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Abstract

Title of Dissertation:  Studies in Robust Stability
Lahcen Saydy, Doctor of Philosophy, 1988

Dissertation directed by: Dr. E. H. Abed, Associate Professor
Dr. A. L. Tits, Associate Professor

Electrical Engineering Department

In this thesis, questions in the analysis and synthesis of stability robustness
properties for linear and nonlinear control systems are considered. The first part
of this work is devoted to linear systems, where the emphasis is on obtaining
necessary and sufficient conditions for stability of parametrized families of systems.
This class of robustness problems has recently received significant attention in the
literature [1]. In the second part of the thesis, questions of stabilization of nonlinear
systems by feedback are considered.

Part I of this work addresses the generalized stability, i.e. stability with
respect to a given domain in the complex plane, of parametrized families of linear
time-invariant systems. The main contribution is the introduction and applica-
tion of the new concepts of “guarding map” and “semiguarding map” for a given
domain. Basically, these concepts allow one to replace the original parametrized
system stability problem with a finite number of stability tests. Moreover, the
tool is very powerful in that it allows the treatment of a large class of domains

in the complex plane. The parametrized stability problem is completely solved



for the case of stability of a one-parameter family with respect to guarded and
semiguarded domains. The primary interest in semiguarded domains arises in a
process of reduction of a given multiparameter problem to one involving fewer
parameters.

For the two-parameter case, we consider stability of families of matrices
relative to domains with a polynomial guarding map. The first step replaces
the two-parameter problem by A one-parameter stability problem relative to a
new domain. The second step employs a polynomial semiguarding map for the
new domain to obtain necessary and sufficient conditions for stability of the new
problem. The case of three or more parameters, which involves technical questions
not encountered in the one- or two-parameter case, is also considered.

In Part I, a class of nonlinear control systems for which the linear part
satisfies special stabilizability conditions is considered. These conditions natu-
rally give rise to certain nonstandard algebraic issues in linear systems. Sufficient
conditions for the existence of a linear feedback control which stabilizes a given
nonlinear control system within a prescribed ball of given radius (possibly infinite)
are given. The feedback control is found to be robust in a certain sense against
a class of modeling errors. A complete design methodology is obtained for pla-
nar systems and extended to a class of higher dimensional singularly perturbed
nonlinear control systems. For these systems, nonlinear feedback laws achieving

stabilization within prescribed cylindrical regions are presented.
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CHAPTER
ONE

INTRODUCTION

1.1 Overview

In this thesis, we study questions in the analysis and synthesis of stability
robustness properties for linear and nonlinear control systems. The first part of this
work is devoted to linear systems, where the emphasis is on obtaining necessary and
sufficient conditions for stability of parametrized families of systems. This class
of robustness problems has recently received significant attention in the literature
[1]. In the second part of the thesis, questions of stabilization of nonlinear systems
by feedback are considered. The main goal is to arrive at a design procedure
which allows one to realize a feedback control law achieving not only stability,
but also a prespecified size requirement on the stable equilibrium point’s region
of asymptotic stability (RAS). Ixi addition, robustness of the resulting controlled
system with respect to certain m’odeling errors is also considered.

The two parts of the thesis, although seemingly addressing distinct and osten-
sibly unrelated problems, were indeed motivated by a common larger issue. This
issue deals with a conceptual analytical/ computafiona.l approach to the optimal

feedback stabilization of nonlinear systems. The results of this dissertation may
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thus be viewed as the first step in the study of this approach, which will be ex-
pounded on at the end of this Introduction. We now proceed to summarize the
results of the thesis. More detailed summaries are given separately for Parts I
and II, including discussions of the relation to previous work, in Chapters 2 and
8, ;espectively.

Part I of this work addresses the generalized stability, i.e. stability with re-
spect to a given domain in the complex plane, of parametrized families of linear
time-invariant systems. The main contribution is the introduction and applica-
tion of the new concepts of “gua.rding map” and “semiguarding map” for a given
domain. Basically, these concepts allow one to replace the original parametrized
system stability problem with a finite number of stability tests. Moreover, the
tool is very powerful in that it allows the treatment of a large class of domains
in the complex plane. The parametrized stability problem is completely solved
for the case of stability of a one-parameter family with respect to guarded and
semiguarded domains. The primary interest in semiguarded domains arises in a
process of reduction of a given multiparameter problem to one involving fewer
parameters. For example, in studying stability of a two-parameter family of ma-
trices with respect to, say, the open left-half of the complex plane, this reduction
yields an equivalent stability problem for a one-parameter family, but relative to
a new domain which is less amenable to analysis. The fact that the new domain
is determined to be semiguarded allows one to proceed. The case of three or
- more parameters, which involves technical questions not encountered in the one-
or two-parameter case, is also considered.

Though much of the emphasis is placed on the generalized stability of matri-
ces, the concepts introduced in Part I apply to the stability of families of polyno-
mials as well.

Part II of this work concerns fhe stabilization of nonlinear .control systems. It
is a fact that general methods for oBta.ining feedback control laws which stabilize
the equilibrium point of interest of a given nonlinear control sysfem are unavailable.

Approximation techniques such as linearization around an equilibrium point are
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often used in practical engineering situations. Regardless of the methods used to
devise stabilizing control laws, a key step in any nonlinear control systems design
is to estimate the resulting RAS. Despite the many techniques suggested in the
literature, this task remains prohibitively expensive especially when it is an integral
part of a synthesis effort. Notwithstanding anticipated difficulties, research efforts
in the area of stabilization of nonlinear control systems within a prescribed RAS
are crucially needed. Due to the complexity of this problem, it is recommended
that classes of systems for which specific techniques apply be delineated, rather
than attempting a more general approach.

In Part II, a class of nonlinear control systems for which the linear part satis-
fies special stabilizability conditions is considered. These conditions naturally give
rise to certain nonstandard algebraic issues in linear systems. Sufficient conditions
for the existence of a linear feedback control which stabilizes a given nonlinear con-
trol system within a prescribed ball of given radius (possibly infinite) are given.
The feedback control is found to be robust in a certain sense against a class of
modeling errors. A complete design methodology is obtained for planar systems
and extended to a class of higher dimensional singularly perturbed nonlinear con-
trol systems. For these systems, nonlinear feedback laws achieving stabilization

within prescribed cylindrical regions are presented.

1.2. Motivation

The challenges emanating from the field of nonlinear control systems design
are numerous and require new techniques with CAD supporting tools. Lyapunov
stability analysis has traditionally provided the main analytical tool for the analy-
sis and synthesis of stable control systems when estimates of the region of asymp-
totic stability are an integral part of the problem [2]. Indeed, Lyapunov functions
are instrumental in obtaining such estimates. Unfortunately, given a complex
nonlinear system, it may be impossible to arrive at a useful Lyapunov function.

Consider a nonlinear control system
i=F(z,u) (1.1)

3



where F' is a smooth vector field satisfying F/(0) = 0. Synthesis of a stabilizing
control law for this system may in principle be accomplished by the following gen-
eral iterative approach. Decide on a method of estimating RAS. Choose an initial
locally stabilizing design uo(z), fitting into a finite-parameter family of stabiliz-
ing controllers, and estimate the corresponding RAS. Following an optimization
algorithm, decide on an updated control law u;(z) for which the RAS estimate is
improved. This step involves mnning the RAS calculation procedure for several
values of feedback gains. Continue in this way until a satisfactory RAS estimate is
reached. This conceptual procedure involves two main nontrivial tasks. The first is
to find a suitable optimization routine for updating the iterated feedback controls.
The second, of course, is to reliably compute RAS estimates. The connection of the
last of these two tasks with questions studied in Part I arises when one attempts a
continuation approach to RAS estimation. At step k, denote f(z) := F(z, ur(z))

and consider the stability of the parametrized family of nonlinear systems

¢ = (1-MN)g(z) + Af(z)
:= h(z) (1.2)

where A € [0,1] is the continuation parameter. Here, the vector field g is chosen

such that the stability behavior of the auxiliary nonlinear system

z= g(z) , 9(0)=0 (1.3)

is well understood (i.e., the domain of attraction is known exactly). Thus for
A =0, hy = g and the domain of attraction of System (1.2) is exactly known. For
A = 1, we obtain the system for which an RAS estimate is to be computed. The
goal of the continuation method is then to use to ﬁ@tage the perfect knowledge
of the domain of attraction of System (1.2) at A =0 t6 infer something about that
of the same system at A = 1. This immediately raises the question of whether or
not the set of “stable” vector fields is convex. Since the answer to this question is
negative, it is of interest to obtain conditions ensuring stability of (1.2) for each

A € [0,1], given that the vector fields g and f correspond to stable systems. One
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such condition is that each member of the one-parameter family of matrices (‘—;{ »

denotes the Jacobian matrix of f)
Og of
(1-2X) B 0)+ Aa:c 0), (1.4)

A € [0,1], be Hurwitz stable. This condition is one of Hurwitz stability of a

one-parameter family of linear time-invariant systems.



CHAPTER
TWO

INTRODUCTION TO PART 1

In this chapter, we present some background on robust stability of linear time-
invariant systems and give an overview of the contents of Part I. We then proceed

to outline the essentials of the approach by treating a special case.

2.1 Background and Overview

In the analysis and synthesis of robust control systems, a fundamental problem
that arises is the recognition that the mathematical model assumed for the system
is always inexact, and that the parameters of the system may deviate away from
their nominal values. Thus it is desirable to be able to determine to what extent a
nominal system remains stable when subjected to a given class of perturbations.
This is ?:alled the robust stability problem.

The specific description of the class of perturbations against which robustness
is required depends, of course, on the pﬁysics and engineering of the particular .
plant in question. The general theory distinguishes broadly between two types
of perturbations: structured and unstructured. In the latter case, perturbations

are allowed to occur in “all directions” and are usually taken into account via

7



bounds on their norms. In the case of structured perturbations, good mathematical
models are available and the plant structure is well known qualitatively but there
is uncertainty regarding the numerical values of various physical parameters in the
model.

~ After the usual simplifications, such as linearization about an equilibrium
point, one ends up most often with a linear time-invariant system described by a
prescribed set of differential equations for the nominal plant. There are two mains
approaches which have been applie(i to the robust stability problem for linear
time-invariant systems: (i) the frequency domain approach (e.g. [3]-[9]) which is
based on the transfer function representation of a system and (ii) the time domain
approach (e.g. [10]-[13]).

Recently however, Kharitonov proved the following powerful result [14]: in
order for every member of the family of real polynomials {p(s) = ans™+...+a1s+
ao, a; € [ai,a;]} to be Hurwitz stable (zeroes in the open left-half complex plane),
it is necessary and sufficient that only four distinguished “corner polynomials” be
Hurwitz stable. It is precisely Kharitonov’s Theorem which paved the way for the
body of recent research surveyed in a paper by Barmish and DeMarco [1].

The problem of obtaining necessary and sufficient conditions for stability of
polytopes of real polynomials and matrices has recently been considered by sev-
eral authors (see for instance [15], [16] and [17]). For polytopes of polynomials,
Bartlett, Hollot and Lin [17] showed that for such a polytope to be stable, it is
enough to check that the edges of this polytope are stable. Hence, one needs
only test stability of convex combinations of two polynomials. The solution of the
latter problem was obtained in the case of Hurwitz stability by Bialas [15] and,
in subsequent independent work, by Fu and Barmish [16]. An analogous result
for Schur stability (zeroes inside the open unit disk) have also been obtained 1:'e—
cently by Ackermann and Barmish [18]. The result in [17], a nice generalization of

Kharitonov’s Theorem,! has unfortunately no counterpart in the case of polytopés

1 Note that Kharitonov’s Theorem applies only to hyper-rectangular polytopes

of polynomials with edges parallel to coordinate axes.
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of real matrices [19]. In the particular case of the convex hull of two real matri-
ces however, Bialas [15] and Fu and Barmish [16] derived necessary and sufficient
conditions for Hurwitz stability.

In the remainder of Part I, we develop a new approach for the study of gener-
alized stability- of parametrized families of matrices. Similar considerations apply |
as well to the case of families of polynomials, although the detailed statements for
the polynomial case are often omitted. | _

Generalized stability [8] of a matrix (polynomial) entails that its eigenvalues
(zeroes) lie in a prespecified domain of the complex plane. The classical stabil-
ity requirements result upon defining the domain of interest as the open left-half
complex plane (continuous-time case) or the open unit disk (discrete-time case).
Practical considerations relating to damping ratio, bandwidth, vehicle handling
qualities, etc., are often best expressed in terms of the generalized stability formu-
lation, with respect to a suitable domain in the complex plane.

In this first part, we introduce and apply to the generalized stability of
parametrized families problem the new concepts of “guarding map” and “semi-
guarding map” of a domain in the complex plane. These notions allow one to
replace the problem at hand with the question of whether or not the guarding
map is nonzero for all members of the family. These concepts are closely related
to work of Gutman [20] and Gutman and Jury [21] on root clustering in domains
of the complex plane.

Necessary and sufficient conditions are given for stability of one-parameter
families relative to domains endowed with either a guarding or semiguarding poly-
nomial map (defined below). The technique yields as a special case the result
on stability of the convex hull of two matrices or polynomials mentioned above.
Moreover, we solve as a special case the problem of Schur (i.e. discrete-time)
'stability of the convex hull of two matrices.

For the two-parameter case, we consider stability of families of matrices rel-
ative to domains with a polynomial guarding map. The first step replaces the

two-parameter problem by a one—p&ra.tﬁeter stability problem relative to a new
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domain. The second step employs a polynomial semiguarding map for the new
domain to obtain necessary and sufficient conditions for stability of the new family.
Part T of the dissertation is organized as follows. In the remainder of this
chapter, as an introduction to the techniques employed in Part I, we outline the
main calculations for the case of Hurwitz stability of the convex hull of three
2 x 2 matrices. Chapter 3 establishes notation and provides requisite background
material . The concepts of guarding and semiguarding maps are introduced in
Chapter 4 where several examples are provided. In addition, a systematic proce-
dure for constructing guarding and semiguarding maps is presented for domains
with polynomial boundaries. In Chapter 5, basic results on generalized stability
of parametrized families are given. These results are applied to one-parameter
families of matrices in Chapter 6. Chapter 7 is devoted to the multiparameter

case.
~ 2.2 Essentials of the Approach: Calculations in a Special Case

The tnethodology presented here rests upon some rather technical results.
However, the essentials of this methodology are basic in nature and may be more
readily understood by first considering a special case. In this section, the steps of
the analysis are discussed for the case of Hurwitz stability of the convex hull of
three matrices. To minimize the algebra involved, this problem is considered for
the case of 2x 2 matrices. Parenthetically, we note that the results emanating from
the discussion of this section are breviously unknown and therefore interesting in
their own right.

It is convenient to express the convex hull of three matrices in the equivalent

form

A(Tl,rz) = Ao+ 1“1A1 + 7‘2A2, ry,re € [0,1] (21)

We seek necessary and sufficient conditions for the matrix A(ry,r2) to be -
Hurwitz stable for each pair of parameter values (r;,r2) with 0 < ry,ro < 1. In

this case, we say that the matrix family (2.1) is Hurwitz stable.
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For the matrix family (2.1) to be Hurwitz stable, it is of course necessary
that, say, the matrix A(0,0) = Ao be Hurwitz stable. Assume, then, that A, is
Hurwitz stable. By continuity of the eigenvalues of a matrix in parameters, the
family (2.1) is Hurwitz stable if and only if (iff) there is no pair of values (ry,r;)
in [0,1] x [0, 1] for which the matrix 'A(Y‘l,f;z) has an eigenvalue on the imaginary
axxs |

To proceed further, associate to any 2 x 2 matrix 4 = (@ij), t,5 = 1,2, the

3 x 3 matrix A'(A) given by

(2.2)

2a11 2012 0
0 2a9; 2az;

N(A) := [ a1 apn +ax a

The matrix A(4) has the interesting property that each of its eigenvalues is the

pairwise sum of eigenvalues of A. More precisely,
o(N(4)) = {2M1(4), M1(4) + A2(4),2)2(4)} (2.3)

as can readily be checked. Therefore, N'(A) is nonsingular when A4 is stable, but is
singular when A has an eigenvalue on the imaginary axis. By these observations,
and since Ag, a member of the family (2.1), was assumed Hurwitz stable, we find

that A(ry,r;) is Hurwitz stable for all ry, r; € [0, 1] iff?
detN (A(ry,m2)) #0  Vr,rp €[0,1). (2.4)

Note that A(A) is a linear function of its matrix argument. This allows us to

replace the requirement (2.4) by its equivalent
det (N (Ao) + 1N (A1) + 12N (A2)) #0 Vry, 12 €[0,1]. (2.5)

Equation (2.5) is a nonsingularity -condition on a two-parameter family of

matrices. To replace this by a condition on a one-parameter family of matrices,

2 In the general case considered in the following chapters, this observation will

be associated with the notion of guarding map.
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note that (2.5) holds iff?
det(N_l(Az)N(Ao) + rlN_l(Az)N(Al) + TQI) ;é 0 (2.6)

for all ry, r2 € [0,1]. Define 3 x 3 matrices My and M, by |
My = —N"1(A2)N(4o) (2.7)
My = —N71(A2)N(4)). . (2.8)

We now have that, with the assumptions above, the family A(ry,rz), i, r2 €
[0, 1], is Hurwitz stable iff Mo +r; M, has no eigenvalues in [0, 1] for each r; € [0,1].
Denote

M(7‘1) = My 4+ r1 M;. (2.9)

Our problem has now been reduced to one of determining precisely when
M(r,) has no eigenvalue in the interval [0, 1] for each r; € [0,1]. For this to hold,
it is necessary that My (= M(0)) have no eigenvalue in [0, 1], which we assume to
be the case.

Since My has no eigenvalue in [0,1], the only way for M(r;) to have an
eigenvalue in [0, 1] for some r; € [0,1] is that there exist an r; such that either of
the following three possibilities holds:

(i) M(r1) has 0 as an eigenvalue;
(i1) M(r1) has 1 as an eigenvalue; or
(iii) M(ry) has a double eigenvalue in the open interval (0, 1).
Conditions (i) and (ii) can be checked simply by solving for the zeroes-of the
polynomials det(M(r;)) and det(M(r,) — I), respectively. On the other hand,

testing condition (iii) is not as transparent, and is considered next.

Associate to any 3 x 3 matrix

t .
w] : (2.10)

3 We have implicitly assumed M(A4;) is invertible. Although this is not neces-

sary, it results in a simplified exposition.
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a2 3 x 3 matrix Q(M) given by half of*

wy + iz + 4su + (v — r)? 3tu+ w(z+ v —2r) ~3sw — H(r + z — 2v)
3sz +y(z + v~ 2r) wy + su + 4tz + (z ~ r)? 3ty + s(v +r — 22)
~3uy — z(z + r — 2v) 3wr+u(v+r—2z) tz+ su+dwy+(z —v)?

This matrix is interesting in the present context because its eigenvalues are given,

in terms of those of M, by

2 _ 2 _ .
o (Q(M)) = {(A,(M)-zxz(M)) um) 2A3(M)) - (a() 2A3(M)) }

This implies that Q(M) is singular precisely when M has a repeated eigenvalue.
The following procedure summarizes the foregoing discussion. It yields nec-
essary and sufficient conditions for Hurwitz stability of A(ry,r2), Vry, r2 € [0,1],

under the assumption that A'(Ay) is invertible.

0) Check that A is Hurwitz stable.

1) Check that Mj has no eigenvalues in [0, 1].

2) Check that the polynomial det(Af(ry)) has no zeroes in [0, 1].

3) Check that the polynomial det(M(ry) — I) has no zeroes in [0, 1].

4) (a) Obtain all values of r; € [0,1] for which M(ry) has a double eigenvalue
by solving detQ(M(r;y)) = 0.
(b) For all such values, check that the corresponding double eigenvalues lie
outside (0,1). ’
In the remaiﬁdér of Part I, the technique outlined in this section is formalized

and extended to the study of stability of multiparameter polynomial families of

matrices relative to subsets of the complex plane of interest.

4 This construction is a special case of a general one, valid for matrices of

arbitrary dimension, appearing in Chapter 3.
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CHAPTER
THREE

BACKGROUND FOR PART ONE

This chapter begins by establishing notation, and proceeds to a brief discus-

sion of relevant background material on matrix algebra.
3.1. Notation

Arg(s): Argument of the complex number s

3: Conjugate of the complex number s

C_ ((E'.;.): Open left-half (right-half) complex plane

D¢: Complement of set D

D: Closure of set D

0D: Boundary of set D

int(D): Interior of set D

I,: Identity matrix of dimension n (also denoted I when n is clear from the
context)

Ai(A): Eigenvalue of matrix 4

a(A): Set of all eigenvalues of A

tr(A): Trace of matrix A

2: Generic open subset of €, symmetric about the real line .

14



E: ¢\ [0,1]
O: C\[1,0)
Sn(D): Set of all n x n matrices with spectrum inside D C € (also denoted
S(D) when n is clear from the context)
~ ®, ®: Kronecker product, Kronecker sum
A©B: A®(-B)
A - B: Bialternate product of 4 and B (Section 3.3)
Al Schlaflian form of order 2 of matrix A (“Upper Schlaflian”; Section 3.3)
Apy): Infinitesimal version of A2 (“Lower Schlaflian”; see Section 3.3)

3.2. Multivariate Polynomials

Let R be a ring. Following Bose [22], we denote by R[r1,rs,..., 1] the associated
polynomial ring. Each element of this ring is a polynomial in the indeterminates
r1,72,-..,Tk. Any such polynomial is the sum of a finite number of terms of the
form

.. S DO 1 ik
Aiyyigyeyin TITS 00Ty

where 11,12,...,1x are nonnegative integers and the coeflicients A;,, i, are from
the ring R. The degree d,, of the polynomial A(ry,rs,...,rg) with respect to one
of the variables r; (¢ = 1,2,...,k) is the highest exponent with which r; occurs
in the terms of this polynomial. The sum i; + t2 + - -+ + ix is the degree of the

monomial ri'r3? ...7*. The largest of these sums,

k
Ay =max{Y i A 0] ()
i=1
is called the degree of A. If the polynomial A has degree d(A) = m, then it will
be denoted, for convenience, by | ' '
1 t+iz++ig=m

A(rl sT2 0 ,rk) = Z Ailig,rin 7‘;‘ 1‘;’ - ri‘ 3.2)

$1,82,-00,04 =0
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Despite the fact that polynomials with either scalar or matrix coefficients will

be encountered throughout Part I, the notation in (3.2) will always be used to
denote polynomial degree.

3.3. Some Tools From Matrix Algebra

Kronecker product and sum

Given square matrices A and B having dimension n; and ng, respectively, The
Kronecker product (e.g. [23]) of A and B, denoted A ® B, is the square nyn,-
dimensional matrix whose 17t ﬁz x ng block-entry is given by a;; B. The Kronecker
sum A® B of A and B is the nyn;-dimensional matrix A @ I,, + I, ® B. Note
that A @ A is linear in A.

The eigenvalues of AQ B and A® B consist of the nyny products A;(A)A;(B)
and njng sums X;(A) + Aj(B), respectively, over all ordered pairs (,j5), ¢ =
1,...,n1, 7 = 1,...,n,. For example, if A and B are 2 x 2 and 3 x 3 matri-

ces with eigevalues {\;, A2} and {a;, @2, a3}, respectively, then
O’(A@ B) = {A] 4+ a3, A1 + az, A\ + az, A2 + a1, A2 + ag, A2 + (13}.

In fact, this is simply a special case of the following more general result. Let p be
a complex polynomial in the variables z; and z32, given by

i+j=N

p(z1,22) = Z pijziz}, . (3.3)
: 5,j=0

and consider the associated function of two complex square matrices A and B

i+j=N 3 . R
P(4,B):= Y pi;A @B (3.4)

i,J=0

Theorem 3.1. (Stéphanos[24]). With the notation above, the eigenvalues of
P(A, B) consist of the nin, values p(\;(A4), X;(B)) over all possible (ordered)

pairs (1,7), 1=1,...,n;, j=1,...,n2.

" 16



Bialternate product
Let A and B be n X n matrices. To introduce the bialternate product of A and

B, we first establish some notation. Let V™ be the In(n — 1)-tuple consisting of
pairs of integers (p,q), p = 2,3,...,n, ¢=1,...,p— 1, listed lexicographically.
That is, |

V" =[(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),..- ... y(n,n—1)). (3.5)

) (3.6)

where the dependence of f on A and B is kept implicit for simplicity. The bial-

Denote by V;* the i*? entry of V™. Denote

bpr  bps

f(p,9);(ry9)) = % (

Qpr Qps
ber  bgs

+

aqr aq‘

ternate product A- B of A and B is a 3n(n — 1)-dimensional square matrix whose

ij*t entry is given by®

(A-B)ij = f (V' V). (3.7)
Define
U(A,A) =) ppeAP - AT, (3.8)
P4

and denote the eigenvalues of the n x n matrix A by A,..., ..

Theorem 3.2. (Stéphanos [24]). With the notation above, the eigenvalues of
T(A4, A) are the in(n — 1) values

Y(Ai, Aj) == %E"bﬂ(’\?’\g'*"\g’\?)’ i=2,...,n;3=1,...,i—-1.  (3.9)
P, ,

For example, if A is 3 x 3 then o(4 - A)'= {MA2,M1)3, 2223}, In contrast,
note that in this case o(4 ®.4) = {A2, A1z, A1 A3, A2A1,A%,..., A3}, As another
example, it is easily checked (e:g. [20], [21]) that if

Q(4) = (A*-I-A-4) | (3.10)

5 As far as the properties discussed below are concerned, the particular ordering

of V" is immaterial. In the literature, it is typicaily left unspecified ({25}, [20] and
[21)).
17



for an n X n matrix A with eigenvalues Ay,..., ., then

a(Q(A)):{(_’\L—T’\l)_,m,(’\I —2)\,.) ’(1\2—;\3) ,.”,(A,,_12—,\,,) }

(3.11)

Schléflian Forms
The Schliflian forms,® discussed next, have spectral properties akin to those of the

Kronecker product and sum with the advantage of reduced dimensionality. Let z =

(z1,...,22)T and p > 2 be an integer. Denote by z!?! the N -dimensional vector
(N = ("+": ~1}) formed by the lexicographic listing of all linearly independent
terms of the form

n
ozl D pi=p. (3.12)
=1

pi20
For a given n X n matrix A, the associated (upper) Schlaflian matriz of order p
[27], [28], [26] and [29], denoted Al?], is the N;'-dimensional square matrix defined
by the implicit relationship

(A2) )l _ AP vz e IR™ (3.13)

The related form A, (the “lower Schliflian matrix”) is defined as follows.
Consider the equation £ = Az for z € IR". Then Ay, is defined as the coefficient

matrix in the equation

[7
A7 _ Al (3.14)

It is a simple exercise to show that A[;) may be alternatively defined in terms of
AWl by
.1 :
Ay o= Jim 3 [(In + hAYP — Iya]. | (3.15)

In other words, Aj,) is the Gateaux derivative of the nonlinear map A AlP)

evaluated at the identity I,, and acting on A. As such, A[) is linear in A.

6 These are also referred to as power transformations [26].
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Note. Strictly speaking, the Schlaflian forms defined here are slightly different from
those used in [28], [26] and [29] where the z!?! vector is defined by

n
C(p1,p25--->Pn) ""’1’71 2 AN Z pi=p
: i=1
20
where the C(p1,p2,...,pn) are normalizing constants chosen so that the property
|zl?!|| = ||z||” holds. While this property is a desirable one for the applications
sought in the aformentioned papers, it is not necessary in our case where only the
spectral properties of the résulting Schléflian matrices are of interest. It is indeed
a simple exercise to check that the matrices obtained here are similarily related to
those derived using the latter definition for z[?!.
The next result is essentially the same as results in [28] and [26].
Theorem 3.3. The eigenvalues of Ay, (resp. AlPl) consist of the N7 sums

(products) over distinct unordered index sets of the form
/\,'1 (A) +-- 4 /\,', (A) (resp. /\,‘1 (A) X X /\,', (A)) (316)

In contrast, recall that the eigenvalues of the Kronecker sum A @ A consist
of the n? sums A;(A) + A;j(A) over ordered pairs (i,5). In the light of Theorem
3, it is clear that o(A ® A) = o(Ay) (not counting multiplicities). Hence the

n(n2+1) X "("2+1) lower Schlaflian matrix Apy) may be viewed as a redundancy-free

- version of the n? xn? matrix A® A, as fa; as the eigenvalues are concerned. Because
of this, Af3) may be used to advantage, instead of A® A, in the application of some
of the results presented in Part I. A similar statement clearly holds for A ® A and
Al as well.
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CHAPTER
FOUR

GUARDING AND SEMIGUARDING MAPS

In this chapter, the concepts of guarding and semiguarding maps, relative to a
given domain of the complex plane, are introduced. These concepts play a key role
in subsequent developments. Several examples and some important properties are
presented. A systematic procedure for constructing guarding and semiguarding

maps for a whole class of domains of interest is also presented.
4.1 Definitions and Examples

4.1.1 Guarding Maps

The concept of guarding map will first be defined with reference to sets of square
matrices. The degree of generality in Definition 4.1 will not be required in this
dissertation however. A specialization of this concept tailored for our purposes is

given in Definition 4.2.

Definition 4.1. Let F and S be subsets of €™*" such that the set SN F is
relatively open in F. Let v: F — € be a continuous map. Say that v guards S
with respect to F if, for all A € FN S, the equivalence

A€edS <<= v(4)=0

20



holds.

Throughout this dissertation, our main interest lies in sets of n x n real ma-
trices which are stable relative to a given open subset of the complex plane. That

is, subsets S(Q) of IR™*"™ which are given by
S(Q) ={A € IR"*" :0(A) C 0}, (4.1)

where (0 is a given domain of the complex plane. At times, we choose to employ
the notation S,(§2), in which the dimension n is explicit. Note that S(Q) is an
open subset of IR"*" since eigenvalues of matrices are continuous functions of
their arguments.

The definition above of guarding maps for sets of matrices in €™*" is of a
sufficiently general nature to be useful in many problems not addressed in this
dissertation. Indeed, there are stability questions which lead to sets of matrices
which are not characterizable by stability relative to any domain in the complex
plane. One such question is that of strict aperiodicity of a matrix wherein all its
eigenvalues are real and distinct [25).

For the purposes of this dissertation, however, we introduce the following
notion of “guarding map for a domain in the complex plane.” This notion is
useful when the discussion centers around sets of matrices which are defined by
being stable relative to given domains in the complex plane.

Definition 4.2. Let 2 be an open subset of the complex plane and F a family of
n X n real matrices. Let v: F — @ be a continuous map. Say that the map v

guards Q with respect to F if, for all A € F N Sp(§2), the equivalence
A€BS. () <= v(A)=0. (4.2)

holds. In this case, we also say that () is guarded by v with respect to F. If a map
v guards a domain 2 with respect to F = IR"*" for each n, we say simply that v

guards (2.
Definition 4.3. A guarding map is said to be polynomial if it is a polynomial

function of the entries of its argument.
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We now give some simple examples of guarding maps and the associated

guarded domains. In each of these examples, n denotes a positive integer.

Examples A,

A1)

A2)

A3)
A4)

A5)

A6)

v: A det(A) guards €\ {0} with respect to (w.r.t.) IR"*", for any n.

v: A det (A @ A) guards C_ wrt IR"*", for any n. This follows from
the property (mentioned above) that the spectrum of A @ A consists of all

pairwise sums of eigenvalues of A. Note that v guards €'} as well. Another

such guarding map v is given by v(4) = det (4jy)-

v: A det(A) tr(A) guards C_ w.rt. IR,

Given # > 0, the map v : A +— det [(A4 + i8]) © (A — iBI)] guards the
domain Qf := {s : |Om(s)| < B} (see Figure 4.1). Indeed, v(4) = 0 iff A
has two eigenvalues A\; = z + ty; and A2 = z + 1y, such that y» — yy, = 28.
Therefore, if A € S(Q8) then v(A) = 0 iff A has some eigenvalues on 904,
ie., A € 35(Q%). '

Given 6y € [+5,7), v: A > det (e A © ™% A) guards the sector g, :=
{s: |Arg(s)] > 6o} (see Figure 4.2). Again, v(A) = 0 iff A has eigenvalues
A = ree’® k= 1,2 such that rie1e' — ryeif2¢=i00 = 0, je., iff ry =1y
and 6; — 6; = 26y (mod 27). Since § < 6y < , this says that for all
A € 8(R,), v(A) = 0 iff A has at least one pair of eigenvalues on 9, or &

single eigenvalue at 0. Note that Qg, = €' for 6, =§.

Given p > 0, themapv: A det (AQA—p?IQ®I) guards B(p) := {s: s3<
p*}. Here too, v guards the complement int(B¢(p)) as well. Another guarding
map for B(p) is given by v(A) = det(Al?] — p2114).

It turns out that (interiors of ) complements of guarded domains are of particu-

lar interest. For (E'_ and the open disk, Examples A2 and A6 show that the given

maps which guard these domains also guard the interior of their complements.

However, this is not the case in general, as the following examples illustrate.
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Figure 4.1:

Stability domain for Example A4

Sm(s)

Re(s)

Figure 4.2: Stability domain for Example A5
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Examples B.
B1) Given f > 0, the set 2 = {s: [Sm(s)| > B} is not guarded by v : A — det

B2)

B3)

[(A+iBI)e(A-1iBI)] wr.t. IR™" if n > 3. Indeed, one can easily construct
a matrix A € §(Q) with a pair of eigenvalues A\; = z+1iy;, A2 = z+1iy; such

_ that y; — y; = 28. For instance, take A = diag (J1, J2) where

— zZ U0 - z y1+2ﬂ
i [—yl x]’ sz—[—(y1+2ﬂ) z

and y; > B. Clearly, this cannot be done if n < 3, and Q is guarded by »
w.r.t. both IR**? and IR3*3.

For 6y € (%,7), the interior of the complement of the sector §2g,, namely,
Q= {s: | Arg (s)| < 6o}, is not guarded by v : A ++ det (¢! 4 © e~*% A)
w.r.t. IR"™" for any n > 2. Indeed, if A € S(2) has eigenvalues €'’ and
e % where § = m — 8y < 6y, then one eigenvalue of €% 4 © e~*% 4 is given
by eifoe?f — =108 = ¢i* _ =i = 0, implying ¥(A) = 0 although A is a
stable matrix.

For 6 € [§, T), the map v in Example B2 guards the set @ := {s: 6, < |Arg
(s)] < m# — 6y} wr.t. IR™ ™ for any n > 2. This fact is ascertained by
paralleling the reasoning of Example A5 and noting that

T —20p = ma.x{(02 —01) : 91, 6, € (00,7(—90) } < 26,.

If 6 € (0, I), then one can easily check that v does not guard Q w.r.t. IR"*"

for any n > 3.

A common feature of the sets of Examples B1-B3 is that they fail to satisfy the

sufficiency part of (4.2). For these sets, ¥(A) = 0 does not imply that A € 3S(S2),

even under the assumption A € S(2). The converse of the last statement does

hold for these sets however. The next subsection is devoted to such maps (“semi-

guarding maps”) and the associated domains (“semiguarded domains”). Later in

Section 4.3, we find that a large class of domains in the complex plane (boundaries

of which are defined by pofynomials) possess polynomial semiguarding maps.
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4.1.2 Semiguarding Maps

The following generalization of the concept of guarding maps will prove useful in
the development to follow.

Definition 4.4. Let F, S and v be as in Definition 4.1, with v not identically
zero. The map v is said to be semiguarding for S with respect io F if, for all

A € Fn S, the implication
A€EdS=>v(A)=0

holds. A matrix A € F NS for which v(A) = 0 is said to be a blind spot.
The analogue of Definition 4.2 for semiguarded domains now follows.
Definition 4.5. Let Q, F and v be as in Definition 4.2, with v not identically

zero. The map v is said to be semiguarding for Q with respect to F if, for all
A € F N S5(2), the implication

A€dS() = wv(4)=0

holds. If v.is semiguarding for  w.r.t. IR"*" for each n, then we say that v is
semiguarding for . A matrix A € F N §(Q) for which v(A4) = 0 is said to be a
blind spot for (2, v, F).

In the light of this definition, a guarding map for a given domain Q is simply
a semiguarding map for which the corresponding set of blind spots is empty.

The maps considered in Examples B1-B2 above are semiguarding maps for
the associated domains. A blind spot for the triplet (Q,v,F) of Example B2 is
any matrix in F which has at least one'eigenvalue in the mirror image (w.r.t.
the imaginary axis) of Q \ {0} (dashed lines in Figure 4.3). Other examples,

fundamental to the study of multiparameter families of matrices, are given next.

Examples C.
Cl) Let a, 8 be finite real numbers, with @ # §. Then the set Q@ = €'\ [a, ] is

semiguarded by the map.

v: Arvdet (A? - T— A- A)det ((A—al)(A - BI)) (4.3)
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(A proof may be found in Section 4.3.) In previous examples, the map v (guarding

or semiguarding) took the form
v(A) = det N(A) (4.4)

for some polynomial map N of A. An efﬁcienf way in which the map (4.3) of the
present example can be written in the form (4.4) is as follows. If n = 3, the matrices
(A?2-I—A-A) and ((A — al)(A — BI)) are each of dimension -'L(-g;'—ll = 3 and
n = 3, respectively, so that we can take N(A) to be their product. In case n > 3,
then 5(—"{—9 >n, and N (A) may now be taken as the product of (4% -1 — A - A)

and
(A-al)(A-BI) ©
0 I
where the identity matrix appearing in the lower right position has dimension
-"(—"2—,_—1-2 — n. The case n = 2 can be handled in an analogous fashion.
C2) Consider again the domain § of Example C1, but now with a = —oco and 8
finite. .That is, @ = € \ (—o0, f]. In this case, 2 is semiguarded by the map

v: A det (A%-T— A- A)det(4A - BI). (4.5)

4.1.3 Extension to Families of Polynomials

The family of (monic) real polynomials of degree n is isomorphic to the family
of real n x n companion matrices. That this is true may be seen by noting that the
polynomial p(s) := s”+a;8" 14 -+an—13+a, and the characteristic polynomial

of the companion matrix

" 0 1.0 . 0 7
0 010 0
A=
0 0 1
L —Qy —a; —ayl
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are identical. Stability of the polynomial p is therefore equivalent to that of the
matrix A. Consequently, stability questions for polynomials may be rephrased

as a stability question for companion matrices. A direct but inefficient approach
involves using the guarding map for € _ w.r.t. n X n companion matrices given in
Example Al. The size of the test matrix involved would be O(n?). In the special
case of companion matrices, a guarding map involving test matrices of size n may
be constructed via Orlando’s formula [30], [15]:
’ n(n-1) 1 "
detH(4) = (-1)"7 (3 I G@i+z).

1<i<k<n

Here, z,...,z, are the zeroes of p(s), and H(A) is given by

[a; a3 as 07
1 Qg Q4 0
0 a; as 0
HA)=|0 1 a 0
0 Gp-3 ap—y; 0

L0 . e .. . An_2 Gy J

Note that H(A) is the Hurwitz matrix associated with A, and as suchis n xn and

affine in A. From Orlando’s formula, it is clear that &3’_ is guarded by the map

v: Aw det H(A) w.r.t. the family of n x n real companion matrices.

An analogous construction for the study of Schur stability follows readily from

results in [31] and [18]: Define the (n — 1) x (n — 1) matrix D(4) by

r 1 apn-1 QA4pn-2 . . as ags — Qo
0 1 an—-1 . . aqg — Qg as — a;
D(A4) =
0 =—a —-a1 . . Gu—Gpyg Gupo1—Gn-3
L —ap  —a; —-a . . —~0n—3 ay — Qp—2 |

Then we have the following expression for detD(A):
n
detD(A) = II (1 — zizz).
<
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Clearly, detD(A) vanishes whenever A has a pair of conjuguate eigenvalues on the
unit circle. Note however that detD(A) does not necessarily vanish if A only has
1 (or -1) as eigenvalue. Taking this into account, we conclude that the unit disk is
guarded by v : A+ detD(A)det(I — A2?) w.r.t. the family of n x n real companion

matrices.

4.2 Generating New Guarded and Semiguarded Domains

The next proposition states properties which provide means for the construc-

tion of new guarded and semiguarded domains from known ones.

Proposition 4.1. Let F be a subspace of IR"*".

(i) Let Q be guarded (resp. semiguarded) by v w.r.t. 7. Then —Q :={—s: s €
2} is guarded (resp. semiguarded) by v_: A~ v(—A) wr.t. F.

(ii) Let Q be guarded (resp. semiguarded) by v w.r.t. F. Then Q® = {s +
a: 3 €}, a € IR, is guarded (resp. semiguarded) by vo: A+ v(A—al)
w.r.t. F.

(ii1) Let ©, and 2, be guarded (resp. semiguarded) by vy and vy war.t. F,
respectively and suppose ; N Q; # @. Then Q; N Q2 is guarded (resp.
semiguarded) by v: A~ 1n(A)ra(A4) wrt. F.

Two examples illustrating the application of Proposition 1 are presented next.

Examples D.

D1) To ensure an adequate step response, it is often desirable in the design of
compensators for linear control systems that the eigenvalues (poles) of the
closed-loop system be in the domain Q; := {s: Re(s) < —0o ; |Arg(s)| >
6 }, for some o > 0 and 6 € (3, 7) (see Figure 4.4). Letting {24 denote the

set in Example A5, and using the notation of Proposition 1, it is seen that
o(-0) o (-e)

Q1 =QeNT_ . Since guarding maps for Q¢ and €_  are available, it

follows from Proposition 1 that §2; is guarded by the map v, given by

vi(A) = det(e®? Ao e A) det((A+oI)® (4+ oI)). (4.6)
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Sm(s)

NRe(s)

Figure 4.4: Stability domain for Example D1

3Sm(s)

7 Re(s)

Figure 4.5: Stability domain for Example D2

30



D2) The domain Q; := {s: p; < [8] < pz ; |Arg(s)| > 8}, where 6 € (§,7)
and p; and p; are two positive real numbers (see Figure 4.5), arises in aircraft

controller design ([32], p. 394). To apply Proposition 4.1, write
Qz = Qo N B(pl) n int(B‘(pg))
where B(p) is as in Example A6. Thus §2; is guarded by the map v, given by

va(A) = det(e’?A © e A) det(AM — p2112) det(AH — p2I1%).  (4.7)

Since any convex domain (symmetric w.r.t. to the real axis, symmetric for
short) with polygonal boundary may be generated from the two basic domains Q8
and Qg, using the three basic operations in Proposition 4.1 we have the following
subsidiary result.

Proposition 4.2. Any (symmetric) convex domain with polygonal boundary is
guarded by a polynomial map. Moreover, Proposition 4.1 can be used to construct

a guarding map.
4.3 Maps for Domains with Polynomial Boundaries

In this section, we construct guarding and semiguarding maps for a whole
class of subsets of the complex plane. Specifically, these maps are constructed for
domains whose boundaries are given by a polynomial equation p(z,y) = 0 where

z and y denote real and imaginary parts, respectively.

Denote
Q={s=z+1iy: p(z,y) <0} (4.8)
where
k+2¢(=N - | :
pz,y)= >, przty’, (4.9)
k=0 :

is a real polynomial of degree d(p) = N. The fact that we focus on real matrices is
accounted for by considering polynomials containing only even powers of y. Thus

only domains symmetric w.r.t. the real axis are considered.
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Associate with p the real valued polynomial

. A+Xd A=A
) =p (52 257)

k+2{=N

y k+2¢
= Ym0t (3) GERO-R

k, (=0

Rewrite (4.10) as

k+2¢=N .

A= ) adtX
k=0

where the coefficients g;, are real.

With this notation,  and 02 have the alternative expressions
Q={Ae@: g1 <0}
MN={Pel: g¢(A\X)=0}

Consider the mapping N : IR™*" — IR™ %™ given by

N(A) = }: are AF @ A°.

k¢

Theorem 1 implies that with o(4) = {A4,..., s},

o(N(4)) = {g(Ai,A;): 4,5=1,...,n}.

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

Now suppose that A € 35(). Then some eigenvalue of A satisfies A\; € 09, i.e.
¢(Xi, A;) = 0. It then follows from (4.15) that N(A) is singular (det N (A) = 0).

‘We obtain the following propositions.

Proposition 4.3. Assume that v is not identically zero. Then the map

v: Av det) qued* @ A
k,l
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is semiguarding for Q.

Proposition 4.4. The map (4.16) guards § iff ¢ satisfies the condition”

g(1,2) <0 and g¢(u,B) <0 = q(Xu)#0. (Property G)

Maps such as (4.16) involve determinants of matrices the size of which in-
creases rapidly as n does. Alternative formulas, based on the bialternate product,

exist which involve matrices of dimension ﬂ%_—l-), which is approximately half that
of N(A) for large n.

Consider the mapping @ from IR"*" to IR" S i o given by

Q(A) =) qreA* - A% (4.17)

k,¢

Theorem 3.2 implies that

o(Q(A)) = {qu,(xf,\gﬂfxf)/z: i=1,...,n—1; j=i+1,...,n}. (4.18)
k,l

Note that
o(Q(4)) = {g(X i, ) i=1,...,n=1;j=i+1,..., n}. (4.19)

(Compare with Eq. (4.15).) This follows from (4.18) and the fact (implied by "
(4.10)) that

a(Mp) = gq(p,A) = %(9('\,#) +q(p, N)). (4.20)

Proposition 4.5. Suppose that detQ(A4) is not identically zero.
(a) X 02N IR = @, then the map »

v: A detQ(A4) (4.21)

7 “Q-transformability” [21].
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is semiguarding for Q.

(b) Let QN IR = US_,[ai, fi] witha; £ B1 < -+ < a; £ i <+~ < ag < Be.
Denote P(A) =det ( [J5_,(A — aiI)(A — BiI) ) where, by convention, the
factor (A — a3 I) (resp. (A— B¢I)) is omitted when a; (resp. B¢) is —oo (resp.

. +00). Then the mapping

vi: Avr detQ(A)detP(A) (4.22)

is semiguarding for Q0.

Proof. Let A € IR"™" N dS(N):

(a) If A has an eigenvalue A € OQ then )}, also an eigenvalue of A, is distinct from
A. Therefore g(A, 1) = 0 € 6(Q(A)) by virtue of (4.17). Hence v(A) = 0.

(b) Let A € 89 be an eigenvalue of A. That is, g(\,A) = 0. If A ¢ IR, then X is
also an eigenvalue of A4, distinct from A. Consequently, ¢(1,A) = 0 € o(Q(A))
and v(4) = 0. If A € IRN 8, then X € [a, Bi] for some i € {1,...,£}. Since
by assumption 4 € 9, then it is the limit of a sequence of matrices {A4}
with each Ax € S(). It follows that there is a j € {1,...n} such that
A =limg_o Aj(Ak). f X € (ai, Bi) (Bi > ai assumed) then there is a positive
K such that for all k > K

/\j(Ak) eq \ IR and A= klim /\J'(Ak).

Since {Ax} is a sequence of real matrices, we have that A = limg—eo Aj(Ak)
as well. Consequently, A must be an eigenvalue of A of multiplicity at least 2.
By virtue of (4.17), ¢(A\, A) = g¢(X, A) € 0(Q(A)), i.e. v(A)=0. If a; # B; and
A is either a; or B, then A might be a simple eigenvalue :of A, in which caser
g(X,A) = 0 is no longer an eigenvalue of @Q(A4). The case when o; and §; are
finite and A = é.‘ = f; is handled similarly. The reason for the introduction of

the second factor detP(A) in the expression (4.22) for v should now be clear.

34



Remark 4.1. Proposition 4.4 applies for the maps of Proposition 4.5 as well.

We have exhibited semiguarding maps for domains with polynomial bound-
aries. Determining whether or not these maps are also guarding requires further
investigation. One needs to check whether or not the polynomial ¢ satisfies Prop-
erty G. Sufficient conditions for Property G were obtained by Gutman and Jury
[21] for the cases in which the degree of polynomial p (or ¢) is 1,2,3 or 4. Another

result in this direction is given next.

Proposition 4.6. Suppose that
ok >0, Vk21, (4.23)

qre=0, Vk#L kL#0. (4.24)

Then ¢ satisfies Property G.

Proof. Proceeding by contradiction, assume that for some pair (), ), ¢(A, u) =0,
g(A,)) < 0 and ¢(u,z) < 0. Since the coefficients of ¢ are real, we also have
g(X, E) = 0. Set

w = g(A\, X) + q(u, B)-

Thus w < 0 and
w = q(/\, :\) + 9(/-‘7 ﬁ) - (q(/\, l‘) + q(x$ ﬁ))

= ZQH (AEX 4k pt = (Rl 4+ X2aY).
ke

From (4.10) and (4.11), we have
gko = qok, Vk 21 (4.25)

It now follows from (4.24) and (4.25) that

w=Y g0 (W 4+ p* = (OF + X0) 4+ 3 4 2* - (4 4+ 54))
k=1 :

+*un (,\k:\k+ykpk_(’\k#k +/—\kﬁk)).
k=1
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The first summation yields zero. Under assumption (4.23), the second summation

is nonnegative, as can be seen by noting that, with a = r;e/% and § = rye/%,

ad + BB — (af + aB) = r} +r3 — 2rirs cos (6; + 62)

> (r1 —r2)2.

This contradicts the fact that w < 0.

| O
Example for Proposition 4.6. Let = {s=z +iy: =z + y? < 0}. Here p(z,y) =
z +y? and ' '
1 1 1 1 1
ALu)==2+= = =222
(M ) At ght =7 s

It follows from Proposition 4.6 that ¢ satisfies Property G, and therefore that  is
guarded by both

v: A detN(A) and v: A~ det Q(A)det(A).
Here,
1 1 1 42 2
N@A)=5(AQT+IQ@A) + ;AR A~ (AR I+IQ A7)
1 1 .
=548 4)~(404), (4.26)
and

Q4 = %(A-I+‘I~A)+%A-A—%(Az-I+I-A2)

.—.A-I+-;—A-A—-;-I-A2. (4.27)
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CHAPTER
FIVE

BASIC RESULTS ON GENERALIZED STABILITY
OF PARAMETRIZED MATRICES

In this chapter, basic results on stability of pa.rametrizeé‘ matrices relative to
guarded and semiguarded domains are given.

Let r = (r1,...,7%) € U, where U is a connected subset of IR, and let
A(r) € F be a real n x n matrix which depends continuously on the parameter
vector r where F is a given family of matrices in IR"*". Given a domain Q and
an associated guarding or semiguarding map v w.r.t. F, we seek basic conditions
for stability of the family A(r), r € U, relative to 2. Throughout this section,

reference to F will be omitted for convenience.
5.1. Guarded Domain Case
Proposition 5.1. Let 2 be guarded by the map v and assume that A(r?) € S(R)

for some r® € U. Then

A(r)eS(Q) forallrelU <« "V(A(r)) #0 forallreU (5.1)

Proof. Proceeding by contradiction, suppose that A(r!) ¢ S(Q) for some r! € U.

By virtue of the connectedness of U, there exists a curve {r(t) : t € [to,?;]} within
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U, such that r(to) = r° and r(t;) = r'. Now consider A(r(t)) as ¢ increases from
to. Since A(r?) € S() and S(Q) is open, it follows that there is a t* € (fo, ]
such that

A(r(t*)) € 05(Q2).

This implies that there is an r* € U (namely r* = r(¢*)) such that
A(r‘) € 95(9).

Since v guards ©, we conclude that
v(A(r*)) =0.

This proves sufficiency. Necessity follows in a similar fashion from the definition

of guardedness of §2.
O

Remark 5.1. The sufficiency part still holds if v is only semiguarding for 0. More
specifically, if € is semiguarded by v and A(r°) € §() for some r® € U, then
v (A(r)) # 0 for all r € U implies that A(r) € S(?) forallr € U.

5.2. Semiguarded Domain Case

The next proposition is the analogue of Proposition 5.1 for semiguarded domains.

Its proof is similar to the one given above and is omitted.

Proposition 5.2. Let © be semiguarded by v and assume that A(r°) € S(Q) for
some r° € U. Then the equivalence

A(r)eS(Q) forallrelU <= A(r)eS(Q) forallr € Ua (5.2)

holds, where
U, :={r e U: v(A(r)) =0}.

Proposition 5.2 asserts that for the infinite family of real matrices {A(r) : r €

U} to be stable relative to {2, it suffices to check that the family of matrices
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{A(r) : r € U} is stable. In other words, to establish that the family {A(r) :
r € U} is stable relative to 2, one has to check that every matrix A(r), r € U, for
which v(A(r)) = 0 is indeed a blind spot, in the sense of Definition 4.5. In cases
where U, is a finite set, Proposition 5.2 therefore provides a tool for asserting the
stability of the family ' |
Remark §.2. The assumption A(r?) € () for some r® € U appearing in Proposi-
tion 5.2 is, strictly speaking, required only in the case U, = §. Thus, Proposition
5.2 may be replaced by the following two statements: (i) Let Q be semiguarded
by v and let U, = 0. Then the equivalence |

A(r)eS(Q) forallreU <« A(r®)eS(Q) forsomer® €U
holds. (ii) Let Q be semiguarded by v and let U,; # 8. Then the equivalence
A(r) eS(QY) forallreU <« A(r)eS(Q) foralrelU,

holds.
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CHAPTER
SIX

GENERAL ONE-PARAMETER CASE

In this chapter, we investigate the generalized stability of one-parameter fam-
ilies of matrices. Necessary and sufficient conditions are given for both guarded
and semiguarded domains. In addition, an expression for the largest range of pa-
rameter variations for which a given parametrized family of matrices is stable is
presented. These results are applied to the special cases of convex combinations

of two matrices or polynomials.
6.1 Necessary and Sufficient Conditions for Generalized Stability

In this section, we derive necessary and sufficient conditions for stability of a

one-parameter family of matrices
Alry=Ao+rA1+---+r"Anm , (6.1)

r € [0,1],® relative to a given domain Q@ C €. In (6.1), A, k=1,...,m, are given

n x n real matrices. In the remainder of this séction, A denotes {A(r) : r € [0,1]}.

8 In fact, the discussion of the one-parameter case applies for r constrained to

lie in any interval (not necessarily compact).
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The case in which a polynomial guarding map for Q is available is considered
first. We then consider the case in which a polynomial semiguarding map is

available.

Evidently, whenm =1 and Q = (fl’ —, this problem reduces to that of Hurwitz
stability of the convex hull of two real matrices, which was solved independently
by Bialas [15] and Fu and Barmish [16].

Let v be a polynomial guarding map for §2. Then v(A(r)) is a polynomial
in r of degree s < m - d(v(4)), where d(v(4)) is the degree of v(A), viewed as a
multivariate polynbmial in the entries of A. If the family A is nominally stable
relative to 2, i.e. A(r?) € S(Q) for some r° € [0, 1], then ¥(A(r)) is not identically

zero. In this case we may write

8

v(A(r)) = Z r'vi(4o,..., Am). (6.2)

i=0

Note that vo(Ag,...,Am) = v(A(0)) = v(Ay). For simplicity, denote

vi :==vi(Ao,...,Am). (6.3)

From Proposition 5.1, it now follows that the family A is stable relative to 0
iff (i) Ao is stable relative to 2 (i.e., Ao € §(£2)), and (ii) the univariate polynomial
v(A(r)) has no zeroes in [0,1]. The following theorem is merely a restatement of
this fact in terms of a stability condition on a related matrix with respect to a
new domain in €. The usefulness of this step will become apparent in our study

of stability of two-parameter families of matrices.

Theorem 6.1. Let v be a polynomial guarding map for 2, and v, t = 1,...,s,
(s > 2), be as in Eqs. (6.2), (6.3). Let A9 = A(0) € S(Q). Then A(r) € S(Q)
for each r € [0, 1] iff the matrix B(Ao,...,Am) € S(E), where Z:= €'\ [0, 1], and
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B(A,y,...,Ap) is given by

-0 1 0 0 7
0 010 0
B(Ao,... Am) = | . . (6.4)
0 1 0
0 . . . . .0 1
I —
Ve V,

Applying Theorem 6.1 assumes ’alvailability of a guarding map v(A) explicitly
in the form of a polynomial in the entries of A. However, examples considered in
Chapter 4, as well as results on a whole class of domains given in therein, reveal

that guarding and semiguarding maps often occur naturally in the form
v(A) = det N'(A). (6.5)

Here, N is a polynomial mapping defined on IR"*". A result analogous to Theo-
rem 6.1, but not requiring expansion of the determinant (6.5), is now formulated.

Let the polynomial mapping N'(A) have degree N := d(N). With A(r) asin
Eq. (6.1), we may rewrite

N(A(r)) =) r'Ni(4o,..., Am) (6.6)

=0
where ¢ < mN is the degree of N(A(r)) in the parameter r. Note that
No(Ao,.l..,Am) =N(Ao). (6.7)

In the sequel, V; denotes Nj(Ao,...,Am) for i=0,1,...,q.
Theorem 6.2. Let Q be guarded by a map v of the form (6.5), and let 49 € S().
Then A(r) € §(Q) for all r € [0,1] iﬁ'AM(Ao, ..oy Ap) € §(O) where
o I . . 0
M(Ao,...,Am) = : 5 P (6.8)
My . .. —My,
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with
M; = N7 (Ao)Ng=i, t=0,...,9-1 (6.9)

if ¢ > 2 and |
M(Ao, .o ,A'm) = —N—I(Ao)./vl (610)

ifé = 1. Here © = €'\ [1, 00).
Proof. From Proposition 5.1, we have A(r) € §() for all r € [0,1] iff

V(A(r)) # 0 for all r € [0,1]. | (6.11)

Since Ap € S() and v guards 2, it follows that v(Aq) = detN(Ag) # 0. Therefore
My is invertible. Thus (6.5) and (6.6) imply

v(A(r)) =det Ny det(I +rMy_1 +---+1IMp ). (6.12)
This implies that v(A(r)) is nonvanishing for-all r € [0,1] iff
x(p) :=det( pI T+ p? ' My_y + ...+ pMy + M) #0 (6.13)

for all 4 € [1,00), where p := 1. Since x(u) is the characteristic polynomial
of M(Ao,...,Am) if ¢ > 1 (also of —M,_ if ¢ = 1), we have that A(r) €
S(Q2) for all r € [0,1), iff M(A,,...,Am) has no eigenvalues in (1, 00).
O
Thus the stability of M(Ay,...,An) relative to © is necessary and sufficient
for stability of the family A relative to the guarded domain Q. In the case where
v is merely semiguarding for § and the matrix M (Ao, ... ,Am) is well-defined,
the condition M (Ao, c+yAm) € S(Z) remains sufficient for stability of the family
A, but is no longer necessary. (In the formulation of Theorem 6.1, an analogous
statement holds, with M replaced by B.) Specifically, if M (Ao,. .«yAm) has
no eigenvalue in [1,00) and v is semigixa.rding for Q, then the family A is stable
relative to . However, the test is inconclusive if M (Ao, ..., Am) has an eigenvalue

in {1, 00).
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Let then Q be semiguarded by a map v of the form v(A) = detN(A) and
suppose that v(Ag) # 0. The matrix M(Aq,...,Am) given by (6.8) (or (6.10))
is well defined since v(A4o) = det(N(Ao)) # 0. Define the critical subset of the

spectrum of M(Ao, - ,Am) by
L= o(M(Ag,...,Am)) N [1,00). (6.14)

In case I, # 0, denote this set by {u1,...,pe}. Since p =1, the set U, = {r €
[0,1]: V(A(r)) = 0} is in this case given by {u7',...,u;'}. Proposition 5.2 now
yields the following.

Theorem 6.3. Let 2 be semiguarded by a map v of the form (6.5) and suppose
that v(Ag) # 0. H X, =0, i.e. M(Ao,...,An) has no eigenvalues in [1,00), then
the family A is stable relative to Q iff 49 € S(R). If, however, Xy = {p1,..., e} #
@, then the family A is stable relative to Q iff

Ap7')eS(Q), i=1,...,L (6.15)

Remark 6.1. A result analogous to Theorem 6.3 may be obtained with v a polyno-
mial map rather than being specifically of the form (6.5). The matrix B(Ao,...,Am)
then plays the role of M(Ag,...,Am), and the assumption v(4¢) # 0 is then no

longer relevant.
6.2 Maximal Interval of Stability

Let 2 be an open subset of the complex plane guarded by vq and consider

again the parametrized family of matrices
A(r) = Ao+ rA1 +... + 1 A™ (6.16)

where now the range of the real parameter r is not specified. In this section, we
assume that Ag is stable relative to 2 and seek the largest range of parameter
values for which the family (6.16) is stable. Specifically, we seek the largest open

interval (min, Tmax ) containing 0 such that
A(r) € S(R) for each r € (Tmin,Tmax)- , (6.17)
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Note that since S(f2) is open and A(r) is continuous in r, Ay € () guaran-

tees the existence of an open interval containing 0, say (—e¢, €), such that

A(r) e S(Q)  forall r € (—¢,€).

~ We use the following notation: If R is a square matrix, denote by At (R)

the smallest positive eigenvalue of R with the convention A}, (R) = +o0o when R
has no positive eigenvalue. Similarly, denote the largest negative eigenvalue of R -
by Ao.x(R) and set AL, (R) = —o0 if R has no negative eigenvalue.

The next result gives a closed form formula for rp;, and ryax.

Theorem 6.4. Let v, Q and B(Ay,...,Am) be as in Theorem 6.1 and assume
that Ag € S(2). Then the largest open interval containing 0 for which

A(r) € S(R) for all r € (Pmin, "max)

is specified by
Tmin = Agax(B(A4o0y.. ., Am)) (6.18)
rmax = AL (B(4oy- -, Am))- (6.19)
Proof. Let r < 0 and ¥ > 0 be any two given real numbers. Then A(r)
is stable relative to  if and only if the matrix B(Aq,...,Am) given by (6.4)
has no eigenvalues in (r,7). On the other hand, by construction the interval
(Aax(B(Ao,- -, Am)), AL, (B(Ao,- .., Am))) is the largest open interval contain-

ing 0 in which B(Ao,...,Am) has no (real) eigenvalues.® The result follows.
O

6.3 Applications to the Convex Hull of Two Matrices or Polynomials

As an application of the results in Section 6.1, we consider Hurwitz and Schur

stability of the convex hull of two real matrices or polynomials. For the former

9 Note that B(Ao,...,Am) is nonsingular since 49 € S(2) and Q is guarded
by v.
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problem, a known result is obtained [15], [16]. For the latter, the result on polyno-
mials appeared recently in the literature [18] while the result on matrices obtained
below appears, to the author’s knowledge, for the first time here. It is worth point-
ing out that generalized stability criteria for the convex hull of two polynomials,
though interesting in their own right, are very instrumental in dealing with more
general polytopes of polynomials. Recall indeed that Bartlett, Hollot and Lin [17]
showed that in order to check the stability of a polytope, it suffices to check its
edges. 4
Given two n x n real matrices Ag and A;, the convex hull co(Aq, A;) of A
and A; is the set of matrices
A(r)=(1-r)A¢ +r4A
= Ao + r(A; — Ao), (6.20)
with r € [0,1]. Similarly, given two real nth order monic polynomials py and p;,
the convex hull co(pg,p1) of po and p; is the set of polynomials
p(r)=(1-r)po +rp1
= po + r(p1 — po), (6.21)

6.3.1 First application: Hurwitz stability
Let Q@ = &'_, which we know to be semiguarded by v : A — detN(A) w.r.t.
IR"", where N'(A) may denote either Ay or A@® A.

Corollary 6.1. Assume A, is Hurwitz stable. Then co(Ay, 4;) is Hurwitz stable
iff N=1(Ao)N (A1) has no eigenvalues in (—o0,0]. Here, N(A) denotes either A
or A A.

Proof. Since N is linear,
v(A(r)) = det N(Ao + (41 — Ao))
= det (N(Ao) + TN(Al - Ao))

Hence Ny = N(Ag) and Vi = N(A; — Ap), in the notation of Theorem 6.2.
Applying Theorem 6.2 with ¢ = 1 yields that co(Ag, A;) is Hurwitz iff M(A4,, 4; —
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Ag) = —N~1(Ag)N(A; - Ao) € §(O), i.e. has no eigenvalue in the interval [1, o0).
Finally, —N; N (41 — Ao) = I — N~1(A4s)N (A1), and the result follows.
O

Clearly, Corollary 6.1 may be applied to the the convex hull of two polynomials
po and p;, with, A¢ and A; beingAthe companion matrices associated with po
and p;, respectively. The size of the resulting test matrix would then be O(n?).
However, by taking into account the specific structure of the problem at hand, it
is possible to obtain test matrices the size of which is-O(n). In the case of nth

order real (monic) polynomials, or, equivalently, n X n real companion matrices,

we have indeed seen that = '_ is guarded by v : A — detH(A), where H(A)
denotes the n x n Hurwitz matrix associated with the companion matrix A (see

Section 4.1.3).

Corollary 6.2. Assume that the polynomial pg is Hurwitz stable. Then co(pg, p1)
is Hurwitz stable if and only if the n X n matrix H~!(po)YH(p1) has no eigenvalues

in (—o0,0]. Here, H(p) denotes the Hurwitz matrix associated with the polynomial

D.

Proof. The proof of Corollary 6.2 follows along the same lines in the proof of
Corollary 6.1 by noting that the equality

H(Ao + r(A1 — Ao)) = H(Ao) + r(H(A1) — H(4o))

still holds even if H is only affine.

6.3.2 Second application: Discrete time (Schur) stability

Let §2 be the ball of radius p-> 0,i.e. heset {s: |s| < p}. From Example A6, Q2 is
guarded by v : A — detA(A) where N(A) may be taken as either AQ A—p?IQI
or Al?) — p2[12], Although the latter map is preferable from a computational point

of view, the former is used here for convenience.

47



Denoting A; — Ag by A;, we have that
N(A(f‘)) = N(Ao + rx‘il)
= (Ao ® A)) = p? IR I +r [Ao®fil + 4, ®Ao] +r24; ® 4;

= No(Ao, z‘il) + TN](A(),/L) + TzNz(Ao, .‘11) (6.22)

We now apply Theorem 6.2 with Ao, N} and N; as in Eq. (6.22) and A, identified
with A;.

" Corollary 6.3. Assume all eigenvalues of Ay have magnitude less than p. Then 7
the same is true for any matrix in co(Ag, 4;) iff M(A,, z‘il) has no eigenvalues in
(1, 00), where

0 I

M(AO,J‘{I) = "No—lNz __NO—INI (6.23)

and Ny, NV; and N, are as in (6.22).

In the case of Schur stability of co(po, p1 ), we make the additional assumption
that p; is Schur stable, for simplicity. For real companion matrices (hence real

polynomials), we have seen that the unit disk is guarded by (see Section 4.1.3).

v: A detD(A) det(I — A?). (6.24)

Corollary 6.4. Suppose that py and p; are Schur stable. Then co(py, p1) is Schur
stable if and only if the matrix D~!(po)D(p; ) has no eigenvalues in (—o0,0). Here,
the matrix D(p) is the one defined in Section 4.1.3.

Proof. Let Ay and A; be the companion matrices associated with p, and p;,
respectively. Proceeding as before, we have that co(po,p;) is Schur stable for all
re(0,1)iff '

detD(A(r)) #0 and det(I — A%(r)) #0, (6.25)

for all r € (0,1). The last requirement of Eq. (6.25) indicates that A(r) (resp.
p(r)) has no eigenvalue (resp. zero) %1 for all r € (0,1). As argued in [31] and
[18], that is always guaranteed under the assumptions made. Specifically, if pp and
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p1 are Schur table, then po(1) and p;(1) are both strictly positive. It follows that
(1= r)po(1) + rpi(1) > 0 for all r € (0,1). Proceeding in a similar fashion for —1,
we obtain (1 — r)po(—1) + rp1(—1) < 0 for all r € (0,1). Therefore, we only need
to deal with the first part of Eq. (6.25). The result then follows by following the

same steps in the proof of Corollary 6.3.

O
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CHAPTER
SEVEN

STABILITY OF MULTIPARAMETER FAMILIES

This chapter is devoted to the stability of families of matrices depending on
more than one parameter. Both the two- and three-parameter case relative to
guarded domains are considered. Examples illustrating the method are presented

for the two-parameter case.
7.1 Two-Parameter Families

In this section, we consider stability of two-parameter families of matrices
relative to a domain §2 endowed with a polynomial guarding map vq which we
assume to be real.’ The matrix families we study are of the general form

f14i=m

A(ry,ry) = Z TlierizAil,iz

11,i3=0

=Aop + iAo tr2doi+ -+ 12" Aoym (7.1) |

10 A1l of the relevant examples considered thus far are of this type. In particular,
Examples A4 and A5, for which complex-valued guarding maps were given, admit
real-valued guarding maps (see Section 4.3).
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with each 4;; € IR"*" and (rq,r2) € [0,1] x [0,1].1!
Assume that A(0,0) = Ao € S(f2). Proposition 3 then implies A(ry,r2) €
S() for all r1, r2 € [0,1] iff

Ve (A(r; ’ 1‘2)) -‘,£ 0 (72)

for all (ry,r2) € [0,1] x [0,1]. Since both vq and A(ry,r;) are polynomial in their
a.rgurhents, we may write |

f1+12=3

VQ(A(fl,fz))= Z rli‘rzi’uiz,iz (7.3)

l'l,l'z=0

where s is the degree of this bivariate polynomial and the v; ; are scalar coefficients.

We have
Vo,o = VQ(A(O, 0))

For simplicity of notation, let vq(ri,r2) denote vq(A(r1,r2)). Note that
vo(ri,r2) is not identically zero since vpo # 0 by virtue of the assumption
Ao € S(2) and the fact that Q is guarded by vq.

Before proceeding to the general case, we first eliminate the (albeit simple)
special case s = 0. This corresponds to vq(r1,r2) = vq(0,0) and is thus nonzero
for any r;,r2 € [0,1]. Hence, A is stable relative to .

Consider now the case s > 1. To proceed, assume that at least one coefficient
among v, and vg,, in the expansion (7.3) is nonzero. Without loss of generality,
let vy, # 0. We may now rewrite (7.3) in the form of a univariate polynomial in
r:

va(ri,ra) = ao(r1) + ar(ri)rz + - - + ap~1(r1 Y287+ arg’ (7.4)

where each coefficient a;(r;), i =0,...,5—1isa polynomialin r;, and a, = vp,s

is independent of r; by assumption.

11 No generality is lost by taking the parameters to lie in [0,1]: any compact

intervals may be considered.
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Motivated by the one-parameter case, form the r1-dependent companion ma-

trix
-0 1 0 0 7
0 0 1 0 0
B(ry) := . . e e . (7.5)
0 . T | 0
. ee e 1
b_ao(ﬁl _oi(n) L _oe—1(r1)

For any r;, the eigenvalues of B(rl) coincide with the zeroes of va(r1,rs2) viewed
as a univariate polynomial in rp. Therefore, the bivariate polynomial vq(r1,72)

does not vanish for 0 < r;,rp < 1iff
B(ry) € S(E) for each r; € [0,1] (7.6)

(recall that == €'\ [0,1]).

Consequently, a stability question for a two-parameter family of matrices has
been reduced to a similar question for a related one-parameter family relative to
the speciﬁé domain =. Note, however, that unlike , only a semiguarding map is
available for E (see Example C1).12

From Example C1, the map vz given by

ve(4) = det (42 - I — A - A)det(A(A — 1)) (1.7)

is semiguarding for =.-An application of Proposition 5.2 now yields that B(r1) €
S(E) for all ry € [0,1] iff B(0) € S(E) and

B(r1) € S(E) forall ry € Ue (7.8)

where

Uw = {ri €0,1]: v=(B(m)) = 0. (7.9)

12 We do not know at this time whether or not a polynomial guarding map for

= exists.
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From (7.7), it is clear that vz is a polynomial mapping in A. Hence v=(B(ry))
is a polynomial in the parameter r;, which we assume not to be identically zero.
Thus the set U, is finite.

For the case in which U,, is empty, we have, by Remark 5.2, that B(r;) € S(Q)
for all r; € [0,1] iff B(0) € S(Z). Hence, in the current setting, A is stable relative
to Q iff B(0) € S(E).

Suppose, on the other hand, that U, =: {y1,...,ue} where the y; belong
to [0,1]. The requirement (7.8) then yields that B(y;) € S(E), i =1,...,0 s

necessary and sufficient for stabiliAty of the family A relative to 2.
7.2 The Case of Three or More Parameters

The stability of two-parameter families of matrices relative to a semiguarded
domain, discussed next, exhibits the essential difficulties of the three-parameter
case relative to a guarded domain.

Let A denote the family {A(ry,r2): r1, r2 € [0,1]} where A(r1,r2) is as in
Eq. (7.1).. Assume that A(0,0) = Agp € S(Q) where Q is now assumed to be
semiguarded by a real polynomial vq. From Proposition 5.2, we have that A is
stable relative to €2 iff

A(ry,12) € 8(Q) for all (ry,r;) € UD (7.10)

where
U = {(r1,r2) € [0,1] x [0,1] : va(A(r1,r2)) = 0} (7.11)
With the notation of Section 7.1, we obtain by proceeding in a similar fashion

that
UD = {(r1,r2) € [0,1] X [0,1] : r; € o(B(r1))} (7.12)

where the companion matrix B(r;) is as in Eq. (7.5) (s > 2 assumed for simplic-

ity).
Applying Proposition 5.2 a second time with the assumption B(0) € S(Z)
yields that B(r;) € S(Z) for all r; € [0,1] iff

B(ry) € 8(B) for all ry € UY (7.13)
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where

U$) = {r1 €[0,1]: v=(B(r1)) = 0}. (7.14)

Clearly v=(B(r;)) is a real polynomial which we assume to be not identically
zero ( this is the case if, for example, B(0) is not a blind spot). Thus USY is finite.
I US = 0 then B(r,) € §(E) for all r; € [0,1]. This in turn implies that US = @
and hence that A is strable relative to Q. Assume now that U$) =: {1y pe} #
0. Again, if B(ui) € S(E), i =1,...;£ then A is stable relative to . Thus the
case of interest is when not all B(y;), ¢ = 1,...,£ are blind spots. Let us then
assume, without loss of genera.lify, that B(u;) € S(8), ¢ = 1,...,L. Notice that
the p; are precisely all the values of ry in [0, 1] for which some eigenvalue of B(r;)
enters the interval [0, 1].

To each p;, associate {A],..., )%}, the set of all eigenvalues in [0,1] of the
matrix B(y;) and define the set

25:2) = {(,U,,A{) pi=1,...,¢ j=1,... aji}- (715)

The set 22‘,’) is clearly a subset of U(o). Difficulties arise upon finding that
A(ry,r2) € §(Q) for all (r1,r2) € T, Indeed, this need not imply that A is

stable relative to 2 since Ec, is, in general, a proper subset of Ug) ),

7.3 Applications

In this section, we apply some of tﬁe results obtained in Section 7.1 to two ex-
amples. The first example deals with Schur stability, and the second with Hurwitz
stability.

7.3.1. Example on Schur Stability
We apply the pfocedure deécribed in Chapter 7 to the stability of the family

A of matrices

A(ry,ra) = [—-m, m —rz] ’

L | r2
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ry, ro € [0,1], relative to the unit disk. It is straightforward to check that this
family is unstable, and that only two members of the family are Schur unstable,
namely those corresponding to (ry,r2) = (0,1) or (1,1). As an illustration, this
example is now tackled using the techniques presented in Chapter 7. A
Note that A(0,0) = 0 is Schur stable. From Example A6 of Chapter 4, a

guérding mép vg for the unit disk is
va(A) :=det(A? — 112

where Al? is given, for a 2 x 2 matrix A, by |

2 2
aiy 2a11a12 ais
a11a21 ariazz + aijsds; ayadsg
2 2
asy 2021022 ass

We obtain
va(A(r1,r2)) =15~ 1—2rery + (5 + 2)r2 - 2rary +2rp — 18

where the highest power of r; has coefficient equal to —1 (nonzero and independent

of r2). We may therefore proceed to form the matrix

B(ry) =

NO OO
o

+ OO0 RO
|
t_\,:oo»-aoo
~N

r242

Checking Schur stability of the family A now reduces to checking whether or
not B(rz) € S(E) for all r; € [0,1]. Here, a semiguarding map for Z is given by

vz(A) = detQ(A)det(A(A - I)).
For the example at hand, the critical set is given by

Ui = {7'2 € [0, 1] : V,-_-'_'(B(r‘g)) = 0}
= {1}.
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It follows that B(rz) € S(Z) for all r, € [0,1] iff B(ry) € S(Z) for all rp € Uy,
i.e. iff B(1) € S(E). The eigenvalues of B(1) are —i, i, —2, 0 and 1. Therefore
B(1) ¢ S(Z) implying that the family A is not Schur stable. It is indeed easily
seen that for (r;,r;) given by the critical pairs (0,1) and (1,1), A(r1,r2) is Schur

unstable.

7.3.2. Example on Hurwitz Stability

In this example, Q = &_ and

_[=145rry +3r2 2—Triry — 12
A(r1,r2) = [ -2+ 2r2 ~1—rirg |’

Note that

Ao = A(0,0) = [Z; _21]

is Hurwitz stable. A semiguarding map for (2 is given by

va(A(r,r2)) = detApy(r1,r2).

Proceeding as in the previous example, we obtain a test matrix B depending
on the parameter r;. In this case, U, = {%,%,1}. Forr; = %, B(r;) has two

eigenvalues in the interval [0, 1], one of which is %, implying that A(%, 2) is Hurwitz

unstable (its eigenvalues are i@). In fact in this case B(0) is unstable relative

—

to =.
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CHAPTER
EIGHT

INTRODUCTION TO PART II

Part II of this dissertation is devoted to the stabilization of nonlinear control

systems. Given a nonlinear control model
z=f(z,u), t20 (8.1)

where f : IR" x IR™ — IR" is a smooth mapping satisfying f(0,0) = 0, we seek
to find a state feedback control law u(z) (with u(0) = 0) which stabilizes (the 0

equilibrium of the) closed-loop system
z = f(z,u(z)), t2>0. (8.2)

This would implicitly guarantee the existence of a neighborhood of the origin,
called a region of asymptotic stability (RAS for short), such that all trajectories of
the closed-loop system starting within that neighborhood asymptotically converge
to the origin.

The size of the RAS is usually not stated as an ezplicit: control objective.
The reason for this is the lack of systematic analytical tools for the synthesis
of feedback control laws achieving speciﬁcations on the RAS. The importance of

obtaining such tools is clear, and has been emphasized in [33].
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The traditional approach based solely on linearization at an operating point is
often considered unreliable from a stability point of view and can yield unsatisfac-
tory performance, especially when the system is highly nonlinear and undergoes
large motions. An alternative design method consists in repeated testing of the
performance of the closed-loop system for each of a set of possible stabilizing con-
troi laws. Since approximation of the obtained RAS is often very difficult, each of
these. tests typically involves many simulations of the closed-loop dynamics, and
the method is hence very costly [34). '

The local nature of feedback stabilization of nonlinear control systems is con-
sidered to be a serious restriction for engineering applications. In practice, tech-
niques for determining whether a nonlinear control system can be stabilized within
a prescribed region of asymptotic stability are crucially needed.

Ideally, the problem of stabilization with a prescribed RAS may be stated
as follows: Given an open connected region D C IR", does there exist a smooth
feedback control u(z) such that the origin of (8.2) is asymptotically stable, with D
being the corresponding domain of attraction (i.e. the largest RAS). Analytically
speaking, this problem may be stated in terms of Zubov’s equation ([35]) as that of
finding a smooth feedback u(z), and positive definite functions V, ¢ : IR" — IRy
such that the following holds

3 @il ua) = 4z), ae€D (53

with V(z) — oo as ¢ — 0D or |z| — oo.

Besides being extremely untractable this setting is not practically motivated.
In control systems design one is rather interested in synthesizing a feedback control
law which stabilizes the given nonlinear system, guaranteeing in: addition that
a “sufficiently large” prescribed fegion of the state space (dictated by practical
considerations) lies within the resulting domain of attraction. 7

Despite many recent advances in some qualitative concepts of nonlinear con-

trol theory, few techniques exist for the control of systems described by nonlinear
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mathematical models. In practice, linear systems-based methodologies are still the
most widely used. These methodologies almost invariably use a combination of
linear control theory and Lyapunov methods to achieve the required stabilization
task.

Let us rewrite System (8.1) in the more suggestive form

z = Az + Bu + h(z,u) (8.4)
where
of :
A="loo (8.5)
0
B == a—£ |(0,0) (86)

and h represents higher order terms. Then it is well known that if the linear part

of (8.4) is controllable, i.e.
rank[B, AB,..., A" 'B] = n, . (8.8)

then there exists a linear state feedback u(z) = Kz, K € IR™*", such that the

zero solution of the closed-loop system
t=(A+ BK)z + h(z,Kxz) (8.7)

is asymptotically stable. This guarantees, as we just mentioned, the existence
of a neighborhood (depending here on the feedback gain matrix K) containing
the origin with the property that it is attracting. An interesting feature of this
technique, commonly referred to as pole assignment, is that, except for the single
input case, the stabilizing feedback gain K is not unique. A question of interest
is then to what extent can one exploit this non-uniqueness toward controlling the
size of resulting RAS’s ? The goal of Part II is to precisely delineate a class of
nonlinear systems for which favorable answers to such questions are obtainable.
In the next chapter, requisite background material is presented. In Chépter
10, sufficient conditions are obtained for the existence of a linear feedback stabi-

lizing an equilibrium point of a given nonlinear system with the resulting region of
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asymptotic stability (RAS) containing a ball of given radius. Conditions for global
stabilization are also given. Feedback stabilization is achieved while satisfying a
certain robustness property. Synthesis of the desired feedback control laws rests
on the solution of certain nonstandard questions in linear systems (Chapter 12).
These questions are addressed successfully for the case of planar systems (Chap-
tervll), for which a complete design methodology is achieved. In Chapter 13,
the results of Chapter 11 are extended to the design of a two-time scale feedback
stabilization of a class of singularly pérturbed control systems within cylindrical

RAS’s. Examples and simulations illustrating the method are presented.
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CHAPTER
NINE

BACKGROUND FOR PART II

This chapter presents requisite background material for the remaining chap-
ters. After a short description of the concept of eigenstructure assignment in linear
systems in Section 9.1, we proceed to recall some basic results from Lyapunov the-
ory, including a criterion of Krasovskii, in Section 9.2. In Section 9.3, a result of

Chow and Kokotovic for singularly perturbed nonlinear control systems is given.
9.1 Eigenstructure Assignment

Given a linear time-invariant (LTI) control system
z = Az + Bu (9.1)

where A € IR"™", B € IR"™™ and a set of desired closed-loop eigenvalues
{A1,.-.,An}; the pole assignment problem in linear systems concerns the ability
of finding a state feedback law u(z) = Kz, K € IR™*", such that the eigenvalues
of the closed-loop matrix A + BK coincide with Ay,... ,;\,,. Conditions under
which such a property holds are well known [36]. It is also well known that when
these conditions are met, the specification of a desired set of eigenvalues does not

uniquely determine the feedback gain matrix K, except in the single input case.
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The eigenstructure assignment approach to linear control systems design con-
sists in exploiting the degrees of freedom that are available in pole assignment to
obtain well conditioned closed-loop systems ([37], [38], [39]). It turns out that
the design freedom available beyond pole assignment is that of selecting a corre-
sponding set of eigenvectors from appropriate vector spaces. To see what these

are, simply note that if (A + BK)v; = v, then v; € F()\;), where
FA):={z € R*: (MI- A)z € R(B)} (9.2)

where R denotes the range space of matrix B.

A desirable property of any control design is that the eigenvalues of the closed-
loop matrix be insensitive to perturbations inherent to the model. It is well known
in numerical analysis that the sensitivity of the eigenvalues of a non-defective
n X n matrix M (i.e. M has n linearly independent eigenvectors) depends on the

condition number given by [40]
&(V) = IVIIIV (9.3)

where V is a matrix of eigenvectors of M. The closer the condition number
to the value 1 (its minimal value), the lower the sensitivity. It is a fact [41]
that the minimal value 1 is achieved when the matrix M is normal (i.e. satisfies
M TM = MMT) thus making the class of normal matrices the least sensitive of
all.

The problem of designing a feedback gain which minimizes the condition
number of the closed-loop matrix is studied in [38], where it is referred to as

robust eigenstructure assignment.

Let {\1,...,An} be a self-conjuguate set of desired closed-loop eigenvalues. If
{v1,..., v,.} is a set of eigenvectors of A+BK corresponding to {A1,..., A}, then
v; € F(X), i =1,...,n, where () is given by (9.2). Conversely, if it is possible to
select n linearly independent vectors vy, ..., vy, such that v; € F(X;), ¢t =1,...,n,

then there exists a feedback gain K such that the closed-loop matrix A + BK has
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A1,...,An as its eigenvalues with v;,...,v, being the corresponding eigenvectors.

To see this, note that v; € F, 1 =1,...,n, implies that
(MI—A)v; =Bg;, t=1,...,n - (94)
for some m-dimensional vectors g,...,gn. Rewritting (9.4) as
Av; + Bg; = f\gv;, t=1,...,n, o (9.5).
it is seen that K is obtained by solving the equations
Kvi=g¢g;, t=1,...,n. (9.6)
Setting V = [vy,...,v,] and G = [g,, ..., gs), we obtain
K=GVv~l (9.7)
By selecting the vectors vy,...,v, in such a way that the condition
Ai=Xj = 0; = v;

holds, it can be shown that K can be taken to be a real matrix.

In the light of this discussion, it is clear that if one were interested in ren-
dering the closed-loop matrix normal, then one would need to be able to select n
orthogonal vectors vy, ...,v, from F(X;),...,F(Ay), respectively. This issue will

be pursued further in subsequent chapters.
9.2 Lyapunov Stability of Nonlinear Systems

This section is devoted to the concept of Lyapunov stability of nonlinear
autonomous systems. These are systems described by a nonlinear ordinary differ-

ential equation of the form

&(t) = f(z(t)), t=0 (9.8)
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where z € IR" and f: IR" — IR" is a Lipschitz continuous mapping. A vector
z. is said to be an equilibrium point of (9.8) if f(z.) = 0. Here, it is assumed
(without loss of generality) that z. = 0, i.e. the origin is an equilibrium point for
(9.8).

Lyapunov stability is concerned with trajectories of (9.8) starting near an
eqﬁilibrium point. Roughly speaking, the equilibrium point is stable if arbitrarily
small perturbations of the initial state about the equilibrium position result in
arbitrarily small perturbations of thé corresponding trajectories. This is made
more precise in the following definition where || denotes a norm in IR™ and z(t, z9)

denotes the trajectory of (9.8) starting at zo at time t = 0.

Definition 9.1. The equilibrium point 0 is (Lyapunov) stable if for each € > 0,
there is a § > 0 such that

|:ro| <6 = |.’t(t,$o)| <e VE20.

The equilibrium point is said to be asymptotically stable if it is stable and there
exists a 8o > 0 such that

|zo| < 66 ==> |a(t,z0)] — 0 ast — o0. (9.9)

It is said to be globally asymptotically stable if the right hand side of (9.9) holds
for every initial state z¢ in IR".

A continuous function V : IR"™ — IR is said to be a locally positive definite
function (l.p.d.f.) if it satisfies the following conditions: (i) V(0) = 0 and (ii)
V(z) > 0 for all z # 0 in a neighborhood of the origin. It is said to be a positive
definite function (p.d.f.) if, in addition, Condition (ii) holds for all z € IR" and,
in addition, V(z) — oo as |z| — o0.

If V is continuously diffefentiable, let V denote the derivative of V along
trajectories of (9.8), i.e. : :
V = (VV(z))" f(2). - (9.10)
The following classical theorem [42] gives a sufficient condition for the equilibrium

point 0 of System (9.8) to be asymptotically stable.
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Theorem 9.1. The equilibrium point 0 is asymptotically stable if there exist a
continuously differentiable Lp.d.f. V(z) such that —V is also an .p.d.f. V is then
said to be a Lyapunov function for the nonlinear system (9.8). The equilibrium
point is globally asymptotically stable if V and —V above are positive definite
function. ’ |

Suppose that the mapping f is continuously differentiable and let A denote
the Jacobian of f evaluated at the equilibrium point 0, i.e.

of ’
= 5.(0). | (9.11)

Then the nonlinear system (9.8) may be written as
z = Az + h(z) (9.12)

where h(z) := f(z) — Az denotes the higher order terms and satisfies

. |h(z)|
1 —_— = . 9.13
lelo 2] (9.13)

The system
z = Az (9.14)

is referred to as the linearization of System (9.8) around the equilibrium point 0.

Since asymptotic stability is, in nature, a local concept, it is of interest to
know under what circumstances will it be possible to infer stability (or insta-
bility) conclusions of the equilibrium point of (9.8) based on the corresponding

linearization. The next theorem deals with this question.

Theorem 9.2. If all the eigenvalues of matrix A have negative real parts, then
the equilibrium point 0 of System (9.8) is asymptotically stable. If at least one

eigenvalue of A has a positive real part, then 0 is unstable.

For the ‘critical’ case in which A has at least one eigenvalue on the imaginary

axis but none in the right-half plane, the linearization above is insufficient to

determine stability.
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A region of asymptotic stability (RAS) of the equilibrium point 0 (assumed
to be asymptotically stable) is any nonempty subset S of IR", containing 0, such
that

Vzo €85, ‘lir{.lo |z(t, z0)| = 0. (9.15)

The largest such set, denoted D, is called the domain of attraction of the equilib-
rium point 0.

Estimating the domain of attraction of an asymptotically stable équilibrium

point is a key issue in engineering design and has been an area of research for
decades (see [29], [43] and references therein). A commonly used theorem for
obtaining regions of asymptotic stability is given next.
Theorem 9.3. Let V(z) be a continuously differentiable 1.p.d.f. Assume that
S(R) := {z € IR" : V(z) < R} is bounded, V(z) > 0 and V(z) < 0 for all
z € S(R)\ 0. Then the equilibrium point 0 is asymptotically stable and S (R) is
-an RAS for 0.

The next Theorem, due to Krasovskii, will be needed in our consideration of
singularly perturbed control systems in Chapter 13. Let the matrix J(z) be given
by

J(z) := gé(x) (9.16)

Theorem 9.4. (Krasovskii’s Criterion [44])
If there exists a positive definite matrix P(z) and a positive scalar r such that the

eigenvalues of the matrix
ST (@)P() + P(2)J(2)) (9.17)

are bounded above by a fixed negative number ¢ for all z € B(r), then the
equilibrium point of (9.8) is asymptotically stable. '

Following [45], we say that the scalar valued function V(z) is a Lyapunov
function of the Krasovskii type for System (9.8) if there is an r > 0 such that

V(e) = fT()P(2)f(=), )
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where P(z) is positive definite, differentiable with respect to z, and V(z) is neg-

ative definite for all z € B(r). For future use, note that

V(z) = fT(z)N(z)f(z) (9-19)
where
N(z) = J(z)" P(z) + P(z)J(z) + Z Pz (z)f;(z). (9.20)

Here, a subscript z; indicates differentiation with respect to z; and f;(z) denotes

the jth component of f.

Finally, given a nonlinear control system of the form
z = f(z,u) (9.21)

where f: IR" — IR" is a smooth mapping satisfying f(0,0) = 0, z and u are the
state and control vectors, respectively; we say that the feedback law u(z) = ¢(z)
( with ¢(0) = 0) stabilizes (9.2.12) if the equilibrium point 0 of the (closed-loop)

system

& = f(z,¢(z)) (9.22)

is asymptotically stable.
9.3 Singularly Perturbed Control Systems

9.3.1 Singular Perturbations

Singularly perturbed systems are systems modeled by differential equations
in which the high order derivatives of some states appear with a small coefficient.

A standard model for singularly perturbed control systems is ([46])
z = f(z,z,u,€,t) (9-23)

ez = g(z,z,u,6,t) , t21 (9.24)

where z € IR",z € IRP,u € IR™ and ¢ is & small positive parameter.
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By formally setting € = 0 in (9.23)-(9.24), one obtains the quasi-steady-state

equation

g(a:,z,u,O,t) =0. (9‘25)

Assuming that Eq. (9.25) possesses a solution
zZ = ¢(z,u,t), (9.26)

supposed to be unique for simplicity, and substituting z for z in (9.23) yields the

reduced order model

z = f(, ¢(%,4,t),1,0,t). (9.27)

By a slight abuse of notation, System (9.27), also referred to as the slow

subsystem for obvious reasons, is usually written as
z = f(z,4,t) (9.28)

Here, the bar over a variable denotes its slow part.

Thus by setting € = 0 in the full system (9.23)-(9.24), the dimension of the
state space is reduced from n + p to n. Reduced order modeling is common en-
gineering practice. Small parasitic quantities are often neglected, resulting some-
times in oversimplified models which may yield erroneous results.

The role of singular perturbation techniques is to provide a means by which to
legitimize ad hoc simplifications of dynamic models. The simplification resulting
from setting ¢ = 0 amounts to negleéting the fast dynamics of System (9.23)-
(9.24). To describe the effects of such a simplification, a key step in singular
perturbation techniques consists in studying, in addition to the slow subsystem
(9.28), the so-called bbundary-layer (or fast) subsystem given by

dz

& = 9(a(0), 5(7), 4,0, o) (0.20)

where 7 := *=!¢ represents a “stretched” time scale.
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9.3.2 Composite Feedback Control Laws

The control of systems of the form (9.23)-(9.24) has received a great deal of
attention, resulting, in particular, in a two-time scale procedure. This procedure
consists in synthesizing a composite control law for the full system based on sep-
arate control design for the slow and fast subsystems (see for instance [45], [47]
and [48]).

In the remainder of this section, we outline one such a result, due to Chow

and Kokotovic [45]. Consider the singularly perturbed nonlinear control system

& = f(z) + F(z)z + Bi(z)u (9.30)
ez = g(z) + G(z)z + Ba(z)u (9.31)

where z € IR",z € IR?,u € IR™, the matrices F,G, B;, B, are of appropriate
dimensions, and where € is the small singular perturbation parameter.

Next, System (9.30)-(9.31) is separated into the two lower order slow and fast
subsystems. Here, Eq. (9.25) takes the form

9(z) + G(%)z + Ba(z)u = 0. (9.32)
Assuming G(Z) is nonsingular, we obtain
2= -G @)(¢(2) + Ba(@)a). (0.33)

Eq. (9.33) thus yields the slow subsystem or the reduced order system of -(9.30)-
(9.31), namely

Tz =a(z) + B(T)u (9.34)
Here, :
a(z) := f(z) — F(z)G™(2)g(2) (9.35)
and
B(%) := By(z) — F(£)G™Y(z)B2(2). (9.36)
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To derive the fast subsystem, we assume that the slow variables are constant
in the boundary layer; i.e., Z = 0 and r = T = constant. Defining z; = z — 7 and
uy = u — @ and subtracting (9.32) from (9.31) yields the fast subsystem

dzg

= = G(@)zs + By(Z)uy, (9.37)

where 7 is the fast time scale.
Systems (9.30)-(9.31), (9.34) and'(9.37) are assumed to satisfy (some of) the

following conditions for all z,Z in a closed subset D of IR".

C1: The vector fields f,g and the matrices F,G, By, B, are bounded and differ-
entiable with respect to z, and the unique solution of f(z) =0 and g(z) =0
isz*=0.

C2: G is nonsingular and

rank[B3,GBs,...,G? 'B;] =p (9.38)
C3: There exists a control law k(z) with k(0) = 0 such that the closed-loop system
T = a(z) + B(z)k(3) (9.39)

possesses a Lyapunov function of Krasovskii type.

C4: System (9.39) possesses a Lyapunov function v(Z) guaranteeing asymptotic
stability of the equilibrium Z = 0. Furthermore, D is a level set for v; that is,
D ={z€IR": v(z) < co} for some ¢y > 0.

Condition C2 guarantees the existence of a fast control uy of the form ug(Z, 25) =

L(Z)z; such that Re(X\i(G + B;L)) < o for a fixed 0 < 0. Conditions C3 and
C4 both guarantee that @#(Z) = k(Z) is a stabilizing feedback law for the slow
subsystems. _

Based on the control laws designed for the slow and fast subsystems, the

composite control law

u(z,z) = (I+ H(z)G™!(z)B:(z))k(z) + L(a:)z + L(2)G™(z)g(z) (9.40)
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is proposed for the full system.

Theorem 9.5. (Chow and Kokotovic [45).) Let D; be a closed set in the interior
of D and E be a bounded subset of IR?. If Conditions C1-C3 are satisfied, then
there exists €* > 0 such that for all € € (0, ¢*], the feedback control u(z, z) given
by (9.40) stabilizes the origin of the full system (9.30)-(9.31). Furthermore, the
set D x E is a subset of the corresponding domain of attraction.

In case only condition C4 holds instead of Condition C3, one obtains a (the-
oritically) weaker result. Under Conditions C1, C2 and C4, the theorem below
states that the feedback control given by (9.40) “practically” stabilizes the full

system.

Theorem 9.6. (Chow and Kokotovic [45].) If only Conditions C1, C2 and C4
hold, then there exists €* > 0 such that for all € € (0, €*], the control law given by
(9.40) steers every trajectory of System (9.30)-(9.31) starting within D x E, to a

sphere centered at the origin, whose radius is O(e).
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CHAPTER
TEN

SUFFICIENT CONDITIONS FOR STABILIZATION
WITH PRESCRIBED RAS

In this chapter, sufficient conditions are obtained for the existence of a linear
feedback which stabilizes the origin of a given nonlinear system with the resulting
domain of attraction containing a ball of radius R (possibly infinite), centered at
the origin.

We consider nonlinear multi-input control systems of the form
z = f(z) + Bu (10.1)

where f : IR" — IR" is analytic over IR" and satisfies f(0) = 0,.and Bisan nxm
matrix. Notice that this model is not overly restrictive since a more general model
Z = F(z,v) may always be put in the form above by letting =z be the augmented
state (z,v)7 and taking u = 9. It is convenient to rewrite the model (10.1) in the

equivalent form
% = Az + Bu + h(z); (10.2)

where A := 4£(0) and h(z) represents higher order terms.
It is appropriate at this point to outline related work by Bacciotti [49], which
introduced and considered the so-called “potentially global stabilizability” prob-
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lem. System (10.2) is said to be potentially globally stabilizable if, given any
R > 0, there exists a matrix K = K(R) such that the feedback u(z) = Kz stabi-
lizes the origin of (10.2) and the resulting domain of attraction contains a ball of
radius R centered at the origin.

~ We have seen that under controllability assumptions on the linear part (A, B),
it is possible to assign the eigenvalues of the closed-loop matrix A+ BK to arbitrary
locations in the open left-half complex plane. The main result in [49], which was
recognized by the author as being err;)neous in [50], is: “A sufficient condition for
System (10.2) to be potentially globally stabilizable is that the linear part (A, B)
of (10.2) be controllable.” The following simple counterexample to this assertion

was given in [50]: The system

T =Ty — I122
5:2 = u.

This system clearly has a controllable linear part. However, the line z; = 1 is
an invariant set regardless of the choice of the control u. Therefore, trajectories
starting at points for which z; > 1 cannot be driven to the origin by an appropriate
choice of the control u.

The property of arbitrary pole assignability does not imply that of potentially
global stabilizabilty, except of course, in case B is a square nonsingular matrix (in
fact the nonlinearity f may be cancelled in this case).

Before presenting the main results of this chapter, we establish notation and
give some definitions. With S a subset of €, Re(S) denotes thé set {Re(s) : s € S}.
For a real matrix M, [M], and [M],, denote its symmetric and skew-symmetric

parts, respectively, i.e.
' 1
[M], := 5(M + MT),
1 T
[M].’ - "2'(M e M ).

The spectrum of M is denoted by o(M). For & a vector in IR", |z| denotes
its Euclidean norm. Denote by B(R) the open ball in IR" of radius R centered
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at the origin. By IR and &'-, we intend (—00,0) and the open left-half of the
complex plane, respectively. For S a given set, S™ denotes the Cartesian product
SxSx- xS (ntimes).

Two deﬁnitions relating to stabilizability of linear systems are now introduced.

Let A and B be real matrices of dimensions n X n and n X m, respectively.

Definition 10.1. Say that the pair (A,B) is symmetrically stabilizable'* if there
exists K € IR™™" such that o({A + BK],) C IR". For Asa nonempty subset
of IR”, the pair (A,B) is said to be symmetrically stabilizable within A if for all
A € A, there exists K € IR™" guch that o([A + BK],) = A.

Definition 10.2. Say that the pair (A,B) is normally stabilizable if there exists
K € IR™*" such that o(A + BK) C ¢ with 4 + BK a normal matrix. Let

AC &': be nonempty. Say that (A,B) is normally stabilizable within A if for all
A € A, there exists K € IR™*" such that.o(4 + BK) = A with A + BK normal.

It is a simple exercise to show that if (A4,B) is normally stabilizable within A
then it is symmetrically stabilizable within Re(A).

As we have mentioned earlier, the methodology which will be used in the
sequel uses a combination of Lyapunov’s method and results from linear systems.
As such, precise algebraic properties of the higher order terms h(z) will not be
used explicitly. Rather, only information relating to the “magnitude” of h will be
of interest. To give a more precise meaning to what is meant by wma.gm'tude, let

us introduce the following space:
n n . n ah
H := {h: IR" — IR", analytic over IR" : h(0) =0, 5;(0) = 0}. (10.3)

Clearly (H,+,.)is a véctor space. Let R be a fixed positive number. We endow
(H,+,.) with the following two functions:

14 Recall that Hurwitz stability of [M], implies that of M.
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() |I-lr : H — IR4 given by

h(z
Ihlr= sup 122
zEB(R) |x|
z#0
(i) ||| : ¥ — IR4+ U {oo} given by
. h(z
= sup G
’ zEIR" !ml
z#0

Notice that limj;|—o J—'—',(z—’lll = 0 and as such |.|| is well defined. We allow the

possibility ||| = co with the understanding that inequalities such as ||h; + k2|l <
|k1]] + ||h2]| are to be interpreted in the obvious way when ||h1]| or [|h2[| is infinite.
We have that (H, +,.) with either ||.]|r or |.|| is a normed vector space. This
can be seen easily, noting that analyticity of the elements of M implies that a
function which vanishes within B(R) must also vanish everywhere.
The two norms |-llr and ||| naturally lead to defining two type of balls in H,
namely, for any R > 0,

Br(p) :={h € H: |hl|jr <p}
and
B(p):={heH: [h]| <p}
where p is a given positive number.

Theorem 10.1. Fix R > 0 and let (A4,B) be symmetrically stabilizable within
A C (—o0,—|lk||r )" (resp. (—oo0, Al )"). Then the nonlinear control system

(10.2) is stabilizable within B(R) (resp. globally stabilizable) using linear state
feedback.

The proof of this theorem relies on Proposition 10.1, given next. Let |
t=F(z), F(0)=0 (10.4)
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where F' is analytic over IR". Let the null solution of (2) be asymptotically stable
in the sense of Lyapunov and denote the associated domain of attraction by D*.
Consider a change of coordinates z = QTz where Q is an orthogonal matrix (i.e.,
Q satisfies QTQ = QQT = I). In the new coordinates,

i =F(2) ' (10.5)
where ;
F(z) := QTF(Q2).
Clearly, the origin is also asymptotically stable for Eq. (10.5). The sets D*

and D* are in general different. However, we can use the fact that orthogonal

transformations preserve norms and angles to obtain the following proposition.
Proposition 10.1. The largest Euclidean balls in D* and D* are identical.

Consequently, for each R > 0,
B(R)cD®* <«+= B(R)CD".
Proof of Theorem 10.1. Let (A1, )2,...,As) € A. Since (4, B) is symmetri-
cally stabilizable within A, there is a feedback gain matrix K such that
o([A+ BK],) = {\1,22,..., An}.
With u(z) = Kz, we obtain the closed loop system
z = (A + BK)z + h(z). (10.6)

By writing the closed-loop matrix A 4+ BK as the sum of its symmetric and skew-

symmetric part, (10.6) becomes
i =[A+ BK|,,z + [A+ BK],z + h(z). (10.7)

Since [A + BK], is symmetric, it can be diagonalized using an orthogonal trans-
formation. Let @ be such a transformation and define new coordinates z = QTz.

Then z satisfies
2 =Gz + Dz + h(z) (10.8)
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where

D = diag(A1, A2,...,An),
G =QT[A+ BK],,Q
and
k(z) = QTh(Qz).
Now consider the Lyapunov function candidate
Vi) =3l
and note that B(R) is a level set for V. The derivative of V along trajectories of
(10.8) is
V(2) = 27Gz + 27Dz + zTh(2). (10.9)

The first term in (10.9) vanishes since G is skew-symmetric. Therefore,

V(z) <Y Aot + el [R(2)

=1

< N2 LT 2
< max () |=1° + Flz |

= ( a9 +1Fln ) IeF (10.10)

1<i<n

for all z € B(R). It follows since ||h||g = [|k||r that

V(z)= ( max (W) + uhuR) L (10.11)

for all z € B(R).

Noting that A C (—o0,—||k||r)", Wwe have that V(z) < 0 for all nonzero
z € B(R). Theorem 8.3 now implies B(R) C D*. In view of Proposition (10.1),
an analogous statement also holds for Eq. (10.6). This proves the first assertion

of Theorem 10.1. The second assertion follows similarly from the observation

V)< (e 00+ 4 ) el
<0
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for all z € IR", z # 0. This proves global asymptotic stability.

0O
Note 10.1. Note that the linear feedback claimed to exist in Theorem 10.1 guar-
antees that B(R') is also an RAS for R’ > R, R' close enough to R. Note also

that Theorem 10.1 holds under a normal stabilizability assumption.

Robustness of the stabilization property of Theorem 10.1 with respect to
perturbations in the nonlinear terms.h(z) is now considered. The higher order
terms h(z) do not affect asymptotic stability of the null solution of a hyperbolic
system (linearization with no imaginary eigenvalues). In our framework, we note
that for u(z) = Kz a linearly stabilizing feedback, the null solution of £ = (4 +
BK)z + h(z) is asymptotically stable for all h € H. However, the domain of
attraction does indeed depend on variations in h. The next result states that
the linear feedback u(z) = Kz in Theorem 10.1 is robust to variations in h.
Specifically, the assertion is that B(R) is guaranteed to be within the domain of
attraction for each member of a family of systems each of whose linear parts is

¢ = (A+ BK)z.
Theorem 10.1 (Robustness Form). Let R > 0 be fixed. Suppose that (4, B)
is symmetrically stabilizable within A C IR", and let
= pup i (A
If h € Br(la|) (resp. B(Jal) ), then the nonlinear control system = Az + Bu +

h(z) is stabilizable within B(R) (resp. globally stabilizable) using linear state
feedback.

Under the foregoing assumption, this asserts the existence of a feedback gain
matrix K € IR™*" for which the associated domain of attraction contains B(R),
for each h € B r(Jal). No h € Br(|a]) results in a domain of attraction not entirely

containing B(R).
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CHAPTER
ELEVEN

PLANAR SYSTEMS

In this chapter, we specialize the results of Chapter 10 to obtain a complete
design methodology for the case of planar systems. This includes an investigation
of the normal stabilizability question for these systems.

Consider the planar nonlinear control system
z = Az + bu + h(z) (11.1)

where A € IR**? b € IR?\ {0} and h denotes the higher order terms, i.e. h € H.
Define the sets A and A(4,b) by"

A:={ (A, 2)€IR_xIR_: A\ # X2 and A1, A2 € 0(4) } (11.2)

and

A(AB) = {(A1,\2) € At Mda — (A, B)(A1 + X2) + u(4,b) =0}, (11.3)

15 If we let B be a nonzero 2 x 2 matrix, then it is either nonsingular, in which
case the stabilization problem becomes trivial, or of rank one. The latter case is

equivalent to considering B to be a vector b in IR?.
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where
bTAdj(A)b

v(A4,b) = o

(11.4)

and
|Adj(A4)b|*

i (11.5)

p(A,b) =

Here, Adj(A) denotes the adjugate matrix of A.
The defining equation in (11.3) is that of a hyperbola which may be equiva-

lently characterized by
Ao = V(Aa b)’\l — F(Aa b)
2T TN —v(A4h)

(11.6)

For the next result, we assume that the hyperbola (11.6) is nondegenerate,
i.e. it is not a horizontal line. It will be seen shortly that this assumption amounts

to (A4, b) being controllable.

Theorem 11.1. Assume that (A4,b) is controllable. Then the pair (A4,b) is
normally stabilizable within A(A, b) if and only if v(A4,b) < 0. Furthermore, given
any set of desired closed-loop eigenvalues (A;,A2) € A(A,b), the corresponding
normally stabilizing feedback gain is given by

k=1 1][ (I =41 (AT—A) s (11.7)

Proof. First, we show that A(4,b) # 0. From Eq. (11.6), we obtain

O\ _ p(A,b) —v3(4,b)
M T (A —-v(4,h)

(11.8)

" Define the controllability matrices C, C, by C := [b Ab], C, := [b Adj(A)b] and
" note that det(C,) = —det(C) # 0. Then it easily follows that

det(CTC,) = (det(C’.))z = |b|* (u(4,b) - VA, b)) >0. - (11.9)

- and hence that )\, is a monotonically strictly increasing function of A;. A quick

sketch of the plot of A2 as a function of A\; convinces us that A(4,b) N IR> #0
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precisely when Q(A, b) < 0. The sketch just referred to is also useful in finding
pairs (A1,A2) € A(A,b). To find such a pair, we may simply pick a value ), in
(v(A4,b),0)\ o(A), and then use Eq. (11.6) to compute the corresponding value of
Az.

- Next, we show that for (A, Az) € A(A,b), the vectors

vi=(MNI-A)"", i=1,2

are orthogonal. It is equivalent to show that the vectors w; and u& are orthogonal,
where

wi =xa(Ai)vi, 1=1,2

and x 4(s) denotes the characteristic polynomial of A. (Recall that Ay, A; ¢ o(A4).)
We have

wlw, = 0T (Adj(M T — 4))7 Adj(AT — A)b
=bT (,\lsz — AM1Adj(A) — AAQiT(4) + AdjT(A)Adj(A)) b

= |b]® A1z — (A1 + A2)BTAdj(A)b + [Adj(A)B)>.

Since (A1, A\z) € A(4,b), it follows that wTw, = 0.
We now show that v; and v, are eigenvectors of A + bk corresponding to A;

and Az, respectively. Let V = [v; v;). Then k =[1 1}JV~! and

[(A+bk)vy (A+Dbk)vy ] =(A+bE)V = AV +bkV
| — [Av; + b Avg +b].

On the other hand, Av; + b= (A()\,'I - A1+ I) b = A\jv; for & = 1,2. Therefore
(A4 bk = Ajv;, 1=1,2,

i.e., 0(A + bk) = {A;,)2}. Since the eigenvectors v; and v, are orthogonal, we

obtain that A + bk is a normal matrix (in fact symmetric since A; and A\, are
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real).
O
Theorem 11.1 states that if (A4, b) is controllable and »(A4,b) < 0, then every
pair (A1, A2) € A(A,d) may be assigned via linear linear feedback while achieving
the normality requirement. It is not necessary however that a pair (A, b) be‘ con-
trollable for it to be normally stabilizable . We shall return to this case in Chapter
12.

Remarks 11.1.
1. It is easily shown that by allowing complex eigenvalues in A and A(A4,b),

one obtains one additional pair of assignable eigenvalues; namely v(A4,b) +
i|det(C)|. Thus the set of all distinct assignable eigenvalues not in g(A4) is
essentially real.

2. The condition v(A,b) < 0 implies that det[b Adj(A)b] # 0, hence (4,b)
controllable since det[b Ab] = —det[A Adj(A)b], in all but the case when b
and Adj(A)b are of opposite directions.

3. Note that it is not possible to force both eigenvalues to be arbitrarily large.
Clearly, this is a consequence of the normality requirement. It can be shown
that in order for a pair (4,B) to be “arbitrarily” normally stabilizable (nor-
mally stabilizable with arbitrarily negative assignable closed-loop eigenvalues)
it is necessary and sufficient that rank (B) = n, n being the size of A.

The next theorem is a direct consequence of Theorems 10.1 and 11.1. Let

R > 0 be a fixed number.

Theorem 11.2. Assume that v(4,b) < 0. If h € Br(Jv(4,b)]) (resp. B(|v(4,3)]))
then there exists a linear feedback u(z) = kz such that (the origin of) the closed-

loop system = = (A + bk)z + h(z) is asymptotically stable within B(R) (resp.

globally asymptotically stable). Furthermore, for any desired closed-loop eigen-

values M1 € ( w(A,8),~[lhllx )\ o(4) (resp. (v(4,8),~Ihll ) \ o(4) ) and s

given by (11.6), the feedback gain k is given by (11.7).

The analogue of Thedrém 10.1 (Robustness Form) in the two-dimensional case
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follows by taking a to be any number strictly between (A, b) and 0. The desired
feedback k is obtained in a manner identical to that outlined in Theorem 11.2,

with —||h||r (resp. — ||h]|) replaced by a.
Two examples are now presented to illustrate application of Theorem 11.2.

Example 11.1. Let R =1 and consider the system

. 2
T = -—5331 + z2 + 3

i = T3 +u — z3.

The origin of the unforced system is unstable since 0(A) = {—32,1}. It is easily
checked that (4,b) is controllable, v(4,0) = —3, |hllr=1 = 1 < [v(4,b)| and
p(A,b) = 1. By picking Ay in (-3, —||Al|r )\ o(4) = (=2,-1), say Ay = -3, we
get from (11.6) that A\; = —3! and from (11.7) that k = [1 — 28]. The closed-loop

s‘yE t cm is
A 2

, 21 )

T2=01— T~ Iy
Simulations of the closed-loop system for various initial conditions, shown in
Figure 11.1, corroborate the fact that B(1) is contained in the actual domain of
attraction. Note that some initial conditions in the immediate vicinity of B(1)

lead to instability (e.g., zo = (1.4,0) and (1.2,1.2)).

Example 11.2. We consider globally stabilizing the system

) = —521 + z2

Z2 = —z1 + 2 + u + sin(z, ):

Here, A and b are as in Example 11.1, h(z) = [0,sin(z;) — 2;]7 and ||A]| = 1.217.

Proceeding as in Example 11.1, we obtain by choosing A\; = —-i— that the closed-
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(~0.5,2)

(1.2,1.2)

(1.4,0)

, I

Figure 11.1: Closed loop trajectories for Example 11.1.
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loop system is

z) = —5% + 22
. 21 .
g3 =~ + sin(zy).

- With the Lyapunov function V(z) = z? + 23, we find that V(z) < —22 -

%zg < Oforall z# 0. Therefore, the null solution of the closed-loop system is

globé.lly asymptotically stable, as predicted by Theorem 11.2.
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CHAPTER
TWELVE

NORMAL AND SYMMETRIC
STABILIZABILITY OF LTI
CONTROL SYSTEMS

In Chapter 10, sufficient conditions for stabilizability within a prescribed Eu-
clidean ball were given. These conditions were based on the assumption that the
underlying linear system is normally (or symmetrically) stabilizable. In Chap-
ter 11, necessary and sufficient conditions for normal stabilizability within the
set A(A,b) were given for planar systems. Here, we investigate this question for
multidimt;nsional linear time-invariant (LTI) control systems.

The normal stabilizability problem for LTI control systems falls in the general
category of robust eigenstructure assignment [38]. In [38], the authors describe
numerical methods for determining robust, or well-conditioned, solutions to the
problem of pole assignment by linear state feedback. Using the degrees of free-
dom that are available for choosing a stabilizing feedback gain K, an algorithmic
approach for selecting such a gain while minimizing the condition number of the
closed-loop matrix is presented. Since the best conditionéd matrices are normal

matrices (their condition number achieves the minimum value 1), it is seen that
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the work in [38] is indeed a numerical approach to the normal stabilizability prob-
lem. There is unfortunately, to the author’s knowledge, no analytical results in

this area and a complete answer to this problem remains unknown.

Consider the LTI control system
t = Az + Bu (12.1)

where A € IR™*" and B € IR"*™ is, ;vithout loss of generality, of full rank = m.
For simplicity, we focus on the following problem, which it turns out contains

essentially the same difficulties as the general problem of normal stabilizability.

Given a set of desired negative closed-loop eigenvalues A = {)\,...,A,}, we seek

conditions under which there exists a feedback gain K € IR™*" such that

(i) e(A+BK)=A

(ii) A+ BK symmetric.

Note that in the case m = n, i.e., B square nonsingular, this problem has a trivial

solution; tﬁus, it is implicitely assumed that m < n. Since B is full rank, then

the QR-factorization ([41]) allows one to write B = QR where R is a nonsingular

upper triangular m x m matrix and Q is an n x m matrix and such that QTQ = I,

(i.e. the columns of Q form an orthonormal system in IR"). By operating a change

of basis in the input space if necessary, we may therefore assume, without loss of

generality, that B is such that BTB = I,,,. Denote D = diag(\4,...,,).

Theorem 12.1. There exists K € IR™ " such that (1) and (ii) hold if and only

if the equations
(I - BBTY(AQ -QD)=0 (12.2)
QTQ-I1=0 o (12.3)
have a solution Q. In this case a feedback gain K ensuring satisfaction of (i) and
(11) is given by
| K = BT(QDQT — A) O (124)
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Proof. Following {38], assume (i), (ii) has a solution K. Let then @ be any
orthogonal matrix which diagonalizes (4 + BK). It follows that

BK = QDQT - 4, (12.5)
and upon multiplying by BT, that
K = BT(QDQT - A). | (12.6)

Therefore,

QDQT = A+ BK = A+ BBT(QDQT - A). (12.7)

Eq. (12.2) is obtained by multiplying both sides of (12.7) on the right by Q.
Conversely, if Q satisfies (12.2)-(12.3), then by writing (12.2) as

AQ - BBT(AQ - QD) = QD, (12.8)
and multiplying by Q7, we obtain
A+ BBT(QDQT - 4) = QDQT. (12.9)

By taking K to be BT(QDQT — A), this says that the closed loop matrix A+ BK
is diagonalizable using the orthogonal matrix @ and is hence symmetric.

O
Denote by £ the linear mapping

L: X w— (I-BBT)AX — XD). (12.10)

An alternate interpretation of Eqs. (12.2)-(12.3) is the following: the problem
(1)-(ii) has a solution if and only if ker(L) contains an orthogonal matrix. Here,

ker(L) denotes the kernel or null space of £, i.e. the vector space
{X e R™": L(X) =0}.

If dim ker (£)= £, then the problem under consideration amounts to finding con-
stants a;,as,...,a, such that the matrix ) «;V; is orthogonal, where the V; are

such that span{V;, V2,...,V¢} = L.
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Proposition 12.1. The mapping £ has a nontrivial kernel, i.e. ker(L)# {0}, and
£ := dim ker(£) > nm. (12.11)

Moreover, equality holds in (12.11) if and only if A; ¢ 0(A4), i =1,...,n.

Proof. First of all note that A = 1 is an eigenvalue of the matrix BBT since
it is an eigenvalue of BTB = I,,,. Consequently, the mapping £ is singular and,
therefore, it has a nontrivial kernel. Next, by writing the equation £(X) = 0 in

vector form, it is seen thaf

£ = dim ker(L) = dim ker(L), (12.12)
where L is the n? x n? matrix given by

L= (I®(I-BBT))(De A) (12.13)

where @ and © are the Kronecker sum and difference defined in:Chapter 3. It
follows that
£ > dim ker(I @ C), (12.14)

where C := I — BBT, with equality holding if and only if the matrix D © A is
nonsingular, i.e. (see Section 3.3, Part I), if and only if A\; ¢ 0(4), i =1,...,n.
Using the fact that for any two matrices M and N

rank(M ® N) = rank(M) rank(N), (12.15)
we obtain that
dim ker(I ® C) = n* — n rank(C) (12.16)
= n(n —rank(C)) . (12.17)
= n dim ker(I — BBT) (12.18)
=nm. (12.19)
O
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We obtain £ = 2 and
ker(L) = span{V;, V3}

A P B ]
The matrix with coordinates (355,2355)7' in this basis solves (12.2)-(12.3) and
yields k = [—3,0].

Obtaining conditions on A,B and D for which Eqgs. (12.2)-(12.3) have a
solution turns out to be a difficult task. The next proposition gives a sufficient
condition for the case in which A is symmetric. It is worth pointing out that,
as far as the application of this proposition to the stabilization with prescribed
RAS is concerned, the matrix A need not be symmetric as we will see shortly.
Let by,b,,...,bn denote the column vectors of B and bpm41,...,bs be chosen such
that {b;,...,b,} is an orthonormal set. Let 0(A4) = {ai,...,an}, where the a;’s

are real.

Proposition 12.2. Assume that AT = A and that ATh = axbe, k = m +
1,...,n. Then for every A € IR\ {am41,---,@n}, there is a K € IR™™" such that
(i) (A + BK) = {),...,\,am41,...,0n} . -

(ii) (A + BK) symmetric |

Proof. It is enough to show that there exists an orthonormal set {vy,...,vn}

such that

v, € F(A), i=1,...,m ’ (12.20)
vk € Flag), k=m+1,...n, (12.21)

where
F(B) :={z e IR": (BI - A)z € R(B)}. (12.22)
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If such a set exists and (12.20)-(12.21) hold, i.e.
(M - A)v; =Bgi, i=1,...,m (12.23)
(axl — Ay =Bgx, k=m+1,...,n (12.24)
for some g¢;’s, then K is given by
K =[g1,...gn)[v1,...,0a] 7", (12.25)
Since A ¢ o(A), then F()) is an m-dimensional space, and
F(A\) = (M — A)"'R(B). | (12.26)

Therefore, we can always select {vi,...,vm}, orthonormal, such that v; €
F()\), i = 1,...,m (e.g. by operating a Grahm-Schmidt procedure on {(AI —
A);,i = 1,...,m}). Set vx = by, k = m+1,...,n. Then {vmt1,...,vn}
is itself an orthonormal set and it only remains to show that vlvg = 0, i =
1,...,m, k=m+1,...,nand vx € Flax), k=m+1,...,n.

Since

(AT — A)v; € R(B) (12.27)

and

R(B) = (ker(BT))J' = spant{vg, k=m+1,...,n}, (12.28)
it follows that
0 = vf (AT = A)vi = Mol v; — (ATve)Tv;
' = (A — ax)vi v (12.29)

By assumption, A # ax, k =m+1,...,n, hence v]v; = 0. That v € F(as), k=
m+i, ...,n, may be seen by noting that (axI—A)vk = (axI—AT)vy =0 € R(B).
A ' O
Remark 12.1.

1) Since vk = bk, ¥ = m +1,...,n, it follows from the fact ATvi = axby and

BTy, =0, k =m+1,...,n, that am41,. .., ap are the uncontrollable modes
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of (A, B). If these are stable, then Proposition 12.2 states that there always
exists a feedback gain K which will make (A + BK) stable and symmetric.
2) To apply the results of Chapter 10 to a nonlinear control system of the form

& = Az + Bu + h(z), (12.30)

‘ where, as usual, h denotes the higher order terms, it is not necessary that 4 be
symmetric. Rather, Proposition 12.2 should be applied to the pair ([4],, B),
where [], denotes the symmetric part of a matrix. To see this, recall that the
asymptotic stability of the origin was proved in the main theorem of Chapter
10 using a quadratic Lyapunov V. As a result, only [4], contributes in V.
In the case Proposition 12.2 applies to (12.30), the largest uncontrollable
eigenvalue then dictates the size of the maximal ball of asymptotic stg.bility

which can be achieved.

Consider for example the nonlinear control system

Ty = —211 + 222 + 323 — 2179 — U3 (12.31)
ty = —2T3 — T3 + U (12.32)
i3 = —x; — 223 + 27 (12.33)
In this case,
-2 2 3
A=10 0 -=-2]|,
-1 0 -2

o = O

[i]

and h(z) = [~z122, —2%,7?]T. Here, the unforced nonlinear system is u@stable
(0.445 € o(A)). To find a stabilizing control for the nonlinear system (12.31)-
(12.33), we apply Propositon 12.2 to the pair ([4],, B). In this example,

—2 1 1
[4], = [ 1 0 -1}
1 -1 =2
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and, in the notation of Proposition 12.2, b3 = [1,0,1]T. Clearly, [A],bs = —b,
and we are in a position to apply Proposition 12.2 with a3 = —1. Proposition
12.2 states that given any real number A, there is a feedback gain K such that
A+ BK is symmetric and 0(A+ BK) = {\, A\, —1}. Letting A = —2 and operating
a Grahm-Schmidt procedure on the vectors (A\I — A)~1b; and (A — A)~*b2 (which |
spé,n F())), we obtain

37 _E

3 6

v = 33@ ’ Vg = —3§§

V3 V3

3 6
Selecting vz = [32@, 0, 32é]T, we have
2y2 _Y6 0
—_ -— 6 —_

gx—[a], 92—[ 6] and 93—[0]

Therefore, K = GV ! is given by

With the feedback control u(z) = Kz, we obtain the closed-loop system

Ty = —g:cl +x2 + '3-23 —-T1T2 (1234)
To=—21 — 229 — 23 — .’L'g ) (1235)
2.?3 = -—g:cl +.‘E2 - g.’t;; + 27% (12.36)

It can be verified that [A + BK], has the eigenvalues —2, —2, —1. Applying
Theorem 10.1, we obtain by noting that for this example, [|k||r < R, that the
closed-loop system (13.34)-(12.36) is asymptotically stable within any ball of radius
R<1.
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CHAPTER
THIRTEEN

TWO-TIME SCALE FEEDBACK STABILIZATION
WITHIN A CYLINDRICAL REGION

In this cha.pfer, we extend results obtained in previous chapters to a class
of multidimensional singularly perturbed nonlinear control systems. More specifi-
cally, we investigate the stabilization with prescribed RAS problem for singularly
perturbed nonlinear control systems with planar slow subsystems. In the analysis,
the composite control methodology of Chow and Kokotovic [45] is combined with

the results of Chapter 11 on planar systems.
13.1 Problem Setting

For simplicity, we consider single input models of the form
z = f(z) + Fz + bju (13.1)
 ez=g(z)+ Gz + bu (13.2)

where z € IR?,z € IR®; F,G,b;,b; are constant matrices of appropriate dimen-
sions; f, g are analytic and satisfy f(z.) = 0 and g(z.) = 0 uniquely for z, = 0.
Given a fixed radius R > 0 and a bounded subset E of IR?, our goal is to

synthesize a feedback control law u(z, z) which, for € small enough, stabilizes the
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origin of System (13.1)-(13.2) and guarantees, in addition, that
z(t,z0), 2(t,20) — 0 ast — oo for all (z9,2) € B(R) x E.

The fact that a prescribed RAS in the form of a cylindrical region, rather
than a (more restrictive) ball in IRP*2, is sought, is clearly a consequence of the
fast subsystem living in IR?.

We assume G to be a nonsiﬁgula.r matrix and the pair (G, b;) controllable.

By formally setting ¢ = 0 in System (13.1)-(13.2), we obtain
z=—G"Yg + byu). (13.3)
The slow and the fast subsystems are respectively given by

& = a(z) + bu (13.4)

z =Gz + bu, (13.5)

where, with a slight abuse of notation, z,2 are used to denote the slow and fast
states T,7 and “.” denotes differentiation in both the slow and the fast time scales.

In Eq. (13.4), a(z) and b are given by

a(z) = f(z) ~ FG™g(z) (13.6)
b=b — FG™b,. (13.7)

Write
a(z) = Az + h(z) (13.8)

where
A= f(0) ~ FG™¢:(0) (13.9)
h(z) = hi(z) - FG™'hI(z) (13.10)

and

W (z) := f(z) ~ f:(0)z (13.11)
R (z) := g(z) ~ g-(0)z. (13.12)
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13.2 Stabilizing Control Laws

A control law stabilizing the full system (13.1)-(13.2) within the region B(R)x
E is now presented. Define

_ _ bTAdj(A)

lblz (13.13)
and
Adj(A)b)° ’
- '__JV(;FH_ (13.14)
We make the following assumptions:
Al: v<O0
A2 |hllr < v

A3: maxzem /\max([h:(z)]’) < IVI
Theorem 13.1. Under the foregoing assumptions there exists €* > 0 such that

for all € € (0, €*], the following holds: There exist k € IR'™?, L € IR'*P such that
the feedback law

u(z,z) = kz + Lz + LG (g(z) + bykz) (13.15)

stabilizes the origin of System (13.1)-(13.2) within B(R) x E. Furthermore, k
and L may be readily computed using Theorem 11.2 and standard linear control
formulas, respectively. )

Proof. Under Assumptions A1-A2, Theorem (11.2) (together with Note 10.1)
guarantees the existence of a feedback gain k, a radius R’ > R such that the
feedback control u(z) = kz stabilizes the origin of the slow system (13.4), (13.6)-
(13.7) within B(R)).

With u(z) = kz, the slow subsystem becomes -

z = (A + bk)z + h(z)
= ai(z) ' (13.16)
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Consider the Lyapunov function

V() = %a{(m)ak(z) (13.17)
Then, for system (13.16)
V(z) = a} () ([4 + bk], + [he(2)]s) ax(z) (13.18)

< (AmX([4 + bE],) + A ([h2(2)l0)) lax(@)*  (13.19)

P

Therefore, V(z) < 0 for all z € B(R') if
A= ([h(z)]s) < =A=**([A + bk],) Vz € B(R') (13.20)

Since A + bk is symmetric and A™**(A + bk) € (v, —||h||r), it follows that (13.20)
holds if

———

A= ([ho(z)],) < —v ¥z € B(R) (13.21)

which is implied by A3 for R’ — R sufficiently small.

Thus, V(z) is a Lyapunov function of the Krasovskii type and the result
follows by using Theorem 9.5 with D = B(R') and L any standard stabilizing gain
for the fast subsystem (13.5).

O

In case Assumption A3 does not hold for a given desired radius R, the theorem
below yields an alternative result. Its proof follows from Theorem 9.6 and the fact
that (see proof of Theorem 10.1) v(z) = |z|* is also a Lyapunov function for
(13.16), implying that condition C4 holds since any B(co) is a level set for v, for

any co > 0.
Theorem 13.2. If all the foregoing assumptions, but A3, hold, then there exists
e* > 0 such that for all € € (0, €*], the following holds: There exist ke IR™? L€
IRY*? such that the feedback law

u(z,z) = kx + Lz + LG (g(z) + bakx) (13.22)
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steers every trajectory of system (13.1)-(13.2) starting within B(R) x E to a sphere

centered at the origin, whose radius is O(e).
Example 13.1

Consider the singularly perturbed nonlinear control system

. . 1

I = -—2171 + T2 + -2-:1:3 (1323)

. 1,

&2 =257 + 2u (13.24)
] A :

€= §(z§ +22)+z-u (13.25)

and let R = 3 be the prescribed radius. We thus have

_[-2z1+za+322]. . _ 0], _[o
f(z) = _%zg ; F= 1!’ by = 2

1
g(z) = E(zf +22); G=1,b,=-1.

Note that System (13.23)-(13.25) is unstable for every € > 0.
The slow and the fast subsystem are given by

.’i)] _ -2 1 Iy lx% 0
[ A o
= Az + h(z) + bu (13.27)
-and
i=z~—u (13.28)
We also have
a(A) = {-3,1}
v=-2 ; | B = 3;
and



Following the procedure in Theorem 11.2 for constructing the feedback gain &, we
let \; € (—2,—32)\ 0(A) and compute A; according to Eq. 11.2 For ); = —Z, we
obtain A; = —6. The feedback gain for the slow subsystem then obtains from Eq.
11.3 and is

23
E=[-2,-7).

Also, for L = 2, the feedback u(z) = Lz stabilizes the fast subsystem.
The composite control of Eq (13:22), which is in this case given by

u(z,z) =2z, + ?42:02 +2z+ 22 + 22, (13.29)

yields the closed-loop system

1
Ty = —271 412 + 5:{:% (13.30)
&y = 4x1 + 32-3-z2 + 52+ 223 + gzg (13.31)
€z = -2y — 2{13;2 -—z— %(zf + z2) (13.32)

Simulated trajectories of the closed-loop system (13.30)-(13.32) for various

initial conditions and parameter values are given at the end of this dissertation.
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CHAPTER
FOURTEEN

CONCLUSION

The main contribution of Part I of this dissertation isuthe introduction and
application of 2 new conceptual tool for the analysis of generalized stability of
parametrized families of matrices and polynomials. Polynomial guarding and
semiguarding maps were shown to exist for a large variety of domains of prac-
tical interest of the complex plane. A methodology for establishing necessary and
sufficient conditions for stability of one- and two-parameter families with respect
to such domains has been expounded. Previously known results on Hurwitz stabil-

ity of the convex hull of two matrices and polynomials were obtained as a special

case. New results of a similar nature were also obtained.

The implementation of the methodology described in Part I of this dissertation
is clearly better suited for symbolic manipulations. A program, using the symbolic
language MACSYMA, has indeed been implemented to serve as a tool for analyzing
the stability of parametrized families of real matrices relative to domains with
polynomial boundaries. The program has obvious limitations but works reasonably

well for families of matrices of moderate size and up to two parameters.

Despite the computational complexity which is bound to seriously affect the
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implementation of the methods developed in Part I for the case of more than two
parameters, further investigation of the general multiparameter case is warranted
for its theoretical value. Analytical tools for robust stability assessment of uncer-
tain linear state space models are indeed a prerequisite for a better understanding
of how to control these models.

In Part II, sufficient conditions for stabilizability of nonlinear systems with a
region of asymptotic stability containing a prescribed ball in IR" have been pre-
sented. Under a symmetric stabilizai)ility condition on the system linearization,
it was shown that there is a linear stabilizing controller, and that the closed-loop
system stability is robust to certain model perturbations. Necessary and sufficient
conditions for normal stabilizability of a two-dimensional linear time-invariant sys-
tem were obtained. These facilitated identification of a closed-form formula for
a stabilizing feedback gain k which guarantees stabilization of a class of multi-
dimensional singularly perturbed control systems within a prescribed cylindrical
region.

The issue of normal (or symmetric) stabilizability raised in Part II which
played a determinant role in our treatment of the stabilization with prescribed RAS

problem is an issue with clear robustness implications and needs to be investigated

further.
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Figure 13.1: Closed loop behavior for Example 13.1, z¢ = Alumm. u»h.mv.
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