures are stronger by

a factor of 5 for dipolar dumbbell model, compared to non-polar fluid models,

“monomers” and “dimers” with one and two Buckingham exponential-6 sites, re-

spectively. For the trimer model with quadrupolar interactions, the critical tem-

peratures are less sensitive to the lattice discretization parameter.

The observed effect of the lattice discretization parameter on estimates for the

thermodynamic and structural properties of fluids raises the need for a theoretical

investigation. We have studied the subject analytically in one-dimensional space

for a hard-core potential model and numerically for a hard-core with a square-well

and a variety of logarithmic repulsive potentials. We have found that the smooth-

ness of the repulsive part of the function is largely responsible for the speed of



convergence of critical parameters to their continuum counterparts. A numerical

study of the two- and three-dimensional cases is presented and the dependence

of the lattice discretization parameter on the number of lattice points contained

within a hard-core sphere has been investigated. The distribution of the lattice

points oscillates around a limiting form for the lattice discretization parameter.
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Chapter 1

Introduction and Outline

The design of processes in chemical industry, such as distillation, adsorption,

and liquid-liquid extraction, requires quantitative estimates of the thermodynamic

properties of the participating substances and of their mixtures. Understanding

the phase equilibria and thermodynamic properties of model fluids, real fluids, and

solids is of great interest for developing efficient chemical processes. In principle,

thermodynamic properties can be obtained directly from quantum and statistical

mechanics, but this is a very difficult numerical problem and has not been achieved

accurately for molecules more complicated than H2. Laboratory facilities are lim-

ited to a finite range of temperature and pressure in generating the thermodynamic

properties and obtaining experimental data of good quality is an expensive propo-

sition. Molecular simulations can in principle yield predictions outside the range

of experimental investigation. It was not long ago that deriving phase equilibria

even for very simple systems by simulations was an ordeal. Phase equilibria were

obtained by formulation of the equation of state from simulations at various state

points [9]. The introduction of the Gibbs Ensemble technique simplified the calcu-

lation of the coexisting properties of the fluids with a single simulation [10–12]. A
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limitation of the Gibbs ensemble method is that finite-size effects near the critical

point are often difficult to characterize and control, due to the variable extent of

the two simulation regions [11, 13–16]. By contrast, for grand canonical Monte

Carlo simulations, such effects are well understood and easily controlled [17, 18].

In addition, the grand canonical ensemble appears to have an increased statistical

efficiency compared to Gibbs ensemble Monte Carlo [19] for identical systems and

conditions. More recently, histogram reweighting grand canonical Monte Carlo

simulations [20, 21] along with mixed-field finite-size scaling concepts have been

used for obtaining the critical parameters and phase behavior properties with a

good degree of accuracy [18, 22, 23]. In histogram reweighting, the frequencies of

observing a particular number of particles and specified energy density are col-

lected, which data can in turn be extended to different chemical potentials and

temperatures [24, 25], and the thermodynamic properties of the system can be ob-

tained by rescaling of the parameters using basic statistical mechanics. All these

methodological advances have significantly simplified the use of molecular simula-

tions for getting the desired phase equilibria for real fluids.

The research reported in this thesis has focused on investigations of thermo-

dynamic properties of fluids at a molecular level by using intermolecular potential

models and statistical mechanical theories. Using advanced methods and power-

ful computers, the behavior of materials on a microscopic level has been studied

and based on these studies one can predict macroscopic properties of the specified

systems. Grand canonical histogram reweighting Monte Carlo calculations have

been performed to obtain thermodynamic properties, mainly liquid-vapor coexis-

tence data. Critical parameters are determined from mixed-field finite-size scaling

methods.
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The lack of appropriate intermolecular potential functions is still one of the

main problems in using atomistic simulation methodologies in practice. Most cur-

rently available intermolecular potentials are not optimized for important proper-

ties such as phase coexistence, vapor pressure, and critical behavior, over a broad

range of temperatures and densities. The models are limited to a finite range of

temperatures close to ambient conditions. So the objective of the work in Chapter 3

is to improve the mathematical models that describe the intermolecular potentials

for a variety of systems far from ambient temperature and pressure.

Monte Carlo simulations involving polar systems, either ions or partial charges,

are especially time-consuming when applying periodic boundary conditions, requir-

ing the use of Ewald [26, 27] summation or a similar technique. This can result

in intractably long computation times for systems of even modest size. Lattice

models have been used extensively in polymer physics ( e.g., the bond fluctuation

model [28, 29]), protein [30–32], thin film simulations [33] and for studies of phase

transitions and critical phenomena [34–42]. The greatest advantage of these mod-

els is computational efficiency with respect to time and length scales. Through

the study of larger systems, finite-size effects near critical points that result from

the divergence of the correlation length can be greatly diminished. It has been

shown that lattice simulations can effectively capture the phase behavior of both

the restricted primitive model (RPM) electrolyte [2] and Lennard-Jones monomeric

fluids [3] on fine enough lattices with considerably less computational effort than

in continuum-space calculations. The degree of discretization is of utmost impor-

tance: a coarsely discretized lattice simulation will be computationally faster to

run, but may not be physically meaningful, while fine discretization will capture

continuum behavior better, but may not provide significant time savings. For a
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simulation to be useful in modelling, its results must be nearly indistinguishable

from similar simulations performed in the continuum-space. This work, reported in

this thesis, aims to develop a methodology to enable the investigation of a variety

of fluids and their mixtures which are currently too difficult to simulate directly in

continuum-space. The concept of finely discretized lattices is applied to a variety

of real fluids in Chapter 4, where the phase behavior and critical points of the

various discretized models and whether they capture qualitatively their continuum

counterparts is also investigated. In Chapter 5, the effect of lattice discretization is

studied extensively for a different number of non-polar and polar model fluids. In

Chapter 6, we address the direct determination of second virial coefficients using

grand canonical Monte Carlo simulations. Chapter 7 is devoted to a theoretical

investigation of fine-lattice discretization theory for near critical fluids. In the

final chapter the main results of the thesis are briefly summarized and possible

directions for further research are discussed.
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Chapter 2

Simulation Methodologies

2.1 Introduction

In experimental studies of phase equilibria, although the phase behavior is

known for the conditions under which the experiments were performed, the data

by themselves do not allow an engineer to predict phase coexistence properties for

different conditions. Since chemical engineers typically have to design processes

for a wide range of temperatures, pressures, and mixture compositions, the use

of experiments to determine the phase coexistence properties of fluids and their

mixtures can quickly become impractical. Because of the limited amount of ex-

perimental data available and the cost in both time and money of collecting new

data, a large effort has gone into the development of equation of state models.

The main shortcoming of equation of state models is that their predictive powers

are generally limited to the temperatures and pressures for which the model was

fitted to experimental data. Use of the model at other conditions may result in

predictions that are seriously in error. An alternative to equation of state models is

to use molecular simulation techniques for the prediction of phase equilibrium for
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fluids and their mixtures. The first computer simulations of thermodynamic prop-

erties of fluids were performed at Los Alamos [43] and served as the basis of the

modern Monte Carlo methodology. In order to be able to calculate accurate phase

coexistence properties from simulation, the free energy as a function of density is

needed; this was the motivation behind the development of “umbrella sampling”

techniques [44–46]. The calculation of phase coexistence from molecular simula-

tion was greatly simplified by the technique of Gibbs ensemble Monte Carlo [10–

12]. The Gibbs ensemble Monte Carlo methodology provides a direct and efficient

route to the phase coexistence properties of fluids, for calculations of moderate

accuracy [47]. Grand canonical Monte Carlo simulations, when combined with

histogram reweighting [20, 21], have the potential for higher accuracy, especially

when equilibria at a large number of state points are to be determined [47]. When

combined with finite-size scaling technique, grand canonical histogram reweighting

Monte Carlo simulations can be used to obtain reliable estimates of critical parame-

ters directly from simulations. In Section 2.2 the molecular simulation methods are

explained briefly. In Sections 2.3 and 2.4 histogram reweighting grand canonical

Monte Carlo and mixed-field finite-size scaling concepts are reviewed, respectively.

Section 2.5 deals with the fine-lattice discretization method which is based on the

discretization methodology introduced by Panagiotopoulos and Kumar [2]. The

last section of this chapter describes applications of different intermolecular po-

tential models and the recent developed potentials for thermodynamic properties,

mainly phase coexistence applications.
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2.2 Molecular simulation methods

Molecular simulation generates information at the microscopic level (atomic

and molecular positions and/or velocities) and the conversion of this very detailed

information into macroscopic terms (pressure, internal energy, etc.) is the subject

of statistical mechanics. The two best known computer simulation methods are

Monte Carlo (MC) and molecular dynamics (MD). The name “Monte Carlo” was

chosen because of the use of random numbers in the calculation. Monte Carlo is

a stochastic process in which points in phase space are sampled with a frequency

proportional to their Boltzmann weight. The properties are then determined by

averaging over the regions sampled. An implementation of the Metropolis [48]

scheme is as follows. A number of particles is confined in a box or cell and one

particle with energy U(rN) is chosen at random. A random displacement is given

to the particle as r
′
= r + ∆, the new energy U(r

′N
) is calculated, and then the

move will be accepted with probability [49]:

acceptane (old → new) = min
(
1 , exp

[
−β[U (r

′N
)− U (rN )]

])
, (2.1)

where “old” represents the initial and “new ” the new configuration. If rejected, the

old configuration is kept. This process is repeated until the system loses its memory

of the initial condition and reaches a steady state (with properties fluctuating

around a mean value with no long-term drift), presumed to be the equilibrium

state. Properties are then measured over a sufficiently large number of samples to

obtain a desired statistical accuracy.

Molecular dynamics simulation is a technique to compute the equilibrium and

transport properties of a classical many-body system. Molecular dynamics is a

deterministic method in which the motion of molecules is determined by the forces

acting between the particles. The forces are calculated and Newton’s second law is
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integrated with a sufficiently small time step to determine the new positions of the

particles. This computation is done for all the molecules so their trajectories can be

followed in space and time. After equilibration as for Monte Carlo, the properties

are measured. The results are expected to be the same from both techniques for

ergodic systems. The MD method is generally more expensive, but can be used

for getting time-dependent, non-equilibrium, and transport properties [50, 51].

2.3 Grand canonical histogram reweighting Monte

Carlo

Grand canonical Monte Carlo simulations are performed in a simulation box

with volume V. Monte Carlo simulation aims to provide information about the

properties of a macroscopic sample. Since the number of degrees of freedom that

can be handled in simulations vary between a few hundred up to a few thousand,

it is very important to choose boundary conditions that mimic a bulk system,

surrounding the sample. Accordingly, periodic boundary conditions are enforced

with a minimum image convention [51] that limits the number of interactions that

need to be taken into account. The input parameters to the simulation are tem-

perature, T, and chemical potential, µ. Three types of movements are performed

during the simulations. The particles are displaced, created, and annihilated using

the standard acceptance criteria [50, 51]. Displacements of particles are accepted

with the following rule:

acceptance
displace

(old → new) = min
(
1 , exp{−β[U (r

′N )− U (rN )]}
)

. (2.2)
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Particles are added and annihilated with acceptance ratios:

acceptance
add

(old → new) = (2.3)

min

(
1,

V

Λ3(N + 1)
exp{β[µ− U (N + 1) + U (N )]}

)

and

acceptance
delete

(old → new) = (2.4)

min

(
1,

Λ3N

V
exp{−β[µ + U (N − 1)− U (N )]}

)
,

where “old” represents the initial configuration of the space and “new” the config-

uration after the move has been done, while rN represents the spatial configuration

and Λ =
√

h2/2πmkBT is the thermal de Broglie wavelength. It is necessary to

have a reasonable percentage of accepted moves of each type in order to obtain

good statistics. The probability of observing N particles with their correspond-

ing energies, E, is collected in a histogram. The probability function follows the

relationship:

f1(N,E) =
Ω(N, V, E) exp(−β1E + β1µ1N)

Ξ(β1, V, µ1)
, (2.5)

where Ω(N, V, E) is the microcanonical partition function (density of states) and

Ξ(β1, V, µ1) is the grand canonical partition function, while β is the reciprocal

temperature (= 1/kBT , where kB is Boltzmann’s constant). Neither Ω nor Ξ is

known, but Ξ is a constant for the given input parameters. Since f1(N, E) can

be measured during the simulation, the density of states and its corresponding

thermodynamic function can be determined. The entropy can be evaluated by a

simple transformation of the above equation as:

S(N, V,E) = ln Ω(N, V,E) (2.6)

= ln f1(N, E) + β1E − β1µ1N + C, (2.7)
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where C is a run-specific constant equal to the logarithm of the grand partition

function for the chemical potential and temperature of the run, ln Ξ(β1, V, µ1). For

a new simulation with a different temperature, T2, and chemical potential, µ2, one

would expect a new distribution, f2(N, E), with:

f2(N, E)

f1(N, E)
∝ exp[(β2µ2 − β1µ1)N − (β2 − β1)E]. (2.8)

The above relationship applies when the collected histograms have some over-

laps with each other. After different histograms have been obtained, they have

to be combined to one histogram. Ferrenberg and Swedsen have developed a

technique [20, 21] which ensures the minimum deviation between predicted and

observed histograms. The distribution Pµ,β(N,E) for a given number of particles

and energy that results from combining R runs assuming that they all have the

same statistical efficiency is:

Pµ,β(N, E) =

∑
fn(N,E) exp(βµN − βE)∑

Km exp(βmµmN − βmE − Cm)
, (2.9)

where Km is the total number of observation for run m. The constants Cm are

obtained using an iterative relationship:

exp(Cm) =
∑
N

∑
E

Pµn ,βn
(N, E). (2.10)

Given an initial guess for the weight, the two equations can be iterated until con-

vergence is achieved. Once this has been achieved all thermodynamic properties of

the system such as mean configurational energy and mean density can be obtained

by computing

〈U〉µ,β =
∑
N

∑
E

P (N,E; µ, β)E (2.11)

and

〈ρ〉µ,β =
1

V

∑
N

∑
E

NP (N, E; µ, β)N. (2.12)
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The pressure of the system is related to the area under the three-dimensional

probability distribution by:

βPV = ln(µ, V, β) + constant

= ln
∑
N

∑
E

Ω(N, V, E) exp[−βE + βµN ] + constant. (2.13)

The area under the probability distribution gives a reliable estimate of the partition

function, which is required to determine the additive constant in Eq. 2.13. To

determine this constant, the partition function is calculated at low densities. A

plot of ln Ξ vs. N gives a straight line of unit slope, which verifies that the system

behaves as an ideal gas at these conditions. It is then possible to extrapolate ln Ξ

to the N = 0 limit, with the y intercept representing the additive constant.

2.4 Mixed-field finite-size scaling

Recent advances in the determination of critical parameters for fluids lacking

special symmetries have been based on the concept of mixed-field finite-size scaling

and have been reviewed in detail by Wilding and Bruce [18, 22]. Near the critical

point the correlation length of fluctuations exceeds the microscopic length scale.

In the standard approach, critical points are estimated using mixed-field finite-size

scaling analysis under the assumption of Ising-type criticality. An (unnormalized)

order parameter x = (δN − sδE) is first constructed from the number of particles,

N , and energy, E, where δN = N −Nc, δE = E − Ec, and s is a field-mixing pa-

rameter. The probability distribution of this order parameter, PL(x), is obtained

by histogram reweighting of the raw simulation data. The ordering parameter is

then normalized to zero mean and unit variance. The resulting distributions are

compared to the Ising-class limiting critical point distribution. The method is ap-
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plied to different systems of interest using a code developed in our group, where the

temperature, chemical potential, and field mixing parameter are optimized using a

downhill simplex optimization method in order to obtain the critical temperature,

the critical chemical potential, the critical density, and the field mixing parameter,

s, so as to minimize the sum of the absolute deviations between the observed and

Ising-class limiting distribution. A typically successful example of the matching

of some data (obtained below) to the universal curve is shown in Fig. 2.1; on the

other hand, for some of our data (e.g., shown in Fig. 4.9) the matching between

the Ising universal distribution and our data is not so satisfactory. Generally, it

seems that too small a system size is the main reason for the relatively poor match-

ing. However, statistical noise can be another reason for not having a good match

between our data and the universal curve, especially when the computational cost

to reduce the degree of the statistical noise is prohibitively high with the existing

methods and the available CPU capacity.

Further evidence of Ising criticality can be found when corrections to scaling

of the critical temperature and critical density are analyzed through the scaling

relations

ρ∗c(L
∗)− ρ∗c(∞) ∝ L∗

−(1−α)/ν

(2.14)

and

T ∗
c (L∗)− T ∗

c (∞) ∝ L∗
−(θ+1)/ν

, (2.15)

where ρ∗c(L
∗) and T ∗

c (L∗) are the apparent size-dependent dimensionless criti-

cal density and critical temperature obtained by finite-size scaling analysis, and

ρ∗c(∞), T ∗
c (∞) are the infinite system values. The exponents in Eqs. 2.14 and

2.15 for the three-dimensional Ising universality are (α, ν) ≈ (0.109, 0.630) and

(θ, ν) ≈ (0.52, 0.630) [7].
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Figure 2.1: Matching of the scaled order parameter distribution to the universal

curve for the Ising three-dimensional universality class, indicated by the continuous

line. Points are from the present simulations for the nitrogen model in Chapter 3.
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Scaling theory has been a powerful tool for gaining insight into critical phe-

nomena [37–42]. Experimentally, a scaling equation of state has been confirmed for

many fluids [52–55]. The asymptotic scaling of fluid criticality requires two scaling

fields, namely a thermal field, t̃, and an ordering field, h̃, that in leading order,

are both linear combinations of the bare fields, t ∝ T − Tc and h ∝ µ − µc [56].

Bruce and Wilding considered only the mixing of t and h into the relevant scaling

h̃ and t̃ [57, 58]. On the basis of these assumptions, however, the second derivative

of the chemical potential along the phase boundary turns out to remain finite at

the critical temperature, and, hence, this approach is inadequate to account for

a Yang-Yang anomaly [59]. Yang and Yang proved that the divergence of the

constant-volume specific heat at a gas-liquid critical point implies that either the

second derivative of the pressure or the second derivative of the chemical potential

or both diverge when temperature approaches the critical temperature along the

phase boundary. The necessity of allowing for pressure casts doubt on the validity

of recently devised finite-size algorithms for extrapolating the effective coexistence

curves obtained in precise modern simulations of continuum fluid models. Fisher

and Orkoulas [60] have argued that in order to describe the Yang-Yang anomaly,

the pressure deviation, P − Pc, must mix into the scaling fields, especially into

ordering field h̃, and they have presented strong evidence that the second deriva-

tive of the chemical potential on the vapor pressure curve diverges like the specific

constant-volume heat when temperature approaches the gas-liquid critical point

from below, for both propane and carbon dioxide [60]. The anomalies in e.g., argon

and helium, might well be significantly smaller, where this idea is supported by

simulations of the hard-core square-well fluid [61]. However, we have not consid-

ered any pressure mixing for the calculation of critical points using the mixed-field
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finite size technique [56].

2.5 Fine-lattice discretization method

The key idea underlying this method is illustrated schematically in Fig. 2.2.

Consider a pure fluid of N single-site particles of characteristic diameter σ, inter-

acting with any intermolecular potential, U(rN), where rN denotes the positions

of the N particles. The potential may or may not have hard-core interactions and

could be non-pairwise-additive. One can construct a series of lattice models in

which allowable positions for the centers of particles are on a grid of character-

istic spacing λ. While any lattice type could be considered in principle, we use

the simple cubic lattice as the basis for all calculations. The lattice discretiza-

tion parameter, defined as the ratio of the particle diameter to the lattice spacing,

ζ = σ/λ, controls how closely the lattice model approaches the continuum be-

havior. For low ζ values, the underlying lattice could have a strong effect on

the thermodynamic and structural properties of the system. Previous work has

established that for particles interacting via hard-core plus Coulombic potential

(RPM electrolyte [62, 63]), a value of ζ = 5 [2], and for particles interacting via

Lennard-Jones potential [64, 65], a value of ζ = 10 [3], are already sufficiently high

so that the systems have qualitatively and almost quantitatively the same phase

behavior as the continuum analogs. The phase behavior of both systems is shown

in Figs 2.3 and 2.4, respectively, where T and ρ are the dimensionless temperature

and density.

The potential energy of interaction between any two sites on the lattice is
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Figure 2.2: Schematic illustration of the lattice discretization process for ζ =

1, 2, 3, and 5. A two-dimensional hard-core model is shown for simplicity, even

though all calculations were performed for three-dimensional systems. The full

circle represents the particle diameter whereas the dashed line circle shows the

excluded points for other equal-sized particles.

translationally invariant. The energy of interaction can be written as:

U(rij) = U(|xi − xj| , |yi − yj| , |zi − zj|), (2.16)

where x, y, and z are integers between 0 and L × ζ − 1. L × ζ must be an

integer, even though L and ζ can take any real value individually, in order to allow

periodic boundary conditions on the simple cubic lattice. Eq. 2.16 suggests that the

potential of interaction can be calculated once at the beginning of a simulation and

stored in an array of length (L× ζ)3. It is been shown for particles interacting via
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Figure 2.3: Phase diagram of the discretized restricted primitive model (RPM)

from reference [2]. Points are for ζ = 3 (triangles), 4 (stars), 5 (squares), and the

continuum-space RPM (solid line).

the Lennard-Jones potential and via Coulombic plus hard-core potentials, that this

method is more efficient by a factor between 10-20 and 100 [2, 3, 66], respectively,

relative to calculations in continuum-space. The speedup ratio may be sensitive

to coding details, machine architecture, and compilation parameters.

2.6 Intermolecular potentials

Here, we give an overview of the main contributions to forces between molecules.

They can be separated into two main types: “long-range” and “short-range”. The
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Figure 2.4: Phase diagram for the Lennard-Jones (LJ) lattice models from refer-

ence [3]. Points are for ζ = 1 (crosses), 2 (x’s), 3 (diamonds), 5 (squares), 10

(circles), and continuum-space LJ model (solid line).

long-range effects are of three kinds: electrostatic, induction and dispersion. The

electrostatic effects arise from the straightforward classical interactions between

the static charge distributions of the two molecules. They are strictly pairwise

additive and may be either attractive or repulsive. Induction effects arise from

the distortion of a particular molecule in the electric field of all the neighbors, and

are always attractive and they are strongly non-additive. Dispersion arises because

the charge distributions of the molecules are constantly fluctuating as the electrons

move quantum mechanically. The motions of the electrons in the two molecules

become correlated, in such a way that lower energy configurations are favored and
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higher energy ones disfavored. The average effect is a lowering of the energy, and

since the correlation effect becomes stronger as the molecules approach each other,

the result is an attraction. Further contributions to the energy arise at short range,

that is, at distances where the molecular wavefunctions overlap significantly. The

most important of these are exchange and repulsion [67].

The simplest intermolecular potential used to describe the repulsion forces be-

tween molecules is the hard sphere potential. This potential has one parameter,

the sphere diameter . If the molecules are within one diameter of each other their

interaction energy is infinite, otherwise it is zero. This potential has no attractive

part, but does simulate the steep repulsive part of realistic potentials [62]. An

extended model of the hard sphere model that includes an attractive term and

yet is simple enough to handle analytically is the square well potential. The pair

potential between two particles, separated by a distance r, U(r), is infinite for

distances less than σ , −ε for distances between σ and λσ, and equal to zero for r

greater than λσ. While these potentials are useful as points of reference, they are

not appropriate for real fluids. The most well known analytical expression with

adjustable parameters for U(r) is [62]

U(r) =
nε

n− 6

(n

6

)6/(n−6)
[(σ

r

)n

−
(σ

r

)6
]

, (2.17)

where σ is the distance at which U(r) = 0, and ε is the depth of the well. The

exponent n is usually taken to be an integer between 9 and 15. For n = 12, U(r) is

the well known Lennard-Jones 6-12 potential (abbreviated as “LJ” from this point

on) [64, 65]:

ULJ(r) = 4ε

[(σ

r

)12

−
(σ

r

)6
]

. (2.18)
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The modified Buckingham exponential-6 potential [68] (abbreviated as “Exp-6”

from this point on) is a four parameter model of the form:

UExp−6(r) =





ε

[
6

α− 6
exp

(
−α

[
r

rm

− 1

])
− α

α− 6

(
rm

r

)6
]

if r ≥ rmax

+∞ if r < rmax

(2.19)

where ε, rm, and α are model parameters. The parameter rm denotes the ra-

dial distance at which the potential has a minimum. The cutoff distance rmax is

the smallest positive value for which dU(r)/dr = 0 and may be obtained itera-

tively from Eq. 2.19. The reason a cutoff distance is required is that at very short

distances, the original Exp-6 potential becomes negative. While canonical ensem-

ble Monte Carlo or molecular dynamics simulations never sample this unphysical

“attractive” region, this is not the case on trial insertions in grand canonical sim-

ulations. The characteristic size parameter, σ, for this potential is defined by that

value of r for which U(r) = 0 and is obtained numerically; likewise ε is the well

depth of the potential. Fig. 2.5 illustrates the change of shape of the potential

function as the repulsion exponent is increased from α = 12 to 14, and 16. It

has been shown that the greater flexibility of the Buckingham potential increased

the accuracy with which one can predict the phase coexistence curve and vapor

pressure of a simple fluid such as methane from a united atom model [25]. The

accuracy attained is higher in comparison with the Lennard-Jones potential, al-

though at the cost of introducing one extra parameter in the potential model.

The inverse-square Coulomb force between two charged atoms, or ions, is the

strongest of the physical forces, stronger even than chemical binding forces. The

energy for the Coulombic interaction between two charges Q1 and Q2 is given by:

U(r) =
Q1Q2

4πεεor
, (2.20)
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Figure 2.5: Potential energy, U(r), vs. distance, r, for the following models: α = 12

(solid line), α = 14 (dashed line), and α = 16 (dotted line).

where ε is the relative permittivity or dielectric constant of the medium, εo is the

permittivity of vacuum, and r the distance between the two charges. Expressions

for dipoles and quadrupoles are more complicated [69]. All the potentials men-

tioned above are two-body potentials which only count the forces between two

particles in the absence of any other particle. Three- and higher-body interac-

tions count the interactions between two particles in the presence of a third body.

Considering this effect makes the potentials very complex and computationally

expensive. So in practice most of the potentials considered, only represent the

forces between two bodies; this is known as the “pairwise additivity” approxima-

tion [50, 62].
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Chapter 3

Phase Equilibria of Diatomic

Molecules and N-alkanes

3.1 Introduction

3.1.1 Diatomic molecules

Computer simulations have contributed significantly to the understanding of

the properties of diatomic molecules. The objectives of such calculations are two-

fold. On one hand, they allow us to explore potential models which are sufficiently

simple to be related to statistical mechanical theories, or to serve as prototypes

for anisotropic systems. On the other hand, the simulations of real systems, and

eventually the diatomic potentials can serve as a reference system for future stud-

ies.

One of the simplest anisotropic pair potentials is two spherical centers with

a fixed separation between them known as Lennard-Jones centers at a fixed dis-

tance potential (2LJC). Ooi and Oobatake numerically estimated the parameters
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of Lennard-Jones parameters between atoms (hydrogen, oxygen, and nitrogen)

from second virial coefficients [70]. Barojas et al. [71], Cheung and Powles [72]

studied the 2LJ potential with a reduced bond length value of l∗ ≡ l/σ = 0.329,

corresponding to nitrogen, which predicts the thermodynamic and structural prop-

erties of liquid nitrogen satisfactorily. Sweet and Steele [73] calculated the second

virial coefficients for the Lennard-Jones potential and found that the experimental

results for nitrogen could be fitted just for a reduced range of 0 to 0.4. These

results illustrate the difficulty of obtaining an intermolecular potential from the

second virial coefficient. Singer et al. presented the thermodynamic properties

for l∗ = 0.505 − 0.793, and attempted to model liquid F2, Cl2, and Br2 [74, 75].

Powles and Gubbins measured the second virial coefficients of liquid nitrogen and

oxygen using the LJ potential so that they fit the experimental data [76]. After

that diatomic molecules simulated by 2LJC potential have been the subject of

extensive MD calculations by Barojas et al. [71] and Kriebel et al. [77]. Generally

good agreement between the experimental and simulation data was obtained in all

studies for thermophysical and thermodynamical properties, except for the critical

properties. Gallassi and Tildesley studied the phase behavior of Lennard-Jones

diatomics as a function of the bond-length [78]. Their potential for chlorine did

an excellent job even in producing the liquid-vapor coexistence curve and even in

reproducing the experimental critical points to within a few percent.

3.1.2 N-alkanes

Hydrocarbon molecules are important for both (petro-)chemical and biological

applications. The simplest hydrocarbons are the n-alkanes, which are linear chains
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of methylene groups with a methyl group at both ends. A good starting point for

development of intermolecular potential models for the phase behavior of real fluids

is thus n-alkanes. Two different approaches for dividing n-alkanes into interaction

sites are usually followed when building a molecular force field. The first approach

is to treat each hydrogen and carbon atom as an interaction site. The second

approach is to unite each carbon and its bonded hydrogen into a single interaction

site known as a methyl or methylene group. An alternative to the united atom

model is the more realistic all-atom representation. With this model, interaction

sites are placed at all carbon and hydrogen centers, which increases the number of

interaction sites by a factor of three and the computational demand by an order

of magnitude.

Two recently proposed models, TraPPE [79, 80] and NERD [81, 82], use a

united-atom, Lennard-Jones potential to describe the non-bonded interactions.

The TraPPE force field overestimates the vapor pressures, with the deviation from

experiment greatest at low reduced temperatures. The NERD model exhibits

similar behavior for longer chains, with the results being closer to experimental

value than the TraPPE model. In general, the new model of Errington and Pana-

giotopoulos produces the vapor pressure to a higher level of accuracy and the

agreement is best for shorter chain lengths [4]. The model slightly overestimates

the critical pressures and underestimates the vapor pressure at low reduced tem-

peratures for longer chains. The critical parameters are in good agreement with

experimental results. The Exp-6 model reproduces the experimental saturated liq-

uid and vapor densities and vapor pressures for ethane through octane to within

average absolute deviations of a few percent and critical parameters are also found

to be in good agreement with experiment.
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In this chapter, new models are developed for diatomic molecules including

nitrogen, chlorine, and fluorine, that give good descriptions of the phase behav-

ior and vapor pressure over a large temperature range. The performance of the

models developed in this work has been evaluated to determine the phase behav-

ior and critical parameters of the same systems by the use of the discretization

methodology.

3.2 Models and simulation details

The objective is to come up with parameters for the non-bonded interactions

that fit the experimental data of the specific systems under development. We have

used the Exp-6 intermolecular potential in order to enable comparisons with previ-

ous studies in [4]. Truncation of the potential has an important effect on the phase

behavior and the critical properties. In the present study, we are interested in ob-

taining the properties of the full potential and long-range corrections are applied

in every simulation. Corrections are performed with the method of Theodorou

and Suter [83]. In this approach, all interactions between molecules and their min-

imum image neighbors are included and the long-range correction is calculated by

integrating the potential in two parts. The first part is from L/2 to
√

3/2L using

the corrected radial distribution function given by Eq. 13 in Ref. [83]. The second

part is calculated by assuming g(r) = 1 and integrating from
√

3/2L to ∞. The

bonded interactions are described by stretching, bending, and torsional potentials

which are obtained by fitting to ab initio data. We use the data available for the

bonded interactions as our initial guess.

As our simulation methodology, a series of grand canonical simulations is com-

puted in the vicinity of the coexistence curve in continuum-space. The sequence
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of runs starts with collecting a histogram near critical conditions. These runs at

critical conditions cover a broad range of particles and energies and can be used

as bridges between the liquid and gas states. Histogram reweighting is then used

to get the coexistence properties over a limited range of temperatures. To increase

the temperature range, some additional runs are done at lower temperatures. The

second run is completed at a temperature of T = Tc −∆T and at chemical poten-

tials of µ = µc ± ∆µ. Both ∆T (K) and ∆µ(kBT/N) are chosen such that good

overlaps between histograms are obtained. The three histograms are then com-

bined by the method of Ferrenberg and Swendsen [20, 21] and again the coexistence

density and activity are determined. The process is repeated for temperatures of

T = Tc − 2∆T , T = Tc − 3∆T , and T = Tc − 4∆T until the whole temperature

range is covered. The critical properties are obtained using the mixed-field finite-

size scaling method.

The model parameters, in our study, ε, σ, and α have to be chosen so such that

the final thermodynamic properties fit the experimental data. The initial values

for ε and σ are chosen from literature values and rescaled using the principle of

corresponding states to match the critical temperature and density of the corre-

sponding real system. The α value varies between 12 and 22, so in our study, we

examine all possible choices and choose the best value that fits the experimental

data. The other input parameters that have to be imposed on the system are the

parameters that determine the structural form of the fluid to be studied. The bond

length, bond bending angle, and torsional parameters potential are known as the

structural properties of molecules, which should be all defined when creating the

model molecules. For each of the molecules studied, the volume of the simula-

tion box is selected so that the critical density of the given system corresponds to
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approximately 80 particles. Statistical uncertainties are estimated by performing

three duplicate sets of runs at identical conditions with different seeds for the ran-

dom number generator. The “ran2” routine [84] which has a period of 2.3 × 1018

and no low-order serial correlations, is used. A random initial configuration is used

for vapor phase simulations, while liquid phase simulations are started from the

final configuration of a previous run. Most of the simulations are equilibrated for

1 million Monte Carlo steps (MCS). Vapor phase simulations are run for 5 million

MCS, while simulations in the liquid phase run for 10 (MCS) or more. We use

Pentium III 733 MHz computers to run our simulations and usually the runs take

a few hours to complete.

3.3 Results and discussion

3.3.1 N -butane

The potential model developed for n-butane by Errington and Panagiotopou-

los [4] (abbreviated as EP model from this point on), reproduces the experimental

saturated liquid, vapor densities, and vapor pressure to within average absolute

deviations of few percent. The critical temperature and critical density were also

found to be in good agreement with experiment. The torsional parameters used

for the EP model were taken from Smit et al. [85], where the torsional parameters

for the TraPPE [79, 80] and NERD [81, 82] models are twice their counterparts in

[85] and they are taken from [1]. Here, we use the EP model but with the torsional

values used for the TraPPE and NERD models and we refer to this model as the

“new” model. We need to emphasize that the only difference between the new and

the EP models is that the torsional parameters used for the new model, which were
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Table 3.1: Torsional potential parameters for the new model, taken from Jorgensen

et al. [1] and the model used by Errington and Panagiotopoulos, EP model.

Model EP New

V0 0 0

V1 355.03 710.06

V2 -68.19 -136.38

V3 791.32 1582.64

also used for the TraPPE and NERD models, are twice those of the EP model. As

mentioned in the previous section, for creating the n-butane chain like the other

n-alkanes, the bond length, bond bending angles, and torsional angles of the spe-

cific system should be specified for the system. The CH3-CH3, CH3-CH2, and

CH2-CH2 bond lengths are set to 1.839, 1.687 and 1.535Å, respectively [4]. The

bond angles for the new model are generated according to the bending potential:

Ubend(θ) =
Kθ

2
(θ − θeq)

2, (3.1)

with Kθ = 62500 K/rad2, θeq = 114o, and the torsion angle is defined by the

potential:

Utor(φ) = Vo +
V1

2
(1 + cos(φ)) +

V2

2
(1 + cos(2φ)) +

V3

2
(1 + cos(3φ)), (3.2)

with torsional parameters set as in Table 3.1.

The phase coexistence is shown in Fig. 3.1 for both the new model and the EP

model, respectively. The excellent agreement of the phase coexistence behaviors

for the two n-butane models indicates that the dependence of this property on

torsional parameters is very weak. This point is further emphasized in Fig. 3.2,
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Figure 3.1: Phase behavior of the n-butane model from histogram reweighting

GCMC simulations. Errington and Panagiotopoulos model [4] (open circles), new

model (open triangles), and experimental data [5] (solid line and filled circle).

where the percent deviation of the new and EP models from experimental values are

plotted as a function of temperature for the vapor pressure. Over the temperature

range selected, the new model does not deviate by more than a few percent for the

vapor pressure.
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Figure 3.2: Percent deviation from experiment for the vapor pressure for n-butane

from histogram reweighting GCMC simulations. The open circle symbols represent

the EP model and the cross symbols represent the new model.
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Table 3.2: Potential parameters and critical properties for diatomic models.

Molecule ε/kB(K) σ(Å) α `∗ = `/σ Tc(K) ρc(kg/m3) Pc(MPa)

N2 37.3 3.310 14 0.33 126.15±0.05 316.9±0.9 3.4±0.7

F2 54.85 2.825 14 0.51 143.84±0.04 578.7±0.8 5.2±0.6

Cl2 184.95 3.357 14 0.63 416.67±0.05 591.5±0.9 8.1±0.6

3.3.2 Diatomic molecules

The main task of this part of our work is to obtain good models for diatomic

molecules such as N2, O2, F2, and Cl2. We started with N2. During the fitting pro-

cess the bond length was kept fixed. The three parameters of the Exp-6 group were

adjusted to obtain an optimum description of phase coexistence, vapor pressure,

and critical parameters. The values for the two ε/kB = 37.3 K and σ = 3.310Å in-

put parameters were obtained from the literature [4], as was the bond length (

l = 1.085Å) between two atoms. Three different models with α values 12, 14, 16,

and a reduced bond length value of l∗ = l/σ = 0.33 were examined. As is shown

in Fig. 3.3, α = 14 seems to be a good starting point for the α value. The model

parameters for nitrogen, fluorine, and chlorine models are listed in Table 3.2.

Coexistence densities of the nitrogen model predicted by the new model are

compared to experimental values in Fig. 3.4. The experimental coexisting densities

and pressures are obtained from NIST - Chemistry WebBook [6]. The uncertain-

ties of the simulated points are less than the symbol size. Overall, there is a good

agreement between the saturated liquids and gas densities of the new model and

experimental data over the temperature range. The vapor pressure of the new
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Figure 3.3: Phase behavior of the diatomic model, N2, from histogram reweighting

GCMC simulations. α = 12 (open squares), α = 14 (open stars), α = 16 (open

triangles), and experimental data [6] (solid line).

model is presented in Fig. 3.5. Again, the agreement between the experimental

data and the model is good. There is a big deviation at lower temperatures due

to high density at low temperature where the liquid needs a large amount of CPU

time to get equilibrated with reasonable acceptance ratios for both displacement

and addition/deletion movements. Our CPU capacity did not allow us to have

good histograms for the high density region. The critical parameters of the models

studied are presented in Table 3.2. The vapor pressure was fitted to the equation:

ln P sat = ao +
a1

T
, (3.3)
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Figure 3.4: Phase behavior of the nitrogen model from histogram reweighting

GCMC. New model (open stars) and experimental data [6] (solid line).

and the critical pressure was calculated by extrapolating the vapor pressure curve

to the critical temperature. In order to see the effect of volume on the critical

parameters, two other system sizes were also used for the nitrogen model. Grand

canonical simulations were completed with volumes twice and half of the original

volume. In Fig. 3.6, we plot the critical temperature, as a function of L(−θ+1)/ν ,

where L is the length of the simulation box, with θ = 0.52 and ν = 0.630 [7]. Size

effects are pronounced near the critical condition and we do not see any difference

away from the critical point. Phase diagram and vapor pressure curves for F2 are

shown in Figs. 3.7 and 3.8 as part of our work.
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Figure 3.5: Vapor pressure of the nitrogen model. Symbols are the same as in

Fig. 3.4.
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Figure 3.6: Critical temperatures, Tc, as a function of L−(θ+1)/ν , with θ = 0.52 and

ν = 0.63 [7] for nitrogen model.
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Figure 3.7: Phase behavior of the fluorine model from histogram reweighting

GCMC simulations. New model (open stars) and experimental data [6] (solid

line).
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Figure 3.8: Vapor pressure for the fluorine model. Symbols are the same as in

Fig. 3.7.
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3.4 Conclusions

In this chapter new intermolecular potential models for diatomic molecules,

mainly nitrogen, chlorine, and fluorine have been developed and parameterized to

the vapor-liquid coexistence properties far from ambient temperature and pressure.

The models utilize the Buckingham exponential-6 potential to describe the non-

bonded repulsive/dispersion interactions. Histogram reweighting grand canonical

Monte Carlo methods were used to obtain the model parameters. The new models

reproduce the experimental saturated liquid and vapor densities, vapor pressure

and critical parameters. All the phase coexistence properties are calculated using

simulations in continuum-space. The models obtained in this work for the diatomic

real fluids can be used in next the chapter as a starting point for calculating the

thermodynamic properties of real fluids, but in lattice space using the fine-lattice

discretization methodology which will be explained in detail.
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Chapter 4

Phase Equilibria of Real

Non-polar and Polar Fluids

4.1 Polar fluids, carbon dioxide and water

No molecules carry net charges, but many possess an electric dipole. Such

molecules are called polar molecules. The dipoles of some molecules depend on

their environment, and can change substantially when they are transferred from

one medium to another, especially when molecules become ionized in a solvent.

Water is a dipolar molecule [69]. Because of the importance of water in many

disciplines of science, and in technological applications, and its importance for bio-

logical processes, the development of empirical intermolecular potentials for water

has received much attention. This information is crucial for a variety of traditional

and novel chemical engineering applications where water is used at extreme con-

ditions, including its critical and supercritical regions both as a pure liquid and

in aqueous solutions [86]. Fixed-point charge models of water are commonly used

because of their simplicity and their successful description of the structure of liquid
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water near ambient conditions. In all of these models it is assumed that the water

molecules interact through a Lennard-Jones potential between the oxygens, and

through Coulombic potentials between one negative charge located at the oxygen

and two positive charges located at the hydrogens. Models of this type include

the Bernal-Fowler [87], ST2 [88], TIPS2 [89], TIP4P [90], SPC [91], SPC/E [92],

and MSOC/E [93]. Because most of these potentials were optimized to describe

the liquid phase of water at ambient conditions, the models are inadequate at high

temperatures and most predict a critical temperature lower than the experimental

value. The new fixed-point charge potential model of Errington and Panagiotopou-

los [94, 95] using the Buckingham Exponential-6 group at the oxygen center and

a set of three point charges, improves the description of water over current fixed-

point charge models. The new model reproduces the critical temperature to within

0.2%, the critical density to within 8%, and saturated liquid densities to within

an average of 2.5%. Vapor pressures are also in good agreement with experiment,

and the model second virial coefficient is in better agreement with experiment

than other fixed-point charge models. The negative-positive and positive-positive

radial distribution functions are in better agreement with experiment than current

models, but the new model does not describe correctly the second shell of the

negative-negative radial distribution function. It is well known that water has a

relatively large molecular polarizability and, thus, interactions which are not pair-

additive are expected to be important in any model potential that would describe a

large variety of water data. An alternative is the fluctuating charge model in which

the point charges on atomic sites are allowed to fluctuate in response to the water

environment [96, 97]. Another alternative, a polarizable model describing both the

static and dynamic properties of water over a wide range of densities and temper-
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atures, was the topic of several studies over the past years [98–102]. None of the

advanced simulation studies of four dipole-polarizable and two fluctuating-charge

water force fields have demonstrated a satisfactory description of the vapor-liquid

coexistence curve from room temperature to the critical region. Recent work of

Chen et al. [103, 104] uses an improved polarizable force field by accounting an ad-

ditional coupling between the Lennard-Jones interaction parameters for a pair of

oxygen sites and their partial charged (electronic configuration). Although, Chen

et al. recommend their polarizable SPC model for phase equilibrium calculations

at elevated temperatures (above 400 K), their investigation did not result in a

simple polarizable force field that works satisfactorily from the triple point to the

boiling point of water.

Carbon dioxide is another example of a polar fluid. Carbon dioxide has a sub-

stantial quadrupole moment. The molecule is also highly polarizable, with the

effective electrostatic moments varying with temperature and density. There have

been several previous studies aimed at developing potential models for this fluid.

A common approach is to use point charges to model the polar interactions. This

type of approach has many attractive features. The model is simple and relatively

straightforward to simulate. The computational demand of such a model is com-

paratively low. The drawback of this model is its inability to capture multi-body

effects. The electrostatic moment of the molecule is fixed and therefore cannot fluc-

tuate in response to the local environment. As a result, the effects of polarizability

must implicity be taken into account via the point charges. To account for this,

the dipole moment of many point charge models is set significantly higher than the

bare pure-fluid properties can be achieved. Harris and Yung have proposed [105] a

point charge model for carbon dioxide. A point charge was placed on each atomic
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center to emulate the quadrupole moment. The magnitude of the point charges

was selected to reproduce the experimental quadrupole moment. The model accu-

rately reproduces the saturated densities and vapor pressures.

In this work, Monte Carlo simulations of real polar molecules on a discretized

lattice, where each atom overlaps multiple lattice sites, have been investigated to

provide comparable results with off-lattice simulations in one-tenth the compu-

tation time. We have investigated the models studied by Errington and Pana-

giotopoulos in [95] and in [106] for off-lattice water and carbon dioxide, respec-

tively. A discretization of ζ = 10 is required in atomic systems such as LJ and Exp-

6 atoms, in order to reproduce the continuum counterparts, whereas for molecular

systems, the finer discretization level (ζ = 12) is required to capture the features of

intermolecular bonding such as bond lengths and bond angles [107]. Thus provided

one uses a value of ζ > 12 one can have an estimate of the errors induced by fine

lattice discretization method. For a lattice simulation to be useful in modeling,

its results should be nearly indistinguishable from similar simulations performed

in the continuum-space. This work aims to develop a methodology to enable the

investigation of real systems simulated in lattice space but reasonably comparable

with off-lattice simulations. Using this technique, the fine lattice discretization

method can be expand to more complex polar models and also their mixtures with

less computational expense. A significant barrier for simulating these systems is

the computational time required to evaluate the potential energy, whereas here,

as described in detail in Section 2.5, a lattice interaction matrix can be evaluated

once at the start and be used repeatedly during the simulation to save significant

CPU time.
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4.2 Model development and methods

Each of the models used in this chapter incorporates a united -atom description

of the molecules. The non-polar pairwise additive intermolecular interactions were

described by Lennard-Jones (LJ) or Buckingham exponential-6 (Exp-6) potentials.

For nitrogen, interaction sites were placed at the nitrogen centers, and for carbon

dioxide interaction sites were placed at the carbon and oxygen centers. A single

site was placed at the oxygen center for water. The Lorentz-Berthelot combining

rules for σ and ε were used for the interactions between unlike molecules [108].

The geometric mean combining rule was used for the parameter α in the potential

model.

σij = (σii + σjj)/2, (4.1)

εij =
√

εiiεjj, (4.2)

and

αij =
√

αiiαjj. (4.3)

The polar interactions were modeled with point charges. The charges were placed

at the carbon and oxygen centers for carbon dioxide and three point charges were

used for water, one at the oxygen center and two at “pseudo hydrogen” sites. A

“pseudo hydrogen” is defined as an interaction site at which a point charge is

placed without a corresponding LJ or Exp-6 group. This combination leads to the

following expression for the energy of interaction between two molecules

U =
∑

i

∑
i<j

unp
ij +

3∑
γ=1

3∑

δ=1

1

4πεo

qγqδ

rγδ

, (4.4)

the first term of Eq. 4.4 describes the non-polar energy, where unp
ij is either the

Lennard-Jones (LJ) or exponential-6 potential (Exp-6). The second term accounts
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Table 4.1: Potential parameters for nitrogen, carbon dioxide, and water.

Molecule Type Group Model ε/kB(K) σ(Å) α q(e)

nitrogen Exp-6 N New 37.30 3.310 14 -

carbon dioxide LJ C Harris 28.13 2.757 +0.6512

Exp-6 (EP)CO2 28.07 2.753 14 +0.6466

LJ O Harris 80.51 3.033 -0.3255

Exp-6 (EP)CO2 83.20 3.029 14 -0.3233

water Exp-6 O (EP)H20 159.78 3.195 14 -0.7374

LJ SPC/E 78.21 3.167 12 -0.8476

H (EP)H20 - - - +0.3687

H SPC/E - - - +0.4238

for the Coulombic energy of interaction between point charges. The parameters qγ

and qδ are the values of given point charges, rγδ is the distance between two point

charges and εo is the permittivity of a vacuum. The parameters for each model

studied in this chapter are summarized in Table 4.1.

As our primary goal is to build fine-lattice models to reproduce the properties

of real systems studied in Chapter 3, we use the intermolecular potential model

obtained for nitrogen in that chapter in order to test the applicability of the lat-

tice discretization technique. For carbon dioxide, two sets of potential parameters

are considered, one from Harris and Yung [105] (abbreviated as “Harris model”

from this point on), the second one from Errington and Panagiotopoulos [106]

(abbreviated as (EP)CO2 model from this point on). For the water case study, the

well known SPC/E (simple point charge/extened) model [92] and also the model

proposed by Errington and Panagiotopoulos [95] (abbreviated as (EP)H2O model
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from this point on) are considered for intermolecular potential parameters. Here,

we extend the previous work by studying the same models but in lattice space and

with an emphasis on whether the thermodynamic properties of the new proposed

lattice methodology are comparable to the off-lattice results studied for both polar

real systems, carbon dioxide and water.

While the interaction energy parameters remain unchanged, the bond length

and bond angles must be altered to force each bond to span an integer number

of lattice spaces while adhering as closely as possible to continuum values. Unfor-

tunately, this procedure can lead to sizeable errors due to restrictions placed on

separation distance, where a site’s location can only be described by any number

between zero and box length in all the dimensions. The set of configurations for

a particular value of ζ were determined in the following manner: the lattice spac-

ing σ/ζ was fixed and the minimum and maximum allowable values for the bond

lengths and bond angles were set to particular values. All possible configurations

of a model molecule on a lattice were found between these parameters. The struc-

tural parameters of the models studied are shown in Table 4.2 for different values

of ζ. For example, if ζ = 8, one possible configuration for carbon-dioxide model

would be 


0 0 0

−3 −1 −1

3 1 1




(4.5)

in which the first line represents the position of carbon atom and latter two lines are

the coordinates of the two oxygens, all in number of lattice units. In this example,

the bond length between each carbon and oxygen is 1.1338Å and the bond angle is

180o, compared with the continuum values of 1.1433Å and 180o. In principle and

as it is obvious from the Table 4.2, the deviation between the average bond length
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Table 4.2: Structural parameters for nitrogen, carbon dioxide, and water.

Molecule ζ bond length(Å) bond angle(o)

Nitrogen 12 0.3273 -

Carbon dioxide 8 1.1338 180.00

12 1.1173 180.00

20 1.1224 180.00

∞ 1.1433 180.00

Water 8 1.0500 109.47

13 1.0607 109.47

21 1.0609 109.08

32 1.0677 109.47

∞ 1.0668 109.50

in lattice and continuum spaces does not necessarily decrease on increasing the ζ

value. However, the possible number of configurations increases upon increasing

the lattice discretization parameter, ζ, but there was no observed difference in the

final phase envelope results, if the number of configurations is of order 10, 100, or

1000. For simplicity and to save computational time a set with smallest number

of configurations were chosen.

The multihistogram reweighting grand canonical Monte Carlo method was used

for obtaining the thermodynamic properties, mainly the phase behavior (for details

of the simulation see Chapter 3). Both models belong to the same universality class

and we use the finite size scaling method of Bruce and Wilding [18, 22] to estimate

the critical points.
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Figure 4.1: Phase behavior of the nitrogen model from histogram reweighting

GCMC simulations: N2 model with ζ = 12 (open stars), off-lattice data (open

circles), and experimental data [6] (filled triangles).

4.3 Results and discussion

4.3.1 Nitrogen model

Since the phase behavior of LJ particles was qualitatively captured by a lattice

discretization value of ζ = 10 [3], we expected to be able to capture the phase

behavior of nitrogen by a value of ζ = 12. The coexistence behavior of the nitro-

gen model with a lattice discretization parameter of ζ = 12 is compared to both

experimental and off-lattice values in Fig. 4.1, where the uncertainties of the sim-

ulated points are less than the size of the symbol. The off-lattice data are based
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on the calculations in Chapter 3 for the nitrogen model, but in continuum-space.

The saturated densities and critical parameters, mainly critical temperature and

critical density are in good agreement with experiment. In next subsections we

apply the fine-lattice discretization technique to more complicated molecules such

as carbon dioxide and water.

4.3.2 Carbon dioxide model

The coexisting densities for (EP)CO2 model with a lattice discretization pa-

rameter of ζ = 8, is compared to both experimental and off-lattice values in

Fig. 4.2. The uncertainties of the simulated points are less than the size of the

symbol. The saturated liquid densities are in good agreement with both off-lattice

and experimental data. The saturated gas densities deviate a little bit for higher

temperatures but for lower temperatures, the agreement with both experimental

and off-lattice simulations data is good. The phase coexistence results for (EP)CO2

carried out with ζ = 10 and 12 are shown in Fig. 4.3. To our surprise, the same

trend for higher values of temperatures in gas region is observed for both systems.

The Harris model [105] in lattice space using a lattice discretization parameter,

ζ = 8, was also studied. Phase coexistence data for Harris model in both lattice

and continuum spaces are shown in Fig. 4.4. The critical temperature and criti-

cal density for all the models studied with the corresponding off-lattice data are

shown in Table 4.3. Overall, the agreement for phase behavior and critical points

are good and within symbol size. All the carbon dioxide models studied up to this

point were calculated in a system size of L∗ = L/σ = 7, where L∗ is the dimension

of the box in reduced units. Fig. 4.5 illustrates our results for the critical ordering

distribution at the estimated critical point for ζ = 8 and L∗ = 7. It is believed
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Figure 4.2: Phase behavior of the carbon dioxide model from histogram reweighting

GCMC simulations. (EP)CO2 model with ζ = 8 and L∗ = 7 (open stars), off-lattice

data (open circles), and experimental data [6] (filled diamonds).

that the deviation from the Ising distribution is not a consequence of inadequate

sampling but a finite-size effect. However, Fig. 4.6 shows the coexistence data

for the carbon dioxide model with ζ = 8, but L∗ = 10, and to our surprise, the

same trend is observed for bigger system size. The critical ordering distribution

at the estimated critical point for ζ = 8, but L∗ = 10 is shown in Fig. 4.7 and the

matching is perfect.
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Figure 4.3: Phase behavior of the carbon dioxide model from histogram reweighting

GCMC simulations. (EP)CO2 model with ζ = 12 and L∗ = 7 (open stars), (EP)CO2

model with ζ = 20 and L∗ = 7 (open circles), off-lattice data (open squares), and

experimental data [6] (filled diamonds).

Table 4.3: Critical temperature and critical density of the carbon dioxide models

studied. The data lie with a level of confidence of approximately 68 percent.

Molecule Type L∗ ζ Tc(K) ρc(kg/m3)

Carbon dioxide (EP)CO2 7 8 301.6±0.3 483±4

Harris 7 8 302.7±0.2 481±5

(EP)CO2 7 12 301.7±0.4 492±4

(EP)CO2 7 20 301.5±0.3 490±3

(EP)CO2 10 8 301.9±0.2 486±2

(EP)CO2 7 ∞ 302.8±0.5 465±1

Experiment - ∞ 304.1 466.5
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Figure 4.4: Phase behavior of the carbon dioxide model from histogram reweighting

GCMC simulations. Harris model with ζ = 8 and L∗ = 7 (open stars), off-lattice

data (open squares), and experimental data [6] (filled circles).
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Figure 4.5: Matching of the scaled order parameter distribution to the universal

curve for the Ising three-dimensional universality class, indicated by the continuous

line. Points are from our simulations for the (EP)CO2 model with ζ = 8 and L∗ = 7.
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Figure 4.6: Phase behavior of the carbon dioxide model from histogram reweighting

GCMC simulations: (EP)CO2 model with ζ = 8 and L∗ = 10 (open stars), off-

lattice data (open circles), and experimental data [6] (filled diamonds.
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Figure 4.7: Matching of the scaled order parameter distribution to the universal

curve for the Ising three-dimensional universality class, indicated by the continuous

line. Points are from our simulations for the (EP)CO2 model with ζ = 8 and

L∗ = 10.
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Table 4.4: Estimates of critical temperature with different lattice discretization

parameter, ζ, for the water model studied.

Molecule ζ Tc(K)

water 8 608±1

13 623±1

21 628±1

32 637±1

∞ 645.9±1.1

4.3.3 Water model

Estimates of the critical temperatures of the water models studied in lattice

space are shown in Table 4.4 along with the off-lattice (ζ = ∞) value. The

comparison of the critical temperatures of four different water models with the off-

lattice value shows that water properties are strongly influenced by the structural

properties of the configurations used during the simulation. The study shows that

the set of configurations with bigger lattice discretization parameter, ζ, has the

closest average bond length value to the off-lattice value and there is a good agree-

ment between the off- lattice and lattice phase coexistence data. Small changes

in the bond length resulting from different lattice discretization parameters intro-

duce large deviations in the critical temperature and subsequently the coexistence

behavior, where the deviations of the average bond lengths in lattice space and

continuum-space are clearly below 2%. As shown in Fig. 4.8, the saturated liq-

uid density results compare well with the off-lattice simulation results. However

the saturated gas density shows a small deviation at temperatures close to critical
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Figure 4.8: Phase behavior of the water model from histogram reweighting GCMC

simulations. (EP)H2O model with ζ = 32 and L∗ = 5.4 (open stars), off-lattice

data (open triangles), and experimental data [6] (filled circles).

temperature. The collapse of the measured PL(x) on the universal Ising ordering

operator distribution is shown in Fig. 4.9. As it is obvious from the Fig 4.9, the

small system size of the simulation affects the low density part of the curve. Devia-

tions between our results and Ising universality class are obvious in the low-density

region, here, we decided to work with bigger system size, since this insures that

proper matching between the results from our simulation and the Ising universality

is obtained and finite size effect has diminished to a larger extent. Here and in the

following the phase behavior results are calculated in a system size of L∗ = 6.7 and

the PL(x) distribution function is shown in Fig. 4.10. As it is shown in Fig. 4.10,
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Figure 4.9: Matching of the scaled order parameter distribution (as obtained by the

method indicated in Sec. 2.4) to the universal curve for the Ising three-dimensional

universality class: see the continuous line. Points are from our simulations for the

(EP)H2O model with ζ = 32 and L∗ = 5.4.

the system size effect has diminished to a large extent for this system size and

as shown in Fig. 4.11, the lattice model accurately predicts the saturated liquid

densities over the entire range. The gas saturated densities are underestimated at

higher temperatures close to critical temperature, but in overall they are in good

agreement at lower temperature values. We still postulate that the small deviation

for saturated gas densities for temperatures close to critical temperature is due to

either system size effect or the errors due to the restrictions placed on structural

properties of the molecules in lattice space, but the computational cost to investi-
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Figure 4.10: Matching of the scaled order parameter distribution to the universal

curve for the Ising three-dimensional universality class, indicated by the continuous

line. Points are from our simulations for the (EP)H2O model with ζ = 32 and

L∗ = 6.7.

gate this feature is prohibitively high and prevented us from further investigation.

The approach for solving this problem is discussed as part of the future work. the

critical temperature and critical density for the water model with ζ = 32, in two

different system sizes are shown in Table 4.5.
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Figure 4.11: Phase behavior of the water model from histogram reweighting GCMC

simulations. (EP)H2O model with ζ = 32 and L∗ = 6.7 (open stars), off-lattice data

(open triangles), and experimental data [6] (filled circles).

Table 4.5: Critical temperature and critical density as a function of system size

for the water models studied.

Molecule Type L∗ ζ Tc(K) ρc(kg/m3)

water (EP)H2O 5.4 ∞ 645.9±1.1 297±5

(EP)H2O 5.4 32 637.1±0.9 317±4

(EP)H2O 6.7 32 638.2±0.8 319±5

Experiment - ∞ 647.1 322
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4.3.4 Water structure - canonical Monte Carlo simulations

In the work of Lock [109], it is shown that the agreement between discretized

and continuum models of SPC/E [92] is heavily dependent upon the exact value

of the lattice discretization parameter, ζ. For example, some discretized models

were observed to “freeze” into a hexagonal ice-like structure at temperatures up to

T = 550 K. It was shown that changes in the lattice spacing as small as 0.01 nm can

have surprisingly strong effects on the structural properties of discretized models,

resulting in solid-like order at temperatures much higher than the experimental

melting point. In this part of the thesis, some calculations are reported that have

been done to investigate the effect of lattice discretization on structural properties

at temperatures close and far from critical point. In this stage of the work, we

are interested in working in dense systems where the acceptance of adding and

removing a particle is too low to ensure equilibrium in a reasonable amount of

time; thus all simulations have been performed in the canonical ensemble. In the

canonical Monte Carlo (NVT) method, the number of particles N, the temperature

T, and volume V are fixed. The partition function and probability density for this

ensemble is defined as

Q(N, V, T ) ≡ 1

Λ3NN

∫
drN exp[βU(rN)], (4.6)

where Λ =

√
h2

2πmkBT
is the thermal de Broglie wavelength. From the parti-

tion function, it follows that the probability of finding configuration rN given by

distribution is:

P(rN) ∝ exp[βU(rN)]. (4.7)

Eqs. 4.6 and 4.7 are the basic equations for a simulation in the canonical ensem-

ble. Each step consists of either a translation or rotation on one molecule chosen
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at random. Translation and rotation moves are attempted equally often. When

attempting a rotation move, the trial structure is chosen from a subset of the reser-

voir to encompass those structures most similar to current structure. In this way,

considerable care is taken to ensure that all subsets overlap so that each molecule

can sample all structures from the reservoir over the course of the simulation.

To study the situation, we consider a linear graph of nodes and connecting

bonds or links. The number of nodes is taken equal to the number of structures in

the reservoir, with each node representing one of the structures. The connectivity

between any two nodes is defined based on the possibility of transition between the

corresponding structures in a single step. Obviously, if a wider range of rotation

angles is selected for the moves, each node will be connected to a larger number

of nodes compared to the case with a limited rotation angle. Our main concern in

these experiments is to make sure all structures are visited by the system and none

of them are left out. This is equivalent to ensuring that the graph is connected

i.e., there is a path between any two nodes on the graph. For each choice of the

rotation range, we constructed the adjacency matrix of the corresponding graph.

For a graph with N nodes, The adjacency matrix A = [aij]; i, j = 1, . . . , N is

defined as

aij =





1 if node i is connected to j

0 otherwise

(4.8)

Obviously, A is a symmetric matrix. It is also well-known that A in fact shows the

number of paths with unit length between any two nodes. Similarly, each element

[an
ij] of matrix An shows the number of paths with length n between nodes i and

j. Since we were only interested in the existence of at least one path of any length

between any two nodes, in our experiments, we need to calculate all An matrices
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Table 4.6: Geometric properties of various discretized water models compared with

the continuum model (ζ = ∞).

ζ bond length(Å) bond angle(o) dipole moment(D)

10 1.0011 107.46 2.41

11 1.0241 108.44 2.44

12 0.9870 110.92 2.28

20 1.0011 107.46 2.41

21 1.0031 108.78 2.38

22 1.0134 108.87 2.40

30 0.9969 109.36 2.35

∞ 1.00 109.5 2.35

for n = 1, 2, . . . , N and check if for any i and j at least one [an
ij] element is non-zero.

Using the definition of matrix exponentials, we simply calculated

B = A +
A2

2!
+

A3

3!
+ . . . = eA − I (4.9)

and made sure all elements of B are greater than zero.

The effects of the underlying lattice on water’s density profile over a wide range

values of ζ = 10, 11, 12, 20, 21, 22, and 30, for different temperatures of, T = 640

K and 550 K, and 400 K are studied with a reduced density close to 1. The sim-

ple averages of the bond angles, bond lengths, and dipole moments for a sample

of discretized water molecules at various ζ are shown in Table 4.6. Only density

profiles in the z-direction are shown, although the density profiles in all dimensions

have been calculated and have been found isotropic.

In Fig. 4.12, the profiles of seven discretized models and the continuum
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Figure 4.12: Density profile of discretized models of SPC/E water at T = 400 K.

The curves from bottom to top are for ζ = 10, 11, 12, 20, 21, 22, 30, and ∞.

model are shown. As expected, the profile for the continuum model (ζ = ∞) is

almost perfectly flat; there is no underlying structure in the fluid. This is also

true for discretized models with ζ = 21 and 30. As it is shown in Fig. 4.12, there

are clearly some ordering in the fluid for discretized models with discretization

values of ζ = 10, 11, 12, 20, and 22, at T = 400 K. It is striking that some

strong underlying structures are formed for a ζ value of 11 and to a minor extent

for the other discretized models. The same trend is seen here as was observed

by Lock [109], except that some underlying structures are also shown for ζ = 12.

The oxygen-oxygen radial distribution function g(OO) (negative-negative) for these
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Figure 4.13: Oxygen-oxygen radial distribution functions of discretized models of

SPC/E water at T = 400 K. The curves are the same as Fig. 4.12.

seven discretized models are shown in Fig. 4.13. The models that show flat profiles

also show continuum-like radial distribution function as this is true for all the dis-

cretized models except for ζ = 11 and 22. The anomalies are much less extensive

for ζ = 10 and disappeared for ζ = 12 and 20. Lock [109] found the same strong

anomalies for ζ = 11 and 22, and to a minor extent for ζ = 10 and 22. As it is

obvious for the discretized lattice model with ζ = 11, the radial distribution shows

ordered structures that one would not expect for a liquid. The oxygen-hydrogen

(negative-positive) and hydrogen-hydrogen (positive-positive) radial distribution

functions are also shown in Figs. 4.14 and 4.15, respectively. The results ob-

served for discretized model with ζ = 11, are intriguing, as they suggest that there
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Figure 4.14: Oxygen-hydrogen radial distribution functions of discretized models

of SPC/E water at T = 400 K. The curves are the same as Fig. 4.12.

is a distinct structure in the fluid. To determine the structure more carefully, we

looked at snapshot of its configuration at the end of the simulations. The sample

for ζ = 11 is shown in Fig. 4.16 and one can see unmistakably hexagonal structures

similar to Ice-Ih.

The ordered structures present at T = 400 K do not persist at higher temper-

atures as seen in Fig. 4.17. In fact, as it is shown in Fig. 4.17, there appears to

be no underlying structure for all discretized models studied at this temperature,

namely, T = 550 K. On the other hand, Lock [109] observed some order in the

fluid structure at this temperature for ζ = 11 and to a minor extent for ζ = 10.

The radial distribution functions g for these seven discretized models along with
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Figure 4.15: Hydrogen-hydrogen radial distribution functions of discretized models

of SPC/E water at T = 400 K. The curves are the same as Fig. 4.12.

the continuum model are shown in Figs. 4.18, 4.19, and 4.20. The models that

show flat profiles also show continuum-like radial distribution for all pairs g(OO),

g(OH), and g(HH).

In Fig. 4.21, the profiles of seven discretized models and the continuum model

at T = 640 K, above the critical point for continuum SPC/E model, are shown. As

expected, the profiles for all the models are flat and there is no underlying struc-

ture in the fluids. The oxygen-oxygen radial distributions for the same models

are shown in Fig. 4.22, and the same trend is observed. The same trend for this

temperature for all the seven discretized models was also observed by Lock [109].
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Figure 4.16: Snapshot of a configuration of SPC/E water at T = 400 K. with

ζ = 11.
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Figure 4.17: Density profile of discretized models of SPC/E water at T = 550 K.

The curves from bottom to top are for ζ = 10, 11, 12, 20, 21, 22, 30, and ∞.

0 2 4 6 8 10

r(Å)

0

5

10

15

g(
O

O
)

Figure 4.18: Oxygen-oxygen radial distribution functions of discretized models of

SPC/E water at T = 550 K. The curves are the same as Fig. 4.17.
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Figure 4.19: Oxygen-hydrogen radial distribution functions of discretized models

of SPC/E water at T = 550 K. The curves are the same as Fig. 4.17.
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Figure 4.20: Hydrogen-hydrogen radial distribution functions of discretized models

of SPC/E water at T = 550 K. The curves are the same as Fig. 4.17.
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Figure 4.21: Density profile of discretized models of SPC/E water at T = 640 K.

The curves are the same as Fig. 4.17.
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Figure 4.22: Oxygen-oxygen radial distribution functions of discretized models of

SPC/E water at T = 640 K. The curves are the same as Fig. 4.17.
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4.4 Conclusions

In conclusion, we can safely say that even small changes in the lattice discretiza-

tion parameter, ζ, can have a large effect on the structural properties of the water

models studied. When water models are discretized in lattice space, the allowable

values for bond length, bond angle, and dipole moment are not exactly the same as

the continuum values and could cause the strange results observed. For example

both the average bond length and the average dipole moment of molecular struc-

tures used for the water model with lattice discretization parameter of ζ = 11,

have the largest deviation from the continuum value. We postulate that the large

deviations for both the average bond length and the average dipole moment are

among the reasons for the odd behavior observed for both the density profile and

the radial distribution functions of the water model at T = 400 K. On the other

hand, the average dipole moment of the molecular structures used for the water

model with ζ = 21 has the smallest deviation from the continuum counterpart and

the average bond length deviation from its continuum counterpart is small and less

than 0.4%; consequently normal behavior is observed for both density profile and

radial distribution functions at T = 400 K. There is no direct relation between the

behavior of other water models with ζ = 10, 12, 20, and 22 and the deviation of

both their average bond lengths and average dipole moments from the continuum

counterparts. At this point no final explanation can be given for the relations

among the deviations observed between the average bond length, bond angle, and

average dipole moment from their continuum counterparts and the structural prop-

erties studied in this work. No peculiar behavior is observed for either of the water

models at T = 550 K, whereas Lock [109] sees abnormal behaviors for some of the

water models at T = 550 K. The only difference between our calculations and the
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calculations done by Lock for the water models is that Lock uses canonical simula-

tions from the beginning, whereas we initially use grand canonical simulations to

obtain the high density structural configuration as an initial configuration for the

later canonical simulations. Since all the calculations are done in the high density

region, we postulate that the systems reach equilibrium only after a considerable

time and that might be the source of the difference between the results observed

by us and by Lock [109]. This subject is open for further investigation and we

discuss it briefly in Chapter 8.
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Chapter 5

Lattice Discretization Effects on

the Critical Parameters of Model

Non-polar and Polar Fluids1

5.1 Introduction

We have observed that small changes in the lattice discretization parameter,

ζ, can have either small or large effects on the thermodynamic and structural

properties of the fluids calculated using fine lattice discretization technique. As a

long-term motivation is to build fine-lattice models reproducing properties of real

systems, it is desirable to understand the influence of intermolecular potentials on

the approach of thermodynamic and structural properties to the continuum limit.

In the study of Panagiotopoulos [110] on a cubic lattice for a simple electrolyte

model known as the restricted primitive model (RPM), both critical temperature

1All of the results presented in this chapter have also been published in [66].
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and critical density were found to decrease on increasing the lattice discretiza-

tion parameter ζ. The deviations of the critical parameters from the continuum

(ζ → ∞) values were found to scale as 1/ζ2. At this stage we are interested

in studying the exact effects of the lattice discretization parameter for potential

models other than RPM and in investigating whether the same strong effect of the

lattice discretization parameter on critical parameters, mainly the critical tem-

perature and the critical density, can be observed. We study this effect for simple

monatomic and diatomic non-polar systems with soft-core short range interactions.

We also investigate this effect on more complicated polar systems such as two-bead

and three-bead chains with hard-core interactions.

The outline of this chapter is as follows: Section 5.2 is devoted to a brief descrip-

tion of computational methods used to obtain the critical parameters. Section 5.3

presents the critical temperature and critical density as functions of the discretiza-

tion lattice parameter for a range of fluids from simple non-polar to three beads

polar chains. Finally, conclusions are presented in Section 5.4.

5.2 Simulation methods

We used grand canonical Monte Carlo (GCMC) simulations in cubic boxes

of dimension L3, under periodic boundary conditions, along with multihistogram

reweighting. As in previous chapters, new microstates were generated by a mixture

of 50% replacement and 50% addition/annihilation with the standard Metropolis

acceptance/rejection criteria [50]. The acceptance ratio of the unbiased inser-

tion/removal steps was 10% near the critical point. The finite-size scaling con-

cepts of Bruce-Wilding [18, 22, 23] were used for obtaining the critical temperature

and critical density. The critical temperature and critical density obtained by this
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Figure 5.1: Matching of the scaled order parameter distribution to the universal

curve for the Ising three-dimensional universality class, indicated by the continuous

line for the dumbbell model with ζ = 10. Open circles: L∗ = 12 and open triangles:

L∗ = 15.
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technique are system size dependent and are expected to vary asymptotically as

1/L−(θ+1)/ν and 1/L−(1−α)/ν , where θ, α and ν are Ising universality class expo-

nents [7]. An example of the matching of some of our data to the universal curve is

shown in Fig. 5.1. Additional details of the computational approach can be found

in Chapter 4.

5.3 Results and discussion

5.3.1 Non-polar model

Two variants are considered for the non-polar model, “monomer” and “dimer”

with one and two Buckingham exponential-6 sites respectively. All quantities are

made dimensionless by using σ and ε as the characteristic length and energy scales

for the non-polar model. For example, T ∗ represents the temperature divided by

ε/kB, where kB is the Boltzmann’s constant; ρ∗ represents the density multiplied

by σ3. An α value of 14 has been used for all the models with Exp-6 interactions.

At the beginning of the runs the translationally invariant intermolecular potential

is stored in an array of dimension (L/ζ)3, which accelerates the calculation of the

energies during the runs by a factor of 10. In addition to the Exp-6 interactions

in the central simulation box, long range corrections according to the method of

Theodorou and Suter [83] were applied. To speed up the calculations, all possi-

ble orientations for the models studied (except the monomer, which only has one

possible orientation) are generated at the beginning of the simulation and stored

in a “reservoir.” Once the simulation gets started, a random configuration is se-

lected from the reservoir to be added to the system. The number of configurations

(NC) for the tethered dimers increases with the degree of lattice discretization.
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For example, there are 6 distinct configurations for ζ = 2 and 318 for ζ = 10,

respectively, for dimer systems restricted to remain at a reduced bond lengths,

l∗ = l/σ, between 1 and 1.2. However, in order to have the maximum consistency

between the systems with different lattice discretization parameters, we selected

the same 6 set of distinct configurations for all the systems with different degrees

of discretization.

We summarize our results for the critical temperature and critical density for

specific lattice discretization parameters in Tables 5.1 and 5.2 . Statistical uncer-

tainties were estimated from independent runs at identical conditions with different

random number seeds (algorithm ran2 in Ref [84]) and are reported in parentheses

in units of the last decimal place. All the non-polar models with short range in-

teractions show excellent matching to Ising-type criticality. The very small values

of the field mixing parameter, s, confirm the symmetry of the non-polar systems.

Figs. 5.2 and 5.3 show the dependence of the effective reduced critical temperature,

T ∗
c , on the inverse lattice discretization parameter for monomer and dimer models,

respectively. The best fit was obtained by having the critical temperatures scaled

as 1/ζ6 and 1/ζ7 for monomer and dimer models, respectively. Power-law least

squares fitting, taking into account the statistical uncertainties, was used to obtain

the best exponent. The points for ζ < 5 do not follow the trend of higher values of

ζ and were excluded from the extrapolation. Statistical uncertainties for the criti-

cal temperatures are comparable to symbol size. As shown in Table 5.1, the critical

temperatures and critical densities for values of ζ = 10 and ζ = 15 fall within each

other’s statistical uncertainties for the monomer model with L∗ = 7. These results

and the high value of the exponent obtained for this model, discouraged us from

doing more calculations for values of ζ ≥ 10 for the other non-polar models with
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Table 5.1: Critical parameters for the “Exp-6 monomer” model.

L∗ ζ −µc -s T ∗
c ρ∗c

7 1 4.149(2) 0.01(2) 1.887(4) 0.503(7)

2 3.911(6) 0.03(1) 1.479(4) 0.354(4)

3 3.529(2) 0.01(9) 1.301(5) 0.322(2)

4 3.488(4) 0.01(9) 1.272(3) 0.321(2)

5 3.472(1) 0.01(1) 1.267(2) 0.324(1)

6 3.456(3) 0.03(1) 1.258(1) 0.320(4)

7 3.456(4) 0.03(2) 1.256(3) 0.320(3)

10 3.453(3) 0.03(3) 1.254(2) 0.319(6)

15 3.453(3) 0.03(3) 1.254(7) 0.319(9)

10 1 4.133(2) 0.01(1) 1.898(5) 0.500(2)

2 3.900(4 0.02(9) 1.483(4) 0.352(9)

3 3.519(2) 0.01(6) 1.307(6) 0.323(3)

4 3.478(2) 0.01(6) 1.277(3) 0.322(2)

5 3.464(2) 0.01(9) 1.271(4) 0.322(9)

6 3.449(1) 0.01(9) 1.264(6) 0.322(9)

7 3.446(4) 0.01(3) 1.261(4) 0.322(2)

10 3.444(4) 0.01(9) 1.259(2) 0.320(9)
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Table 5.2: Critical parameters for the “Exp-6 dimer” model.

L∗ ζ −µc -s T ∗
c ρ∗c

10 1 8.419(7) 0.01(9) 2.711(5) 0.432(4)

2 7.480(8) 0.02(4) 2.185(9) 0.341(9)

3 6.69(1) 0.02(9) 1.926(7) 0.320(5)

4 6.412(1) 0.01(9) 1.824(7) 0.31(2)

5 6.348(1) 0.02(3) 1.801(3) 0.308(9)

6 6.330(7) 0.02(1) 1.796(5) 0.309(5)

7 6.325(6) 0.02(1) 1.795(9) 0.308(7)

10 6.326(4) 0.02(1) 1.794(6) 0.30(1)

different system sizes. In Figs. 5.4 and 5.5 the apparent critical temperature, T ∗
c ,

as a function of scaling variable (L∗)−(θ+1)/ν for the system with ζ = 10 are shown.

We used values appropriate for the Ising universality class for the correction-to-

scaling exponent, θ = 0.52 and for the correlation length exponent, ν = 0.630

both from Ref.[7]. The points fall on approximately straight lines. The critical

densities decrease on increasing ζ values for both monomer and dimer models. No

specific trend has been observed for the critical densities with different values of

ζ for the two non-polar models studied, partly as a result of the higher statistical

uncertainties associated with the calculation of the critical density.

78



0 1 2 3 4 5 6 7
×10

_51/ζ6

1.250

1.255

1.260

1.265

1.270

1.275

Tc

*
56710

ζ

Figure 5.2: Reduced critical temperature, T ∗
c , as a function of 1/ζ6 for the “Exp-6

monomer” model with L∗ = 7 (filled squares), L∗ = 10 (filled stars), and L∗ = 12

(filled circles). The dashed line shows the power-law least squares fitting to the

data.
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Figure 5.3: Reduced critical temperature, T ∗
c ,as a function of 1/ζ7 for the “Exp-6

dimer” model with L∗ = 7 (filled squares), L∗ = 10 (filled stars), and L∗ = 12

(filled circles). The dashed line shows the power-law least squares fitting to the

data.
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Figure 5.4: Reduced critical temperature, T ∗
c , as a function of (L∗)−(θ+1)/ν with

ζ = 10, for the “Exp-6 monomer” model.
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Figure 5.5: Reduced critical temperature, T ∗
c , as a function of (L∗)−(θ+1)/ν with

ζ = 10, for the “Exp-6 dimer” model.
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(b)(a)

Figure 5.6: Schematic illustration of two polar models considered in this work. (a)

The “dumbbell” model; (b) the “trimer” model.

5.3.2 Polar model

We have studied two different models for the polar part of our investigation.

The first model considered is a two-bead chain which we refer to as “dumbbell”.

It consists of two hard spheres in contact, each with diameter σ. The other model

that we have investigated is a three-bead chain referred to as “trimer”. For this

model, the center bead and side beads have diameters of 2σ and 1σ, respectively. A

schematic view of the models is presented in Fig. 5.6. The Coulombic interaction

between two charged sites i and j is defined as:

UCoul(ij) =




∞ if r < σ

qiqj

Drij
if r ≥ σ

(5.1)

Where qi and qj are charges of sites i and j that are separated by distance rij and D

represents the dielectric constant of the structureless medium. σ is the hard-core

diameter for the monatomic model. For both models, reduced temperature and

density are defined via T ∗ = kTDσ/q2 and ρ∗ = Nσ3/L3 where N represents the

total number of beads existing in the system. For the unlike molecular collision

diameter we used

σij = (σii + σjj)/2 (5.2)
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Table 5.3: Structural parameters for the dumbbell models. “NC” is the number of

configurations with bond length between 1σ and 1.2σ on the lattice with discretiza-

tion parameter ζ. “DM” and “CH” are the average molecular dipole moment (for

the “fixed charge model”) and average electrostatic charge (for the “fixed dipole

model”), respectively.

ζ 3 5 7 10 15

NC 30 102 138 318 1158

DM 4.80 4.87 4.83 4.84 4.85

CH 1.00 0.9806 0.9936 0.9915 0.9898

The Ewald summation was applied for polar systems with 518 Fourier-space wave

vectors, k = 5 real-space damping parameter, and conducting boundary conditions

at infinite distance, ε∞ = ∞. The translationally invariant intermolecular poten-

tial is stored in an array of size (L/ζ)3, which accelerated the calculation of the

energies by a factor of 100. For the dumbbell case study, the reservoir structural

configurations have the same orientations as for the Exp-6 dimer model, but in this

case all the possible orientations are used. In the first set of simulations (“fixed

charge”) each of the beads carries a unit of charge. In the second set of simulations

(“fixed dipole”), all configurations have identical molecular dipole moments, so the

charges on each bead vary somewhat. The structural parameters in the two sets of

simulations are shown in Table 5.3. Fig. 5.7 shows the dependence of the effective

reduced critical temperature, T ∗
c , on the inverse lattice discretization parameter

squared, 1/ζ2, for both sets of data. It is shown that the critical temperature
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Figure 5.7: Reduced critical temperature, T ∗
c , as a function of 1/ζ2 for the “dumb-

bell” model with L∗ = 12, same charge (filled triangles), same dipole (open tri-

angles) and with L∗ = 15, same charge (filled circles), same dipole (open circles).

The dashed line shows the power-law least squares fitting to the data.
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values follow almost the same trend as for the restricted primitive model [110],

except that some moderate odd-even effect can be observed. We postulate that

the distinct number of configurations enforced by fine lattice structure for models

with different values of ζ is responsible for this feature. Critical densities decrease

on increasing ζ values, with no particular trend. Comparable values for the criti-

cal temperature and critical density are available from [111] for ζ = 10 with 318

configurations and reduced bond length, l∗ = l/σ, of 1− 1.2.

For the trimer case study, as for the dumbbells, the reduced bond lengths

(l∗ = l/σ) between the center bead and the side beads were restricted to 1 - 1.2.

The angle between the two center-side bonds was fixed to 180o. The center bead

carries a positive charge while the side beads carry negative charges. The charge of

the center bead is always twice as large as that of the side beads. No intramolec-

ular interaction has been considered within the beads of a single molecule. All

the configurations have the same quadrupole moments by having different charges

assigned to either of the beads. The critical parameters are summarized in Ta-

ble 5.4. In accounting for the ζ effect on critical temperatures, no specific trend

has been observed within the narrow range of variations compare to the dumb-

bell model. Likewise the dumbbell model, the odd-even effect has to do with the

distinct number of configurations for models with different ζ values. The narrow

range of variations for the critical densities precludes us from being able to make

a precise judgement about the effect of the lattice discretization parameter on this

set of data. The good matching of our data to the Ising-class is an indication but

not a proof of Ising-type criticality for the polar models studied.
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Table 5.4: Critical parameters for the “dumbbell” and “trimer” models, with iden-

tical dipole and quadrupole moments.

Model L∗ ζ −µc -s 100T ∗
c ρ∗c

dumbbell 12 5 1.3025(3) 0.68(3) 5.07(8) 0.12(1)

7 1.3245(9) 0.69(4) 5.10(8) 0.11(2)

10 1.3025(4) 0.69(3) 4.91(8) 0.11(1)

15 1.2970(4) 0.69(3) 4.90(7) 0.11(1)

15 5 1.3025(9) 0.69(5) 5.08(9) 0.11(2)

7 1.3243(4) 0.69(2) 5.03(5) 0.11(1)

10 1.3024(5 ) 0.69(4) 4.93(9) 0.11(1)

15 1.2969(5) 0.69(6) 4.90(6) 0.10(3)

trimer 12 5 3.6362(3) 0.26(1) 2.62(3) 0.07(1)

7 3.6391(7) 0.26(3) 2.59(4) 0.07(2)

10 3.6120(5) 0.26(2) 2.66(2) 0.07(1)

15 5 3.6362(9) 0.26(2) 2.62(4) 0.07(2)

7 3.6392(9) 0.26(2) 2.59(4) 0.07(1)

10 3.5589(9) 0.26(0) 2.66(1) 0.07(1)
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5.3.3 Non-polar + polar model

The effect of the lattice discretization parameter, ζ, has been considered for

this model, in which the potential contains both the short- and long range parts

described in previous sections. The short range interactions influence the charge

ordering in such a way that the critical temperature is approximately the same

as for the dimer model. This model consists of a two-bead chain with one Exp-6

site on each bead and a unit positive and a unit negative charge on each bead

as well. All the configurations have reduced bond lengths between 1-1.2. As

for the non-polar systems (discussed in Section 5.3.1), the same set of 6 distinct

configurations are used for all the systems with different degrees of discretization

in order to have the maximum consistency between the systems with different

lattice discretization parameters. Fig. 5.8 shows the dependence of the effective

reduced critical temperature, T ∗
c , on the inverse lattice discretization parameter

to the ninth, 1/ζ9, for this model. We interpret the slightly larger value of the

exponent compared to the exponents obtained for non-polar models as due to the

fact that this model encompasses both short- and long range interactions.

5.4 Conclusions

In this work, we have addressed the issue of how to estimate the effect of the lat-

tice discretization parameter, ζ, on the critical parameters of various model fluids

. Specifically, we have considered the Exp-6 soft-core model for non-polar fluids.

The data suggest that deviations of the critical temperatures scale as 1/ζ6±1 and

1/ζ7±2 for monomer and dimer models respectively. The same effect of ζ on critical

temperatures for both Exp-6 model of this study and Lennard-Jones [64] model
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Figure 5.8: Reduced critical temperature, T ∗
c , as a function of 1/ζ9 for the

“Polar+Exp-6” model with L∗ = 7 (filled squares), L∗ = 10 (filled stars), and

L∗ = 12 (filled circles). The dashed line shows the power-law least squares fitting

to the data.
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of Panagiotopoulos in [3] can be observed for values of ζ = 1, 2, 3, 5, and 10.

No precise comparison between the two models can be carried out, since only one

value of ζ exceeding 5 considered in the earlier study.

Deviations of the critical temperatures are stronger by a factor of 5 for po-

lar models (dipolar dumbbells), compared to the non-polar fluids, and scale as

1/ζ2±0.5. The exponent found in the present study for polar fluids is essentially

identical to the exponent found for the restricted primitive ionic model [110]. The

strong similarities found by Romero-Enrique et al. [112] between true ionic flu-

ids and corresponding “tethered dimer” fluids are likely to be responsible for the

agreement between the exponents for ionic and polar models.

For the model with both Coulombic and Exp-6 interactions, the critical tem-

peratures scale as 1/ζ9±1 for different integer values of ζ. Within the narrow range

of critical densities for different values of discretization parameter, no particular

trend has been found for the various models studied. The critical density values

decrease as the ζ values increase for all the fluids considered in this paper, except

the trimer model. The computational cost to estimate precisely the location of the

critical density is prohibitively high with the methods of the present work.

Based on these observations, the lattice discretization parameter effect is more

pronounced for polar fluids than the non-polar fluids. This is contrary to the in-

tuitive idea that the presence of the lattice influences primarily short range struc-

tures. However, the dipole-dipole interactions are dominant forces in the polar

fluids (dumbbell model) as found by Romero-Enrique et al. [112]. It is possible

that the dipole interactions among the neutral clusters at close contact coupled

with existing long range forces are sensitive to the degree of lattice discretization.

For the quadrupolar interactions (trimer model) the sensitivity is much less. In
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the non-polar fluids on the other hand, the interactions are purely driven by homo-

geneous short range contacts, which are influenced by the lattice discretization to

a minor extent. The concept of the repulsive part of the intermolecular potential

being responsible for these effects is open to further theoretical investigation.
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Chapter 6

Determination of Second Virial

Coefficients by Grand Canonical

Monte Carlo Simulations1

6.1 Introduction

The equation of state of a low density gas can be described by the virial expan-

sion. The virial expansion expresses the compressibility factor as a power series in

the density, with temperature dependent coefficients known as virial coefficients.

The second virial coefficient provides information regarding the intermolecular in-

teractions between a pair of molecules. Similarly the third, fourth, etc. virial co-

efficients represent deviations from ideal behavior when collisions involving three,

four, etc. molecules become important in the gas. Consequently, at low densities,

deviations from ideality are adequately described by the second virial coefficient,

1The results presented in this chapter have also been submitted to Fluid Phase Equilibria.
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whereas at higher densities more virial coefficients must be used. The second

virial coefficient is an important parameter for determining the thermodynamic

properties of the vapor phase and it can be measured experimentally over a large

temperature range to within a few percent for many systems. The virial expansion

truncated after three terms is [62, 113]:

Z =
βP

ρ
= 1 + B2ρ + B3ρ

2. (6.1)

Z is the compressibility factor, β is the reciprocal temperature β = 1/kBT , where

kB is Boltzmann’s constant and T is the temperature, P is the pressure, ρ is the

density, B2 is the second virial coefficient, and B3 is the third virial coefficient. For

monatomic particles, the intermolecular potential depends only upon the separa-

tion of the two particles and the analytical value for second virial coefficient can

be obtained by integrating the orientational and conformational averages of the

Mayer f - function corresponding to binary interactions as [62]:

B2 = − 1

2V

∫ ∫
[e−βU(r12 ) − 1]dr1dr2, (6.2)

where U(r12) is the intermolecular potential between two particles. As is shown

by Eq. 6.2 for spherical monatomic systems, B2 is simply obtained by the integral

calculation over Boltzmann’s factor. For more complex systems, such as poly-

atomic fluids and mixtures, the main difficulty of virial coefficient calculations is

the inevitable multidimensional integration which requires intensive computation.

Initially the primary goal was to calculate the second virial coefficient for dif-

ferent model and real fluids and compare them in a very precise way. However,

precise calculation of B2 using GCMC simulations proved to be too complicated.

Therefore the main concern in this report is to investigate the possibility of calcu-

lating the second virial coefficient using the grand canonical Monte Carlo (GCMC)
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ensemble for any system of interest and to examine the range of its accuracy. To

the author’s best knowledge, the only previous application of GCMC to calculate

the second virial coefficient has been by Errington and Panagiotopoulos for some

real fluids [95, 114]. The main motivation for all the cases studied by Errington and

Panagiotopoulos was to confirm the credibility of the new intermolecular potential

models for the different fluids studied through comparison between their second

virial coefficient values and the existing experimental values.

The outline of this chapter is as follows: Section 6.2 is devoted to a brief de-

scription of computational methods used to obtain the second virial coefficient.

Section 6.3 presents the second virial coefficient values for a variety of model and

real fluids. The conclusions are summarized in Section 6.4.

6.2 Methods

We used GCMC simulation for calculating the second virial coefficient. Peri-

odic boundary conditions with minimum image convention are enforced [50, 51].

A new microstate is generated by a mixture of 50% replacement and 50% addi-

tion/annihilation with the standard Metropolis acceptance/rejection criteria [48].

The acceptance ratio of the unbiased insertion/removal steps was around 60% at

the states with few particles. Microstates with varying values of energy, E, and

particle number, N, are sampled throughout the simulation and stored in a two-

dimensional histogram f(N,E; β, µ). The histogram f ′(N, E; β, µ) for a new state

with a different temperature, T
′
, and chemical potential, µ

′
, not too far away from

state ( T, µ ), can be obtained from f(N, E; β, µ) via the simple rescaling:

f ′(N, E; β′, µ′)
f(N,E; β, µ)

= exp[−(β′ − β)E + (β′µ′ − βµ)N ], (6.3)
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without the need to perform any additional simulations. Properties of interest, such

as mean configuration energy, < E >µ,β, mean number of particles, < N >µ,β, and

mean density, < ρ >µ,β can subsequently be obtained in terms of weighted sums

or moments of the appropriate histogram, e.g.,

< X >µ,β =

∑
N,E Xf(N,E; β, µ)∑

N,E f(N, E; β, µ)
. (6.4)

The pressure of a system can be obtained from the following expression. If the

conditions for run 1 are (µ1, V, β1) and for run 2 (µ2, V, β2) then

C2 − C1 = ln
Ξ(µ2, V, β2)

Ξ(µ1, V, β1)
= β2P2V − β1P1V. (6.5)

Eq. 6.5 can be used to obtain the absolute value of the pressure for one of the

two runs, provided that the absolute pressure can be estimated for the other run.

Typically, this is done by performing simulations for low density states for which

the system follows the ideal-gas equation of state, PV = NkBT . In this sense, the

histogram collected is reweighted for a series of chemical potentials to accumulate

the p− ρ− T data along the isotherm for which the simulation was run. Through

simulations studies, we have investigated that the ideal gas state behavior can

be observed for a range of (10−3 − 10−2) particles which can be obtained using

the methodology explained earlier and consequently the pressure can be evaluated

with high degree of accuracy. The absolute pressure, density, and temperature

are fitted to Eq. 1 with approximately 0.5 and 2 particles as the lower and upper

bound of the fitting range, respectively. Surprisingly, we have observed that having

a single histogram with a few particles is sufficient for evaluating the second virial

coefficient within a few percent. Nevertheless, it is important for the fitted data to

have a value of ≥0.9999 for their coefficient of determination parameter (R-squared
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value) which is defined as:

R2 = 1−
∑

i(yi − ŷi)
2

∑
i(yi − ȳ)2

, (6.6)

where yi, ȳ, and ŷi are the actual sampled data, their mean value, and the predicted

values after regression respectively.

In this work, we apply the concept of fine-lattice discretization method [2] for

the calculations, where the essence of the method is to perform calculations on a

simple cubic lattice of spacing a and particle diameter σ, with pre-computed inter-

actions between all the lattice sites for computational efficiency. A value of ζ ≥10

has been considered for all the cases studied in this communication. In addition

to the pairwise additive intermolecular interactions in the central simulation box,

long range corrections according to the method of Theodorou and Suter [83] were

applied. Statistical uncertainties were obtained by performing three duplicate sets

of runs at identical condition with different seeds for random number generator.

The “ran2” routine of Ref. [84], which has a period of 2.3x1018 and no low-order

serial correlations, was used. A typical run of 10x106 Monte Carlo steps in a 5x5x5

box at the gas state took less than one minute on a Pentium III 1 GHz workstation.

6.3 Results and discussion

We first calculated the second virial coefficient of hard-core model with re-

duced hard-core diameter of 1 which was found to be within 0.5% of its exact

value,
2π

3
σ3, where σ is the hard-core diameter. B2 was also calculated at sev-

eral temperatures for both Lennard-Jones [64] (abbreviate as “LJ” from this point

on) and Exponential-6 Buckingham [68] (abbreviate as “Exp-6” from this point

on) models and compared with their analytical values. The analytical values of
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second virial coefficient on a lattice can be obtained as:

B2(T ; ζ) = −1

2


 ∑

lx,ly,lz

[e−βU(lx,ly,lz) − 1]


× λ3. (6.7)

The conventional distance spacing, r, for the continuous potential model is re-

placed by la where indexes (lx, ly, lz) label the successive lattice sites in space

and λ is the lattice spacing. We summarize the reduced second virial coefficient,

B∗
2 = B2/(2πσ3/3), for two model fluids studied at various reduced tempera-

ture, T ∗ = kBT/ε, where ε is the well depth of the potential and σ is the charac-

teristic size parameter for which potential is zero, in Table 6.1, where numbers in

parentheses indicate statistical uncertainties in units of the last digit of the corre-

sponding value. As is shown the second virial coefficient values are systematically

slightly smaller than the analytical value but most of them are within the statistical

uncertainties. With a numerical example we will show why it is almost impossible

to obtain more precise results for the second virial coefficient using grand canonical

Monte Carlo simulations. The results of two simulations performed under identical

conditions with two different seeds show that although the partition functions and

number of particles (the only two independent degrees of freedom) are the same

with less than 0.5 percent deviation, the second virial coefficient results are differ-

ent by around 10 percent which obviously conveys that the possibility of having

a few percent deviation for B2 is impossible. We believe that statistical noise is

the reason for this behavior. To avoid the possibility of adding to the statistical

noise due to the insufficient sampling, the Monte Carlo steps were progressively

lengthened until the calculated values for B2 became stable. Each process was

completed with 10x109 Monte Carlo steps. But even for every long run, we get

systematic deviations from analytical value.

Two polyatomic models are also considered for this study, ethane and propane.
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Table 6.1: Reduced second virial coefficient, calculated analytically and by simu-

lation for both “LJ” and “Exp-6” models with L∗ = 5.

Model T ∗ B∗
2(simulation) B∗

2(analytical)

LJ 1.0 -2.57(3) -2.54

1.2 -1.86(3) -1.84

1.4 -1.40(4) -1.38

1.6 -1.07(2) -1.05

1.8 -0.83(3) -0.81

2.0 -0.63(1) -0.63

Exp-6 1.0 -2.46(2) -2.40

1.2 -1.77(4) -1.73

1.4 -1.34(5) -1.29

1.6 -1.03(4) -0.98

1.8 -0.79(4) -0.75

2.0 -0.59(1) -0.58

97



A united-atom description of the molecules for both models has been considered.

The nonbonded interactions between groups on different molecules are described

by “LJ” potential. The potential parameters are taken from Vega et al. [115] with

εCH3−CH3/kB = 104, εCH2−CH2/kB = 49.7 (in K), and σCH3−CH3 = σCH2−CH2 =

3.923 Å. In their work, methyl and methylene groups have been modelled as “LJ”

interaction sites equal in size but differing in energy well depth to reproduce ex-

perimental values of second virial coefficients of a number of n-alkanes in a broad

range of temperatures. It should be noted that these parameters have been opti-

mized for n-alkanes between four and sixteen number of carbons and the energetic

interaction between pairs of -CH2 or -CH3 groups systematically decreases for

molecules of increasing lengths, perhaps as a consequence of a partial screening

of the bare site-site interactions by the surrounding groups [116]. Nevertheless we

have constructed our models with these parameters optimized for n-alkane with

four carbon numbers and it may be a source for some deviations between the cal-

culated second virial coefficient values and their experimental data. The values of

the “LJ” interactions between chemically different groups are obtained from the

Lorentz-Berthelot combining rules.

All possible orientations for both ethane and propane models were generated

at the beginning of the simulation, stored in a reservoir, and once the simulation

got started, a random configuration was selected from the reservoir to be added to

the system. The CH3-CH3 and CH3-CH2 bond lengths were restricted to remain

between 1.7-1.9Å and 1.64-1.72Å for the ethane and propane models, respectively,

and the bond bending angle was set to remain between 178-180o for the propane

model [4]. The second virial coefficients of ethane and propane are displayed in

Figs. 6.1 and 6.2. The results show that the new method can be used to reli-
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Figure 6.1: Second virial coefficient for ethane, B2 , as a function of temperature,

T . The stars represent calculations for the “ethane” model using GCMC with

L∗ = 5 and circles represent the experimental data [8].

ably predict the second virial coefficient within few percent over a large range of

temperatures. The propane model is in better agreement with the experimental

data than the ethane model. This is not surprising, given the fact that energetic

interactions values chosen for the propane model should be more precise consider-

ing the fact that the optimized values for butane have been chosen from Vega et

al.[115].
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Figure 6.2: Second virial coefficient for propane, B2 , as a function of temperature,

T . The stars represent calculations for the “propane” model using GCMC with

L∗ = 5 and circles represent the experimental data [8].
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6.4 Conclusions

In summary, a simple and effective prescription to calculate the second virial

coefficient, B2(T ), using grand canonical Monte Carlo method has been provided.

Second virial coefficient for a various model and real fluids were also determined

and comparisons were made with the analytical and experimental values, respec-

tively. In general, the method was able to produce the second virial coefficient to

within an accuracy of a few percent.
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Chapter 7

Theory of Fine-lattice

Discretization for Near Critical

Fluids

7.1 Introduction

In this chapter, we present the results of a theoretical study of fine-lattice

discretization concept near the critical region. This work was conducted under the

supervision of Professor Michael E. Fisher and some extensions of it are still in

progress.

The study was motivated by recent simulations by Panagiotopoulos [110] on

a simple cubic lattice for the electrolyte model known as the restricted primitive

model (RPM). Both the critical temperature and the critical density were found

to decrease on increasing the lattice discretization parameter, ζ. The deviations

of the critical parameters from the continuum values (ζ → ∞) were found to

scale approximately as 1/ζ2. Our goal here is to understand theoretically this
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relationship and also to see the effects of the lattice discretization parameter, ζ, on

critical parameters for a variety of other fluid models. A schematic view of a two-

dimensional hard-core model is shown in Fig. 2.2, where the cell size is represented

by λ. The full circle represents the particle diameter, σ, and the dashed line circle

encloses the excluded points. The ratio σ/λ is defined as the lattice discretization

parameter ζ; this basically controls how closely the lattice system approaches the

continuum limit. In order to be consistent with previous work on this subject [117],

from now on we denote the lattice spacing by a (previously by λ) and the hard-core

diameter by b (previously by σ).

The notion of lattice spacing, a, is introduced as the ratio of the hard-core [110]

or soft-core [66] diameter to the lattice discretization parameter. Here, we use n

as the lattice discretization parameter, when it only takes integer values, whereas

the ζ notation will be used when the lattice discretization parameter can take

any positive real value. It will be shown how the new definition of a as a non-

integral fraction of the hard-core diameter, b, can improve the convergence of the

critical parameters in the lattice environment to their continuum values. The aim

is to propose new methods for improving the rate of convergence of the critical

parameters evaluated on lattices to their continuum counterparts.

We present the theoretical framework of our calculations in Section. 7.2 and

describe its practical implementation in one-dimensional space d = 1 for hard-core

and a variety of other potential models in Section 7.3. Section 7.4 is devoted to

a brief description of the van der Waals (abbreviated as VdW from this point on)

method for calculating critical parameters in d ≥ 2 dimensional space and some

background about the theory of the number of lattice points inside a circle or

sphere defining the hard-core. The dependence of the second virial coefficient on
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the lattice discretization parameter for both hard-core and a soft-core potentials

is discussed in the last section.

7.2 Theoretical background

In this section a theoretical formulation following the work of Fisher et al. [117]

for the effect of lattice discretization parameter, n, on critical parameters is pre-

sented. We will consider a linear one-dimensional system (d = 1) of length L.

If Ξ(β, z; L) is the grand canonical partition function of the system at tempera-

ture T = 1/kBβ, with kB being the Boltzmann’s constant, and at activity z, that

is normalized so as to approach the density as z → 0 at fixed T, then the partition

function can be defined as

Ξ(β, z; L) = β p L, (7.1)

where p is the appropriate one-dimensional pressure. It is more effective to cal-

culate the thermodynamic properties of the system by investigating the Laplace

transform of Ξ shown as

Ψ(β, z; s) =

∫ ∞

0

e−sLΞ(β, z; L)dL. (7.2)

This integral is absolutely convergent for all values of s with a real part exceeding

the abscissa of convergence, s0, defined as [117]

s0 = s0(β, z). (7.3)

As s approaches s0 from above along the real axis, Ψ(β, z; s) diverges to infinity as

a simple pole [118]. All the thermodynamic properties can be obtained by solving

the equation

βp = s0(β, z). (7.4)
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For the discretized lattice model the partition function is defined as

Ξ(β, z; L) =
∞∑

N=0

∑
EN

e−βEN+βµN (7.5)

or equivalently

Ξ(β, z; L) =
∞∑

N=0

eβµN

L∑

l1=1

e
−βϕ

l1

L−l1∑

l2=1

e
−βϕ

l2 · · ·
L−(l1+l2+···+lN−2)∑

lN−1=1

e
−βϕ

lN−1 , (7.6)

where a is the lattice spacing and the index l labels the successive occupied lattice

sites as l1, l2, ..., lN−1, while ϕl = ϕ(la) (with l = 0, 1, 2, . . .), denotes the values of

the potential function on discretized sites. Assuming that the first particle is fixed

at the origin and that each particle interacts only with its nearest neighbor, we

can introduce the generating function

Ψ(β, z; s) =
∞∑

N=1

zN [L{e−βϕ
l}]N−1 = z

∞∑
N=1

[zJ(s)]N−1, (7.7)

where the Laplace transform of the Boltzmann factor associated with the potential

ϕ
l
is

J(s) =
∞∑

l=0

e−las exp(−βϕ
l
) ; l = 0, 1, 2, . . . , n, n + 1, . . . . (7.8)

It can be concluded that

Ψ(β, z; s) =
z

1− zJ(s)
, (7.9)

where the activity is

z = exp(βµ). (7.10)

The abscissa of convergence, s0, is evidently determined by the solution of the

equation

zJ(s) = 1 (7.11)

and consequently [119–123] we have

J(βp) =
1

z
(7.12)
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and

J ′(βp) = − 1

ρz
, (7.13)

where ρ is the mean number of particles per unit length. The present one-

dimensional model does not, of course, exhibit any phase transition, but by con-

sidering the corresponding van der Waals limit [124, 125], the equation of state can

be expressed as

p = p0(ρ, T )− ε̄bρ2, (7.14)

where p0 is the pressure as a function of ρ and T for the model with only hard-core

interaction, while the second part ε̄bρ2 (equivalent to the van der Waals “a”) is

chosen so as to match the exact high-temperature behavior of the second virial

coefficient which results when the attractive interactions are included. The equa-

tion of van der Waals was the first successful attempt to formulate an equation of

state exhibiting a critical point. This equation is presently viewed as one of a large

class of equations of state that are called “classical” or “mean-field” equations, and

although it fails to describe the behavior of real fluids with any degree of accuracy

over most of the thermodynamic surface, it nonetheless exhibits some important

features of real fluids like vapor-liquid condensation and the presence of a critical

point.

7.3 The one-dimensional models

7.3.1 Hard-core model

The hard-core potential abbreviated as “HC” is defined as

ϕ
l
=




∞ if la < b

0 if la ≥ b
(7.15)
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where b is the hard-core diameter or equivalently hard-rod length. The conven-

tional distance spacing, r, for a continuous potential is replaced by la where the

index l labels the successive lattice sites and a is the lattice spacing. The lattice

spacing, a, is defined as a =
b

n
where n is an integer value. As our goal is to

extend the definition of a in later studies, we use the notation b0 for the hard-core

diameter of the potential, when it is an exact integer factor of the lattice spacing

as

b0 = an. (7.16)

The p0 in Eq. 7.14 is found to be

p0 =
kBT

a
ln

(
1− (n− 1)aρ

1− anρ

)
. (7.17)

One of the common features of the van der Waals equation of state is that it

assumes an analytical dependence of the pressure (or the Helmholtz free energy) on

temperature and volume, while the critical points are characterized by conditions(
∂p

∂ρ

)

T

= 0,

(
∂2p

∂ρ2

)

T

= 0, and

(
∂3p

∂ρ3

)
6= 0. Therefore we find

b0ρc =
(2n− 1)− (n2 − n + 1)

1
2

3(n− 1)
(7.18)

and

kBTc

ε
= 2b0ρc(1− b0ρc)(1− b0ρc +

b0ρc

n
). (7.19)

In the continuum limit when n −→∞, one obtains b0ρc → 1

3
and

kBT

ε
→ 8

27
.

If we represent the asymptotic behavior of the deviation of the critical density

and the critical temperature from their continuum limits as ∆n, we can assume in

general that

∆n ≈ A

nψ
[1 + · · · ], (7.20)

107



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

1/n

∆(
bρ

c)

Figure 7.1: Reduced critical density as a function of 1/n for HC Model.
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Figure 7.2: Reduced critical temperature as a function of 1/n for HC Model.
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where ψ is an exponent we wish to know. The asymptotic behavior of the critical

density, the critical temperature, and the critical pressure are found from

∆(b0ρc) = b0ρ
(n)
c − b0ρ

(∞)
c =

1

6n
(1 +

1

4n
+

1

4n2
+ · · · ), (7.21)

∆

(
kBTc

ε

)
=

kBTc

ε

(n)

− kBTc

ε

(∞)

=
4

27n
(1 +

3

8n
+ · · · ), (7.22)

and

∆

(
b0pc

ε

)
=

1

n
(1 +

1

4n
+ · · · ). (7.23)

Figs. 7.1 and 7.2 show the dependence of the critical density and the critical temper-

ature on the inverse lattice discretization parameter. Both the critical temperature

and the critical density decrease hyperbolically with increasing n.

7.3.2 New approach for choosing the lattice spacing in

hard-core model

To understand properly the nature of the lattice discretization effect, one must

go beyond the common definition of lattice spacing and introduce new definitions

for both lattice spacing and critical parameters and possible new approaches for

evaluating them. Here, we extend the choice of lattice spacing, a, from only inte-

ger fractions of the hard-core diameter, b, to arbitrary non-integer (≥ 1) fractions.

This is equivalent to allowing the value of ζ defined as ζ =
b

a
to take arbitrary posi-

tive real values. Our main motivation for this extension is the observation that the

values of the potential function ϕl on the lattice sites are insensitive to the choice

of ζ for ζ ∈ (n−1, n], n = 1, 2, 3, . . . . This property is illustrated in Fig. 7.3. The

question is whether any particular choice of ζ in the interval (n− 1, n] will result
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Figure 7.3: The insensitivity of the discretized potential function to the value of δ.

in a faster convergence of critical parameters to their continuum counterparts. For

this purpose, from now on, we represent ζ as ζ = n− δ with 0 ≤ δ < 1 and try to

obtain the optimum value of δ. In the following, we will answer the above question

for the HC potential via two different approaches.

First approach:

In this part, we will prove that by matching the second virial coefficient, B2, in

both continuum and lattice spaces, we can improve the convergence of the critical

density and the critical temperature in lattice space to their continuum counter-

parts. From Eq. 7.17, we conclude that the hard-core part of the van der Waals

equation in lattice space is:

βp0 = ρ +

(
1− 1

2n

)
b0ρ

2 + . . . , (7.24)
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and in continuum-space we have

βp0 =
ρ

1− ρb
= ρ + bρ2 + b2ρ3 + . . . , (7.25)

where B2 = b and the third virial coefficient B3 = b2. Matching the second virial

coefficient in both spaces, we can conclude that

a =
b

n− 1/2
. (7.26)

Now by considering the new definition for lattice spacing, a, we have

∆(b0ρc) = b0ρ
(n)
c − b0ρ

(∞)
c =

1

8n2

[
−1 +O

(
1

n

)
+ . . .

]
. (7.27)

Comparing Eq. 7.27 with its counterparts for a =
b

n
, it is clear that the 1/n2

factor implies an improvement over in the rate of the convergence for the critical

density compared to the original definition of a simply as b/n. According to our

definition of ζ =
b

a
in previous chapters, this result suggests that the sequence of

systems with ζ(n) = n−1/2 results in a faster convergence to the continuum values.

Second approach:

Let us define:

ρ†c(n) = anρ(n)
c = b0ρ

(n)
c (7.28)

to be the critical density of the case with b = b0 = an and

ρ∗c(ζ) = bρc(ζ) (7.29)

the critical density of the case with b = a(n − δ). Since the critical density only

depends on the potential function and, as stated earlier, the ϕl values are the same

for both cases, we can write

ρ∗c(ζ) = bρ(n)
c =

ζ

n
ρ†c(n). (7.30)
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Using Eq. 7.18 then

ρ∗c(ζ) =
ζ

2n− 1 +
√

n2 − n + 1
, (7.31)

which, after a few steps, can be written as

ρ∗c(ζ) =
1

3

ζ

n− 1

2
+

C

n
+O(

1

n2
)
, (7.32)

where C is a constant. Finally, setting ζ = n− δ gives

ρ∗c(ζ) =
1

3

[
1 +

(
1

2
− δ

)
1

n
+

c̃(n)

n2
+ . . .

]
. (7.33)

Eq. 7.33 clearly shows that the optimal value of δ that cancels the 1/n term is

δ = 1/2 and with this choice, ρ∗c(ζ) approaches the continuum value with 1/n2

speed. This result obviously is in agreement with what was given by the first

approach.

7.3.3 Square-well model

Here, we assume that ϕl is a general square-well abbreviated as “SW” potential

of depth ε ≥ 0 with b the diameter of the hard-core and [b-c) the width of the well,

so that

ϕl =





∞ if la < b

−ε if b ≤ la < c

0 if la ≥ c.

(7.34)

As before, the conventional distance spacing, r, for continuous potential is replaced

by la, where the index l labels the successive lattice sites and a is the lattice spacing.

The function J(s) given by Eq. 7.8 is then readily evaluated and the ρ(β, s) can be

obtained as a consequence. The spinodals can now be obtained from the conditions

βp = s(ρ; β)− εβρ2 (7.35)
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Figure 7.4: Reduced critical density as a function of 1/n for SW Model.

and

Y (ρ, T ) =
∂(βp)

∂(ρ)
= s′(ρβ)− εβρ (7.36)

and consequently the critical temperature and critical density can be obtained.

Figs. 7.4 and 7.5 show the critical density and the critical temperature versus 1/n.

We find that the critical parameters decrease linearly upon increasing 1/n.

7.3.4 New approach for choosing the lattice spacing in

square-well model

Let the lattice spacing be defined as:

a =
b

n− δ
, (7.37)

where b, n, and δ are the hard-core diameter, lattice discretization parameter, and

an arbitrary optimization parameter, respectively. Obviously this is a discretized
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Figure 7.5: Reduced critical temperature as a function of 1/n for SW Model.

system with ζ = n−δ = b/a. For potentials for which their second virial coefficients

are temperature dependent, we can match the second virial coefficient of the lattice

and continuum models at the critical temperature and find the optimum value for

δ by numerically solving

B∞
2 (Tc) + bβ∞c ε = Bn

2 (Tc; δ) + bβn
c ε, (7.38)

where

B∞
2 (Tc) = −1

2

∫
[exp(−βcϕ(r))− 1]dr (7.39)

is the second virial coefficient in continuum-space at the critical temperature and

Bn
2 (Tc; δ) = −1

2

l=+∞∑

l=−∞
[exp(βcϕl)− 1]a (7.40)

is the second virial coefficient in lattice space. We hope that, as for the hard-

core model, this choice of δ results in a faster convergence of critical parameters.

We postulate that the value of δ might be n dependent and may vary for different
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Figure 7.6: Optimization factor δ as a function of 1/n for SW model.

potentials. Fig. 7.6 shows the resulting values of δ for each n. In order to investigate

the effect of δ on critical density, we redefine density, ρ, as the average number of

particles per hypercubes of side a; that is ρ ∝< N > /ad, then

ρ

ρ0

≈ ( b
n)d

( b
n− δ

)d
(7.41)

and subsequently

ρ ≈ (1− δ

n
)dρ0 = λd

Lρ0 = λρρ0 (7.42)

where

ρ0 = density with a0 =
b

n
(7.43)

and

ρ = rescaled density with a =
b

n − δ
. (7.44)
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Here, λρ serves as a length scale factor and we hope that the new scaled density

converges to its continuum value faster than the original density. We can also

consider rescaling the temperature or β = 1/kBT by matching the T-derivatives

as:

∂B
∞
2

∂T
(T = Tc) =

∂B
n

2 (λT Tc; δ)

∂T
(7.45)

in order to have a faster convergence of the critical temperature. Unfortunately,

our initial results did not confirm our expectations and the rescaled quantities con-

verged at almost the same rate as the original data. This problem needs further

investigation and is the subject of our ongoing research. In the remaining subsec-

tions, the smoothness of the repulsive part of the interaction is varied in order to

investigate that effect on the convergence rate of the critical parameters to their

continuum values in systems with integer values of lattice discretization parameter.

The same concept of defining a real positive lattice discretization parameter can

be applied to all the models studied in the following sections (d = 1) and in order

to find the optimal values for density and temperature scaling factors.

7.3.5 Logarithmic hard-core model

The potential model abbreviated as “LGHC” is defined as:

ϕl =





∞ if la < b

ε ln
(

1

la− b

)
if b ≤ la < c

0 if la ≥ c

(7.46)

As before, the conventional distance spacing, r, for continuous potential is replaced

by la where index l labels the successive lattice sites and a is the lattice spacing.

Fig. 7.7 shows the typical shapes of the Boltzmann factor (exp(βϕl)) for this po-

tential function for different values of βε. The interaction potential is taken to
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Figure 7.7: Boltzmann factor with different values of βε.

be made up of a hard-core part where b is the hard-core diameter and a smooth

repulsive part defined in the [b,c) area. Compared to the previous models, the

change of the shape of the potential function in the [b-c) area is responsible for the

smoothness of the repulsive interaction of the potential model. Similar to the SW

model, the critical temperature and critical density can be obtained numerically

through Eqs. 7.8, 7.35 and 7.36. In the first set of calculations, the results have

been obtained by assuming no temperature effect (βε = 1) on the potential by

using the following format for Eq. 7.8 with b = na and c = 2b.

J(s) =
l=2n−1∑

l=n

(la− b)e−las +
∞∑

l=2n

e−las. (7.47)

In the second set of calculations, some temperature effects are taken into consid-

eration by setting βε = 1
2
βcε where βc is the corresponding critical temperature
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Figure 7.8: Reduced critical density as a function of 1/n2 for LGHC model with

no temperature effect.

obtained from the first set of calculations. In this case Eq. 7.8 becomes

J(s) =
l=2n−1∑

l=n

(la− b)βεe−las +
∞∑

l=2n

e−las. (7.48)

For simplicity, a value of ε = 1 has been considered for all calculations. Figs. 7.8

and 7.9 show the critical density and the critical temperature for different values

of n for the first set of calculations. Both critical temperature and critical density

increase upon increasing n for the first set of calculations. Whereas for the second

set of calculations where we consider some temperature effect for the potential,

both critical temperature and critical density decrease on increasing the lattice

discretization parameter, n. The data are shown in Figs 7.10 and 7.11. Nonethe-

less, in both cases the deviations of the critical parameters scale as 1/n2 which

is indicative of a faster convergence for this family of potential functions. The

discrepancy between these results and the results for the hard-core model might
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Figure 7.9: Reduced critical temperature as a function of 1/n2 for LGHC model

with no temperature effect.

be due to the abrupt jump in the Mayer function, 1− e−βφ(r), present in the latter

model.
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Figure 7.10: Reduced critical density as a function of 1/n2 for LGHC model with

some temperature effect.
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Figure 7.11: Reduced critical temperature as a function of 1/n2 for LGHC model

with some temperature effect.
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Figure 7.12: Different logarithmic potential models with y0 = 0.0 (stars), y0 = 0.25

(crosses), y0 = 0.5 (open squares), y0 = 0.75 (open diamonds), and y0 = 2.0 (open

circles).

7.3.6 Logarithmic hard-core model with a jump

The potential abbreviated as LGHCj model is defined as:

ϕl =





∞ if la < b

−ε ln[(1− y0)(la− b) + y0] if b ≤ la < c

0 if la ≥ c

(7.49)

As before, the conventional distance spacing, r, for continuous potential is replaced

by la where the index l labels the successive lattice sites and a is the lattice spac-

ing. As in the case of the LGHC model, the potential implies a hard-core with

diameter b and a repulsive well in the [b-c) interval. As shown in Fig. 7.12, the

repulsive part of the function starts to decay at some arbitrary value y0, whereas

for the LGHC model the repulsive part stars to decay right at the hard-core.
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Figure 7.13: Reduced critical density as a function of 1/n for LGHCj Model with

no temperature effect with y0 = 0.25 (open stars), y0 = 0.5 (open circles) and

y0 = 0.75 (right triangles).

In Figs. 7.13 and 7.14, we show the critical density and critical temperature for

different LGHCj models with no temperature effect. As can be seen, the critical

parameters decrease on increasing 1/n values almost linearly. The critical density

and critical temperature for different LGHCj models for the second set of calcula-

tions are shown in Figs. 7.15 and 7.16, where there exists some temperature effect.

For the y0 = 2.0 case, as shown, the critical parameters decrease on increasing

1/n value linearly for both sets of calculations as shown in Figs. 7.17, 7.18, 7.19,

and 7.20.

We may conclude that it is the presence of the finite jump in the Boltzmann

factor exp[−βϕ(r)], or, equivalently, in the Mayer factor, that leads to the slower,

1/n decay of the critical parameters to their continuum values.
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Figure 7.14: Reduced critical temperature as a function of 1/n for LGHCj model

with no temperature effect. Symbols are the same as Figure 7.13.
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Figure 7.15: Reduced critical density as a function of 1/n for LGHCj model with

some temperature effect. Symbols are the same as Figure 7.13.
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Figure 7.16: Reduced critical temperature as a function of 1/n for LGHCj model

with some temperature effect. Symbols are the same as Figure 7.13.
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Figure 7.17: Reduced critical temperature as a function of 1/n for LGHCj model

with y0 = 2.0 and no temperature effect considered.
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Figure 7.18: Reduced critical density as a function of 1/n for LGHCj model with

y0 = 2.0 and no temperature effect considered.
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Figure 7.19: Reduced critical temperature as a function of 1/n for LGHCj model

with y0 = 2.0 when some temperature effect is considered.
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Figure 7.20: Reduced critical density as a function of 1/n for LGHCj model with

y0 = 2.0 when some temperature effect is considered.
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Figure 7.21: Boltzmann factor, exp[−βϕ(r)], vs. distance, r, for cubic model.

7.3.7 Cubic model

The cubic potential model is defined as:

ϕl =





∞ if la < b

−ε ln[1 + a1(la− a2)− a3(la− a4)
a5 ] if b ≤ la < c

0 if la ≥ c

(7.50)

As before, the conventional distance spacing, r, for continuous potential is replaced

by la where index l labels the successive lattice sites and a is the lattice. The ai

parameters are chosen such that the Boltzmann factor exp(−βϕl) behaves like

Fig. 7.21 with a saddle point in the middle and a smooth variation with a contin-

uously varying slope. In Figs. 7.22 - 7.25 we show the critical density and critical

temperature for the cubic model for both sets of calculations where there exists

no and some temperature effect, respectively. As seen, the critical parameters now

increase linearly with 1/n4, which is indicative of a considerably faster convergence
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Figure 7.22: Reduced critical density as a function of 1/n4 for cubic model with

no temperature effect.

for this family of potential functions.
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Figure 7.23: Reduced critical temperature as a function of 1/n4 for cubic model

with no temperature effect.
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Figure 7.24: Reduced critical density as a function of 1/n4 for cubic model with

some temperature effect.
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Figure 7.25: Reduced critical temperature as a function of 1/n4 for cubic model

with some temperature effect.
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7.4 Higher-dimensional models

For d ≥ 2, the logical step is to extend the theory presented above to higher

dimensions to find the critical parameters. However, in a less complex way, with

the virial expansion theory, we can obtain a semi-exact solution for the hard-core

model studied in two and three dimensions. The virial expansion is defined as [62]

p

kBT
= ρ + B2(T )ρ2 +O(ρ3) + . . .

= ρ
{
1 +

[
b0(T ) + b1(T )

]
ρ +O(ρ2) + . . .

}
, (7.51)

where b0 and b1 are the second virial coefficients corresponding to the repulsive and

attractive part of the potential, respectively. Within the VdW approximation, we

have

βp ∼= ρ

1− b0(T )ρ
+ b1(T )ρ2. (7.52)

To obtain the VdW limit (R0 → ∞), one may postulate that the attractive part

of the potential has the form

φ1(r) = − ε

Rd
0

Φ

(
r

R0

)
, (7.53)

with, in addition, the normalization condition

∫
Φ(x)ddx = 1, (7.54)

when R0 →∞ this implies

b1(T ) → − ε

T
. (7.55)

We can conclude that all the deviations from the continuum limit must arise from

b0(T ) which is defined as [62]

b0(T ) = 1/2

∫
ddr

[
1− e−φ0(r)/kBT

]
. (7.56)
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Figure 7.26: Reduced critical density obtained with both analytical (full stars) and

VdW approximation method (open circles) for a one-dimensional system.

Obviously for the discretized model we have

b0(T, ζ) = 1/2
∑

l,m,n

[
1− e−φ0(r̄)/kBT

]
(7.57)

with r̄ = (l, m, n)a, and a =
b

ζ
. Finally, for a HC potential model we have:

b0(T, ζ) = 1/2
N(ζ)

W , (7.58)

where N(ζ) is the number of lattice points covered by the hard-core with a scaling

constant of W . The calculation of N(ζ) is particulary crucial, since it provides

insight into the number of the lattice discretization points covered by the hard-

core. In Figs. 7.26 and 7.27, we show the critical density and critical temperature

calculated analytically and via numerical analysis by using the VdW approximation

for the HC model in one-dimensional space. As is shown, the results obtained with
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Figure 7.27: Reduced critical temperature obtained with both analytical (full stars)

and VdW approximation method (open circles) for a one-dimensional system.

both methods agree for large values of n. In Figs. 7.28 and 7.29, we show the

critical density and critical temperature obtained via VdW approximation for HC

model for a three-dimensional system. As seen the critical parameters now decrease

fairly rapidly as n increases.

134



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.155

0.16

0.165

0.17

0.175

0.18

0.185

0.19

0.195

1/n

bρ
c

Figure 7.28: Reduced critical density obtained via VdW approximation method in

d = 3.
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Figure 7.29: Reduced critical temperature obtained via VdW approximation

method in d = 3.
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7.4.1 Lattice discretization theory

Let

N(R) = Cardinality
{
X ∈ Zd : |X| ≤ R

}
, (7.59)

where N(R) is the number of lattice points inside a circle of radius R or a sphere

of radius R centered at the origin, for d = 2 and d = 3, respectively. Here

X = (l1, l2, . . . , ld) denotes the coordinates of the integer points satisfying the

specified conditions. Let us put R = ζa, where a is the lattice spacing. For

simplicity in the remaining part of this chapter we set a = 1. We would like to

study the asymptotic behavior of

N(R)

V (R)
= 1 + Error(R), (7.60)

where V (R) is the area of a circle with radius R or the volume of a sphere with

radius R centered at the origin, for d = 2 and d = 3, respectively. In the continuum

limit

N(R) = V (R) → πR2 for d = 2, (7.61)

N(R) = V (R) → 4

3
πR3 for d = 3. (7.62)

We may reasonably postulate that

Error(R) ∼ 1

Rψ
, (7.63)

where Error(R) is the error in approximating the sphere volume in d dimensions

by the interior lattice sites. A theoretical study of this problem for d = 2 may

be found in [126–128], where it is shown that ψ = 3/2 and an analytical formula

for calculating the scaling constant is also provided. In what follows, we will

study the asymptotic behavior of Error(R) or how the error in volume, namely,
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Figure 7.30: N(ζ)− V (ζ) for different values of ζ in d = 3.

[N(R)−V (R)], varies with R. Fig. 7.30 shows the error for values of ζ = 1−10000.

7.4.2 Approximation of the error

Following an argument proposed by Prof. M. E. Fisher, let AR = CdR
d−1 be

the area of a sphere of radius R. By intersection with the lattice cells this area is

divided up into surface elements of mean area A0
∼= cda

d−1 for R/a À 1, where cd

is an appropriate constant. Hence, the mean number of such elements is:

SR
∼= AR

A0

= sd

(
R

a

)d−1

, (7.64)

where sd =
Cd

cd

. Each surface element cuts a cell and, depending on the location

of the cell, the cell center will be inside or outside of the R-sphere. As R/a →∞,

we expect the probability of the center remaining in either region to approach 1/2
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and the error is either +1/2 or −1/2 on average. It follows that the total mean

square error should thus be:

〈
∆N2

〉 ≈ SR δ2
d, (7.65)

where ∆N = N(R)− V (R) and with δd
∼= 1

2
. Therefore we expect

∆NRMS(R) ∼=
√

SR δd = δd

√
sd

(
R

a

) d−1
2

. (7.66)

The root mean square errors (RMS), normalized according to this conclusion,

(and smoothed with a running average window of lengths 3 and 5) are shown

in Figs. 7.31, 7.32 and 7.33. The smoothed data are also shown in Fig. 7.34 in

histogram form. The results clearly show that the absolute error normalized by

1/ζ
d−1
2 fluctuates around a constant value which is in good agreement with Eq. 7.66

and also the results of [126–128]. Hence, for common special cases we have

∆NRMS(R) = δ1

√
S1 if d = 1

∆NRMS(R) = δ2

√
S2(R/a)1/2 if d = 2

∆NRMS(R) = δ3

√
S3(R/a)1 if d = 3.

(7.67)

Finally, the fractional error at the ζ discretization level can be expressed as:

∆N(R)

V (R)
∼ 1

R
d+1
2

∼ 1

ζ
d+1
2

. (7.68)

The fractional error for both d = 2 and d = 3 are shown in Figs. 7.35 and 7.36,

respectively. As evident, the fractional error varies over a range bounded by

+c+/ζ3/2 > 0 and −c−/ζ3/2 < 0, where c+ and c− are positive constants for

d = 2. The same trend is observed for d = 3, where the fractional error varies over

a range bounded by +c+/ζ2 > 0 and −c−/ζ2 < 0, where c+ and c− are positive

constants, as expected from Eq. 7.68.
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Figure 7.31: RMS versus ζ for d = 3.
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Figure 7.32: RMS being smooth with 3 points versus ζ for d = 3.
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Figure 7.33: RMS being smooth with 5 points versus ζ for d = 3.
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Figure 7.34: The plots from top to bottom are for ζ = 1 − 10000, 1000 −
10000, 2000−10000, 4000−10000, . . . , and 8000−10000 for d = 3, respectively.
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Figure 7.35: The fractional error for d = 2 versus 1/ζ3/2.
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Figure 7.36: The fractional error for d = 3 versus 1/ζ2.
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In Fig. 7.37 we show the second virial coefficient of the HC model for differ-

ent values of ζ. The data suggest that deviations of the second virial coefficients

scale as 1/ζ2. The exponent found in the present study for the HC model is es-

sentially identical to the exponent found for the critical temperatures and critical

densities of the restricted primitive model (RPM) by Panagiotopoulos [110]. The

potential function for the RPM is made up of a hard-core and a smoothly vary-

ing Coulombic long range part. We may conclude that the hard-core part of the

potential is responsible for the exponent observed in this study. Fig. 7.38 shows

the dependence of the second virial coefficients of a standard soft-core potential,

namely, the Lennard-Jones potential [64], at the dimensionless critical tempera-

ture, T ∗
c = kBT/ε = 1.299, on the inverse lattice discretization parameter scaled

to the 6th power. This exponent is also in agreement with the exponent that has

been found for the critical parameter dependence on the inverse lattice discretiza-

tion parameter for a soft-core potential model (as found via the simulation studies

reported in Chap. 5). Finally, in summary, the behavior of the second virial coeffi-

cient under discretization, which may easily be studied numerically if not so readily

by analytical means, appears to provide a reliable guide to the rate of convergence

to the expected in estimating critical parameters.

142



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1/ζ2

B
2*

Figure 7.37: Second virial coefficient for the hard-core model with integer (stars)

and real (open squares) values of ζ.
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Figure 7.38: Second virial coefficient for the LJ model at T ∗
c = 1.299.
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Chapter 8

Summary and Suggestions for

Future Work

In this dissertation we have focused on the development of the fine lattice dis-

cretization methodology pioneered by Panagiotopoulos and Kumar [2] to allow for

calculation of structural and thermodynamic properties, mainly phase equilibria

and critical parameters, of various model and real fluids. A wide range of fluids was

studied, from simple model Buckingham Exp-6 particles to polar multi-segment

real molecules which include both dispersive and Coulombic interactions. We have

investigated various phenomenological approaches to see how well the lattice mod-

els incorporate the models when the continuum limit is approached. Grand canon-

ical histogram reweighting simulations and mixed-field finite-size scaling analysis

were used to determine the phase coexistence properties and critical parameters.

Structural properties, mainly density profile and radial distribution functions, were

calculated using canonical simulations.

To evaluate the fine-lattice discretization technique, the phase behavior and

critical parameters of diatomic molecules, carbon dioxide, and water were calcu-
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lated using this method and the results were compared to the continuum coun-

terparts. In comparison with the previous calculations in continuum-space, the

lattice discretization technique appears to have a superior efficiency; indeed the

lattice calculations can run up to two orders of magnitude faster than the contin-

uum calculations for polar models. Overall, there is good agreement between the

phase equilibria and critical parameters of the models studied in both lattice and

continuum spaces. Small deviations in the low density region can be observed for

carbon dioxide and water models. On the one hand, we postulate that system-size

effects are responsible for these deviations; but the computational cost to calculate

the properties of interest in larger systems is prohibitively high with the methods

of the present work and the available CPU capacity. On the other hand, when real

models are discretized in lattice space, the allowable values for bond length, bond

angle, dipole moment, quadrupole moment, etc. must, in general, deviate from

the continuum values. This can lead to sizeable errors owing to the restrictions

placed on separation distances, where a site’s location can be described only by an

integer between zero and the box dimensionless length in all the directions.

We have also investigated the structural properties of the SPC/E water model

with different lattice discretization parameters, ζ. It was found that even very

small changes in the lattice spacing can have a large effect on the overall struc-

tural properties of these models. For example, ζ = 11 shows frozen structures

at T = 400 K, while some discretized models show only minor underlying struc-

tures and some others do not exhibit any underlying structure. The underlying

structures in radial distribution functions are not as pronounced as in the density

profiles and, except for ζ = 11 and, to a minor extent for ζ = 22, no specific

structures are observed for other lattice models.
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One of the primary and important parameters defined in the lattice discretiza-

tion technique is the lattice discretization parameter, ζ. We have investigated

extensively the effect of the lattice discretization parameter on the critical param-

eters, mainly critical temperature and critical density, for a variety of model polar

and non-polar models. Both critical temperature and critical density decrease on

increasing ζ. The critical temperature scales as 1/ζα, where the exponent fitted

was α = (6 ± 2) for the non-polar and α = (2 ± 0.5) for the polar fluids. The

large difference in α values between non-polar and polar fluids results from a much

weaker effect of discretization on the critical parameters of non-polar fluids.

Grand canonical multihistogram reweighting Monte Carlo calculations using

the fine-lattice discretization methods were carried out to obtain the second virial

coefficients for a number of systems of interest. A fast and efficient methodology

to estimate the second virial coefficient was presented. It was shown that the

methodology yields very good estimates of the second virial coefficient and agree-

ment with analytical and experimental values at about 2% for a variety of model

and real fluids, respectively.

The thesis concludes with a comprehensive theoretical study of the effect of

the lattice discretization parameter on critical parameters such as critical temper-

ature and critical density. For low values of lattice discretization parameter, the

underlying lattice may have a strong effect on the thermodynamic and structural

properties of the system, whereas for values greater than 10, the properties have

essentially identical behavior to their continuum counterparts. In one-dimensional

space (d = 1), we have investigated the problem analytically for the hard-core

potential model and numerically for the square-well and a variety of logarithmic

hard-core potentials. It was found that the deviations in the values of the critical
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parameters decrease hyperbolically with increasing lattice discretization parame-

ter, n, while for the logarithmic hard-core potential models the smoothness of the

repulsive part of the function is mainly responsible for the rate of convergence.

The notation n is used for the lattice discretization parameter when it only takes

integer values whereas the ζ notation has been used when the lattice discretization

parameter can take any positive real values. We presented a numerical study of

two-dimensional (d = 2) and three-dimensional (d = 3) cases and investigated the

dependence on the lattice discretization parameter of the number of lattice points,

N(R), contained in a circle or sphere of radius R (equal to the hard-core diameter).

The distribution of N(R) varies in a “noisy” fashion around a definite form.

Based on the results of the researches reported in this thesis on both simula-

tion and theoretical aspects, a number of projects for future work are possible. As

the internal structural properties of a molecule such as bond length, bond angle,

dipole moment, etc., must be altered to force each site of the molecule to span an

integral number of lattice spaces while adhering as closely as possible to continuum

values, this technique can lead to sizeable errors with respect to the exact values

of the internal properties. In order to further investigate both thermodynamic

and structural properties of models studied in lattice space and to see how closely

the lattice models reach their continuum counterparts, it is important to have a

clear picture of the effects of the lattice discretization on the internal structural

properties of the fluids and consequently on the properties of interest.

As a long-term motivation is to build fine-lattice models reproducing properties

of any real systems and their mixtures, the lattice discretization technique should

be applicable for calculating the properties of molecules with any number of sites.

For molecules with more than three sites, the torsional angle is also an added
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Figure 8.1: Density profile of water models at T = 400 K with ζ = 11: Buckingham

Exp-6 model (dashed-dotted line), SPC/E model (dotted line), and continuum

model (solid line).

parameter to the internal degrees of freedom and some of the effects of lattice

discretization on the properties of interest might be due to this added parameter.

Overall, having a clear understanding of the effects of internal structural properties

on the properties of interest with a constant lattice discretization parameter, ζ, is

essential for the usefulness of further calculations on real fluids in lattice space.

We have observed that small changes in the lattice spacing can have a large

effect on the structural properties, especially the density profile, of the SPC/E wa-

ter model. It will be useful to examine this effect for other models with different
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intermolecular interactions which can lead us to see whether the peculiar behavior

is due to the nature of the intermolecular potential or is related to the internal

structural properties of the models. For example, the density profile of the wa-

ter model with an Exp-6 profile having a lattice discretization value of ζ = 11 at

T = 400 K is shown in Fig. 8.1: no strong underlying structures (such as seen for

SPC/E water with ζ = 11) now appear. There is also the possibility namely, that

the distinct configurational structures of the molecules combined with the chosen

potential model cause this effect. In another perspective, some of the models show

some periodic behavior in their density profile, although these periodic effects are

not as pronounced as those of the water models studied by Lock [109]. In partic-

ular, the direct correlation between the characteristic size of the potential and the

periodic bond length of the density profile function should be studied thoroughly.

We have not identified any specific trends regarding the effect of the lattice dis-

cretization parameters on the critical densities of the non-polar and polar model

fluids studied in Chapter 5. This is partly a result of the higher statistical uncer-

tainties associated with the calculation of the critical density. The technique used

recently by Kim and Fisher [129] to precisely calculate the critical parameters of

the RPM and square-well fluid can be applied to the models studied in Chapter 5

and the precise effect of lattice discretization on critical densities could be investi-

gated. In Chapter 5 we also found that the effect of lattice discretization on critical

temperatures is weaker for a model with combined dispersive and Coulombic in-

teractions than for a model with only dispersive interactions. This is in contrast to

our belief that the added Coulombic part should make the dependence somewhat

stronger. These models need further investigation owing to the marked similarities

between these model fluids and real fluids in nature.
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Following suggestions made by Prof. M. E. Fisher, one may consider a number

of interesting open problems for further investigation on the theoretical side. For

hard-core models, the density is made dimensionless using the hard-core diameter

via ρ∗ = ρσd, where σ is the hard-core diameter and d is the dimensionality of the

space. We may write

ρ∗ = ρσd = ρ
V (ζ)

4
3
π(ζ/σ)d

, (8.1)

where ζ is the lattice discretization parameter and V (ζ) is the volume excluded

by ζ. By replacing V (ζ) by N(ζ)ad, where N(ζ) is the actual number of points

excluded by ζ and a is the lattice spacing, a new scaling factor for density can be

defined as

ρ† = ρσd N(ζ)
4
3
πζd

= ρσ†3. (8.2)

We postulate that using this new scaling factor may well result in a faster conver-

gence of the density calculated in lattice space to its continuum value. Since the

second virial coefficient has the same dimension as the hard-core diameter, scaling

the density with the second virial coefficient is also another possibility which needs

further investigation.

The temperature is normally made dimensionless by setting T ∗ =
kBT

ε
,

with ε =
|qiqj|
Dσ

, where qi and qj are the charges on nearest neighbor sites i and j

and D represents the dielectric constant of the structureless medium. However,

we can define a new scaling factor for the lattice system by averaging the contact

energy of the lattice surface of the hard-core instead of using only its diameter

since ε relates to the energy of closest approach. Then one should study how fast

the new scaled temperature converges to its continuum value with the hope of

improvement.
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