
ABSTRACT

Title of Dissertation: EFFICIENT SIMULATION AND
IMPLEMENTATION OF NEURAL
NETWORKS ON RESOURCE-CONSTRAINED
PLATFORMS

Lei Pan, Doctor of Philosophy, 2023

Dissertation Directed by: Professor Shuvra S. Bhattacharyya
Dept. of Electrical and Computer Engr., and
Institute for Advanced Computer Studies

Neural Networks have been widely adopted in signal processing applications and

systems. Due to the application scenarios enabled by the portability and increasing

computational capabilities associated with embedded processing platforms, such plat-

forms are of increasing interest for deploying signal processing systems with neural net-

works. However, unlike high-performance computing platforms, which are suitable for

computationally-intensive neural-network-equipped systems, embedded platforms are of-

ten characterized by tight resource constraints. These constraints necessitate new types of

optimization and trade-off analysis in the complex design spaces associated with neural

network implementation. Resource constraints also become a major concern in the sim-

ulation of spiking neural networks (SNNs) on commodity-off-the-shelf (COTS) desktop

or laptop computing platforms. Such simulation capability opens up much greater ac-

cess to accurate SNN simulation, which is conventionally carried out on supercomputers

or specialized hardware. This thesis focuses on developing novel models and methods

for efficient simulation and implementation of neural networks on resource-constrained

platforms.

First, we present a novel approach for simulating Spiking Neural Networks (SNNs)

that is based on timed dataflow graphs. Whereas conventional SNN simulators compute

changes in spiking neuron variables at each time step, the proposed simulation approach

focuses on evaluating spike timings. This focus on evaluating when a dataflow actor

(spiking neuron) reaches a new spike contributes to making spike evaluation an event-

driven computation. The resulting event-driven simulation approach avoids unnecessary

computations at time steps that lie between spiking events. This optimization is achieved

while avoiding the large overheads associated with lookup tables that are incurred in ex-

isting event-driven approaches. Our results show identical spiking behavior compared to

simulation using a conventional (time-based) simulator while providing significant im-

provement in execution time. Furthermore, the simulation of the event-driven approach

is achieved on a low cost, COTS computer, whereas most SNN simulators have focused

on supercomputer scale platforms or specialized hardware, as described above.

Secondly, this thesis also investigates the implementation of deep neural networks

(deep convolutional neural networks in particular) on resource-constrained platforms.

This study is carried out in the context of hyperspectral image processing, which has

attracted increasing research interest in recent years, due in part to the high spectral res-

olution of hyperspectral images together with the emergence of deep neural networks

(DNNs) as a promising class of methods for analysis of hyperspectral images. An im-

portant challenge in realizing the full potential of hyperspectral imaging technology is

the problem of deploying image analysis capabilities on resource-constrained platforms,

such as unmanned aerial vehicles (UAVs) and mobile computing platforms. In this the-

sis, we develop a novel approach for designing DNNs for hyperspectral image processing

that are targeted to resource-constrained platforms. Our approach involves optimizing the

design of a single DNN for operation across a variable number of spectral bands. DNNs

that are developed in this way can then be adapted dynamically based on the availabil-

ity of resources and real-time performance constraints. The proposed approach supports

the Dynamic Data Driven Application Systems (DDDAS) paradigm as an integrated part

of the design and training process to enable dynamic-data driven adaptation of the DNN

structure — that is, the set of computational modules and connections that are active when

the DNN operates. We demonstrate the effectiveness of the proposed class of adaptive and

scalable DNNs through experiments using publicly available remote sensing datasets.

Deep Neural Networks (DNNs) are adopted in numerous application areas of signal

and information processing with Convolutional Neural Networks (CNNs) being a partic-

ularly popular class of DNNs. Many machine learning (ML) frameworks have evolved

for design and training of CNN models, and similarly, a wide variety of target platforms,

ranging from mobile and resource-constrained platforms to desktop and more powerful

platforms, are used to deploy CNN-equipped applications. To help designers navigate the

complex design spaces involved in deploying CNN models derived from ML frameworks

on alternative processing platforms, retargetable methods for implementing CNN models

are of increasing interest.

In this thesis, we present a novel software tool, called the Lightweight-dataflow-

based CNN Inference Package (LCIP), for retargetable, optimized CNN inference on dif-

ferent hardware platforms (e.g., x86 and ARM CPUs, and GPUs). In LCIP, source code

for CNN operators (convolution, pooling, etc.) derived from ML frameworks is wrapped

within dataflow actors. The resulting coarse grain dataflow models are then optimized us-

ing the retargetable LCIP runtime engine, which employs higher-level dataflow analysis

and orchestration that is complementary to the intra-operator performance optimizations

provided by the ML framework and the back-end development tools of the target plat-

form. Additionally, LCIP enables heterogeneous and distributed edge inference of CNNs

by offloading part of the CNN to additional devices, such as onboard GPU or network

devices. Our experimental results show that LCIP provides significant improvements in

inference throughput on commonly-used CNN architectures, and the improvement is con-

sistent across desktop and resource-constrained platforms.

Lastly, image classification is an essential challenge for many types of autonomous

and smart systems. With advances in Convolutional Neural Networks (CNNs), the accu-

racy of image classification systems has been dramatically improved. However, due to

the escalating complexity of state-of-the-art CNN solutions, significant challenges arise

in implementing real-time image classification applications on resource-constrained plat-

forms. The framework of elastic neural networks has been proposed to address trade-offs

between classification accuracy and real-time performance by leveraging intermediate

early-exits placed in deep CNNs and allowing systems to switch among multiple candi-

date outputs, while switching off inference layers that are not used by the selected output.

In this thesis, we propose a novel approach for configuring early-exit points when con-

verting a deep CNN into an elastic neural network. The proposed approach is designed to

systematically optimize the quality and diversity of the alternative CNN operating points

that are provided by the derived elastic networks. We demonstrate the utility of the pro-

posed elastic neural network approach on the CIFAR-100 dataset.

EFFICIENT SIMULATION AND IMPLEMENTATION OF NEURAL
NETWORKS ON RESOURCE-CONSTRAINED PLATFORMS

by

Lei Pan

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in fulfillment

of the requirements for the degree of
Doctor of Philosophy

2023

Advisory Committee:
Professor Shuvra S. Bhattacharyya, Chair/Advisor
Professor Manoj Franklin
Professor Behtash Babadi
Professor Patrick McCluskey, Dean's Representative
Dr. Jerry Wu

' Copyright by
Lei Pan

2023

To my parents for their support.

To Chunxing and Sassafras.

ii

Acknowledgements

The completion of this dissertation would not have been possible without the sup-

port of many people.

First and foremost, I would like to express my deepest gratitude to my Ph.D. ad-

visor, Professor Shuvra Bhattacharyya, for his invaluable support and guidance during

my doctoral studies. His exceptional intellect, patience, and unwavering commitment to

excellence in academia and teaching have been a constant source of inspiration for me.

It is a great privilege to have had the opportunity to be mentored by him throughout my

Ph.D. journey.

I also want to thank my committee members. I would like to thank Professor Manoj

Franklin for being my academic advisor during my Master studies at the ECE department.

Additionally, I would like to extend my appreciation to Doctor Jerry Wu for his contin-

uous assistance and guidance during my transition from Master’s to Ph.D. studies, both

academically and professionally. I am also appreciative of Professor Behtash Babadi and

Professor Patrick McCluskey for serving on my committee and their invaluable insights,

suggestions, and comments.

I am grateful to Dr. François Christophe, Professor Tommi Mikkonen, Professor

Zhu Li, Mr. Rijun Liao, Ms. Yan Zhang, Dr. Eung Joo Lee, Mr. Yi-Ting Shen, Mr.

Yi Zhou, Dr. Heikki Huttunen, Dr. Honglei Li, Dr. Jiahao Wu, Dr. Yanzhou Liu, Ms.

Yaesop Lee, Mr. Jing Xie, Dr. Xiaomin Wu, and other colleagues and research project

collaborators for their generous assistance, valuable discussions, and collaboration.

I would also like to express my gratitude to Dr. Kazuo Nakajima, who introduced

iii

me to the world of embedded systems and digital design and offered me a teaching assis-

tantship position to his class. His passion for teaching had a profound influence on my

graduate studies. I am also deeply thankful to Dr. Kofi Boahene, Dr. Christine Gourin,

and Dr. Lauren Bolding from the Johns Hopkins Hospital for their exceptional medi-

cal expertise and surgical skills. Without them, I would not have had the opportunity

to pursue my Ph.D. in the first place. Additionally, I want to extend my thanks to Dr.

Zhongzheng Tian and Mr. Xiangxiang Kong for their friendship and support throughout

my graduate studies.

Last but not least, I would like to give special thanks to my wife, Chunxing Yin,

and my parents for the endless, unconditional love and support.

The research underlying this thesis was supported in part by the U.S. Air Force

O�ce of Scientific Research under the DDIP Program, Army Research O�ce, and Army

Research Laboratory (ARL).

iv

Table of Contents

List of Tables vii

List of Figures ix

List of Abbreviations xi

1 Introduction 1

2 LDSS for Simulating Spiking Neural Networks with Timed Dataflow Graphs 5
2.1 Introduction . 5
2.2 Related Work . 7
2.3 Background . 8

2.3.1 Spiking Neuron Model . 8
2.3.2 Dataflow Modeling . 9

2.4 Modeling and Simulation of SNNs in LDSS 11
2.5 Experiments . 15

2.5.1 Random SNN Generation . 15
2.5.2 Baseline Simulator . 16
2.5.3 Functional Validation . 17
2.5.4 Performance Comparison . 19

2.6 Additional Results . 22
2.7 Summary . 22

3 Dynamic, Data-Driven Hyperspectral Image Classification on Resource-Constrained
Platforms 26
3.1 Introduction . 26
3.2 Related Work . 28
3.3 Approach . 29
3.4 Experiments . 34
3.5 Additional Results . 41

3.5.1 HSI Datasets . 41
3.5.1.1 Indian Pines . 42
3.5.1.2 Pavia University and Center 42
3.5.1.3 Botswana . 45

3.5.2 Experimental Setup . 51
3.5.3 Results . 51

3.6 Summary . 55

4 LCIP: A Retargetable Framework for Optimized CNN Inference 56
4.1 Introduction . 56
4.2 Related Work . 61
4.3 Methods . 66

4.3.1 Architecture . 66

v

4.3.2 Data�ow Modeling . 70
4.3.3 Implementation . 71
4.3.4 Graph-level Optimization . 74

4.3.4.1 Types of Parallelism 76
4.3.4.2 Graph Partitioning Algorithm 79

4.4 Experiment . 83
4.4.1 Distributed and Heterogeneous Inference 86

4.5 Additional Results . 89
4.5.1 Residual Blocks in LCIP . 89
4.5.2 Performance of LCIP on the CIFAR-10 Dataset 90
4.5.3 CNN Pro�ling Results and Performance 93
4.5.4 Image Super Resolution . 97

4.5.4.1 Introduction . 97
4.5.4.2 Related Work . 98
4.5.4.3 Results on Image Super Resolution with SRResNet . . 100

4.6 Conclusion . 104

5 Multi-Objective Design Optimization for Image Classi�cation Using Elastic Neu-
ral Networks 105
5.1 Introduction . 106
5.2 Approach . 109
5.3 Experiment . 114

5.3.1 Dataset . 114
5.3.2 Preprocessing and Training . 115
5.3.3 Evaluation Metrics . 115
5.3.4 Pareto Points and Diversity . 120

5.4 Additional Results . 124
5.5 Conclusion . 126

6 Conclusions and Future Work 129
6.1 Conclusions . 129
6.2 Future Work . 130

6.2.1 Simulation of Spiking Neural Networks 130
6.2.2 Real-Time Hyperspectral Image Classi�cation 132
6.2.3 Multi-Objective Design Optimization for DNN Inference 133

Bibliography 135

vi

List of Tables

2.1 Execution time comparison between the baseline simulator and LDSS for
di� erent network sizes. 20

3.1 Model size and accuracy. 38
3.2 Processing throughput and peak memory consumption. 38
3.3 Pixel distribution for Indian Pines dataset with respect to each class. . . . 42
3.4 Pixel distribution for Pavia University dataset with respect to each class. . 45
3.5 Pixel distribution for Pavia Center dataset with respect to each class. . . . 45
3.6 Pixel distribution for Botswana dataset with respect to each class. 50
3.7 Model size and accuracy on the Pavia Center and Botswana hyperspectral

image datasets. 52
3.8 Processing throughput on the Pavia Center and Botswana hyperspectral

image datasets. 52
3.9 Peak memory consumption on the Pavia Center and Botswana hyperspec-

tral image datasets. 52

4.1 Comparison of LCIP along with several previously-developed neural net-
work inference systems. 65

4.2 Summary of di� erent types of data�ow parallelism with examples. 77
4.3 Summary of speci�cations for platforms used in the experiments. 83
4.4 Results on peak memory consumption (megabytes). 85
4.5 VGG-11 pro�ling results for static FLOP count and latency for convolu-

tion actors. 90
4.6 VGG-16 pro�ling results for static FLOP count and latency for convolu-

tion actors. 90
4.7 ResNet-34 pro�ling results for static FLOP count and latency for convo-

lution actors. 92
4.8 SRResNet pro�ling results for static FLOPs count and latency for each

convolution actors measured on X86 CPU, Android mobile phone, and
Raspberry Pi . 101

4.9 Results of SRResNet on peak memory consumption (megabytes) from
our experimentation with LCIP on the three targeted devices. 103

5.1 The FLOPs, accuracy, and error rate of Elastic-DenseNet-121 with the
CIFAR-100 dataset. 116

5.2 The FLOPs, accuracy, and error rate of Elastic-ResNet-50 with the CIFAR-
100 dataset. 119

5.3 The FLOPs, accuracy, and error rate of Elastic-E� cientNet-B0 with the
CIFAR-100 dataset. 120

5.4 Early exit subset selections with di� erent slection subset sizek for Eelastic-
DenseNet-121. 123

5.5 Early exit subset selections with di� erent selection subset sizek for Elastic-
E� cientNet-B0. 123

vii

5.6 Early exit subset selections with di� erent selection subset sizek for Elastic-
ResNet-50. 124

5.7 CPU-targeted system con�gurations and their associated performance met-
rics. 126

5.8 GPU-targeted system con�gurations and their associated performance met-
rics. 126

5.9 Selected CPU-targeted con�gurations with the proposed algorithm for the
face identi�cation model. 127

5.10 Selected GPU-targeted con�gurations with the proposed algorithm for the
face identi�cation model . 127

viii

List of Figures

2.1 An example of an SNN data�ow graph in LDSS. 13
2.2 Execution time for variable network sizeQ. 18
2.3 Performance comparison for di� erent amounts of simulated time. 21
2.4 Neuron-spiking raster plot resulting from the baseline simulatorQ = 1000. 23
2.5 Neuron-spiking raster plot resulting from LDSS withQ = 1000. 24

3.1 An illustration of the CNN architecture for VBIC. 31
3.2 Model size for VBIC under di� erent number ofnc with Pavia University

dataset. 36
3.3 Model size for VBIC under di� erent number ofnc with Indian Pines dataset. 36
3.4 Overall accuracy comparison for VBIC under di� erent number ofnc with

Pavia University dataset. 37
3.5 Overall accuracy comparison for VBIC under di� erent number ofnc with

Indian Pines dataset. 37
3.6 Throughput comparison for VBIC under di� erent number ofnc with Pavia

University dataset. 39
3.7 Throughput comparison for VBIC under di� erent number ofnc with In-

dian Pines dataset. 39
3.8 Peak memory usage comparison for VBIC under di� erent number ofnc

with Pavia University dataset. 40
3.9 Peak memory usage comparison for VBIC under di� erent number ofnc

with Indian Pines dataset. 40
3.10 An illustration of the Indian Pines dataset in RGB representation. 43
3.11 Ground truth information of the 16 classes in the Indian Pines dataset. . . 44
3.12 An illustration of the Pavia University dataset in RGB representation. . . 46
3.13 Ground truth information of the 9 classes in the Pavia University dataset. . 47
3.14 An illustration of the Pavia Center dataset in RGB representation. 48
3.15 Ground truth information of the 9 classes in the Pavia Center dataset. . . . 49
3.16 An illustration of the Botswana dataset in RGB representation. 50
3.17 Ground truth information of the 14 classes in the Botswana dataset. . . . 50
3.18 Throughput comparison for VBIC under di� erent values ofnc with the

Pavia Center dataset. 53
3.19 Throughput comparison for VBIC under di� erent values ofnc with the

Botswana dataset. 53
3.20 Peak memory usage comparison for VBIC under di� erent values ofnc

with the Pavia Center dataset. 54
3.21 Peak memory usage comparison for VBIC under di� erent values ofnc

with the Botswana dataset. 54

4.1 Overview of LCIP. 58
4.2 A system diagram that illustrates key components of LCIP, and the work-

�ow involved in deploying a CNN with LCIP. 68
4.3 An example of the VGG-11 network modeled as a data�ow graph in LCIP. 71

ix

4.4 Speedup achieved by VGG-11, MobileNetV2, and ResNet-34 on x86
desktop . 84

4.5 Speedup achieved by VGG-11, MobileNetV2, and ResNet-34 on Rasp-
berry Pi . 84

4.6 Speedup achieved by VGG-11, MobileNetV2, and ResNet-34 on Android
mobile phone . 85

4.7 Performance comparison with relative speedup compared to the baseline
with four settings: a single Raspberry Pi in isolation (the baseline), the
Android phone's GPU in isolation, distributed inference with the Rasp-
berry Pi and Android phone's GPU using graph-level data parallelism,
and distributed inference with the Raspberry Pi and Android phone's
GPU using pipeline parallelism. The CNN used is a TVM-optimized
MobileNetV2 network. 88

4.8 An LCIP-based data�ow model of a residual block for ResNet. 89
4.9 Classi�cation scores on selected output images from the VGG-16 network

modeled and implemented using LCIP. 91
4.10 Performance comparison using an X86-CPU-based desktop platform to

execute inference by the three evaluated networks: VGG-11, VGG-16,
and ResNet-34. 94

4.11 Performance comparison using an Android mobile phone platform to ex-
ecute inference by the three evaluated networks: VGG-11, VGG-16, and
ResNet-34. 95

4.12 Performance comparison using a Raspberry Pi platform to execute infer-
ence by the three evaluated networks: VGG-11, VGG-16, and ResNet-34. 96

4.13 Original images from the CIFAR-10 dataset and images with resolution
enhanced by SRResNet with their perceptual hash values. 98

4.14 Network architecture of SRResNet. 99
4.15 Residual block for SRResNet modeled in LCIP. 99
4.16 Performance comparison of SRResNet on X86 CPU, Raspberry Pi, and

Android mobile phone. 102

5.1 The architecture of the proposed method. 109
5.2 Pareto front and dominated design points of the Elastic-DenseNet-121

network with the CIFAR-100 dataset. 121
5.3 Pareto front and dominated design points of the Elastic-ResNet-50 net-

work with the CIFAR-100 dataset. 121
5.4 Pareto front and dominated design points of the Elastic-E� cientNet-B0

network with the CIFAR-100 dataset. 122

x

List of Abbreviations

AdEx Adaptive Exponential
AI Arti�cial Intelligence
API Application Programming Interface
ARM Advanced RISC Machine
BN Batch Normalization
CFDF Core Functional Data Flow
CIFAR Canadian Institute for Advanced Research
CNN Convolutional Neural Network
COTS Commodity-O� -The-Shelf
CPU Central Processing Unit
CUDA Compute Uni�ed Device Architecture
DCI Diversity Comparison Indicator
DCT Discrete Cosine Transform
DCNN Deep Convolutional Neural Network
DDDAS Dynamic Data Driven Application Systems
DNN Deep Neural Network
EDSR Enhanced Deep Super-Resolution Networks
FC Fully Connected
FEA Finite Element Analysis
FIFO First-In-First-Out
FLOP Floating Point Operation
FPGA Field-Programmable Gate Array
GB Gigabyte
GDT Global Data�ow Time
GFLOP Giga Floating Point Operation
GPU Graphics Processing Unit
HIC Hyperspectral Image Classi�cation
HDL Hardware Description Language
HSI Hyperspectral Image
HSIP Hyperspectral Image Processing
Hz Hertz
IAR Incremental Actor Re-assignment
IBM International Business Machines
ILSVRC ImageNet Large Scale Visual Recognition Challenge
kHz Kilo-Hertz
LCIP Lightweight-data�ow-based CNN Inference Package

xi

LD Lightweight Data�ow
LDSS Lightweight Data�ow Spiking neural network Simulator
LIDE Lightweight Data�ow Environment
LLCL Low-Level Compute Libraries
LORSAL Logistic Regression via Variable Splitting and Augmented Lagrangian
ML Machine Learning
MPPA Massively Parallel Processor Array
MPSoC Multiprocessor systems-on-chip
ms Milliseconds
NASA The National Aeronautics and Space Administration
nm Nanometer
pA Pico-Amperes
PCA Principle Component Analysis
PCNN Pulse-Coupled Neural Networks
PSNR Peak Signal-to-Noise Ratio
QNNPACK Quantized Neural Networks PACKage
RAM Random Access Memory
ReLu Recti�ed Linear Unit
S.D. Standard Deviation
SDF SYnchronous Data�ow
SNN Spiking Neural Network
SRCNN Super-Resolution Convolutional Neural Network
SVM Support Vector Machine
TPU Tensor Processing Unit
TVM Tensor Virtual Machine
UAV Unmanned Aerial Vehicle
VBIC Variable Band Image Classi�cation
VDSR Very Deep Super Resolution
VGG Visual Geometry Group
� Gamma
� LIDE LIDE with extensions for timed data�ow modeling

 Omega

xii

Chapter 1

Introduction

Neural networks have been an important topic studied by many researchers as an

alternative to other machine learning methods, largely due to the superior performance

introduced by neural-network-based methods in many important application areas, such

as application areas in computer vision. As neural networks become more widely adopted

in many signal and information processing systems, the complexity of state-of-the-art

neural network models also grows [1]. The increased complexity of neural networks has

helped to drive advances in increasingly powerful processor technology, such as multicore

processors, graphics processing units (GPUs), and tensor processing units (TPUs) [2],

which can be used for more e� cient execution of neural networks.

While much of the advances in processor technology for neural network imple-

mentation have been oriented towards high performance computer systems, there is also

signi�cant interest in processors that help to deploy neural network models at the net-

work edge, where platforms typically have strict constraints in terms of processing re-

sources, memory requirements and energy consumption. Compared to high-performance

computing platforms, platforms for edge computing are more energy e� cient and com-

pact in size. The platforms are typically equipped with multicore CPUs and GPUs that

are signi�cantly smaller in scale and less powerful in terms of computational capability

— compared to high-performance platforms — and much less demanding in terms of

1

power consumption. Edge-based platforms may also include hardware accelerators that

are streamlined for resource-constrained machine learning.

E� cient operation under strict resource constraints is also relevant in simulation of

neural networks — in particular, for simulation of spiking neural networks (SNNs) on

commodity-o� -the-shelf (COTS) desktop or laptop computing platforms. Conventional

SNN simulators are targeted to supercomputers, very large scale computing servers, or

expensive hardware accelerators. The ability to simulate SNNs on COTS computing plat-

forms opens up much greater access to accurate SNN simulation, and has the potential to

increase the variety of ways in which SNNs are studied and applied in neuroscience and

neuromorphic computing.

Deploying neural networks on resource-constrained platforms, including both sim-

ulation and implementation of neural networks, involves complex design spaces associ-

ated with the mapping of the networks onto the platforms and the con�guration of the

networks. These design spaces must be navigated e� ectively to achieve high-quality

trade-o� s among key design objectives, including energy e� ciency, execution time, and

inference or simulation accuracy [3, 4].

In this thesis, we present four research contributions that pertain to the e� cient sim-

ulation and implementation of neural networks on resource-constrained platforms: (1) a

new approach to simulating spiking neural networks (SNNs) with timed data�ow graphs,

including the development of a novel simulation tool called LDSS (Lightweight Data�ow

SNN Simulator); (2) a method for dynamic, data-driven hyperspectral image classi�ca-

tion on resource-constrained platforms; (3) LCIP, the Lightweight-data�ow-based CNN

(convolutional neural network) Inference Package for retargetable, optimized CNN in-

2

ference on di� erent hardware platforms; and (4) a novel approach for con�guring and

selecting early-exit points in a deep CNN modeled as an elastic neural network.

The �rst contribution focuses on developing a new simulation methodology for

SNNs that is based on timed data�ow modeling. The new methodology enables e� -

cient event-driven SNN simulation, and facilitates the simulation of complex SNNs on

commercial-o� -the-shelf (COTS) computing platforms.

The second contribution focuses on the e� cient implementation of neural networks

on resource-constrained platforms — in particular, on deploying neural networks on such

platforms with adaptive runtime performance and topology. Resource-constrained, adap-

tive implementation is studied in the context of hyperspectral image classi�cation, which

is an area that has attracted great interest in recent years for new neural-network-based

methods. The proposed system design for hyperspectral image classi�cation allows for

adaptation across di� erent system throughput and accuracy targets, while being amenable

to deployment on resource-constrained processing devices.

The third contribution centers around LCIP, which provides an integrated approach

to resourceability, e� ciency, retargetability, and con�gurability in edge-based CNN in-

ference. LCIP helps to bridge the gap between data�ow modeling and machine learning

(ML) inference frameworks, allowing �exible high-level graph scheduling on resource-

constrained devices. LCIP adapts data�ow methods to di� erent platforms and libraries

based on designer speci�cations.

The fourth contribution helps system designers to explore multi-objective design

spaces for deep CNN (DCNN) inference optimization. By equipping DCNNs with mul-

tiple exit points, elastic neural networks allow for alternative trade-o� s among multiple

3

performance metrics. In this contribution, we build upon prior work on elastic neural net-

works. The key novelty in our contribution lies in systematically incorporating concepts

of multi-objective optimization and Pareto diversity into system design for elastic neural

networks.

The remainder of this thesis is organized as follows. Chapter 2 introduces the pro-

posed LDSS software framework for e� cient simulation of SNNs. Chapter 3 introduces

our dynamic, data-driven hyperspectral image classi�cation system targeted to resource-

constrained platforms. Chapter 4 presents the the Lightweight-data�ow-based CNN Infer-

ence Package (LCIP), and Chapter 5 presents our multi-objective framework for selecting

early exit points in elastic neural network structures for DCNNs. The contributions of the

thesis are summarized and directions for future work are discussed in Chapter 6.

4

Chapter 2

LDSS for Simulating Spiking Neural Networks with Timed Data�ow

Graphs

In this chapter, we focus on introducing LDSS, the Lightweight Data�ow SNN

Simulator, a simulator designed speci�cally for e� cient Spiking Neural Network (SNN)

simulation. We begin by providing background information on SNN simulation and dis-

cussing two commonly used simulation approaches: time-driven and event-driven. We

then delve into the design and development of LDSS, with a particular emphasis on its

event-driven SNN simulation capabilities. Through a series of experiments, we demon-

strate the e� ectiveness and e� ciency of LDSS compared to a suitably-formulated time-

driven baseline.

Material in this chapter was published in partial, preliminary form in [5].

2.1 Introduction

The simulation of biological computation with Spiking Neural Networks (SNNs)

has recently gotten attention for saving energy during computation [6, 7]. SNNs are often

used in computational neuroscience for modeling biological behavior comparable to in-

vitro or in-vivo experiments. In recent years, SNNs have also been applied to circuits and

systems for machine learning.

In this chapter, we propose a novel event-driven approach for simulating SNNs, and

5

we present a prototype simulator called LDSS (Lightweight Data�ow SNN Simulator),

which demonstrates this approach. LDSS is developed using the Lightweight Data�ow

Environment (LIDE) [8], which is a tool for data�ow-based design of signal processing

systems.

The simulation approach used in LDSS involves a �nite-element evaluation to pre-

dict the next time a given neuron �res a spike. This type of prediction is used to make the

computation of spikings in the network event-driven instead of time-driven. Such event-

driven computation is enabled by the design of SNNs as data�ow graphs, where each

actor (vertex) of a graph represents a spiking neuron and encapsulates computation that

predicts the next �ring time of the neuron given its current state. In addition to improv-

ing simulation speed through event-driven simulation, the data�ow-based formulation of

the proposed simulation approach facilitates retargetability across diverse hardware plat-

forms, such as CPU, FPGA, or GPU platforms, or their hybrid combinations.

The rest of this chapter is organized as follows. After a brief state of the art on SNN

simulation and simulators making usage of data�ow engines (Section 2.2), we present

the background of neuron models and data�ow framework used for the realization of

our simulator in Section 2.3. Implementation details of our simulator are described in

Section 2.4 followed by a comparison with a sequential version of the same simulation

written in C (Section 2.5). Section 2.7 provides our initial conclusion on developing a

SNN simulator with a data�ow approach as well as our plan for future directions.

6

2.2 Related Work

Various SNN simulators exist (e.g., see NEURON [9], NEST [10], Brian [11, 12]).

Each simulator has its own speci�city and purpose, but generally, they have evolved into

providing an abstraction layer for computational neuroscientists to focus mainly on the

speci�cations of their simulations, may it be at the molecular level or for the description

of a large population of highly interconnected neurons.

SNN simulators are developed following two di� erent approaches: time-driven or

event-driven simulation, with time-driven approaches being more common. The prefer-

ence for time-driven approaches stems in part from the slower speed of existing event-

driven SNN simulators. This slow speed results from extensive use in existing event-

driven simulators of pre-compiled lookup tables [13], where the dimensionality of the

tables and the frequency of their access become bottlenecks. As a result, time-driven ap-

proaches outperform conventional event-driven approaches for complex networks [13].

The main contribution of this chapter is to introduce a new approach to event-driven

SNN simulation that is based on data�ow modeling, and event-prediction functions that

are encapsulated within data�ow actors. The proposed approach is shown to outperform

time-driven simulation, with the performance gap increasing as the size of the network

increases. Rather than seeking to introduce a new tool in the large space of existing

SNN tools, our primary contribution is to introduce new insight into the trade-o� between

event- and time-driven simulation, which may in turn contribute to the improvement of

existing tools or development of new ones.

There are only few prior developments to our best knowledge that focus on design-

7

ing and simulating SNNs with data�ow techniques. The NeuroFlow framework, which

uses a proprietary data�ow engine as the hardware platform, is a noticeable example

following this direction [14]. In contrast to NeuroFlow, our work applies data�ow as

a programming model while imposing no constraints on the hardware platform. This

facilitates retargetability to diverse platforms (e.g., single-core, multicore, or FPGA plat-

forms), as described in Section 2.1. Moreover, the approach we propose in this chapter

is entirely based on event-driven computation, whereas the NeuroFlow design computes

internal parameter variations of each neuron of the network using a time-driven approach.

2.3 Background

2.3.1 Spiking Neuron Model

For the development of LDSS, we apply Izhikevich's simple model of spiking neu-

rons [15] to simulate neurons in networks that are represented in LDSS. Izhikevich's

model is selected as a �rst model for incorporation into LDSS because the model com-

bines biological realism with computational simplicity. However, the main ideas of LDSS

can be applied to any model of choice, such as AdEx [16] or Leaky Integrate-and-Fire.

A synaptic connection is often modeled as a weightwi j randomly generated between

two neuronsi and j with the connection going from neuroni (pre-synaptic) to neuronj

(post-synaptic). When the pre-synaptic neuron is excitatory, the weightwi j is normalized

to the range [0;0:5]. Similarly, if the pre-synaptic neuron is inhibitory,wi j 2 [� 1; 0].

A network composed of such random constant synaptic weights for all its synap-

tic connections de�nes the class of pulse-coupled neural networks (PCNNs). In PCNNs,

8

synaptic connections are �xed at the initialization of the network and weights remain

constant throughout the simulation. The simulation experiments presented in this chap-

ter are based on this type of synaptic connectivity in order to present the validity of our

data�ow-based and event-driven simulation approach with comparison to a reference se-

quential, time-driven C-language version.

Other models of synaptic connections exhibiting short-term [17] and long-term

plasticity [18] exist in the literature. These are not within the scope of this chapter and

will be subjects of future work in the development of LDSS.

2.3.2 Data�ow Modeling

Data�ow-based design models of signal and information processing systems are di-

rected graph models in which graph vertices, called actors, represent computational mod-

ules, and each edge represents the communication of data from the output of one module

to the input of another. A recent study illustrating the utility of data�ow techniques in

the context of AI circuits and systems is presented by Li et al. [19]. In LDSS, each actor

corresponds to an individual neuron, and encapsulates the computations that are used to

simulate the behavior of the neuron. A data�ow edgee = (u; v) in LDSS correspond

to synaptic connections between pairs of neurons with the source and sink vertices ofe

correspond to the pre-synaptic� (u) and post-synaptic� (v) neurons respectively. Here,

for a given LDSS actorx, we use� (x) to denote the neuron that is represented byx. For

detailed background on data�ow-based modeling of signal and information processing

systems, we refer the reader to [20, 21].

9

For implementation of data�ow graphs in LDSS, we employ the Lightweight

Data�ow Environment (LIDE) [8]. LIDE includes application programming interfaces

(APIs) for developing actors and edges in signal processing data�ow graphs. The APIs

are not language-speci�c; instead, they are de�ned in terms of fundamental data�ow prin-

ciples. In LDSS, we employ LIDE-C, which is based on C-language implementations of

the LIDE APIs, and� LIDE, which extends LIDE-C with capabilities for timed simula-

tion [22].

� LIDE [22] is a time-extended version of LIDE. While pure data�ow models of

computation are untimed models with no built-in concept of time or time stamps,� LIDE

incorporates the notion of a global time clock, and associates functions or constant values

for estimating the time that is elapsed (within the “modeling universe” that is being simu-

lated) when actors execute. Thus,� LIDE provides a tool for implementing and simulating

data�ow-based system models in which the progression of time is an important aspect.

The integrated support for time in� LIDE is important for simulating SNNs because of,

for example, the dependence on time in Eq. 2.1 and Eq. 2.2 [15].

8
>>>>>><
>>>>>>:

dv
dt

= 0:04v2 + 5v + 140� u + I

du
dt

= a(bv� u)

(2.1)

if v � vpeak then,

8
>>>>>><
>>>>>>:

v = c

u = u + d

(2.2)

Here, the membrane potentialv represents the voltage across the neuronal mem-

brane, while the membrane recovery variableu interacts withv to model sub-threshold

10

dynamics. The membrane time constanta controls the decay rate of the membrane po-

tential, determining how quickly the neuron returns to its resting potential after spiking.

The membrane sensitivityb in�uences the responsiveness of the membrane potential to

input currents. When a spike occurs, the membrane potential and recovery variable are

reset to the values de�ned by the membrane reset potentialc and recovery variable reset

d, respectively. Lastly, the input currentI represents the total input current received by

the neuron, incorporating synaptic inputs, external inputs, and intrinsic currents.

2.4 Modeling and Simulation of SNNs in LDSS

In LDSS, each data�ow actor corresponds to an individual neuron, and encapsulates

the computations that are used to simulate the behavior of the neuron. The actor models

of neurons are based on Izhikevich's model, as implied in Section 2.3.1. Data�ow edges

in LDSS correspond to synaptic connections between pairs of neurons. Given an edgeein

an LDSS data�ow graph, the source and sink vertices ofecorrespond to the pre-synaptic

and post-synaptic neurons associated with the connection modeled bye.

During the simulation of a system model in� LIDE, the current value of the global

time clock of� LIDE is referred to as the global data�ow time (GDT). In co-simulation

contexts where� LIDE is interfaced with one or more cooperating simulators, the GDT is

easily distinguished from any clocks that are associated with those simulators. In LDSS,

however, no cosimulation is involved since� LIDE is su� cient for implementing all of

the required simulation functionality.

LDSS can be viewed as a package of SNN-speci�c actors and utilities that we have

11

developed for simulating and experimenting with SNNs in� LIDE. The utilities in LDSS

include functions for automatically generating SNN models of arbitrary size using ran-

domization techniques, and for reading SNN models from input �les. This latter feature

is useful to experiment with models that are generated by other SNN experimentation

tools. LDSS can readily be extended with libraries that support other models for spiking

neurons (beyond Izhikevich's model [15]).

The data�ow graph of an SNN model in LDSS generally consists of actors that rep-

resent both excitatory neurons and inhibitory neurons. Excitatory and inhibitory neurons

in LDSS are modeled as instances of two di� erent actor types. In the SNN models studied

in our experiments, the ratio of excitatory neurons to inhibitory neurons is 4:1.

Fig. 2.1 illustrates an example of a simple data�ow graph representation of an SNN

in LDSS. This example involves a network of �ve neurons, with 4 of them (E1; E2; E3; E4)

being excitatory neurons and one of them (I1) being an inhibitory neuron. The edges in

Fig. 2.1 model synaptic connections between neurons. In particular, a data�ow edge

(X;Y) in LDSS represents a synaptic connection between� (X) and� (Y), where� (X) is

the pre-synaptic neuron and� (Y) is the post-synaptic neuron. Here, for a given LDSS

actorX, we use� (X) to denote the neuron that is represented byX. The numbers next to

the edges shown in Fig. 2.1 show the weights of the corresponding synaptic connections

(see Section 2.3.1).

Suppose thatG is a data�ow graph that models an SNN in LDSS, and thatN is an

actor inG. The actorN has an associated execution time estimation function, which is

denoted by� N, and computes the predicted time of the next spike that is to be generated

by � (N) based on the current state of� (N). If no spiking event is predicted based on the

12

Figure 2.1: An example of an SNN data�ow graph in LDSS.

13

current neuron state, then� N returns1 . This estimation function performs a �nite element

simulation based on Izhikevich's model whenever the actorN executes. The execution

of N in turn is driven by the arrival of spikes at the inputs ofN that have been generated

from predecessor neurons. More speci�cally, the arrival of a spike at timet at any input

of N initiates an execution of� N, which in turn may produce a predicted spiking time

pN(t) > t. The magnitude of current associated with a spike is represented as a data�ow

token. In this context, the term “token” is the generic term for a quantum of information

that is communicated across a data�ow edge.

Each synapse is modeled with a �xed propagation delay� , which is the same for all

synapses. Thus, if a neuron� (A) generates a spike on data�ow edgee at timet1, then the

spike will arrive at the input ofB at timet2 = t1 + � , whereB is the sink actor ofe. LDSS

can readily be extended with more complex propagation delay models, which represents

a useful direction for future work.

At any given valueta of simulated time, a neuron� (N) can have at most one pre-

dicted future spike that is pending to be processed by LDSS at some timetb > ta, where

tb has been determined by� N. Such a predicted spike is maintained as a pending event

Yb within the event list of LDSS. However, if� (N) already has such a predicted future

spike that is pending, and a new spike arrives on an input ofN at some timetc within

the interval [ta; tb), then the previously scheduled spiking event is de-scheduled (removed

from the simulator event list), and (following the rules described above for initiating an

execution ofN), � N is invoked to determine whether or not a new spiking event is pre-

dicted, and to compute a new predicted spiking timepN(tc) if such an event is predicted.

If the invocation of� N results in a new predicted spiking time, then the new spiking event

14

is scheduled to occur atpN(tc).

More speci�cally, if the incoming spike is from an excitatory neuron, then a new

spiking event will be predicted, and based on properties of the underlying spiking neuron

model, we will havepN(tc) < tb. On the other hand, if the incoming spike is from an

inhibitory neuron, then a new spike may or may not be predicted, depending on whether

the neuron's membrane potential is lowered belowvpeak. If a new spike is predicted, then

the predicted time will satisfypN(tc) > tb.

Neuron� (N) generates a spike when the membrane potentialv� (N) reaches its peak

valuevpeak, as de�ned by Izhikevich's model [15]. The timing of this physical behavior is

what is modeled by� N. When� (N) generates a spike at some timet, the actorN produces

a token that represents the spike on all of them output edges ofN in the data�ow graph.

2.5 Experiments

We evaluated LDSS by using it to model and simulate randomly-generated SNNs

with varying numbers of neuronsQ. Speci�cally, we experimented with 7 randomly-

generated SNNs� 1; � 2; : : : ;� 7 containingQ = 1;000, 5;000, 10;000, 15;000, 20;000,

25;000, 30;000 neurons, respectively. For each of these SNNs, 80% of the neurons were

randomly selected to be excitatory neurons, and the remaining 20% were inhibitory.

2.5.1 Random SNN Generation

We applied a random SNN generation approach proposed by Izhikevich [15]. In

this approach, the edges and edge weights are derived from a randomly-generatedQ � Q

15

matrix W of �oating point values. Each neuron� has a unique indexI(�) 2 f1; 2; : : : ;Qg,

which is used to index the rows and columns ofW. Each network� i is simulated 3 times

using the baseline simulator (see Section 2.5.2), and simulated 3 times using LDSS with

the exact same� i.

The diagonal elements ofW are all set to 0. Each o� -diagonal elementWi; j (i 6= j)

is derived from a uniform distribution within a �nite interval [w1;w2]. The endpoints of

this interval di� er depending on whetherni is excitatory or inhibitory, whereni represents

the neuron associated with neuron indexi (that is,i = I (ni)). If ni is inhibitory, then we

usew1 = � 1;w2 = 0, otherwise, we usew1 = 0;w2 = 0:5. For each ordered pair (ni; nj)

of distinct neurons, we interpretni to be a predecessor ofnj if abs(Wi; j) � 0:1, where abs

represents the absolute value function. Furthermore, ifni is a predecessor ofnj, then the

weight of the corresponding synapse is set toWi; j.

2.5.2 Baseline Simulator

As mentioned in Section 2.3, we evaluate LDSS by comparing its simulation output

and execution time performance with a sequential, C-language implementation of SNN

simulation based on Izhikevich's model [15], which is the same model used for LDSS,

as described in Section 2.4. We refer to this sequential simulator implementation in the

remainder of this chapter as thebaseline simulator. As its name implies, we developed

the baseline simulator to provide a reference point — using the same implementation

language and spiking neuron model — for evaluating the data�ow-based and event-driven

SNN simulation methods presented in this chapter.

16

The baseline simulator uses a conventional, time-driven simulator design. It does

not employ data�ow concepts or event-driven simulation techniques, which are key fea-

tures of LDSS. Our simulation experiments were designed carefully to use the same un-

derlying neuron and synapse models so that the data�ow- and event-driven simulation

approach of LDSS could be functionally validated, and its performance e� ects isolated.

This experimental approach supports the primary aim of this chapter: to demonstrate the

utility of the proposed new approach to integrating data�ow modeling and event-driven

simulation for SNNs.

2.5.3 Functional Validation

To test the validity of simulation results produced by LDSS, we simulate each of the

7 randomly-generated,Q-neuron SNNs� 1; � 2; : : : ;� 7 using both the baseline simulator

and LDSS. We simulate each network for 1;000 milliseconds (ms) of simulated time. The

noise component of each neuron's background current is simulated as thalamic input,

similarly as in [15]. The noise component is randomly updated at each simulated time

step in the baseline simulator. In LDSS, the noise component values can be generated

randomly or imported from a �le. The latter option is useful when comparing output

results with another simulator. For functional validation of LDSS, we import the noise

components for the background currents of all neurons from a �le that is exported from

the baseline simulator to contain all of the randomly-generated noise component values.

This allows both simulators to operate with exactly the same noise signals. For excitatory

neurons, the background current noise component is uniformly distributed in the interval

17

Figure 2.2: Execution time for variable network sizeQ.

[0,5] pico-Amperes (pA), and for inhibitory neurons, it is uniformly distributed in [0,4]

pA.

We compare the simulated results in terms of the average spiking frequency over

all of the neurons in a given network. In each comparison, we use the same network

� i for both the baseline simulator and LDSS. The results of these experiments show no

discrepancy between the two simulators: for� 1; � 2; : : : ;� n, both simulators report the

same average spiking frequencies — (4:91� 10� 3; 5:22� 10� 2; 0:12;0:14;0:17;0:21;0:22),

respectively. The units of the spiking frequency values reported here are kHz — e.g., a

value of 0:12 corresponds to 120 Hz.

18

2.5.4 Performance Comparison

We also compared the execution time between LDSS and the baseline simulator,

again using the same set of 7 randomly-generated SNNs. All simulations were executed

on the same computer, which was equipped with an Intel Core i5-8259U CPU and 16GB

of RAM. The simulations were each carried out through 1 second of simulated time.

The execution time results are shown in Fig. 2.2. The horizontal axis corresponds to

the network sizeQ, and the vertical axis corresponds to the measured execution time in

seconds. The results illustrate that LDSS consistently outperforms the baseline simulator,

with the amount of speedup increasing with the network size.

Detailed statistics associated with the results in Fig. 2.2 are shown in Table 2.1.

Each row corresponds to one of the two simulators (Baseline or LDSS) applied to an SNN

model with a given network size (Q). The values for the mean, minimum, maximum and

standard deviation (S.D.) are all reported in seconds. The speed improvement over the 7

test networks ranges from 44.45% to 68.59% with LDSS performing increasingly better

compared to the baseline asQ increases.

Moreover, the use of data�ow techniques in the design of LDSS facilitates acceler-

ation using multicore processors or other types of parallel computing devices. Investigat-

ing additional performance improvements provided through such acceleration is a useful

direction for future work.

We also compared the execution time between the baseline simulator and LDSS

for a �xed network size and di� erent amounts of simulated time. For this experiment,

the network size was �xed atQ = 1;000, and the simulated time was varied across the

19

Table 2.1: Execution time comparison between the baseline simulator and LDSS for dif-
ferent network sizes.

Simulator, Netw. Size Mean Minimum Maximum S.D.
Baseline,Q = 1;000 6.13 6.06 6.27 0.12
LDSS,Q = 1;000 3.41 3.27 3.48 0.12
Baseline,Q = 5;000 310.04 302.86 317.09 7.11
LDSS,Q = 5;000 127.22 126.98 127.46 0.24
Baseline,Q = 10;000 1,313.36 1,285.01 1,335.58 25.84
LDSS,Q = 10;000 502.00 494.55 507.02 6.58
Baseline,Q = 15;000 3,190.28 3,184.49 3,193.27 5.02
LDSS,Q = 15;000 1,125.43 1,109.01 1,133.65 14.22
Baseline,Q = 20;000 5,742.75 5,654.09 5,889.29 127.84
LDSS,Q = 20;000 2,008.45 1,977.66 2,023.89 26.67
Baseline,Q = 25;000 9,703.44 9,617.40 9,752.64 74.77
LDSS,Q = 25;000 3,149.80 3,104.47 3,173.70 39.27
Baseline,Q = 30;000 14,628.38 14,505.39 14,721.99 111.24
LDSS,Q = 30;000 4,594.30 4,528.15 4,631.99 57.47

sequenceT = (1;000;2;000; : : : ;30;000), with units in milliseconds (ms). The resulting

execution time comparison is shown in Fig. 2.3. Each experiment is repeated 3 times, and

the reported result is the average execution time across the 3 repetitions.

The maximum standard deviation for the baseline simulator is 7.09 and the mini-

mum standard deviation is 0.31. For LDSS, the maximum and minimum standard devia-

tions are 4.69 and 0.09, respectively.

The results from Fig. 2.3 show that the relationship between execution time and

simulated time is close to linear for both the baseline and LDSS simulators, with LDSS

outperforming the baseline simulator by a minimum of 16.16% and maximum of 39.32%

in terms of execution time.

20

Figure 2.3: Performance comparison for di� erent amounts of simulated time.

21

2.6 Additional Results

In this section, we present additional experimental results to provide more context

into our comparison between LDSS and the baseline time-driven simulator.

The results presented in this section pertain to an experiment in which we generated

neuron-spiking raster plots using LDSS and the baseline simulator. Figure. 2.4 and Fig-

ure. 2.5 summarize results from this experiment for the network having sizeQ = 1;000

and simulated time between 1;000 and 2;000 milliseconds (ms). In particular, Figure. 2.4

shows the neuron spiking raster plot obtained from the baseline simulator, and Figure. 2.5

shows the raster plot generated by LDSS. Each+ in the raster plots represents the �ring

of a speci�c neuron (identi�ed by they coordinate) at a speci�c time (identi�ed by thex

coordinate).

2.7 Summary

In this chapter, we have presented a data�ow-based, event-driven approach for mod-

eling and simulating spiking neural networks (SNNs), and we have prototyped this ap-

proach by developing a new simulation tool called the Lightweight Data�ow SNN Simu-

lator (LDSS). Useful features of the proposed new simulation approach include improved

simulation speed, enabled by the event-driven operation; design �exibility in that the

simulation is not limited to a speci�c spiking neuron model or network topology; and re-

targetability across di� erent hardware platforms and implementation languages, enabled

by the rigorous use of data�ow modeling concepts. Interesting directions for future work

include developing multi-threaded or GPU-accelerated versions of LDSS for further sim-

22

Figure 2.4: Neuron-spiking raster plot resulting from the baseline simulatorQ = 1000.

23

Figure 2.5: Neuron-spiking raster plot resulting from LDSS withQ = 1000.

24

ulation speedup, and adaptation of other SNN simulators using models and methods from

the proposed simulation approach.

25

Chapter 3

Dynamic, Data-Driven Hyperspectral Image Classi�cation on

Resource-Constrained Platforms

In Chapter 2, we explored LDSS, an e� cient Spiking Neural Network (SNN) sim-

ulator. In this chapter, our focus shifts to introducing a novel method for resource-

constrained image-analysis implementation known as VBIC (Variable Band Image Clas-

si�cation). VBIC addresses the challenge of high complexity present in Hyperspectral

Images (HSI), particularly in the spectral dimension, as well as the neural networks em-

ployed for classi�cation purposes. The implementation of VBIC o� ers dynamic con�g-

urability within the Convolutional Neural Network (CNN) topology, enabling support for

HSI inputs with varying degrees of spectral complexity.

Material in this chapter was published in partial, preliminary form in [23].

3.1 Introduction

Hyperspectral image processing (HSIP) applications are becoming increasingly

common in important application areas such as surveillance [24], medical diagnos-

tics [25], forensics [26], and remote sensing [27]. The utility of HSIP in these �elds

stems from the high levels of spectral diversity and spectral resolution that hyperspectral

images provide compared to conventional image acquisition approaches (e.g., see [28]).

An HSIP application of fundamental importance is the problem ofimage classi�cation,

26

which involves mapping each pixel into a set of pre-determined classes. In recent years,

deep neural networks (DNNs) have been shown to be useful for accurate image classi-

�cation in HSIP applications [29]. Prior work on HSIP system design has focused on

systems with loose resource constraints or without strong emphasis on data-driven adap-

tivity (e.g., see [30] [31]). However, the computational complexity of DNNs together

with the large amounts of data involved in HSIP applications makes the deployment of

DNNs in resource-constrained scenarios a challenging problem.

The capability for data-driven, real-time processing of hyperspectral image classi-

�cation on resource-constrained platforms opens up the potential for many novel appli-

cations. In this chapter, we introduce a novel framework for hyperspectral image clas-

si�cation that integrates adaptive DNN-based image analysis with real-time, resource-

constrained processing.

Our approach involves optimizing the design of a single DNN for operation across

a variable number of spectral bands. DNNs that are developed in this way can then be

adapted dynamically based on the availability of resources and time-varying constraints

on real-time performance. The proposed approach allows the deployed DNN con�gura-

tion to be varied at run time to maximize hyperspectral image analysis accuracy subject

to operational requirements that may vary dynamically, and may be unknown at design

time. We demonstrate the e� ectiveness of the proposed class of adaptive and scalable

DNNs through experiments using publicly available remote sensing datasets.

This work helps to advance the application of Dynamic Data Driven Applications

Systems (DDDAS) by providing new methods for encapsulating a range of HSIP con-

�gurations, with alternative trade-o� s between complexity and image analysis accuracy,

27

within a single DNN model. The single model can be deployed onto a resource con-

strained platform and used to adapt system operation based on dynamically changing op-

erational requirements — e.g., based on changes in urgency due to information extracted

from recently-acquired imaging data.

3.2 Related Work

Hyperspectral image classi�cation (HIC) is an important application in HSIP. It is

applied, for example, in the area of remote sensing, where di� erent types of land features

need to be recognized and categorized. Most studies on HIC focus on maximizing classi-

�cation accuracy. A common theme in recent works on HIC is the application of DNNs.

Many of these recent works have reported very high accuracy when applying DNNs to

HIC problems in remote sensing (e.g., see [32, 33, 34, 35]). However, these works often

focus on accuracy without taking into account stringent resource constraints or real-time

performance.

On the other hand, a number of studies have investigated real-time HIC. For exam-

ple, Madrõnal et al. developed a real-time HIC implementation on a high-performance

computing platform called the Massively Parallel Processor Array (MPPA) [30]. Their

approach utilized Support Vector Machine (SVM) methods for the classi�cation pro-

cess. Wu et al. proposed an approach called logistic regression via variable splitting

and augmented Lagrangian (LORSAL) for GPU-based, real-time HIC [36]. Sharma et

al. proposed a real-time DNN-based approach for face recognition from hyperspectral

images [37].

28

Compared to the related work summarized above, the HIC method presented in this

chapter is novel in its joint support for resource-constrained deployment, and scalable

execution. Moreover our framework is based on DNN techniques, which have potential

for very high accuracy HIC. Here, byscalable, we mean that trade-o� s among accuracy,

resource requirements, and real-time performance can be adapted �exibly and e� ciently

at run-time to match the con�guration of the system to time-varying operational require-

ments.

3.3 Approach

The proposed system for HIC is designed to adaptively con�gure system complex-

ity to maximize classi�cation accuracy subject to constraints on real-time performance.

The system is designed using a convolutional neural network (CNN) structure that ac-

cepts as input a variable number of hyperspectral input channels from among the com-

plete set of channelsS that is available from a given hyperspectral sensing subsystem.

The elements ofS are provided as input to the HIC system as an ordered list of chan-

nelsS = fC1;C2; : : : ;Cmg, wherem is the total number of available channels. The vari-

able number of channels to use at run-time is selected from a set of prede�ned options

 = fn1; n2; : : : ;nkg, wherek 2 f1;2; : : : ;mg, and 1� n1 < n2 < : : : < nk � m. In our

experiments, we usek = 4, n1 = 30,n2 = 60,n3 = 90, andn4 = m.

At run-time (during inference), an integer-valued inputnc 2
 is provided to the

HIC system to indicate which band-subset option is selected for image classi�cation. The

value ofnc gives the number of input channels that is to be used to classify image pixels;

29

the value ofnc can be varied dynamically by the system in which the CNN is embedded.

More speci�cally, the set of channels used for classi�cation is� = fCi j 1 � i � ncg.

By de�nition of � , the orderingC1;C2; : : : ;Cm can be viewed as a priority list with

lower-index channels having higher priority for inclusion in the inference process com-

pared to higher-index channels. The priority list can be constructed using arbitrary meth-

ods for prioritizing hyperspectral imaging channels; in the experiments developed in this

chapter, we apply the prioritization methods developed by Li et al. The prioritization

methods were developed initially for multispectral video [38], and then extended to hy-

perspectral video [39].

We refer to our proposed approach as Variable Band Image Classi�cation (VBIC).

Our development of VBIC builds upon LDspectral, which was originally developed as

a software tool for design optimization of dynamic, data-driven multispectral image pro-

cessing systems [40], and has been extended more recently with support for hyperspectral

image processing [39]. LDspectral in turn applies Lightweight Data�ow (LD), which is a

compact set of application programming interfaces and associated libraries for data�ow-

based design and implementation of embedded signal and information processing sys-

tems [41].

The CNN architecture for VBIC is illustrated in Figure. 3.1. The network is based

on an HIC network proposed in [35]. In this work, we adapt the network of [35] to

incorporate the novel capability of being able to operate on a variable number of spectral

bands. We would like to emphasize that the adaptation approach that we develop in this

chapter is not speci�c to the network of [35]. Instead, our approach can be viewed as a

general methodology for adapting �xed-band-set CNNs for HIC into variable-band-subset

30

Figure 3.1: An illustration of the CNN architecture for VBIC.

form.

In Figure. 3.1, each block whose label starts with “V” represents a convolutional

block. More precisely, eachV[a][b] represents (2k + 2) convolutional blocks in the net-

work performs a 3-D convolution. Each block labeledReLuis a recti�ed linear unit, each

Sumblock performs the addition of results from the previous network stage, and theFC

block is a fully connected layer. The dotted edges in Figure. 3.1 (e.g., the edge from the

�rst ReLu block to V[2][2]) are connections that may or may not be active at run-time

depending on how many bands the network is con�gured to execute (i.e., depending on

the value ofnc) at that time. We refer to these connections asdynamic connections.

We refer to the subsystem consisting ofV[2][1] ;V[2][2] ; : : : ;V[2][k] as the�rst

stacked layer, and similarly, we refer to the subsystem consisting ofV[3][1], V[3][2], : : :,

V[3][k] as thesecond stacked layer. For integersx 2 f2;3g, andy 2 [1; k], we use a minor

abuse of notation to denote the set of convolutional blocksfV[x][1] ;V[x][2] ; : : : ;V[x][y]g

by V[x][1 : y].

The input to the VBIC network is a three-dimensional tensorT(p) with sizeM� M�

nc. The tensorT(p) is used to classify a single image pixelp from a given hyperspectral

image frameH. The tensor is referred to as thepatchassociated withp. The parameter

31

M is an odd integer that is �xed at design time, and is less than (typically much less than)

the number of rows and number of columns in a single hyperspectral image frame. In

our experiments, we useM = 7. The patch associated withp consists of all of thenc

selected spectral bands for pixelp and its neighbors within theM � M window within

H that is centered atp. If p is at or su� ciently close to the boundary ofH, the patch

is zero-padded to produce a tensor of the required sizeM � M � nc. A complete image

frameH is classi�ed by iteratively invoking the VBIC network onT(p) for all pixels p

in H. The output of the VBIC network for a given tensorT(p) is a classi�cation label

for p together with a probability value, which indicates the level of con�dence in the

classi�cation result.

Unique features of VBIC include: (1)nc, the size of the third dimension ofT(p),

can be varied dynamically, and (2) the network is trained deliberately to handle such a

variable number of spectral bands in the classi�er input.

We have developed a novel algorithm for VBIC training. The algorithm is shown

in Algorithm 1, which provides a pseudocode sketch of the training process for VBIC.

The functioninitialTraining takes as arguments an untrained VBIC network� with the

structure illustrated in Figure. 3.1, a positive integern, a labeled training datasetT, and

a number of epochsE for training. The function con�gures� by deactivating all of the

dynamic connections so that the only blocksV[2][1] and V[3][1] are active in the two

stacked layers. The remaining stacked layer blocks are ignored in the training process for

this function. The resulting con�guration of� is then trained forE epochs usingT. Only

the �rst n channels (the highest priorityn channels) ofT are used in the training process.

The functionfurtherTrainingtakes as arguments a partially-trained VBIC network

32

Algorithm 1: A pseudocode sketch of the training process for VBIC.
input : � : A DNN network of the form illustrated in Figure. 3.1.
input : k: The number of band-subset options.
input :
 = fn1; n2; : : : ;nkg: the number of bands in each band-subset option.
input : T: the labeled hyperspectral image dataset that is to be used for

training.
input : fC1;C2; : : : ;Cmg: the priority list of spectral bands.
param: E: the number of training epochs in each training iteration.
output: Weights� : the weights of the network� are trained as a side e� ect of

this function.
ProcedureVBIC-training � , k,
 , T , fC1;C2; : : : ;Cmg

channelCount= n1;
initialTraining(� ; channelCount;T; E);
for i = 2;3; : : : ;k do

channelCount= channelCount+ ni;
furtherTraining(� ; i; channelCount;T; E);

end
return Weights�

end

� that has been produced by the previous iteration of the overall VBIC training process.

The function arguments also include an integeri 2 [2; k], an integern 2 [1;m] (recall

that m is the total number of available hyperspectral channels), and as used in function

initialTraining, a training dataset and number of epochs speci�cation.

The functionfurtherTrainingcon�gures � by activating the stacked layer blocks

V[2][1 : i] andV[3][1 : i] while deactivating all of the other stacked layer blocks. The

function activates only those dynamic connections that are incident to activated blocks.

In the resulting network, the stacked layer blocksV[2][1 : i � 1] andV[3][1 : i � 1]

have weights that have been trained from preceding iterations of the enclosing training

process. These existing weights are “frozen” along with the existing (pre-trained) weights

of V[4][1]. Thus, the training process of functionfurtherTrainingis con�gured to train

only the weights ofV[1][1], V[2][i], V[3][i], and the fully connected layerFC. Based on

33

this con�guration of frozen and non-frozen (to-be-trained) weights, the function carries

out a training process with the given number of epochs and given training dataset. Only

the �rst n channels ofT (as speci�ed by the third function argument) are used in the

training process. The network� — in particular, its set of trained weights — is updated

as a side e� ect of this function.

An important aspect of Algorithm 1 is the freezing of weights in stacked layer

blocksV[2][1 : i � 1] andV[3][1 : i � 1] in each iterationi = 2;3; : : : of the for loop,

as enforced by functionfurtherTraining. This enables evolution of a single network that

is capable of handling all of the pre-de�ned band subset options. Encapsulation of all

of the options within a single DNN model is especially important in resource-constrained

deployment scenarios, where there may be insu� cient storage space available for multiple

DNN models.

As the band subset option indexj increases from 1 tok, the system accuracy can

be expected to increase, while the processing complexity (and hence the execution time

and energy consumption) also increases. The novel approach to designing and training

the VBIC system provides systematic optimization of this trade-o� between image clas-

si�cation accuracy and processing complexity, and encapsulation of the result compactly

within a single DNN model.

3.4 Experiments

We demonstrate the proposed VBIC approach through experiments on an Android

mobile phone (OnePlus 7 pro), which we use as a platform for prototyping resource-

34

constrained image processing applications. In the experiments, we provide hyperspectral

image input to the platform through �ash storage. The platform is equipped with an 8-core

Qualcomm Snapdragon 855 CPU, 12 GB of RAM, and 256 GB storage.

We evaluate our VBIC-based Android implementation using two commonly used

datasets in remote sensing: Indian Pines and Pavia University. The Indian Pines dataset

has 145� 145 pixels and 224 spectral bands with wavelengths ranging from 400–2500

nanometers(nm) [42]. The pixels are categorized into 16 classes. The Pavia University

dataset has 610� 610 pixels classi�ed into 9 classes, and 103 spectral bands with spectral

coverage spanning 430–860 nm.

The training process for VBIC (Algorithm 1) is implemented using PyTorch. Net-

work training is performed using patch size parameterM = 7 (see Section 3.3), batch

size of 40, learning rate of 0.1, weight decay of 0.01 for all layers, and number of epochs

E = 100. The optimizer employed is AdaGrad [43]. Each of the two datasets investigated

is partitioned into a training set and testing set. Each training and testing set contains 80%

and 20% of the pixels of the associated dataset, respectively. Moreover, the partitioning is

performed so that for each pixel class, 80% of the pixels in that class are in the training set

and the other 20% are in the testing set. As stated in Section 3.3, we usek = 4, n1 = 30,

n2 = 60,n3 = 90, andn4 = m in our experiments.

Figure 3.2, 3.3, 3.4, and 3.5 illustrate the model size and overall accuracy for dif-

ferentnc under two datasets used. Figure 3.2, 3.3, 3.4, and 3.5 show the model size and

overall accuracy (testing accuracy across all pixel classes) for the VBIC system under the

four di� erent values fornc 2
 . Here, by themodel size, we mean the number of train-

able parameters that is required in the network (excluding any parameters associated with

35

Figure 3.2: Model size for VBIC under di� erent number ofnc with Pavia University
dataset.

Figure 3.3: Model size for VBIC under di� erent number ofnc with Indian Pines dataset.

36

Figure 3.4: Overall accuracy comparison for VBIC under di� erent number ofnc with
Pavia University dataset.

Figure 3.5: Overall accuracy comparison for VBIC under di� erent number ofnc with
Indian Pines dataset.

37

non-activated blocks). Note that only the model size associated withn4 is relevant in as-

sessing the overall model size since all of the models are supported in the VBIC system.

However, the model sizes for di� erent values ofnc provide insight into the underlying

range of trade-o� s provided between model complexity and accuracy. The row labeled

“Maximum” representsnc = m, wherem = 224 andm = 103 for the Indian Pines and

Pavia University datasets, respectively.

Table 3.1: Model size and accuracy.

Pavia University Dataset Indian Pines Dataset
nc Model size Overall accuracy Model size Overall accuracy
30 18,042 88.01% 27,009 76.98%
60 45,210 93.64% 72,097 92.83%
90 73,402 95.58% 118,209 95.66%

Maximum 89,306 95.55% 284,897 96.88%

We also measure the processing throughput and peak memory consumption (peak

mem) of the VBIC system as it performs classi�cation. The results are shown in Table 3.2.

Each throughput value given in the table is derived by averaging over 20 repetitions of an

experiment with the associated dataset andnc value. The standard deviations computed

for these 20 trials are listed in the column labeled “Std dev”. The units for throughput

are pixel classi�cations per second (PC/s). As shown in both Figure 3.6 and 3.7, the

throughput of VBIC decreases asnc increases, and the peak memory usage increases as

nc increases as in Figure 3.8 and 3.9, accordingly.

Table 3.2: Processing throughput and peak memory consumption.

Pavia University Dataset Indian Pines Dataset
nc Throughput (PC/s) Std dev (PC/s) Peak mem (MB) Throughput (PC/s) Std dev (PC/s) Peak mem (MB)
30 35,384.86 360.64 219 34,408.78 3,178.63 181
60 21,093.52 7.57 238 19,588.24 331.73 198
90 10,112.62 121.03 291 9,660.84 77.42 254

Maximum 6,888.42 47.04 374 4,803.96 102.41 338

38

Figure 3.6: Throughput comparison for VBIC under di� erent number ofnc with Pavia
University dataset.

Figure 3.7: Throughput comparison for VBIC under di� erent number ofnc with Indian
Pines dataset.

39

Figure 3.8: Peak memory usage comparison for VBIC under di� erent number ofnc with
Pavia University dataset.

Figure 3.9: Peak memory usage comparison for VBIC under di� erent number ofnc with
Indian Pines dataset.

40

	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	LDSS for Simulating Spiking Neural Networks with Timed Dataflow Graphs
	Introduction
	Related Work
	Background
	Spiking Neuron Model
	Dataflow Modeling

	Modeling and Simulation of SNNs in LDSS
	Experiments
	Random SNN Generation
	Baseline Simulator
	Functional Validation
	Performance Comparison

	Additional Results
	Summary

	Dynamic, Data-Driven Hyperspectral Image Classification on Resource-Constrained Platforms
	Introduction
	Related Work
	Approach
	Experiments
	Additional Results
	HSI Datasets
	Experimental Setup
	Results

	Summary

	LCIP: A Retargetable Framework for Optimized CNN Inference
	Introduction
	Related Work
	Methods
	Architecture
	Dataflow Modeling
	Implementation
	Graph-level Optimization

	Experiment
	Distributed and Heterogeneous Inference

	Additional Results
	Residual Blocks in LCIP
	Performance of LCIP on the CIFAR-10 Dataset
	CNN Profiling Results and Performance
	Image Super Resolution

	Conclusion

	Multi-Objective Design Optimization for Image Classification Using Elastic Neural Networks
	Introduction
	Approach
	Experiment
	Dataset
	Preprocessing and Training
	Evaluation Metrics
	Pareto Points and Diversity

	Additional Results
	Conclusion

	Conclusions and Future Work
	Conclusions
	Future Work
	Simulation of Spiking Neural Networks
	Real-Time Hyperspectral Image Classification
	Multi-Objective Design Optimization for DNN Inference

	Bibliography

