SRC TR 88-17

Fourier Transform Inequalities
With Measure Weights

by

J. Benedetto and Hans Heinig



*
Fourier transform inequalities with measure weights

John J. Benedetto and Hans Helnig
Department of Mathematics Department of Mathematics
and Systems Research Center McMaster University

University of Maryland

Abstract

Fourier transform norm inequalities, ”%"q,y < C”f”p,v' are
proved for measure weights u on moment subspaces of LE(RD).
Density theorems are established to extend the inequalities to all
of Ls(Rn). In both cases the conditions for validity are
computable. For n = 2, pu and v are radial, and the results
are applied to prove spherical restriction theorems which include

power weights v(t) = |t|a, n/(p’-1) < a < (p'+tn)/(p'-1).
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Introduction

We shall prove weighted Fourier transform norm inequalities
on R? where the weight on the Fourier transform side is a

measure, i.e., "E"q u® C"f"p y for pu a measure.
[ ’

There are a number of results in this area. We characterized
such an inequality on R for 1 < p < g < ® and even weights u
and v for which 1/#4 and v were increasing functions on
(0,©) [BH], cf., the extension in [BHJ 1]. Using these results we

proved the inequality,

[1E P17 1P %0 (1/mrar < cf|£00)|Po(vat,

for R if and only if @ is a Muckenhoupt Ap weight; here

pe (1,2 and @ 1is even on R and increasing on (0,®) [BHJ 2].
This is interesting since the Ap condition is a Hilbert transform/
maximal function criterion and since our result has classical
theorems of Hardy, Littlewood, Paley, and Pitt as corollaries.
Further, major contributions to weighted Fourier transform norm
inequalities include [JS] and [Mu 2] with an earlier theorem due

to P. Knopf and Rudnick [KR] and more recent results by Sadosky

and Wheeden [SW].

Generally, the above-mentioned results use rearrangement
methods. These methods do not yield effective criteria for
Fourier transform inequalities in the case of non-monotonic
weights, and the constants C become more difficult to compute.
Also these results tend to assume one or the other of such con-

straints as even weights, function weights, monotonic weights, or



domain R, Our goal is to construct the theory without rearrange-
ments and with as few constraints as possible. The reasons for
such a project are apparent: restriction theorems, uncertainty
principle inequalities, and effective criteria to establish
Fourier transform inequalities for large classes of weights. This

paper gives our first results in this direction.

After setting notation in Section 0 we state a version of
Hardy's inequality in Section 1 as well as verifying two useful

corollaries, viz., Proposition 1.3 and Proposition 1.4.

Section 2 is devoted to Fourier transform norm inequalities
on R with measure weights. Using the results of Section 1,

Theorem 2.1 establishes our inequality on a subspace of functions

with vanishing moments. A norm constant is given which is nearly
sharp for some weights and which, in any case, is explicit. The
weights need not be even or monotonic. Theorem 2.2 gives a

general and effective density criterion to extend Theorem 2.1 to

all of weighted Lp; and Theorem 2.3 combines these two results to

yield the basic norm inequality on weighted Lp. The remainder of
Section 2 is devoted to comments about density criteria and to

checking our hypotheses in Theorem 2.3 with specific weights.

Section 3 provides some remarks about radial measures on Rn
This material is used in Section 4 to prove the analogues in ®"

of the results from Section 2. Theorem 4.3, corresponding to

Theorem 2.3, requires both v and u to be radial. The proofs

in Section 4 are more involved than those of Section 2, but utilize

the same approach. For example, the Carleson-Hunt theorem is



implemented in Theorem 2.2, whereas our n-dimensional density

criterion, Theorem 4.2, utilizes C. Fefferman's extension of this

theorem. The final section, Section 5, contains applications of

Section 4 to restriction theorems (Theorem 5.3 and Corollary 5.4)

and proves results identifying a special case of one of our basic
hypotheses from Sections 2 and 4, viz., (2.1) and (4.1), with a
natural growth condition arising in spherical restriction

theorems.

Besides condition (2.1), resp.,(4.1), which is an expected
"uncertainty principle" relation between the weights v and u,
our proofs of the basic norm inequalities require another
condition, (2.2), resp., (4.2), which limits the applicable pairs
of weights. Each of these conditions is easy to check (there are

no rearrangements); and the conditions are often satisfied, e.g.,

in the case u has compact support and v1~p is integrable off
of a certain neighborhood of the origin. It is true, however,
that the present theory does not include the case v = 1 because

of the simple moment approach we have taken. The sequel will
deal with refinements of this approach and of Hardy's inequality
for non-measure weights, as well as the cases g < p and p = 1,
associated restriction theorems, and uncertainty principle

inequalities.

Acknowledgement We express our appreciation to Professor Robert

Fefferman for a fruitful conversation on some of this material.



0. Notation

Let X be a locally compact subspace of n-dimensional
Euclidean space Rn, and let CC(X) be the vector space of
complex-valued continuous functions f: X — € having compact
support supp f ¢ X. A measure v on X 1is a linear functional

defined on CC(X) satisfying 1lim < v, fj > = 0 for every

J-x®©
sequence {f .} < CC(X) having the properties that 1lim "f.”OU =0
J oo J
and supp fj < K, where K < X 1is a compact set independent of
j and ”-'-“m is the usual sup-norm (on X), e.g., [Bol. M(X) is
the space of measures on X and M+(X) = (v e« M(X):<v,f> » 0 for

all non-negative f € Cc(X)} is the space of positive measures on
X. Similarly, Mb(X) is the subspace of M(X) having bounded
variation, i.e., the above mentioned convergence criterion on

CC(X) is replaced by (Cc(x), H---”m); and Mb+(X) consists of

the positive elements of Mb(x). We write <p,f> = J f(t)yde(t)
X

and in case X = Rn we write <v,f> = Jf(t)dv(t).

For p € (0,w), LEOC(RH) is the set of functions f: R S ¢
for which lf]p is locally integrable with respect to Lebesgue
measure. If v « M+(Rn) then LS(RH) designates the set of
Borel measurable functions f defined » a.e. on R™  for which

= p 1/p
el , = (J1£ce) | Pav () < ®,
There is an analogous definition of Ls(kn), where v > 0 is a
Borel measurable function not necessarily an element of Lioc(kn).
In fact, LP(®™) = (£:)f], = (Jlf(t)]pv(t)dt)l/p < ®y. If



1 n

v € LlOC(R Yy, v 2 0, then "dr(t) = v{(t)dt" defines a positive
measure V. Also, we write p’' = p/(p-1).
The Fourier transform % of f € Ll(Rn) is the function,
£(r) = [ e 21V 7 £ty ar,

n

where y « Rn(=R ). Finally, x designates the characteristic

S

function of the set S.

1. Hardy inequalities

The following result for measures py was observed by
Sinnamon [S8]. The p = q and y locally integrable case is due
to Tomaselli [To] and Talenti [T]: and Muckenhoupt [Mu 1] provided
new proofs of their results and also proved the p = q case for
measures M. The p < g and p locally integrable case is due
to Bradley, Kokilashvili, Maz  ja, and Andersen and Muckenhoupt,
e.g., [Br;M;AM]}. The gq < p and g 1locally integrable case is
due to Maz'ja (1979), Sawyer (1984), Heinig (1985), and Sinnamon

(1987).

In Hardy's original ineguality, u(y) = 1/|7|p so that
"du(y) = u(y)dy" 1is not a measure. In fact, local integrability
of u on a neighborhood N of the origin is not an hypothesis of

the above mentioned results; and there is an analogue of Theorem 1.1

when # 1is not a measure on N.

Theorem 1.1 Given v € LiOC(R), v >0 a.e., and u € M+(W).

1-p* _ .1
Assume 1 < p < g < ® and Vv € LlOC(R).



a. There is

[ 11

[0,®)

(1.1)

if and only if

sup
y>0

(1.2) B =

Furthermore, B =<

b. There is

(1.3) [ | [ |

[0,m)
if and only if
(1.4) B = sup

y>0

1A

Furthermore, B

Remark 1.2 a.

implies that u «

Condition (1.4),

1

C > 0 such that for all h « LlOC(R), h » 0,
1/q

® q )
I h(t)dtJ du(r)] < c[ J
e 0

® 1/p
h(t)pv(t)dtJ

1/9 ® - 1/p’
J du(y)] { J vit)?! "dt] < .
[O0,y) Y
¢ < B(p) /9 (p) /P,
C > 0 such that for all h « Li (R), h > 0,
QocC
© q 1/q x 1/p
h(t)dtJ du(y)] < c[ J h(t)pv(t)dt]
2 0 '
1/q v o 1/p'
[ J du(r)} [ J v(t)?! F’dt] < ®.
[y.®) 0

¢

c < B(p) Y/ 9(p) /P,

and v > 0 a.e.,

for M < M+(R)

M, ([0,®)).

b. The generalization of Theorem 1.1 from the case

"dv (t) = v(t)dt" to arbitrary v « M+(R) is vacuous. In fact,
if v e M+(R) and m 1is Lebesgue measure then v = f + vs, where

1 )
f LIOC(R), vslm, and £, v, € M+(R) [B, Theorem 5.9]. Thus,
if m 1is concentrated in X and Ds is concentrated in Y with
XnY =¢ then, considering (1.3) for example, we have
7 ¥

= = é p =

j h, (t)dt J h(t)dt for h = hy, and Jhl(t) a_(t) =0, e.g.,
0 0



0 < {XAX dvs = vs(AnX) = VS((AOX)OY) = vs(¢) = Q.

X

c. Theorem 1.1 has a natural formulation if p = 1. 1In

that case, B = C.

Since we are dealing with measures ¢ in Theorem 1.1, (1.1)

and (1.3) are equivalent to the same inequalities for all non-

1

lOC(IR) for which supp h < [0,»). This simple

negative h e L

observation plays a role in the following results.

Proposition 1.3 Given v € Lloc(k), v >0 a.e., and u < M+(R).
Assume 1 < p < g < ® and vl P o Lioc(k).
a. There is C > 0 such that for all h « Lioc(m)’ h = O,
q 1/q P ~1/p
(1.5) [J [ J‘ h(udq muyq sc[J‘mt)v(ndq
t]>7]
if and only if
1/q o 1/p’
(1.6) B = sup [ J du(y) [ J v(x)1 p(bq < w,
>0
LA PR3 || >y
b. If C <® then B =< C. If B <® and p({0)) = 0 then

C =2¢C satisfies

’

c < 2P g(p)/9p) /P,

and if u = ad, a > 0, then vI7P e Ll(R) and C = CH satisfies

C =B = al/q(fv(t)l'T’dt)l/p . If B<® and x = ab + 71, where

a>0, ne M+(R), and 7n({0})) = 0, then

= (9 q,1/qg
C = (Cgs + Cp) .



Proof. i. The case # = ab®, a > 0, follows by direct calculation.

If (1.5) holds let h(t) = v(t)l—p xs(t), where S 1is a compact

interval. (1.5) becomes
— y 1/p
al/? [ vi)? Pac - c{ j vit)? pdt] ;
S S

and, hence, by letting S vary,
YL/
at/d [ [ viny? pdt] s C.

The left hand side is B and so B < C. If (1.6) holds then the

left hand side of (1.5) is

V% [ novnPeie) VP ae < a9 gnp [ vt Pas

= Bllnll, ,
and so C < B.
ii. The necessary conditions for (1.5) are, in fact, true
for any u € M+(R). To see this, assume (1.5), fix vy > 0, and
1_ 7
let h(t) = v(t) b Is(t) where S = (t:y < |t] < Y}. We reduce
the left hand side of (1.5) to

1/q9

’

- d
vit)?! pxsmdtJ du('/)J
7 1<y |t]>|7]

_. 9 1/q
- [ | {Jv(t)l pdt) du('/)]
|7|<y s
= [ | dum]”q [ viytPae
V!<y S

K

and, hence, since u € M+(R), (1.5) implies



1/9 - 1/p’
[ j du(r)] [ J vit)! pdt] < C.
[7]<y S

Letting Y — ® we obtain (1.6) with B < C.

iii. Assume p{({0}) = O and that (1.6) holds. Take any

q
non-negative h € Lioc(m). Write J I h(t)dt] du(r) as
[t]>]7]
¢ . q
j [ [ h(t)dt} du(r) + j [ | h(t)dt} au(r) =
(0,) |t]>» (-0,0) |t]>-7»
q q
| [ | h(t)dt] an(r) - | [ [ h(t)dt] ap(-r) =
(0,@) [t]|>r (@,0) |t]|>r
® -7
d
j [ j h(t)dt + j h(t)dt] A(u(r)+u(-7)),
(Or«)) e —~®

so that by Minkowski's inequality the left hand side of (1.5) is

bounded by
< q 1/q ~ q
f [jh(t)dt] d(u(r)-+u(—7))] o[ ] [jh(—t)dt] Atz ) +n(-r))]
(0,@) 7 (0,@) ¥
= I1 + 12.

The first integral of (1.6) is

j du(z) + [ au(r) | am@y+m-rn.
("Y,O) (OIY) (OIY)

1/4g

We invoke Theorem 1.1la, replacing p(y) there by pupu(y) + p{(-r),

to obtain

10



¢ 9]

| 1/p
(1.7) I, < c+{ J h(t)pv(t)dt]
0
for all h e« Lioc(k), h > ¢, if and only if
1/q . Lo A L/P
(1.8) B, = sup [ J du(r)] [ J v(t) E)dt] < ®.
>0
Y |7 | <y y
By Theorem 1.la we also have B+ < C+ < B+(p)1/q(p’)1/px
We again invoke Theorem 1.1la, replacing p(7) there by
M(r) + p(-7) and v(t) by v(-t), to obtain
[+ )
o 1/p
(1.9) I, Cu( [ ne-o) v(—t)dt]
y
for all he LI__(R), h > 0, if and only if
ocC
1/q 1-v' 1/p’
(1.10) B_ = sup [ J du(y)] [ J v(-t) F’dtJ < w.

>0
b |7 ]<y ¥

Once again, by Theorem 1.la, we have B_ < C_ < B_(p)l/q(p’)l/p.

Since B < ® then both (1.8) and (1.10) hold, as is easily

seen by positivity and by raising the various factors to the p’
power; in fact, Bi < B. Consequently, both (1.7) and (1.9) are
valid so that the left hand side of (1.5) is bounded by

0

X
1/p :
(1.11) I, + I, s c+[ J h(t)pv(t)dt] + c~{ J h(t)pv(t)dtJ

1/p

—X)
We apply Holder's inequality to the right hand side of (1.11),
considered as the sum C+D+ + C D , and are able to bound this

right hand side by

11



® 0
(Cfl'+ cP') /P { j h(t)Pv(t)dt + [ h(t)Pv(t)at
O -

<

}1/P

’ ’ 1 ? , 1 ’
(8% + B2 VP (o) M p) VP )

2'/P By Up) VP n|

iv. Finally, let u = ab + n. Since B < ® then Ba6 < ®
and Bn < ® by positivity, where, for example, Bn is the
supremum in (1.6) for the measure 7. Thus, by the previous parts

of this proof,

g
q a/p d a/p
htyat] au(z) = ol InIEE + et ngd’P
[t1>17]

and the constant is obtained. qg.e.d.

¢

The hypothesis, v ¢ ! (r), in Proposition 1.3 can be

loc
weakened to assuming vl—p & Lioc(k\[—y,y]) for each vy > 0.
Proposition 1.4 Given v € Lioc(R), v >0 a.e., and pu € M+(P).
1-p° _ .1
Assume 1 < p < g < ® and v € LlOC(P).
a. There is C > 0 such that for all h « Lioc(k), h = 0,
q 1/q 1/p
[J [ J h(t)dt] du(y)J g,c[ J h(t)pv(t)dt]
|t <]7]
if and only if
l/q 1__pl - 1/pl
B = sup [ J du{r) [ J v{x) dx] < ®
>
y>0 7| >y ]x|<y

12



b, If C < ® then B s C. If B < ® and p({0}) = 0 then
Cc = C# satisfies

’

’

C < 21/pB(p)1/q(§)1/p

and if u = ad, a > 0, then v1~p € Ll(R) and C = CH satisfies
C =B = al/q(Jv(t)l_pdt)l/p. If B<w® and = aé + 1, where

a >0, n = M+(R), and 7n({0}) = 0, then
_ o ad a,1/q
C (Ca8 + Cn) .

The proof is similar to that of Proposition 1.3 and uses

Theorem 1.1b.

2. A Fourier transform norm inequality on R
Define
MO = {f € Ll(R):supp f 1is compact and £f(0) = 0}.
. o1 - N )
Theorem 2.1' Given v « Lloc(k), v >0 a.e., and u € M+(m).
Assume 1 < p s g < ® and Vl—p & Lioc(m\[—y,y]) for each vy > 0.
a. If
1/qg . o 1/p’
(2.1) B1 = sup [ [ |?|qdu(y)] [ J |x|pv(x)1 pchq < ™
>0 :
Y |7 | <y |x|<1/y
and
1/q 1-p . VP
(2.2) B2 = sup [ J du(y)} J v{x) pchq < @
>0
R ey |x|>1/y
then there is C > 0 such that
) P - .
(2.3) Vf MO N LV(R), "f"q,u < C“f”p,v'

13



b. If 4 =ad, a > 0, then B, = B, = 0; and, for arbitrary

1 2

H e M+(R), C in (2.3) can be chosen as

1
1+ ’
c=2 P(um s, (p)9p)F,
cf., Remark 2.4e.
Proof. Since f € M, , we have %(7) = J(e—2nity 1)f(t)dt and
S0
£(y) = -2i Je“"1t7 [§i§¥;fl] wty f(t)dt.
Therefore, we find that
[£(7)| = 2n|z| J |tE(t) |dt + 2 J |£(t)|dt =
|ty |<1 w|ty|>1
-3 1 -2 1
2u |7 | J | x f[;}ldx + 2 J | x f[iJ|dx
L 1 14 5 1
T=T" 17T [x]"Tr]

Consequently, by Minkowski's inequality, we estimate

- 1/q - q ~1/9g
[Jlf(r)lqd#(r)] < 2w[ [ |r|q[ [ 1= Sf[i]ldx} du(y)J

no 1
=T TrT
-2 1 - d l/q
+ 2[ j( [ 1x f[§]|de du(y)] = oy + 27,
4 N 1
T=T 17T
We first use Proposition 1.3. Let h(t) = |t~3f[%]| and

replace du(») (in the proposition) by |/|qdﬂ(r) and v(t) by

|t|3p-2v[%]. Then we obtain

1/p
~3_(1 3p-2 (1
(2.4) 3, < cl[J|t f[E]|p|t| P V(E]dtJ

for all f < MO if

14



’

1/q : B -y 1Pt /P
(2.5) sup [ | |7|qdu(7)} ( ] [|t|3p 2 vl%}] dt] < .
> ' - .
y>0 |7 | <y/= | t]>y/=
The right hand side of (2.4) is Cl“f“p v Note in (2.5) that
(3p-2) (1-p’) = 3p-2-3pp’ + 2p" + p'-p’ = 3(p-pp’ +p') ~(2+p’) = —(2+p’) .

Thus, the second integral in (2.5) is

_ : 1-p° 1/p : 1-p" 1/p
[ 1el ‘2+p’v[%] dtJ - [ [ 1P v dx] .

[t]>y/n |x|<n/y

Combining these observations we obtain J, - Cl”f”p , for all

= p 1
f « MO N LV(R) if (2.1) holds.

Next, we use Proposition 1.4. Because of the definition of

J2 we let h(t) = t—zf[%] in the proposition as well as replac-
ing wv(t) by |t|2pﬁ2v[%]. Then we have
X - 1/p
) -2 1 2p-2 1
(2.6) 3, = Cz[ J | t f[E]Ip | t] P VLEJdt]
for all £ « MO if
. 1/q - : 1-p° 1/p
(2.7)  sup | | du(y)J [ | (ltlzp 2 v[%]} dtJ < w.
Y0 Ry sy/m N t] <y "

The right hand side of (2.6) is Cz“f”p o+ DNote in (2.7) that

(2p-2) (1-p’) = 2p-2-2pp’ + 2p' = -2. Thus, the second integral in
(2.7) is
-5 i P /P 4 1-p’ 1/p’
J [t] V[EJ dtJ = [ J v(x) dx} ;
| t|<y/n |x|>n/y

Combining these observations we obtain J, C2||f”p , for all

- P p 3 <
f e M0 N LV(R) if (2.2) holds.

15



Consequently, (2.3) is obtained. The value of C in terms
of B1 and B2 follows directly from the estimate,
"f”q u 2nJ, + 2J,, and the values of the constants in

Propositions 1.3 and 1.4. q.e.d.

r

loc([R) for some r > 1, where v > 0O

Theorem 2.2 Given v € L

a.e., and choose p € (1,w).

a. If he Ls(k)' annihilates M_ n LS(R) then h 1is a

0

constant function.

P _ (P Pipy o rl
b. M, n LP®R) = LO(R) or 1P(®) < L7 (R),

1-p’ 1 p R o
c. If v # L (R) then MO N LV(W) = LV(R),

Proof. a. Suppose h € LS(R)’ annihilates the vector space
M. n LP(R).
v

eZnitr_

Let T > 0, and ey(t) = Note

try2 T Xp-T/2,1/21"
~ — - _ 1 -~ 3
that (e}’f) (k) = f(l }’) for f ¢ I, (IR)_ We have IT/Z(}/) -
sin #Ty - _ . B o ]

T[ wTy } and so Ay ,(7) = 0 if » =n/T, n = Z\{0}. Therefore,

- P .
en/TxT/2 € MO N LV(R) for all n « Z\{0}. Let

1 T/2

cn =3 | eppltin(viat, ne 2.

n
~-T/2

Each integral is well-defined because of the elementary calculation

. P ¢+ - P
showing that LV(R) L 1-p

v

,{R). By our hypothesis on h, c, = 0

for all n € Z\{0}.

16



Let hT =h on ([~-T/2,T/2) and define it T-periodically on

R, The formal Fourier series of hT is Z cne_n/T(t), noting
that e—n/T is T-periodic for all n.

Our next goal is to show that hT € L?OC(R/TZ) for some a > 1.
If our assumption were that v < L?OC(R) instead of v < Lioc(m)

then this fact is valid for a = p° by means of the elementary

estimate,
T/2 , T/2 . o ;o
| Ihe) [P ae = [ |ne) [P vy Poe)P T ae
-T/2 -T/2
T/2 , 1__ ’
< Ky J Ih(e)|P vit)' Pat < w,
~T/2
For the more general case, Vv ¢ Lioc(ﬁ), we proceed as follows.
Let a = rp'/{(p'~1+r). It is easy to see that 1 < a < p’; in

fact, rp’ > p' - 1 + r if and only if r(p'-1) > p'~-1 if and
only if r > 1 and rp’ < p'(p'-1+r) if and only if r < p° - 1 + r

if and only if p > 1. Set s = p'/a so that s > 1. Consequently,

T/2 _
[ e 2oy Py ) Par
~T/2
T/2 T/2 B ,
[ | |h(t)|asv(t)"aS/pdt]1/S [j v(t)2® /pdt]l/s =
“1/2 ~1/2
T/2 , , T/2 ,
[J' lh(t)lpv(t)l_pdtJl/S [J v(t)rdt]l/s < o,
~T/2 -T/2
since
as’ _p° & _Pp rp’ - r.
p p p'-a p p(p -1l+r)-rp’

17



Now, because a > 1 we can apply the Carleson-Hunt theorem
to assert that h(t) = 3 €8 _n,p(t) a.e. on [-T/2,T/2). By the

properties of (cn} this means

1 T/2
(2.8) VT > 0, h(t) = g J h(u)du a.e. on [-T/2,T/2).
~T/2 '
We use (2.8) in the following way. First, h(t) = kN+1 on
[-(N+1)/2, (N+1)/2) by (2.8), and hence
1 N/2
ky = h(t) = % J ky,,du a.e. on [-N/2,N/2).
~-N/2
Thus, kN = kN+1 on [-N/2,N/2) for each integer N; and so
h(t) = ke C a.e. on R.
b. If h(t) =k =0 then My n LS(R) = Ls(m) by the Hahn-
Banach theorem.
If h(t) =k=0 and fe< LP(R) then |f| « LP(R), and, by

the duality between LS(R) and its dual, I|f|(t)h(t)dt < 0. Con-

sequently, Ej|f(t)|dt € ¢ and so f € Ll(k). We could also argue
that h(t) = k » 0 implies v' P e L'(R), and so [|f(t)]dt < w
for f € LE(R) by Holder's inequality.
c. Since h « Lpl_pJR) then h(t) = k = 0 Dbecause
v
™ Ll(R); consequently, Mg n LS(R) = LE(R) by the Hahn-
Banach theorem. qg.e.d.

Combining Theorem 2.1 and Theorem 2.2 with a standard

density argument, cf., [BH, p.251], we obtain -
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Theorem 2.3 Given v < Lioc(m) for some r > 1, where v > 0O

a.e., and given p € M+(R). Suppose 1 < p <« g < ® and

1

1-p’ _
v ‘ Lloc

(P\[—y,y])\Ll(k) for each vy > 0; and assume (2.1) and
(2.2) are valid.
a. If fe LP(R) then 1lim | £.-£l = 0 for a sequence
v o J p.v

{fj} L Mo N LE(P), and {fj} converges in LE(W) to a function

f = LE(R). f 1is independent of the sequence {fj} and it is

called the Fourier transform of f.

b. There is C > 0 such that

P, . .
ve e Low), gl clifll, -
Furthermore, C can be chosen as
1
14—
1 s
c=2 P (um 8, (p)/Ypt/P

Remark 2.4 a. Our density result, Theorem 2.2, is quite different
in spirit and technique than that proved in [MWY, Theorem 6.19] by

Muckenhoupt, Wheeden, and Young. As a particular case and for

. 1 P, - P .
v € LIOC(R), they show that MO f LV(W) LV(H) if
> l/']
lim jf [ vit)dt = 0
j-w "0
(2.9)
1 J
lim — [ v(t)dt = 0,
j-20 T
J J -3
cf., Proposition 2.6, (Technically, they don't use MO t LS(W)

but the result is the same.)
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b. Suppose v1~p € LiOC(R) for even v and assume supp M

is not compact; if (2.2) holds then viITP Ll(R) and y € Mb(é).

In particular, we can not determine that MO n LE(R) = Ls(k) from
1

Thoerem 2.2, noting that LP(R) ¢ L'(R) when v'™P'c Ll(r).

¢. The weight condition in [BH] for "du(y) = u(y)dy", u and
v even, and u and 1/v decreasing on (0,®) is that

(u,v) € F(p,q), i.e.,

Y Va ¢ 1Y g
F(p.q) sup ( J u(}’)dr] [ v(x) dx < @,

] 1/p’
y-0

o

Using the given monotonicity it is easy to see that (2.1) is a

consegquence of F(p,q). We have no such expectation for (2.2); in
fact, F(p,q) is valid and (2.2) fails for u(y) = 1/|7|q, v(x) =
|x|a, p=qg=2, and 0 < a < 1.

d. If up e M+(R) and (2.2) holds then pu < Mb+(m). However,
. iy 1-p° 1 N
if n < Mb+(k) and v € Lloc(&\[ v.¥1) for each vy > 0 we can

not necessarily conclude that (2.2) holds. On the other hand, (2.2)
is obtained for u € Mb+(R) and vlap & Ll(W) or for pu < Mb+(W)

with compact support K ¢« [—yl,yl] and vlmp & Ll(m\[—l/yl,l/yl]).

e. The Fourier transform defined in Theorem 2.3a is the

usual Fourier transform when the latter exists on LS(R). However,
it provides an extension of the Fourier transform on other LS(R).

As a trivial example, but one which explains the constants in

Theorem 2.1b, let g = &. Then (2.3) becomes |f(0)] < C"f“p v

for f € MO' Even more, B1 = 82 = 0 implies C = 0 in this

case; but this causes no problem since f « MO' If v(t) = ]t|p
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then v(’c)l—p & Ll(m) so that Theorem 2.2 applies; but the

unigue continuous extension LE(R) — Lg(m) of the well-defined
Fourier transform map M0 n LE(R) — Lg(R) is nothing more than

the O0-function, cf., Example 2.5c.

Example 2.5 a. If u(y) = 7_2, vix) = x2, and p = q = 2, then
(2.1) and (2.2) are satisfied, whereas u ¢ M(R) for

"du(y) = u(y)dy" since u ¢ Lioc(k). This does not allow us to
apply Theorem 1.1 as it is stated.

b. If u(y) = e—lrl, v(x) = elxl, and 1 < p < g < », then
all the conditions of Theorem 2.1 are satisfied. 1In fact, the
conclusion (2.3) is expected since Lg(k) is "large" and LE(R)
is "small". It is clear that (2.9) fails whereas LE(R) < LI(R).

c. Given v(t) = [t|** and pu = Z’[1/|n|1+8]6n for fixed

£ € (0,2), and let p = g = 2. The conditions of Theorem 2.3 are

satisfied. Clearly, v ‘¢ LY(R\[-y,y])\L}(F) for each y > 0;

and
2 2-¢ . 1/2
?:5(2 1) , 0 < ¢ < 1
B1 <
2 .
—2—:;:—, 1 < ¢ < 2
and B, < 2/¢. (For computations, note that 2271 < 3-¢.)
Consequently,
p 2
' |f(n)| 5 2 J 2 1+4¢
3 |n|1+£ < 27 (mB +B,) [£(t) | ] t] dt.

By direct construction, it is easy to see that the Fourier transform
map M0 N Ls(R) — LE(R) extends to Ls(k) in a non-trivial way,

cf., Remark 2.4e.
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Because of Theorem 2.2 and (2.9) we give the following

application of Hardy's inequality.

Proposition 2.6 Given p ¢ (1,®) and Vv « LiOC(R), v >0 a.e.
If j
A2 L [Tv(ryat = o
Jo® .p
-

then v Pe 1l(r).

Proof. Taking # =& and any q 2 p we apply Theorem 1.1la to

obtain v'"Pe L1(r) if and only if |h(t)dt < cfn||, , for all

non-negative h € Lioc(m)’ where C is independent of h. Thus,

if vi™P ¢ LY (R) then
p p 7
Vho= x5 3> 0, (20)F < C | vit)art,
-3

and the result follows. g.e.d.

n
3. Remarks about measures on R

Example 3.1 If pu < M(R") then pu({0)) is well-defined by

M

u({0}) = 1lim <u,¢j>, where wj CC(Rn), supp wj < B(0,1/j) (the

Jo®

closed ball of radius 1/j centered at the origin), wj =1 on a
neighborhood of 0 € R™, and lo5ll, = 1. To see this, first

observe that

IJ(wj(r)—¢k(7))du(7)I < 2 I djul|(r).
B(0,1/3)\{0}

where k > j. The right hand side tends to 0 as j — o since

N(B(0,1/3)\{0}) = ¢, B(0,1/(j+1))\{0} &« B(0,1/j)\(0), and || «
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M+(én). (lu| is defined as <|u|,¢> = sup {]deulz || < o}
where ¢ € Cc(én) is non-negative; the extension of |u| as an
element of M+(én) is routine.) Thus, {<ﬂ,¢j>} is a Cauchy
sequence and the limit exists. Any such sequences {wj} or {(p.}

J
yield the same limit since [A-B| < lA“<u,¢j>| + |<u,¢j—wj>| +

|B—<u,w.>| and since lim <u,¢ .-».> = 0 as in the above estimate.
J : J ]
J—)(I)
Example 3.2 For ¢ € Ll(Rn) or for measurable non-negative
n

functions ¢ on K the polar coordinates change of variable

formula is

®

(3.1) J e(y)dr = [ J pn”1¢(p9)dpdon_1(0),
0
n-1

where y € Rn\{O} has the representation » = pé for p > 0 and

6 € Zn—l' the unit sphere of Rn, and where on~1 is (n—-1)-
dimensional area measure on K'. Note that, even though o, s
not o-finite on R, it is a bounded measure on Xn—l; and so,

by Fubini's theorem, the integral on the right can be written in

either order ([(Sm, pp.389 ff.]. If pu is the restriction of T -1

to En—l’ then we shall also denote p by Un—l' and, in this
case, supp Gn—l = Zn—l'

"Take n > 1. S0(n) is the non-commutative "special
orthogonal" group of proper rotations. S ¢ S0(n) 1is a real n x n
matrix whose transpose s' is also its inverse S—1 and whose
determinant det S 1is 1. A function ¢ on én is radial if
(Sy) = ¢(y) for all S ¢ SO(n).
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Definition 3.3 pu < M(mn), n > 1, is radial if Spu = p for all

S € 80(n), where Sy 1is defined as

Vo € cc(wn), <SSpLe> = () @ (Sy)>.

If "du(r) = u(r)dr", i.e., p is identified with wu - L;OF(&“),
1

then (Su) (7)) u(S— V) for S <« S0(n); in fact, J(Su)(/)w(f)d/ a

i

Ju(7)¢(87)d7 Ju(S—ly)w(y)dr, where the second equality follows

since the Jacobian of any rotation is 1.

Proposition 3.4 Given pu « M(Rn) and assume pu{({0}) = 0. If u
is radial then there is a unigque measure 1 ¢ M(0,®) such that
for all radial functions ¢ « Cc(kn),
n-1 )

(3.2) o> =o [ " emavie),

(0,m)

n/2,. . , . ) .-
where wn—l = 27 /T (n/2) is the surface area of the unit sphere
n
Fn_l of k.
Formula (3.2) extends to the radial elements of Lﬁ(mn) by
Labesgue's theorem.
Proof. Given a sequence {wj: jg=1,2,-«} « Cc(mn) of non-
negative functions having the properties, 'wj(r)d/ = 1 and
supp wj < B(0,1/j) for each j. Then, for any ¢ « Cc(mn), a
standard approximate identity argument shows that
lim <u*p;,9o> = <u,9>, wWhere u * p. 1is a continuous function.
- J J
J-®
Next, assume each wj is radial and take S ¢ SO(n). We

compute  (S(x*p,))(r) = {wj<s“1r—x)du<A) and  (u*p ) (r) =

((Sp)*wj)(y) = ij(7~Sl)du(A), where the second fact uses the
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assumption Sug = p. Since is radial, wj(s_17~A) = wj(s(sﬁly—x))

Y3
= wj(r—SA). Thus, S(u*wj) = j * wj, i.e., each u * wj is radial.

Set Qj = u*wj. Since ?j is radial we compute
® n-1
* =
(3.3) < wj,¢> ©_q J e ¢j(v)¢(0)dﬁ,
0O

for all radial ¢ ¢© CC(Rn) by means of (3.1) and the fact that
(u*wj)¢ € Ll(Rn). Now, consider the locally compact space X = (0,®),

the function space CC(X), and the linear subspace & ={¢cCC(X):¢(p)

= pn—lw(p), for some radial ¢ <« CC(Wn)}; note that each such ¢
vanishes in a neighborhood of 0 < kn; i.e., ¢ 1is radial and
¢ <€ CC(Rn\{O}). Define »: — C as <v,$> = lim J ¥ _(p)e(p)dp.
jowo °x I
This limit exists by (3.3) and the weak * convergence of {u*wj}
to yu; and, in fact,  _ <»,®> = <u,p> where ¥(p) = pn"lw(p).
Clearly v 1is linear on &. Next, let the sequence
_ n-1 . . - -
{§k:§k(p) = p ¢ (P)} < & have the properties that lim "@k”m = 0
k00

and supp Qk < K, where K ¢ X 1is a compact set. Then

] g _ . - n . _
lim wn_1<v,§k> = 1im <L,e> = 0 since pu € M(R ), 1lim ||<,ok||0D = 0,
k—-® k—00 ko

and supp ¢k < {OK:9€En~1} {a compact set in Rn). Consequently,
by the Hahn-Banach theorem, v extends to a measure on CC(X)

which we also denote by v

For a given radial ¢ « cc(mn), let (9} = CC(Rn\{O}) and

compact K have the properties that supp wj, supp ¢ <« K, B(0,1/3)

< K, ¢4 =¢ on K\B(0,1/3), and “wj”w < |lefl,,- Then
(3.4) lim <u,p.> = <u,¢>.
3o ’
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In fact,

o>l =1 | oo antr) | e Ghani)
B(0,1/3) K\B(0,1/3)

=1 | (o= ) (rrau ] < 2llell, [ alulz;
B(0,1/3) B(0,1/3)

and the last term tends to zero since |} « M_(F7) and (B(0,1/j))

a decreasing sequence imply 1lim |p|(B(0,1/j)) = || (nB(0O,1/3))
e

= |u|({0}), where |u|({0}) = 0 by the definition of |u| in

terms of u and by the assumption up{({0}) = 0.
If for a given radial ¢ « CC(Rn) we define éj(p) = pnmle(p),
with ¢j as in (3.4), then, because <y,wj> =0 <v,@j>, (3.4)
yields the relation
X
<p,e> = %1m llm wnﬁl I Wk(p)¢j(p)dp
J—v k-xo
0
s - n-1 Ty, )
= lim o_ J 0 wj(p)du(p).
J-om (0,m)
We denote this last term by o__. J pnwlw(p)du(p) since its
(0,®)
value <u,9> 1is independent of the seguence {wj}.
Finally, we prove the uniqueness of ¢. Suppose vy and Vo
both give rise to (3.2).
“n _ ) |
If ¢ < CC(R \{0}) we see that vy =pr, on €. Also viTP,
is a continuous linear functional on & (K) = {¢<€: supp ¢ « K,

compact} and so it extends to a bounded measure ¢ on CC(K)

having the same norm. Therefore, since v, =¥, on E(K),
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v = p_ - is the zero measure on CC(K). It follows that v, = p

1 2 1
on C_(X) because C_(X) = u{C_(K):K < X}. g.e.d.
Example 3.5. The assumption, p({0}) = 0, is required in Proposi-
tion 3.4. To see this let py =& and for simplicity of calcula-

1 = / = i 2 i . d
tion take n = 2 and wj(}) (3 /")*B(O,l/j)(})' Then, for

radial ¢ Cc(Wz),

P(0) = <b6,9> = lim <;1*1pj,<p> =

Jw
0
lim <p.,¢> = 1lim w4 py.(p)e(p)dp,
Joo® J jow 0 J

and, of course, the right hand side is also seen to be ¢{(0) by
direct computation. The measure ¢ on (0,®) must be 0 since,
by definition of {wj}, its support is forced to be the origin.
Even if v had [0,®) as its domain it is forced to have the

form ad. In either case the formula (3.2) fails when ¢(0) = O,

e.dg.,
W n- 1
0 = ¢(0) = <&,9¢> and © 1 J N Te(p)do(p) = 0,
0

where it does not matter if the domain of integration in the

integral is (0,®) or [0,®).

4. A Fourier transform norm inequality on R

Define

1 n
Mo(n) = {f e L (R ): supp f is compact and f(0) = 0}.

1

n
Theorem 4.1. Given radial v « Lloc(m ), v > 0 a.e., and radial

H € M+(Rn), n({0}) = 0. Let v ¢ M+((O,m)) denote the measure on
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(0,») corresponding to ¢ (as in Proposition 3.4). Assume

1 <ps<s g < ® and vl_ple LiOC(Rn\B(O,y)) for each vy > 0. Iif
(4.1) B1 = sup [ J‘ pn~1+qdu(%)]l/q{ 1TY rn*1+pv(r)1~per1/p < w
¥ "o, y) ' 0
and
-1, p /4 K n-1 1-p*. /P’
(4.2) B, = sup { { Pl dv(%)] [ J 2 () E)dr] < w
v20 My.w) 1/y ’

then there is C > 0 such that for all f . Mo(n) n Ls(mn)

(4.3) Iy, < Clfll, o

Furthermore, C can be chosen as
11
._..+_7_
aqap

C = 2w T

~-{n-1)/q 1/q, .,,1/p
1 (p) (p") (B, +B

2)'

The notation "dv[g]” signifies "% I[EJdp" in the case

"dv(p) = n(p)de".

Proof. Since f « Mo(n),

f(rv) = -21 J e~nlt'7sin(nt-r)f(t)dt.

If #|t]]r] ¢« 1t then |sin nt-y|/(w|t]||r|) < 1 since

ntey sin nt-y B
|ty wtey ; :
Therefore, for a fixed py = O,
[£()| < 2n|r| J [t]]£(t)|dt + 2 [ |£(t)|dt,
wlt]|v]-1 n|t]lr|>1

where the terms on the right hand side are radial functions.

Consequently, by Minkowki's inequality, we estimate
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1/9
Itllf(t)ldthlrlqdu(f)]
1 .

[ﬂ%(r)lqdum]l/q < 21:[ I

T
1/q9
+ 2( [l [ If(t)ldthd#(r)J = 2u I+ 2J,.
Y Y1
T
We use (3.1) to estimate J,. Let y = n|y| and calculate
1/y
[ 1enecojae = [ [ fPlgro)jar do ()
,t|—§ Zn—l 0
4 9]
— -(n+2) 0
- J J s |f{s]|dsdon_1(0)
)n~1 W%
w
= [ pm(m¥2) [ o
| T i | £ - ldan~1(0) dr.
Y g

Therefore, by this calculation and Proposition 3.4,

®O

) 1/q
~(n+2 2
3, = [ J | J P (0t )[ J lf[%JIdGn_l(O)]dr|q|7|qdﬂ(/)]
"|7| Z‘n~1
(4.5) , © 1
3 n-l+q( [ -(n+2)( [ @ ) Y or1d
= o, |s | [ = L) EEf e, )] ars)|.
(0,®) s Fn—l

Let h(r) be the integrand whose domain is (ws,®) in the last

term of (4.5), replace dy in Theorem 1.1la by sn~1+qdv(s), and

make the change of wvariable y = ws. Thus, by this theorem,
: qd
1/q _-(n-1+q)/q p
J1 < Clmn_l 7 J h(r) V(r)d?
0
if
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1/q . 81/p
B = sup [ , D 1+ay (7‘] [ [ v ( )1_pdt] < w.
g0 L7 Yl U |
(0,y) Y
We now calculate V so that the inequality,
~ p
[~ {(n+2) P - JP/DP ey P
| r |f lda 1(0)] V(r)dr - © 3 ”f”p,v ,
o —
is valid. The quantity ”f”g y ©On the right hand side of (4.6)
is
]
[ J rnw1|f(r0)lpv(rO)drdnnM](O)
7 0]
n.—
X
= J rn"IJ |f(r0)|pv(r0)dan“](0)dr
0 z)n_l
[\ ¥
= J s“(n+1)[ | £ [0]|p [()]dn _,(0)ds
© “n-1
®
- ~(n+2)p( 0),p (n+2)p-(n+1) (1)
= [ s | IEIEE do, 400 |s v ngo,
0 zn—l
where we have used the hypothesis that v is radial. Comparing
this last term with the left hand side of (4.6) we set
V(s) = v[é]s(n+2)p~(n+1) )
and we must show
o
— . : 1/p
r fr (n+2)Pf [ Ifr‘_).lld(’ ((;)] V(I‘)d].j
I I el - I |
AN L L S A
0 7 o1
(4.7)
1/p’ -(n+2)p 0
o /F [ j | HE |Pac__ (0)|v(r)ar
0] 2 ’
n-1
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in order to prove (4.6) for this function V. To this end we

temporarily write (4.7) as

o) 1/p
{ J { [ g(r,o)donﬁl(o)] dn(r)} ‘
o
(4.7) ®
o 1/p
@iff t j } g(r,o)pdan_l(ﬂ)dn(r)}
o 3

-1

By (generalized) Minkowski's inequality with p > 1, e.g., [HLP,

Theorem 202], the left hand side of (4.7) is dominated by
X

| [ | gtr.0)Pan(r)

Y. O

1/p
] dan_](O);

and so we need only show that

Cr 1/p
0) < w:}fﬁ) [ j G(é))dan_u](())J

n-1 n-1

and this is a consequence of the estimate,

1/p’
[ (0)

[

| (o) Pas_ (o) < ( | dan_l(o)} | Gy

-1

n-1 -1 “n-1

Thus, (4.6) is valid for V(s) = v[éls(n+2)p~(n+1)_ Recall that
(L Y]

the left hand side of (4.6) is J h(r)pV(r)dr and so, by our

0
application of Theorem 1.la and definition of V, we obtain

+—l
(4.8) B SR p(nmHa) /ay oy
n-— [}] ”p,\]

1/q, .,1/p

(p) Note that

when B1 < ®, where B, = 01 < Bl(p)
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[« Y]

B, =sup J pn_l+qdv[e]]1/q[ Jv(é)lﬂys[(n+2)p*(n+l)](1*U)ds]1/p

1 il
> -

Y20 M0,y) ¥

{(4.9)
1/y .
- /g P L 1/p
= sup [ J p™ 1+qdv[2]} [ J " 1+pv(r)l pdr]
Y20 "0, y) ' 0 '

since (n+2)p-(n+l1l) = (n+1)(p-1) + p and 1-p = -1/(p-1)
implies [(n+2)p~-(n+l)]1(1-p’) = —(n+l1+p’).

We now use (3.1) to estimate J,. Let y = n|y| and
calculate

8
‘ [f(t)]dt = l [ rnﬁllf(rO)]dr das (0) =
J1 : | n-1
it|>§ Yoo Yy
Y Y i )
-(n+1) 2] _ ~-{(n+1) ) 0
J Js ‘f[;]]dsdonml(e)— [r {J |f[;]jdﬂn_1(0)}dr.
2 0 0 2
n-1 n-1

Therefore, by this calculation and Proposition 3.4,

n|r|
o X » 1/q
Iy = [ j | J r (n+1)[ J lf[gJIdGn_l(O)]dr]qdu(/)]
0 3 : - g
n-1
(4.10)
e . g 1
) L“n~1 j Sn*l{ J r~(n+1)[ J |f{%]‘donnj(0)1dr] dU(S)]q.
(Or(‘>) 0] Vl‘n——l N - - -

Let h(r) be the integrand whose domain is (0,ns) in the last

term of (4.5), replace dg in Theorem 1.1b by sn~1dv(s), and

make the change of variable *» = s, Thus, by this theorem,
o
. 1/q
. 1/a  -(n-1)/qf p ]
32 < C2wn-1 T L J h(r) V(r)er

0
if
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y 7
B , 1/q o 1/p
B2 = sup ( J yn 1dp[5]] [ [ V(t)1 pdt] < W,
y>0 (y,m) 0
We now calculate V so that the inequality,
it p
~(n+1)p 0 - ORPgP
(4.11) j r [ J If[r][don~1(0)] virydr = P PP
0 PX
n-1
is valid. The quantity ”fng , on the right hand side of (4.11)
is
X
| s"‘“*l)p[ [ [f[Q]Ipda (O)JS(“+1)9"(H+1)V[1]ds
. s n-1 s
0 >

by a calculation similar to that after (4.6) where, once again, we
have used the hypothesis that v is radial. Comparing this term

with the left hand side of (4.11) we set

V(s) = v[é]s(n+1)(p~1),

and we must show

4 9]

S p 1/p

( J (n+1)P{ J |ff%]|dan 1(())] V(r)dr] .

0 Xn—l » 7

(4.12)
1/p’ @ ~-{n+1)p : (2 p 1/p
“n-1 { ] r [ } !f[i‘.), d(’n“l(())]V(r)dr}
° “n-1

in order to prove (4.11) for this function V. {4.12) follows by
the same argument as that given after (4.7). Consequently, (4.11)

is valid for V(s) = v 1 S(n+1)(p~1). Recall that the left hand
o L8
p

r
side of (4.11) is j h(r) " Vv(r)dr and so, by our application of
0
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Theorem 1.16 and definition of V, we obtain

1,1
TP _(n-1)/
< - q
(4.13) Jp ¢ Cpo 7 “f”p,v
when 82 < ®, where B2 < 02 < Bz(p)l/q(p')l/pl. Note that
' ne1 (pVV M0 [ (1) 1-p (nt1) (p-1) (1-p) . ) L/ P
B, = sup [ J P dv[ﬁ]J [ J V(é} s P dsJ
>0 -
Y (y,®) 0
1/qgq ® 1/p’
= sup [ f pn~1dv{%]] ( [ rn—lv(r)lwpdr] X
y>0 (y,®) 1/y

Combining our estimates, we have

~ q _ _
”f”q SN 1)/q(cl+cz)”f”p,V

M

when B1 + B2 < @, By the above mentioned bounds on Cj in terms

of Bj we obtain the desired bound for C. g.e.d.

The analogue of Theorem 2.2 is true, and the proof proceeds

as follows.

As in Theorem 2.2a we let h « LS(Wn)’ = Lplap,UPn)
v

annihilate M _(n) n Lp(kn) and then check that ¢ = Q

0 v nl,---,nn
for each (nl,---,nn) & Zn\{O}, where

1 f n
c = n e (t:)yh(t)dt
n,., PNy Th - j=1 nj/T J
T(n)

and C = [-T/2,T/2]x**x[-T/2,T/2} for fixed T > 0. (This

T{(n)

generalization from R to k™ uses the function XT(n)/z(t) =
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n

j=1 XTj/z(tj), Tj =T>0 and t = (t;,---,t ); and, consequently,

- n B sin #wTy;

Trmys2t) =T ] )
and

n n p,.,n
V(nl,..-,nn) € Z \{0}, {J[’ll enj/T]'lT(n)/2' Mo(n) M LV(IR ). )
Next, let hT(n) = h on CT(n) and extend it periodically

to ®". As in Theorem 2.2 we can show that hT(n) € La(wn/Tﬁn),
where a = rp'/{(p'—~1+r) and our hypothesis is that v < L?oc(kn)
for some r > 1. Because a > 1 we can assert that

m m
lim 2{:."25: Cn ,***,n e—n /T(tl)"°e~n /T(tn)
m—x .. 1 n 1 n

~m

t) a.e. on C

T(n) ¢ T(n)

This result is due to C. Fefferman {F] and is a consequence of
the Carleson-Hunt theorem, though not by iteration (or induction)
as might be expected but by the proper decomposition of P

Therefore, since each of the coefficients except ¢, ==

vanishes, we obtain

(4.14) VT > 0, h(t) = lﬁ J h{u)du a.e. on C

We use (4.14) in precisely the same way we used (2.8). As a

result, we have proved -

Theorem 4.2 Given v < Lioc(mn) for some r > 1, where v > 0

a.e., and choose p e (1,w},
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a. If he Ls(Rn)' annihilates Mo(n) r LS(Wn) then h is

a constant function.

b,,n ~ 7Ppn Pphy . 1,p0
b. Mo(n) n Lv(ﬂ ) LV(W ) or Lv(m ) L7{R™).
c. 1f vi''P « *®®) then M _(n) n tPH®) = LP®D)
0 v v

Combining Theorem 4.1 and Theorem 4.2 we obtain -
Theorem 4.3 Given radial v « Lioc(mn) for some 1r > 1, where
v >0 a.e., and given radial p « M+(Wn) for which ({{0}) = 0.

1-p’ )

Suppose 1 < p ¢ g < ® and v P L%OC(RH\B(O,y))\Ll(mn) for
each vy > 0; and assume conditions (4.1) and (4.2) are valid.

a. If f e« LP@®™) then 1lim I £.-£] = (0 for a sequence
v jomo TRV

i ) P, D p . q, . n _
{fj} = Mo(n) n LV(P ), and {fj} converges in L“(R ) to a

function f <« Lg(kn). f 1is independent of the sequence {fj}

and it is called the Fourier transform of f.

b. There is C > 0 such that

- 1PpD . . :
and C can be chosen as

=

c =20 w (PTH/Gp) /iy /P g 4y,
5. Restriction theorems and the F(p,q,n) condition
Definition 5.1 a. Notationally, set xnwl(”) = {y & 7 trl = p),
and let u be the restriction of o to 7 (p)y. u is the
fol n-1 n--1 I8!
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positive measure corresponding to a uniformly distributed mass on

the sphere anl(p) with surface or (n-1)-dimensional density

( = mass divided by surface area) equal to 1.

. - ohn
b. Fix p > 0 and 1let x VA I Mb+(m )

T t-1/2,1/72)

is the a(Mb(m“), co(mn)) limit,

lim x[ ’T"”] ,
10 -

and 6(|7‘-p) = up, The mass of & (|y]|-p) is ”J&([7‘~p)d/" =

) . .
lim % Jx[;zl:gldf = 1im ~5%1 [ Bn_l*{EEBJd”
0

® 2 18 — . Lk

= 1im 221 7 g% lag = 1w 22N (1o (oK [R]noR ()

. 1 J , k) L2)

-0 1 -0 R

p“-z" k=0

- 14 “n-1 n) n-1(v) _  n-1
BT 1)f 2) © P “na

-0

Consequently, one easily checks that the surface density of
8(lr|-») = 1. For example, if n = 2 then this calculation gives
"{6(!7|—p)d7" = 2rp; and since the length of I, (p) is 2up we

see that the linear density of &6 (|s|-p) is 1.

c. The measure v on (0,w») (from Proposition 3.4) corres-
ponding to up is bp; and 1if ¢ « CC(Wn) is radial then
J¢(7)dyp(7) = wn_1<ap(3),ﬁn“1w(ﬁ)>. To see this, first note that

supp ¥ = {p} since Jw(y)du”(y) = 0 if supp ¢ n supp up = ¢.

Thus, v = cbo. Then letting ¢ = 1 and applying part b we have

pn—lw = Jdu () = w <cé {R) g1 - cnnalw ; and so ¢ = 1.
n-1 Jol n-1 I8 ! n-1’
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1 n

Definition 5.2 Given radial v e LJOC(W ), v 2 0, and suppose

1 <ps<: g < ®, The (LS,Lq) spherical restriction property with

constant C(p,d,p) holds for k™ if there is a subspace

M LER®) o tP@™)  for which M = rP(r") and if

Vo > 0 3C(p.,.q.r) V£ - M,
. q ~1/9
[ J [ £(7 )| (i7n~1(f)]
2 (2)

C(p,q,p)Hpr v

cf., [St, pp.108-109].

Theorem 5.3 Given radial v ¢ 10((W ), v > 0 a.e., and suppose
) . 1-p° . 1 n .
1 <ps g < ®. Assume vV € Lloc(m \B(O,v)) for each vy > 0
and set
1.1
S n—-1 1/ {pn .
ap VR (o) 14D Lp . y1/P
C(p.,a.,p) = 20, , (p) (p) r [on[ J r v(r) dr]
0
(A V]
; PN V33
+ [ J rn~1v(r)1~f)er ]
1/(pn)
Then for all p > 0 and for all f < Mo(n) rn LS(Wn),
- q 1/q9
[ ] £ %, o] T ceiaeliEl
ii.‘n__l(p)
Proof. The proof is a direct application of Theorem 4.1. If

is the measure on (0,%®) corresponding to ﬂp then, by

Definition 5.1¢c, v = ﬁp. In particular,

PR (3

) =

(5.1) Vy < pu, i
(0,v)
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(5.2) Yy > pun, J fs’nﬁldl) [g] = (:
(y,w) o

for example, v > pr and B > y imply #/n > p and so

"6p(B/n) = 0" since 6p = 0 on (p,®).
Let Bj = sup B_(y), J = 1,2, in order to apply Theorem 4.1.
y>0
By (5.1), B1 = sup Bl(Y)’ and, for vy > pu,
y2pu
1//Y ’
. = 1/q . ’ - 7 * 1/p
B (v) - [ J 40 1+qd,)[§” [ [ (DLHD ] pdr] -
(0,m) a 0 )
1
— " /.Y . ¢ . ’ ]-/pl
(pn)(n 1+q)/q[ J ! 141)V(r)1 p(hﬂ .
0
Thus, we have
1 (4 .
(n—-1+qgq)/q A n-1+p’ 1-p 1/p
B1 = {pn) [ J r v({r) dr}
0
By (5.2), B2 = sup Bz(y), and, for vy ¢ pu,
\'A¥er
[\ V]
_ , 3 L 1/p’
Bz(y) < (pn)(n 1)/q( J r 1v(r)1 E)dr]
1/y )

Thus, we have
x>

_ . _ o 1/p
82 < (pn)(n 1)/q( ] r 1v(r)1 I)dr} .
1/ (pm)
The result in obtained by substituting these bounds for the

Bj into Theorem 4.1. qg.e.d.

This result can also be proved using a more classical form of

Theorem 4.1 where up and » are replaced by approximants such as
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defined in Definition 5.1b. Then standard real variable methods

including Fatou's lemma and the fundamental theorem of calculus

{Lebesgue's differentiation theorem) yield the result.

Corollary 5.4 Given v(r) = r and 1 < p - g < ®, Assume
1;1 < a < p, tn
p - -1

Then the (Ls,Lq) spherical restriction property with constant

é+%T n-1 Lp
Clp,a,p) = 20, (p) /9 (pr) /P, d (¥ (1-D) /P [{___L;%m_m]

—-1)
n+a(l-p°)
1 1/p*
[nﬂl(l—p’ )+p’} J

holds for kn.

Proof. a. For this weight v the integrals used to define

C(p.q.p) (in Theorem 5.3) are

1/ {pwu) , .
[ n-1+p’'+a-ap’ _ ~1 1 n+a+p’ (1-a)
r dr = , ; : el
- n+a+p’ (1=a) |pn
0
and
[ ¥ . )
J n~1+a—a_p'(i _ -1 1 n+a (1-p’)
i TS wa(i-py | ,
1/{(omn)

respectively, where the first integral requires n + o + p'(l-a) >0

and the second requires n + a{(l1-p’) < 0. Combining these

inequalities gives the stated interval of o wvalues.

b. It remains to check the local integrability hypothesis
and to find the appropriate dense subspace M. First,

e Lioc(kn\B(O,y)) for each y > 0 since
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b

(5.3) JV leu(lup)dx = o { PP gy ¢,
B(0,y) "nB(0,b) y
- P, e TV n -
Second, set M = Mo(n) n Lv(& ). Clearly, v ¢ Lloc(k ) so that

we need only check that v1~p ¢ L (kn) in order to apply Theorem
4.2. The non-integrability is immediate since the right hand

integral of (5.3) with yv = 0 and b = « is

n+r{l-p)
lim ! =
ro>0+ 1 DFA(1=PT )
since n + a(l-p’) < O. g.e.d.
Zygmund [Z] was among the first to verify the spherical
restriction property for the case v = 1.
Definition 5.5a. Given v « Lioc(lkn), v - 0, and gy © M_"(l}:n);
and assume p > 1 and g = 1. The pair u,v satisfies the
F(p.gq,n) condition, written (p#,v) « F(p.q,n), if
(¢ /g9, 1-p Y P
F(p.q,n) B = sup J dl'(?’)] f v(x) de} < w,
>0 : * :
Y7% "B(0,y) B(0,1/y)
cf., Remark 2.4c for the l-dimensional even case. If ¢ and v
are radial with wp({0}) = 0 then
1,1
_+___7_ 1 ’
qp e nea g MY /P
B=ow _, sup | 7 dv(r)] [ | " v Pae
>0 -
b (0,y]
b. If 1 <p =< g < and (¥#,v) < F{(p,q,n) for
"Au(ry) = u(y)dy" where u < L1 (@n) and v « L1 (mn) are
: ! loc loc m
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radial and where wu(|»|) and 1/v(|r]|) are decreasing on (0,®),
then "f"q,u < C”f“p,v' C being independent of f, e.g., [H:; JS;
Muz2]. (Strictly speaking, this result requires that the intervals

(0,¥) and (0,1/y] in Definition 5.5a be modified in terms of the

volume of the unit n-sphere. However, for most weights the

F(p,q,n) condition yields the result as stated.)

Now consider the growth condition

(5.4) Vo > 0, pi{p < |r| = 2p) - Iu>a,

where y < M+(én) and ¢({0}) = 0 and where a(p,q,n) = a = qn/p’
for p>1 and g > 1. If n - 2, p > 1, and q = [gi%}p' then
(5.5) P.r(li*_’l*l_l zgg

In particular, a(p,q,1) gives non-zero meaning to the left hand

side of (5.5) for the case n = 1,

Proposition 5.6 Given radial pu ¢« M+(Wn), n > 2, for which

“({0}) = 0. (u,1) « F(p,g,n), where p > 1 and q =z 1, if and

only if the inequality (5.4) is satisfied.

Proof. Note that

wle<lrlz2ey = o | P lav(s)

N
{(n,20]
and
/vy ,
( { xn-—ldx]q/p = n~ /Py nqg/p’

0

Suppose (#,1) ¢ F(p,q.,n). Then
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1/(20)

. ’ . - 'Q/pl . ‘¢ ’ ’ ’
N{P<|7[52D}<;Bq w 4/P [ [ £ ldt] = g% q/p>nq/E’2Hq/p[)nq/p’
n-1 . n-1
0
and so we cobtain the inequality (5.4) with A = Bq(n2n/mn_1)q/p.
For the converse, let B = sup B(y) so that
y>0
1+4,
—_ Jeyt ’
B(y)q =@ N q/E)y nq/p ‘ /n ]dp(;) =
(0,v1
(4 ¥
n a/p’ N [ y |
(ny"/o__,) il mea e < |y
n-1 : 12 +1 1] 23]
J:'.()
X , q/p’
n —q/p’ Sy <nq/p_v Amn—] q
A(ny /w ) —_—— = ; v - = B
n-1 HJt+1 qa/p’  ,na/p’
. 2 n (2 1)
j=0
g.e.d.

The following is a consequence of Proposition 5.6 and

Definition 5.5b.

Corollary 5.7 Given radial u ¢ (Wn), n-» 2 and u > 0 (with

Lloc

corresponding radial p « M+(Wn) defined by "du(s) = u(y)dys")
and suppose i satisfies (5.4). Assume pu(|8|) 1is a decreasing
function on (0,»).

a. If 1 < p =< gq < o then there is C > 0 such that

p,.n p
) VE . Ly, lIf .

1 < p=s 2n/(n+1) and q = [n+1jp

v

then p : q and so part a applies.
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The proof is clear except for noting, in part b, that, for

. . . . n-1 p e
g so defined, g = p 1if and only if [H:T] T p if and only
if 2n/(n+l) = p.
_ 2n
As an example for Corollary 5.7, let u({g|) = {i] n+l
Clearly, u e« Lioc(mn), and therefore it defines a positive (in
fact, u 2 0) measure p for which pu({0}) = 0. Also,
_ . _ [(n-1 ,
{(e,1) € F(p,g,n) since = {HIT} p -

Remark 5.8. Assuming (5.4), Christ [C] proved (5.6) for radial
measures [ ¢ M+(én), n > 2, in the range 1! < p + 2(n+1)/(n+3)

and gq = ((n-1)/(n+1))p’. This can be compared with Corollary 5.7
where we are restricted to decreasing functions u but where the
range of values p 1is larger (clearly, 2n/(n+l) » 2{(n+l)/(n+3)).

Christ also showed that (5.4) is a necessary condition for (5.6).

The condition,

_ 1/q : o oy 1/p
(56.7) sup ] | 7] qdu(/)} [ ] [ ] pv(x)1 p(h% < ®
> . ~ ) ~
¥>0 "B(0,y) B(0,1/y)
also arises in Fourier transform norm inequalities. It corres-

ponds to (4.2) in the same way that (u,v) ¢« F(p,q,n) corresponds

to (4.1). If n = 1, Proposition 5.6 and (5.7) lead to the

following relationship for non-symmetric jp < M, (k).

Proposition 5.9 Given / - M+UF) for which #({0}) = 0.

(¢4,1) « F(p,q,1), where p > 1 and gq - 1, if and only if (5.4)

is satisfied. Also, (5.4) implies (5.7) for v = 1, and, so,
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(6.7) for v =1 1is a consequence of the hypothesis

(u,1) € F(p,q,1).

Proof. Assume (f4,1) <« F(p,qg.,1). Then

: P : ~ ~4a/p’ .
uip < lr| < 20) = ] au(r) < Bq[ [ dx = pd,a/P

p<|r|<2p B(O,1/(2p))

and so we obtain (5.4) as in the first part of Proposition 5.6.

For the converse, since u({0}) = 0 we have
(4 ¥
q4/p :
a _ (2 Ei Y .Y
B = |= L] e < S S
9 = 2 ;{23+1 7] 23}
j=0

so we obtain F(p,q,1) from (5.4) as in the second part of

Proposition 5.6.

Finally, we show that (5.4) implies (5.7) when v = 1. In

fact,
_~Na/p . B
J' | x| PJ [ | 7| apu(r) <«
B(O,1/y)"~ B(O,y)”
[4 V]
a/p’ .
F=l Py 1)
S N RS
2 V4P q/p - i\ d i a/p’
[E7tj] Yy (2°y) A{2-7y) =
j=0
a24d 1
(o -1)¥P (29,

g.e.d.
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