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1 IntroductionFeature-based manufacturing technologies hold great promise in bridging the information dividebetween design and manufacturing activities. Manufacturing features and feature-based represen-tations have become an integral part of research on manufacturing systems, largely due to theirability to model correspondences between design information and manufacturing operations.Over the last decade, signi�cant advances have been made in development of technologies thatinvolve manufacturing features. For example, feature recognition techniques have been developedand successfully employed for a variety of applications including automated process planning, designanalysis, and part-code generation for group technology. However, such advances have created newresearch challenges, one of which is discussed in this paper.In this paper we will only consider domains in which parts are produced by sequences of dis-crete manufacturing operations (machining, sheet metal bending, forging, and so forth). Withinthese domains, di�erent researchers use di�erent de�nitions of manufacturing features, but thesedi�erent de�nitions usually have a number things in common (cf. [17, 23]). In particular, in thesedomains a manufacturing feature is normally considered to be a parameterized geometric objectthat corresponds to a particular kind of manufacturing operation. Thus, speci�c manufacturingoperations for a particular manufactured part correspond to feature instances, which are speci�edby giving values for the parameters.Usually, several alternative sets of manufacturing operations can potentially be used to manu-facture the same part. Since each operation will normally correspond to a di�erent feature instance,the set of feature instances used to represent a part is by no means unique. For complex parts, itusually is not feasible simply to enumerate all of the feature instances, because the number of themcan be very large, or even in�nite.In most cases, very few of the potential feature instances for a part will make practical manufac-turing sense. Thus, most approaches to feature recognition will generate only a few of the possiblefeature instances. However, the criteria for choosing which instances to generate are typically adhoc heuristics that are based on local and incomplete information. This makes it di�cult to specifythe behavior of the feature recognition system and to generate alternative plans in a comprehensiveyet well-controlled manner.This paper addresses the question of which feature instances should be generated. In particular,we argue that for most reasonable de�nitions of manufacturing features, there is a set of primaryfeature instances that are su�cient for generating all promising manufacturing plans. We describehow primary feature instances can be used to overcome computational di�culties faced by previouswork, and present complexity results for the domain of machined parts.The remainder of this paper is organized as follows. In Section 2, we describe manufacturingfeatures and show that for certain parts, there might be in�nitely many feature instances. InSection 3, we de�ne feature-based representations and show that in worst case, the number offeature-based representations might be exponential in the size of a given set of feature instances. InSection 4, we describe how feature recognition can be used to generate feature-based representations.In Section 5, we describe how the notion of useful and primary instances can be used to constrainthe possible number feature instances. In Section 6, we describe how feature-based representationscan be generated from the set of primary feature instances. Finally, in Section 7, we present ourconclusions and describe the bene�ts that can be achieved by using our formulation.1



2 Manufacturing FeaturesA number of attempts have been made to de�ne and classify manufacturing features [1, 7, 11, 24, 2].Although there are di�erences among these approaches, many of them share important similarities.For example, a machining feature usually corresponds to the volume of material that can be removedby a machining operation. In general, manufacturing features usually have associated with themgeometry and tolerance information that can be matched with the design attributes of the partand be used to parameterize the manufacturing operations.For manufacturing domains that involve discrete manufacturing operations (such as machining,sheet metal bending, forging, etc.), a feature can be thought of as a parameterized object. Theparameters of a feature either directly relate to or can be used to derive the parameters of theunderlying manufacturing operation. For example, Figure 1 shows examples of features for themachining domain. The feature shown in Figure 1(a) suggests that, if design has a cylindricalsurface which needs to be created, drilling may be considered as a possible machining operation. Ingeneral, various parameters of a feature can be assigned values from either a discrete or a continuousdata set.In a planning problem, one is typically interested in the feature instances that lead to correctplans. A plan is considered correct if it is realizable with available manufacturing resources andproduces the part from the stock. A feature instance f is valid if there exists at least one correct planthat includes f ; otherwise f is invalid. In a domain of machined parts there are many conditionsunder which a feature is invalid. For example, any volumetric feature that intersects with the �nalpart geometry is considered invalid. Including any such feature in a plan would result in over-machining of the part. The set of all valid feature instances is called the valid feature set. We useF to denote valid feature set. Intuitively, one can think of the features in the feature set as the\feature space" of a given part.Observation. There exist parts for which the valid feature set is in�nite, i.e., there are in�nitelymany valid feature instances.As an example, consider the part shown in Figure 2(a). This part has a slot that needs tobe machined from a hollow cylindrical stock (as shown in Figure 2(b) using standard end-millingoperations. As shown in Figures 2(c) and (d), two end-milling operations are needed to create thisslot. Therefore, we need to represent this slot as two end-milling features f and f 0. Any value of wbetween w1 and w2 can be selected as the width of end-milling feature f . This leads to in�nitelymany possible instances of f . Similarly, any value of w0 between w10 and w20 can be selected asthe width of end-milling feature f 0. This leads to in�nitely many possible instances of f 0. Whichof these feature instances are most appropriate depends on the available manufacturing resourcesand the optimization criteria. If this part had some other features, those features would have alsoa�ected the most desirable feature instances.In general, if a feature parameter can be assigned values from a continuous scale (such as froma range of real numbers) and none of the values result in an invalid feature (i.e., making every planthat includes this feature incorrect), there will be an in�nite set of feature instances for the part.2
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3 Feature-Based RepresentationsFeature-based planning usually involves constructing one or more feature-based representations(FBR) of the part. Each FBR is a collection of feature instances which can then be mapped intoplans. More formally, a set of valid feature instances G is a feature-based representation for a givenpart P and stock (or, blank) S, if it has the following properties:1. Su�ciency. The features in G are su�cient to describe P , i.e., if we apply manufactur-ing operations corresponding to the elements in G on S, we get P . This ensures that anFBR will have enough features to result in a plan that can manufacture the part to desiredspeci�cations.2. Necessity. No feature f in G is redundant, i.e., if we eliminate any feature from G, thenthe remaining features are not su�cient to produce P from S. This condition means thateach feature of a feature-based representation will contribute to some necessary portion ofthe plan.Observation. In the worst case, for a �nite subset Fr of the valid feature set F , the number ofalternative feature-based representations that can be produced from Fr is exponential in the size ofFr.Let Fr be a �nite subset of the valid feature set (i.e., Fr � F) and let I be the size of Fr(I = jFr). Let A be the number of alternative feature-based representations that can be de�nedusing the feature instances in Fr.Consider the case where a part can be expressed as m spatially disjoint regions to be manufac-tured and that there are ni choices of possible feature instances for ith region. Therefore,I = n1 + n2 + � � �+ nm:The number of alternative feature-based representations for this part ifA = n1 � n2 � � � � � nm:The worst case for A will be when n1 = n2 = � � � = nm = n. Substituting this value, we getI = n�m, and A = nm. Now by substituting m = I=n, we getA = (n1=n)I :The worst case occurs when n = 3, where substituting we get A = ( 3p3)I . From this expression,we can see that in the worst case, the number of feature-based representations for the part isexponential in number of feature instances (i.e., A 2 O(kI)).Consider the part and the 16 feature instances shown in Figure 3. There are 8 disjoint regionseach having two possible choices of feature instances. Therefore, these 16 feature instances resultin 256 di�erent feature-based representations for the part.5
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4 Feature Recognition for Generating Alternative FBRsIn this section, we describe various ways in which feature recognition has been used to gener-ate alternative FBRs from a single CAD model. This is followed by a discussion of the maincomputational problems in handling alternative feature instances. Finally, we describe how thesecomputational problems can be overcome.4.1 ApproachesMany di�erent approaches have been developed over the past decade to recognize feature instancesand feature-based representations. Many of the existing approaches to recognizing feature instancesaddress the problem as one in 3-dimensional geometric pattern recognition to be approached withtechniques from AI (such as frame-based reasoning, graph- and plex-grammars, expert systems,neural nets etc.) [8, 16, 5, 12, 24], pattern matching [15, 20], graph searching [4, 9, 22, 3, 13], orgeometric algorithms [10, 6, 19]. Feature instances recognized by these systems are grouped intoFBRs using the two approaches described in the next two sections.4.1.1 Generating FBRs DirectlyIn this approach, FBRs are generated \on the 
y," as the feature instances are recognized. Theseapproaches typically produce a single FBR for the given part. In this approach, whenever alterna-tives are encountered, a decision is made \on the 
y" using a greedy heuristic to select the mostpromising feature or to discard others. Such greedy heuristics consider only the current feature inrelation to the part (and sometimes the stock) and those features found up to that point in therecognition process. In this way, features are discarded based on only partial information and apotentially useful FBR could be eliminated from consideration.This approach has several drawbacks. First, until we have information about all of the otherfeatures that might be in the feature-based representation, applying a greedy heuristic to build therepresentation on a \best-�t" basis may not lead to optimal results without extensive backtracking.Second, designing a system that includes a domain speci�c evaluation criteria as part of featurerecognition is very di�cult. Thus, this approach is not appropriate for complex parts that have alarge number of alternative FBRs.4.1.2 Generating FBRs from a Feature SetIn this approach, the following two steps are used to generate FBRs:1. Recognize a set of alternative features. First from the given part, recognize a set of alternativefeatures. Note that, at this level, all the features that appear promising are retained in thisset of features.2. Generating and evaluating alternative FBRs. Once we have recognized a set of alternativefeatures, we can generate FBRs from this set. Intuitively, one can think of the set of alternativefeatures found through feature recognition as vectors forming a basis for the \feature space"of the given part. Knowing a good set of spanning features allows us to better de�ne upperand lower bounds for the evaluation functions to e�ciently navigate through the space ofFBRs. 7



For parts with many di�erent FBRs, this approach appears to be the more promising one.However, as pointed out earlier, the set of valid feature instances could be in�nite, therefore the setof all valid feature instances cannot be used as an objective for the feature recognition componentin Step 1 of this approach. In most cases, very few of the potential feature instances for a part willmake practical manufacturing sense. So, in order to make this approach work e�ectively, a systemwill need to choose which instances to recognize. Whether or not a system produces correct resultswill depend on the set of features recognized in Step 1.4.2 Computational Problems in Generating Alternative Feature InstancesIt has been pointed out previously by Marefat [13, 14] that existing feature recognition method-ologies have had only limited success in identifying and describing alternative feature instances.There are several reasons for this. For example, since features can intersect with each other, theintroduction of a new feature into a design can divide other features into spatially disjoint compo-nents; components which may be computationally expensive to identify and recombine. This posesdi�culty for traditional approaches: rule-based methods must capture all geometric situations thatarise from the choice of feature hints and the ambiguities inherent in manipulating multiple in-terpretations in many separate rules. Graph-based algorithms must syntactically or structurallycapture these complexities.Current approaches to addressing the issue of alternative feature instances often lack a sys-tematic means of selecting the appropriate set of feature instances for planning. The criteria forchoosing which instances to generate are typically ad hoc heuristics that are based on local andincomplete information. For decomposition approaches, the features are primitive cells or combi-nations thereof. Which speci�c cells are used depends on implementation and the geometry of thegiven part. For knowledge-based approaches, the behavior of the system is embedded in the rulesfor completing features from the traces left in the CAD model. The feature classes addressed bythese approaches are byproducts of rules and their interactions in a reasoning system. Thus, theparticular set of features that get recognized is a byproduct of the implementation of the system.This makes it di�cult to specify the behavior of the feature recognition component and to generatealternative FBRs in a comprehensive yet well-controlled manner.One criterion put forth for assessing how well a feature recognition system addresses the aboveproblems is to ask whether the system is complete. Intuitively, completeness refers to the abilityof a system to produce all features appearing in a speci�c, well-speci�ed class of feature instances.If a system produces all features in a given class C, then we say that the system is complete overC. In the existing literature, there have been several e�orts toward guaranteeing completeness.Sakurai [21] presents a system that decomposes the volume to be machined into disjoint cells andthen recombines them to form compound feature instances. This method is complete over the classof features that can be built from compositions of these primitive cells. Similarly, Marefat [13]states that his hypothesis testing approach is complete over his class of hypothesis generators forfeatures. Above mentioned systems were capable of producing a well-speci�ed subset of the validfeature set.Note that, in existing systems, completeness has not been addressed in terms of any factors thatdirectly relate to manufacturing planning. In these cases, completeness is with respect to criteriathat are artifacts of the computational paradigm they used to recognize the features. What needsto be addressed is how to best de�ne completeness in terms of its relationship to planning.8



4.3 Completeness Versus E�ciencyIn most problems we are looking for FBRs that optimize some abstract cost measures. Thus,simply generating a single FBR is not enough|we need to make sure that the system is capable ofgenerating the desired solution. Thus, completeness in generating alternative features (as discussedin the previous section) is important in order to achieve completeness in generating FBRs.In cases where there are a very large number of alternatives, we also need to ensure that FBRsare generated in a controlled manner. If a system tries to select the best alternative by simplyenumerating all possible alternatives, complex problems will be computationally intractable. Aswas noted, very few of the possible alternatives make sense in practical situations. Thus, pruningtechniques are needed to avoid generation of unpromising alternatives. The ratio of the alternativesexamined to the total number of alternatives can be used as an indicator the e�ciency of a system.We want to consider some subset of the valid feature set, hence what is needed is a means ofde�ning the restricted set of feature instances Fr that will be of interest when generating man-ufacturing plans. This de�nition needs to take into account the likely existence of alternativefeature-based representations for the part. We would to be able to calculate, in advance of featurerecognition and planning, what speci�c class of features needs to be recognized and what classof alternative interpretations will need to be considered in order to obtain a good plan. Such aspeci�cation enhances our ability to do feature recognition by telling us exactly what to look for.Given such a speci�cation, a system can be implemented with any of the previously mentionedapproaches.If Fr includes all features of interest for planning and, at the same time, excludes those featuresthat are not useful for planning, then the knowledge that a system is complete over Fr has veryuseful implications. In particular, one would know precisely which manufacturing plans are withinconsideration and which are outside the scope of the system. As Fr's properties can be de�nedwith respect to planning, one would also know that most of the computational e�ort is being usedto generate and evaluate realistic manufacturing plans.Section 5 describes how the notions of useful and primary instances have been used to constrainthe valid feature set. Section 6 describes how FBRs are generated from the restricted set of validfeatures.5 Constraining the Valid Feature SetIn this section, we �rst classify the feature instances that help in constraining the valid feature set.After that, we show how the valid feature set for machined parts can be constrained using thesefeature instances.5.1 Useful and Unuseful InstancesThe most natural way of classifying the features is to partition them into those that we consideruseful for manufacturing planning, and those that we consider unuseful (i.e., unlikely to occur inany reasonable plan). Below, we consider several possible ways to do this.Plan level unusefulness. The simplest way of de�ning unusefulness by stating that a feature fis considered unuseful, if f does not appear in the optimal plan. However, in most realistic planning9



problems, the cost of a feature in a plan is a�ected by other features in the plan. Thus, this setof unuseful features cannot be determined a priori without actually generating and evaluating allpossible plans and, hence, all possible FBRs. Therefore, this notion of unusefulness cannot be usedto constrain the valid feature set in practice, and is only of theoretical interest.Furthermore, in manufacturing planning problems, models of cost are not very accurate. Esti-mated costs of most operations have associated variations. Therefore, formally de�ning the conceptof the optimal plan is not possible. Instead, if we rank plans by their estimated costs, on the topthere will be a set of desirable plans. Any of these plans might turn out to be equally good and theplanning system needs to be able to produce one of these plans. Certain operations may get clas-si�ed as \very expensive or undesirable" without having any quantitative information. Operationsrequiring special purpose manufacturing equipment would be examples of such category. Violationof common manufacturing practice can be considered another example of this category. Such vio-lation may pose risks of equipment failure or reduce the probability of successfully completing theoperation. Any plan containing these undesirable operations will be considered undesirable. There-fore, at the bottom of the list of plans there will be a set of undesirable plans. Quite a few plansmay lie between these two extremes. In order to improve computational e�ciency of planning, wewant to prune all undesirable plans.From practical point of view, we need another de�nition of usefulness at the level of the indi-vidual feature instances.Feature level unusefulness. In this type of unusefulness, a valid feature instance f will beconsidered unuseful if:Condition 1: f is redundant for every possible plan. A feature f will be considered irredundantin a plan P if:(a) Even if the operation corresponding to f is eliminated from P , P can still produce thepart from the stock.(b) P includes a feature g that corresponds to undoing a portion of f ;Condition 2: All plans including f will be undesirable.Condition 3: There exists a feature g, such that replacing f by g in every plan containing fimproves the plan.In many planning domains, testing Condition 3 a priori will be very di�cult. The exact costcontributed by a feature f to a plan P can only be determined if all other operations in the planare known. For example, whether f will require a new setup or not would depend whether thereis any other feature in P that requires the same setup as f . Thus, in general, an a priori test fordetermining all unuseful features is not possible.Therefore, we de�ne another notion of usefulness based on a priori testability. This notion ofunusefulness �nds a subset of features found by the feature level unusefulness.A priori testable unusefulness. In this type of unusefulness, Condition 3 of feature levelunusefulness is replaced by the following condition:10



Condition 3': Let g be a feature that subsumes the portion of workpiece created by f . LetCug be the upper-bound of cost contributed to P by g. Let Clf be the lower-bound of costcontributed to P by f . f is unuseful if Clf > Cug .In practice this notion of unusefulness can be used as a pruning guideline for discarding un-promising feature instances from the valid feature set. E�ectiveness of the pruning would dependon how sophisticated a test can be implemented to achieve Condition 3'.Examples. For machined parts, any feature instance having no intersection with the delta volume(i.e., volume to be machined) is an example of an unuseful instance. Another example of an unusefulinstance is an end-milling feature instance that is completely subsumed by a face-milling featureinstance creating the same portion of the part at a signi�cantly lower cost.For sheet-metal bending, feature instances resulting in overbends will be considered unuse-ful. Every plan including these type of instances will require another feature instance that willcorrespond to undoing some portion of the bending performed by the unuseful instance.5.2 Primary InstancesThe set of all useful features Fu as determined by an a priori testable unusefulness criterion maystill be quite large (even in�nite). Thus, we need additional restrictions on the set of features beingrecognized.What we would like to do is to recognize a set of representative instances from the set of alluseful features. Such representative instances will be called primary instances and can de�ned byimposing restrictions on the set of useful features. In selecting these representative instances, oneneeds to make sure that all other instances of interest can be generated by manipulating theseprimary instances.Primary instances are de�ned as follows. Suppose we can de�ne an equivalence relation E onthe set of all useful features Fu. This equivalence relation E partitions Fu into several di�erentequivalence classes. From each class we select a representative instance. Whenever required, arepresentative feature can be manipulated to produce other feature instances in the same equiva-lence class. The representative instance for each class is called the primary instance. A primaryinstance should also be able to provide good upper and lower bounds on the cost of including otherinstances in the same equivalence class to a plan. If we can identify primary instances for a planningdomain, then just recognizing the set of of all primary instances is adequate for performing themanufacturing planning.It is easy to see that, while there are a large number of useful instances, a relatively smallnumber of their characteristics (such as operation type, orientation etc.) are shared by theseinstances. Therefore, in most manufacturing domains, an equivalence relation can be devisedbased on these characteristics to partition the set of useful features and select primary instances.The set of primary feature instances for the part is called the primary feature set Fp. The followingsection describes how to de�ne primary instances for machining features.5.3 Primary Instances for Machining FeaturesOnce we select a speci�c domain and a scheme for de�ning manufacturing features, we can for-mulate speci�c conditions for identifying valid, unuseful, and primary instances. In this section,11



we demonstrate how these conditions can be formulated for machining features that correspond tooperations on a 3-axis vertical machining center. For simplicity, we will restrict ourselves to drillingand milling operations. Note that the following presents just one set of conditions for machiningfeatures. There may be other equivalent conditions which also adequately get at the notions ofvalid, unuseful, and primary instances.Machining features. Consider a class of volumetric machining features, each of which has type,location, orientation, tool, and a set of attributes describing removal volume as its parameters. Theremoval volume of the feature is the volume that can be removed by the feature from the workpiece.For example, Figures 1(a) and (b) show removal volumes of a drilling and milling features. For afeature f , the removal volume is denoted by rem(f). Note that the actual volume removed by afeature from a workpiece is not necessarily its removal volume; instead, it is its e�ective removalvolume. The e�ective removal volume e�(f;W ) of a feature f is de�ned with respect to a workpieceW . It is given as e�(f;W ) = rem(f) \� W .Conditions for valid instances. A feature instance f is valid for a given part P , if the removalvolume of f does not intersect with P .Conditions for unuseful instances. A feature instance f is unuseful for a given part and stock,if: 1. f does not create any portion of the part boundary.2. The orientation of f is not in the set of �xturable orientations Of (how to compute Of isdescribed below) for the part and stock.The set of preferred orientations Of is computed as follows:1. For every planar face u in the part and stock, add a vector perpendicular to u to Of .2. For every cylindrical/conical face u in the part and stock, add a vector parallel to axis of u.3. For every planar face u in the part and stock, do the following:if no vector in Of is parallel to u, then add a vector parallel to u to Of .4. For every cylindrical/conical face u in the part and stock, do the following:if no vector in Of is perpendicular to the axis of u, then add a vector perpendicular tothe axis of u Of .Conditions for primary instances. For machining features, maximality of the removal volumecan be used to formulate conditions for primary instances. Such instances correspond to the maxi-mal realistic machinable volume made by a single machining operation in a single machining setup.Such instances can be easily truncated later to produce other feature instances that correspond tothe machining volumes removed in the actual machining plans.Given a valid feature instance f 2 Fu, we de�ne the primary container of f to be the featureinstance pc(f) 2 Fu, such that: 12



1. pc(f) has the same orientation, tool and machining operation as f .2. The removal volume of pc(f) contains the removal volume of f .3. For every valid feature g 2 Fu (of the same orientation, tool and machining operation as f)whose removal volume contains pc(f)'s, g has the same e�ective removal volume as pc(f).4. For every valid feature g 2 Fu (of the same orientation, tool and machining operation as f)whose removal volume is contained in pc(f)'s, g has a smaller e�ective removal volume thanpc(f).Now we de�ne the equivalence relation R on Fu. Two instances in Fu are considered R-equivalent if they have the same primary container. It is quite straightforward to show that Rforms an equivalence relation on Fu. For the sake of brevity, we are omitting the details here.A feature instance that is the primary container of itself is the representative of its equivalenceclass and is de�ned to be a primary instance.Complexity results for machining features. We would like to calculate an upper bound onthe number of primary features that might exist for a given part. Speci�cally we would like toshow that the number of primary feature instances is polynomial in the \size" of the part. In thisanalysis, size refers to the number of geometric and topological entities in the model of the part;i.e. n is O(E) where E is the number of edges of the part.1To show the number of primary feature instances is polynomial in the size of the part involvesthree observations. First, within the set of useful features there are jOpj possible orientations. Asde�ned above, there are at most 2 orientation vectors added to Op for each face of the part. Hence,jOpj 2 O(n) and, for each entity in the part boundary, there are O(n) possible orientations for thefeatures to produce that entity.As noted in Section 2, there may be an in�nite number of such valid feature instances. Foreach di�erent tool and machining operation, let T be the set of feature instances producing thatentity with the same tool and operation. We show that T contains one primary instance of a validfeature. If f is a feature in T , there is a primary feature pc(f). We know that, for all features gin the set calF u with the same orientation, tool, and operation (and hence also those in the setT ), then remg � rempc(f). If rempc(g) � remf , then e�g = e�pc(f), otherwise e�g � e�pc(f).Hence, pc(f) is a primary feature for all features in T , and the number of primary feature instancesis O(n2) (i.e., one primary feature instance of each feature type in each orientation is capable ofcreating each portion of the part boundary).Recognizing the primary feature set for machined parts. In the feature recognition liter-ature, there are many approaches capable of producing the set of primary features for machinedparts. Perhaps the best suited of these are the trace-based methodologies [24, 18, 13]. In such anapproach, machining features are identi�ed by matching the geometric characteristics of variouspart faces with various types of features. The boundary of a feature is comprised of di�erent typesof surfaces. Each type (planar, conical, etc.) may be a part of the boundary of one or more types1For the worst case, we can say the size is O(n) where n = E + V + F and E; V; and F are the number of edges,vertices, and faces of part respectively. By Euler's equation 2 = V � E + F , we can simplify this to be n = 2 + 2Eor n = O(E). 13



of features. For example, a cylindrical face could be considered as the side face of a drilling featureand as a corner radius of an end-milling feature. For a given part face, we would like to constructall possible useful feature instances that might be used to create the face. For example, in the caseof a cylindrical face, we want to try to instantiate both drilling feature and end-milling features.Any feature instance that intersects with the part is not valid and is discarded.In our previous work [19, 18], we have developed trace-based algorithms for identifying the setof primary feature instances.6 Using The Primary Feature Set to Generate FBRs E�cientlyEach primary instance is representative of its equivalence class. Thus, the primary feature set Fpcaptures the information about the set of all useful features Fu useful for planning. It is worthnoting here that, in building the desired plan, one might be actually interested in a feature instancenot present in Fp. Generation of FBRs from Fp is an indirect process|primary instances can beused to prune unpromising FBRs using various constraints and feature relationships derived usingFp (which also extend to various instances in Fu). Therefore, whenever a collection of primaryfeature instances looks unpromising, all the FBRs that can be generated by replacing variousprimary instances by other instances in the respective equivalence class of a primary instance arealso unpromising, and can be discarded.On the other hand, whenever a collection of primary features appears to be promising, variousprimary instances in the collection can be manipulated to create FBRs that consist of the mostappropriate instances from Fu, the set of all useful features. In this way, the primary feature setalleviates the need of ever explicitly �nding the set of all useful features Fu. This can signi�cantlyimprove the computational e�ciency of feature recognition and FBR generation. In this way, theset of primary features Fp forms a very e�ective basis for the \feature space" of a part.In order to use primary instances in FBR generation, the same basic idea of the approachpresented in Section 4.1.2 can be used. However, several augmentation steps are needed to allowe�cient use of primary feature instances. The following is a modi�ed version of the approach thatcan be used to generate FBRs using primary instances:1. For the given part and stock, recognize the primary feature set Fp.2. Find various constraints on the primary instances in Fp.(These constraints will later be used to discard infeasible collection of feature instances.)3. Compute the lower-bound of the cost Cl on any plan resulting from features in Fp.(Note that Cl also applies to Fu.)4. Compute the upper-bound of the cost Cu on any plan resulting from features in Fp.(Note that Cu also applies to Fu.)5. Initialize current best = Cu.(Variable current best is used to store the cost of current-best solution.)6. Do Steps (a)-(c) repeatedly, until:� current best has come close enough to Cl;14



� or, no new FBR can be generated.(a) Find a new FBR F by manipulating a collection of instances in Fp such that:i. lower-bound of the cost on any plan resulting from features in F is better thancurrent best.ii. F respects various constraints found in Step 2.(b) Using various features in F , generate the best possible plan P .(c) If plan P is better then current best, then update current best.7. Return the FBR and the plan that resulted in the current value of current best.Details of various steps of the above described procedure depend on the speci�c domain. Howwell a primary set captures the information in the set of all useful features determines the e�cacyof this approach. In the the following section, we describe details of some of the steps of thisprocedure in the domain of machined part.6.1 Generating FBRs for Machined PartsFinding constraints to discard unpromising FBRs. Tolerance and symmetry informationcan be used to generate a set of constraints on features in Fp that describe which subsets of Fp arenot feasible and which subsets look more promising. For example, any two features having di�erentorientation vectors but associated with the faces having tight tolerances will not result in a feasibleFBR. Symmetric portions of the part should be machined with similar features (i.e, having thesame type and orientation). Plans with similar features typically have lower cost compared to theplans with dissimilar features. Thus, whenever possible, similar feature combinations should betried �rst.Finding lower and upper bounds at the feature level. Since a primary instance volumetri-cally subsumes every instance in its equivalence class, it can easily provide an upper-bound of costof every instance in its class. The irredundant portion of the primary feature instance can be usedto provide lower-bounds.Generating FBRs. In case of machined parts, an FBR is basically an irredundant volumetriccover of the delta volume. Thus, techniques for �nding irredundant set covers can be used togenerate FBRs in case of machined parts. From implementation point of view, FBR generationstep (Step 6(a) of the general approach) can be solved more e�ciently using the following twosub-steps:1. Find volumetric covers of e�ective removal volumes of various primary features. Note thattwo feature instances can have the same e�ective removal volume. For example, the featureshown in the �rst row and the �rst column and the feature shown in the second row and the�rst column of Figure 3(c) have the same e�ective removal volume.2. Find FBRs corresponding to a volumetric cover R found in the previous step by addingfeature instances that resulted in various e�ective removal volumes in R.15



Finding lower and upper bounds at the FBR level. Given a set of feature instances G, thefunction h(G) can be used to �nd the lower bound on the production time of plan resulting fromfeatures in G. h(G) is de�ned ash(G) = Ls(G)� Ts + (1 + �)Xg2GLmt(g);where� Ls(G) is a lower bound on the number of setups needed to machine G. For three-axis machin-ing centers, Ls(G) is the cardinality of the set f~v(g) : g 2 Gg, where ~v(g) is the orientationvector for g.� Ts is the minimum setup time.� Lmt(g) is a lower bound on the time required to machine g. This is the time requiredto machine the irredundant portion of the e�ective removal volume of g. Let solid gI =e�(g; S)�� [f2G�ffg(e�(f; S)), where S is the stock. Now Lmt(g) can be computed asLmt(g) = machining time for g � (volume of gI=volume of e�(g; S)):� � is the fraction of machining time that accounts for the auxiliary time.h(G) is very useful for discarding FBRs that involve features from many di�erent approachdirections, and therefore require many setup changes.7 ConclusionsIn a variety of application domains, it is useful to employ representational schemes in which partsto be manufactured are represented as collections of manufacturing features. However, even withina single representational scheme, there can be many alternative representations of the same partas di�erent collections of feature instances. For complex parts, the number of feature instances canbe so great that it is infeasible to deal with all of them. In order to integrate feature recognitionsystems with downstream software components, it is important to use only those feature instancesthat are actually relevant for manufacturing.In this paper, we have argued that for most reasonable de�nitions of manufacturing features,there is a set of primary feature instances that are su�cient for generating all promising man-ufacturing plans. Thus, this approach ensures that only a reasonable amount of feature-basedrepresentations are examined, while also ensuring that the desired representation will not be over-looked by the system. To demonstrate applicability of this approach, we have provided detailedexamples of how this approach can be used in the domain of machined parts.We anticipate that system designs based on the use of primary feature instances will result inbetter integration of feature recognition and manufacturing planning. By using primary features,feature recognition methodologies can be focused toward �nding only those features most applicablefor generating realistic manufacturing plan. 16
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