ABSTRACT EUTROPH ICATION, HYPOXIA AND TROPH IC Ti tle of Dissertation: TRANSFER EFF ICIENCY IN CHESAPEAKE BAY James Dixon Hagy III , Doctor of Philosophy, 2002 Dissertation directed by: Professor Walter R. Boynton University of Maryland Center for Environmental Science Coastal eutrophication is a global problem that has contributed to loss of estuarine habitats and potentially decreased fisheries production. Hypoxia is often observed in eutrophic estuaries where it can be an important cause of habitat loss. This study utilized a suite of empirical analyses to examine key linkages relating coastal eutrophication to hypoxia, trophic structure, and trophic transfer efficiency in Che apeake Bay (CB), USA. A salt- and water-balance model , or "box" model, was developed to quanti fy large-scale physica l transport for CB, an input to many subsequent analyses. Historical ( 1950-1999) di ssolved oxygen (DO) data for CB 1 showed that moderate hypoxia (D0<2.0 mg r ) increased - 3-fold, modulated by 1 spring river flow . Severe hypoxia (D0<0.7 mg r ) occurred only in high flow years during 1950-1967, but was present annually since 1968. Analysis using tree-structured regression showed that hypoxia was the most important factor determining patterns of macrobenthic biomass in Chesapeake Bay. Carbon budgets showed that, where habitat quality was poor, macrobenthic biomass was much less than could be supported by the organic carbon supply. rn these cases, even dramatic reductions in carbon supply would not be expected to limit benthic production and by extension, trophic transfers to upper trophic levels via the benthos. The effect of eutrophication and hypoxia on trophic structure and trophic transfer efficiency were examined by estimating trophic flow networks for three regions of CB during summer. In addition, a series of "rules" were described and used to infer the trophic flow network for a "restored" middle CB from historical data, comparative ecological relationships and mass balance constraints. Excessive carbon now through bacteria was the most pronounced symptom of eutrophication in the modern mid Bay. The microbial food web transferred organic matter to trophic levels comparable to large piscivorous predators, maintaining average trophic transfer efficiency, even as the fraction of primary production transferred to top predators decreased. In the restored Bay, increased macrobenthic production shifted metabolic activity away from the microbial food web, increasing the potential trophic transfer to fi sh by 7-fold, even as total primary production decreased to 63% of the current average. EUTRO PHICATION, HYPOXIA AND TROPH IC TRANSFER EFFICIENCY IN CHESAPEAKE BAY by James Dixon Hagy 11 I Dissertation submitted to the Faculty of the Graduate School of the University of Maryland, Co ll ege Park in partial fulfillm ent of the requirements for the degree of Doctor of Philosophy 2002 Advisory Committee: Professor Wa lter R. Boynton, Chair Professor W. Michael Kemp Professor Thomas J. Mi ller Professor Estelle Russek-Cohen Professor Robert E. Ulanowicz DEDJCATION To Melissa and Lau ren II ACKNOWLEDGMENTS I am grateful to Dr. Wa lter Boynton, my advisor, for support, advice, encouragement , understandi ng and good humor over the past IO years. Walter's unique blend or enthusia m, hard work, optimism and rea l ism , combined with his c lear po l icy or putt ing fam il y and per ona l matters first helped bring me to thi s point in one piece. Wa lter is a true fri end . It is hard to contemp late working for anyone else. I am also indebted to W. Michae l Kemp. I particularly thank Mike for challenging me to clarify my thin king and writing, elevating the quality o f my work. Working a few feet from M ike 's desk th rough the last and most challenging year of my dissertati on work, I frequentl y tapped him for papers, numbers, opinions, and adv ice. I thank him for hi s open door, and li ke W alter, hi s genuine friendshi p. Each of my other committee members contri buted substanti all y to my graduate career. I thank Bob Ulanow icz for introducing me to network analysis, providing hi s NETWRK software, and fo r many helpful discuss ions on speci fyi ng the networks and interpretin g the pages or output. A lthough any stati sti ca l erro rs are obviously my own, I thank stell e Russek-Cohen fo r her excellent stati sti ca l instruct ion, for introduci ng me to tree-s tructured data analys is, and fo r her rev iew of stati sti ca l methods in my di ssertati on. Tom Mi ller chall enged me at every point of my di ssertati on work , from the comprehensi ve exam to the di ssertati on defense. I espec iall y thank him for hi s deta iled rev iew of my di ssertati on, which was undoubtedl y a time-consuming undertaking. 111 While completing thi s research , I located my desk at three laboratories, UMCES Chesapeake Biological Laboratory, Virginia Institute of Marine Science, and UMCES Horn Point Environmental Laboratory. I thank the administration and staff of each of the e institutions for their hospitality and support. Circumnavigating the Bay in my graduate career, I had the pleasure and benefit of interacting with many talented researchers in the Bay community. This was invaluable considering the breadth of subject matter encompassed by my disse1tation research. For data, papers, or other technical guidance, I thank Cath y Lascara, LaJTy Sanford, Ed Houde, Sukgeun Jung, Se-Jong Ju, Liz Canuel, Rebecca Dickhut, Larry Harding, Jenny Purcell , Bill Boicourt, Larry Sanford, Rodger Harvey, Mary Beth Decker, Jeff Cornwe ll , Rodger Newell, Vic Kennedy, Erik Smith, Linda Schaffner, Mike Roman, and Diane Stoecker. This di ssertation could not have been completed without the combined talents of these people. A number of individuals he lped with the field component of this di ssertation. Ned Burger, Dave Jasinski and Jen Harman-Fetcho contributed to collections of ediment chlorophyll-a samples. The hundreds of successful sediment grabs collected for Chapter 3 would not have been possible without the dedication of Paul Moylan who tuned and operated the Smith-Macintyre corer. My role in the sediment chlorophyll -a method comparison described in Chapter 3 was limited to sampling design and data analysis. The field and laboratory work was sk.illfull y and generously completed by Bob Stankeli s, Jerry Frank, and Nancy Kaumeyer. I am deeply greateful for their generosity. I also thank the fish-head crew members involved in the Trophic Interactions in Estuarine Systems (TIES) cruises for their collections of fish IV used in Chapter 6 and for their assistance in collecting the water, plankton and other amples. All of the field co llections were conducted aboard the RIV Cape Henlopen and I am indebted to all her crew members who worked hard to make these research crui ses successful and , more often than not, enjoyable. 1 am also grateful for the generous assistance of Jeri Phari s and Frances Rohland who committed themselves for years to helping me as needed for countless tasks. My Bay-encircling li festy le would have been vastly more challenging without their help . Financial support fo r my graduate studies was provided through a Chesapeake Biologica l Laboratory (CBL) Graduate Fellowship , a CBL Teaching Assistantship, through multiple contracts with the EPA Chesapeake Bay Program and by the NSF- Funded Chesapeake Bay Land Margin Ecosystem Research Program (Trophic Interactions in Estuarine Systems, DEB-9412113) awarded to W.R. Boynton, W. C. Boicourt, E. D . Houde, W. M. Kemp and M. R. Roman . In the final months of my di ssertation work, fundin g was provided by the EPA-funded Multiscale Expe1imental Environmental Research Center at the UMCES Hom Point Environmental Laboratory. I am also grateful for the generous travel support provided by Walter Boynton and by the CBL Graduate Education Committee which enabled me to present my work at several Estuarine Research Federation Conferences . I am grateful for the unwavering support of my parents whose pledge to always love and support me no matter what has always enboldened me to pursue my ambitions. In 1997, I was fortunate to gain Wayne and Frances Ederington as parents- in-law. I thank them for their love, thoughts and prayers. V Finally, l thank my wife and daughter, Melissa Ederi ngton Hagy and Lauren Hagy, for their love and support and fo r enduring my absence, particularly in the final months when I was "absent" even when I was home. I dedicate this volume to them. YI TABLE OF CONTENTS LIST OF TABLES ....... ........... ..... ... .. ....... .. ...... .. ........ ... ... ................................. ...... ix LIST OF FIGURES .... ............ ............ ........... .............. ... .......... ..... .. ... ... ............... xiv I !APTER 1. Background and Introduction ............ ....... ...... ...... .. .................... ....... 1 Literature Cited ............................................................................... ..... ........ 7 Figures .................... ..... ..... ........... ............... ...... ............. ......... .... ... .......... .... 9 CH APT R 2. A Box Model Approach for Estimating Physical Transports and Exchanges for the Chesapeake Bay ................................................................. 11 Abstract. .. .......... ............... ... ....... ................... ...... ..... ..... ....... ...... .. ....... ... .. .. I I Introduction ............... ...... .. ........ .... ... ........... ..... .... ... ... .. ..... ......................... 12 Methods .............. .. ..................................................... ............................. ... 17 Results and Discussion ............ ...................................................... .. ....... .... 29 Conclusions .. ...... .......... ........ ................. ... ............... ... ... ...................... ....... 37 Literature Cited ....... .. .... ........ .................................................. ... .............. .. 38 Tables .... ....... ..... .. ................. .. .. ............................... ....... .. .................. .... ... 42 Figures ... ... ........... .. .... .. .... ................................... ... .. .................... ............. . 48 CHAPTER 3. Hypoxia in Chesapeake Bay, 1950- 1999: Progressive Development and River Flow Effects ........... ................. ........ .... .... ......................... 61 Abstract. ....... ................... ..... .. ............. .... .... .... ... .... .... ...... .... ........ .... ... ....... 61 Introduction ... .. ... .. ... ............. ......... ...... ....... ......... ... ........ ..... ........ ............ .. . 62 Methods .. ... .. ................... .. ........................... ..... ... .. ............ .. ...... .. .... .......... 66 Results ........... .... .. ..................................... .. ...... ..... .. ........ ............. ...... ... .... 71 Discussion ....... .. .......... ...... ... ....... .... ... ... ..................................................... 78 Literature Ci ted .................................................... .... ........ .. ..... .......... .... ..... 87 Tables ..... .... ......... .......... .. ......................................................... .... .. .... .... ... 91 Figures ....... .. ....... ........ ..... ........ .. .................. ... ....................... ........ ... .... .. ... 96 CHAPTER 4. Phytoplankton Deposition to Chesapeake Bay Sediments during Winter-Spring ... ......... ........ .... ...... .... ............... .. ................ ... ............ ....... .. 106 Abstract. ................... ...... ....... .. .. ........ ........... ...... .... .... ..... ... ..... ... ........ ...... I 06 Introduction ....... ................................................................. ... .. ................. I 07 Methods .................................................................................... ............... l 11 Results and Discussion ... ......... ... ..... ........... .. .. ........ .. ................... ......... .... 1 14 Conclusions ................................ ... ......................... ......... .. .. ..... ................ 130 Literature Cited ............ ..... .. ....... ............ .. .. ......... ..... .......... ...... .... ............ 131 Tables ........... ..... ............. ... ....... .......... .... ...... ........... ... ... .. .. ... ... ... ...... ... .... 136 Figures ............. ........ .... .... .................. ..... ......... .... .... ...... ......... .... .. ........... 141 VII Cl IA PTER 5. Patterns or Macrobenthic Biomass and Community Bioenergetics in Chesapeake Bay during Summer in Relation to 1l abitat Qua lity and Organic Carbon Supply ...... ........... ...... ... ........... ...... .... .. ... .... 150 Abstract. ..... ......... ... .... ... .... .... ........ ... ... ...... ... .. ..... ..... .. .... .. ... .. ............... .... 150 Introduction ... .... ... .... ....... .... .. ....... ... .......... ... .. ......... .. ..... .............. ........ .... 151 Methods ............. ..... ...... ...... .... .. ........... ... ....... ... .......... ... ........... ... .... ... ... .. 156 Results and Discussion ...... .. .. ...... ..... .... ........ ..... .... ........ ............ ... ..... ...... . 166 Summary and Conclusions .............................. ..... ... .. .. ........... ..... ........ ..... l 86 Literature Cited .......... ..... ..... ... ...... ........ ........ ..... .... ......... ..... ..... .......... ..... 189 Tables ....... ........ .. .... .... .......... ....... ........ ... ...... ... ...... .. .... ... ... .. ... ............ ..... 196 Figure ... .... ...... ......... .... ........... ...... .... ..... .. .. .... ... ..... .. ..... ... ........ .... ........... 205 CHAPTER 6. A Network Analys is or Mainstem hesapeake Bay Food Webs during Summer: Eutrophicat ion Effects on Carbon Transfer Effi ciency to Fish ... ..... .... .. ..... ...... .. ...... ................... ..... .... .................. .... 2 16 Abstract. ... ............ .... ..... ...... .. .... ... .. .. ... ... ..... ... ...... ..... ........ .. ... ... .... .. ...... .. . 216 Introduction .. ..... ... .......... .. ...... .... ...... .... ... ....... ..... .... ... ......... .. ...... ......... ... . 2 17 Methods .. ... .. .. ........... .......... .. .... ...... ..... ...... .... ........ .. ..... ......... .. .... ......... ... 223 Results and Discussion ..... ....... ........... .... ... .. .... .. ... ...... .... ...... ...... ... ...... .... . 234 Literature Cited ... ... ...... ..... ... ... ..... ........... ...... .. .......... .... .. .... ... ... .... .. ..... .. .. 264 -rabies ... ......... ... ...... .... ......... ... .... ..... ..... ...... ... .. .... ... ....... ............ ...... ... .... . 280 Figures ...... ... ..... ... ..... ....... ..... ... .... ... ......... ... ...... .... ........ ....... ... ....... .. ....... . 299 CHAPTER 7. Validation of Trophic Level Estimates for Chesapeake Bay Food Web Using 15N/ 14N ..... ......... ....................... ........... ...... ... ...... ..... ....... ... 311 Abstract. ... ............ .. ........... ...... ... ..... .... ... ... ......... ........ ..... .. ....... ...... .. ........ 311 Introduction ... ...... .. .. .... ....... ..... ... ..... ... .... ..... .... ............ .... ..... ..... .... .. .. .. ..... 31 l Methods .. .. ... ... .... ........... .. .. .... .. .. .. .... ........ ... ....... .. .... ... ... .... ... ...... ......... .... 314 Results and Discussion .... ... .. ..... ...... ..... .. .. ... ...... ......... .. .. ... .... ... ... .. ..... ... ... 315 Literature Cited ....... .... .. ........ ... .. ... .... ... ..... .. .. .... ...... .... .... ... ... ... .... ..... ... .... 320 Tables .. ...... ...... .. ....... ....... .... ... ... ... .. .. ... ..... ..... ... ....... .... ... ..... ...... .. .. ..... .. ... 323 Figures ....... ... ..... ... .... ...... ...... ....... .... ..... ... ..... ... .......... ... ...... ... ......... .. ....... 326 APPENDIX A. Description and Discussion of Procedures for Estimating Network Models for Chesapeake Bay .. .. ... .. .... ....... ... ..... ..... .... .... ............... ... .... .. . 328 Organic Storage, Primary Production and Bacteria ... ... .... .... ........ .... .. ... ... . 328 The Plankton Community .. .... ........ ... ......... ... .......... ...... ........ ... ..... .. ...... ... . 343 The Benthic Community ..... ... .. ..... ..... ..... .... .. .. .. ... ....... ...... ...... ... .... ..... .. .. . 362 Finfish and Crabs .. .. .......... ....... .. .. ... ............ ... .... ... ... ....... .... ......... ..... .. .. ... 372 Literature Cited ..... ..... ....... .. ... .. .... .. ... ..... ...... .... .... .... ...... ... ... ... .. ...... ........ . 41 2 COMBlNED LITERATURE CJTED ... .... ...... ....... ..... ............ ......... ...... .... ....... .... 444 VIII UST OF TABLES Tab le 2- 1. The boundaries of the box model segments in channel kilometers from the mo uth of the Bay and the depth of the pycnocl ine dividing the surface and botton1 layers . ..... .................. .... ..... .................................................................. 42 Tab le 2-2. The volume of mainstem Chesapeake Bay and the tributari es and embayments with which latera l sa lt exchanges occur and the stati ons used to estimate mean sa linity th roughout the Chesapeake Bay estuarine system ............... 43 Tab le 2-3. The fall line gauges, USGS ID and drainage area upstream of the fo ll li ne gaug ing station on the maj or tributaries of Chesapeake Bay .... .......... ...... .. 44 Tab le 2-4. The dimensions, including the length , pycnocline area, cross-sectional area (cross-sec), and vo lume of the surface layer (SL) and bottom layer (BL) boxes in segments 1 through 9 of the box model. .... ..... .... ........ .45 Table 2-5. Box model estimates of the long-term ( 1986- 1998) average monthly p 11 ys1.c a I tran sport (m J s - I ) for Chesapeake B ay ...... .......... .......... .. ....................... .. .. 46 Tab le 3- 1. Data types, spatia l reso lution, tempora l resolution and sources of data . ... .. ............ ..... .... ....... ... ........... .... ..... .............. ........... ..... .... ........... .. .. ... ... ....... . 9 1 Tab le 3-2. Data sources, cru ise dates, and ca lculated hypoxic vo lumes for Chesapeake Bay from 1950-1999 ... ....... .... ..................... .... ....... ..... ...... .. .......... 92 Table 3-3. Estimated parameters of the non-linear multiple regression, ln (V + I) = /Jo + {3 1 (T - 1949 J + f3 2Q + E, relating hypoxic vo lume ( 109 m3) to time (year) and January-May average Susquehanna River now ( 111 3 s- 1) ... . . .. .................. . .. . ....... . ...... . .... . ... .. . ................................ . . ......... . .... . ... 93 10 3 Table 3-4. Regress ions re lating hypoxic-volume-days (units: 10 m -days) fo r Chesapeake Bay for 1985 -1 999 to January-May average Susquehanna Ri ver flow ......... ............... .. .. .......................... ... .... .. .... ... .... .. ... ... .... .. .. ............. ..... .. 94 Table 3-5 . Estimated rates of spring DO decline in bottom waters at station 845G for 1964-1977 and at station CB4.3C for 1985 -1998 .............. ... .... .... ........ .. .. 95 Table 4- 1. The most abundant phytopl ankton taxa ( excluding picoplankton) in three regions of Chesapeake Bay during spring and the average fraction of tota l phytoplankton carbon contributed by diatoms . ... ..... ......... .. ...... ... ........... .. 136 Table 4-2 . C ruise dates for sediment chlorophyll-a surveys and the number of sediment cores collected in each region of the Bay .. ... .. ............. .. ....... ........ .. .... 13 7 IX Tabl e 4-3 . Re ults of a method compari son experiment used to evaluate the effect of three sonicati on trea tments and si ngle vs . double ex tracti on on the amount (mean?se, % change from contro l) of chi-a (?gig) extracted from 15 aliquot of homogeni zed Che apeake Bay sedim ents .. .. .. ........ .... .. .. .. ...... .. ....... 137 Tabl e 4-4. Regional/annual mean sediment total chl orophyll-a inventories. These were computed from 0-1 cm chi-a inventories by adjusting for mixing to below I cm on short time scales (i.e. days-weeks) ... .. .. .. ........ .. .... .. ........ .... .... .. . 138 Tabl e 4-5. Minimum, maximum and modal va lues used to specify triangular di s t n' b ut1. ons for parameters m. eq. 3 . .. .. ........ .. .. .... ............. .. ......... ... .. .. .. .... .. ........ . 139 Tabl e 4-6 . Estimated average (?standard deviation) chi -a deposition rates (mg m?2 ct ?1) and total winter-spring chi-a deposition (mg m?2) for winter?-spring in the upper, mid and lower Chesapeake Bay during J 993-2000 ..... .. ......... .. .... .. .. ....... .. .. .... .... .. .. ..... ... .. .. .. ........... .... ... ......... .... ... I 40 Tabl e 5-1. Parameter estimates and F-table for a multiple regression 2 (r2~0.34)_fr.edictin~ log _ash-free ?iomass per m (recoded by adding 0.0 g m ) at locallons 111 the mamstem Chesapeake Bay ............................ .. .. .. .. . 196 Table 5-2. The importance of water quality and habitat variables as factors in a CART regression-tree model predicting biomass of mainstem Chesapeake Bay macrobenthic communities ............................... ... ................ .. .. .. 197 Table 5-3. Node detail for the regression-tree model shown in Fig. 5-4 ..... .... ...... 198 Table 5-4. Regional area and summer (June-August) average biomass, daily production and daily P/B ratio, as estimated using the Edgar (1990) n1odel. ........ .. .......................... .. ................. .... ....................... .. ...... ....................... . 200 Table 5-5 . Estimated ranges for summer (June-August) average consumption (C), re piration (R), and excretion plus egestion (U) by macrobenthic communities in Chesapeake Bay ... .. ............................................... 20 I Table 5-6. The parameters describing mixing characteristics of 5 segments of Chesapeake Bay, leading to estimates of the fraction of the water volume available to suspension feeders each day .............................................................. 202 X Table 5-7. Computati ons based on the models of Gerritsen et al (1994) showing the relationship between potential ratio available via suspension feeding and the range of estimated carbon requirements of the suspension feed ing macrobenthos. ???????????? ?? ????????????????? ???? ??????????? ?????????? ????????? ??? ??????????? ?????? ???? 203 Tab le 5-8. Average total benthic metabolic rates for three regions of hesapeake Bay during June-August. .... ...... .. .... ........... ........ ............................... 204 Tab le 6- 1. Definitions of parameters in equations ............ ... .. ..... ....... ................... 280 Tab le 6-2. Sources of published and unpublished data for defining the trophic flow networks ....................... ... .. ...... ... ...... .. .... .. ............ ....... ............... .... ............ . 28 1 Table 6-3. Scientific names of species or groups of species referred to in the tcxt. .................... ........... .... ..... .. .................................. ... ........... .. ............ ......... ..... 284 Tab le 6-4. Estimated biomass (mgC m-2) for each node in the summer trophic flow networks for the upper, mid and lower Chesapeake Bay ............. .................. 285 Tab le 6-5. Es timated trophic level (TL), production (P, mgC m-2 d- 1) and ccotroph ic effic iency (EE) for each node in each region of the Bay . .. ... ....... ..... .. .. 287 Table 6-6a. The matrix of organic carbon flows (T;j, mgC m-2 d- 1) among the nodes of the upper Chesapeake Bay summer trophic flow network ... .. .... ........ .. ... 289 Table 6-6b. The matrix of organic carbon flows (TiJ) among the nodes of the mid Chesapeake Bay trophic flow network ........................................................ .. 29 l Table 6-6c. The matrix of organic carbon flows (TiJ) among the nodes of the lower Chesapeake Bay trophic flow network ........................................................ 293 Table 6-7. Respiration (mgC m-2 d- 1) for each node in the three summer trophic fl ow networks (UB=upper Bay, MB=mid Bay, LB=lower Bay) and the fraction of total respiration contributed by each of 5 major groups .................. 295 Table 6-8. Estimated summer fisheries landings in each of three regions of the mainstem Bay ................................................................................................ ...... 297 Table 6-9. Estimated trophic level (TL), biomass (B, mgC m?2), production (P, mgC m-2 d-1), ecotrophic efficiency (EE), and respiration (R, rngC m-2 c1-1) for the restored mid Chesapeake Bay trophic flow network . ............................... .. 298 Table 7-1. The date of the sampling cruises during which organic matter samples were collected for stable isotope analysis .. .... .......... ..... .. .............. ......... .. 323 XI Tab le 7-2. Mean (?standard error) 8 15N in for each region/season combinati on ........ ............ .. ......... ..... .. ........... ........ ... .. ... .......... .... ............. .. ........... 323 Tabl e 7-3. Estim ated trophic level (?standard error) for mesozooplankton based on PN as the reference sample ....................... .. ...... .. ... .... .. ............ .............. 324 Tab le 7-4. Est imated reference trophic leve l for mesozooplankton (used in eq. 2) and the resulting trophic leve l estimates for mesozooplankton based on 15N/ 14N . For compari son, the estimated trophic level for mesozooplankton computed from trophic fl ow networks (Chapter 6) is also shown . .. ........... ........... 324 Tab le 7-5. Trophic level estimates, referenced to mesozooplankton, for 27 tax a or groups of taxa, arranged in order of increasing trophic leve l estimate .. ... .. 325 Tab le A- 1. torage and physical input and export of detrital dissolved organic carbon (DOC) and detrital particul ate organic carbon (POC) . ... .. ................. ..... ... .427 Table A-2. Estimates of summer average primary production rates deri ved from I lard ing et a l. (2001) and Kemp et al. ( J 997) .. ......... ............ .. ... .......... ..... ...... ...... 427 Table A-3. Summer phytoplankton biomass, gross phytoplankton production (G PP) , algal respiration (R), extracellular release of DOC (ER), and net PO production by phytoplankton (PP) .. ........ .. .......... ..... .... ... ..... .......... .... ......... .428 Table A-4 . Biomass, gross primary production, algal respiration, extracellular DOC release and net production by microphytobenthos in three regions of Chesapeake Bay during summer. .... ..... ........ .... ........... ........ ... .... ... ..... .... ... ........ ... 429 Table A-5. Coverage of submersed aquatic vegetation (SAV) in Chesapeake Bay by region ................ .... ......... .. ..... .... ......... .... ..... ....... .. ....... ..... .. ..................... 429 Table A-6. Biomass, production, consumption and respiration of free-living and parti c le attached bacteria in Chesapeake Bay during summer. ...... ... .... .......... .430 Table A-7. Estimates of biomass (B), production (P), resp iration (C), consumption (C) and and egestion plus excretion (U) for the zooplankton in the upper, mid and lower Bay ...... .... .... .. ........... .. ... .... ....... .................... ... .... .... .43 l Table A-8. Biomass, consumption , respiration and egestion for copepod nauplii and mesozooplankton ...... .. .......... .. ..... ......... ... .. ...... ........ ...... ......... .... ... .. .. 432 2 Table A-9. Geometric mean biovolumes (ml m- ) of the ctenophore Mnemiopsis /eidy i for summer in three regions of Chesapeake Bay ......... ... ....... .. .432 XII Table /\-10. Geometric mea n biovolumes (m l 2111 ? ) of Chrysaora qui11quecirrha for summer in three reg ions of Chesapeake Bay ............................ 433 Table A-11. Active sediment carbon pool size, and rates of sediment bacterial metaboli sm ............................................................... ................ .... ... ... ... 433 Table A-12. Biomass and bioenergetic rates for benthic bacteria , meiofauna, suspension feeders and deposit feeders ............................ ............ .. .... ...... .. ........... 434 Table A- 13. 1:stimates of biomass (B, mgC 111?2), specific growth rate (P/8 , ct?'), gross growth efficiency (GGE=P/C), net growth efficiency (NGE), assimi lation e fficiency (AE), biomass accumu lation (BA), net migrations (immigration-emigrat ion), and removals by recreational fishing (RF) and commercial fi shing (CF) ..... ... ... ..... ...... ... ................ ..... ......... ..... ... ..... ..... . ............ 435 Table A-14. (A) The fraction of al l blue crab habitat located in the 'hcsapeake Bay and its tributaries that is located in each region of the main tern Bay. (B) The total blue crab biomass in each region. (C) The total urface area of each region (includes non blue crab habitat area). (D) The blue crab biomass per unit of bottom area ... ........................................... . 437 Table A-15 . Biomass (MT wet-wt) of adult Bay anchovy in Chesapeake Bay during sum mer of 1993 ................................................................................. 437 Table A-16. Preliminary estimates of biomass (tons wet-wt) of adult Bay anchovy in Chesapeake Bay during summer of 1995-1999 .................................. .438 Table A-17 . Age-structured carbon balance for bay anchovy in Chesapeake Bay during sum mer. ...... ........................... .. .......................... ...... .... .. ............ ........ 439 Table A-18. Diet composition(%) by weight of adult bay anchovy during J . . une 111 mid-Chesapeake Bay ......................................... ....................................... 440 Table A-19. Specific consumption and total consumption for bay anchovy ..... ... .441 Table A-20. Consumption for the combined bay anchovy cohorts with diet a llocated to diet components according to diet composition in Table A-18 .......... .442 Table A-21. Monthly and summer total respiration (mgC m?2) by bay anchovy. Rates were converted from 0 2 consumption using respiratory quotient = 1.0 ............. .... .............................................................................. ...... ... 443 Table A-22. Adjustments to initial bioenergetic estimates for bay anchovy to achieve carbon balance for the summer. ............................................................... 443 X111 LIST OF FIGU RES Fig. 1- 1. Hypothesized functional relati onships between total organic input (p rim ary prod uction ex ternal inputs) and fi sheries production . ... ... ... .. .. ... .... .. .. ... ..... 9 Fi g. 1-2. A conceptual diagram illustra ting mediation of the transfer of organi c carbon from inputs and primary producers to fi sheri es yields ..... .. .. ....... .. .. . I 0 Fig. 2- 1. A map of Che apeake Bay showing the hathymetry, the boundaries o f" the segment of the box model, the embayments that were included in the salt budget, and the fa ll lines for whi ch freshwater inputs data were obtained ...... ... 48 Fig. 2-2. (A) The simplest poss ible box model for an estuary, where Qi is freshwater input , Q is advection out, and E is di spersive exchange at the seaward margin . (8) An illustration of the possible physical exchanges fo r a surface layer box (box "m") in a verti ca ll y structured, branching model such as the Chesapeake Bay box model. .... ....... .... ... ... ... ... .. ..... .. .. .... ...... ......... .. ...... 50 Fig. 2-3 . A schematic diagram of box model for Chesapeake Bay, drawn overl ying the maximum depth profile of the estuary .. .. .. ....... ...... ....... .... .. ......... .. .... 51 Fig. 2-4. An illustration of the definition ofmax(N2), a measure ofpycnocline strength ba ed on the squared Brundt-Vaisala frequency (N2). ..... .. ... ....... ... ...... .. .. .. 53 ig. 2-5. Monthly average down-estuary advection computed using the box model and expressed as a multiple of the total landward freshwater input (R) .. .. ... . 54 Fi g. 2-6 . A compari son of cross-section average current velocity computed by the box model for surface layer and bottom layer in segment 5 with residual current velocity obtained by averaging 1995-1999 current meter data at the mid-Bay mid-channel buoy of the Chesapeake Bay Observing System .......... ..... ... 55 Fig. 2-7. Seasonal and spatial patterns in average upwelling current velocity (cm d-1) in Chesapeake Bay as computed by the box rnodel.. .. .......... ...... ...... ..... ..... 56 Fi g. 2-8. A profile of the Brundt-Vaisala frequency in the region of Chesapeake Bay just to the south of the Potomac River, collected in April 1998 by the Chesapeake Bay LMER (TIES) program using a towed undul ating CTD device ... .. ..... ... .................. ... .... .... .... .. ... ............ ...... .. ...... .... .. .... ... 57 Fig. 2-9. Seasonal and spatial patterns in average non-advective exchange ve locity (cm d-1) in Chesapeake Bay as computed by the box model ......... ... .. .. ... .. 58 XIV Pig. 2- 10. Upper Panel - The relationship between January-May average ' usquchanna River !low and April-September average water column stratifica tion index , max(N2), in the mesohaline Chesapeake Bay. Lower Panel - The relationship between April-September median vertical di ffu ivity (DJ and January-May average river flow .... .... ........ ....... ..... ................. . 59 Fig. 2- 1 I. A veragc up-estuary advection within the mid Bay region related to .J anuary-May average usquehanna River flow (m3 s? 1) ?.??.?.?.?. ... ..???..??..??.??..?...? 60 I? ig. 3- 1. /\ map of Chesapeake Bay showing the locations and identifications of Chesapeake Bay Monitoring Program Water Quality Monitoring stations used for thi s ana lysis ....... ........ ... .......... .. ... ... .... ........................ .... .... .. .. ........ ..... ..... 96 Fig. 3-2 . The time-series of hypoxic vo lume (DO< 1.0 mg 1-J) in Chesapeake Bay in 1993 . The shaded area is the integrated hypox ic-volume-days for 1993, computed by summing the areas of the indicated trapezoids ..... ......... ............ .... .... . 97 Fig 3-3. A schematic diagram of the physical transport of dissolved oxygen into and out of three segments within the mesohaline Chesapeake Bay .... ........... ... 98 Fig 3-4. alculated summertime hypoxic vo lumes for Chesapeake Bay during 1950-2000 as reported in Table 3-2 ...................................... ....................... 99 Fig. 3-5. Predictions and asymmetric confidence bands(? standard error of mean) for July hypoxic volume (at each of three definitions) as a function of time and January-May average Susquehanna River flow based on the non-linear regressions fitted to data in Fig. 3-4 ............................... .............. ... ..... JOO Fig 3-6. Summer dissolved oxygen profiles in Chesapeake Bay during four years with near average January-May Susquehanna river flow ....... ........ .... ....... .. . 10 l Fig. 3-7. The relationship between January-May average Susquehanna River flow and time-integrated hypoxia .......... .............. .. ............. ... .................. .... ...... .. . 103 Fig. 3-8 . The relationship between January-May average Susquehanna River flow, March bottom water temperature, and the date of onset of anoxia in bottom water at station CB4.3C ... .... .................. ... ...... .... ...... ... ...... ....... ............ ... I 04 fig. 3-9. Average vertical diffusive, net horizontal advective, and total disso lved oxygen inputs to the mid Bay region of the Chesapeake Bay during 1950- 1999 ..... ... .. ..... ...... ... .. .. .. ..... ....... .... .......... ....... ....... ..... .. ....... .. ... .. ...... 105 Fig 4- 1. Average seasona l distribution of water column integrated ch lorophyll -a (mg m-2) in Chesapeake Bay (1984-1999) ............... .. ................... 141 xv I? ig. 4-2. A map or Chesapeake Bay indicating regional boundaries and the di stribution of ediment types a computed from the Chesapeake Bay 142 Monitoring Program Benthic Data .............. .... ...... .... .... .................... .. ............ ..... 1-ig. 4-3. The distribution of total chlorophyll-a in the top I cm of 'hesapcake Bay sediment during late spring in I 993-2000 .... ... .......................... I 43 f-=' ig 4-4. Regi onal and overall mean sediment total ch lorophyll-a inventories in late spring related to winter-spring (Jan-Apr) average ? usq uehanna River flow .. .. .... .... ...... ...... .... .... ...................................................... 145 Fi g 4-5 . January-Apri l average water column integrated chi-a in the lower 'hcsapeakc Bay during 1993-2000 related to Jan-Apr average Susquehanna River tl o\v .... ..... .... .......... .. ... ...... .. ... .. ...... ........... ..... ......... ..... .. ........ .................. ... 146 Fig 4-6. The relationship between January-April average water column integrated ch lorophyll-a and sediment chlorophyll -a in each of three reg ion of 'hesa peake Bay ..................... ......................... .......... ............ .. .... .. .... .. 147 Fig. 4-7. Water co lumn integrated ch lorophyll-a concentra ti ons in Chesapeake Bay averaged by region. Verti ca l dotted lines indicate the dates of sediment ch i0 1?o p I1 y 11 -a n1?a pp1? ng stu ct?1 es . ... ............ ............ .... ...... .. ?. ? .. ? ? ? .. ? ? ? ... .. . ? .. .. ... ? ? ? ? ? ... .. 148 F ig. 4-8. Monthly mean and standard errors of particulate carbon (PC) sinking fluxes measured using sediment traps just below the pycnocline in the mid hesapeake Bay during l 984- 1992 ..... .. .. ...... .. ..................................... 149 Fig. 5- 1. The loca tions where cores were co ll ected by the Chesapeake Bay Benthic Monitoring Program in the mainstem Chesapeake Bay fro 1n 1984- 1999 . ..... ... .. ......... .... ........ .... ....... .. ... .... ......... .... .... .. .... ......... .. ..... ........ 205 Fig. 5-2. 'I he partitioning of the mid Chesapeake Bay into regions for computati on of potential filtrati on by suspension feeders using the approach of Gerritsen et al. ( I 994) .. .. .. .... ........... .. ....... ... .......... .. ...... ... ... ...... ... ... ..... ..... ....... 206 Fig. 5-3. Uni va ri ate pl ots relating macrobenthic biomass in Chesapeake Bay to key va riables expected to affect macrobenthic biomass . ................... .. ..... .. 207 Fig. 5-4. A regression-tree predicting macrobenthic biomass in Chesapeake Bay .. .... ........ ... .... ..... ........ ......... ...... ... .. ... .. ... ...................................................... .. 209 Fig. 5-5. The distribution of macrobenthic biomass among observations c lassified into the 27 terminal nodes of the regression tree in Fig. 5-3 ....... ......... .. 210 XVI Fig. 5-6. Observed vs. predicted macrobenthic biomass at sites in mainstem hesapeake Bay.??? ?????? ??????? ??? ???? ???? ??????????? ????? ??? ?????? ?? ?????????? ?? ???? ?????? ??? ????????? ?? ???????? 2 11 Fig. 5-7. A cross-section o f the mainstem Chesapeake Bay indicating the maximum depth profile up to 35 m. Depth and axial distance boundaries are shown for reg ions identified by a regression tree-model predicting 212 macrobenthic biomass from latitude and depth ... .. ...... .. ..... ..... .... ???????? ?????? ?? ?? ?? ??? ??? Fig. 5-8. A comparison of three tati tical models predicting production/biomas ratios for macrobenthic animals ... ... ...... .. .................... ...... ?? ?? 213 rig. 5-9. Mean body s ize of macrobenthos in 9 regions of Chesapeake Bay computed from the C hesapeake Bay Benthic Monitoring Program data .. .... .. 214 Fig. 5- 10. The relationship between annua l phytoplankton production and macrobenthic biomass is estuaries and coastal systems as shown in a review by Herman et al. ( 1999). Three observations have been added renecting macrobenthic biomass and annual phytoplankton production in three regions of Chesapeake Bay ..... .. .............. ....... ..... .... .... ....... .. ...... .. ..... ...... . 215 Fig. 6-1. A map of Che apeake Bay showing the boundaries of the main stem Bay regions for which trophic flow networks were computed .. ...... .. .. . 299 Fig. 6-2. A diagram of the basic model structure for the Chesapeake Bay trophic flovv networks .... .. ............... .. ....... ..... .... .. .......... ...... ....... ... ... ........... .. ... ... . 300 Fig.6-3. stimates of organic matter inputs to the summer food webs in the three regions of hesapeake Bay .. .... ...... ........ ........ .. .. ..... .... ... .... ...... .................... 302 Fig. 6-4. The fraction of total respiration due to algae (including microphytobenthos), bacteria (including benthic bacteria), meiobenthos and macrobenthos, and fish and crabs ....................................... ....... ........................... 303 Fig. 6-5a. The trophic flow networks for the upper and mid Chesapeake Bay projected into a linear chain of canonical trophic levels ........ ... ..... ... .. ........... 304 Fig. 6-5b. Linear chains of canonical flows for the lower Chesapeake Bay food web during sumn1er. .. .... ...... ... ......... ...... .......... .. ...... .... .... ............. .. ..... ........ ...... .... .... 305 Fig. 6-6. An illustration, for the mid Bay, of how the canonical flows in Figs 6-5a,b can be collapsed into a Lindeman Spine ... ........... ...... .. ...... ...... ... ... .... 306 Fig. 6-7. The organic carbon flow to each trophic successive canonical trophic level in the upper, mid and lower Bay food web ..... .. ........ ............ .... ... ..... 307 XVII fig: 6-8. The bottom area present in I m depth increments in the mid Bay region and the the penetration of light at current average li ght attenuation as we ll as at the c timated reduced light attenuation in the restored mid Bay ... .. .. 308 Fig 6-9. Trophic transfer effic iencies for canonical trophic levels computed from the trophi c now networks for the modern mid Bay and the restored Bay .. .... ............................ ..... ... ... ... ..... ......... .... ... .. ........ ........ ..... .......... .. ...... ..... ... 309 f.i g 6- 10. Total contribution coefficients, indica ting the fraction of net production from the indicated producer eventually reaching (a) striped bass or (b) benthic bacteria over all pathways .. ...... .. .. ..... ... .... .... .. .... ........ ... ......... 3 I 0 Fi g. 7- 1. The three general regions of the Chesapeake Bay within which co ll ection of organi sms and organic matter were completed for stable isotope analys is ...... .... ...... ......... .... ..... .......................... ... ............ ...... ....... ........... ... ...... ... . 326 Fig. 7-2. Average (?standard error) trophic level (TL) estimates for the 0-200 ?m plankton size fraction , ctenophores (Mnemiopsis !eidyi) , sea 4 ~ctt_l e ( h,:l'saora quinquecirrha), and bay anchovy (Anchoa milchilii) 327 unng SJ)nng summer a11d c.a ll ... ........................ .. .......... ................ , , Ii ........... . ...... .. XV III Chapter 1: BACKGROUND AND INTRODUCTION Coasla l eulrophication is a global-scale problem that has contributed to loss of es luarine habitat and possibly to declines in important fish populations. Eutrophicalion has been strictly defined as an increase in the rate of supply of organic ma rter (Nixon 1995) and can resull from either external inputs of organic matter, or more lypica lly, from increased primary production. Eutrophication has sometimes been more broadly defined to include both the increase in organic matter supply and the myriad ecological changes that result (Cloem 2001). Here the stricter definition is preferred, while the associated ecological changes are termed "consequences of eut rophicalion" or "eutrophication effects." One of the most alarming of these consequences of coastal eutrophication, and a major cau e of habitat loss, is the growing incidence of hypoxia and anoxia (Diaz and Rosenburg 1995). Hypoxia is defined here in the broadest possible way as a conditi on of depressed dissolved oxygen (DO) concentration sufficient to cause any adverse ecologica l effect. The severety or intensity of hypoxia refers to the degree to Which DO is depressed. Many sessile benthic or epibenthic species are well-adapted 1 to moderately depressed DO levels, such as 2.0 mg r (Diaz and Rosenburg 1995). 1 Hypox 1? a-t o Ie rant be nt ho s can survi?ve D0<2 ?O mg r , but severe hypoxia (i.e. DO