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ABSTRACT t=KT,

v t=nT
A high performance Universal Modem ASIC that supports sev- Qe (KT, —eT) —— “—s

eral modulation types and burst mode frame formats is under z(nT +€T)
development. The ASIC is designed to work under stringent
conditions such as large carrier frequency offset (up to 13%
symbol rate) and low signal-to-noise ratio (SNR). Powerful and Figure 1: Matched Filter of Optimal Receiver

generic data-aided (DA) parameter estimators are necessary to

accommodate many modes. In this paper we present an ap-

proximated maximum likelihood (ML) carrier frequency off- and the algorithm derived by Kay [2].

set estimator, ML joint carrier phase and timing offsets esti- The DA ML joint carrier phase and timing offset estima-
mator and their systolic VLSI implementations for PSK burstor is derived in [1] (p.296). The presented implementation is
modems. The performances are close to the Cramer-Rao lowetrdware intensive. We derived a sinfigd ML joint carrier
bounds (CRLB) at low SNRs. Compared with theoretical soluphase and timing offsets estimator, which is suitable for sys-
tions the estimators proposed here are much simpler and easidic VLSI implementation.

— j 2t

to implement by the current VLSI technology. In section |l the estimation algorithms are presented. Sec-
tion Il presents their dicient VLSI implementations. In the
1. INTRODUCTION last section th&CRLBpa (for DA case) are investigated; the

performance of the estimators is shown through computer sim-

A high performance ASIC supporting Hughes Network Systation and compared with RLBpa.

tem’s Universal Modem product line is under development.
This ASIC supports a variety of bit rates, modulations (BPSK, 2 ESTIMATION ALGORITHMS
QPSK, 8PSK, OQPSK), forward error correction, and frame

formats. In order to satisfy the stringent operating conditiongne paseband received signal is modeled as:
such as large carrier frequency offset (up to 13% symbol rate),

low SNR (E} /Ny around 0dB) and multiple operating modes, N-1

powerful and generic estimators are necessary to recover the y(t) = +/E, Z [(arng(t —nT) + jagng(t —nT
burst parameters. Maximum likelihood (ML) estimators [5] n=0

are optimal estimators. We present a good approximation of —7T)) explj (27 ft + 0)]] + n(t) 1)

DA ML carrier frequency offset estimator, a joint carrier phase

and timing offsets estimator and their corresponding systoliwhereg(t) = gr(t) ®c(t) ® f(t), gr(t) is the transmitter shap-
[8] VLSI implementations. ing function,c(t) is the channel responsg(¢) is the prédilter,

Several carrier frequency offset estimation methods are dig{¢t) is the additive white Gaussian noise (AWGN) with two-

cussed in [3]. The optimal ML frequency estimator is wellsided power spectral density,/2, anda,, = ar, + jagn IS
known to be given by the location of the peak of a periodograrthe data symbol from complex plane{ = v/2/2(+1 + j) for
[9]. However the computation requirements make this approa€)PSK/OQPSK signaling)T" is the symbol intervalf is the
prohibitive even with an FFT implementation. Therefore sim-<arrier frequency offset, andis the delay factor that is 0 for
pler approximation methods are desired. We present a DA capPSK and 0.5 for OQPSK. The matchigter for an optimal
rier frequency offset estimator that is based on autocorrelatiaeceiver can be modeled as [1] shown in Figurg(t) is down



converted by carrier frequency offset estimgtend then sam- 005 Weighting Functon
pled at rate ofi /T, typically T = MTs, with M an integer.
The sampled signal ifltered by a matched shapifigter with

0.045 -

responsg(—t) and timing offsetT". The output is then deci- 004 ]
mated down to a rate df/T" to obtain a one sample per symbol o035} ]
signalz(nT' + eT'). The demodulator corrects the phase offset |
6 and timing offset of z(nT +¢T') prior to making symbol de- T
cisions and recovering the transmitted symbgl z(nT + £T') %0-025’ 1
is given by: * oo 1
0 N 0.015 ,
2(nT +eT) = Z y(kTy)e 7 CmIRTS) g o (nT +
k:_oo 0.01 ,
eT — kTs) (2) 0.005 1
2.1. Carrier Frequency Offset Estimation ndexm. L=32
Initially suppose we hav®/ z(nT +¢T) (n =0,---,N — 1) Figure 2: Weighting Functiofw}, }
symbols without frequency rotation amd= [ag, -, an_1]

is known in DA case. In order to simplify the presentation, let

us assume perfect timing (frequency estimation performance Wye borrow from Kays frequency estimator, that is the weighted
the presence of random timing offset is shown through simul&um of phase difference. Becaugém,) is calculated based
tion), unit-energy pulseg(t) ® g(—t)), thusz(nT + £T) can On more data thaf(m2) whenm; < mg, after some arith-

be simplfied asz(n, f), which can be expressed as: metic we derived the following carrier frequency offset estima-
tor:
2(n, ) = an explj(2mfnT +6)] +7n ®3) .
-1
where~,, is additive Gaussian noise. Correlation method is f: L Z wh A, (8)
adopted to remove data modulatiop, let 2T -0

rn = 2(n, flay, = Egexp[j2nfnT +0)] +va,  (4)  where

Itis easy to show that the autocorrelation of the exponential — 3((2L 4+ 1)2 — (2m + 1)2)
wave is still an exponential wave at high SNR (simulation shows$Vn, = (2L+ 12 —1)(2L+1)’ m =
that high SNR condition is not necessary), i.e.,

The weighting function is shown in Figure 2. It is easy to see
1 that the weightv;, decreases as increases. That is because
N—-m e asm gets larger and larger, the number of terms used to com-
= E2exp[j(2r fmT)] + noise(m) (5) pute R(m) re(_juces and_thus makésn less qnd less accurate.
Compared with Mengdk algorithm, our estimator adopts dif-
wherem = 1,---,L (L < N —1). Mengali [4] proposed ferent weighting functionf. can be less thaiv/2 (e.g. when
a frequency estimator based on modelingse(m) and the N =96, L = 32 can achieve the CRLB at 0dB).
work done by Kay [2]. From simulation wind that for vV
large enoughoise(m) can be approximated as white Gaus-
sian noise. The sequené&(m)} can be treated as a contin-
uous wave (with frequency) which is passed through a noise Assuming zero frequency offset estimation error, therefare
removal process. At high SNR, many good frequency estimg# = M N) observations of (kTs +T) (k=0,---, K — 1)
tion methods have been derived. Kay [2] presented a frequenayailable for estimating andé, e € [—0.5,0.5). According to
estimation method based on weighted sum of phase differenere work done in [1], the maximization object function of ML
His frequency estimator is ML at high SNR. Let udide the joint phase and timing offsets estimation in AWGN channel is
following process:

N—

R(m)

1
*
"nlp—m
m

2.2. Joint Carrier Phase and Timing Offsets Estimator

8(m) = axglR(m)], m = 1,---,L ©)  Lia.e.6) = Coxp {—Re

N—1
> apz(nT + 5T)eﬂ’] } (10)
and n=0

0(1), m=0 whereC is a positive constant and= [ao, - - -, an—1] Which
) —0(m))mod(27), 1<m<L () is the data pattern and is known to the estimator. Let tizele

>
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,U (6) as: 25 ‘ ‘ ‘ |LT(£)| vs. um‘ing oﬁset‘g

N-—1
pe) = anz(nT +eT) (11) |

n=0

The ML joint phase and timing estimator is given by [1]:

€ = arg max|u(e)] (12) z
0 = arglu(?)] (13) 1
According to the Equivalence Theorem [1], and assuming that
c(t) and f(t) are all-pasiilters, z(nT + T') is equivalent to i 1
the following:
N-1 . 7%5 704‘4 704‘3 70‘,2 70‘,1 (; ) Ojl 012 013 0j4 0.5
Z(TLT + 6T) — Z akT(TLT + 6T _ kT)e—jo + Nn (14) Timing Offset € (the symbol period is 1), no noise, unkown phase
k= . . . -
0 Figure 3: Correlation Magnitude(e)| vs. Timing Offsete
where
_ _ sin(wt/T) cos(amt/T) ¥, jdeal sample
r(t) = gr(t) ® gr(—t) = /T 1— 4a2t2/T? o1 3

The above expression also assumes that raised cosine shaping
is adopted withx denoting the rolloff factorV,, is the sampled

version ofn(t), Gaussian noise, after beifitered byg s (¢). -T, 0 | T, t
Arriving at a solution to eq. (12) is a dii€ult task and the
resulting hardware structure presented in [1] is quite compli- Figure 4: Three Sampling Points Model

cated. It is well known that a quadratic form can be used to

approximate the central segment of a convex function around

its peak. The expression fai(e) can be approximated by a the closest ones to the ideal sampling point as shown in Figure
guadratic equation as shown belowe i+ 0, the inter-symbol- 4. In order to meet the condition thia close enough to 0, two
interference (I1SI) and nois¥,, can be ignored and we can sim- measures are adopted: one is that the samplindfa®amples
plify |u(e)| as per symbol) is large enough (simulation shows that= 4

can achieve good performance);second is locating the largest
available magnitude through peak search. Let usfa® the
sampling time ofc; as nominal 0 on time axis. Therefore the
sampling times of;y andz, are—T;, andTy, respectively. A
where|a,|? = 1 (n = 0,---, N — 1). Furthermore by letting LaGrangeinterpolating polynomial can be adopted based on
t = €T and using Taylor series approximations for sine anthe values of;;, (k = 0,1, 2):

cosine functions and after some sinfiiglation, we arrive at

u(t)| ~ NE, <1 - %) (16) u(®)]

N—-1
lu(e)l % By Y |an|*r(eT) = NEr(eT) (15)
n=0

2 2

t—t;
18

T , H ty —t; (18)
0 1=0,i#k

k=

_ g2
Figure 3 shows the result of numerical evaluationof)| = bat"+bit+bo

which follows a quadratic form. From eq. (16) we can use ?]sing the fact that, =

. . . . T, t; =0, to = T, we can get
second order polynomial to approximate the relationship be- ! 2 g

tween sampling time and the magnitude of correlatjoft)| 1 sz Zo
given that these sampling points are close enough to the ideal by = T2 (? —ot 3) (19)
sampling point (i.et is close enough to 0). Using a general 18 - -
: b = — (%2 _ _0) (20)
form of the second order polynomial 1 T ( 5 5
()] = bat® + byt + bo (17) bo = m (21)

suggests that a joint phase and timing estimator can be derivEtle ML timing offset estimator (12) is thewhich maximizes
based on three adjacent samples$.dt)|. These samples are |u(e)|. It is easy to compute the sampling time of the peak of



|i£(t)| from a second order polynomial, i.e. )

w2 ALY - (2m+1)?)

by (xo — x2)Ts " Yerey ey O W,
t = =_—"""" 22
peak 2b2 2.1’0 — 4:.1’1 + 21‘2 ( )
therefore, the ML estimate afis
~ tpeak T2 — To
=— = 23
c T~ M(2wo — a1 + 222) (23)
The phase estimator is shown in eq. (13). Interpolation tech- | — |
niques can be applied to correct the timing offset before phase o
estimation. This however introduces an additional delay in the R [ R@) [ -oeeeeees R RO [
demodulation process. Simulations show that using the time ; \% |
for the non ideal sample of, is suficient for meeting the !
CRLB (sampling time oft; is ¢;). This leads to L ey
6 = arg [p(t1)] (24) T
In order to locate the largest available valueeasily, a highly T " complex conjugate

correlated data patternis selected. [6] discusses this problem
in depth. Here unique word (UW) and alternating (one zero

data patterns are investigated %igure 5: Systolic VLSI Structure of Carrier Frequency Offset

Estimator

3. VLSI IMPLEMENTATIONS L
frequency estimation is given by [9] as follows:

For the frequency estimator, the calculationfz{fn) (eq. (5)) B -1

is a hardware intensive task that requi@® — L — 1)L /2 E[(fT — fT)* > 6 {47r2—sN(N2 - 1)} (25)
complex multiplication and2N — L — 3)L/2 additions. In No

order to make full use of each input data and exploit concurrhe CRLBp 4 for phase estimation is given by [9] as follows:
rency, we propose the systolic VLSI implementation as shown .

in Figure 5. If higher speed clock is available, the complex E[(0—0)2] > {%N} (26)
multipliers can be shared on time division bagi&(m)} will -

be available on the clock cycle following the one latching th .
Nth data symbol into the estimator. Frequency offset can th(j‘\n:lger;]%cilr?fi):ngraczg %Saeg(;&ea\C/ZaFizlgslg)):r;.Hj]. ;_ahnsgglggﬁftztéem
be calculated via eq. (8). One advantage of this structure IS "’ = i

S : : .
that it is scalable. If we want to increa&eto get a better per- case where the sampling rat¢T’, > 253 (B is the bandwidth
formance, more elements can be added at the right hand s

i%fer(t)) andN large enough is given by
shown in Figure 5. {QE'

0

The hardware block diagram for the joint phase and timing  E[(7 — 7)) > T*
estimator is shown in Figure 6. The multi-sample correlator
generates outputs at a higher rate than one sample per symbwth R(f) the Fourier transform of(t). Jiang has proposed
A systolic VLSI implementation of the correlator is shown inthe following expression fofRLBp4 in [6]:
Figure 7, where:;; denotes théth symbol { = 0,---, N — 1), 1
jthsamplef{ = 0, - - -, 3) of the output from the matched shap- 2F, [ ok 2 k 2-|
ing filter. In QPSK casey,, = +1 + j, only adders are neces- \ N, NT [ > <T> R <ﬁ> |A[K]] J (28)
sary therefore the computational complexity is relatively small k=—K/2
especially when using the correlator as soft-decision UW degnere 411 is thekth element ofV-point discrete Fourier trans-
tector. Through peak search module, we can loggter; and form (DFT) ofa, i.e. A[k] = ZN_1 —j(2mnk/N)  Accord-

. . . n=0 @n€
2. An Arctan Lookup table (LUT) is used when estimating ing to eq. (28)CRLBpx has different values for different data
the phase offset.

patterns. Two data patterns have been investigated: alternating
one-zero pattern (i.ee; = (—1)*v/2/2(1 + j)), and a unique

4. PERFORMANCE BOUNDS AND SIMULATION word pattern. A 48-symbol UW was selected. According to eq.
RESULTS (28) for the alternating one-zero data pattern

-1
s 2 £2
N, N/47r f R(f)df} 27)

K/2—1

The performance lower bound for unbiased ML estimation is 5 Es -t
the Cramer-Rao lower bound (CRLB). TRERLBp for DA CRLBpa o = | 27 FON (29)



= KT CRLB,, of Pseudo Random Data Pattern

t=k
y(t) 7 y 10™
gw(kTs‘ET)H i ‘ ‘ ‘ ‘
exp[-j (2rfkT,)] ¢ Xo =%,

N 4(2x, — 4x, +2X,)

* 0=1.0
O «a=0.50
¢ 0=0.25

6 =arctan[u(t,)]

Figure 6: Joint Carrier Phase and Timing Offsets Estimator
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Figure 7: Multi-Sample Correlator

Figure 8: TheCRLBp4 for Timing Estimation with UW Pat-
and thus the performance is independent of rolloff factor tern
given thata > 0. For the UW pattern, the timing estimation

CRLBp, is closely related to the rolloff factor. It follows from . . . . .
eq. (28) that the larger the rolloff factor, the SmallRLB p . good approximations of the ML estimations since if the per-

Figure 8 shows eq. (28) plotted as a function of SNR for threfPfmance of an unbiased estimation meets the CRLB then the
different values of rolloff factor. estimation is ML [5]. The techniques proposed here can be

The parameters for the computer simulations were stﬁsed in h'.gh performance PSK burst modems wqr.kmg under
signaling,N' = 96 andZ, = 32 in an AWGN channel for fre- arge carrier frequency offset and low SNR conditions. The
quency estimationy = 48 andM = 4 in the AWGN channel complexities of these algorithms are moderate.

for joint phase and timing estimation. Figure 9 shows normal-
ized root mean squared (RMS) frequency estimation error with 1~ :
f = 0.13/T, which is compared with th€ RLBp, for fre- 5 Faniem g
guency estimation. From simulation we can see that the estima- .
tion RMS error is very close to theéRLBp, even at 0dB, the
performance degradation caused by timing error is very small.
Figure 10 shows the saw tooth characteristics of eq. (23) under
no noise conditions with random phase. From simulations we
can see that (23) is an unbiased estimate #feak search (i.e.
locatingz ;) resolves then /4 (m = £1, +2) ambiguity.

For phase and timing estimation, different rolloff factors
for the raised cosine shaping function were also tested. Simu-
lation shows that the RMS timing estimation error meets the
CRLBp, of timing estimation for allas and data patterns.
Simulations also support that for the one-zero pattern the RMS o+ - . . ; .
timing error is independent of, while for the UW pattern it de- Eb/No (4B), DI=0.13RS, Random Timing, Random phase, N=96, L=32
creases as increases. This is in agreement with the evaluation . o
of the CRLBp,. Figure 11 shows the timing offset estimationFigure 9: RMS Carrier Frequency Offset Estimation Error vs.
performance withh = 0.5, where one-zero pattern and UW CRLBpa
pattern of QPSK are illustrated. Figure 12 shows the phase es-
timation performance. The RMS phase estimation error meets
the CRLBpx for phase estimation.

Performance Comparision of Carrier Frequency Estimation and (:RLBDA

Normalized RMS Frequency Offset Estimation Error
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