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Chapter 1. Introduction

1.1 Motivation

In the practical design of aerospace vehicles, the simultagous occurrence of both
turbulent boundary layers and compression shock waves is aall but unavoidable phe-
nomenon. The shock and turbulent boundary layer interaction (STBLI) is a nontrivial
engineering challenge for several reasons. First, the sHoproduces large step changes
in both pressure and temperature on the vehicle surface. Thse step changes increase
signi cantly with Mach number. This problem is exaggerated in the case of separated
STBLI by the occurrence of a low-frequency unsteadiness inhe separated region causing
the foot of the shock to oscillate in the streamwise direction with rather large excursions
from its time averaged location (among many references, sder example [1, 2, 3]). The
resulting uctuations in both the pressure and heat loads onthe vehicle surface can lead
to catastrophic structure failures [4, 5, 6].

This problem is further complicated by the fact that practic al engineering simula-
tion methods such as Reynolds Averaged Navier Stokes (RANSnethods are notoriously
unreliable for simulating separated STBLI and can produce &rge errors in both the sep-
aration length [7] and wall heat transfer [8]. In addition, the accuracy of heat transfer
prediction relations that are largely applicable in the supersonic condition, such as the

Reynolds Analogy relating the heat transfer to the shear stess, is uncertain at higher



Mach number conditions [B, 9, 10]. The primary reason for the failure of these simulation
and scaling techniques is the fact that there are many compbe phenomena associated with
the STBLI that are not fully understood, and as a result, the assumptions made in the
development of the turbulence models and scaling methods daot correctly represent the
physics of the turbulence. Such phenomena include the mechi&m involved in producing
the strong ampli cation of the turbulence across the shock,the turbulence behaviors that
determine the heat transfer rates at the wall, the dynamics ad form of the unstable low-
frequency mode that occurs in the separated condition, andhe e ects of compressibility
on the development of the separation shear layer.

The past several decades has seen a large amount of researchtbe STBLI ow
at freestream Mach numbers in the range of 1.5-5, predominaly Mach 2 and 3. Out
of these e orts have come many signi cant contributions towards improving our under-
standing of this complex ow and in particular the nature of t he low-frequency unsteadi-
ness. Our understanding of the low-frequency unsteadiness separated STBLI has ad-
vanced considerably concerning the variation in frequencycontent through the interac-
tion (among many references seelll, 12] and review articles [, 10, 13]), scaling of the
mean separation length 4, 15], in uences by both the upstream [16, 17, 18] and down-
stream [12, 19, 20, 21, 22, 23, 24], and the identi cation of the inviscidly unstable nature
of the ow [ 12, 22, 25].

The extrapolation of our knowledge of the supersonic STBLI ow into the hyper-
sonic regime is largely uncertain as hypersonic conditionstroduce additional complexity
to the STBLI ow. Figure 1.1 shows diagrams of a typical supersonic, ramp-generated
separated STBLI ow compared to its hypersonic counterpart Because of the higher

Mach number, the shocks produced by the ow de ection are at amuch shallower angle
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Figure 1.1: Schematic of a compression ramp STBLI ow at (a) sipersonic conditions

(reproduced from [26]) and (b) hypersonic conditions (reproduced from R7]).



increasing the spatial extent of the interaction between tre incoming turbulence and the
shock front. The diagram shows that the initial separation shock remains embedded in
the incoming turbulence and, unlike in the supersonic casete ects o of the ramp sur-
face. Large uctuations in pressure and temperature occur a the surface at this point of
shock re ection. In addition, the hypersonic STBLI experiences a much greater strength
of pressure jump across the shock. In supersonic STBLI, at yaMach 3, the pressure
jump across the shock is on the order of a few times the upstrea static pressure, whereas
for hypersonic conditions at say Mach 10, the pressure jumpan easily be an order of
magnitude greater. Compressibility e ects such as the occurence of shocklets in the tur-
bulence are also more prevalent at higher Mach number. At hig enthalpy conditions,
physical-chemical processes can alter the turbulence.

In order to advance the state of the art in hypersonic vehicledesign, new sophis-
ticated numerical methods and novel experimental techniqes capable of accommodating
the increased complexity of the hypersonic regime must be deloped. This necessarily
requires an improved understanding of the fundamental phyigs involved in hypersonic
STBLI. For this e ort, there is an undeniable need for high de lity turbulence data, both
experimental and numerical, of basic canonical STBLI con gurations at hypersonic condi-
tions. Only high- delity turbulence data can reveal the det ails in the turbulence necessary
for the identi cation of the energetically important physi cs and provide a reliable refer-
ence point against which turbulence models and scaling derations can be tested. It is
also essential that classic canonical con gurations suchsthe two-dimensional compres-
sion wedge, re ected shock, or the axi-symmetric cylinder ith are be studied as these
con gurations produce STBLI data at the most simpli ed leve | without three-dimensional

ow e ects clouding the interpretation of the data [ 28. The simultaneous availability of



both experimental and numerical data at the same ow conditions and Reynolds number

is also essential for cross-validation of resultsl] 10, 29, 30].

1.2 Background

Currently, there are a only a few experimental studies of tubulent shock and bound-
ary layer interactions in the hypersonic regime M > 5) and even fewer reporting turbu-
lence data. Settles & Dodson 31, 32, 33] and later Roy & Blottner [ 8] have provided
reviews of the available hypersonic STBLI experimental daasets. Only a fraction of the
available datasets were identi ed as having error margins 8 cient for use as reference for
turbulence model validation.

High delity simulation methods such as Large Eddy Simulation (LES) and Direct
Numerical Simulation (DNS) are ideal for the investigation of turbulence statistics because
they produce a three-dimensional ow eld that is resolved in both time and space. Very
few DNS of fully turbulent STBLI exist in the literature and t wo notable studies are
mentioned here. In a recent article, Priebe & Martin [34] used DNS to reproduce the
experimental conditions of Bookeyet al. [35] of an attached Mach 7 freestream over an 8
compression wedge. Details of the turbulence through the teraction and heat transfer
data were reported. The DNS showed good qualitative compasion with experimental
visualizations of Bookey et al. [35]. Volpiani et al. [36] used DNS to generate data of
re ected shock conditions at freestream of Mach 5. Comparisn with experimental wall
pressure, skin friction, and wall heat transfer data from Séulein [ 9] showed that the DNS
produced a signi cantly smaller separation size. The authes explained the di erence by
noting that there could be as much as 20% uncertainty in the eperimental separation

length due to possible three-dimensional ow e ects from thetest article. So far, the DNS



method has been much more widely used for studying laminar hyersonic shock boundary
layer interactions [25, 37, 38, 39, 40].

The LES technique has been well established for the simulatin of supersonic STBLI 1,
42, 43, 44] and has a signi cant advantage over DNS in that it requires aly a fraction of
the computational grid size yet still produces high resoluton turbulence statistics. This
feature is even more attractive in the case of separated STBILfor which the ability to
resolve the low-frequency shock mation is a concern. Runngna DNS of a separated
STBLI ow long enough to spectrally converge the lowest enegized turbulence motions
is essentially impossible from a practical standpoint. TheDNS is also severely limited
by Reynolds number due to the grid sizes required to resolvehte entire range of turbu-
lence motions from the viscous length scales to the outer lgjth scales. Because the LES
uses model equations to simulate the behavior of the smallesength scales, much larger
Reynolds numbers are possible compared to DNS for similar ocaputational cost. With
LES, matching simulation to experimental Reynolds number & achievable.

LES of hypersonic STBLI seems at this point to still be in the developmental stage.
Some preliminary works include the following. Shreyeret al. [45] and also Kim et al. [46]
used Stanford University's CharLES code with eddy viscosiy model of Vreman et al. [47]
for the sub grid scale (SGS) model closure to reproduce the M#& 7 STBLI experiments
by Schreyer et al. [48] of a compression ramp/expansion corner test article. The om-
parison with the experimental PIV data showed a stronger reerse ow in the separation
bubble [45] and the turbulence intensity solution under-predicted the PIV data [46]. The
authors do note that the PIV data of Schreyer et al. [48] su ered from insu cient particle
density particularly at the wall surface and in the separated region making the comparison

a bit vague. Ritos et al. [49] later attempted to simulate the same ow with an implicit



LES method by which the numerical properties of the inviscid ux scheme is used to es-
timate the dissipation by the unresolved SGS turbulence 49]. The LES of Ritos showed
somewhat improved comparison with the PIV data from Schreye, however the accuracy
of the PIV pro les remains in question. Fang et al. [50] used an LES method with the
dynamic eddy viscosity SGS models of Moiret al. [51] to simulate a single n STBLI in-

teraction at Mach 5 freestream and reported good comparisolf mean ow structure and

wall pressure with the experimental data of the same conditbns by Schdlein B]. The peak

skin friction near reattachment, however, was found to be gyni cantly under-predicted.

1.3 Scope of the Present Work

In this work, an LES method employing a dynamic mixed SGS modk[52] is used
to simulate hypersonic STBLI compression ramp ows. All simulated ows considered
throughout this thesis are low enthalpy and non-reacting ass typical of the ow conditions
of many ground-based test facilities. In addition, all simdated ows are two-dimensional
in the sense that they are of a at plate boundary layer over a D wedge and are assumed
to be homogeneous in the spanwise direction.

This work begins in Chapter 2 with a thorough validation of the LES computational
method for the accurate simulation of STBLI ows including subsonic to hypersonic con-
ditions and attached to fully separated interactions. Comparison with available DNS
data demonstrates that the LES produces accurate low-fregency separation dynamics as
well as wall heat transfer rates at elevated Mach number. Afer establishing the relia-
bility of the LES method, in Chapter 3, two new LES datasets of separated hypersonic
STBLI at freestream Mach numbers of 7.2 and 9.1 and at experirantally achievable condi-

tions are presented. Mean ow statistics, turbulence intersities, wall quantities, turbulent



kinetic energy budgets, and anisotropy tensor properties g documented with the in-
tention of making this information available to the scienti c community for reference in
cross-validation with experimental data, validation of other simulation methods, and the
calibration of new turbulence models and experimental diagostic techniques. Also in
Chapter 3, it is demonstrated that the modeling of the local conservaive energy exchange
via a scale-similar SGS model is hcecessary in order to acki@ correct shear layer spread-
ing rate at high Mach number interactions for which the convective Mach number of the
separation shear layer is found to be as high as 2.

In the remaining chapters of this thesis, the resulting datdase of hypersonic STBLI
ows a orded by the current LES method is used for the investigation of several specic
aspects of the STBLI ow. In Chapter 4, a low-pass Itering operation is performed
on the time-resolved, three-dimensional ow eld in order to identify the form of the low-
frequency unstable mode in the hypersonic compression ramipteraction. The hypersonic
STBLI mode is found to be similar to that previously identi e d in the subsonic regime 12,
22] allowing for generalizations to be made on the nature of thdow-frequency instability.
In Chapter 5, mean separation data from an LES database of varying shocktiengths at
Mach 7 and 10 was combined with a compilation of available hyprsonic experimental data
to investigate a generalized scaling method that relates garation length to interaction
strength. The results provide new physical insight into thenature of the separation scaling.
The topic of Chapter 6 is the characterization of the free shear layer that existsn the
STBLI separated ow and the presentation of the results in the context of canonical mixing
layer theory. The turbulence levels, spreading rate, and vdex structure in the shear layer
were found to scale with convective Mach number in a manner awsistent with available

compressible mixing layer data. The bene ts of the shear lagr study are two-fold. The



results provide information on the generalization of sepaated STBLI ow behavior as well
as new turbulence data for the study of compressible canonit mixing layers. Concluding

remarks are given in Chapter7



Chapter 2: Large Eddy Simulation Method and Validation

xThe majority of this chapter is reproduced from Helm & Martin [53].

2.1 Chapter Overview

In this chapter, the accuracy of the LES method is demonstraéd by testing it against
a DNS database of compressible turbulent boundary layer andompression ramp solutions.
For this purpose, two DNS solutions by Priebe & Martin are referenced which include a
fully separated Mach 3 compression ramp STBLI ow [12] and an attached hypersonic
Mach 7 compression ramp STBLI ow [34]. Each ow solution under consideration is
reproduced with the LES code using the same computational dmain size and boundary
conditions as the corresponding DNS solution.

In Section 2.2 is a presentation of the LES numerical method and model equéabns
for the SGS closure. The SGS models of the LES use a mixed model both the unclosed
shear stress in the momentum equation and the unclosed heatux in the total energy
equation. The mixed model uses a combination of an eddy vissity term and a scale-
similar model. The dissipative drain of turbulence energy fom the resolved turbulence
scales to the SGS scales are accounted for by the eddy visdgsivhile the conservative
(non-dissipative) energy exchange between resolved and S&cales is accounted for by the
scale-similar model. Later in Chapter3, which is concerned with the separated hypersonic

STBLI condition, the importance of including the scale-similar term at high Mach number

10



conditions is further discussed and emphasized.

In Section 2.3, we provide a list of the conditions of our DNS and LES databae
followed by the description of the computational domains ard setup. A statistical com-
parison is presented between the LES and Favre- Itered DNS alutions of the incoming
boundary layer solutions in Section2.4, the separated supersonic STBLI in Section2.5,
and the attached hypersonic STBLI in Section 2.6. The importance of the LES/DNS
comparison of the separated STBLI is the demonstration thatthe same low-frequency un
steadiness is resolved by the LES in terms of frequency conig skin friction distribution,
shear layer pro les, and separation length. It is also showrin Section 2.4 that the tophat
Iter of Egn. 2.12 applied to the DNS data is an acceptable approximation of theLES I-
tered ow solution thus demonstrating that this is an approp riate method of DNS-to-LES

comparison. A summary of the conclusions from this chapter ee given in Section2.7.

2.2 Numerical Method

The LES governing equations are derived by applying the ltering operation of
Leonard [54] to the Navier Stokes equations for the conservation mass, omentum, and

total energy. A ltered variable is de ned as
z

f()= f(9(; %) d?® (2.1)

In Egn. 2.1, the variable f is Itered in space over the domain D( ) by the function
represented by G( ). The Iter width is representative of the smallest length scale

retained by the Iter G( ). The ltered set of equations in conservative form and in a

11



generalized curvilinear coordinate system can be written & the following.

@,

@Kkcs N @Ges N @I'ic;s:
ot

@ @ @ (2.2)

Q|9

+@+@:
@ @

The coordinate system (, , ) represent the computational space coordinates in
which is the streamwise body-tangential direction, the spanwise direction, and the
body-normal direction. These are transformed from the realspace coordinates X;y; z)
using the method outlined by Hirsch[b5. We use the convention that in real spacex is
in the streamwise direction, y the spanwise direction, andz the wall-normal direction. In
Egn. 2.2, U is the vector of conserved quantities whileF, G, and H are the ux vectors in
their respective computational coordinate direction , , or . The vectors Fsgs, Gsas,
and Hsgs are the unclosed sub-grid-scale (SGS) ux terms that resultfrom the Itering
operation.

The governing equations are expressed in terms of Favre- #red variables de ned as
f*= f= . Using Favre- ltered variables prevents additional SGS tams from appearing

in the Itered equation for the conservation of mass. Using he Favre- Itered notation,
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the vectors from Eqn. 2.2 are

0 1 0 1
OO
0 00%+ ps,
U=JEB ¢ 00%+ ps,
OWl+ ps,
E E + p)a°
0 (E +p) 1
MxSx M xySy + M x2Sz
MyxSx + MyySy + "y S,
NaxSx + " zySy + N 228,
Fv= Jr (2.3)
(Max O+ My O+ N W) Sy +
(Myx O+ My ¥+ Ny W)y +
(Nzx 0 + 7 290 + 2 2 W)s;
QXSX + sy + :S7) 1
and Fsgs = Jr E
CvQx + §Jx D j
where
L
Sx= x=M; r = 2+ 2.+ 2,

(2.4)
and 0°= fus, + sy + Ws;:

In Eqn. 2.3, the ux vector F has been split into a convective ux term (F¢) and a viscous
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ux term ( Fy) so that F = Fc+ F,. Both G and H have equivalent expressions in their
respective coordinate directions. The other terms in the epression for the ux vector
F are the grid transformation Jacobian matrix J, the total ltered energy E = ¢, T +

0 G + % kk (specic heat at constant volume ¢,), the Itered shear stress tensor 4 =

L
278 27 S (strain-rate tensor §5 = 1(@i=@x+ @; =@xand temperature dependent
dynamic viscosity *), and the heat ux 4 = k@ =@x (temperature-dependent thermal
conductivity K). The de nitions of the additional grid transformation ter ms are given in
Eqn. 2.4. The kinematic viscosity is a function of the Favre- ltered temperature T and
the exact relation is dependent on the conditions of the ow keing simulated as will be
explained further in Section 2.3. The thermal conductivity is related to the kinematic

viscosity byﬁ =" (255 ¢, 15) The ltered pressure p is determined from the ideal gas
law in terms of the ltered ow solution so that p= R T. The SGS ux vector Fsgs is
expressed in terms of the SGS shear stress tensgy, the SGS heat ux @; =@;, the SGS

turbulent di usion @ ;=@;, and the SGS viscous di usion@; =@;. From the derivation

of the ltered LES governing equations, these unclosed terma are by de nition

i biug  00? ; (2.5)
Qj GjOT ot (2.6)
Ji L}joukuk 00Uy (2.7)
Dj ju’ ~a? (2.8)

The selection of the LES SGS closure models is based on the woof Martin et

al. [52]. A one-coe cient dynamic mixed model containing both an eddy viscosity term
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and a scale-similar term is used for the estimation of jj . A similar formulation is used
for the estimation of Q;. The SGS turbulent di usion is approximated from the model

proposed by Knight et al. [56]. The corresponding model equations for these three terms

are
i= Ci2 28 S %él?k + 6o 66 (2.9)
,
_ jS§ @ AOR .
Q= Coprog* ot 6of (2.10)
and
Jj = ik: (2.11)

Here éi? is the coordinate-transformed strain rate tensor, the magttude of which is de ned
asjSY = (250 S0)*2. The lIter width is indicated by = ( )1=3 for which
, and are the LES grid spacings in the three computational coordimate directions.
The SGS viscous di usion term (Egn. 2.8) is not modeled as it is typically an order of
magnitude smaller than the SGS heat ux [52]. Because of its relative insigni cance and
because there are currently no reliable models available fahis term (the uncertainty
of the models is on the order of the magnitude of the term itsdl [52]), the SGS viscous
di usion is excluded from our LES governing equations. The LES solution is implicitly
Itered meaning that the coarse, under-resolved grid aloneproduces the lItered variables
of Eqn 2.3. An explicit ltering operation is needed, however, to determine the dynamic

coe cients ( C1, C,) and the turbulent Prandtl number ( Prt). For this purpose, we use

a tophat lIter de ned as

fi n=2t+2 fi+ fiin=n (2.12)
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In Egn. 2.12 the subscript i is the central grid point, and n  determines the width of
the lter. The tophat Iter is performed in computational co ordinate space. For further
details on the calculation of the dynamic coe cients and tur bulent Prandtl number, the
reader is referred to Martn et al. [52]. For more information on the transform of the
model coe cients into the generalized coordinate system, pease see Armeniet al. [57].
Note that for the ows considered in this paper, namely the turbulent boundary layer and
two-dimensional compression ramp STBLI con guration, the averaging operation in the
de nitions of C4, Cy, and Pry is calculated locally as an ensemble average in the spanwise
(homogeneous) direction only.

In an a priori study of isentropic compressible turbulence,Martin et al. [52] showed
that both the correlation coe cient and the ‘'rms' amplitude of the solutions of j; and Q;
were improved by including the scale-similar model as compad to an eddy di usion term
only. The rstterm in both Equations 2.9and Eqn. 2.10is the eddy viscosity contribution
to the estimates of j and Qj, respectively, while the second term is the scale-similar
contribution. Further demonstration of the importance of i ncluding the scale-similar terms
for the accurate LES of STBLI ows will be given in in Chapter 3.

The following discretizations schemes are used to solve EqR.3 numerically. The
inviscid ux terms are discretized using a 4th-order linealy and non-linearly optimized
weighted essentially non-oscillatory (WENO) scheme 38, 59]. Both absolute and relative
limiters are used for e cient application of the WENO scheme, thus signi cantly reducing
the numerical dissipation caused by WENO throughout the ow [60]. Further reduction
of the numerical dissipation in the boundary layer is obtained by what is referred to as
Itering of the WENO candidate ux weights near the wall as wa s done by Martin [61].

The viscous uxes and SGS terms are discretized using a 4thrder central di erencing
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Auxiliary Boundary Layer Compression Ramp

Rescale Plane

Figure 2.1: Schematic of LES computational domain and simuwdtion strategy.

scheme. A low-storage, 3rd-order Runge Kutta method§2] is used for time advancement

of the solution.

2.3 Computational Database

Following the work of Priebe & Martin [ 12, 34], the LES compression ramp solutions
are run in two parts. These include an \auxiliary" boundary | ayer simulation which in turn
provides the in ow condition for the \principle" simulatio n of the ramp geometry. This
strategy is shown schematically in Fig.2.1. The auxiliary boundary layer is run on a long
computational box, and the recycling/rescaling method of Xu & Martin [ 63] is used for the
assignment of the box in ow boundary condition. The solution at the rescaling plane near
the outlet of the auxiliary boundary layer domain is interpolated in time and space onto
the inlet of the grid of the compression ramp run as depictedn Fig. 2.1. The long rescaling
length of the auxiliary simulation allows the turbulence eddies to develop spatially and
to decorrelate as they convect the length of the box, thus mimmizing any forcing that
might be caused by recycling the turbulence. The recyclingfescaling in ow technique

also ensures that the same boundary layer conditions are maiained at the exit over long
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simulation times. This feature is necessary in order to redwe the low-frequency cycle of
separated STBLI. By comparison, with purely streamwise peiodic boundary conditions,
the boundary layer thickness steadily grows over time.

Four auxiliary boundary layers are considered in our LES/DNS comparison. Freestream
Mach numbers of 3, 7, and 10 are included. Each boundary layezondition is computed as
a DNS and again as an LES with the same freestream conditionsyall temperature, and
Reynolds numbers. The freestream conditions and boundaryalyer properties of each run
are listed in Table 2.1. Included in Table 2.1 are the boundary layer edge (subscript \e")
Mach number M ¢, streamwise velocity Ue, temperature Te, and density .. Wall tempera-
ture is given as a fraction of the adiabatic recovery temperture T, = (1+0 :9(  1)M2=2).
Notice that the Mach 3 ows are approximately adiabatic whil e the Mach 7 and 10 ows
are cold walls. The inner friction velocity u = ( w= ¢)¥? is included together with
the boundary layer thickness , displacement thickness , momentum thickness , and
Reynolds numbersRe = u =, Re = Ug= o, and Re = ( w= ¢)¥?= .. The bound-
ary layer length scales and Reynolds numbers are measured tte rescaling plane located
approximately one boundary layer thickness upstream of thebox outlet. All cases are
fully turbulent.

The simulation case names in Table2.1 indicate the freestream Mach number and
the simulation type: \D" for DNS and \L" for LES. Two Mach 3 bou ndary layer cases
are included in the database with the only signi cant di eren ce between them being the
spanwise width of the computational domain. These two condions are labeled as M3n
for \narrow" and M3w for \wide". The purpose of running two di erent Mach 3 auxiliary
boundary layers is made clear in sectior2.5 where the sensitivity of the Mach 3 STBLI

mean ow to the spanwise domain width is addressed. The boundry layer runs M3n-D
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and M7-D are borrowed from Priebe & Martin references 12, 34] as indicated by the
superscript next to their casenames in Table2.1. For the purpose of evaluating the LES
solution of turbulent boundary layers at hypersonic conditions, a new DNS boundary layer
with a Mach 10 freestream is run together with an LES dataset 6 the same; however,
no DNS of a STBLI at the Mach 10 conditions are provided at this time due to the
computational resources that would be needed to run this cas Instead, this LES Mach
10 boundary layer is used later in Chapter3 as the in ow condition to a new Mach 10
STBLI con guration. The DNS box M10-D is used solely for the evaluation of the LES
boundary layer solution M10-L.

The computational domain size and grid resolution of each bondary layer simu-
lation is provided in Table 2.2. The outer dimensions are listed in terms of a reference
boundary layer thickness ,. As shown in Fig. 2.1, the streamwise, spanwise, and wall-
normal dimensions are specied byLy, Ly, and L, respectively. The M3n runs are 2,
wide and the M3w runs are 4, wide. Both the Mach 7 and Mach 10 are run with extra
wide domains for whichLy =10 ,. All boundary layer computational grids have uniform
resolution in the streamwise and spanwise directions and genetric stretching in the wall-
normal direction. Streamwise and spanwise grid spacings arlisted in terms of the inner
boundary layer length scalez = =u as indicated by the "+' superscript. The distance
from the wall surface to the rst wall-normal grid point is li sted asz; . The total number
of grid points in each simulation is indicated by N .

Our compression ramp DNS and LES database is detailed in Talel2.3. The com-
pression ramp casenames begin with \R" followed by a numberndicating the ramp de-
ection angle in degrees and ending with the case name of the dundary layer run that

was used as the in ow condition. In Table 2.3, is the ramp de ection angle in degrees.
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Case Me Ue Te e Tw=T; Re Re Re
ms!) (K) (kgm 3 (mshH (mm) (mm) (mm)

M3n-D [12] 291 609.7 108.9 0.0757 1.1 33.0 7.16 256 0460 336 2809 6140
M3w-D 292 609.9 108.9 0.0755 1.1 334 7.29 2.69 0489 346 1297446
M7-D [34] 7.16 1146.2 63.8 0.0771 0.52 62.4 4.61 250 0.173 202 33429120
M10-D 9.04 1410.7 58.6 0.0403 0.33 62.9 17.9 10.5 0.543 49586744870
M3n-L 292 610.3 108.8 0.0753 1.1 33.7 7.51 2.69 0.498 359 B03502
M3w-L 292 6104 109.0 0.0754 1.1 33.0 8.47 293 0.566 400 7344666
M7-L 716 11459 63.7 0.0763 0.52 62.3 4.56 247 0.170 197 4322041
M10-L 9.05 1410.6 58.5 0.0401 0.33 60.4 19.1 11.2 0.585 503 38304958

Table 2.1: Boundary layer edge and wall conditions for the LES and DNS database.



Case o Lx=o0 Ly=o L;=o x* vyt oz 10 ©
(mm)
M3n-D [12] 7.1 8.3 2.0 8.2 6.8 42 0.21 7.3
M3w-D 7.1 8.3 4.0 8.2 6.9 43 0.21 13.4
M7-D [34] 5.0 27.0 10.0 14.2 7.1 29 0.24 96.7
M10-D 18.0 30.0 10.0 10.5 7.8 3.0 031 361.3
M3n-L 7.1 15.0 2.1 7.4 27.2 148 044 0.5
M3w-L 7.1 30.7 4.0 7.6 26.2 10.7 0.49 3.2
M7-L 5.0 26.6 9.5 13.6 27.8 10.7 0.48 3.0
M10-L 18.0 30.0 10.0 7.0 269 11.0 0.67 14.8

Table 2.2: Boundary layer grid size and resolution for the LES and DNS database.

As drawn in Fig. 2.1, L1 is the computational domain length from the inlet to the corner
and Ly» is the length measured from the corner, along the ramp surfag to the outlet
plane. The width of each ramp computational domain is equal b that of its auxiliary
boundary layer. The computational grid is stretched in the sreamwise and wall-normal
directions so that grid points are clustered near the corneiand near the wall surface. The
grid spacing is uniform iny. The grid resolution properties are given in \+" units nondi -
mensionalized by thez of the incoming boundary layer provided in Table 2.1. The total
number of grid points for the compression ramp grids is indiated asN in Table 2.3. For
the Mach 3 runs, the mean separation length_ s¢p, is provided in units of the inow  from
Table 2.1. The simulation duration over which mean statistics are conputed is provided
in time units =Ue. For the separated Mach 3 runs, the simulation time is also gien in
units of Lsep=Ue. All simulations, both auxiliary boundary layers and compression ramps,
were run with spanwise periodicity and supersonic exit coniions at the top and outlet
boundaries. No-slip velocity and constant temperature wee assigned at the wall surfaces.
As noted in Section 2.2, the kinematic viscosity is specied as a function of the

LES ltered temperature. For the ows considered in this work, one of three dierent

viscosity laws is used depending on the range of temperatuseoccurring in the ow being
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[44

Case L x1=0 Lx2=o0 x* y* z; N 10 Lsep= tUe= tUe=Lsep
R24-M3n-D [12] 24 7.9 64 73339 42 019 210 2.93 1058 361
R24-M3w-D 20 7.9 64  7.4-344 43 019 210 3.56 1000 281
R8-M7-D [34] g 120 106 7.2-36 29 019 1384 attached 88 -

R24-M3n-L 2279 6.4 26.7-125 150 037 0.9 3.05 1070 350
R24-M3w-L 279 6.4 27.1-126 107 037 23 3.71 871 223
R8-M7-L 8° 120 124 27.2-123 84 023 6.1 attached 146 -

Table 2.3: Compression ramp simulation details.



simulated and on the working uid. Sutherland's law (Egn. 2.13) is used for the Mach
3 simulations for which the temperatures does not drop belowlOK and the working
uid is air. For ows experiencing temperatures below this t hreshold, Keyes temperature-
viscosity relations [64] are more accurate than Sutherland's law §, 34]. Keyes relation for
air (Eqn. 2.14) is used for the Mach 7 simulations. The working uid of the Mach 10 ows

is pure Nitrogen for which Keyes law for Nitrogen is used (Eqn 2.15).

f3
N=1:458 10° — 2.13
T +110:3 (213)
f1=2
n=1:488 10 ° (2.14)
1+ (122:1=f)10 5T
f1=2
n=1:418 10 ° (2.15)

1+ (116:4=7)10 5T
The reader is directed to the references indicated in Table&.1-2.3 for further details
on the compuational setup and initialization of the Mach 3 and Mach 7 DNS runs. We
now describe the initialization method of the datasets that are new to this article. The
M3w-D boundary layer run was initialized from an instantaneous volume solution of the
M3n-D run streteched in the streamwise and spanwise directins. The M10-D boundary
layer was initialized using the method of Martin et al. [65] in which a mean boundary
layer pro le obtained from a RANS solution is added to the uctuation ow eld of an
incompressible turbulent boundary layer DNS scaled by the mean density according to
Morkovin's hypothesis. All LES auxiliary boundary layer ru ns (M3n-L, M3w-L, and M7-
L) were initialized by selecting a single instantaneous valme solution of the corresponding
DNS ow, applying a tophat lter in space, and then interpola ting the Itered solution

onto the LES grid. In all cases, the initial boundary layer ow volume was allowed to
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aifu,

Figure 2.2: Auxiliary boundary layer mean pro les of (a) streamwise velocity and (b)
temperature normalized by the freestream value. Proles ae taken from the rescaling
plane near the outlet of the box. The DNS pro les are not lter ed.

run through a transient. Establishment of a statistically accurate boundary layer ow
was determined by the convergence of the spatial correlatio lengths, the skin friction
level, and the displacement and momentum thicknesses. Theaw compression ramp runs
(R24-M3w-D, R24-M3n-L, R24-M3w-L, and R8-M7-L) were initi alized by taking a volume
solution from their respective in ow boundary layer runs and interpolating it along the
entire length of the ramp surface. The ramp ow was then run through a transient phase
until the skin friction distribution showed that the intera ction region had reached its

natural separated state.
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Figure 2.3: Van Driest transformed velocity pro les at the auxiliary boundary layer rescal-
ing plane. The DNS pro les are not Itered.

2.4 Turbulent Boundary Layer

In this section we present the statistical evaluation of themean ow at the rescaling
plane of the auxiliary boundary layer simulations from Table 2.1. As can be determined
from the grid resolution information listed in Table 2.2, the resolution of the LES auxiliary
boundary layers is reduced from that of the DNS by a factor of @pproximately) 4, 4, and
2 in the i, j, and k-directions respectively. In order to obtain a Itered DNS ow eld
to compare to the LES solution, the tophat Iter of Eqn. 2.12 was applied to the DNS
solution in computational space with Iter widths corresponding to the grid size of the
LES. We found that the rst-order mean ow statistics of the D NS data were una ected
by the ltering operation. Time- and spanwise-averaged proles of streamwise velocity
and temperature nondimentionalized by the freestream are |otted versus z= in Fig. 2.2
together with the un Itered DNS data. Because the M3w and M3n boundary layer con-
ditions are so similar, only the pro les from M3w are shown. An excellent comparison of
mean velocity and temperature is made. The discrepancy beteen the LES and DNS is

found to be within 3% error for both the Mach 3 and Mach 7 and within 5% for the Mach
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Figure 2.4: Turbulent kinetic energy pro les (TKE = %% =U2) at the auxiliary boundary
layer rescaling plane. The DNS data is Favre- ltered by the tophat lter of Eqn. 2.12
The Iter width in i, j and k is indicated by the number in parentheses.

10. The van Driest transformed velocity pro les are plotted in Fig. 2.3. These density-
weighted and integrated mean velocity pro les also show exgllent comparison with the
un ltered DNS data. All three ow conditions result in less t han 3% error.

The pro les of time- and span-averaged turbulent kinetic erergy, de ned as TKE =
m,oo?i =U,, are plotted in Fig. 2.4. The angled brackets indicate the time and spanwise
Reynolds average, and (') now represents a uctuation aboutthe Reynolds average and
is not to be confused with the grid transform de nition in Eqn . 2.4. The tophat- Itered
DNS solutions are now used for the comparison of the TKE. The ombers in parentheses
in the legend of Fig. 2.4 indicate the Iter width of the tophat Iter applied to each D NS
dataset. For example, (442) refers to a tophat lter with n =4, 4, and 2 in the i, j, and
k grid directions respectively. The di erence in the peak TKE level between the LES and
the Itered DNS is less than 2%.

The percentage of total turbulent kinetic energy containedin the SGS terms of the
LES can be estimated in one of two ways, either by computing tle di erence between the
TKE pro les of the LES and DNS, or by computing the di erence between the Itered

DNS and the un ltered DNS. Both of these estimates are plotted in Fig. 2.5 for the
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Figure 2.5: The fraction of TKE contained in the sub-grid scdes for the M7-L boundary
layer run. The dashed line shows the TKE dierence in the Itered DNS compared to
the un Itered DNS. The symbols show the TKE di erence in the LE S as compared to the
un ltered DNS.

Mach 7 boundary layer. Note that the dierence in TKE is expressed as a fraction of
the local DNS value. The estimation from the Itered DNS shows that the percentage
of unresolved TKE is approximately 14% for the majority of the boundary layer. Below
z= = 0:2, the percentage drops to a minimum of 7% and then increase®ta maximum

of 18% at the wall. The estimation from the LES solution matches the Itered DNS for

z= below approximately 0.6. There is a discrepancy between thévo estimates, both at
the wall and at the boundary layer edge. This is at least partally due to the fact that the

total TKE goes to zero at these two locations, thus increasig the error sensitivity. Similar

results are obtained for the Mach 3 and Mach 10 boundary layes for which the percentage
of unresolved TKE are consistently between 10% and 15%, anche local minimum near
the wall does not drop below 5%.

Further information on the truncation of the turbulence uc tuations in the LES data
can be obtained through spectral analysis. The pre-multipled power spectral density of
the time signal of mass uctuations (de ned as ( 0)°for the LES and (u )°for the DNS)
in the Mach 7 boundary layer is plotted in Fig. 2.6. The time signal is taken from a

point in the center of the logarithmic layer at z* =50 (z= = 0:25) where the SGS TKE
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Figure 2.6: Pre-multiplied power spectral density of mass uctuations (( 0)°for the LES
and (u)?for the DNS) at the rescaling plane of the Mach 7 auxiliary bowndary layers.

percentage is about 12%. In Fig.2.6, the frequency is non-dimensionalized by=U,. The

spectra are calculated using Welch's method with eight ovdapping time segments and
bin sampled with a bin width of logo(f =U ¢) = 0:1. Included in this comparison of the
spectra is the tophat- Iltered DNS signal. The tophat- Iter ed DNS spectra was obtained
by taking the full resolution DNS time signal of (u)%at z* = 50 at the boundary layer

rescaling plane and lItering it with the tophat Iter conver ted from space to time via
Taylor's hypothesis of frozen turbulence $6]. The local mean velocity was used for the
time-to-space conversion. Because the magnitude of the spteal density is arbitrary, the

spectra are scaled so that the three curves coincide at the st frequencies. By plotting
the spectra in this way, one can see how the LES truncates theatution at the highest

frequencies of motion when compared to the DNS and Itered DNE. Figure 2.6 shows
that the spectral content of both the LES and the ltered DNS i s essentially una ected
for wavelengths belowf =U ¢ . 0:4. The comparison between the LES and Itered DNS
spectra indicate that the tophat Iter truncates the high fr equency content in the DNS
data in a manner very similar to the truncation of the turbule nce by the LES solver. The

results shown in Fig. 2.6, together with Figures 2.4 and 2.5, demonstrate that the tophat-
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Figure 2.7: Instantaneous visualization of density in a ceter-span xz-plane of R24-M3-L.

Iter operation applied to the DNS data closely mimics the LE S solution and therefore is

an acceptable method of validating the LES data.

2.5 Supersonic Separated STBLI

In this section we evaluate the LES soltuions of the Mach 3 compression ramp ows
listed in Table 2.3. The resolution of the LES compression ramp grids is reducettom the
DNS of Priebe & Martin [12] by a factor of approximately 4, 2, and 2 in thei, j, and k-
grid directions respectively. Applying a (422) Iter results in approximately a 10% to 15%
reduction in the TKE throughout the interaction region and i n the downstream recovering
boundary layer. As with the boundary layer from Section 2.4, the rst-order mean ow
statistics of the DNS data were found to be una ected by this |tering operation.

The corner ow of the R24-M3w-L run is visualized in Fig. 2.7 by a snapshot of
the instantaneous density eld in an xz-plane located at the center of the span width.
Several of the key features of this ow are visible in Fig.2.7. One can clearly make
out the large forward-leaning turbulence structures in the incoming boundary layer, the

initial compression waves upstream of the corner, the mainsock front, and even several

29



shocklets emitting from the turbulence structures in the dovnstream boundary layer. A
change in the length scale of the turbulence across the shodk also apparent. From this
gure, it is evident that, even with the factor of 16 decreasein grid resolution, the LES
solution maintains a high level of detail in the turbulence.

In Fig. 2.8 (a) is shown the time- and spanwise-averaged distribution bskin fric-
tion coe cient Cs 2 w= Ue? for both the wide and narrow domain solutions plotted
versusx® . The LES averaged skin friction distributions are comparedto the DNS in
Fig. 2.8. Here the x%axis is de ned as the distance measured along the wall surtz with
x%= 0 located at the ramp corner. The mean separation and reatthment points are
de ned as the x° locations where theC; crosses zero. The separation length sep is the
distance between these two points measured alorng®. The data shows that the separation
length di ers signi cantly between the wide-domain and narr ow-domain solutions. This
di erence in Lsgp With spanwidth is seen in both the LES and DNS solutions. Conglering
this, the fact that the narrow spanwidth modi es the size of t he separation is not surpris-
ing. Many studies have shown that the supersonic compressioramp STBLI ow is not
strictly two dimensional but has a spanwise periodicity on the order of the boundary layer
thickness (See 24] and the references therein). The sensitivity of the separdon length
to the spanwidth, however, it is an important behavior to be aware of in interpreting the
separation data of STBLI simulations as many of the availabe DNS and LES simulations
are computed on narrow domains. To the authors' knowledge, lis spanwidth e ect has
not been closely addressed. For the comparison of the curreiMach 3 datasets, we note
that if the skin friction is plotted versus xO:LSep instead of x% , all four solutions collapse
extremely well as in Fig. 2.8 (b) indicating that the separation length is the appropriat e

length scale for the comparison of the mean ow.
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Figure 2.8: Mean wall distributions of (a) skin friction ver susx=, (b) skin friction versus

X=Lsep, and (c) wall pressure versusx=Lgep for the Mach 3 STBLI solutions. The DNS
data are not ltered.
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The skin friction distribution itself is characterized by a multi-in ection point curve
in the separated region in which a local maximum inC; occurs in the center of the
separation bubble. Using a conditional averaging technige, Priebe & Martin [12] showed
that this feature in the skin friction signature is caused by speci cally the bubble collapse
phase in the low-frequency oscillation cycle of the separ@n bubble unsteadiness. The
fact that the LES captures the sameC; distribution as the DNS is an indication that the
low-frequency dynamical mode is simulated correctly by thecurrent LES method.

The time- and spanwise-averaged wall pressure distributios of the Mach 3 ramp so-
lutions are plotted in Fig. 2.8 (c). In the separated region, a slight leveling o or \plateau"
in the pressure is noticeable. Wu & Matrtin [60] demonstrated that excess numerical dis-
sipation can prevent the occurrence of this feature. The qulity of the comparison in 2.8
(c) provides assurance that the LES does not su er from this poblem despite the coarser
grid resolution.

The separation shear layer is another feature of the supersic STBLI separated ow
that is crucial to the overall accuracy of the solution. Figure 2.9 (a) shows the comparison
of the pro les of mean velocity through the separation shearlayer of the LES and DNS
data. These pro les were taken from the time- and spanwise-geraged mean ow solutions
along a line perpendicular to the wall surface just ahead offte corner atx%Lgep =  0:15.
The excellent comparison con rms that the LES is correctly reproducing the aspect ratio
of the separation bubble as well as the spreading rate of thehear layer. Streamwise and
spanwise turbulence intensities taken from the same locatin are plotted in Fig. 2.9 (b).
Here the LES is compared to the Itered DNS solutions. Again,an excellent comparison
is made. The peak turbulence levels of the LES are within 6% othe DNS.

The spectral content associated with the low-frequency unteadiness in supersonic
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Figure 2.9: Pro les of (a) mean velocity, and (b) turbulence intensities in the shear layer
of the Mach 3 STBLI solutions. The DNS in (a) is not Itered. A ( 422) lter is applied
to the DNS data in (b).
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Figure 2.10: Pre-multiplied power spectral plots of the time history of (a) separation point,
and (b) reattachment point in the narrow Mach 3 STBLI DNS and L ES solutions.
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separated STBLI is well documented both experimentally andcomputationally (For ex-
ample see 11, 12]). The pre-multiplied power spectral density of the R24-M3n-L run
separation time signal is plotted in Fig. 2.10(a) with the DNS spectra from Preibe & Mar-
tin [12]. The nondimensionalized frequency Strouhal number is dened asSt = fL=U..
Because the simulation duration only resolves approximatly 10 low-frequency cycles, it is
not expected that the lowest frequencies are spectrally corerged. However, the LES and
DNS both show the dominant energy content occurs in the rangef St  0:01 to 0:03. A
similar comparison is made in Fig.2.10 (b). with the reattachment signal spectra. The
compressed incoming turbulence and the spanwise-orientedixing layer-like vortices that
form in the separation shear layer both contribute to the broadband energy in the reat-
tachment spectra. The LES matches the broadband energy coent of the DNS centered
at St of O(0:1) Some low-frequency energy is also captured in the reatthenent spectra

of the LES with good comparison to the DNS spectra.

2.6 Hypersonic Attached STBLI

In this section we present the LES-to-DNS comparison of the ow organization, mean
wall quantities, and Reynolds stress contours of the attackd Mach 7, & compression ramp
con guration (datasets R8-M7-L and R8-M7-D in Table 2.3). A spatial tophat Iter with

Iter widths of 4, 4, and 1 in the i, j, and k grid directions respectively was applied to the
DNS data for postprocessing. As with the bounday layer soluibns of Section2.4 and the
supersonic STBLI solution of Section2.5, the rst-order mean ow statistics of the DNS
solution R8-M7-D were not a ected by the lter.

An instantaneous snhapshots of the density eld in anxz-plane located at the center

span of the three-dimensional ow volume of the LES solutionis plotted in Fig. 2.11
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Figure 2.11: Instantaneous visualization of density in a ceter-span xz-plane of R8-M7-L.

As was shown in Section2.4 with the Mach 3 STBLI, the instantaneous density eld
provides a descriptive image of the turbulence structure ad overall ow organization.
The structure of the incoming turbulence is seen as large, d& conglomerates of eddies
about the size of the incoming boundary layer thickness. Themain shock front is visible
as a light area above the ramp surface. The main shock is seeo trap around the large
turbulence structures of the boundary layer as they pass though the interaction. Priebe
& Martin [ 34] noted similar features in a comparison of instantaneous ‘dualizations of
the DNS solution and the experimental Filtered Rayleigh Scdtering images of Bookeyet
al. [35].

Time- and spanwise-averaged wall distributions of skin fretion, pressure, and heat
transfer are plotted for the LES and for the un ltered DNS in F ig. 2.12 The heat transfer
coe cient, or Stanton number, is dened as Cp  gy= eUeCo(Tw  Tr) Where qy is the
rate of heat transfer at the wall and ¢, is the speci ¢ heat at constant pressure. The wall
guantities are plotted versus the distance measured alonghie wall surface from the ramp
corner. The wall-distance is labeled in Fig.2.12 asx%to distinguish it from the simulation
(x;y;z) coordinates. The skin friction distribution shown in Fig. 2.12 (a) makes a sharp

dip at the corner but does not drop belowC; = 0. This STBLI ow is therefore said to
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Figure 2.12: Wall distributions of (a) skin friction coe ci ent C; =2 = ¢Ug, (b) pressure,
and (c) heat transfer coe cient C;,  gy= eUeCo(Tw  T;) of the Mach 7, 8 compression
ramp LES and (un ltered) DNS mean ow solutions.
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Figure 2.13: Time- and spanwise-averaged reverse probaity at the wall surface of the
Mach 7, 8 compression ramp LES and (un ltered) DNS ow solutions.

be attached in the mean sense. The LES solution closely folis the DNS skin friction
dip at the corner and also the gradual increase in the recovéng boundary layer further
downstream. On the ramp surface, the di erence in skin friction between the LES and
the DNS is approximately 3%. The LES solution of wall pressue in Fig. 2.12 (b) also
shows an excellent comparison with the DNS and there is no nable di erence between
the two. The heat transfer coe cient in Fig. 2.12 (c) is also found to be within 4% of
the DNS solution on the ramp. The shallow dip atx% =0 and the subsequent step-like
incease to the downstream heat transfer level are well ressd in the LES data.
Although it is fully attached in the mean sense, Priebe & Martin [34] found that
this particular Mach 7 STBLI con guration has a certain prob aility of instantaneous
separation at the corner. In Fig. 2.13 the spanwise averaged probability of ow reversal
at the wall  as reported by Priebe & Martin for R8-M7-D is compared to the same
guantity calculated for R8-M7-L. The quantity  is the fraction of ow instances over the
total number of ow realization in the ensemble average for vhich the streamwise velocity
u < 0. Figure 2.13 shows the distribution of , one grid point above the wall surface. The

width of the probability distribution as well as the maximum at the corner are in excellent
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Figure 2.14: Contours of averaged (a) streamwise, (b) walkormal, and (c) cross turbu-
lence stresses in the Mach 7,%8compression ramp ow solutions. The color contour is the
ltered DNS data and the solid line contour is the LES data.

agreement between the LES and DNS data. The peak probabilityat x%= = 0 is 31% for

both the DNS and the LES.
q

Next we compare the turbulence stresses 10919  ¥Oq00 and hoN0to the Itered

DNS ow. Here the tilde represents a Favre averaged quantitysuch that & = hui=hi
and a uctuation about the Favre average is indicated by the double prime such that
u®= u w The color contours in Fig. 2.14 represent the Favre averaged turbulence
stresses of the Itered DNS solution and the overlying blackcontour lines are the same for
the LES solution. The stresses are nondimensionalized by thincoming boundary layer
friction velocity u . The two contours of the Itered DNS and the LES are very nearly

the same for all three quantities and the areas of turbulenceampli cation are very well
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reproduced by the LES both in the spatial extent and in magnitude. The peak turbulence
in the LES contours di ers from the ltered DNS peak levels by 0:2u in the streamwise
and cross stresses, and by only:Qu in the wall-normal stress. Although not included in
Fig. 2.14, the error in the maximum of the spanwise stress componeneri \BY0was found

to be less than 003u .

2.7 Summary

In this chapter it was demonstrated that the LES method of Sedion 2.2 solving the
Favre- ltered equations for conservation of mass, momentun, and total energy using a one-
coe cient mixed model for SGS shear stress and heat ux p2], a triple correlation relation
for SGS turbulence di usion [56], and a bandwidth optimized WENO discretization scheme
produces accurate solutions of hypersonic STBLI.

The LES solutions of the incoming turbulent boundary layers at Mach 3, 7 and 10
showed an excellent statistical comparison with the Itered DNS solution in the pro les of
mean velocity, temperature, van Driest transformed velodly, and turbulent kinetic energy.
Spectral content in the LES and Itered DNS boundary layers indicated that the tophat
Iter is a good approximation of the LES solution truncation of the smaller turbulence
scales. In conclusion, the tophat Itered DNS solution provdes a good comparison for
the validation of the LES solution. A comparison among the LES, DNS, and Itered
DNS solutions of TKE revealed that the LES resolution used inthis study resulted in
approximately 12%-25% of the total TKE being contained in the SGS terms.

The LES was shown to accurately reproduce the separated MacB STBLI solution in
terms of skin friction distribution (separation length), w all pressure, shear layer pro les,

and frequency content at separation and reattachment. Neiher the DNS solution of
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Priebe & Martin [ 12] nor the R23-M3n-L LES solution presented here can be consated
as spectrally resolved at the low frequencies associated tlithe shock unsteadiness as only
about 10 low-frequency cycles are contained in either datat. However, the comparison of
the LES and DNS separation spectra showed that the dominant eergy in both solutions
is contained at the lowest frequencies in the rangélL sep=U.  0:03 to O:1. In addition,
the simulation of two di erent span widths for the Mach 3 separated STBLI condition
(Ly =2 andLy =4 ) presented in Section2.5 of this paper indicates that the compression
ramp STBLI, although a two-dimensional geometry, is not a srictly two-dimensional ow.
Many studies on supersonic separated STBLI have identi ed sspanwise-periodic structure
in the separated ow and there is evidence that this spanwisgeriodicity is linked to the
form of the low-frequency unstable mode 1, 22, 24, 41, 67, 68]. If the domain width is
too narrow, these structures may be arti cially con ned in t he spanwise direction thus
altering the separation length.

The hypersonic STBLI comparison revealed that the LES propey reproduced the
mean turbulence eld including the strong ampli cation of t he Reynolds stress components
as well as the wall shear stress and heat transfer. The incipnt separation of this condition
documented by Priebe & Martin [34] was very well reproduced by the LES as indicated
by the probability of instantaneous reverse ow along the ramp surface.

Concerning the application of the LES method, we used a ratheconservative lter
strength. The lIter strength was achieved by downsampling the i-, j-, and k-grids by
approximately 4, 4, and 2 from the resolution needed to run tle code in DNS mode, that
is, with the SGS model terms turned o. As a result, the LES operates on a factor of
32 fewer grid points than the DNS which is equivalent to 3% of he DNS computational

cost. This is a signi cant reduction even considering the conputational overhead needed
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to solve the LES model equations. Because of the coarser grithe CFL condition of the
numerical method necessarily produces a larger time step fdhe LES. In the case of the
separated Mach 3 ow (R24-M3-L), the average LES time step wa 2.8 times larger than
that of the DNS. Further savings in the computational cost and runtime could be achieved
by studying the limit of SGS lItering that the LES method can h andle and still produce
an accurate solution. The boundary layer pro les of percenage TKE in the SGS terms
shown in Fig. 2.5 show there is approximately 25% energy in the SGS at the wallad 12%
in the majority of the boundary layer above z= = 0:2. The a priori studies of Martin
et al. [52] indicate that maintaining 25%-30% TKE in the SGS throughout the boundary

layer may be possible.
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Chapter 3: LES of Two Separated Hypersonic STBLI

xThe majority of this chapter is reproduced from Helm & Martin [53].

3.1 Chapter Overview

In light of the validation analysis presented in Chapter 2, we now proceed to use the
LES method of Chapter 2 to generate two new datasets of separated hypersonic STBLI
ows. The rst of these is a Mach 7 ow with the same freestream and boundary layer
conditions as the attached R8-M7-L ramp but the ramp angle isincreased from 8 to 33°
The M7-L turbulent boundary layer run is again used as the in ow condition. The second
is a Mach 10 ow over a 34 compression ramp for which the incoming boundary layer is
the M10-L dataset. Following the naming convention introduced in Chapter 2, these two
new datasets are referred to as R33-M7-L and R34-M10-L resptvely.

This chapter is primarily concerned with the documentation of the time- and spanwise-
averaged ow eld of these two separated hypersonic dataset. Details of the computa-
tional setup and the convergence of the mean ow are given in &ction 3.2. A description
of the ow organization is given in Section 3.3 including a comparison of the downstream
ow with the oblique shock solution. The mean solution of velocity, temperature, and
density as well as averaged wall quantities are provided in &ction 3.4. Wall quanti-
ties reported include the pressure, skin friction, heat transfer and the variation in the

uctuation intensities of these properties along the ramp surface. The solutions of the
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averaged turbulence are the topic of Sectior8.5. Turbulence data included in this chapter
are the averaged Reynolds stress ow elds, the turbulent kinetic energy budgets, and
the anisotropy tensors. Several turbulence modeling assuptions are evaluated for these
ows including the Reynolds Analogies relating velocity and temperature uctuations, the
Reynolds Analogy Factor (RAF) relating skin friction to heat transfer, and the so-called
QP85 law [69] relating wall pressure to wall heat transfer.

An important result presented in this chapter is the comparison of the LES solu-
tions of the separated hypersonic STBLI using the current dynamic mixed model to that
generated using the dynamic eddy viscosity model only. As igiscussed in Sectior8.7, the
conservative energy exchange that is accounted for by the ate-similar term in the mixed
model is necessary for the accurate simulation of the sepatian shear layer. Excluding
the scale-similar term was found to result in as much as 30% eor in the separation length
at high Mach number.

This chapter concludes with a summary of results in Sectior3.8.

3.2 Computational Setup and Mean Flow Convergence

Details of the computational grid, simulation duration, and mean separation length
of the R33-M7-L and R34-M10-L runs are provided in Table3.1. The computational
domain of R33-M7-L has the same outer dimensions and grid retution as the R8-M7-
L simulation. The outer dimensions of the R34-M10-L grid arecomparable to those of
the Mach 7 ramp when expressed in units of the incoming boundg layer thickness.
Both simulations are computed on wide domains wherd_y= o = 10 for the purpose of
minimizing any possible spanwise con nement e ects on the sgarated ow region as was

discussed in Sectior2.5.
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Case

¥

L x1=0 Lx2=o0 X y* Z; N 10° L sep=

R33-M7-L 3%
R34-M10-L 3%

12.0 120 26.6-11.3 84 0.23 6.1 6.2
13.0 120 27.7-105 7.1 0.20 51.8 4.1

3153
451

511
110

Table 3.1: Hypersonic compression ramp simulation details



The R33-M7-L ow was initialized from an instantaneous volume solution of the R8-
M7-L dataset. The compression ramp angle was gradually in&ased from 8 at startup to
the nal angle of 33°, and the ow was allowed to develop through a transient until the
separation length was no longer increasing in time. Once theeparation region became
established, the simulation was run for a duration of 3150=-U. over which mean ow
statistics were averaged. The mean separation length was rasured to be 62 . In terms
of the mean separation length, the duration of the run is equalently 510L sep=U.. The
R34-M10-L compression ramp was initialized in a similar wayin that an instantaneous
volume solution of the M10-L boundary layer was interpolatad onto an 8 ramp and the
ramp angle was steadily increased until the nal angle of 34 was reached. The ow was
then allowed to develop to its natural separation length. The R34-M10-L case was run at
over twice the Reynolds number of the R8-M7-L case and, as a selt, requires an order
of magnitude increase in the number of grid points compared @ R8-M7-L. Due to the
greater computational cost, the Mach 10 simulation was onlyrun for 450 =U, over which
mean statistics could be taken. Over this duration, the sepaation length averaged to 41
resulting in a simulation duration of 110L sgp=Uk.

The convergence of the mean ow statistics in separated STBLis limited by the
convergence of the low-frequency unsteadiness in the sepdion bubble which oscillates
at frequencies much lower than those of the incoming turbulace. As was discussed in
Section 2.5, the pre-multiplied power spectral density of the time sigrals of separation
and reattachment provide information on the dominant frequencies in the interaction
region turbulence. The pre-multiplied power spectra of theseparation and reattachment
points in the Mach 7 and in the Mach 10 data are plotted in Fig. 3.1. The spectra are

normalized so that the area below a given curve sums to unity Wwen integrated over the
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Figure 3.1: Premultiplied power spectral density of the time history of separation and
reattachment in (a) R33-M7-L and (b) R34-M10-L.
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logarithmic exponent of the frequency. The separation spdca are dominated by the
energy in the lowest frequencies with very little energy in he ne-scale turbulence. The
Mach 7 separation spectra in Fig.3.1(a) shows a distinct low-frequency peak centered at
St =0:1 and signi cant energy at normalized frequencies as low aSt; = 0:03. Because
of the shorter simulation duration, the lowest frequenciesin the Mach 10 spectra shown
in Fig. 3.1(b) are not as well converged as in the Mach 7 data; however, # dominant
frequencies occur in the same range d8t, . Concerning the reattachment spectra, both
cases show a broadband spread in energy centered at approxately St, = 1. This wide
energy band in the reattachment signal is seen to trail o on dther side at the same
frequencies that the high and low frequency energy peaks inhe separation spectra trail
0.

The lowest energized frequency o6t = 0:03 in the separation region corresponds
to a time scale of 3%Je=Lsep. The Mach 7 dataset, therefore, contains at least 15 of these
low-frequency cycles and the Mach 10 dataset at least 3. Sartgs of the separation and
reattachment signals normalized byL sep are plotted in Fig. 3.2 for both the Mach 7 and
Mach 10 ows. Visual inspection suggests that the mean sepaition point is well de ned
by the sample length of 10Q s¢p=Ue. If the full Mach 7 separation signal is split up into
10 overlapping segments of length 100sep=U. and the average separation positiorxs is
calculated from each segment, we nd that the largest error n Xg is within 3% of the
full signal average with a standard deviation of 1.7%. We conlude that a duration of
100Ue=Lsep, Or approximately three low-frequency cycles, is su cient for the convergence

of the separated STBLI mean ow to within 3% error.
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Figure 3.2: Sample time signals of spanwise-averaged septon and reattachment posi-
tions from R33-M7-L ((a) and (b) respectively) and from R34-M10-L ((c) and (d) respec-
tively).

Figure 3.3: Instantaneous snapshot of the three-dimensial turbulence and shock front in
(a) the R33-M7-L and (b) the R24-M10-L simulations. An isosuface of density gradient
(j j=0:7) is colored by the magnitude of streamwise velocity. The av direction is
from the bottom left to top right of the image.
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3.3 Flow Organization

The turbulence structure and ow organization of the R33-M7-L and R34-M10-L
datasets are visualized in Fig.3.3 by three-dimensional isosurfaces of the instantaneous
density gradient. These isosurfaces are colored by the inshtaneous streamwise velocity.
The large-scale turbulence eddies in the incoming boundariayer appear as bulges in the
isosurface. Reverse ow in the separation bubble can be seas the area in blue at the
corner. The isosurface also shows that the shock begins torfo at a shallow angle inside of
the turbulent boundary layer ahead of the separation bubble This initial separation shock
intersects the ramp surface and re ects o the wall to form the main obligue shock. The
turbulence eddies in the incoming boundary layer appear to e heavily compressed below
this point of re ection. A clear shift can be seen in the spatial scales of the turbulence
from the incoming boundary layer eddies to the larger ripples in the shockwave above
the separation bubble and just downstream of reattachment. This shift in scales was also
noted by Wu & Martin [ 70] in the DNS of a Mach 3 compression ramp at similar conditions
to the R24-M3n-D case from Section2.5. In both ows, the main shock front becomes
two-dimensional as it comes away from the ramp surface and &s the computational
domain.

Many of these same features in the turbulence can also be se&n Fig. 3.4 which
shows the instantaneous density eld in anxz-plane cut through the center of the simu-
lation span. The large eddies in the incoming boundary layerare seen as dark structures
(lower density) and the shock front as the lighter features pigher density). The separation
shock in the Mach 7 ow appears to come slightly away from the elge of the boundary

layer before re ecting o the ramp surface. The separation $ock of the Mach 10 ow,
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Figure 3.4: Instantaneous snapshot of density in an xz-plae through the center of the
spanwidth of (a) the R33-M7-L and (b) the R34-M10-L.

Figure 3.5: Time- and spanwise-averaged Numerical Schlien of (a) R33-M7-L and (b)
R34-M10-L. NS = 0:76exp( L:3jir 7j3r “jmax)-

on the other hand, remains embedded in the turbulent bounday layer due to its smaller
separation length. In Fig. 3.4, the shock front in both ows appears distorted by the
turbulence structures in the separated region and near the lsock re ection point on the
ramp surface.

The time- and spanwise-averaged ow elds are visualized inFig. 3.5 by what is
referred to as a Numerical Schlieren, or the exponent of the man density gradient eld
NS = 0:76exp( 1:3jr 7j5r “jmax). In both mean ows, the angle that the main shock front
makes to the freestream approaches the inviscid oblique skk solution as it comes away
from the wall. The inviscid solution angle is 44 for the Mach 7 con guration and 44:5° for

the Mach 10. Mean ow pro les taken from the exit plane of the computational domain
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Figure 3.6: Post-shock pro les of (a) Mach number, (b) tempeature, (c) total pressure,
and (d) static pressure at the outlet plane of the computational domain. Pro les are
normalized by the inviscid oblique shock solution. The daskd lines are the Mach 7
solution and the solid lines the Mach 10.

(Fig. 3.6) show that, outside of the boundary layer, the Mach number, temperature,
and total pressure closely match the inviscid post-shock auditions. The downstream
pressure comes just short of the oblique shock pressure jumpn Fig. 3.6, z0indicates the

perpendicular distance from the ramp surface.

3.4 Mean Flow

Contour plots of the Favre-averaged velocitiesu~and w, the Favre-averaged tem-
perature T, and the Reynolds-averaged density” of the R33-M7-L and R34-M10-L mean
ow elds are shown in Fig. 3.7. The extent of the reverse ow region is visible as the red
area (negative velocity) in Figs. 3.7 (a) and (b) of the Mach 7 and Mach 10 ows respec-
tively. In both mean ow solutions, the maximum reverse ow i s approximately 12% ofUk.
The position of the averaged separation shock above the rexge ow region is visible in the
contour plots of w in Figs. 3.7 (c) and (d). A pocket of downward uid motion on the aft

end of the separation bubble is also visible. The temperatug contours in Figs.3.7(e) and
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Figure 3.7: Contours of (a)-(b) Favre-averaged streamwisevelcity d, (c)-(d) wall-normal
velocity w, (e)-(f) temperature T, and (g)-(h) Reynolds averaged densityh i normalized
by the freestream values. R33-M7-L are plotted on the left ad R34-M10-L on the right.

53



(f) show that the maximum heating in the ow occurs inside the separation bubble in the
dead air region. Here the Mach 7 mean ow experiences a maxinm mean temperature
of 8:7T¢ and the Mach 10 a maximum of 125T.. Note that the heating inside the separa-
tion bubble exceeds the inviscid post-oblique shock tempature prediction of 5:7T, (50%
increase) for the Mach 7 condition and 87T, (40% increase) for the Mach 10 condition.
The contours of density in Figs. 3.7 (g) and (h) are found to change only slightly in the
recirculation area. The peak value in mean density occurs irthe downstream boundary
layer near the wall surface reaching a peak of:6 ¢ on the Mach 7 ramp and 100 ¢ on the
Mach 10 ramp. This increase in density at the wall exceeds thénviscid shock solution of
5:0 ¢ (30% increase) for the Mach 7 and 8 ¢ (90% increase) for the Mach 10.

The details of the mean ow elds are further highlighted by i ndividual pro les of the
velocity, temperature, and density. These pro les are ploted for R33-M7-L and R34-M10-
L in Fig. 3.8. Proles at four streamwise locations are shown and includethe upstream
undisturbed boundary layer (x%=Lsep =  1:3), mean separation k%Lsep = 0:65), the
corner (x%:Lsep = 0), and the downstream recovering boundary layer %Lsep = 1:9). The
streamwise coordinatex?indicates the distance from the corner measured along the viia
surface. The wall-normal coordinatez®is measured perpendicularly from the wall surface.
This notation is maintained throughout the remainder of this article. Note that for the
downstream boundary layer pro les, we rotate the velocity eld coordinates so thatu-
represents the velocity component in the direction paralléto the ramp surface andw-the
velocity component perpendicular to the ramp surface.

The pro les of 4 (Fig. 3.8 (a) for the Mach 7 and Fig. 3.8 (e) for the Mach 10) show
that the boundary layer thickness is signi cantly reduced in the downstream recovering

boundary layer. The boundary layer begins to lift away from the wall at separation, as
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Figure 3.8: Individual proles of (a),(e) Favre-averaged dreamwise velocity u; (b),(f)
wall-normal velocity w, (c),(g) temperature T, and (d),(h) Reynolds averaged densityh i
normalized by the freestream values. The top row is R33-M7-land the bottom row is R35-
M10-L. Pro le locations are upstream x%Lgep = 1:3 (solid), separationX%Lsep =  0:65
(dash-dot), corneer:LSep = 0 (dash-dot-dot), and downstream x°:Lsep = 1.9 (dashed).
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indicated by the & and w pro les, and forms a mixing layer-type pro le with a single
in ection point in the center of the detached shear layer. The downstream w-pro le
returns to zero velocity as the ow adjusts to a direction parallel to the ramp surface. The
temperature pro le at the corner in panels (c) and (g) of Fig. 3.8 also develops a single
in ection point pro le that appears to be coincident with th e streamwise velocity pro le
at the corner. The temperature in the downstream boundary lgyer experiences a very
sharp positive gradient at the wall, which comes to a peak vey close to the wall surface,
followed by a decreases to nearly the post-shock freestreatemperature. The density
pro les in panels (d) and (h) of Fig. 3.8 show that the variation in density downstream is
essentially a mirror image of the temperature pro le. As wasnoted in Figs. 3.7 (g) and
(h), the change in density is very small ahead of reattachmen

The mean wall pressure, skin friction, and heat transfer digributions are next plot-
ted in Fig. 3.9. When plotted versus XO:Lsep, the two simulations have nearly identical
distributions. In both ows, the pressure is seen to increag slightly at separation and
then steeply at reattachment where it reaches a maximum befi@ relaxing to the inviscid
oblique shock solution. Downstream of the ramp, the wall presure actually drops slightly
below the inviscid level by 3%. This was also noted in the ou#t proles in Fig. 3.6
(d). In the Mach 7 mean ow, the pressure begins to increase exr so slightly just before
reaching the domain outlet indicating that the boundary layer is not fully recovered yet.
The “rms' distributions of wall pressure are also included m Fig. 3.9 (a). The pressure
uctuations are essentially zero in the upstream boundary hyer. Through the separation
region, the variation in the P, distribution follows the form of the mean pressure but
decreases again as the boundary layer relaxes downstream. h& maximum in PQ is

slightly upstream of the maximum in P,,.
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10°C,

Figure 3.9: Time- and spanwise-averaged distributions ofd) wall pressure, (b) skin fric-
tion, and (c) heat transfer for R33-M7-L and R24-M10-L. The horizontal dashed lines in
(a) indicate the inviscid shock pressure.
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The distribution of mean skin friction coe cient C; is plotted in Fig. 3.9 (b). The
skin friction rst decreases gradually just ahead of the sepration point and drops below
zero inside the separation bubble where it remains fairly costant up to the corner. Two
sharp dips appear on either side of the corner as a result of thgrid discontinuity. The
C: then increases rapidly, reaching a peak just downstream ofeattachment and at the
same location as the peak inP,,. It then steadily decreases as the reattached boundary
layer begins to recover. In the Mach 7 distribution, C; reaches a maximum of 9.3 times
the level of the incoming boundary layer while the Mach 10C; distribution peaks at
11.3 times the incoming boundary level. The uctuations in the skin friction CJ o are
included in Fig. 3.9 (b). The uctuating Cs increases gradually from separation to the
corner and then increases rapidly to a peak downstream of ré@chment followed by a
steady decrease along the ramp. In both ows, the maximum inC, ¢ is found to be
approximately 20 times the upstream level. In addition, the peak C; occurs at the same
streamwise location as the maximum inP,, while the peak in C2, . at the same location
as the maximum in P2 ¢ for both the Mach 7 and Mach 10 interactions.

The wall heat transfer coe cient C,;, distribution shown in Fig. 3.9 (c) experiences a
slight dip at separation after which it increases rst gradually and then more rapidly past
the corner until it reaches a maximum on the ramp. It then steadily decreases downstream.
The uctuation magnitude CQ . is included in Fig. 3.9 (c) and is found to follow the
same progression a£;, but at a somewhat lower magnitude. The coinciding maxima in
Ch and C)), s occur just upstream of the peak inPy, but in-line with the peak in PQ,. In
the Mach 7 mean ow, the maximum heat transfer coe cient is 15.2 times the value of the
incoming boundary layer and 2.2 times the value at the outletplane. The ampli cation of

heat transfer in the Mach 10 ow is 16.8 times the value in the hcoming boundary layer
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and 2.0 times the value measured at the outlet plane.

3.5 Turbulence Properties

In this section, the properties of the time- and spanwise-agraged turbulence stresses

and turbulent kinetic energy budgets are discussed. Contots of the Favre-averaged
__p__1Q
Reynolds stress components 1099 @900 (0900 and O normalized by the freestream

velocity are plotted in Fig. 3.10. The streamwise turbulence intensity reaches its maxi-
mum ampli cation in the separation shear layer where it is found to be twice the upstream
maximum in both ows. This strong ampli cation occurs almos t immediately at separa-
tion and remains fairly constant throughout the detached shear layer. The contours show
that v99. and wl9, also increase in the separation shear layer. The maximum w99
occurs at the wall surface in the vicinity of reattachment. Two local peaks occur in the
contours of w9, one just above the wall at reattachment and the second at thebase of
the main shock. The latter is a result of the fore and aft motions of the shock which cause
w to oscillate between freestream v = 0) and post-shock de ection velocity. The base
of the main shock also appears in the contour of turbulence skar stressu®%as a region
of negative correlation due to a similar e ect where the oscilations of u and w are out of
phase across the shock. In the upstream boundary layer and ithe separated shear layer,
UoQ0is negative as is expected for these types of shear ows. In i the Mach 7 and
Mach 10 data, a strong positive ampli cation of U%W%occurs on the ramp surface near
reattachment.

Pro les of each of the four stress components in Fig3.10 are plotted in Fig. 3.11

The individual pro les are taken from the same streamwise Ia@ations as in Fig. 3.8 from

Section 3.4. The velocity axes are again rotated on the ramp surface so tht u is in
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P
Figure 3.10: {iontours of mean turbulence stress component&)-(b) 1% (c)-(d)

B0 (e)-(F)  NOWO0 and (g)-(h) hON Cnormalized by the freestream values. R33-M7-L
are plotted on the left and R34-M10-L on the right.
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P
Figure 3.11: Iqﬁiividual pro les of turbulence stress compments (a),(e) 1% (b),(f)

W% (c),(g) MO0 and (d),(h) hoN°Cnormalized by the freestream values. The top
row is R33-M7-L and the top row is R34-M10-L. Pro le locations are upstreame:Lsep =

1:3 (solid), separation x%Lsep = 0:65 (dash-dot), cornerx%=Lsep = 0 (dash-dot-dot),
and downstream xO:LSep = 1.9 (dashed).
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the plane parallel to the ramp and w is perpendicular to the ramp. In the proles of
streamwise turbulence, the upstream turbulence peak incrases in magnitude and shifts
away from the wall at separation. At the corner, the streamwise turbulence peak is greatly
thickened but the maximum value does not change signi cantl from that at separation.
The location in z%of the P Wopeak in the corner pro le coincides with the z%location of
the in ection point in the corner mean velocity pro le shown in Fig. 3.8 (a) for the Mach
7 and Fig. 3.8 (e) for the Mach 10 ow. The magnitude of the streamwise turbulence
is signi cantly reduced in the downstream boundary layer and the peak is compressed
very close to the wall surface. Thev®, w9, , and % Cturbulent stresses also show an
increase through the shear layer. The magnitude o909, and w®9, decrease again in the
most downstream pro les. The l]|09voocomponent is seen to reverse sign in the recovering
boundary layer. The downstream pro les show that all four turbulence stresses maintain
an elevated turbulence level outside the region of high sheat the wall, that is, above the
compressed local boundary layer thickness. This feature caalso be seen in the contour
plots of Fig. 3.10as a band of elevated turbulence parallel to the ramp surfacbeneath the
main shock. This band of elevated turbulence appears to degagradually downstream.
The state of the turbulence stresses is further investigaté by analyzing the principle

invariants of the anisotropy tensor. The anisotropy tensoris de ned as byj = JJ?QJJ-O%ZK

i =3 wherek = 190922 and ; is the Kroneker function. Becauseh; is deviatoric, only
the second and third invariants are non-zero. These are by deition Il = b b; =2 and
Il = by bk bq=3. The mapping of these two non-zero invariants are generall plotted
together with the so-called Lumley triangle which represets the range of values of Il and
Il that are physically possible for a given ow [71, 72]. The invariant mappings of both

the Mach 7 and Mach 10 at the same wall-normal pro les of Fig.3.8 are shown together
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Figure 3.12: Lumley triangles for wall-normal pro les (a) in the incoming boundary layer
X%Lsep =  1:3, (b) at mean separationx%Lsep =  0:65, (c) at the corner x%Lgep = 0,
and (b) in the downstream boundary layer xO:LSep =19

in 3.12 The upstream trajectories of the upstream boundary layersshown in Fig. 3.12 (a)
are typical of turbulent boundary layer data [71]. The top branch of the Lumley triangle
represents two-component turbulence which is realized intte boundary layer at the wall
due to the constraint the wall imposes on thew uctuations. The top right corner of
the Lumley triangle represents one-component turbulence Wich occurs in the boundary
layer at z* 10 whereu%, is at its maximum value. The bottom right side of the
triangle is the boundary of axisymmetric turbulence expanson which is characteristic of
the logarithmic layer. Near the boundary layer edge, the tubulence approaches isotropic
conditions where Il = [Il = 0. At the corner between z= =0 and 1, the invariant pair
moves towards the bottom left branch of the Lumley triangle and towards isotropy. The
left side of the triangle represents axisymmetric turbulerce compression and is typical

of mixing layer data [71]. In the downstream pro le, the invariant pair remains on th e
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top and left boundaries in the region of high shear at the walland moves to isotropic
conditions outside of the local boundary layer thickness.

Next the turbulent kinetic energy budgets through the inter actions are analyzed. For
this purpose we use the TKE of the Favre uctuation velocity such that k = hu %°9=2.
The transport equation for k is included in Appendix A Eqn. A.1. The TKE budgets are
plotted for R33-M7-L and R34-M10-L in Fig. 3.13 The streamwise stations at which each
set of budget pro les were taken are the same four locationssawere used in Figs3.10, 3.11,
and 3.12 The wall-normal coordinate is nondimentionalized byz and the budget terms
by wu=z wherez ,u and  are the values from the upstream undisturbed boundary
layer. The SGS terms in Fig.3.13 are calculated as the remainder of the sum of all other
budget terms and represent the combined contribution of the SGS diusion and SGS
dissipation terms.

The upstream boundary layer TKE budgets shown in Fig. 3.13 (a) and (b) are
typical of compressible turbulent boundary layers with zemw pressure gradient 73, 74]. The
production is balanced by the turbulent transport, di usion , and dissipation with all other
terms being relatively insigni cant. The peak in productio n occurs atz* = 14 for the Mach
7 boundary layer and atz* = 17 for the Mach 10 as the greater wall cooling tends to push
the turbulence production peak away from the wall [73]. At separation (Fig. 3.13(c) and
(d)), the magnitude of both the production and transport ter ms are greatly increased from
the incoming ow. The peaks in these two quantities come awayfrom the wall in a manner
consistent with similar observations in the velocity pro | es of Fig.3.8 and in the turbulence
stress pro les of Fig. 3.11 The turning of the uid at separation results in a non-zero
convection term that is balanced by an increase in the turbuénce transport. Production

is further increased in the corner pro les of Fig. 3.13 (e) and (f). The production peak
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Figure 3.13: Proles of TKE budgets in (a)-(b) the upstream boundary layer x°:Lsep =

1:3, (c)-(d) at mean separation xX%:Lsep =  0:65, (€)-(f) at the corner x%Lgep = O,
and (g)-(h), in the downstream boundary layer x°:Lsep = 1:9. The budget pro les for
R33-M7-L are on the left and R34-M10-L on the right.
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is greatly widened at the corner and occurs in the wall-normévicinity of the shear layer
center. (Note that z= =1 is equivalent to z* =200 in the Mach 7 ow and z* =500 in
the Mach 10 ow.) The increase in production in the separatian shear layer is balanced
by increases in turbulence transport, convection, pressug di usion, and dissipation. Here
the increase in dissipation is found to be predominantly in he SGS. In the downstream
boundary layer (Fig. 3.13(g) and (h)), the production, transport, and convection ter ms
are increased signi cantly at the wall due to the strength of the mean shear in this region.
This is consistent with the high shear at the wall shown in thevelocity pro les of Fig. 3.8
(a) and (e) and the near-wall turbulence peak in Fig.3.11(a) and (e). Overall, the pressure
work term is seen to increase to a non-zero value at separatioand in the recirculation
region but its contribution is not signi cant. Likewise the pressure dilatation remains
small throughout both the Mach 7 and Mach 10 mean ows. The budjet magnitudes in
the boundary layer, at separation, and the corner are compaable between the Mach 7
and Mach 10 solutions. In the downstream ow, however, the tubulence production of

the Mach 10 is twice that of the Mach 7.

3.6 Assessment of Turbulence Modeling Assumptions

We use the R33-M7-L and R34-M10-L data to evaluate several @ctical turbulence
modeling assumptions and their applicability to these sepeated hypersonic STBLI ows.
Two scaling laws for the prediction of the mean heat transferat the wall are tested. The
rst of these is the assumption that the Reynolds Analogy Fador, de ned as the ratio
RAF = 2 C,,=C; , is approximately unity. This ratio in the LES data is plotte d as RAF 1!
in Fig. 3.14to avoid the division by zero C;. The results are nearly identical between the

Mach 7 and Mach 10 interactions. The RAF ! is 0.85 in the boundary layer upstream
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Figure 3.14: Streamwise distributions of (a) the (inverse)Reynolds Analogy Factor and
(b) the QP85 law of Back & Cu el [ 69] for R33-M7-L and R24-M10-L.
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of separation and approximately 0.7 in the downstream reatached boundary layer. The
assumption of RAF 1 does not hold in the separated region.

The Reynolds Analogy Factor can equivalently be written as RAF = quCp(Tw
Tr)= wUe. The line distributions in 3.14 (a) were calculated usingUe and T, of the
upstream boundary layer throughout. If instead the RAF in the downstream ow is
calculated using values ofUe and T, estimated from the inviscid oblique shock solution,
the result is the distribution indicated by the symbols in 3.14(a). The RAF 1 distributions
calculated using the post-shock conditions show a slight @r-shoot of 1 followed by what
appears to be a gradual decrease to 1.

The second heat transfer model considered is the so-calledR@5 law of Back &
Cu el [ 69 relating the mean distribution of wall heat transfer to the distribution of mean
wall pressure by q(x)=q, = (P (x)=P,)%8. The subscript u refers to a quantity in the
upstream undisturbed boundary layer. In Fig. 3.14 (b) is plotted the QP85 prediction as
a fraction of the measuredq(x) of the LES solutions. The two STBLI ows show nearly
identical results with the Mach 10 having greater relative heat transfer downstream of the
separation region. It was noted in3.12 (c) that the C;, dips slightly at separation but
the same feature does not occur in the wall pressure shown inidr 3.12 (a). Consistent
with this observation, the QP85 relation over-predicts the heat transfer at separation.
The steep increase in heat transfer that occurs just downstam of the corner is also not
well predicted by the QP85 relation. In the downstream recoering boundary layer, the
heat transfer is signi cantly over-predicted and this error increases steadily up to the
simulation exit plane. These results are not surprising as his relation was derived for
attached shock/turbulent boundary layer interactions. Coleman & Stollery [75] derived

a similar relation between g(x) and P (x) and these authors also noted that the relation
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was only accurate for predicting their experimental heat transfer data for attached and
incipiently separated compression ramp experiments with areestream Mach number of
9.

Next we test the validity of the set of modeling assumptions ollectively known
as the Strong Reynolds Analogies relating the temperature uctuations to the velocity
uctuations in compressible turbulent boundary layers. The Strong Reynolds Analogies
were originally proposed by Morkovin [76] and include the turbulent Prandtl number

relation (Egn. 3.1), the phase relation (Eqn. 3.2), and the magnitude relation (Egn. 3.3).

0 woo@r=@%
Pri= —— 1; 3.1
"t 4 0gy00@=@%2 (3.1)
0§ oF
Ryooroo=  ———=— 1, (3.2)
) URRs Tins
00 —
SRA = Turms =T 1: (3.3)

(DM 2(uRs=+)

We evaluate Egns.3.1, 3.2, and 3.3 in both the upstream undisturbed boundary layers
and in the downstream recovering boundary layers of the R337-L and R34-M10-L data.
Upstream pro les were taken atx%Lsep =  1:3 and downstream pro les at X%Lgep = 1:9,
the same upstream and downstream locations that were used ifdthe TKE and anisotropy

analyses in Section3.5. For the evaluation of the Strong Reynolds Analogies in the @wn-
stream recovering boundary layer, the velocity eld is agah rotated so that u is in the
direction parallel to the ramp surface andw is perpendicular.

The turbulent Prandtl number Pry is de ned in Egn. 3.1 as the ratio of turbulent
transport of momentum to turbulent transport of heat ux and is typically assumed con-

stant and equal to 1 throughout the boundary layer. Pro les of the Prandtl number in
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Figure 3.15: Upstream Q(O:Lsep = 1:3) and downstream boundary Q(O:Lsep =1:9) layer
pro les of (a) turbulent Prandtl number Pr¢, (b) Strong Reynolds Analogy (SRA) phase
relation, (c) SRA magnitude relation, and (d) modi ed SRA ma gnitude relation.
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the mean ow of the R33-M7-L and R34-M10-L LES solutions are potted in Fig. 3.15
These pro les are plotted versus wall-normal distancez® non-dimensionalized by the local
boundary layer thickness . In the upstream boundary layers, Pr; is within 13% of 1 be-
tween z%& , = 0:05 and 0.75. At the boundary layer edgePr; = 0:75. Belowz% , = 0:05
the assumption of constantPr; does not hold. In the M7 recovering boundary layer, it is
found that Pr; 1.0 for z% , > 0:1. In the M10 downstream pro le, near z%= , = 0:1
the Pry is nearly 1. Betweenz%= , = 0:3 to 0:5, Pr; is approximately 1.4.

For undisturbed adiabatic turbulent boundary layers, the DNS data analysis of
Duan et al. [74] has shown that the phase relation correlation Roeroo is approximately
0.6 through the majority of the compressible boundary layerand that this level does
not change with freestream Mach number, at least up toMe = 12. The value of 0.6
is consistent with other DNS studies [/7, 78]. In addition, Duan et al. [73] showed the
correlation reduces only slightly with decreasingT,=T,. The proles of Ry for the
current LES data are plotted in Fig. 3.15 (b). In the upstream proles of both the
Mach 7 and Mach 10 boundary layers, Ryoroo drops from 0.85 atz% , = 0:05 to 0.6
at the boundary layer edge. A shift to negative correlation a the wall indicates that the
temperature-velocity phase relation is reversed here. Th@role of Ryoeroo in the Mach
7 downstream pro le, when z%is normalized by the local boundary layer thickness, is very
similar to the upstream prole for z%& , > 0:2. In the Mach 10 solution, however, the
magnitude of Ryoeroo reduces to approximately 05 in the downstream pro le. Although
not shown here, the zero crossing of Ryoeroo in each of the four proles was found to
closely correspond to the location of the peak in the mean temerature pro le.

The magnitude relation of Eqn. 3.3 is plotted for the two LES solutions in Fig. 3.15

(c). Inthe Mach 7 ow, the SRA = 0 :65 in the upstream boundary layer and decreases to
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0.4 in the downstream boundary layer. In the Mach 10 ow, the SRA =0 :6 upstream and
decreases to 0.35 downstream. In all four pro les, the SRA dops to a minimum of about
0.3 near the wall and then increases asymptotically to in nity at the wall surface. The
fact that the assumption of SRA 1 does not hold for these two ows is not surprising
as the relation of Eqn. 3.3 was originally derived for an adiabatic boundary layer. Huang
et al. [79] derived the following modi ed Strong Reynolds Analogy that accounts for heat

transfer at the wall.

_ (T%s=TPr(1l @=@) .
SRAmod = O DM 2% =) 1: (3.4)

The variable T; is the total temperature, which for the LES solution is calculated from
the Favre ltered + and T. Similar expressions were also proposed by Gavigli@(] and
by Rubesin [B1]. The pro les of the SRAoq are plotted in Fig. 3.15(d). The upstream
pro les of the Mach 7 and Mach 10 ows both take on a value of 1.2betweenz®%= , =0:1
and 1.0. In the downstream ow, the Mach 7 pro le drops to 1.2 only betweenz% , = 0:2

and 0.5. The SRAyq relation does not hold for the Mach 10 recovering boundary Iger.

3.7 On the scale-similar SGS model

This section discusses the importance of including a scal@milar term in the SGS
turbulence stress (Eqn.2.9) and the SGS heat transfer (Eqn.2.10). Eddy viscosity models
only account for the dissipative drain of energy from the reslved scales to the unresolved
scales. Scale-similar models were originally derived und¢he assumption that the most
active SGS are those just below the cuto frequency of the LESJ82] and so are designed

to approximate the local exchange of energy between the sniakt resolved scales and the
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Figure 3.16: Skin friction comparison of DMM and DEV solutions of R33-M7-L.

SGS. The scale-similar models, however, tend to underestiate the SGS dissipation 52].
In combination, the scale-similar term accounts for the coservative energy exchange at the
smallest resolved scales and the eddy viscosity term accotsnfor the dissipative energy
drain of the SGS. In a study of decaying isotropic compressie turbulence, Martin et
al. [52] reported better correlations of SGS shear stress and heatux using the mixed
model in comparison to the eddy viscosity only model.

To demonstrate the importance of using the dynamic mixed mo&l (DMM) rather
than the dynamic eddy viscosity model (DEV) for the solution of the STBLI ows, we
repeat several of the simulations in this paper with the sca-similar terms in Eqgns. 2.9
and 2.10 turned o and using only the dynamic coe cient eddy viscosit y models. We
rst repeated simulations R24-M3w-L from Section 2.5 and R8-M7-L from Section 2.6
and in both cases the result was to slightly increase the lerth of the interaction region.
The di erence was found to be minor, however, with less than 5%increase in the Mach 3
separation length and an increase from 31% to 35% in the maxiom reverse probability at
the corner of the Mach 7. In contrast, we repeated the R33-M17:- solution with the SGS

scale similar contributions removed and found that the sepaation length increased by 30%.
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Figure 3.17: Comparison of DMM and DEV upstream boundary layer solutions of R33-
M7-L (a) van Driest transformed velocity, and (b) turbulenc e intensities. Legend as in
Fig. 3.13

This dramatic di erence is shown in the comparison of mean sk friction distributions
between the original Mach 7 DMM solution and the DEV solution (Fig. 3.16).

Pro les of the upstream boundary layer indicate that the source of the error in the
Mach 7 separation length is not from a change in the state of tle incoming boundary
layer. The comparison of van Driest transformed velocity po les taken in the upstream
boundary layers atx=Lsep, = 1:7 are shown in Fig.3.17(a). The comparison of turbulence
Reynolds stress pro les at the same location are shown in Fig3.17 (b).

Instead, the results indicate that the di erence between the two solutions resides
in the STBLI separation shear layer. We estimate the spreadig rate of the separation
shear layers in each of the separated hypersonic ow solutits using a method that is
given in detail in Chapter 6 and also in Helm & Martin [83]. In short, a shear layer
coordinate system m; zm) is considered for which the linearly varying similarity variable

= Zm=Xm Can be de ned. Plotting mean ow pro les in the shear layer versus results
in what resemble collapsed mixing layer similarity pro les.

The di erence in the shear layers of the DMM and DEV solutions is highlighted by

plotting the resulting collapsed shear layer pro les scale by . In Fig. 3.18 are shown
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Figure 3.18: Comparison collapse of shear layer pro les (agtreamwise velocity, (b) stream-
wise turbulence intensity, and (c) turbulence shear stresdetween the DMM and DEV

solutions of R33-M7-L.
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Figure 3.19: Comparison of DMM and DEV solutions of R33-M7-L(a) TKE budgets scaled
by the mixing layer thickness ,, and (b) the upstream boundary layer TKE budgets scaled
by z andu . Legend as in Fig.3.13

the collapse of (a) the mean streamwise velocity pro les, (b the streamwise turbulence
intensity, and (c) the turbulence shear stress. The streamige direction now refers to
the velocity component in the direction of x,,. The proles of the DEV solution are
visually narrower than the DMM solution indicating that the DEV models produce a
lower spreading rate. The DMM solution spreading rate is deermined to be = 0:194
whereas the DEV solution results in a spreading rate of$, = 0:173; nearly a 10% decrease.
A decrease in the spreading rate of the separation shear layéndicates that the
entrainment rate of uid across the shear layer is reduced inthe DEV solution. To balance

this slower rate of uid depletion from the separation bubble, the ow must necessarily
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converge to a larger mean separation bubble size compared the DMM solution. Cross-
stream pro les of TKE budget terms (Egn. A.1) plotted versus and normalized by the
local shear layer thickness ,;j = wXm are seen to scale by, (Fig. 3.19 (a)). The
reduction in spreading rate is therefore a result of a propdional reduction in turbulence
activity produced by the DEV model in comparison to the DMM solution. Note that in

the upstream boundary layer, the TKE budget pro les scale by z and , and the two

SGS models produce identical solutions (Fig3.19 (b)).

3.8 Summary

Two LES datasets of separated hypersonic STBLI ows at expeimentally achiev-
able conditions were presented and a thorough documentatio of the mean ow statistics
was provided. Time- and spanwise-averaged ow elds of Fave-averaged velocity, temper-
ature, and density were given in contour plots and also as indlidual pro les highlighting
the changes in these quantities through the interaction. Awraged streamwise distribu-
tions of skin friction, wall pressure, and heat transfer as wll as the rms magnitude of each
was included. Separation lengths were obtained from the shi friction distribution. We
found that for both the Mach 7 and Mach 10 separated interactons, the root-mean-squared
pressure uctuations reached a maximum near reattachment ad peaked at approximately
half the post-shock mean level. Maximum skin friction and hat transfer uctuations were
also found to occur on the ramp just downstream of separatiorwhere the turbulence from
the incoming boundary layer are heavily compressed at the ippingement location of the
separation shock on the ramp surface.

Pro les of mean velocity, turbulence stresses, TKE budgetsas well as the Reynolds

stress anisotropy tensor all indicate a mixing layer-like kehavior in the shear layer of
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the hypersonic separated ows. At the corner, a wide singlen ection-point mean ve-
locity pro le was shown to coincide with a broad peak in turbulence activity, turbulence
production, and viscous dissipation. Similar observatiors have been made in separated su-
personic STBLI [12, 84] and appears to be a persistent feature in the case of the hypsonic
interaction.

Two classic heat transfer scaling relations, the Reynolds Aalogy Factor and the
QP85 relation of Back & Cu el [ 69], were tested on the separated hypersonic LES data.
The QP85, which was shown by Priebe & Martin [34] to be reasonably accurate for
the attached Mach 7 interaction, breaks down both in the sepaated region and in the
downstream recovering boundary layer. The RAF also fails inthe separated region and
the downstream boundary layer. If, however, the downstreanpost-shock conditions were
used instead of the upstream condition in the de nitions C¢ and Cy,, the results were much
more satisfactory in the downstream boundary layer.

Common assumptions on velocity-temperature uctuation relations such as constant
Prandtl number and the Strong Reynolds Analogies modi ed fa non-adiabatic wall condi-
tions were found to be accurate to a large extent in the upstram boundary layers of both
ows and in the downstream boundary layer of the Mach 7. Neither the constant Prandtl
number nor the SRAs were found to be accurate for the downstram Mach 10 ow. It is
much more di cult to evaluate the turbulent Prandtl number a nd SRAs relations in the
separation region. Both the recirculating motion of the ow and the fact that the ow is
de ected away from the wall surface make the de nition of u®in Egns. 3.1 through 3.4
ambiguous. A more sophisticated analysis would be requiretb extract useful information
on the temperature-velocity uctuation properties in the s eparated region.

A comparison was made of the LES DMM and DEV solutions of the sparated
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Mach 3 STBLI and attached Mach 7 interactions from Chapter 2 and the fully separated
Mach 7 STBLI from the present chapter. It was found that the e ect of excluding the
scale-similar term was minor in the supersonic interactionsolution and in the attached
hypersonic solution. The DEV solution of the separated Mach7 interaction resulted in
a signi cant increase of 30% in the separation length. It wasconcluded that the reason
for this di erence is not a result of any change in the incomingboundary layer solution
but in the solution of the separation shear layer. It will be shown in Chapter 6 that
the shear layer in this case is highly compressible with a carective Mach number of 2.
The convective Mach number of the Mach 3 ow in comparison is 1 Spreading rate and
TKE budgets revealed that the DEV model underestimates the urbulence activity in this
highly compressible shear layer.

This chapter focused on the mean ow properties, however, tk initial evaluation
of the spectral content of the separation and reattachment listory indicates that the
characteristic low-frequency shock unsteadiness is presiein both of these hypersonic
ows. The documentation of the dynamic properties of the lowfrequency cycle in the

current data is the topic of a the next chapter.
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Chapter 4. Low-Frequency Mode Form in Hypersonic STBLI

4.1 Background

The origin of the low-frequency unsteadiness in separated T™LI ows has been
the topic of much research for the past several decades. Foramy years the research was
concerned with identifying an upstream in uence. In many cases the unstable motions of
the shock were found to correlate with the long momentum uctuations in the incoming
boundary layer [16, 17, 18, 85. However, several articles have also shown the separation
motions correlate with the unsteadiness of the separation bbble and the downstream
ow [3, 11, 19, 20, 21]. Priebe & Martin [ 12] showed that the low-frequency cycle of
the Mach 3 compression ramp STBLI ow shows very speci c strwcture changes in the
separation bubble depending on the phase of the low-frequeyn cycle. These changes
involved a bifurcation of the shear layer producing a multi-in ection point velocity pro le
and local increase in turbulence activity indicating an inviscid mechanism. The structural
change could also be identi ed by a change in the skin frictim distribution that was found
to be similar in form to the unstable global mode identi ed in the re ected shock simulation
of Touber & Sandham H{2]. Recent arguments put forward by Martin et al. [23] and
Martin & Helm [ 24] point out striking similarities among the inviscid instab ility identi ed
by Priebe & Martin [ 12], the surface ow visualizations of the STBLI experiment of Settles

et al. [67], and the global unstable modes identi ed in several di erert cases of laminar
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separation [B6, 87, 88]. The indication then is that the low-frequency unsteadiness is
driven by a self-excited, downstream inviscid instability.

This hypothesis was further corroborated by the recent workof Priebe et al. [22].
Priebe et al. performed a Dynamic Mode Decomposition (DMD) analysis on tte DNS data
of a Mach 3 compression ramp ow (the same DNS dataset as R24-8h-D in Chapter 2.5)
and found that the ow eld generated from a reconstruction of the ve low-frequency DMD
modes took the form of streamwise-oriented, counter-rotahg vortices that extend from the
point of separation and down the length of the ramp. In addition, the formation of these
vortices coincided with an increase in strength of a centrifigal instability vortex metric
(Gertler number) in the vicinity of separation and reattac hment. As noted by Martin et
al. [23, 24, revealing the form of the unstable mode as counter rotatiig vortices could
also explain the similarity between the STBLI ow structure and the spanwise repeating
cell-like structure of the laminar separation modes. Furthermore, Priebeet al. [22] and
also Martin et al. [23, 24] provided a discussion on the passive sensitivity of this imiscid
centrifugal instability to input from the upstream turbule nce uctuations, thus reconciling
the correlations of the separation motion with the upstreamboundary layer.

It was also demonstrated by Priebeet al. [22] that a simple low-pass ltering opera-
tion in time applied to the DNS data produces the same ow structure as the reconstructed
DMD modes. In Fig. 4.1 are reproduced from Priebeet al. [22] and show a snapshot of the
reconstructed low-frequency DMD modes from the DNS data corpared to the low-pass
Itered (wide span) DNS data. In this chapter, we investigate the dynamics and structure
of the low-frequency unsteadiness in the LES dataset R33-ML from Chapter 3 of the
Mach 7 STBLI ow over a 33° compression ramp. A simple low-pass ltering operation

in time applied to the full three-dimensional ow volume is performed. In Section 4.2
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Figure 4.1: Low-frequency mode shape in the Mach 3 STBLI DNS ata reproduced from
Priebe et al. [22]. Streamwis momentum uctuations in (a) the reconstructed DMD modes
and (b) the wide-span low-pass Itered DNS.

we show that the low-frequency mode in the Mach 7 case is alsm ithe form of counter-
rotating, streamwise-oriented vortices as identi ed in the Mach 3 DNS, indicating that the
same inviscid centrifugal instability persists in the hypersonic regime. The DMD analysis
of Priebe et al. [22] was performed on a narrow 2-wide computational domain. The in-
creased domain size of the Mach 7 simulation also provides fiormation on the spanwise
variation of the low-frequency mode. In addition, time resdved videos of the low-pass
ltered ow were generated and provide additional insight i nto the interpretation of the
mechanism by which the inviscid vortical structures drive the separation bubble unsteadi-
ness. A proposed model for the origin of the low-frequency wteadiness in separated

STBLI is discussed in Section4.3.

4.2 Low-Pass Filtered Data

As was demonstrated in Chapter2.5 and 3.2, the time signal of separation is a good
indicator of the low-frequency unsteadiness in separated ™LI. The pre-multiplied PSD

of separation history of the R33-M7-L solution was shown in Gapter 3.2 and broadband
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Figure 4.2: Time signal of separation position in the R33-M7L data. The un Itered signal
is plotted in gray and the low-pass ltered signal in red.

low-frequency energy between nondimensional frequencied St, = fL s¢p=Ue = 0:2 and
0:02 were observed. For the purpose of isolating the frequeres associated with the low-
frequency shock motions, a cuto frequency ofSt. = 0:3 is selected for the low-pass lter.
The resulting Iter is demonstrated in Fig. 4.2 by a comparison of the un Itered separation
signal plotted in gray and overlaid by the low-pass lItered signal in red.

The time ltering operation requires a high sample rate output of the full 3D volume
data at a frequency of St; = 0:15. The width of the Iter is 400 samples or 60 sep=Ue
in time. The ow eld is Itered at each sample volume of the data in order to produce
time resolved videos from which the dynamics of the low-freqency mode could be studied.
Four uncorrelated snapshots in time selected from one of theideos are plotted in Fig. 4.3
showing instances of the ltered ow visualized by contours of streamwise momentum
uctuations. In each gure appear spanwise-alternating positive and negative “spots' in
the downstream ow on the ramp. A comparison of the four snapéots in time shows that
these ltered structures are not xed in space but are unstealy and move about in the
spanwise direction. They also vary in strength both along the span and in time. These
gures are comparable to the Mach 3 mode shown in Fig4.1

The same structures are visualized again in Figd.4 where the streamwise momentum

uctuations are shown as volume plots that highlight the locations of the cores of the red
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Figure 4.3: Uncorrelated instantaneous snapshots of the W@-pass Itered momentum uc-
tuation eld in the Mach 7 STBLI visualized by contour plots.
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Figure 4.4: Uncorrelated instantaneous snapshots of the W@-pass Itered momentum uc-
tuation eld in the Mach 7 STBLI visualized by volume plots. | mages are taken from the
same time instances as in Fig4.3
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Figure 4.5: Spanwise periodicity in the low-pass Itered manentum uctuation eld is
seen in the streamwise-spanwise plane located:1® above the wall surface (a). The
ensemble averaged cross-correlation of spanwise momentuactuations on this plane and
at streamwise locationx= o = 3 is shown in (b).

and blue spots in Fig.4.3. Here the streamwise elongated form in the ow is recognizale
as the same structure that was identi ed by Priebeet al. [22]. The shaded portion on the
wall surface indicates the area of reverse ow on the wall fowhich C; < 0. From these
gures it is also apparent that the streamwise structures oliginate near the separation
line as was also the case in the Mach 3 DNS dat&2p]. The images in Fig. 4.4 were also
selected from a time resolved video of the ltered ow.

The average spanwise periodicity in the downstream ow is sbwn in the time aver-

aged contour plot of momentum uctuation on a plane parallel to the wall surface but o set
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Figure 4.6: Schematic of Gertler vortices reproduced fromFloryan. [89]

by a distance of 015 , (Fig. 4.5). The ensemble averaged auto-correlation of the spanwise
momentum uctuations was calculated on this plane along theposition of x= , = 3. The
result is the correlation signature plotted in Fig. 4.5 (b) showing a periodic length scale
of approximately two boundary layer thicknesses which is cosistent with the spanwise
length scale reported by Priebeet al. [22].

The structures seen in Figs.4.3-4.5 can be explained in the context of the classic
Gertler instability that occurs in laminar boundary layer s over walls with concave curva-
ture. The change in streamwise uid direction introduces centrifugal forces that produce
streamwise-oriented, counter-rotating vortices as depited in the sketch of Fig. 4.6 (a).
Because of the proximity to the wall surface, the vortices irduce sinusoidal uctuations in
momentum along the cross-stream direction as is shown in thechematic in Fig. 4.6 (b).
(Figure 4.6 is reproduced from B9)) If we plot the instantaneous low-pass ltered velocity
vector eld on a spanwise-wall normal plane positioned on tle surface of the Mach 7 com-
pression ramp as indicated in Fig.4.7, a clear counter-rotating uid motion is observed
as shown in the inset of Fig.4.7. In this particular snapshot, two pairs of vortices can be

seen. Plotting the distribution of streamwise momentum alag the bottom edge of these
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Figure 4.7: Vector eld showing vortex rotation in the low-p ass Itered Mach 7 STBLI.
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Figure 4.8: Time averaged dividing streamline (a) and the coresponding Gertler number
(b) in the Mach 7 STBLI mean ow.

vortices shows that the spanwise variation is consistent vih the rotation of the uid. It
is clear then, that the long streaking structures of high andlow momentum uctuations
observed in Figs.4.3-4.5 are a result of streamwise oriented vortices in the low-pasdtered
oW.

Further evidence that these structures result from a centrfugal instability is provided

by the calculation of the Gertler number. The Gertler numb er Gt de ned in Egn. 4.1 as

N g
oo (=)

T 0018( =) R (4.1)

and is a function of the incoming boundary layer thickness , momentum thickness |,
displacement thickness , and the local radius of streamline curvatureR [1, 41]. The
dividing streamline in the un Itered time and spanwise-averaged velocity eld of the Mach

7 ow is shown in Fig. 4.8 (a). The Gt calculated along this streamline is plotted in
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Fig. 4.8 (b). In laminar boundary layers, the critical value of Gt is 0.6 41]. Although the
threshold for turbulent boundary layers is not known, the value of the Gertler number at
separation in Fig. 4.8 (b) is nearly twice the laminar threshold. The large value of Gt is

also consistent with the formation of the vorticese at sepaation as was noted in Fig.4.4.

4.3 Discussion

The physical mechanism involved in fully separated STBLI ddaa and the associ-
ated low-frequency unsteadiness has been a point for debafer several decades. Recent
work by Priebe & Martin [ 12] and Priebe et al. [22] has shown compelling evidence that
the low-frequency unsteadiness of separated STBLI's is inatct driven by the dynamics
of inviscid vortical structures (IVS) that are aligned with the streamwise direction and
mix the inviscid high momentum uid with the near wall separated ow. Conceptually
similar to the inviscid Gertler vortices occurring in lami nar boundary layers over concave
surfaces, the IVS might originate from the elevated streamhe curvature at the separation
point and extend downstream with the vortex cores oriented nh the streamwise direction.
Alternatively, a second theory regarding the origin of the IVS has been formulated that
these large vortical structures are a product of the 3D struture of the separated ow [25].
In whichever case that might explain the origin of the vortical structures, the e ect the
IVS have on the separated ow is the same.

As is discussed by Martin et al. [23] and Martin & Helm [ 24], it is the mixing
produced by these vortices between the freestream and the garated uid that produces
the low-frequency unsteadiness in the separated STBLI. Baxl on the observations in the
literature described above, as well as the new visualizatiss presented for the Mach 7

hypersonic wide-span data, a physical model for the low fregency is proposed (see also
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Figure 4.9: Schematic of the low-frequency instability dyramics.

the discussion in Martin et al. [24]). Figure 4.9 shows a schematic of the time progression
of the state of the separation region in the compression rampnteraction. At the top of
Fig. 4.9 are sample time segments of separation and reattachment Higry. Below this are
three rows of images depicting di erent details in the separéed ow. Images in the same
column represent the ow structure at the same instant in time. The top row shows the
streamwise counter-rotation vortices drawn as the gray stuctures, and the momentum
uctuations induced by the direction of rotation of the vort ices are colored in as red and
blue streaks for positive and negative momentum uctuations respectively. In the second
row of images, the momentum uctuation colors are removed ad the area of recirculating
ow is indicated by the shaded bubble drawn beneath the vortices. In the last row, the

vortices are removed to show the time progression of the sepation bubble only.
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The mechanism of the unsteadiness is proposed to be the foling. From left to
right beginning with station 1, the separation bubble is at medium size and the separation
signal indicates the bubble is growing at this instant. The presence of the separation
bubble produces curvature in the streamline at separation \kich causes the formation
of the IVS. At station 2, the bubble continues to grow and as a esult, the curvature
at separation increases causing the IVS in turn to become stinger. At Station 3, the
bubble has reached its maximum size and the vortices their mdamum strength leading
to the condition at station 4. The strength of the vortices has grown to the point where
the mixing of the ow from the freestream to the wall and the wall to the freestream is
such that the uid in the separation bubble is depleted and egected into the downstream
ow and the separation bubble collapses. Because the bubblbas been depleted of uid,
the streamline curvature at separation is attened and the vortex strength is signi cantly
reduced. At station 5, after the uid in the bubble is ejected, the natural state of the
ow is to again separate, producing a new region of reverse w and new vortices to form,

starting the same cycle over again.
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Chapter 5: The Scaling of Hypersonic STBLI

xThe majority of this chapter is reproduced from Helm & Martin [90].

5.1 Chapter Overview

Souverein, Bakker, and Dupont [Ll4] (SBD hereafter) introduced a scaling for the
separation length in two-dimensional, supersonic shockeparated ows. The scaling is
based on mass conservation arguments and depends only on tireestream Mach number,
upstream boundary layer displacement thickness, and ow deection angle. The interac-
tion strength metric is an expression that approximates theratio of pressure jump across
the shock structure to the pressure jump required for the onet of separation and is a func-
tion of inviscid pressure ratio and freestream Mach number.To test their scaling method,
SBD compiled from the literature a large database of STBLI that included experimental
and computational data of both re ected shock and compressin ramp interactions at var-
ious states of separation and Reynolds numbers. The databasconsisted of interactions
with freestream Mach numbers ranging from 17 to 5. One of the key features of the SBD
scaling is the collapse of both compression ramp and re ectk shock data to the same
curve.

The data compilation of SBD included predominantly adiabatic shock interactions.
Jaunet, Debieve, and Dupont [L5] (JDD hereafter) showed that the SBD scaling method

does not account for variations in separation length causedy wall heat transfer. The
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authors derived an alternate nondimensionalized shock sength metric based on the free
interaction theory of Chapman et al. [91]. Using their data of a Mach 2.3 re ected shock
con guration with both adiabatic and heated walls, and also the adiabatic and cold wall
Mach 3 compression ramp data of Spaid and Frishett92], JDD demonstrated the e ec-
tiveness of their new scaling for collapsing the separatiorata of STBLI with di erent
heat transfer conditions. Their results were further corrdborated by the re ected shock
DNS at Mach 2.3, of Volpiani et al. [93]. JDD, however, were unable to demonstrate
their scaling for any STBLI with Mach number above 3 or for any appreciable range of
Reynolds number.

In this chapter, we relate the results of JDD to the original scaling of SBD and de-
rive a more general separation-length-to-shock-strengttscaling that includes heat transfer
e ects across all Reynolds numbers and freestream Mach numibg It is then our task to
evaluate the viability and quality of the proposed scaling lw. In doing so, we extend any
such STBLI separation scaling law into the hypersonic regine for the rst time by includ-
ing our new database of Mach 7 and Mach 10 compression ramp dat This chapter is
organized as follows. In Sectiorb.2.1, we use a control volume analysis of an axisymmetric
cylinder- are con guration to demonstrate that this geome try scales by the same relation
as the two-dimensional interactions. In Section5.2.2, we present a modi cation of the
interaction strength metric that accounts for wall heat tra nsfer e ects. In Section 5.3, we
introduce our database of hypersonic compression ramp STBL The scaling modi cation
of Section 5.2.2 and the 3D scaling of Section5.2.1 are then evaluated for hypersonic
conditions. The Mach 10 experimental compression ramp dataf Elfstrom [27], the Mach
10 cylinder- are experimental data of Coleman P4], the recent Mach 10 cylinder- are

data of Brooks et al. [95], and the recent DNS database of Mach 5 re ected shock STBLI
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Figure 5.1: Control volume for the cylinder- are con gurat ion. The notation of Souverein
et al. is adopted here. (See Figure 5 in1{4]).

of Volpiani et al. [36] are also included in the evaluation. A discussion of the radts is

provided in Section 5.4.

5.2 Scaling Method Generalization

5.2.1 Axisymmetric Geometry

The expression for the nondimensionalized separation letig L as derived by SBD

m L
L oSt 1 = ZGg(Me; ): (5.1)

Mpre

HereL is by de nition the \mass de cit ratio," the term inside the b rackets of Eqn.5.1,
which includes the ratio of the outgoing boundary layer de cit of mass Ux Mg = U o
to the incoming boundary layer de cit of mass ux my. = U . as determined by a
control volume analysis of the interaction region. For the @mpression ramp con guration,
SBD de ne the dimensional separation lengthL as the distance between the mean sepa-

ration shock foot and the corner. For the re ected shock conguration, L is the distance
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between the points of intersection at the wall of the mean impnging shock and the mean
re ected shock. The function Gz is a scaling factor based on the ow de ection angle
and the inviscid shock angle . Although Gg is theoretically dependent on the interaction
geometry, SBD arrived at the same expression for both the copression ramp and the
re ected shock two-dimensional ow con gurations:

sin( )sin( )

G3(Me;, ) = sin( )

(5.2)

We now derive the separation length scaling for an axisymmetc cylinder- are
STBLI geometry. The control volume for the cylinder- are in Fig. 5.1 is similar to that
used by SBD for the two-dimensional compression ramp case,olwvever for this case we
introduce the cylinder radii at the control volume inlet and outlet. We have adopted the
same notation for the control volume as SBD to facilitate the comparison of the current
analysis with their original formulation. The control volu me is also assumed to sweep
the full 360° around the centerline axis. For this derivation we assume tlat any three-
dimensional relief e ects along the are are such that the varation in the wall-normal
ow proles (e.g. Up, o, etc.) are minimal and can be approximated by a uniform ow.
For example, in the computational solutions by Sims 6] of an inviscid conical shock with
cone angle of 30 and freestream Mach number of 10, the variation in the post-Bock sim-
ilarity pro les was less than 0:5% for wall-parallel velocity and less than 5% for density.
In Fig. 5.1, the cylinder- are shock angle is indicated by . to distinguish it from the
two-dimensional obligue shock solution angle occurring at the same freestream Mach
number and ow de ection angle.

If the inviscid ow around the are is considered, conservation of mass over the
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control volume in Fig. 5.1 results in the relation

R3 =0: (5.3)

For the viscous ow with the turbulent boundary layer displa cement thickness and the

shock o set distance *, conservation of mass for the same control volume gives

h 2 2i 2Uo h 2 2l
1U1 Heoi+ Ry Ri+ — 2

2 2Ussin( ) R+ Heyp =0: (5.4)

Subtracting Egn. 5.3 from 5.4 gives

h i
iU Ri+ ;)% R?

R3 2 ,Ussin( ) Ra+Hep) =0 (5.5)

which can be rearranged to solve for as

h i h i
U 2 2
. o2y 2R2 2+ &5 Ui 2Ry + 7 56
2 pUzsin( ) Ro+ Hey ' '

To simplify Egn. 5.6 it is assumed that the control volume is such that R; and
> Rz resulting in the expression

2 R2 1Up 1

— = = R : 5.7
1 1 CoZ( ) 2U, 7 sin( ) Ry+ Hew 7

Finally, by using the continuity relation across the shock such that U; 1sin( ¢) = U, »sin( ¢
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Figure 5.2: Diagram of the cylinder- are shock position shaving the di erence between"
de ned for the control volume and the actual ow separation length L.

) Egn. 5.7 can be rewritten as

< U .
S _ Zw(Q@s( 2Rz g osin(e ) Ri (5.8)
1 1U1 4 2R, sin( ¢)sin( ) Rz + Heyz

By comparing Eqn. 5.8 with Egn. 5.1, the term in the square brackets is easily recognized
as the mass de cit ratio (m,:=Mye 1) for the cylinder cross-section. The inverse of the
two-dimensional ow de ection function Gz also appears in Eqn.5.8 and is multiplied by
the ratio R1=(Ro+ Hy2). SinceH,» and R, do not cancel out in the derivation of Eqn. 5.8,
it appears that the separation length is dependent on the chiwe of control volume. This
does not make sense physically seeing as a given STBLI ow wihave a speci c mean
separation length L regardless of the choice of control volume. This apparent mblem in
the derivation can be remedied with the following reasoning In Fig. 5.1, | is de ned as the
distance between the crossing point of the shock at the top hundary and the top right
corner of the control volume. It is assumed that the shock rerains parallel to the inviscid

shock inside the control volume thus making™ equivalent to the actual separation length
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L. This is approximately true for the two-dimensional ramp but not for the cylinder- are.
For instance, if the distance R, + Hy» is rewritten in terms of Ry, ., and a coordinate
variable x de ned as the distance along the cylinder centerline from tle are corner (see
Fig. 5.2), Eqn. 5.8 becomes

— —post 1 R1 .
—= — 1 Gy ——————: 5.9
1 Mpre 3 Ry + xtan( ¢) (5.9)

In this form one can clearly see that the length® goes to 0 as< increases inde nitely.
It would appear then that the actual separation length L is determined from the limit of
Egn. 5.9 asx goes to 0 which ultimately results in Eqn.5.1. By this analysis, the cylinder-
are con guration scales by the same relation as the two-dinensional compression ramp.
Any three-dimensional e ects are therefore entirely contaned in the di erence in shock
angle . and downstream-to-upstream pressure ratio generated by th ared geometry as
compared to the two-dimensional ramp. Note also from Eqn5.8 that, for a given angle
and control volume dimensions,R; is equal to R plus a constant. If Ry goes to in nity,
which is the equivalent of a at plate, the ratio R,=R; goes to 1 which results in the
original two-dimensional ramp expression of Eqns5.1 and 5.2. This further implies that
the shock angle . is a function of the cylinder radius R1 and will in fact vary between

the oblique shock angle R1 = 1 ) and the conical shock angle Ry = 0).

5.2.2 Varying wall heat transfer

It was proposed by SBD that the correct interaction strength metric for the scaling
of the nondimensionalized separation length data is the rab of pressure jump across the
interaction P to the pressure jump required for the onset of separation Psep. Since the

criteria for the onset of separation is not typically known for a given STBLI ow, SBD
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derived the interaction strength parameter Segg, as an approximation of P= Psg,. The

assumption was made that Psep scales as the dynamic pressurg. so that

P

Segpp = kE: (5.10)
The normalization constant k is introduced to ensureSegg, 1 at the onset of separation
and is assumed to be independent of the freestream Mach numheFrom a compilation
of experimental data for which Psep was known, SBD showed thatk = 2:5 and is also
independent of Reynolds numbet at least up to Re =3  10°. Together with L from
Equation 5.1, Seggp was shown to collapse adiabatic data folMe from 1:7 to 5 and for
Re between 23 10° and 3 10°. Re ected shock and compression ramp data, both
experimental and computational, were included in the datalase.

More recently, Jaunet et al. [15] used re ected shock experiments atM ¢ = 2:3 with
varying de ection angle for both an adiabatic and a heated wdl (T, =T, = 1:9 where T,
is the adiabatic recovery temperature) to show that the SBD ®paration strength metric
does not collapse data of STBLI's with varying wall temperature conditions. Based on the
separation plateau pressure scaling in the free-interaabin theory of Chapman et al. [9]],
JDD proposed a new shock strength metric de ned as

P

g =5
2Ct o
2% vz 1=

Sepp = (5.11)

The denominator of Equation 5.11 is the approximation of Psep Which is now assumed

to scale with the incoming boundary layer skin friction coe cient Cso, Mg, and ge. The

1SBD originally reported a mild dependence on Reynolds number so that k = 3 for Re 1 10% 1t
was later determined that this shift in k was a result of three-dimensional e ects in the experimental data.
After correction, k was found to be 25 also for the lower Reynolds number data. Communication wit h P.
Dupont.
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Figure 5.3: Compilation of Mach 2-3 STBLI data with various heat transfer conditions
scaled bySe)p, (a) and again by the Seg,,,4 (b). Symbol color indicates the wall temper-
ature condition. Black data points are adiabatic walls, red are heated walls, and blue are
cold walls.

constant k» is again a normalization constant that is introduced so that Se;p, 1 at the
onset of separation. JDD determined from the incident shockangle required to separate
their adiabatic boundary layer that k, = 7:14 for their data. The dependence ok, with
Re or M. is otherwise unknown.

When Se,y, is applied to their re ected shock data together with the adiabatic
and cold wall compression ramp data of Spaid & Frishett 2], a much better collapse of
L is achieved as compared t&Segg,. Because the data of Spaid & Friscett is of similar
Mach number and Reynolds number, the same, was used throughout. In addition,
Volpiani et al. [93] also tested the JDD scaling with their DNS database of re eted
shock interactions, also at similar freestream conditions with satisfactory results. Their
DNS database included wall temperature ratiosT,=T, = 1:0, 0.5, and 19. The greatest
drawback to the scaling of JDD, however, is the lack of knowldge of the dependence of
k, on the conditions of any given STBLI ow.

We now propose a new scaling of the interaction strength thatis based on the
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combined results of JDD and SBD. For the derivation, two obsevations are made. First,
we note that the SBD scaling was shown to work well for a largeange of adiabatic STBLI.
Second, the parametersSegg, and Se;y, have nearly the same form in that Se), is
essentially a correction of the SBD normalization constantk. We make the assumption
that both scaling methods are equivalent for adiabatic inteactions and that k and ko can

therefore be related to each other by the following expresen.

s
1 2Cfoa
—_ =k i
K 2

W: (5.12)

Here Cs, 4 is the skin friction coe cient for an adiabatic boundary lay er with the same
freestream conditions and Reynolds number. If we assume th&, can be determined from
the Psep Of the adiabatic boundary layer, then we arrive at an expres®n for a modi ed

proportionality constant kmqg that is generalized for any wall temperature condition

S
Kmod = K

Cf o,a,
Cf o]

(5.13)

The k of SBD is therefore simply scaled by the square root of the rab of the adiabatic

Cto.a to Cto with heat transfer. The modi ed separation strength metric then becomes

S
P Coa P
Sénod = kmodE =k éfoc;agi (5.14)

Even if unknown, C¢,, can be estimated using an appropriate skin friction predicton
method such as those reviewed by Hopkins & Inouye9[7]. It is interesting to mention that
if the relation between k and k, of Equation 5.12is used to back outk, for the experiments

of JDD, a value of 7:41 is obtained compared to their experimentally determinedvalue of
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7:14.

We rst test the scaling of L with Se, 4 on the data of JDD, Spaid & Frishett,
and Volpiani et al. We also include the DNS compression ramp of Priebe & Martin 12]
with M = 2:9, ramp angle = 24°, T,,=T; = 1.0, and Re = 2400, and the experimental
compression ramp of Ganapathisubramankt al. [85] with M = 2, ramp angle = 20°,
Tw=T; = 1:0, a nd Re = 35;000. Figure5.3(a) shows allL data scaled by Se;, as
reproduced from gure 10 of Jaunetet al. [15] and gure 13b of Volpiani et al. [93] Again,
the samek = 7:14 is used for the Priebe & Martin and Ganapathisubramani dat points.
The data are then re-scaled usingse,,,4 of Equation 5.14 and plotted in Fig. 5.3(b). Two
observations are immediately apparent from this comparisa. First, a much closer data
collapse occurs forSe,,,4 - 1 and the points in this range clearly fall on a linear trend.
Second, there is essentially no collapse of the fully sepaed STBLI data points when
scaled bySe, 4. It will be shown in the next section that similar results occur with the

hypersonic data. Further discussion of these observationis provided in Section5.4.

5.3 Scaling of a Hypersonic Database

For this study, we add to our LES database of hypersonic inteactions that was
presented in Chapters2 and 3 by running additional ramp angles for both the Mach 7
and Mach 10 freestream conditions. In addition to runs R8-M7L and R33-M7-L, ve
new ramp angles of 19, 20°, 24°, 28, and 31° are run at Mach 7 using the same M7-L
in ow. The same grid domain and resolution as R33-M7-L are usd throughout with the
only change in the computational grid being the angle of the amp. For the Mach 10
condition, a new auxilary boundary layer and ramp grid are run with a reduced span

width of Ly = 3 , compared to Ly = 10 of the R34-M10-L run. Ramp angles of 18,
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Case Type Me Tw=T; Re Re Geometry  Reference

M7-L LES 7.2 05 3720 210 8 33 Ramp {
MiOn-L LES 9.6 0.3 7940 460 15 34°  Ramp {
M10-L LES 91 03 8280 520 <2 Ramp {
M10-Elfl Exp. 922 0.3 9010 680 15 3%  Ramp [27]
M10-Elf2 Exp. 895 0.3 2900 220 15 3%  Ramp [27]
M10-Coll Exp. 9.22 0.3 4800 390 T5 4¢P Flare [94]
M10-Col2 Exp. 895 0.3 2900 240 T5 4C° Flare [94]
M10-CF  Exp. 9.87 0.3 8346 706 1 Flare [95]

M5-VolL DNS 50 0.8 3760 390 % 14° Ref. Shock.  B6]
M5-Vol2 DNS 50 1.9 3890 175 % 14° Ref. Shock.  B6]

Table 5.1: Database of hypersonic compression ramp STBLI: ow conditions.

220, 24°, 27°, 31°, 33, and 34 are run with the narrow domain. We continue to use
the same run casename notation as was introduced in Chapte?2 and here the narrow
Mach 10 datasets are re ered to by \M10n". We chose to use the narow grid to run the
vaying ramp angles at the Mach 10 condition simply because othe lower compuational
cost. This is especially true for the higher Reynolds numberof the Mach 10 boundary
layer compared to the Mach 7. As will be discussed in Sectiok.4, the narrow grid does
tend to restrict the spanwise periodicity in the downstream ow of the separated case,
however, the e ect that this has on the averaged separation lagth is small and the same
conclusions on the scaling analysis can be made.

A summary of the freestream Mach number and incoming bounday layer Reynolds
numbers of the LES database are provided in Tables.1 together with those from exper-
imental data at similar conditions to the Mach10 LES. The DNS database of Mach 5
re ected shocks at varying angle from Volpiani et al. [36] are also included in the compila-
tion. The data of Volpiani et al. are unique in this compilation in that they are the only
re ected shock data included and also M5-Voll is the only heted wall case considered.

A summary of the LES compression ramp compuational grid sizeind resoltuion are
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Case 0 Leomer=0 Lramp=o Ly=0 Lz=0 X y 3
(mm)

M7 5.0 12 12 10 8 26.6-11.3 8.4 0.23

M10n 18.0 13 8 3 7 30.7-10.0 6.7 0.19

M10 18.0 13 12 10 7 27.7-105 7.1 0.20

Table 5.2: STBLI compression ramp LES computational grid.

listed in Table 5.2. Details of the Mach 7 and Mach 10 ramp grids from Chapter3 are
repeated here for quick reference. Computational domain ses are given in terms of the
reference boundary layer thickness 5. For the compression ramp, the dimensionLy; is
the distance from the inlet to the corner of the ramp andL > is the length along the ramp
surface measured from the corner to the outlet plane. Grid reolutions are given in units
of the inner length scalez as indicated by the "+' superscript.

The mean separation lengthL in units of , is listed in Table 5.3 for each of the LES
runs. Note that for this study, L is de ned as the distance from the mean separation point
to the corner as is consistent with the de nition of separation length used by SBD. The
duration over which the mean eld was averaged is also listedn Table 5.3 in time units
nondimensionalized by both o and L with freestream velocity ue. The mean skin friction
distributions and the mean wall pressure distributions for the Mach 7 interactions are
shown in Fig. 5.4. The Mach 10 interactions are shown in Fig.5.5. Dashed lines indicate
attached and incipiently separated ramp angles and solid hies indicate fully separated
angles.

We now apply the scaling using Eqns.5.1 and 5.14 to the data of Table 5.3. The
experimental data included in the scaling analysis are the Mch 10 compression ramp data
of Elfstrom [27], the Mach 10 cylinder with are data of Coleman [94] at similar conditions

to the compression ramps of Elfstrom, and the AEDC cylinder-are experiment of Brooks

104



Case L= o tUe= o tUe=L

R8-M7-L 8° 0 150 {
R17-M7-L 17 0.27 500 1850
R20-M7-L 20° 0.49 610 1240
R24-M7-L 24 0.87 460 530
R32-M7-L 28 151 540 360
R31-M7-L 31° 294 770 260
R33-M7-L 33 442 1970 450
R15-M10n-L 15 0.06 140 2330
R22-M10n-L 22 0.27 150 560
R24-M10n-L 24 0.40 200 500
R27-M10n-L 27 0.59 190 320
R31-M10n-L 31° 1.10 180 160
R33-M10n-L 33 2.28 210 90
R34-M10n-L 34 3.10 220 70
R34-M10-L 34 3.32 310 90

Table 5.3: Mean ow separation of LES ramp data.

et al. [95]. Not all of the information needed to scale the experimenthdata was available
from the respective references. The displacement thicknesfor the data of Elfstrom was
not reported explicitly. We used the boundary layer velocity pro le data available from
the Ph.D. thesis of Elfstrom [98] together with the Crocco relation for mean velocity and
mean temperature to reproduce the experimental pro les of (¢Ue) from which could
be integrated. Neither the displacement thickness nor the elocity pro les were available
for the data of Coleman. Since the data of Coleman and Elfstrmm were run in the same
experimental facility at the same nominal freestream and wé temperature conditions, we
assume here that the ratio = is the same between M10-Coll and M10-Elfl and between
M10-Col2 and M10-EIf2. The separation lengthsL were obtained from the available static
pressure distributions (gures 16, 17, and 20 of Elfstrom 98]; and gures 50a and 51a of
Coleman P4]). The separation length of the M10-CF was estimated ad. = 0:3 from the
PIV mean streamwise velocity eld at the are corner (gure 1 2 in Brooks et al. [95)]).

The surface pressure measurements of Coleman showed thatelpressure on the are
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Figure 5.4: Skin friction (a) and wall pressure (b) distributions for M7 LES data. Dashed
lines indicate attached and incipient separated ramp angls. Solid lines are fully separated
ramp angles.

downstream of reattachment approached the conical shock inscid pressure for all are
angles. Surface pressure data was not available for the AED€xperiment. Inviscid conical
shock theory was used to estimate . and P,=P; for all are data in Table 5.1. The van
Driest Il theory [99] was used to determine the adiabatic skin friction coe cient Csq 4
for the calculation of kyoqg for all data. Volpiani et al. [36] reported L versus Seggp .
The Se, 4 data were scaled byp Cto;a=Cto Where the C¢ conditions were determined
also from van Driest Il theory. The van Driest Il theory was shown by Duan, Beekman,
and Martin [ 73, 74] to be accurate within 5% error for Mach numbers up to 12 and wd
temperatures T, =T, from 1:0 to 0:2. They did not test the skin friction prediction on
heated walls.

The scaling results are plotted in Fig. 5.6. The incipiently separated interactions,
including the cylinder- are data, appear to be well described by the same linear trend
observed in the supersonic data. As with the supersonic datasigni cant spreading oc-

curs in the fully separated regime and the scaling law does ncold. The M10n, M10,
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Figure 5.5: Skin friction (a) and wall pressure (b) distributions for M10 LES data. Dashed
lines indicate attached and incipient separated ramp angls. Solid lines are fully separated
ramp angles.

and M10-EIf1 data are of similar conditions (Re , M¢, Tw=T;) and these nearly coincide
across all ramp angles. The fully separated R31-M10n-L, R38110n-L, and R34-M10n-L
are a bit below the M10-Elf1 and R34-M10-L data points, howeer, this is interpreted as
a consequence of the narrow computational domain of M10n asilvbe discussed in the
following section. The fully separated cylinder with are M 10-Coll, also at similar condi-
tions as M10-EIfl but with half the Re , has dramatically larger L than the compression

ramp.

5.4 Discussion and Summary

All Sg,,q and L data from Sections Ill and IV are plotted together in Fig. 5.7(a).
Both the supersonic and hypersonic data show that there arewo distinct linear regions
in the curve of L versus Se when multiple de ection angles are plotted for the same
incoming boundary layer. The point at which the two linear regions intersect has been

determined to coincide with the onset of separation for a gien boundary layer [L4, 15]. In
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Figure 5.6: Separation scaling data of the hypersonic STBLIdatabase of Table5.1. The
dashed line is the linear trend reproduced from Fig.5.3 (b).

corroboration with this assumption, careful observation d the current LES data reveals
that the rst point on the fully separated branch of each of the M7 and M10n curves
(R28-M7-L and M10-31 respectively) is also the smallest ram angle simulated for which
the spanwise averaged ow eld does not instantaneously retiach. A characteristic of

these two slopes, which is most apparent in the hypersonic da but is also true for the
supersonic data, is that they are not proportional to each oher in the same ratio across all
data. It is therefore not possible to collapse both the incipently separated data and the
fully separated data simultaneously by using a single propdionality constant such as k
in the de nition of the shock strength metric. We also point out that this problem of the

disproportionality of the slopes remains even ifL is plotted versus P= Pggpas is done in
Fig. 5.7(b) for all data for which  Psep is known. Recall that Sg,, 4 is an approximation

of the ratio P= Pgep such that ge=Kmnoqg Psep- In conclusion, it seems that the
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Figure 5.7: Supersonic and hypersonic scaled STBLI data ptted together with L versus
S€,0q (@) comparedtoL versus P= Psgp (b). Symbols are as in Fig.5.3 for supersonic
data and Fig. 5.6 for hypersonic data. Filled symbols are incipiently separéed and open
symbols are fully separated.

two branches of incipiently separated and fully separated $BLI are each governed by
di erent physical mechanisms and therefore di erent scaling laws, each potentially with
its own dependence on Reynolds number, Mach number, wall teperature, and geometry.
In comparing Figs. 5.3(a) and 5.3(b) and also Figures5.7(a) and 5.7(b) we propose
that the modi ed separation scaling derived in Section Il is the appropriate separation-
length-to-shock-strength scaling for the incipient sepaation regime. For the incipient
interactions, the boundary layer separates when the presse jump across the shock struc-
ture is su cient to halt the momentum of the incoming boundar y layer and so P scales
by g. Increasing the wall temperature will increasingly skew ttre distribution of momen-
tum towards the edge of the boundary layer and so we see that faged interactions produce

larger separation than an adiabatic case at the same de ectin angle. The opposite e ect
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occurs when the wall is cooled. The skin friction ratio corretion on Kmoq Was shown
in Section Il to account for the variation in separation length caused by the wall tem-
perature condition. Also by the current data compilation, t he incipient separation data
collapse appears to be independent of the geometry and agreéor all compression ramp,
re ected shock, and axi-symmetric are data. In contrast, the separated interactions
follow a di erent trend and a di erent Reynolds number dependence.

With the current limited data compilation and the limited kn owledge of the factors
a ecting the dynamics of the IVS, it is not possible to propose a scaling for the fully
separated STBLI regime. We observe, however, that the datarends can be reconciled
with the existence of the IVS discussed in Chapted. Shown by the data in Fig. 5.6, there
is an obvious dependence df on Reynolds number when comparing between M10-EIf1
and M10-EIf2 and also between M10-Coll and M10-Col2. Thé& is signi cantly reduced
in the lower Reynolds number data. Notice that an increase inthe Reynolds number of
the incoming boundary layer results in an increase in the tubulent mixing and energy
in the incoming boundary layer ow, which in turn hinder the d evelopment of the IVS
resulting in weaker circulation of the vortices rendering them less e ective in depleting
the separation bubble. This is consistent with the fact that the mean separation length
increases with increasing Reynolds number for a giveM¢ and as the data of Elfstrom
and Coleman show. In the case of M10-34, the IVS are con ned byhe narrow grid
resulting in a stronger instability with stronger circulat ion. The result is again a smaller
separation length in M10-34 compared to M10-34w for which tlere is no such constriction.
For the cylinder- are data compared to the compression rampdata (M10-EIf to M10-
Col data points) the spanwise relief e ects from the increasng are radius downstream

of attachment signi cantly weakens the strength of the IVS and the separation length
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increases dramatically.
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Chapter 6: Characterization of the Shear Layer in Separated STB

xThe majority of this chapter is reproduced from Helm et al. [83].

6.1 Background

The free shear layer is one of the most fundamental shear owsor the study of
turbulence. Unlike wall-bounded shear layers, the mixing &yer develops with only one
length scale. The canonical mixing layer therefore a ords a snple yet essential con gu-
ration for the study of compressible turbulence. A rm grasp of the fundamental physics
of compressible turbulence in shear ow is of paramount impaance for the advancement
of hypersonic ight technology, supersonic combustion, an the development of robust
practical simulation tools for such engineering design e ofs.

Despite its conceptual simplicity, the compressible mixirg layer exhibits certain
properties that are di cult to explain physically. One of it s most documented features is
a signi cant decrease in spreading rate with increasing comressibility. This property is
noted in research articles as early as the 1950's from expemiental observation [LOO, 101]
and from linear stability prediction of the stabilizing e ec ts of increasing Mach number
on a vortex sheet 102 103, 104. By the 1970's, consensus among scientist resulted in the
well-known \Langley curve" [ 105, 106]. The Langley curve is generally plotted as normal-
ized spreading rate versus the convective Mach numbei ;, a metric for compressibility

proposed by several authors]07, 108 109]. Early research also revealed that the reduction
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in spreading rate is accompanied by a reduction in uid entranment, turbulence mixing,
and turbulence stresses]10, 111, 117. Many signi cant research contributions advancing
our physical understanding of these phenomena have since &® put forth as outlined in
several review articles I, 113 114, 115. In spite of the large volume of research, precise
scaling laws and robust models for simulation are still lackng.

Several factors make identi cation of exact scaling dependncies di cult. Signi -
cant spread exists in the data partly due to limitations of measurement techniques, but
also due to an acute sensitivity of the mixing layer to initial and boundary conditions.
This sensitivity is problematic in both experiment and computation and can produce large
variations in the spreading rate and turbulence stresses. [Bturbances in the freestream,
conditions of the boundary layer, experimental facility acoustics, splitter plate vibration,
and test section con nement can all contribute to scatter in the data [1, 115. In the clas-
sic relation of Papamoschou & Roshko109 °= 0 (M), determination of the scaling
function (M) is compromised by signi cant scatter in both the compressble spreading
rate % and the incompressible spreading rate O .. Dimotakis [113] reported as much as
30% variation in incompressible spreading rate data due to x@erimental inconsistencies.
Smits & Dussauge [] estimated as much as 50% variation in the compressible datmea-
surements. A number of attempts have been made to correct fothe discrepancies in the
data [116, 117, 118 119 with some success, however, large spread in the data stilemains.
Similarly for turbulence quantities, scatter has prevented a consensus on the trends caused
by increasing compressibility. For example, many studiesndicate that the peak normal
stress in both the streamwisetu®i and cross-streamhw@®i directions steadily decrease
with increasing M¢. This resulted in the turbulence shear stressud and anisotropy

hu@i =hw®i remaining relatively constant [120, 121, 122, 123. Still, several other studies
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[112, 124, 125 found that for increasing M, hu®i is constant and only hw®i decreases
causing the shear stress to decrease and anisotropy to ina®e. The overall scatter is on
the order of the reported trends as can be seen in the data coniptions in [1] and also in
the more recent data compilations of Barre & Bonnet [L26).

The sensitivity of the mixing layer stems from the complex dynamics of the large-
scale vortices produced by the Kelvin-Helmholtz instabilty. These large-scale mixing layer
eddies undergo signi cant changes with increasing Mach nufmer and have been found
to play a dominant role in establishing both the spreading rae and turbulence levels.
It has been observed in many studies that the structure of themixing layer becomes
increasingly three-dimensional and less coherent with ineasing compressibility. This
has been shown, for example, with two-point correlations inexperimental data [127],
in experimental ow visualizations [128 129 130, and ow visualizations in numerical
simulations [125, 131, 132, 133. Increasing strength of an oblique unstable wave with
convective Mach number was also predicted by inviscid staltity theory [ 131, 134]. Further
complexity arises when the motion of the large vortices beames supersonic relative to one
or both of the external ows causing shocklets to appear. Shoklets have been observed
both experimentally [130, 135 and in simulations [125 133 136 and typically occur
at high convective Mach numbers. These shocklets can a ect th turbulence dilatation,
dissipation, and pressure elds [].

A key parameter for the characterization of the compressibd mixing layer is the
convection velocity of the Kelvin-Helmholtz vortices in relation to one or both of the
freestream velocities. Under the assumption that the mixirg layer eddies convect at a
constant velocity, are non-dispersive, and the streamling are isentropic, Papamoschou

& Roshko [109 conducted a theoretical analysis to derive the convectivavlach number
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M: = U=a; + ap) which is the velocity di erence across the layer U divided by the
average of the sound speed in the two streams. Despite the limitations imposed by the
derivation assumptions, M. is still the most used Mach number in the study of compressits#
mixing layers. Freund et al. [125 showed in their direct numerical simulations (DNS)
of an annular mixing layer that, with increasing M, the cross-stream correlation length
decreases in relation to the layer thickness. This indicate that the large scale eddies do not
span the width of the layer at elevated Mach number. The same athors also showed that
the peak turbulence stress in their simulation data scaled vth the cross-stream correlation
length and not the layer thickness. These results were conmed by Pantano & Sarkar [123]
who demonstrated that the pressure-strain rate correlation in their DNS scaled best with
the so-called gradient Mach number. The gradient Mach numbe My is by de nition the
acoustic time scale divided by the ow distortion time scale and is related to the velocity
di erence across a large scale structure. This is in contrasto M. which is based on the
velocity di erence across the entire layer. The results of Feund et al.[125 and Pantano &
Sarkar [123] are both consistent with the previous work by Vreman et al.[137] who used a
theoretical model of sonic eddy, a concept rst introduced ty Breidenthal[138], to explain
an observed decrease in pressure uctuations with increasg Mach number. Detailed
turbulence statistics a orded by high delity numerical sim ulations enabled these authors
[123 125 137 to reveal that a decrease in the pressure-strain rate cortation is directly
responsible for the decrease in spreading rate with increasy Mach number. These results
point to the importance of the structural changes of the large-scale mixing layer eddies in
dictating both the spreading rate and the turbulence streses.

One factor limiting our ability to translate these observations into precise scaling

laws is that the parameter space has by no means been exhaudteParticularly lacking in
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the research are mixing layers of high convective Mach numlbd M > 1), especially in the
way of turbulence statistics. Aside from the notable work by Pantano & Sarkar [123, the
e ects of density gradient on the compressible mixing layer gnamics and their distinction
from purely compressibility e ects has not yet been thoroughy explored. The e ect of
velocity ratio also has not been fully investigated. The maprity of mixing layer data
are either of a single stream or two co- owing streams. Therds evidence, however, that
the vortex dynamics are fundamentally di erent for the counter-current con guration
compared to the much more widely studied co- owing con guration. Flow visualizations of
the axi-symmetric jet of Strykowski et al. [139 demonstrate that counter- ow shear layers
can produce larger and more coherent structures than are degrnible in single-stream jets
at similar conditions. Linear stability analysis of both compressible and incompressible
mixing layers shows the unstable mode can transition from a envectively unstable to an
absolutely unstable mode under certain conditions of revese ow strength [140, 141, 142
Considering these changes in the nature of the instability,a question that may be asked
is whether the relations between spreading rate and turbulace statistics observed in co-
owing compressible mixing layers still hold true. Another con guration of practical
interest of which there is very little data available is the mixing layer subjected to a
streamwise pressure gradient.

A compressible separation shear layer forms in strong shoftiarbulent boundary
layer interactions (STBLI). A well-known characteristic of separated STBLI is the oc-
currence of a low-frequency unsteadiness in the shock foohd separation bubble (among
many references see for example Dussaugeal. [2] and Wu & Martin [ 3]). Many attempts
have been made to discover the origins of this unsteadinesbut of particular interest to

the current discussion is the work of Pipponiauet al.[21] who used scaling arguments
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to explain the order of magnitude di erence between low-freqiency motions observed in
STBLI and those observed in incompressible separation bulbs. In the derivation of
their model, they equated the separation shear layer in thai Mach 2.3 re ected shock
STBLI to a canonical mixing layer and sited the Mach number dgendent reduction in
the spreading rate of the compressible mixing layer as the pmary cause of the frequency
di erence. Recently, Dupont et al. [143] published a follow-up article to that of Piponniau
et al. with the intention of verifying the assumptions that were made of the STBLI shear
layer properties. Although decidedly not a canonical mixirg layer, interestingly, Dupont
et al. showed that the STBLI shear layer does in fact share many of te same proper-
ties. For example, they were able to collapse pro les of the man velocity and turbulence
stresses onto an approximate similarity pro le by de ning an appropriate, linearly vary-
ing, shear layer coordinate system. They also demonstratethat the spreading rate of the
separation shear layer was consistent with the level of comessibility as determined by
the convective Mach number and the measured rate of entrainmnt. Turbulence scaling
properties of shear stress-to-spreading rate and also turdence anisotropy-to-convective
Mach number were also found to be in good agreement with mixig layer dimensional
analysis. In light of these results, it would seem that the sparation shear layer in STBLI
ows could potentially provide signi cant insight into the mixing layer problem, or, at the

very least, help expand the currently available parameter pace.

6.2 Chapter Overview

In this chapter, we employ our LES database of separated STBLincluding the
Mach 3 interaction (R24-M3w-L) of Chapter 2 and the hypersonic interactions (R33-M7-

L and R34-M10-L) of Chapter 3 to analyze the properties of mixing layers in hypersonic
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separated ow with the intention of contributing to the rese arch of mixing layer theory.
These three separated STBLI were found to produce shear layg with convective Mach
number ranging from 1 to 2. This highlights an attractive feature of STBLI separation
shear layers in that they naturally occur at high convective Mach number. They also
present the rare combination of high convective Mach numberwith reverse ow on the
low-speed side. A further detail of the STBLI shear layers isthat they exists in an
adverse pressure gradient. We nd that the pressure increass approximately linearly
in the direction of shear layer development and that similaity in the mean velocity and
turbulent stress pro les is still achieved under these condtions. Because we are using high
delity, high detail LES data, we are able to obtain accurate turbulence statistics in the
shear layer. The spatial/temporal resolution of the LES data also allows us to produce
statistics on the shear layer turbulence structures, to visialize instantaneous realizations
of the turbulence structures, and to directly calculate their convection velocity. The vortex
convection velocity is an important parameter in characterizing the mixing layer yet it is
notoriously di cult to measure accurately in experiments [ 121, 144, 145].

This chapter is organized as follows. In Sectior6.4, the mean ow properties of the
shear layer are tabulated. The form of the shear layer vorties is the topic of Section6.5.
The shear layer turbulence properties including turbulent kinetic energy and Reynolds
stress budgets are compared with available mixing layer dat and theory in Section 6.6

followed by a summary of conclusions in Sectiorb.7.

6.3 Nomenclature and data sampling

Throughout this chapter we use the following notation. The datasets R24-M3-L,

R33-M7-L, and R34-M10-L from Capters 2 and 3 will referred to by the shorthand M3,
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M7, and M10. The LES coordinate axes are indicated by capitaletters (X;Y;Z) and refer
to the streamwise, spanwise, and wall-normal directions repectively. The shear layer coor-
dinate axes, to be explained in Sectiorb.4.1, are speci ed by the lowercase letters X;y; z)
wherex is in the direction of the shear layer developmenty is the spanwise direction, and
Z the cross-stream direction. Unless stated otherwise, thealocity components ; v;w)
are in the direction of the mixing layer coordinate system. h this Chapter, the symbol
with no subscript is reserved for the mixing layer thicknesswhereas the boundary layer
thickness is denoted by .

During the runtime of the R24-M3-L, R33-M7-L, and R34-M10-L datasets, primitive
ow variables were output at a high sampling rate of f = 20Us= p,, from several stations
positioned alongX in the computational domain. At each station, that is at a giveni-grid
point, data was recorded from eachj- and k-grid points. The grid indices i, j, and k
refer to the streamwise, spanwise, and wall-normal grid diections respectively. For each
Mach number case, there are a total of seven of these statioresenly spaced inX between
(X Xsep)=L = 0:3 and Q9 in the region of the mean separation bubble. HereXsep
refers to the location of the separation point in the time- and spanwise-averaged ramp
ow. These high resolution time signals are used for the enhaced correlations described

in Section 6.5.1 and also the ow visualizations in Section6.5.3

6.4 Region of Similarity in the Mean Separated Flow

6.4.1 Similarity Pro les

The STBLI separation shear layers are visualized in Fig6.1 by the region of elevated
turbulence in the contours of mean turbulent kinetic energy TKE = hu®u%=2U¢?. In each

case, the shear layer forms at the foot of the shock and makesangle to the wall surface.
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Figure 6.1: Mixing layer coordinate system de nition for the (a) Mach 3, (b) Mach 7,
and (c) Mach 10 compression ramp datasets. Contours are of thturbulent kinetic energy
TKE = huj%;9=2U2. The black line is the location of the mean shock front and the
magenta line is the mean dividing streamline. Dashed linesidicate the range of similarity.
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Figure 6.2: Similarity pro les in the Mach 3 STBLI separated shear layer: (a) the mean
axial and cross-stream velocity, (b) axial turbulence intensity, (c) cross-stream turbulence
intensity, and (d) turbulence shear stress. The bold line isthe pro le at the ramp corner.

The positions of the shock and the separation dividing streanline are also indicated in
Fig. 6.1. A shear layer coordinate system X;z) is de ned for each case such that the
longitudinal x-axis extends along the center of the layer in the direction dits development
and the z-axis is perpendicular tox in the cross-stream direction. Canonical mixing layers
are characterized by a linear growth rate of the layer thickress 146, 147]. If linear growth
does in fact occur in the present shear ows, it should be poskle to collapse pro les of
the mean ow onto a single similarity pro le by plotting agai nst the similarity variable

= z=X. In doing so, a region of approximate linear growth is found n each of the three
STBLI ows.

The mean velocity and mean turbulence stresses are plottedevsus for M3, M7,
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Figure 6.3: Similarity pro les in the Mach 7 STBLI separated shear layer: (a) the mean
axial and cross-stream velocity, (b) axial turbulence intensity, (c) cross-stream turbulence
intensity, and (d) turbulence shear stress. The bold line isthe pro le at the ramp corner.

and M10 in Figs. 6.2-6.4 respectively. Obtaining these pro les required the positoning of
the shear layer coordinate systemxz-axes, the rotation of which was determined by the
orientation of the mean velocity eld, and the origin by the angle of spread observed in the
contour of mean TKE. This manual placement of the mixing layer coordinates is similar
to the method used by Dupont et al.[143. The position of the xz-axes for each case are
shown in Fig. 6.1. The angles of inclination for the Mach 3, 7, and 10 ows are 12°,
8:5°, and 100° respectively. The bold dashed lines in Fig.6.1 indicate the range inx for
which a good collapse of the similarity pro les was found. The pro les of Figs. 6.2-6.4
were taken from this range.

The collapsed pro les themselves resemble quite well thosef the classic mixing
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Figure 6.4: Similarity pro les in the Mach 10 STBLI separated shear layer: (a) the mean
axial and cross-stream velocity, (b) axial turbulence intensity, (c) cross-stream turbulence
intensity, and (d) turbulence shear stress. The bold line isthe pro le at the ramp corner.

layer. The mean longitudinal velocity pro les show high and low velocities connected by
a single in ection point, and the pro les of turbulence stress are approximately Gaussian
with the peak coinciding with the location of the in ection p oint in the mean velocity U.
Both of these features are typical of the canonical mixing Ister and together they produce
the Kelvin-Helmholtz inviscid instability [ 148. Unlike the classic mixing layer similarity
solution, the collapsed pro les for all three shear layers gpear to be non-symmetric with
the turbulence peak (equivalently the in ection point in th e mean velocity) biased towards
the high speed side of the layer. It is shown in Sectiorb.6 that this bias is a result of the
proximity of the wall on the low-speed side. The pro les of mean cross-stream velocity

show that W is essentially zero across the layer for all three cases iraditing that the
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mean velocity is nearly parallel to the x-axis. The minimal variation in W across the layer
is also consistent with a reduced entrainment rate, and theefore reduced spreading rate
as is expected for highly compressible mixing layers. This @int is discussed further in

Section 6.4.4.

6.4.2 Two-Stream Properties

Encouraged by the quality of collapse of the proles as well a their resemblance
to the canonical free mixing layer ow, we make an attempt to categorize these STBLI
shear layers in the manner of conventional compressible mirg layers. To do so we must
describe each shear layer as two streams, a high- and a lowesgd stream, each with
constant velocity and constant thermodynamic properties. As can be seen in Figs6.2-
6.4 this will only be an approximation as all proles deviate from the typical mixing
layer solution near the edges of the layer. Spreading occurat the low-speed end of the
pro les due to the presence of the wall and at the high speed ahdue to the presence of
the separation shock (the location of the shock in is easily seen in the proles ofW).
It will be shown, however, that even a rough estimation of themean properties of the
two streams is su cient for a general comparison to canonicd mixing layer data. The
estimations of the two stream properties for each shear layeare listed in Table 6.1. The
methods for determining the entries of Table 6.1 are discussed below. By convention,
properties associated with the high-speed side are indicatl with the subscript \1" and
the low-speed side with subscript \2".

The velocity U; and temperature T, for each case are estimated as the inviscid post-
shock solution for the STBLI freestream undergoing a ow de ection equal to the angle of

inclination of the x-axis. This selection ofU; and T; stems from the observation that the
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Case U T1 M1 Us Ts M2 dp:dx S r M¢ Uc;i

ms ) K ms Y (K (Pl Y (ms %
M3 551 140 23  -36 279 01 052 0541 -0.065 1.03 308
M7 1115 99 56 -137 537 03 120 0299 -0.123 189 739
M10 1368 115 63 -142 707 02 0.86 0.333 -0.104 199 934

Table 6.1: Averaged mixing layer ow properties.

rotated mean W pro les are essentially zero for all three shear layers. It$ worth noting
that we found the initial de ection angle of the separation shock, as shown for each case
in Fig. 6.1, corresponds closely to the resulting wave angle of the olgjue shock solution.
The high speed stream Mach numbem; is determined from U; and T;. The M7 and
M10 ows maintain Mach number above 5 downstream of the sepaation shock and can
be considered hypersonic shear layers.

The velocity U, of the low-speed side is estimated as the minimum in the sinalrity
pro les of U in Figs. 6.2-6.4 (a). The low-speed sideT, is likewise determined from the
similarity pro les of temperature which are plotted in Fig. 6.5. All three cases show a
satisfactory collapse of temperature within the previousy de ned range of approximate
similarity. In each shear layer, however, there occurs a \hok-o " of the temperature
pro les on the low-speed side. This is due to the constant temerature boundary condition
at the wall. The wall temperature of the Mach 3 case is nearly diabatic and so the
divergence of the proles in Fig. 6.6 (a) is minimal. Because the Mach 7 and Mach 10
are both cold-wall simulations, the temperature drops sigmcantly inside the separation
bubble as seen in Fig.6.5 (b-c). The low speedT, is therefore estimated as the maximum
value in temperature just before the pro les diverge to meetthe wall boundary condition.
The two hypersonic shear layers have large temperature ratis such that T, experiences

an increase of over 5 timesI; for the M7 case and nearly 7 times for the M10 case. In
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Figure 6.5: Similarity pro les of temperature in the (a) Mac h 3, (b) Mach 7, and (d) Mach
10 STBLI separated shear layers.

126



12

10
Q o8}
o
0.6F M3
M7
M10
0.4 L 1 L 1 L 1 L
0.2 0.4 0.6 0.8 1

x/L

Figure 6.6: Pressure gradient along the shear layer centenle.

comparison, the M3 caserl, is only double the value of T1. Also listed in table 6.1 is the
low-speed stream Mach numbemMM , calculsed fromU, and T».

Because the separated ow is shock-induced, an adverse pmge gradient occurs
along the length of the shear layer. Figure6.6 shows that the pressure increases nearly
linearly along the x-axis for all three cases. The reference pressum is the post-shock
pressure from the oblique shock solution from whicHJ; and T, are obtained. The average
rate of pressure increasedp=dx in units of p;=L was determined from a linear t to the
data of Fig. 6.6. For the Mach 3 ow the pressure increases by nearly 50% acrssthe
region of similarity, while for the Mach 7 and Mach 10 ows the pressure approximately
doubles. As a result of the adverse pressure gradient, the raa density plotted versus
does not collapse when normalized by the freestream densitsts is apparent in Figss6.7
(@), (c), and (d). The density is seen to increase signi canty from the most upstream
pro le to the most downstream pro le. However, a much better collapse is achieved if
each individual prole of is non-dimensionalized by the local »(x). The inverse of

non-dimensionalized by »(x) is plotted in Fig. 6.7 (b), (d), and (f). That is, although
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Figure 6.7: Similarity pro les of density in the (a)-(b) Mac h 3, (c)-(d) Mach 7, and (e)-
(f) Mach 10 STBLI separated shear layers. The pro les on the éft are normalized by
the freestream density. On the right are proles of the inverse density normalized by
the density of the low-speed side, that is, ,= . Plotting density in this way shows the
variation in s= o= 1.
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there is a monotonic increase in density alongk, the ratio between the two streams is
approximately constant. Therefore, only the density ratio s = = ; is reported in table
2. The value of local »(x) was determined from the individual pro les in Figs. 6.7 (a-c)
in a manner similar to the selection of T, from the pro les of temperature. Note that the
density could have equivalently been non-dimensionalizetdy the local ;(x) to obtain the
collapse. We chose to use,(x) because this quantity was easier to select from Figs6.7
(a-c). The Mach 3 STBLI ow produces a density ratio of approximately 1=2 across the
shear layer while both the Mach 7 and Mach 10 interactions prduce a density ratio of

1=3. Also included in Table 6.1 is the velocity ratio r = U,=U; for each case.

6.4.3 Convection Mach Number

Now that the properties of the shear layer high- and low-spee streams are known,

the theoretical convective Mach number de ned as

U U
M= ———= 6.1
e (6.1)

and also the theoretical mixing layer vortex convection vebcity Uc; de ned as

+
Ui = M (6.2)
a, + a

can be calculated for these ows. These expressions for thenvective Mach number and
convective velocity are derived for an isentropic mixing lger where a; and a, are the
spead of sound in the two streamsJ07, 109. The M. and U.; are computed for each case
and listed in Table 6.1. An interesting feature of the separated STBLI ows is that t hey

produce shear layers with rather highM. even for the Mach 3 compression ramp ow.
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All three shear layers are aboveM. = 1. This is an attractive feature considering that
the majority of mixing layer data available today, particul arly for turbulence statistics, is
below M. = 1.

For mixing layers with M. above 1 it is likely that shock waves exist in one or both
sides of the mixing layer, thus negating the isentropic assmption in the derivation of
Egns. 6.1 and 6.2. We will show later in Section 6.5.2 that the theoretical Ug; in Table
6.1 is quite di erent from the convection velocity determined fr om enhanced two-point

correlations.

6.4.4 Spreading Rate

Despite its known limitations as a scaling parameter, the cavective Mach number
de ned by equation 6.1 is currently the most widely accepted metric in the literature
for classifying the compressibility e ects of mixing layers [1]. One such classi cation is
the observed signi cant decrease in layer spreading rate W increasing M.. Smits &
Dussauge ]] presented a compilation of compressible mixing layer speing rate data,
expressed as a fraction of the spreading rate of an equivalemcompressible mixing layer
with the same values ofr and s, and plotted these versusM. (see gure 6.6 in refer-
ence). Included in the data compilation are the classic Lankgy curve [L05 106, the
semi-empirical curve by Dimotakis [L13], and the linear stability analysis prediction of
spreading rate decrease withM; by Day et al. [132. The data show that the spreading
rate can decrease by as much as 50% to 80% from the incomprdssi case forM. above
0.5. For the current data, normalized spreading rate preditions from the classic Langley
curve are approximately 0.55 for the Mach 3 ow and 0.40 for beh the Mach 7 and Mach

10 cases as determined by the values ®fl ¢ in table 6.1
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Case 80 SO\NO i?]C 80: i(r)lc 80\/\/0: i?]c
M3 0.265 0.238 0.311 0.853 0.766
M7 0.195 0.194 0.297 0.656 0.653

M10 0.205 0.202 0.296 0.692 0.682

Table 6.2: Spreading rate estimates and comparison to incopressible theory.

For the STBLI shear layers, the spreading rate of vorticity thickness %= d |, =dx
where | = U=max(dU=d2 can be estimated using the two di erent methods outlined by
Dupont et al.[143. The rst of these uses a comparison of the normalizedu@i similarity
pro le with the same from an incompressible mixing layer. Hee the two-stream mixing
layer data of Mehta & Westphal [149 ( gure 5(b) in reference) is used. This rst method
assumes that the shape of thdu@i pro le as well as the ratio of (d ; =dx)=d do not di er
between the compressible and the incompressible cases. Tisecond method involves
tting a Gaussian curve to the pro les of turbulent shear str ess. Both methods provide
consistent results. These are listed in table.2.

A theoretical estimate of the spreading rate for an incomprasible mixing layer with
non-zero density ratio s can be determined from the relation derived by Papamoschou &

Roshko [L09

o - o @ nNar i
inc ref (1+ I’Hg)

Q: (6.3)

0

In equation 6.3,

is a reference spreading rate from an incompressible mixintayer
with s = 1 and U, = 0 and is typically taken to be equal to 0.16 [1]. The STBLI

shear layer spreading rates are also listed in tablé.2 as a fraction of the corresponding
incompressible estimate. The spreading rate ratios are Iasthan unity however they are

approximately 50% to 70% higher than the Langley curve preditions. The Langley curve,

however, is based primarily on data for single or two stream ¢- owing mixing layers. It
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has been shown that the spreading rate can be signi cantly geater for counter-current
mixing layers [139, 150 and also for mixing layers subjected to adverse pressure gdients
[15]]. Although there is signi cantly less data on the counter-current mixing layer than
the co- owing con guration, one notable work is that of Stry kowski et al. [139. The
authors performed a series of counter- owing axi-symmetr¢ jet experiments at M. 1
with varying reverse ow strength. They showed that the spreading rates were consistently
60% greater than the case of a single stream jet. Another coideration is that equation 6.3
might not be an accurate approximation for the spreading rae of incompressible counter-
current mixing layers. Strykowski et al. [139, however, also showed that equatior6.3 was
valid for their experimental data if the reverse ow strength did not exceedr <  0:1.
Even still, the disagreement forr <  0:1 was sited by the authors as possibly due to an
artifact of their jet nozzle. At any rate, the shear layer data in table 6.2 clearly shows
a decrease in spreading rate from the M3 case alc 1 to the M7 and M10 cases at

Mc 2.

6.5 Vortex Signature and Convection Velocity

The similarity pro les of the mean velocity and turbulence stresses presented in
section 6.4.1 indicate that the criteria for the inviscid Kelvin-Helmhol tz instability exist
in the STBLI shear layers, and so it is expected that there wil be large spanwise-oriented
vortices present in the ow. Changes in the global characteistics of the compressible mix-
ing layer as compared to the incompressible condition may béetter understood through
observation of the dynamics of the large vortical structures. The detection and description

of the average signature of these vortices is the subject ohis section.
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6.5.1 Enhanced Correlations

A schematic of the shear layer in the compression ramp STBLI ow is given in
Fig. 6.8. On the left is shown a model of the spatial development of themixing layer
structur es as they convect along thex-axis. It is assumed that the vortices convect at
a constant velocity U. and that they follow one after the other at fairly regular int ervals.
It is also assumed that they do not stray too far from the shearlayer centerline. At
reattachment the vortices are shed into the downstream ow. These assumptions are
based on observations of the temporally- and spatially-reslved LES data and are veri ed
in Section 6.5.3 by the instantaneous vortex visualizations. If the ow is probed at a
stationary point in the shear layer, the resulting time signals can be converted to spatially
\frozen" turbulence via Taylor's hypothesis. This is drawn schematically on the right
side of Fig. 6.8. The average signature of the frozen turbulence can be deterined from
the cross-correlations of the time signals of mass ux and pessure uctuations in the
following way. Consider for example the time signal of preasre taken from a point along
the centerline of the shear layer. As a vortex core convectsgst the probe location there
will be a negative uctuation in the pressure. Likewise, in-between successive vortices
there will be a positive pressure uctuation from the stagnation point in the convective
reference frame. In a similar way, the time signal of longitalinal mass uctuations ( u)°
taken near the bottom edge of the shear layer will give infornation on the aperiodic
signature of the passing vortices due to the orientation of he vortex rotation. Taking the
cross-correlation between the centerling®and the bottom edge (u )°time signals produces
a sinusoidal signature, the period of which is equal to the agrage time between successive

vortices as they convect past the probe points. Although notshown in the schematic of
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Figure 6.8: Schematic of the vortex structures (a) in the spéally developing shear layer
in the separated compression ramp STBLI ow and (b) time signals taken from within
the shear layer converted to \frozen" vortices by using Taybr's hypothesis.

Fig. 6.8, similar arguments can be made for cross-correlations be®en centerlinep® and
centerline cross-stream momentum (v )° Here we consider bothR, yopo and R, yopo.

A similar cross-correlation method was demonstrated by Kiya & Sasakifl52] and also
Cherry et al. [153 for an incompressible separation shear layer, and Samimgt al.[127)]
for compressible mixing layers. There are a couple of pointso be made on the cross-
correlation method used here. First, the signal of longitudnal momentum uctuations
could be taken from either the top or bottom edge of the sheardyer. Kiya & Sasaki [152]
for example used the high speed edge. In this analysis, the tom edge was chosen so as to
avoid the separation shock. Second, auto-correlations ofrpssure with itself will also give a
periodic correlation curve as demonstrated by Kiya & Sasak[152], Cherry et al. [153], and
Samimy et al.[127]. Here cross-correlations op®and (u )°and alsop®and (w )°were used
in order to couple the mass ux and pressure eld events, thatis, to ensure that a pressure
uctuation is accompanied by a corresponding mass uctuation. We found this strategy
also ensures a more robust selection method for the enhanceaxbrrelation technique to

be described shortly. Last, it was found that nearly identical correlation signatures were

134



M3 x/L =-0.6 M7 x/L=-1.1 Mlo

fPSD - Arbitrary Scale

=

Lol Lo z - Ll
10" 10° 10* 10" 10° 10* 10* 10° 10*
f (U,L) f (U,L) f (U,L)

Figure 6.9: Pre-multiplied power spectral density of wall pressure signals from the (a)
Mach 3, (b) Mach 7, and (c) the Mach 10 data. Spectra are showndr the upstream
boundary layer (solid bold), separation point (dotted), corner (dashed bold), and reat-
tachment (solid).

achieved when correlating velocity with pressure comparedo correlating mass ux with
pressure. In general the mass ux correlations provided a sbnger signature and so only
the mass ux and pressure correlations are included in this pper.

The details of the correlation method are as follows. Beforecalculating the cross-
correlations, the signals of pressure and velocity are rstoandpass ltered in time. Fully
separated STBLI ows are characterized by frequency spect consisting of three distinct
broadband ranges of energized turbulence motions. These emassociated with (1) the in-
herent low-frequency unsteadiness of the separated ow, (2he mixing layer vortices, and
(3) the ne scale boundary layer turbulence. To demonstratethese frequency bands, pre-
multiplied power spectral density (PSD) of wall pressure tken in the upstream boundary
layer, the mean separation point, the ramp corner, and the man reattachment point are
plotted in Fig. 6.9 for each of the three STBLI ows. These spectra were calculaéd using
Welch's method with eight time segments with 50% overlap andthen bin sampled with a
bin width of 0.1 in the log scale. From these spectra it is podble to make out the shifts in
the distribution of turbulence energy as the ow progresseshrough the separated region.

In the boundary layer, only the high frequency turbulence exsts with little to no
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Figure 6.10: Cross-correlations between bandpass lteredhixing layer centerline pressure
and mass ux signals at the corner pro le of each dataset. Aveaged over full time signal
(a-c) and enhanced average (d-f).

energy present at the lowest frequencies. The undisturbed dundary layer turbulence is
generally centered atSt = f =U; = 1 and experiences a shift toSt,. = 1 downstream
of the shock. This shift in the boundary layer turbulence canbe seen when comparing
the broadband energy peaks between the most upstream and miodownstream spectra.
The low-frequency oscillations of the shock appear in the gmration spectra. It is well
documented in the literature that the low-frequency oscillations in quasi-two dimensional
separated STBLI ows occurs at St = fL=U¢ on the order of 0.01 (Among many ref-
erences, see for example Duporgt al. [11] for re ected shock interactions and Priebe &
Martin [ 12] for compression ramp interactions). The relative strengh of the low-frequency
oscillations diminishes downstream, however, there stilremains elevated energy at these
frequencies in the corner and reattachment spectra. Althogh not appearing as a distinct

peak in the pre-multiplied PSD, a substantial increase in eergy at frequencies of approx-
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imately St. = 0:5 occurs in the corner and reattachment spectra when compateto the
rst two spectra pro les. The increase in energy content at these intermediate frequencies
is attributed to the development of the mixing layer turbule nce [L1]. Because the three
energized frequency ranges are separate from each other,eevmore so as the ratioL=
increases, it is possible to Iter out both the low-frequeng oscillations and the ne scale
boundary layer turbulence from the mixing layer time signals. Therefore, a bandpass Iter
is designed for each case to retain frequencies betwe&t, = 0:3 and St = 0:2. Note
that the low-frequency cuto scales onL and the high frequency cuto on y.

Correlation curves of R yo0 @and Ry yop0 from bandpass Itered time signals taken
from the corner prole in each of the Mach 3, 7, and 10 ows are potted in Figs. 6.10
(a-c). The corner pro le refers to the slice through the mixing layer that intersects the
ramp corner as drawn in Fig. 6.8 (a). The signals ofp®and (w)°are taken at =0 on
the x-axis and (u )?along the bottom edge of the shear layer at = 0:06. The time axis
is oriented so that a positive time shift indicates a motion d the uid, ( u)%or (w)° that
occurs before the correlated uctuation in pressure. Time § non-dimensionalized by the
pre-shock freestream velocityUe and separation lengthL. Both the R o0 and Ry ygpo
curves are sinusoidal and are almost perfectly out of phaseitia each other. Only R yop0
for the Mach 10 case fails to have a noticeable signature. A aeease in the mixing layer
structure correlation level with increasing M. was also observed by Samimet al. [127].
The Mach 7 and Mach 10 ows, bothM. 2:0, have a noticeably smaller amplitude than
the Mach 3 with M. 1.0. The approximate period of the correlations is 2=Ue which is
consistent with the expectedSt; = 0:5 for the mixing layer frequencies.

Although a distinct sinusoidal signature is visible in the full time signal correlations,

the overall magnitude of the correlation is rather low particularly for M7 and M10. In
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order to obtain a stronger signature of the vortex events, anenhanced correlation method
is used. The conditional averaging technique used here ismilar to the method of Brown
& Thomas [154 for the detection of hairpin packets in a turbulent boundary layer. The
strategy of Brown & Thomas assumes that the hairpin packet, @ in this case the mixing
layer vortex, is a speci c isolated event occurring in the ow and that the corresponding
uid motion, or pressure uctuation, associated with that e vent produces a speci ¢ sig-
nature in the time signal. Time signals of relevant uid prop erties can be broken up into
shorter segments and the cross-correlation computed for eh of the shortened segments.
If a vortex occurs in a given segment, the cross-correlatiorcurve of that segment will
produce the \signature" of the vortex event. The enhanced caorelation, therefore, is the
average over all of the short-signal correlations that showthe vortex signature.

For the detection of the mixing layer vortices, the time signals of p°, (u )% and (w)°
are broken up intoN segments of length ®&U.=L, or twice the wavelength of the bandpass
Iter low-frequency cuto. Successive time segments are takn with 50% overlap. We
assume that the signature of the mixing layer vortices has tle same form as the full time
signal correlations. The criteria for the selection of the @hanced correlations are such that
the segment correlationsR"; yop0 and R" (, yop0 Simultaneously have maxima and minima
in the same location as, but at least twice the magnitude of, he full time average signature.
More speci cally, a correlation is retained if (1) max(R"(yyg0)  2max(R( o) and (2)
min(R"(y)o0)  2Min(R(y yoq0) both in the range 2 t(Ue=L) O forn 2 N. The
enhanced results for the corner prole are shown in Figs.6.10 (d-f). For the Mach 3,
approximately 30% of the time segments met the criteria, andapproximately 20% for the
Mach 7 and Mach 10 ows. A distinct wavelength appears in the emhanced correlation for

all three cases including the Mach 1(R yopo.
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6.5.2 Convection Velocity

The enhanced correlation technique was repeated for sevdratations along the x-
axis. The frequency inSt_ determined from the R yo0 €nhanced correlation curve time
period are plotted in Fig. 6.11 (a) versus X=L. Although not shown, the time period
selected from the enhanced correlations oR(, yo0 produces similar frequencies to those
from R(,)q0. The frequency is approximately constant through the regiom of similarity
for each case. Dupontet al. [11] also showed that the shear layer frequency plateaus at a
constant St. = 0:5 in the separated ow of their re ected shock STBLI with free stream
Mach number of 2.3. They also showed that this frequency wasidependent of the incident
shock angle.

The enhanced correlations can be used to determine the actlianixing layer vortex
co nvection velocity U.. At a given position on the x-axis, if a time segment is selected
by the enhanced correlation criteria, the centerline pressre signal from that time seg-
ment can be correlated with the same from an adjacent positin along x. The convection
velocity of that vortex event is then obtained by dividing th e distance between the two
points in X by the o set in time of the peak in Rygo. The Uc can then be averaged over all
enhanced correlation selections. Here the cross-correlah of adjacent pressure signals is
used because the theoreticalc;; discussed in sectior6.4.3is by de nition the convection
velocity of the stagnation point between successive vorties L, 109. The averaged convec-
tion velocity versus X=L is plotted in Fig. 6.11(b). For the cross-correlations of pressure,
adjacent points are spaced approximately QL apart. An average of both the forward
adjacent point and the backward adjacent point correlation is used to calculateU, at each

data point plotted in Fig. 6.11 (b). The convection velocity seems to undergo a gradual
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Figure 6.11: Non-dimensional vortex frequency (a), convdmon velocity (b), and length
scale (c) determined from the enhanced correlations.

transition in the rst half of the similarity region, but, fo r all three ows, U; levels o at
0:4U¢ in the second half of the region of similarity. For comparism, Ug;; calculated from
equation 6.2 is 0:5U, for the M3 ow and 0:6Ue for M7 and M10. A similar comparison
was made by Dupontet al. [11] for their Mach 2:3 re ected shock experiments. They
found the phase velocity of wall pressure signals in the fragency range of 2 St 0.5
gave a shear layer convection velocity of approximately 8U. compared to the isentropic
prediction of 0:5Ue. In either case of the compression ramp or the re ected shoclow, the
theoretical convection velocity signi cantly over predicts the measured vortex convection
velocity.

The timescale of Fig.6.11 (a) and the convection velocities of Fig.6.11 (b) can be
combined to estimate the spatial wavelength of the frozen vdices. The spatial quantity

St 1y, is plotted in Fig. 6.11(c) and represents the average distance between successive

140



vortex cores. As with the convection velocity, the wavelengh seems to reach a constant
value in the second half of the region of similarity, levelig o at approximately 0 :8L

spacing for all three ows.

6.5.3 Three-Dimensional Vortex Signature

In order to investigate the spatial organization of the large vortex structure in our

STBLI mixing layers, the following correlation coe cient i s de ned

HAx+ xy+ yiz+ 2)pAxy;za)i

Rf 0p0 =
p 0 no
frmsprms

(6.4)

where f © can refer to either (u)® or (w)° and pYx;y;zy) is the pressure along the
mixing layer center line. Again Taylor's hypothesis of frozen vortices is used to convert
time signals into spatial information and so, in Eqn. 6.4, we setx = tU. where U is
the convection velocity determined from the enhanced corrations described above. The
enhanced spatial correlation can be generated in the same maer as the one-dimensional
(1D) correlations by averaging Rfoyp over all time segments selected by the previously
de ned criteria. The enhanced spatial correlations of bangbass Itered time signals from
the corner pro les of the Mach 3, 7, and 10 ows are plotted in Figs. 6.12, 6.13 and 6.14
respectively. These plots represent the averaged \frozen$patial waveform of the mixing
layer vortices as they convect past the corner pro le as dram schematically in Fig. 6.8.
In Figs. 6.126.14, gure (@) is the enhanced average in thexz-plane for y = 0, and
gure (b) is the enhanced average in thexy-plane for R yo0. Figures (c) and (d) are the
same forRy yo0. The z-location of the xy-plane is indicated by the solid black line in the
corresponding gure (a) and also in (c). For R yoq0 the xy-plane is along the mixing layer

bottom edge as was de ned for the 1D enhanced correlations. df Ry yq0 the xy-plane

141



Figure 6.12: Enhanced correlation contours of the Mach 3 corective mixing layer struc-
ture. Correlations are of centerline pressure with longitdinal mass ux in (a) xz- and (b)
Xy -planes and centerline pressure with cross-stream mass uix (c) xz- and (d) xy-planes.
The horizontal dotted line in the xz-planes indicates the lccation of the corresponding
xy-plane. Time correlations are converted to spatial infomation using the mixing layer
convection velocity (i.e x=L = tUc=L).
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Figure 6.13: Enhanced correlation contours of the Mach 7 corective mixing layer struc-
ture. Correlations are of centerline pressure with longituinal mass ux in (a) xz- and (b)
Xy -planes and centerline pressure with cross-stream mass uix (c) xz- and (d) xy-planes.
The horizontal dotted line in the xz-planes indicates the Iacation of the corresponding
xy-plane. Time correlations are converted to spatial infomation using the mixing layer
convection velocity (i.e x=L = tU.=L).
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Figure 6.14. Enhanced correlation contours of the Mach 10 cwvective mixing layer struc-
ture. Correlations are of centerline pressure with longituinal mass ux in (a) xz- and (b)
Xy -planes and centerline pressure with cross-stream mass uix (c) xz- and (d) xy-planes.
The horizontal dotted line in the xz-planes indicates the Iacation of the corresponding
xy-plane. Time correlations are converted to spatial infomation using the mixing layer
convection velocity (i.e x=L = tU.=L).
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is along the mixing layer center line. Note that plotting the values of Rfop along the
line drawn in the xz-plane would result in the same 1D correlation curves as in K. 6.10
(d)-(f).

The form of the mixing layer vortices as determined from the wo-dimensional (2D)
correlation plots is a streamwise periodic structure that «ists all through the cross-stream
width of the mixing layer. In R o0, the sign of the periodic correlation is reversed in
bands both above and below the mixing layer edges. These barmdcoincide with the
position of the separation shock and the reverse ow respedtely. In the xz-plane, the
coherent structures are tilted \forward" in the correlatio ns of streamwise mass ux and
tilted \backwards" in the correlation of the cross-stream mass ux. The horizontal axis
in Figs. 6.12, 6.13 and 6.14is oriented so that positive x is \downstream" and negative

x is \upstream”. In the xy-plane, an obvious oblique pattern occurs and the mixing
layer structures do not appear as 2D bands in the spanwise diction. This obliqgueness
in the average signature is consistent with compressible ming layer research showing
increased spanwise variation of the large mixing layer voites with elevated convective
Mach number [128 129, 130, 131].

The interpretation of the correlation contour plots can be aided by considering the
vector eld de ned by the magnitude of R o0 and R, yo0. Assuming that a negative
uctuation in pressure coincides with a vortex core, a plot o the vector eld de ned
by  (R(u)opo; Rew)ope) Will provide information on the average motion about a mixing
layer vortex center. These are plotted in Fig. 6.15. Also plotted in Fig. 6.15 are the
location of the mixing layer center line and the inclination angles of the iso-lines of zero
correlation from Figs. 6.126.14. The point of crossing of the zero-correlation iso-lines

can be interpreted as the center of the vortex. A similar corelation vector plot was
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Figure 6.15: Vector elds of (R y o0 R(w op0) from Figs. 6.12-6.14 for (a) M3, (b) M7,

and (c) M10. The vector eld gives information on the averaged mass ux motion about a
negative uctuation in pressure. The horizontal line indicates the location of the mixing
layer center line. The inclination from vertical of the coherent structures as determined

from the iso-line of zero correlation iR yo0 and R, yop0 are also indicated.
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Figure 6.16: Contour of the vortex detector variable 1 for the convective frozen ow from
the corner grid plane of the Mach 3 ow. (a) The xy-plane sliced through the mixing layer
center and (b) the xz-plane sliced through the section indiated by the dashed lines and
arrows in (a). Dotted diagonal lines indicate the vortex ande predicted by equation 6.7.

used by Kiya & Sasaki [L57 for an incompressible separation shear layer. Unlike in Kja
& Sasaki, no clear rotational motion is observed around the wertex center in Fig. 6.15.
Instead, a saddle point occurs. The vector plot shows that tle cross-stream momentum
ux is positive to the left of the vortex core and negative to the right, as one would
expect based on the (clockwise) orientation of the vortex rb-up. The vectors on the top
and bottom of the vortex center, however, are in the oppositeorientation from expected.
The interpretation of this stems from the fact that the density in the low-speed side of
the layer is a factor of two less than on the high speed side fothe Mach 3 ow and a
factor of four for the Mach 7 and 10 ows. The rotation of the vortex brings the low-
momentum, low-density uid into the high-speed, high-densty side causing a negative
streamwise correlation component to the left of the vortex enter. The opposite occurs
for uid being pulled from the high-speed side into the low-geed side to the right of the
vortex center.

Visualizations of the actual mixing layer vortices helps inasserting the interpretation
of the enhanced correlation plots. Flow visualizations of mdividual mixing layer vortices in

the raw data of the separated STBLI ows is made patrticularly di cult by the environment
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Figure 6.17: Contour of the vortex detector variable 1 for the convective frozen ow from
the corner grid plane of the Mach 7 ow. (a) The xy-plane sliced through the mixing layer
center and (b) the xz-plane sliced through the section indiated by the dashed lines and
arrows in (a). Dotted diagonal lines indicate the vortex ande predicted by equation 6.7.

Figure 6.18: Contour of the vortex detector variable 1 for the convective frozen ow from
the corner grid plane of the Mach 10 ow. (a) The xy-plane sliced through the mixing
layer center and (b) the xz-plane sliced through the sectionindicated by the dashed lines
and arrows in (a). Dotted diagonal lines indicate the vortex angle predicted by equation
6.7.
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in which they reside. One must be able to separate speci caji the mixing layer rollers from
(1) the smaller scale vortical hairpin vortices in the incoming boundary layer turbulence
and (2) the separation shock which sits very close to the higlspeed side of the mixing layer
as was shown in Fig6.1. We found that vortex detection methods based on the eigenvaes
of the velocity divergence, such as swirl strength, were mar problematic concerning the
rst issue. Vorticity methods, on the other hand, are dominated by the strong shear in the
separation shock. Ultimately we found the method developedy Graftieaux et al. [155] to
be the most robust for isolating the mixing layer vortices inthe raw data. The Graftieaux
method is based on the topology of the velocity eld rather than on derivative quantities.
It e ectively searches the ow for points about which there is a net circulating motion
and, because it uses a summation over a search window, it alsacts as a spatial Iter.
This method was successively used by Duporgt al. [84] to identify mixing layer vortices
in PIV data from their separated re ected shock STBLI experiments.

The Graftieaux method is a vortex search method in a 2D velody vector eld. If
P is a point in the ow, S is a specied area surroundingP, and M is a point inside S,

the vector detector ; is de ned by

z z
(PM_ Uw) z o _

1 1
S m2s JPMj jUnmj S s

1(P) = sin v dS (6.5)

where P M is the vector connecting pointsP and M . The velocity vector at point M is
Um and is the angle between the vectors® M and Uy . The parameter 1 will take
on values between -1 and 1 where the sign depends on the diramt of rotation. It can

be shown that a vortex exists atP if j 1j > 2= . For a square interrogation area with N
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equally spaced discreet points inside the are&, equation 6.5 can be re-expressed as

z 1 X
sin ydS= — sin \ : (6.6)
S N
N

1(P) =

0l

The band-pass Itered time signals of velocity from the correr pro le of the ramp
grids were again converted to space via the convection veldg of Section 6.5.2 Thus
the 3D velocity eld on which ; operates was generated. The 2D velocity vectotJy
isdened as U U w) and the Graftieaux vortex detector was applied throughout the
volume but always in the xz-plane. A square interrogation window of size @&  was
used throughout. The results are plotted in Figs. 6.16-:6.18 The contour of ; in the
streamwise-spanwise plane sliced along the mixing layer oter (= 0) is plotted for a
time segment equivalent to & in length that was randomly selected from the full time
signal. This provides a top view of the instantaneous frozemmixing layer structures. In
the inset of Figs. 6.16:6.18 (b) is shown a side view of the structures. The location in
the span of the 3D volume of ; is indicated by the dashed line in thexy-plane contour.
Similar plots are provided for arbitrarily selected time sggments from the M3, M7, and
M10 data.

From the top view, one can immediately observe the spanwisergyular pattern in
the vortices as is consistent with the 2D correlation plots & Figs. 6.12-6.14. From the
top plan view, the M3 vortices are visually more coherent than the M7 and M10 ows.
Also, in the side view, the M3 vortices appear more regular ad resemble a sinusoidal
wavy interface between the high and low-speed sides of the wihg layer. The vortex cores
appear to occur predominantly at the up-slope of the wave. A Bnilar pattern is seen in

the xz-plane slice of the M7 and M10 ows although, in general, the M8 ow is apparently
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more regular.

With regard to the spanwise oblique angle observed in both tle enhanced correlation
contours and the instantaneous vortex visualizations, it B interesting to consider the com-
pressible mixing layer inviscid linear stability analysis by Sandham & Reynolds [L31, 134].
These authors showed that an oblique unstable mode becomesmhinant over the 2D
mode for M. > 0:6. Furthermore, they found that the angle = measured from the 2D

mode increased with increasingvi ¢ by

M. cos 0:6: (6.7)

For the current STBLI shear layers, = 549 for the M3 ow and 72° for M7 and M10.
These angles are indicated by the diagonal dotted lines draw in the top-view contours
of 1 in Figs. 6.16-6.18 (a) and prove to be a close representation of the actual strucre

occurring in these ows.

6.6 Turbulence Scaling

Barre et al. [12]] used dimensional analysis of the free shear layer to show &h the
maximum turbulence shear stressh uW4 __ non-dimensionalized byU,(U;  Uy) varies

linearly with the vorticity spreading rate. Speci cally

o 1 huWl,,

K Ug(Ur  Uyp) ©8)

whereK is a proportionality constant to be determined empirically. The derivation of this
relation is independent of M. and therefore includes both compressible and incompresdi

layers. Oftentimes equation 6.8 is tested usingU.; for lack of a better estimate, but, as
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Figure 6.19: Non-dimensional turbulence stress versus thepreading rate. The arrows
indicate how the data of Dupont et al. [143 changes if U is calculated in the same
manner as the current data.

was shown in Section6.5.2, the actual convection velocity can vary signi cantly from the
theoretical value.

In Fig. 6.19is plotted the maximum turbulent stress from the proles in F igs 6.2-
6.4 (d) versus the average of the two estimates of spreading ratérom table 6.2. The
maximum turbulence shear stress and maximum normal stresseare listed in table 6.3.
Included in Fig. 6.19 are also the data of the separated STBLI shear layer from the
experiments of Dupont et al. [143], together with the subsonic counter-current mixing
layer data of Forliti et al. [150. It has been shown by Dupontet al. [143 using a large
compilation of incompressible and compressible shear layelata available from literature
that the majority of the co- owing and single-stream data fall within reasonable error of
K =0:12. The line drawn in gure 19 correspond to this value of K. The dashed lines
indicate the region of 10% error. The incompressible, coumtr-current data of Forliti et
al. show that the turbulence shear stress follows theK = 0:12 line for spreading rates

below approximately 0.2. Above 0.2, a steeper linear trend ccurs. This bifurcation in the
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Forliti data occurs between points ofr = 0:13 and 0:19. Although the spreading rate is
above 0.2, the Mach 3 data point withr =  0:065 follows the trend of the co- owing data.
The Mach 7 and Mach 10 data points, which have stronger revees ow (r = 0:123 and

0:104) than the Mach 3, lie within the trend of the Forliti data a t the same spreading
rate. The two data points of Dupont et al. have similar velocity ratios (r = 0:057
and 0:146) as the present STBLI shear layers and show the same trenaf the stronger
reversed ow case having a higher non-dimensionalized tunlent shear stress.

The di erence between the data of Dupont et al. and the current data may be
related to the method of determining U; and U,. Dupont et al. selected these values from
a closer to the mixing layer center thus possibly under-prediting U. If the method of
Section 6.4.2is used to recalculate U of Dupont et al., the two data points move much
closer to the current data as indicated by the arrows in Fig.6.19. This is an intriguing
result and suggests that the change in the nature of the shedayer instability for counter-
current mixing layers as described by Forliti et al. et al. [15Q is independent of the level
of compressibility.

The Reynolds stress stress anisotropw®i =ru®i is known to be typically around 0.5
for incompressible shear layers and can decrease signi céyfor M. above approximately
0.5[1, 143. Brown & Roshko [156] used dimensional analysis to propose that the Reynolds
stress anisotropy decreases in proportion to 4MZ2. The anisotropy determined from the
pro les of Figs. 6.2-6.4 are listed in table 6.3 and are found to lie below the subsonic level
of 0.5. The anisotropy of the M7 and M10 data are almost half that of the M3, con rming
that the anisotropy decreases signi cantly with M. for the STBLI shear layer although
not the the extent predicted by the 1=M?2 scaling. The anisotropy at M. = 2 would be

approximately 0:083 if calculated by the Z=MZ2 law in relation to the anisotropy level of
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Case huWwi=U. U h%= U mwZ%i= U mEi=h%

M3 0.0268 0.0432 0.0108 0.250
M7 0.0330 0.0754 0.0117 0.155
M10 0.0323 0.0786 0.0131 0.167

Table 6.3: Reynolds stresses and anisotropy.

the M3 ow. We note that Forliti et al. [150] found that increasing the strength of the
counter-current reverse ow increasedhw@®i=tu®i only for r 0:2.

The reduction in STBLI shear layer anisotropy is primarily due to an increase in
the streamwise turbulence component while the cross-strea component increases only
slightly. Values for the cross-stream stress of the M3 shealayer are comparable to the
levels experienced in canonical mixing layers neaM. = 1. The increase in streamwise
turbulence stress fromM. =1 to M. = 2 is opposite to the apparent trends in canonical
mixing layer data for which hu®i= U is found to decrease or remain constant with in-
creasingM.. For example, see the data compilations of Barre & Bonnet126] or Pantano
& Sarkar [123 although the data do not extend pastM.; = 1:2. To make sense of these
di erences, we turn to the analysis of the turbulent kinetic energy and Reynolds stress
budget equations (Appendix A).

Pantano & Sarkar [123 showed in the DNS of temporal mixing layers fromM. =
0:3 to 1:1 that the normalized TKE production and transport decreased with increasing
M. while dissipation remained constant. Similar results wereobtained by Vreman et
al. [137] and by Freund et al. [125. Decreased production resulted in decreased TKE thus
reducing turbulence mixing and ultimately the spreading rate. Increasing M. also has
the e ect of signi cantly decreasing the pressure-strain rate components in relation to the
incompressible values 123. The pressure-strain terms are primarily responsible forthe

transfer of turbulence energy from the streamwise directia to the cross-stream direction
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Figure 6.20: Turbulent kinetic energy budgets: Production transport, and dissipation are
plotted in (a), and convection and pressure strain in (b).

as it provides the greatest negative (loss) term inR1; and the dominant positive (gain)
term in the budgets of R33 and Ri1s.

The TKE budgets of the three STBLI shear layers are shown in Fg. 6.20. The
Reynolds stress budgets are shown in Figs.21. The budget pro les are plotted as func-
tions of z=, = =(d , =dx) and were averaged in thex-direction over the region of ap-
proximate similarity de ned in Section 6.4.1 All budget terms are nearly symmetric with
the exception of the convection pro les which are found to bea ected by the proximity
of the wall on the low-speed side. The asymmetry of the convéion term is responsible
for the shift in the turbulence peak noted in Section6.4.1. The level of convection does
not change between the three cases and so its in uence in shifig the turbulence peak
is greatest for the M3 case with the lowest TKE production. The TKE production and
transport increase substantially with increasing Mach nunber. The same is true for the
R11 budgets. Production and transport are approximately constnt across the three cases
for R33 and increase in magnitude only slightly for Ry3. The observed increase across

cases inTy3 and Ts3 is due to an increase in the pressure di usion. The increase i1,
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however, is due entirely to increased turbulence transporas the pressure di usion remains
negligible in all three cases for this budget. Not included m these plots is the pressure
work terms and  j, which are negligible for all cases.

The data of Pantano & Sarkar [123 for M. = 1:1 ands = 1 are included in Figs. 6.20
and 6.21for comparison. For this purpose, the data of Pantano & Sarka was rescaled from
the normalization by the mixing layer momentum thickness to the vorticity thickness

1. The ratio =, for this data was obtained by noting that, for a planar mixing
layer, P 1 =hi U= (P i=hi U®) = dOW0& U2 It is obvious that the STBLI
shear layers have much higher production and transport rate of TKE and R1; than the
canonical case. Otherwise, all other budget terms of the M3teear layer atM = 1 compare
exceptionally well with the data of Pantano & Sarkar, most notably in the pressure-strain
terms.

Freund et al. [125 studied the TKE and Reynolds stress budgets for self-simér an-
nular jets at M. from 0.1 to 1.8 and found that the ratios between the integraed pressure-
strain terms ( 11= 33) and also the ratio of integrated pressure-strain componeis to tur-
bulent shear stress production ( j =P13) were nearly constant with M. The STBLI
and P13 budget pro les were integrated overz=, and the various ratios were calculated.
These are listed in Table6.4 and the results are compared to theM c-independent ratios
reported by Freund et al. [125. The closeness between the STBLI shear layer ratios and
those of Freundet al. indicates that the interchange of turbulence energy is verysimilar
between the two con gurations.

From the comparison with the budgets of Pantano & Sarkar and wth the ratios
of integrated budgets of Freundet al., it is apparent that the most signi cant di erence

between the separation shear layer and the canonical casetise greatly increased turbu-
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Case 33= 11 11=P13 33=P13 13=P13

M3 0.38 1.17 0.45 0.70
M7 0.41 1.12 0.46 0.69
M10 0.40 1.01 0.40 0.74
Freund et al. (2000) 0.4 1.0 0.4 0.8

Table 6.4: Comparison of integrated Reynolds stress presserstrain budgets.

lence production of the separation shear layer. There is mar energy in the higher Mach
number STBLI ows and therefore more energy is transferred fom the mean ow to the
turbulence, predominantly through the R11 production, but the rate at which the energy
is transferred from streamwise to the spanwise component ismited by the pressure-strain
rate terms. Both the viscous drain of turbulence energy as weas the transport between
the components of turbulence by the pressure strain terms ha& been shown to be sim-
ilar to the canonical data suggesting that these propertiesin the STBLI shear layer are

a ected by compressibility in the same manner as for the canoital free mixing layer.

6.7 Summary and Conclusions

The results presented in this chapter e ectively demonstrage that, even in this as-
sertively non-canonical con guration that is the shear layer in a separated STBLI ow,
it is still possible to de ne a region of approximate mixing layer-like similarity. Perhaps
more surprising is the fact that the STBLI shear layer also slows striking consistency with
canonical mixing layer theories as they are currently undestood. This fact remains even
in the case of the hypersonic separation for which the sheaayer high speed Mach number
is above 5 and the temperature ratio across the layer is alsobmve 5.

Concerning the environment in which the shear layers exist,certain factors that

prevent this ow from being canonical in nature are the fact that the shear layer is (1)
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embedded in a turbulent boundary layer, (2) is subjected to he low-frequency oscillations
of the separation shock unsteadiness, (3) is not aligned wit the freestream, and (4) the
low-speed side of the layer is produced by the reverse ow of ahallow separation bubble.
In spite of these, we have demonstrated the possibility to otain a reasonable collapse
of the mean ow pro les and turbulence stress pro les when plotting against a linearly
varying similarity variable. This is consistent with a constant spreading rate. The form
of the similarity pro les of U and the Reynolds stresses are also reminiscent of canonical
mixing layer topology and exhibit the necessary conditionsfor the Kelvin-Helmholtz in-
stability. Properties of the shear layers were reported, icluding the estimated conditions
of the two streams, the convective Mach number, the estimatd linear spreading rates,
and maximum turbulence stress levels. The peak turbulencehear stress was found to be
proportional to the spreading rate by the same relation as fo canonical mixing layer data
with no dependence on the level of compressibility. Variatbn of the STBLI shear layer
properties with convective Mach number were shown to be coristent with known trends
observed in the literature. With respect to the variation of mixing layer properties with
increased compressibility as classi ed byM ¢, the data is in the direction of the expected
trends. The di erence in properties of the M7 and M10 data case at M = 2 is consistent
with an increase inM ¢ when compared to M3 atM. = 1. Namely, a decrease in spreading
rate with M. was observed and the extent of this decrease, although not tthe level of
the classic Langley curve, is consistent with other noted poperties of the STBLI shear
layers that could also a ect the spreading rate, speci cally, the elevated reverse ow and
the adverse pressure gradient. A decrease in turbulence attropy was also observed with
increasingM.. The well-documented increase in three-dimensionality ofthe vortex rollers

with increasing M. was also shown in the current data. A sophisticated conditimal av-
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eraging method of the two-point correlations was developedor the purpose of extracting
speci cally the mixing layer vortex signatures from the tur bulent environment. This cor-
relation method also allowed for the direct measurement of he mixing layer convection
velocity. Instantaneous visualizations of the vortices slowed that the oblique angle of the
vortices in the spanwise direction is consistent with predgtions by inviscid linear stability

theory based onM¢.

It was found through turbulent kinetic energy and Reynolds gress budget analysis
that the STBLI shear layers have a much greater streamwise ttbulence production rate
than what is observed in compressible mixing layer data. In pite of this di erence,
the interchange of turbulence energy among the di erent turbulence stress components
determined from the pressure-strain rate terms was shown tde consistent with mixing
layer data at the sameM.. The drain of energy caused by the viscous terms were also
consistent. These results inidicate that the STBLI shear lger spreading rate, turbulence
shear stress, and anisotropy are dictated by the same compseible ow phenomena as in
the canonical con guration.

Mixing layer conditions that are particularly dicult to se t up experimentally oc-
cur naturally in the STBLI shear layer: high M, high reverse ow, and also an adverse
pressure gradient. Although it has its limitations as pointed out above, the STBLI shear
layer con guration, as demonstrated by this study, can provide useful data capable of ex-
panding the currently available mixing layer condition parameter space, as well as identify
accurate generalizations of compressible shear layers féhe development of turbulence
models and scaling laws. In particular, the conservative eargy exchange from the stream-
wise component is less e cient with increasing M thus causing both the spreading rate

and the anisotropy to decrease with increasingVc.
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Chapter 7: Summary and Conclusions

Given the current status of hypersonic STBLI research and tke complex nature
of these ows, there is an undeniable need for high- delity rumerical simulations of the
canonical con gurations. Such data can provide a great amont of detail in the ow
turbulence, both in three-dimensional space and in time, dbwing for sophisticated analysis
of the ow physics.

High- delity simulations can be achieved either with DNS or LES techniques. The
LES technique solves the Itered equations for the conserion of mass, momentum, and
energy for which the smallest turbulence scales, which aressumed to be nearly isotropic,
are modeled. Because only the smallest scales are modeledetLES still produces highly
detailed ow elds, but the reduction in the computational ¢ ost is signi cant. As shown
by the results presented in this thesis, the savings in the LB grid size is approximately
95%-97% of the DNS grid and the LES timestep is typically 3 tines that of the DNS. With
regard to the STBLI ow, this di erence makes both the ability to spectrally converge
the low-frequency unsteadiness and the ability to match exgrimental Reynolds numbers
feasible. The necessity of having both experimental data ash numerical data at the same
conditions has been emphasized in the literaturel], 10, 29, 30].

The application of LES at hypersonic conditions is currently an emerging technology.
Only a few attempts have been made so far to simulate STBLI abee Mach number of 5.

Three attempts are known to the authors and all three are of a Mach 7, 3% compression
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ramp/expansion corner ow. Two were by Schreyeret al. [45] and Kim et al. [46] and

both used an eddy viscosity model for the SGS closure. The thil was by Ritos et al. [49]

who used an implicit LES method where the SGS contribution reults from the numerical

dissipation properties of the implicit scheme. Signi cant errors were found in comparison
to the available data although the accuracy of the experimetal data is not certain.

In the current work, we have demonstrated that our LES technique which uses the
dynamic mixed model of Martin et al. [52], produces accurate results for STBLI ow
including hypersonic conditions. An important conclusion from this work is that, for
separated hypersonic STBLI, using an eddy viscosity modeldr the closure of the shear
stress and heat ux terms results in large errors in the sepaation length and in the
spreading rate of the separation shear layer. The error in gmration length was also
observed in the Mach 3 separated interaction but to a lesserxent.

New LES data of two compression-ramp generated, fully-sepated hypersonic STBLI
at Mach 7 and Mach 10 were presented and the mean ow statistis were documented.
These provide a unique contribution to the available database of hypersonic STBLI, and
of particular importance is the reporting of the turbulence data and the wall heat transfer.

Besides the very useful but straight forward documentationof averaged ow proper-
ties, these datasets were used in the present work for thregeci ¢ data analysis projects
that have provided insight into several key features of the lypersonic STBLI ow eld.
These include the analysis of Chapter4 in which the low-pass ltering operation on the
full volume data and in time revealed the form of the low-frequency unstable mode in
the hypersonic interaction. The resulting ow visualizati ons and videos provided essential
information in developing the physical model for the separéion unsteadiness presented in

Chapter 4. The origins of the low-frequency mode in separated STBLI avs has been a
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topic of much debate for over ve decades ], 10Q].

In Chapter 5 was presented for the rst time a compilation of hypersonic SBLI
separation length and shock strength data from the literatwe. This compilation also
included the new LES data produced from this work at Mach 7 andMach 10 over a
range of compression angles producing a substantial rangd both separation length and
shock strength data. This enabled the derivation and evaluéion of a modi ed separation
length scaling based on that of Souvereiret al. [14]. The results gave strong evidence that
incipiently separated STBLI scale on the incoming boundarylayer dynamic pressure and
skin friction. The scaling was found to be generic to STBLI ofcompression ramps, re ected
shocks, and axi-symmetric cylinder-with- are from supersonic to hypersonic conditions
with adiabatic, heated, and cold walls. The fully separatedregime did not show such a
collapse, however, the insights provided by the low-frequecy mode study of Chapter 4
could be used for further investigation of this topic in the future.

And lastly, the analysis of the separation shear layer presated in Chapter 6 provided
unique insight into the nature of the separation in STBLI as well as the behavior of
compressible turbulence in free shear layers. It was showrhat the separation shear layer
naturally occurs at high convective Mach numbers at and aboe 1. The Mach 7 and Mach
10 separated ows resulted in convective Mach number of apmximately 2. A sophisticated
enhanced correlation method was developed to identify the ixing layer-like, spanwise-
oriented vortices. By this method it was possible to determne the time scale, averaged
three-dimensional form, convection velocity, and instananeous structure of the vortices.
The convection velocity is a particularly useful quantity for the study of mixing layer
data but is di cult to determine experimentally [ 1]. Many scaling relations, such as the

spreading rate to turbulence stress, rely on an accurate mearement of convection velocity
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and the theoretical value derived from isentropic processgis typically not accurate at high
convective Mach number [L]. In particular, it was discovered that the change in turbulence
dissipation and pressure-strain rate with convective Machnumber was consistent with
compressible free mixing layer data. The greater turbulene production in the STBLI
shear layers was found to be consistent with greater spreadg rate and turbulence stress
by compressible mixing layer relations.

Looking forward from the work included in this thesis, topics of interest include
the investigation of a separation length scaling for the fuly separated case. Most likely
this would require the development of a method of quantitatve characterization of the
low-frequency mode in order to study the dependence of the nde on Reynolds number,
Mach number, wall temperature and so on. It would be interesing to explicitly show the
ow dynamics in the STBLI data consistent with the low-frequ ency unsteadiness model
discussed in Chapter4. In addition, all simulations presented here are low enthgby and
non-reacting. For the design of hypersonic vehicles, realas e ects at ight conditions are

of interest.
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Appendix A: Turbulent Kinetic Energy and Reynolds Stress Budget §uations

The transport equation for the turbulent kinetic energy de ned ask = hu %49%=2

can be written as the following.
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The Reynolds average is indicated by the angled brackets, auctuation about the
Reynolds average is indicated by the single prime (e.gu = hui + u%. The Favre average is
denoted by the tilde such that &= hui=h i and a uctuation about the Favre average is
indicated by the double prime (e.g.u = 4+ u®. The individual budget terms in Egn. A.1
are the convection C, production P, transport T, pressure strain , dissipation , and
pressure work . The three contributions to the transport te rm are, in order from left to

right, the turbulence transport, pressure di usion, and viscous di usion. Both the viscous
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di usion and the viscous dissipation are functions of the shar stress tensor, which for an
LES solution, includes both the resolved stress jj and the unresolved SGS stress;; .

Similarly, the Favre uctuation Reynolds stress budget equation can be written as

the following where R = hu Pu0?.
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