
ABSTRACT

Title of Dissertation: Timestepped Stochastic Simulation

of 802.11 WLANs

Arunchandar Vasan, Doctor of Philosophy, 2008

Dissertation directed by: Prof. A. Udaya Shankar

Department of Computer Science

Performance evaluation of computer networks is primarily done using packet-

level simulation because analytical methods typically cannot adequately capture

the combination of state-dependent control mechanisms (such as TCP congestion

control) and stochastic behavior exhibited by networks. However, packet-level

simulation becomes prohibitively expensive as link speeds, workloads, and net-

work size increase. Timestepped Stochastic Simulation (TSS) is a novel technique

that overcomes the scalability problems of packet-level simulation by generating

a sample path of the system state S(t) at time t = δ, 2δ, · · · , rather than at each

packet transmission. In each timestep [t, t+δ], the distribution Pr(S(t+δ) |S(t))

is obtained analytically, and S(t + δ) is sampled from it.

This dissertation presents TSS for shared links, specifically, 802.11 WLAN

links. Our method computes sample paths of instantaneous goodput (successful

transmissions per timestep) Ni(t) for all stations i in a WLAN over timesteps of

length δ. For accurate modeling of higher layer protocols, δ should be lesser than

their control timescales (e.g., TCP’s round-trip time). At typical values of δ (e.g,

50ms), Ni(t)’s are correlated across timesteps (e.g., a station with high contention

window has low goodput for several timesteps) as well as across stations (since

they share the same media). To model these correlations, we obtain, jointly with

the Ni(t)’s, sample paths of the WLAN’s state, which consists of a contention

window and a backoff counter at each station. Comparisons with packet level

simulations show that TSS is accurate and provides up to two orders of magnitude

improvement in simulation runtime.

Timestepped Stochastic Simulation

of 802.11 WLANs

by

Arunchandar Vasan

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2008

Advisory Committee:

Prof. A. Udaya Shankar, Chairman/Advisor
Prof. Ashok Agrawala
Prof. Samrat Bhattacharjee
Prof. Raymond Miller
Prof. Charles Silio - Dean’s representative

c© Copyright by

Arunchandar Vasan

2008

DEDICATION

To Ma, Pa, and Dippy.

ACKNOWLEDGEMENTS

Beggar that I am,

I am even poor in thanks;

But I thank you.

- William Shakespeare, Hamlet

My first thanks go to my “boss”, Prof. Udaya Shankar. A constant

willingness to help and patience were his two biggest virtues, the latter

especially so when I waited for the Muse to whisper. Also worthy of

mention are his candor, and down-to-earth approach to research and

life in general.

Prof. Ashok Agrawala has been a source of ever-available feedback

right from my earliest days at College Park. He has inculcated a esprit

de corps at the MIND lab that has made me feel like I belong as well.

Prof. Ray Miller encouraged me to publish my first paper and guided

me every step of the way. His insights about computing as a discipline,

delivered from a doyen’s perspective, have always served to inspire.

iii

Prof. Bobby Bhattacharjee had this to say at our very first interac-

tion: “Don’t lose your passport”. Ever since, sound advice in practical

stuff, be it hacking kernels or choosing careers, has been his hallmark.

Prof. Aravind Srinivasan’s class on randomized algorithms weaned me

from my innate tendency to think deterministically. I am thankful for

his many technical suggestions and optimistic advice on career choices.

Prof. Atif Memon guided me in publishing my term paper in his

class and, in that process, taught me what it takes to be thoroughly

professional. Yet, he always lightened up the proceedings with a joke

or two.

I thank Prof. Charles Silio for serving as the Dean’s representative

in my defense committee. Dr. Ram Ramjee deserves my thanks for

two fun and fruitful summer internships at Bell Labs, and for his very

useful inputs about research in the industry.

My apartment-department orbit has thankfully intersected with those

of many friendly people. My many room-mates over the years - Vijay

Gopalakrishnan, Alap Karapurkar, Christopher Kommareddy, Srini-

vasan Parthasarathy, Guruprasad Pundoor, Prithviraj Sen, Vinay

Shet, Sameer Shirdhonkar, Sadagopan Srinivasan, and Aparna Sun-

daram - have made my residential experience pleasant. My school

buddies - Christian Almazan, Indrajit Bhattacharya, Aniket Dutta,

Neha Gupta, Fatih Kaya, Andrzej Kochut, Tom Krug, Seungjoon Lee,

Elvita Lobo, Matthew Ma, Bharath Madhusudan, Arunesh Mishra,

Archana Ragotthaman, Mustafa Tikir, Bao Trinh, Chadd Williams,

Chang-Shieh “Joe” Wu, Yuan Yuan, and Moustafa Youssef - ensured

iv

that school was not all work. Andrzej Kochut and Moustafa Youssef

have also been great researchers to work with. Renatta Kochut tol-

erated our experiments at hours that can charitably be called insane.

Fatima Bangura, Jodie Gray, Gwen Kaye, Heather Murray, and Jenny

Story ensured that admininstrative issues were handled very smoothly.

Adelaide Findlay and Brenda Chick were ever so cheerful in respond-

ing to all logistics requests.

I thank my other friends and extended family both here in the US

and elsewhere for their support and encouragement. Last but most,

I would like to “thank” my parents and sister: But for them, I simply

wouldn’t have been patient enough to complete this.

I can honestly blame the toll these years have taken on my memory for

any omissions of names here. In my defense, I only offer my apologies

and paraphrase what Saint Tyagaraja sang on the fertile banks of the

Cauvery: “To all helpful souls, my thanks”.

v

TABLE OF CONTENTS

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Contributions . 8

1.2 Organization of the dissertation 9

2 Overview of 802.11 DCF 12

2.1 Protocol operation . 14

2.2 Evolution of backoff counter . 16

3 Related Work 19

3.1 Simulators for 802.11 . 19

3.2 Analysis of 802.11 . 22

4 TSS for WLANs 27

4.1 Modeling assumptions . 27

4.2 Overview of TSS for WLANs . 30

5 Distribution of Aggregate Goodput 33

5.1 Analysis of per-station attempt process in backoff timeline 34

5.2 Analysis of aggregate attempt process in backoff timeline 36

5.3 Analysis of aggregate attempt process in real timeline 37

5.4 Real-to-backoff-timeline contraction approximation 39

6 Conditional Distribution of Per-station Goodput 40

6.1 Obtaining Pr(Ni(t)|Ci(t) = 0, Bi(t) = 0) 41

6.2 Obtaining Pr(Ni(t)|Ci(t) = γ2c−1, Bi(t) = b) 42

6.3 Obtaining Pr(Ni(t)|Ci(t) = γ2c−1) 44

6.4 Short-term unfairness in 802.11 45

7 Convolution of Total Backoff Duration Distribution 48

7.1 Distribution of total backoff duration 48

7.2 Impracticality of a normal approximation 50

7.3 Algorithm for obtaining convolution 50

7.4 Runtime . 54

7.5 Optimization . 54

7.6 Validation and speedup . 55

8 Dependent Sampling of Per-station Goodputs 58

8.1 Aggregate goodput constraint . 59

8.2 Preliminary approaches . 59

8.3 Algorithm for sampling per-station goodputs 60

8.4 Runtime . 62

9 Conditional Distribution of New MAC State 64

9.1 Analysis with non-zero goodput 64

vii

9.2 Analysis with zero goodput . 66

10 The Timestepped Simulator 67

11 Runtime Speedup 70

11.1 Simulation setup . 70

11.2 Precomputation costs in space and time 71

11.3 Runtime comparison . 73

12 Validation of TSS with Fixed Number of Active Stations 76

12.1 Aggregate goodput distribution 77

12.2 Conditional distributions of per-station goodput and MAC state . 79

12.3 Unconditional distributions of per-station goodput and MAC state 82

12.4 Comparing sample paths . 85

12.5 Per-station collision probability 87

13 Validation of TSS with Varying Number of Active Stations 94

13.1 Simple variations in set of active stations 94

13.2 Complex variations in set of active stations 96

13.3 Activity pattern . 96

13.4 Sample path metrics - Aggregate 97

13.5 Sample path metrics - Per-station 99

13.6 Ensemble metrics - Aggregate . 105

13.7 Ensemble metrics - Per-station . 107

14 Conclusion and future work 112

14.1 Future work . 114

viii

A Analysis of collision probability for finite retries 117

ix

LIST OF TABLES

2.1 Notation for 802.11 operation . 13

4.1 Notation for TSS quantities defined in time interval [t, t + δ]. All

quantities termed constant can vary only at the boundaries of

timesteps. All quantities measuring time (δ, I, τ) are in 802.11

slots. 28

6.1 Short-term unfairness illustrated by E[JF (Ni, Nj)] and E[JF (Ni, Nj)|Ci, Cj]

as obtained by PLS and analysis for various values of M . For two

stations, Jain’s fairness index ranges in [1/2, 1] where the value of

1/2 corresponds to lowest fairness while the value of 1 corresponds

to highest fairness. The extent of fairness varies depending on the

contention window for conditioned goodputs. 46

x

LIST OF FIGURES

1.1 Schematic representation of TCP transfer time according to fluid

and stochastic link models. A stochastic link model gives a dis-

tribution of values for the total transfer time, while a fluid based

link model gives one fixed value. The link delay shown is that

seen by a station in a typical 802.11 WLAN. 3

1.2 In each step of TSS, the conditional distribution of the new sys-

tem state S(t + δ) given the old system state S(t) is obtained,

and the new state is sampled from it. 4

2.1 Evolution of Bi(t) during a packet’s lifetime at station i. Ci(t)

changes at t5 and t8 to 2γ and 4γ respectively. 14

2.2 Aggregate evolution of a WLAN, with evolution of a tagged sta-

tion i shown in more detail. 18

4.1 Real-to-backoff-timeline contraction approximation. An interval

[t′, t′+δ′] in the backoff timeline corresponds to an interval [t, t+δ]

in the real timeline, where δ′ = ηδ and η , E[I]/(E[I] + τ). . . 30

xi

5.1 Per-station attempt process of station i in backoff timeline driven

by backoff counter Bi(t). Attempts are made when Bi(t) hits

zero, and Bi(t) is renewed according to the backoff process. The

angle 45◦ indicates that Bi(t) decreases with slope -1 everywhere

except at the attempt points. 35

5.2 Aggregate attempt process in the real timeline. Aggregate good-

put renewal period G is the time between two successful trans-

missions. 37

6.1 Successful transmissions of a tagged station in the interval [t′, t′+

δη] in the backoff timeline. The timestep [t, t + δ] in the real

timeline is contracted to [t′, t′ + ηδ] in the backoff timeline. . . 41

6.2 Transmissions of a tagged station in the backoff timeline interval

[t′, t′ + ηδ] corresponding to real timeline interval [t, t + δ] when

〈Bi(t), Ci(t)〉6=〈0, 0〉. A shorter arrow indicates a failure, a longer

arrow success. The first successful transmission occurs at t′f and

X∗

f is the backoff duration t′f − t′. 43

7.1 Illustrating the accuracy of the weighted gaussian approximation

to the pdf of the total backoff duration in a packet’s lifetime X. 49

7.2 Comparisons of n-fold convolution of fX for p = 0.4 and p = 0.8

as obtained from our convolution algorithm with that obtained

by MATLAB for various n. 56

7.3 Comparison of 9-fold convolution of fX for p = 0.8 as obtained

from our convolution algorithm with that obtained by MATLAB. 57

xii

9.1 Transmissions of a tagged station in the backoff timeline interval

[t′, t′ + ηδ] corresponding to the real timeline interval [t, t + δ]. A

longer arrows indicates a successful transmission, a shorter arrow

failure. 65

11.1 The space and time costs of precomputation of Pr(Ni(t)|Ci(t))

and Pr(Ci(t + δ)|Ci(t), Ni(t)) for δ = 50ms with M varying in

[2, 4, 8, · · · , 64]. 72

12.1 Comparison between empirically obtained pdf of NA(t) for t = 5s

and δ = 50ms for varying M . The deviations of NA(t) predicted

by the analysis are overestimates for M > 2 while for M = 2, it

is an underestimate. 77

12.2 Crosscorrelation function between sequences {Ii} and {Fi} ob-

tained over 1000000 samples for each M 80

12.3 Autocorrelation function of Ii sequence obtained over obtained

over 1000000 samples for each M . At lag 0, the function is exactly

1 and not shown in the figure. 80

12.4 PDF of Ni(t)|Ci(t) for various values of Ci(t) and varying M . . 81

12.5 PDF of Ci(t+ δ)|Ni(t), Ci(t) for various values of Ci(t),Ni(t),and

M . 83

12.6 Distribution of unconditional Ni(t) 84

12.7 Distribution of Ci(t) for varying values of M 86

12.8 Autocorrelation function obtained from samples Ni(0), Ni(δ), Ni(2δ), · · ·

of one sample path for various values of M 88

xiii

12.9 Autocorrelation function obtained from samples Ci(0), Ci(δ), Ci(2δ), · · ·

of one sample path for various values of M 89

12.10 Crosscorrelation function obtained from samples Ni(0), Ni(δ), Ni(2δ), · · ·

and Nj(0), Nj(δ), Nj(2δ), · · · of one sample path for varying val-

ues of M . 90

12.11 Crosscorrelation function obtained from samples Ci(0), Ci(δ), Ci(2δ), · · ·

and Cj(0), Cj(δ), Cj(2δ), · · · of one sample path for various values

of M . 91

12.12 p(M) from simulations and an analytical fit of 0.1519 log(M) +

0.0159 for various values of M and β = 7. The 95% confidence

interval of each simulation point is within 2% of the mean. . . 92

12.13 p(M) from simulations and an analytical fit of min(0.1519 log(M)+

0.0159, 1.0) for M = {100, 200, . . . , 1000} and β = 7. The two

curves diverge after M = 400 stations at a per-station collision

probability greater than 0.935. 93

13.1 Time evolution of the ensemble mean and deviation of Ni(t) for

a tagged station i with time-varying M . After every 25s, M is

halved. 95

13.2 Number of active stations as a function of time in the random

activity pattern. 98

13.3 Time-averaged distribution of NA(t) and its autocorrelation func-

tion computed over one long run of 20000 timesteps. 100

13.4 Sample path averaged PDF of the instantaneous per-station good-

put Ni(t) for i = 1 computed over 20000 samples from one run. 101

xiv

13.5 Autocorrelation function obtained from samples Ni(0), Ni(δ), Ni(2δ), · · ·

of one sample path for i = 1. 102

13.6 Crosscorrelation function obtained from samples Ni(0), Ni(δ), Ni(2δ), · · ·

and Nj(0), Nj(δ), · · · of one sample path for i = 1, j = 2. . . . 102

13.7 Sample path averaged PDF of the contention window Ci for i = 1

computed over 20000 samples from one run. 103

13.8 Autocorrelation function obtained from samples Ci(0), Ci(δ), Ci(2δ), · · ·

of one sample path for stations with random activity. 104

13.9 Autocorrelation and crosscorrelation function obtained from sam-

ples Ci(0), Ci(δ), Ci(2δ), · · · and Cj(0), Cj(1), · · · of one sample

path for stations with random activity. 104

13.10 Ensemble mean of the instantaneous aggregate goodput E[NA(t)]

as a function of time. Each point is computed over 1000 runs. 106

13.11 Ensemble deviation Dev[NA(t)] of the instantaneous aggregate

goodput. Each point is computed over 1000 runs. 106

13.12 Ensemble PDF of NA(t) at t = 20s computed over 1000 runs. . 107

13.13 Ensemble PDF of NA(t) at t = 40s computed over 1000 runs. . 108

13.14 Ensemble mean of the instantaneous per-station goodput Ni(t)

for i = 1 versus time computed across 1000 runs. 108

13.15 Ensemble deviation of the instantaneous per-sta goodput Ni(t)

for i = 1 versus time computed across 1000 runs. 109

13.16 Ensemble PDF of the instantaneous per-sta goodput N1(t) at

t = 20s computed over 1000 runs. 110

13.17 Ensemble PDF of the instantaneous per-sta goodput N1(t) at

t = 40s computed over 1000 runs 110

xv

13.18 Ensemble PDF of the instantaneous contention window C1(t) at

t = 20s computed over 1000 runs. 111

13.19 Ensemble PDF of the instantaneous contention window C1(t) at

t = 40s computed over 1000 runs. 111

A.1 λ(p) approximated as a(1− p)2. 118

A.2 Confirming the prediction of the model with simulation studies . 119

xvi

Chapter 1

Introduction

Performance evaluation is a sine qua non for the design, deployment, and

evolution of computer networks. Modern computer networks exhibit stochastic

behavior due to randomness in user activity, variations in router service time, ran-

dom access based link scheduling, randomized queue management and application

protocols, etc. They also also rely extensively on non-linear state-dependent con-

trol mechanisms (e.g., TCP). These mechanisms operate on small timescales (e.g.,

the round-trip time of a TCP connection). The use of such control means that

small changes in the system state can lead to large changes in the system state

over time. Thus any performance evaluation technique must adequately handle

the stochastic nature and state-dependent control of computer networks.

The two main approaches to performance evaluation of computer networks

have been analytical modeling and packet-level simulation. Of these, packet-

level simulation has been the workhorse of choice primarily because analytical

methods have typically been unable to capture state-dependent control mech-

anisms adequately. Purely analytical methods simplify the model for the sake

of tractability (e.g., Poisson arrivals, stationarity, etc.) so much that their pre-

dictions are considered by most to be too inaccurate for performance evaluation

1

purposes. However, packet-level simulation becomes prohibitively expensive as

link speeds, workloads, and network size increase [19] because it simulates every

packet’s arrival and departure at all relevant elements of the network.

This situation has motivated several simulation techniques based on fluid ap-

proximation (e.g., [11, 30, 41, 48]). These methods obtain the evolution of the

system state at timesteps rather than at packet-level detail, and thus are faster

than packet-level simulators. However, they do not capture the stochastic nature

of networks. This is because they replace the random system state by its ex-

pected value. Thus these methods yield an evolution of the system state, which

is assumed to be representative of all possible evolutions of the system in some

ensemble averaged sense. Because these methods do not yield individual sam-

ple paths, they are limited to systems in which the sample paths are “close” to

the representative evolution predicted by them, but cannot handle those with

state-dependent control. In particular, sample path metrics may be completely

off from the ensemble averaged evolution.

We schematically illustrate the limitation of fluid approaches with an example.

Figure 1.1 shows the transfer time for a file using TCP over a link. The link

delay shown is that seen by a station in a typical 802.11 WLAN. Because of the

stochastic nature of the link delay, the transfer time is a random variable. This

is shown in the upper part of the figure labeled “Stochastic”. A fluid model of

this link would replace the stochastic link delay with its expectation. Thus a

fluid model would predict the total transfer time as a fixed value. This is shown

in the lower part of the figure labeled “Fluid”. Clearly, a stochastic link model is

required to obtain a more accurate representation of the total transfer time.

Timestepped Stochastic Simulation (TSS) is a method to achieve the model-

2

delay
Link

TCP
transfer

time

times
transfer

TCP

transfer time
distribution

transfer time
constant

delay
Link

0

30

60

F
LU

ID

0

30

60

S
T

O
C

H
A

S
T

IC

(ms)

(ms)

time (s)

time (s)

100

0 10

Figure 1.1: Schematic representation of TCP transfer time according to fluid and

stochastic link models. A stochastic link model gives a distribution of values for

the total transfer time, while a fluid based link model gives one fixed value. The

link delay shown is that seen by a station in a typical 802.11 WLAN.

3

t t + δ t + 2δ

S(t)

S(t + δ)

Pr(S(t + δ)|S(t))

sample path

Figure 1.2: In each step of TSS, the conditional distribution of the new system

state S(t + δ) given the old system state S(t) is obtained, and the new state is

sampled from it.

ing accuracy of packet-level simulation at a fraction of the computational cost.

TSS generates sample paths of the network state, just as in packet-level simu-

lation, but only at increments of discrete timesteps, as in fluid based approaches,

rather than at every packet transmission. If S(t) represents the network state at

time t, TSS generates S(t) for t = δ, 2δ, · · · , given S(0). In each timestep t, the

distribution Pr(S(t+δ) |S(t)) is obtained analytically assuming that all stochas-

tic inputs are time-invariant in [t, t + δ], and S(t + δ) is sampled from it. Figure

1.2 illustrates one timestep of TSS. In order for the time-invariance assumption

to hold, δ has to be lesser than the feedback time-scale of the end-to-end control

mechanisms employed (e.g., TCP’s round-trip time). We use δ = 50ms, which is

reasonable considering the round-trip time of typical TCP connections. Because

TSS updates the system state probabilistically, it can model both the stochastic

behavior and state-dependent control accurately.

TSS has been developed for networks of point-to-point links [37, 36]. There,

4

the diffusion approximation (proposed by Kolmogorov [38] and later extended

by Feller [21]) is used to obtain the distribution of the queue size of a single

link’s queue at the end of a timestep [t, t + δ] conditioned on the queue size

at time t as a function of the first two moments of the arrival and service time

distributions. This method is then extended to point-to-point networks by various

approximations that yield the first two moments of a queue’s output processes,

as well as the first two moments of processes formed by splitting or merging

processes.

This dissertation extends TSS to shared links, where a link is shared among

many senders through the use of a Media Access Control (MAC) protocol. The

presence of the MAC protocol introduces correlation in the the service times

of the senders’ output queues. The nature of the correlation depends on the

type of the MAC protocol. In the case of a deterministic time division multiple

access, the problem reduces to a each sender having an independent queue, like

in the point-to-point case, and the evolution of a station’s output queue can be

readily obtained in isolation. At the other extreme, in the case of a stateless

random access protocol (e.g., like ALOHA [66]), the service process of a station

can be easily approximated in terms of the load offered by the rest of the stations.

However, a MAC protocol that tries to retain the best features of both time

division and random access multiplexing is not amenable to such straightforward

analysis.

The 802.11 Distributed Coordination Function (DCF) [49, 43, 66], which is

the basic MAC protocol in all WLANs, is an example of such a MAC protocol.

It provides random access augmented with a history. This dissertation presents

a method to perform TSS of 802.11 wireless networks (WLANs). The 802.11

5

DCF is a variant of Carrier Sense Multiple Access (CSMA) [66, 62, 35] that is

designed to perform Collision Avoidance (CA). The stations in a WLAN operate

on a common slotted timeline. Each station uses a time-based procedure to

adapt its MAC state, and hence, its transmission attempts, to the current level

of contention. The MAC state of station i is given by the tuple 〈Ci(t), Bi(t)〉,

where Ci(t) is the contention window and Bi(t) is the backoff counter at

time t. When station i has a packet to send, it continuously decrements Bi(t) at

the rate of one unit per slot, pausing only when the channel is sensed to be busy.

The station transmits when Bi(t) reaches zero. If the transmission is unsuccessful

(i.e., ACK not received) Ci(t) is doubled, otherwise Ci(t) is reset to a specified

initial value. In either case, a new value of Bi(t) is chosen uniformly at random

from [0..Ci(t)–1]. (An overview of the protocol can be found in Chapter 2.)

Consider an 802.11 WLAN where each station i is either active or inactive

over time, with transitions occurring only at timestep boundaries. A station

that is active (inactive) at time t has (no) packets to send in its output queue

throughout [t, t + δ]. (The output queue is fed, in general, by state-dependent

data sources, e.g., TCP.) Let Ni(t) denote the goodput of station i in timestep

[t, t + δ], defined as the number of packets successfully transmitted by station

i in the timestep. (The throughput of station i in the timestep includes all

unsuccessful attempts as well.) Ni(t) is zero for a station i inactive at t. For a

station i active at t, Ni(t) depends on all the active stations at t, as determined

by the 802.11 MAC protocol.

Our method computes evolutions of the goodputs Ni(t)’s for all stations i

for t = 0, δ, 2δ, · · · . For the timestep size δ of interest (i.e., δ = 50ms), the

DCF protocol introduces strong dependencies in the Ni(t)’s, specifically, positive

6

correlation in Ni(t) across timesteps and the negative correlation between Ni(t)’s

across stations i in the same timestep. The current MAC state influences the

future attempts (rate) made by a station, and in turn, depends on the attempts

and successes of a station in the past. Thus there is a positive correlation in a

station’s goodput Ni(t) across timesteps t. Because all active stations share the

same channel and have load available throughout the timestep, a high goodput for

a station necessarily implies that the goodputs of other stations have to go down.

Hence, there is negative correlation between the goodputs Ni(t)’s of stations

across i within a timestep.

It is essential to capture these dependencies, otherwise the evolutions of the

Ni(t)’s would not be an adequate foundation for simulating upper-level protocols

(e.g., TCP) in a timestepped manner. Thus the key issue is the short-term behav-

ior of the DCF protocol. Our method computes evolutions of the goodputs and

DCF states of all stations jointly: at each timestep, the goodput and DCF state

at the end of the timestep is obtained in terms of the goodput and DCF state at

the previous timestep. We validate against packet-level simulations by comparing

the resulting marginal distributions, the crosscorrelations (across stations), and

the autocorrelations (across timesteps) of the per-station instantaneous goodput

and DCF state. We find that TSS is quite accurate and yields runtime speedup

of up to two orders of magnitude.

To compute sample path evolutions of the goodputs and the MAC states, we

need to probabilistically obtain {Ci(t + δ), Bi(t + δ), Ni(t)} given {Ci(t), Bi(t)}

accounting for correlations both across stations and time. We obtain this in the

following main steps:

• Step 1: Obtain the distribution Pr(NA(t)) of the aggregate goodput

7

NA(t) ,
∑

Ni(t), and sample NA(t) from it.

• Step 2: For each active station i, obtain the marginal goodput distribution

of Ni(t) given its MAC state at t.

• Step 3: Dependently sample Ni(t) from the marginal goodput distributions

for all i such that the sampled Ni(t)’s are correlated and add up to NA(t).

• Step 4: For each active station i, obtain the new MAC state distribution

at t + δ conditioned on the old MAC state at t and its goodput sample

Ni(t), and sample the new MAC state from it.

Because all probability distributions involved can be parametrized in terms of

the number of active stations and the timestep length δ, they can be precomputed

or cached across simulation runs. In the computation of each timestep of TSS,

the random sampling from the distributions is independent of the underlying

transmission bit-rate, and this explains the scalability of TSS.

1.1 Contributions

To the best of our knowledge, there has been no prior work on timestepped

stochastic simulation of WLANs. There has also been no transient analysis of

the 802.11 DCF performance. Specific contributions of this dissertation are as

follows:

• We present a transient analysis of 802.11 performance, yielding a method to

generate sample paths of instantaneous metrics. Prior performance analyses

(e.g., [8, 20, 29, 69, 58]) obtain the average aggregate steady-state goodput

over a sufficiently long interval of time.

8

• We obtain the distribution of the instantaneous aggregate goodput by ob-

taining both the mean and variance of the aggregate goodput renewal pe-

riod.

• We obtain the distribution of the instantaneous goodput of a tagged station

conditioned on its MAC state. This explains the short-term unfairness in

instantaneous goodputs due to the 802.11 DCF backoff mechanism.

• We present an efficient algorithm to obtain the n-fold convolution of the

distribution of total backoff involved in a packet’s successful transmission or

abort. Our results show how this seemingly long-tailed convolution can, in

fact, be modeled well as a weighted combination of gaussian distributions.

• We obtain a closed form expression for the collision probability as a func-

tion of the number of stations for finite number of transmission attempts

(extending the results in reference [3] which considers infinite number of

retries) and present a simple logarithmic approximation for this function.

1.2 Organization of the dissertation

Chapter 2 introduces the notation and explains the operation of the DCF

protocol. It identifies the two key operating states of the channel: transmission

times and varying idle intervals determined by the backoff mechanism. Chapter

3 examines related work, focusing on various simulation studies and analytical

models for 802.11

Chapter 4 first states the modeling assumptions and then presents an overview

of the algorithm for TSS of WLANs accounting for correlations across stations

and time.

9

Chapters 5 through 9 deal with various components of the TSS algorithm.

Chapter 5 deals with the distribution of instantaneous aggregate goodput. Using

the idle interval distribution, the first two moments of the time taken for one suc-

cess in the aggregate attempt process are obtained, using which, the distribution

of the instantaneous aggregate goodput is obtained.

Chapter 6 obtains the marginal distribution of the instantaneous goodput of

a tagged station in a timestep conditioned on its MAC state at the beginning of

the timestep using the distribution of the total backoff duration for one successful

transmission of a tagged packet.

Chapter 7 obtains the distribution of the total backoff duration of a tagged

packet and presents an algorithm to obtain its n-fold convolutions; this is used

in Chapter 6. The discrete pdf of the total backoff duration is approximated in

terms of a gaussian mixture, and the structure of this mixture distribution is

exploited to obtain the convolution efficiently.

Chapter 8 explains how we obtain correlated samples of Ni(t) by dependently

sampling the marginal distributions. Specifically, the method considers stations

according to a random permutation of their id’s. Each station is allocated good-

put from a specific part of its marginal distribution depending on the sum of all

goodputs allocated prior to it.

Chapter 9 explains how we obtain the new MAC state given the old MAC

state and goodput from the previous timestep. We first obtain the pdf of the last

time instant within a timestep when the MAC state is reset. From this, the new

MAC state distribution is obtained.

Chapter 10 puts all the pieces of analysis together, and presents the pseudo-

code for the TSS simulator. Chapter 11 deals with the speedup obtained by TSS

10

over PLS. It first quantifies the the memory requirement and the time taken for

the precomputation of pdf’s in TSS. Then it compares the time taken by TSS,

inclusive of the time to load the precomputed pdf’s from disk and the amortized

precomputation time, against the time taken by a custom packet-level simulator.

Chapter 12 compares the metrics obtained by TSS against those obtained

by PLS for fixed number of active stations, while Chapter 13 does the same for

simulation scenarios with varying number of active stations. Chapter 14 discusses

possible extensions and concludes.

11

Chapter 2

Overview of 802.11 DCF

In this chapter, we present an overview of the 802.11 Distributed Coordination

Function (DCF). An 802.11 network evolves in slotted time (of 9µs slots for

802.11a). 802.11 allows for the use of basic physical carrier sensing and so-called

virtual carrier sensing. In the basic physical carrier sensing, the channel is sensed

continuously for an 802.11 slot by the physical-layer hardware, and towards the

end of the slot is declared as having been idle or busy for that slot. Virtual

carrier sensing comes to play when the RTS/CTS option is used. Here, the

channel state is marked (as part of a station’s MAC state) to be busy by the

exchange of RTS (Request-To-Send) and CTS (Clear-To-Send) control packets.

A station that intends to transmit a data frame, first sends an RTS frame using

the DCF protocol; any station that receives an RTS frame intended for it sends

the CTS frame if it senses the channel to be idle. Any other station that hears

the CTS (RTS) frame, marks the channel to be busy for the duration of the data

frame and ACK transmission (and CTS). In this dissertation, we assume that the

RTS/CTS mechanism is not employed. The implications of this assumption are

discussed later in Chapter 4.

12

Symbol Stands for

α number of stations

β retry limit

γ initial contention window size

PKT time to transmit a packet

ACK time to transmit an ACK

SIFS Short Inter-frame Spacing

DIFS DCF Inter-frame Spacing

τ transmission interval;

equals PKT + SIFS + DIFS + ACK

For per-station attempt process:

Ci(t) contention window size of station i at time t

Bi(t) backoff counter of station i at time t

〈Ci(t), Bi(t)〉 MAC state of station i at time t

For a tagged packet of a station:

Yj backoff duration for j th attempt

For aggregate attempt process:

I idle interval;

variable interval between successive packet

transmissions when all stations decrement

their backoff counters

Table 2.1: Notation for 802.11 operation

13

B
i (

t)

at
 t

im
e

i
of

 s
ta

ti
on

t

0
t

1
t

2
t

3
t

Y1

T = Transmission begin
T’ = Transmission end
F = Failure
S = Success

4
t

7
t

6
t

Y2

Y3

5
t

11
t

10
t

9
t

8
t

T
attempt

Pause in Begin first
backoff

B
ac

ko
ff

 C
ou

nt
er

Legend:

T’ F T FT’ T T’ S
Time

Lifetime of a packet (Number of attempts K = 3)

Figure 2.1: Evolution of Bi(t) during a packet’s lifetime at station i. Ci(t) changes

at t5 and t8 to 2γ and 4γ respectively.

2.1 Protocol operation

Each evolution of basic 802.11 DCF (i.e., no RTS/CTS) consists of a sequence

of successful or unsuccessful (collision) transmission intervals separated by vari-

able idle intervals. A successful packet transmission has a transmission interval

τ that consists of:

• The time to put the packet on the air (equals packet size divided by bitrate

for data),

• The SIFS duration, which is the period separating a packet from its ACK

transmission

• The time to put the ACK on the air (equals ACK size divided by bitrate

for ACK), and

• The DIFS duration, which is the minimum period separating an ACK from

the next data frame.

14

An unsuccessful transmission also has the same transmission interval τ . Specifi-

cally, stations respond to a collision as follows [49, 43, 66]:

• If a receiving station’s physical layer deciphers an 802.11 packet with a

checksum error (due to a collision or noise), then the station waits for an

EIFS (Extended Inter-Frame Spacing defined to be SIFS + ACK + DIFS)

after the end of the colliding transmissions before resuming its backoff.

• If a receiving station’s physical layer cannot decipher any 802.11 frame (even

with a checksum error) from the collision, then it waits only for DIFS after

the end of the colliding transmissions before resuming backoff.

• A transmitting station always starts backing off only after DIFS + ACK-

Timeout (specified to be ACK + SIFS in the Systems Description Lan-

guage appendix of [49]) irrespective of whether the transmission succeeded

or failed.

In the case of receiving stations, we believe that the common case is the reception

of a frame in error rather than the non-reception of any frame. So we choose the

same transmission interval for both collision and success. References [29, 30,

17, 33] do the same. Some prior works (e.g., [8]) do not include the ACK time

following a collision. Note that the use of RTS/CTS implies different transmission

intervals for successful and unsuccessful transmissions.

In addition to the DIFS duration, the ACK of each transmission is separated

from the next frame by a variable idle interval that is determined by the protocol

operation as explained next.

15

2.2 Evolution of backoff counter

Figure 2.1 shows one possible evolution of the backoff counter Bi(t) of a tagged

station i that gets a packet to transmit at time instant t0. The following steps

occur:

• The MAC state 〈Ci(t
−

0), Bi(t
−

0)〉 just before t0 (denoted by t−0) is the idle

state 〈0, 0〉.

• At t0, the station chooses an initial backoff counter value Y1 from Uniform[0..γ−1].

Thus the MAC state 〈Ci(t
+
0), Bi(t

+
0)〉 just after t0 is 〈γ, Y1〉.

• The station senses the medium. As long as the channel is idle, Bi is decre-

mented at the rate of one per slot (in the figure, the decrease is shown as

continuous). Whenever the medium is busy (due to another station trans-

mitting), the decrementing is paused as shown between t1 and t2.

• At time t = t3, Bi(t) becomes zero and the station starts the transmission

of the packet and finishes it at t4 = t3+ PKT

• No ACK is received within the standard timeout duration of SIFS + ACK.

So at time t5 = t4+ SIFS + ACK, the station doubles Ci(t) to 2γ and

chooses a new random backoff counter value Y2 from Uniform[0..2γ−1].

This is the so-called Binary Exponential Backoff (BEB).

• The second attempt to transmit begins at time t6 = t5+ DIFS.

• The second transmission starts at t7 and is decided a failure at time t8.

• The third attempt is successful at time instant t10 when it receives an ACK.

At this point, the MAC state is reset to 〈0, 0〉 if there are no packets to

16

transmit. If there is a packet to transmit, Ci becomes γ and a new value

for Bi is chosen from Uniform[0..γ−1].

If successful transmission does not occur within β attempts, then the packet

is aborted and the MAC state is reset to 〈0, 0〉. Thus, for evolution of the MAC

state, an abort is equivalent to a success. The lifetime of a packet refers to the

time elapsed from the start of the first transmit attempt to the end of either its

successful transmission or abort.

We refer to the sequence of transmission attempts of a station as its attempt

process. Each station in the system executes the same protocol. So each station

has its per-station attempt process. The super-position of the per-station

attempt processes results in the WLAN-wide aggregate attempt process as

shown in Figure 2.2. A collision occurs if two or more stations start transmission

in the same slot. Because collisions waste the channel, DCF tries to minimize

collisions by performing BEB.

Figure 2.2 shows the the WLAN-wide transmissions and the associated timing

details during the interval [t0, t6] of Figure 2.1. At t0 station i gets a packet to

transmit and starts the backoff procedure. From time t1 through t2, station j

transmits a packet, so backoff counters of all stations remain unchanged in the

interval [t1, t2]. Finally station i makes the first attempt at time t3 resulting in a

collision. Station j transmits the next packet after t6.

Now consider the variable period preceding a packet transmission (for in-

stance, the period between t2 and t3) during which backoff counters of all sta-

tions are decremented. This variable period is called the idle interval and is

denoted by I. The value of I before a transmission is determined by the minimum

of the backoff counters of all stations at the end of the preceding transmission.

17

t3t2 t4 t6t1t0

Station j

Station i

Station k
PKT

PKT

PKT

PKT

Collision
PKT

ACK

ACK

DIFSSIFS

Backoff counters paused Backoff counters decremented
Transmission interval Idle interval I τ

Figure 2.2: Aggregate evolution of a WLAN, with evolution of a tagged station

i shown in more detail.

Note that I does not include the fixed overhead SIFS + ACK + DIFS after each

packet transmission.

18

Chapter 3

Related Work

Work related to this dissertation can be broadly categorized into two areas:

simulators and simulation studies for 802.11 DCF and analytical modeling of

802.11 DCF. Most simulators for 802.11 operate in a packet-level manner mod-

eling the MAC layer in detail and the PHY layer at various levels of abstraction;

a notable exception is the so-called fluid simulator in reference [30] that we dis-

cuss later. Analytical performance modeling of 802.11 WLANs is primarily done

through examining one tagged station and tracking its MAC state assuming that

other stations are always active. Typically, approximations are made for the

sake of tractability and are validated by discrete-event packet-level simulation.

In this chapter, we first discuss simulation approaches for 802.11 modeling and

then focus on analytical ones.

3.1 Simulators for 802.11

NS-2 [1] is a popular academic simulator for modeling computer networks.

This simulator has a split programming language interface; the simulation sce-

narios are described in a scripting language while the runtime engine is imple-

mented in C++. The 802.11 PHY layer is implemented in detail with carrier

19

sensing by both physical and virtual mechanisms. As explained in Chapter 2, the

physical carrier sensing is done by the PHY layer in every slot; and the virtual

carrier sensing is done by the MAC layer RTS/CTS control frames. The 802.11

MAC layer follows the protocol specification for most part, and schedules events

in all stations that are part of the WLAN. Because each event is simulated at all

stations of the WLAN, the simulation complexity grows almost linearly with the

number of stations and the transmission bit-rate.

Qualnet [2] is a commercial simulator from Scalable Networks, Inc. A simula-

tion scenario is described by a flat text file, and the runtime engine is implemented

in C. Several portions of the simulator are available as a binary-only release. Con-

sequently, we are unable to describe exactly how the PHY and MAC layer are

implemented. However, the general design conforms to a packet-level simulation

with events triggered in all stations of a WLAN corresponding to the transmission

of a single station. Therefore, we believe it, too, suffers from the same scaling

limitation with increasing transmission bit-rate and number of stations.

A timestepped fluid simulator for 802.11 has been described in reference [30].

This work obtains the average goodput in terms of the number of active stations,

and replaces the entire PHY/MAC layer in ns-2 by computing the average good-

put of the WLAN in a timestep. Because this simulator operates in a timestepped

manner, it is much faster than the native ns-2, and this has been reported in ref-

erence [30] in detail. However, this simulator suffers from the limitations of using

the expectation of a random variable to approximate the random variable. In

fact, it approximates an entire random vector (of goodputs of all stations) by

the per-component average. As can be seen later in Chapter 12, there is cor-

relation among the goodputs of stations across stations as well as time. Thus

20

this approach does not quite capture the dynamics of 802.11 performance. For

instance, consider a scenario for the TCP transfer time over an 802.11 link. In

such a scenario, as explained in Chapter 1, a fluid based approach cannot track

the stochastic nature of instantaneous metrics. In fact, the metrics considered in

reference [29] are the the normalized (relative to the transmission bitrate) average

goodput and the total number of packets, both over an entire simulation run.

The NS-2 simulator has been used in several studies for studying DCF. Refer-

ence [67] studies TCP over 802.11 by a simulation using the NS-2 simulator, and

provides heuristics to improve the capacity attained by the protocol by bunching

together the TCP ACK transmission corresponding to a TCP DATA segment. In

other words, when a TCP DATA segment is transmitted the channel is reserved if

the recipient needs to send a TCP ACK back. The study shows that this heuristic

improves both the throughput and fairness of TCP over 802.11.

Reference [40] studies various enhancements proposed to DCF to provide

QoS by augmenting the NS-2 simulator. The metrics considered are through-

put, utilization, collision probability, and delay. The main contribution is the

non-saturated heterogeneous workload considered, which is difficult to examine

using analysis. The reference reports that the enhanced DCF suffers from high

collision rates and starvation of lower-priority traffic.

Reference [65] studies 802.11 delay and uses that to build a distributed control

algorithm for service differentiation in general radio control. The key idea is

to use the channel-sensed metrics like delay and loss, and estimate the level

of contention more accurately than the adaptation of the 802.11 MAC. This

information is conveyed to applications which can tune their parameters. Again,

this is implemented in the NS-2 platform and studied.

21

Several MAC level packet-level simulation studies using custom simulators

have also been used to quantify 802.11 performance under several environments

such as channel conditions, load, and protocol parameters.

Reference [32] studies 802.11 DCF by simulation under the workload of VoIP

connections. In general, the 802.11 capacity (and hence delay) is severely limited

by the small packet sizes used in comparison to the per-packet overhead. However,

small packet sizes also mean lesser probability of error in packet reception. Using

packet-level simulation, this reference studies this trade-off by selecting the packet

size appropriately depending on the delay requirement and the channel condition.

Reference [72] studies 802.11 DCF in the unsaturated case and demonstrates

that the maximum throughput cannot be obtained in the saturated case. Further,

it identifies this optimal operating point through packet-level simulations and

suggests that admission control be employed to operate the protocol around this

regime.

3.2 Analysis of 802.11

Several analytical models [8, 20, 42, 22, 23, 31, 29, 3, 57, 69, 58, 59, 51, 5]

have been proposed for the evaluation of 802.11 performance in the last few

years. Many of these are paired with custom packet-level 802.11 DCF simulators

to validate their approximations and optimization heuristics.

The protocol is typically analyzed under saturation conditions, i.e., the sta-

tions are always active. The general approach has been to observe a tagged station

between two successful transmissions and estimate the average time taken for the

same, thereby obtaining the average steady state goodput. Further, all models as-

sume that the conditional collision probability, i.e., the probability that a packet

22

encounters a collision given it is transmitted, is constant.

Reference [20] approximates the 802.11 protocol by a persistent CSMA/CA

protocol. Recall that Bi(t) is the backoff counter of station i at t. Let B be

distributed according to the stationary distribution of Bi(t) (assuming that the

number of active stations is fixed). In the model proposed in [20], every station

transmits with probability 1/(E[B] + 1) in every idle (802.11) slot independent

of other stations and its own previous attempts. The analysis proceeds on two

observations: 1) From the attempt probability in terms of E[B], the collision

probability can be obtained. 2) From the collision probability, E[B] can be ob-

tained. The functional equations corresponding to these two observations are

solved to obtain the collision probability and the goodput. The results predicted

by the model are the goodput and collision probability; they are confirmed by

comparison with packet level simulation.

Reference [13] extends the work in reference [20] to dynamically tune the

optimal operating point of the protocol according to the number of stations.

The key observation is that when there are two few number of stations, the

contention windows are higher than optimal. When there are too many stations,

the contention windows are lower than optimal. So the idea is to guess the number

of active stations and tune the contention windows appropriately to make the

protocol operate near optimal performance.

Reference [8], perhaps the most cited technique for 802.11 performance model-

ing, makes the approximation that the evolution of one station can be decoupled

from the rest of the active stations except for a constant collision probability

encountered by that station in each attempt. Under this decoupling approxima-

tion, the stochastic process of the MAC state of a tagged station, i.e., the tuple

23

of the contention window Ci(t) and the backoff counter Bi(t), is modeled as a

discrete time markov chain. Each virtual “slot” in this discrete time markov chain

is either an 802.11 idle slot of the varying idle interval, a collision period, or a

success period. This markov chain is solved to obtain the attempt probability

(after an 802.11 varying idle slot) and collision probability as a functions of each

other. Once these two functional equations are solved numerically, the goodput

is obtained as the ratio of the expected payload in a virtual (markov chain) slot

divided by the expected duration of a virtual (markov chain) slot.

Reference [29] provides a “fluid” approximation to 802.11. A “fluid chunk” in

their model is the interval between two successful packet transmissions, like in all

prior models. The authors estimate the length of the fluid chunk by assuming that

the time between transmission attempts is exponentially distributed. Again, the

average contention window is obtained iteratively, and the goodput is obtained

by obtaining the average length of a “fluid chunk”.

Reference [58] obtains the distribution of the inter-arrival time between two

frames of a tagged station in an 802.11 system; it does not focus on the goodput.

The main result is that the inter-arrival time distribution is typically multimodal.

The reason for this multimodal behavior is that other stations typically get to

transmit between successive transmissions of a station. Because packet transmis-

sion times are significantly higher than the varying idle intervals, the inter-arrival

time has peaks corresponding to the transmission times of other stations. An

equation from reference [69] is used to relate the probability of collision to the

number of active stations.

Reference [3] presents a highly simplified yet accurate model for 802.11 perfor-

mance. This models the per-station backoff process as a semi-markovian process

24

with the states of the chain corresponding to the varying contention windows of

the station. From the renewal reward theorem [56, 39], the average attempt-rate

and hence the per-station collision probability are readily obtained. Because of

the use of the renewal reward theorem, this work cleanly sidesteps the need to

solve the underlying markov chain consisting of the contention window and the

remaining backoff counter as in reference [8]. We also note that reference [69]

provides an analysis that is very similar to that in reference [3].

Reference [15], perhaps the first work in modeling the performance of 802.11,

takes into account the physical layer, but gives only a lower bound on the through-

put, concluding that an exact analysis is impossible.

Analysis of 802.11 DCF has also led to proposals for optimizing the protocol

(goodput) depending on the functional dependencies between protocol parameters

and average goodput. Because the doubling of the contention window is limited

by a maximum contention window, the protocol degrades in performance with

increasing load in terms of the number of active stations due to increasing collision

probability (the order of growth is analyzed in the appendix). Hence some form

of adaptation of the backoff better than doubling the contention window and

finite retries has been proposed in various works. For instance, references [29,

27, 12] identify the optimal backoff interval from the number of active stations;

the number of active stations is guessed from the varying idle interval. More

refined approaches to the adaptive estimation of the number of stations are given

in reference [63], which uses a Bayesian estimator, and reference [9], which uses

a Kalman filter to do the same. Adaptively modifying the contention window

with a TCP like additive increase multiplicative decrease for the attempt rate

has been proposed in [28].

25

Another form of admission control has been to impose a hierarchy on the num-

ber of competing stations. The WLAN is divided into a number of groups. Each

group has a number of competing terminals that use basic DCF, while the groups

themselves can be scheduled like time division multiple access. The optimality

of time division over random access schemes under high load has been studied

as early as in reference [61]. In the 802.11 context, references [60, 6] suggest the

grouping idea. References [7, 42] provide for admission control depending on the

application service requirements.

Other optimizations based on analysis of 802.11 have also been proposed. Ref-

erence [16] proposes that stations choose a backoff counter for the next attempt

early and announce it in the packet header; any other station sensing this would

choose a new backoff counter that does not collide with this. Bursting of sev-

eral small packets in one 802.11 DATA/ACK transaction has been proposed in

reference [68] to avoid sending several small packets with per-packet overhead.

As mentioned before, existing methods focus on steady-state approximations

and yield the average long-term goodput; they do not obtain distributions of the

goodputs. In this dissertation, we follow the analysis in reference [3] to obtain the

per-station collision probability as a function of the number of active stations.

As explained in Chapter 5 in detail, we extend this work to obtain distributions

and sample paths of the system state and performance metrics.

26

Chapter 4

TSS for WLANs

In this chapter, we present an overview of TSS for WLANs. First, we state

the assumptions we make in developing the transient analysis of 802.11 DCF.

Then, we explain how TSS for WLANs computes per-station metrics accounting

for correlations across stations and time.

4.1 Modeling assumptions

Notation used in TSS is shown in Table 4.1. We assume the following within

a given timestep:

• The number of stations with packets to transmit is constant and denoted

by M ; the set of stations is denoted M.

• Each attempt by a tagged station is a collision with per-station probability

p dependent only on M (“per-station”distinguishes this from the aggregate

collision probability explained in Chapter 5).

• The transmission interval of a collision is the same as that of a successful

packet transmission.

27

Symbol Stands for Type within timestep

δ timestep of TSS constant

M set of active stations constant

M # of active stations, i.e., |M| constant

For one tagged packet:

K number of transmission attempts random variable

Yj backoff duration for j th attempt random variable

X total backoff duration; random variable

equals Y1 + Y2 + · · ·+ YK

For per-station attempt process:

p per-station collision probability constant

Ni goodput of station i random variable

For aggregate attempt process:

pA aggregate collision probability constant

I generic idle interval random variable

η equals E[I]/(E[I] + τ) constant

N vector of Ni for all i random variable

NA aggregate goodput,
∑

i Ni random variable

L number of aggregate attempts random variable

for one aggregate success

Table 4.1: Notation for TSS quantities defined in time interval [t, t + δ]. All

quantities termed constant can vary only at the boundaries of timesteps. All

quantities measuring time (δ, I, τ) are in 802.11 slots.

28

• The per-station collision probability p is constant within a timestep and can

be obtained as a function of M (either by our empirical model in Section

12.5 of Chapter 12 or a fixed point iteration as in reference [3]).

• There are no aborts. For standard values of protocol parameters, the prob-

ability of an abort is pβ is negligible (e.g., < 0.007 for p < 0.5 and β = 7).

• Each idle interval is an IID copy of a stationary random variable I.

All quantities that are assumed constant within a timestep can change over the

course of a TSS run at timestep boundaries. We assume the following across all

timesteps for the entire run of a TSS simulation:

• RTS/CTS exchanges are not used.

• Every successful transmission is received at all stations (i.e., no hidden or

exposed terminals) and all packets involved in a collision result in checksum

errors at receivers (i.e., no physical layer capture).

• The transmission bitrates are constant.

• Packet size is constant.

Define the backoff timeline to be the sequence of all idle intervals ordered by

their occurrence time. In other words, the transmission intervals in the real time-

line are collapsed to points to obtain the backoff timeline. Figure 4.1 illustrates

this real-to-backoff-timeline contraction approximation. Note that an interval of

δ slots in the real timeline would on average have δE[I]/(E[I] + τ) idle interval

slots. So the δ interval would on average correspond to an interval ηδ in the

backoff timeline, where η , E[I]/(E[I] + τ). To simplify the analysis, we assume

that the variability from the average is negligible. That is

29

t t

t t + δ

+δ

Real timeline

Backoff timeline

Transmission intervals Idle intervals

Figure 4.1: Real-to-backoff-timeline contraction approximation. An interval

[t′, t′ + δ′] in the backoff timeline corresponds to an interval [t, t + δ] in the real

timeline, where δ′ = ηδ and η , E[I]/(E[I] + τ).

• Any interval of length δ slots in the real timeline contracts (corresponds) to

an interval of length ηδ slots in the backoff timeline. (Section 5.4 of Chapter

5 justifies this in detail.)

4.2 Overview of TSS for WLANs

We now explain how TSS obtains sample path evolutions of the goodputs and

the MAC states. Specifically, we need to probabilistically obtain {Ci(t+δ), Bi(t+

δ), Ni(t)} given {Ci(t), Bi(t)} accounting for correlations both across stations and

time. It turns out, however, that Bi(t) can be approximated in terms of Ci(t)

as we explain later in Section 6.3 of Chapter 6. So we need to probabilistically

obtain Ci(t+ δ), Ni(t) given Ci(t) for all active i. Our method obtains this in the

following steps:

• Step 1: Obtain the distribution Pr(NA(t)) of the aggregate goodput

NA(t) =
∑

Ni(t), and sample NA(t) from it.

We extend the analysis in reference [3] (which obtains the longterm average

30

aggregate goodput) to show that Pr(NA(t)) can be approximated by a nor-

mal distribution dependent on δ. First, from the number of active stations,

the distribution of the idle interval is obtained. Next, using the idle inter-

val distribution, the first two moments of the time taken for one success

in the aggregate attempt process are obtained (prior works focus on the

mean alone). Finally, the normal distribution of the instantaneous aggre-

gate goodput follows from the central limit theorem for renewal processes.

(Analysis in Chapter 5.)

• Step 3: For each active station i, obtain Pr(Ni(t)|Ci(t)) by abstracting the

interaction with the rest of the stations by an average per-station collision

probability.

We use the fact that Ci(t) (stochastically) determines the instant ts when

the first successful transmission of station i occurs in [t, t+ δ]. Conditioned

on ts, the distribution of the number of successful packet transmissions

in the interval [ts, t + δ] is obtained by seeing how many total backoff

durations (denoted by X) can “fit” within this interval. The total backoff

duration is the total time spent in backoff by the packet’s station during

the packet’s lifetime (from the start of the first transmit attempt until

successful transmission or abort). This analysis makes use of the real-to-

backoff timeline contraction approximation. Unconditioning on ts gives

Pr(Ni(t)|Ci(t)). (Analysis in Chapter 6.)

Thus we need to obtain the distribution of the the total backoff duration

and its convolution. An efficient algorithm to obtain n-fold convolution of

the distribution of total backoff duration is given in Chapter 7.

31

• Step 3: Dependently sample Ni(t) from Pr(Ni(t)|Ci(t)) for all active i

such that the sampled Ni(t)’s are correlated and
∑

Ni(t) = NA(t).

This step uses a randomized algorithm that enforces a negative correlation

constraint among any subset of stations, in addition to the constraint that

the samples add up to the sampled NA(t). Specifically, the method considers

stations according to a random permutation of their id’s. Each station is

allocated goodput from a specific part of its marginal distribution depending

on the sum of all goodputs allocated prior to it and the aggregate goodput

constraint. (Explained in Chapter 8.)

• Step 4: For each active station i, obtain Pr(Ci(t + δ)|Ni(t), Ci(t)) and

sample Ci(t + δ) from it.

This distribution is obtained by accounting for the total backoff durations

spent in the Ni(t) successful transmissions in [t, t + δ]. This gives the last

successful transmission time instant within the timestep. From this, the new

MAC state distribution is obtained from the observation that the attempt

process started afresh at tf and has not successfully transmitted till the end

of the timestep. (Analysis in Chapter 9.)

Note that each of the steps computes some probability distribution. These

probability distributions can be parametrized in terms of the number of active sta-

tions and the timestep duration. Therefore, they can be precomputed or cached,

and thus are a one-time cost for all sample paths of the same simulation scenario.

Further, these precomputed pdf’s are stored as tables of the inverse of the corre-

sponding cdf. Thus sampling from these precomputed distributions is equivalent

to indexing into these tables, an O(1) operation.

32

Chapter 5

Distribution of Aggregate Goodput

In this chapter, we obtain the first of the various pdf’s involved in each

timestep of the TSS simulator: the distribution of the instantaneous aggregate

goodput Pr(NA(t)). From the number of active stations, the distribution of an

idle interval is obtained. Using the idle interval distribution, the first two mo-

ments of the time taken for one success in the aggregate attempt process are

obtained, using which, the distribution of the instantaneous aggregate goodput

is obtained.

Recall that the per-station collision probability p is available as a function

of M . Given this relationship, we obtain the distribution of NA(t) in [t, t + δ]

in terms of the number of active stations M , the transmission interval τ , and

the timestep δ. In Sections 5.1 and 5.2, we leverage results from reference [3].

Section 5.1 analyzes the per-station attempt process in the backoff timeline to

obtain a tagged station’s attempt rate λ in terms of p. This is done by considering

the number of the transmission attempts K by the station for successful trans-

mission of a tagged packet and the total backoff duration X in those attempts.

Section 5.2 analyzes the aggregate attempt process as the superposition of the

per-station attempt processes to obtain the distribution of the idle interval I and

33

the aggregate collision probability pA.

Then, in Section 5.3, we present our analysis in the real timeline for the distri-

butions of the instantaneous aggregate throughput and the instantaneous aggre-

gate goodput NA(t). This is done by obtaining the moments of the throughput

and goodput renewal periods and applying the central limit theorem for renewal

processes. (Reference [3] obtains the mean of NA(t) alone.) Section 5.4 justi-

fies the real-to-backoff-timeline contraction approximation for the aggregate idle

interval in a timestep.

All analysis is within a timestep [t, t+δ]. For sake of brevity, we omit the suffix

“(t)” for time-dependent quantities henceforth unless essential for the discussion.

5.1 Analysis of per-station attempt process in backoff time-

line

The per-station attempt process of a station i is driven by its backoff counter

Bi(t); transmissions occur whenever Bi(t) reaches zero. Figure 5.1 shows the

evolution in the backoff timeline of Bi(t) of a station i attempting to transmit a

tagged packet. On reaching zero, Bi(t) is renewed according to the backoff process

under our modeling assumption that each transmission results in a collision with

probability p.

Thus the attempt process of a station i is a sequence of intervals with the

pattern 〈Block〉〈Block〉 · · · . Each 〈Block〉 is of the form Y1, Y2 · · ·YK where

• there is a transmission after each Yi;

• the transmission after YK alone is successful; and

• the total backoff duration X for a successful transmission is Y1+Y2+· · ·+YK.

34

(t
)

B
i

Y1 Y2
YK

YKY1 Y2 Y2Y1

Backoff timeline

B
ac

ko
ff

co
un

te
r

45

Total backoff duration X

Attempts

Figure 5.1: Per-station attempt process of station i in backoff timeline driven

by backoff counter Bi(t). Attempts are made when Bi(t) hits zero, and Bi(t)

is renewed according to the backoff process. The angle 45◦ indicates that Bi(t)

decreases with slope -1 everywhere except at the attempt points.

In the backoff timeline, Bi(t) is a markovian renewal process with average

overall cycle (renewal) period E[X] and average number of attempts in a cy-

cle E[K]. By the renewal reward theorem [56], the attempt rate λ is given by

E[K]/E[X]. In other words, the probability that a station transmits at the start

of a given slot in the backoff timeline is λ.

E[K] and E[X] are calculated as follows. Each Yi is chosen from Uniform[0..γ2i−1−1],

and so E[Yi] = γ2i−2−1/2. We have E[X] =

i=β
∑

i=1

Pr(K = i).E[Y1 +Y2 + · · ·+Yi].

Because each attempt is Bernoulli with failure probability p, K is a truncated

geometric random variable with the distribution

Pr(K = i) = (1− p)pi−1 for 1 ≤ i < β

= pβ−1 for i = β

35

5.2 Analysis of aggregate attempt process in backoff time-

line

The aggregate attempt process is the superposition of the per-station attempt

processes. In the backoff timeline, the aggregate attempt process is a sequence

of intervals with the pattern 〈Block〉〈Block〉 · · · . Each 〈Block〉 is of the form

I1, I2 · · · IL where

• each Ii is an IID copy of the idle interval I;

• a single station transmits successfully after IL; and

• two or more stations transmit unsuccessfully after each Ii for i 6= L.

We assume that the per-station attempt processes evolve independently in the

backoff timeline though they evolve with the same p. Then the probability that

there is a transmission in at least one of the M superposed per-station processes

with attempt rate λ each is 1 − (1 − λ)M . Therefore the idle interval I is a

geometric random variable with success probability 1− (1− λ)M .

An Ii is followed by a collision with aggregate collision probability pA, which

is the probability that two or more transmissions start in a slot given that there

is at least one transmission. That is

pA =
1− (1− λ)M −Mλ(1− λ)M−1

1− (1− λ)M

Assuming that collisions are independent, L is geometric with success probability

1− pA.

Note that pA 6= p, the per-station collision probability, because two or more

frames collide in any collision. [To illustrate, suppose there are two active stations.

36

T2T1 TL

�������������
�������������
�������������

�������������
�������������
�������������

���������������
���������������
���������������

���������������
���������������
���������������

Aggregate throughput renewal period T

FailureFailureFailureSuccess Success

Real timeline

Aggregate goodput renewal period G

Transmission intervals Idle intervals

Figure 5.2: Aggregate attempt process in the real timeline. Aggregate goodput

renewal period G is the time between two successful transmissions.

Over some time interval, let s1 and s2 denote the number of packets transmitted

successfully by the two stations and f , the number of collisions. Then p ≈
f

s1 + f

and pA ≈
f

s1 + s2 + f
. If s1 ≈ s2 and f � s1, then pA ≈ p/2.]

5.3 Analysis of aggregate attempt process in real timeline

The aggregate attempt process in the real timeline is a sequence of intervals

with the pattern 〈Block〉〈Block〉 · · · . Each 〈Block〉 is of the form T1, T2, · · · , TL,

where each Ti is an IID copy of T = I + τ and only TL is successful (as before).

Thus the aggregate throughput process is a renewal process with period T . With

E[T] = E[I] + τ and Var[T] = Var[I], by the central limit theorem for renewal

processes [56], we have

Theorem 1 The aggregate throughput (i.e., number of throughput renewals in-

cluding both successes and failures) in [t, t + δ] is normally distributed with mean

δ/E[T] and variance δVar[T]/E[T]3.

The aggregate goodput process is a renewal process with period G correspond-

ing to each 〈Block〉 of T1, T2, · · · , TL. Figure 5.2 shows the renewal period of the

aggregate goodput and its relation to the aggregate throughput renewal periods.

37

Observe that G is a compound random variable, i.e., a sum of a random number

(L) of random variables (Ti). All prior work (e.g., [3, 8, 29]) compute E[G] and

thereby compute the mean goodput in [t, t+δ] as δ/E[G] from the renewal reward

theorem. However, to obtain the distribution of NA(t), we need both E[G] and

Var [G], which we obtain as follows:

E[G] = E[E[G|L]]

= E[E[
i=L
∑

i=1

Ti]]

= E[L.E[T]] (by independence of Ti’s and L)

= E[T].E[L]

E[G2] = E[E[(

i=L
∑

i=1

Ti)
2]]

= E[Var(

i=L
∑

i=1

Ti) + E[

i=L
∑

i=1

Ti]
2]

= E[LVar [T] + (L.E[T])2]

= E[L].Var [T] + E[L2]E[T]2

= E[L]Var [T] + (Var [L] + E[L]2)E[T]2

= E[L].Var [T] + Var [L].E[T]2 + E[G]2

Therefore, we have Var [G] = E[L]Var [T] + Var [L]E[T]2, which appeals to intu-

ition in accounting for the variance in both L and T . Because L is a geometric

random variable with success probability 1− pA, we have E[L] = 1/(1− pA) and

Var [L] = pA/(1−pA)2. Now we have the first two moments of the renewal period

of a renewal process. Again, by a straightforward application of the central limit

theorem for renewal processes, we have

Theorem 2 The random variable NA(t) is normally distributed with mean δ/E[G]

and variance δVar[G]/E[G]3.

38

5.4 Real-to-backoff-timeline contraction approximation

Because each throughput renewal has an idle interval I that is geometrically

distributed, the aggregate idle interval in [t, t+ δ] would actually be the sum of a

(normally distributed) random number of geometric random variables. One can

compute the mean and variance of the total backoff compound random variable

and approximate this by a normal distribution.

However, we approximate this random variable by a constant that is equal to

its mean, namely, δE[I]/(E[I]+τ) , δη. This contraction approximation greatly

simplifies the presentation of the analysis for the per-station instantaneous good-

put Ni(t) (which would have otherwise needed conditioning and unconditioning

on the aggregate idle interval in [t, t + δ]). This assumption is justified because

the deviation of the aggregate idle interval is very small relative to the mean

(<8% for δ = 50ms), which is because the deviation in the number of throughput

renewals is not high relative to its mean. As can be seen from the results in

Chapters 12 and 13, this approximation does not significantly compromise the

accuracy.

39

Chapter 6

Conditional Distribution of Per-station Goodput

In the previous chapter, we obtained the distribution of the instantaneous

aggregate goodput by considering the aggregate attempt process. In this chapter,

we obtain the conditional distribution of the instantaneous per-station goodput

Ni(t) of a tagged station i conditioned on its MAC state at the beginning of

the timestep. Specifically, we condition on the contention window Ci(t) and

approximate the backoff counter Bi(t) in terms of Ci(t).

To obtain the distribution of Pr(Ni(t)|Ci(t)), we consider the per-station

attempt process for station i in the backoff timeline; and obtain the required

distribution in terms of the distribution of the total backoff duration X in a

packet’s lifetime. For the case 〈Ci(t) = 0, Bi(t) = 0〉, i.e., the station transmitted

successfully just before t and starts attempts for a new packet just after t, we

obtain Pr(Ni(t) = n) as the probability of fitting n copies of X within a total

backoff of ηδ in the timestep. For an arbitrary starting state, we first obtain the

distribution of X∗

f , the time to the first successful transmission in the interval

conditioned on 〈Ci(t), Bi(t)〉. Conditioned on X∗

f , the distribution of Ni(t) can

be obtained by fitting copies of X in ηδ − X∗

f , as in the previous case. Finally,

we uncondition on Bi(t) to obtain the distribution of Ni(t) conditioned on Ci(t)

40

t t+

X2 X3X1 X Xn

Backoff timeline δη

New packet arrives just after t

Last successful transmission just before t

n+1

Figure 6.1: Successful transmissions of a tagged station in the interval [t′, t′ + δη]

in the backoff timeline. The timestep [t, t + δ] in the real timeline is contracted

to [t′, t′ + ηδ] in the backoff timeline.

alone.

6.1 Obtaining Pr(Ni(t)|Ci(t) = 0, Bi(t) = 0)

We now analyze the case 〈Ci(t) = 0, Bi(t) = 0〉, i.e., station i transmitted

successfully just before t and gets a new packet for to transmit just after t. Figure

6.1 shows successful transmissions of the tagged station i in the corresponding

interval in the backoff timeline given by [t′, t′ + δη], which is the contraction of

[t, t + δ]. The backoff duration between two successful transmissions is Xi, an

IID copy of the total backoff duration X in a packet’s lifetime. There are n

successful transmissions in the interval [t′, t′ + δη] iff n IID copies of X when

added is less than the total backoff duration δη in the interval and the n + 1th

successful transmission occurs outside the interval.

Let E1 denote the event X1+· · ·+Xn ≤ ηδ and E2, the event X1+· · ·+Xn+1 ≤

ηδ. Clearly E1 ⊂ E2. Denoting the probability of n successful transmissions in a

backoff timeline interval of length ηδ as h(n, ηδ), we have

41

h(n, ηδ) = Pr(Ni(t) = n|Ci(t) = 0, Bi(t) = 0)

= Pr(X1 + · · ·+ Xn ≤ ηδ ∧

X1 + · · ·+ Xn+1 > ηδ)

= Pr(E1 ∧ E2)

= Pr(E1)− Pr(E2) (since E1 ⊂ E2)

= F n
X(ηδ)− F n+1

X (ηδ)

where the pdf fn
X of the distribution Pr(X1 + X2 + · · · + Xn) is the n-fold

convolution of fX with itself, and F n
X denotes the corresponding cdf. Once fn

X has

been obtained (as described in Chapter 7), the pdf h(n, ηδ) can be obtained as

above. Note that h(n, ηδ) depends solely on δ and η. In turn, η can be determined

in terms of the number of active stations and hence this pdf can be parametrized

in terms of the number of active stations and the timestep duration.

6.2 Obtaining Pr(Ni(t)|Ci(t) = γ2c−1, Bi(t) = b)

We now obtain the distribution of Ni(t) given an arbitrary starting state

Bi(t), Ci(t). Figure 6.2 shows the interval [t′, t′ + ηδ] in the backoff timeline

corresponding to the interval [t, t + δ] in the real timeline. At time t′, the state is

not 〈0, 0〉 and the first successful transmission occurs at t′f . Define X∗

f to be the

time to first success in the backoff timeline given Ci(t), Bi(t), i.e., X∗

f , t′f − t′.

Conditioned on X∗

f , Pr(Ni(t) = n) is given by h(n− 1, ηδ−X∗

f), the probability

of n − 1 successes in the backoff timeline interval ηδ − X∗

f starting from the

neutral state at t′f . This is because the first successful transmission occurs at

t′ + X∗

f and n− 1 more occur in the interval of length ηδ −X∗

f with probability

42

t+Backoff timeline δηf

X f X1 X2 Xn−1 Xn

t t

Figure 6.2: Transmissions of a tagged station in the backoff timeline in-

terval [t′, t′ + ηδ] corresponding to real timeline interval [t, t + δ] when

〈Bi(t), Ci(t)〉6=〈0, 0〉. A shorter arrow indicates a failure, a longer arrow suc-

cess. The first successful transmission occurs at t′f and X∗

f is the backoff duration

t′f − t′.

h(n − 1, ηδ −X∗

f). So we want to obtain the pdf of backoff time to first success

X∗

f .

Given Ci(t) = γ2c−1 and Bi(t) = b, the first transmission occurs at t′+b in the

backoff timeline. The number of further attempts K (which can be zero) before a

successful transmission at t′f is distributed according to a geometric distribution

with

Pr(K = i) = (1− p)pi for i = 0 ≤ i < β − c

pβ−c for i = β − c

Therefore, the total backoff duration till t′f is b + Yc+1 + Yc+2 + · · ·Yc+K. Each

of the Yi’s is uniformly distributed in increasing intervals and the number of

attempts K is bounded by β and so this pdf can be obtained by straightforward

convolution. In sum,

43

Pr(X∗

f = l|Bi(t) = b, Ci(t) = γ2c−1)

=

i=β−c
∑

i=1

Pr(b + Yc + · · ·+ Yc+i = l)Pr(K = i) (6.1)

Pr(Ni(t) = n|X∗

f) = h(n− 1, ηδ −X∗

f) (6.2)

Using Equations 6.1 and 6.2, we have

Pr(Ni(t) = n|Bi(t) = b, Ci(t) = γ2c−1)

=

l=ηδ
∑

l=0

Pr(X∗

f = l|Bi = b, Ci = γ2c−1) × h(n− 1, ηδ − l) (6.3)

6.3 Obtaining Pr(Ni(t)|Ci(t) = γ2c−1)

If Ci(t) = γ2c−1, Bi(t) was chosen from the Uniform[0..Ci(t)−1] when it

was renewed. Therefore at a given t, the distribution of Bi(t) is distributed

according to the forward recurrence time (or the remaining/residual time) of the

distribution Uniform[0..Ci(t)−1]. For a random variable U ∼ Uniform[0..a], the

forward recurrence time [56, 39] is a random variable U+ whose distribution is

given by

Pr(U+ = k) = Pr(U > k)/E[U]

=
(a− x)/(a + 1)

a/2

=
2(a− x)

a(a + 1)

Thus we have Pr(Bi(t) = b|Ci(t) = γ2c−1) = 2(Ci(t)−b−1)
Ci(t)(Ci(t)−1)

for b ∈ [0, Ci(t)−1].

We have obtained P (Ni(t)|Ci(t), Bi(t)) and Pr(Bi(t)|Ci(t)). Unconditioning on

Bi(t) gives Pr(Ni(t)|Ci(t)).

44

6.4 Short-term unfairness in 802.11

Short-term unfairness in 802.11 has been the subject of much research [24, 25,

64, 71]. Reference [71] examines short-term unfairness for hidden terminals while

references [25, 24] claim 802.11 is fair over intervals that are defined in terms

of the number of inter-transmissions that other hosts may perform between two

transmissions of a given station. Our analysis naturally yields a quantification

of the short-term unfairness over arbitrary fixed intervals (δ here) even with no

hidden terminals.

Consider a pair of tagged stations i and j among M active stations. Note

that a difference between Ci(t) and Cj(t) automatically results in a difference

in the means of Ni(t), Nj(t). To quantify the extent of short-term unfairness in

goodputs, we use Jain’s fairness index JF [52, 54]. For two stations, JF (Ni, Nj) is

defined to be
(Ni + Nj)

2

2(N2
i + N2

j)
and ranges in [1/2, 1], where 1/2 corresponds to lowest

fairness (one station gets all the goodput while the other gets nothing) and 1 cor-

responds to highest fairness (both get equal goodput). Specifically, we compute

E[JF (Ni, Nj)] in two different ways: 1) by approximating the jdf of 〈Ni(t), Nj(t)〉

the product of the pdf’s of Ni(t) and Nj(t), which are identical when uncondi-

tioned; and 2) by packet level simulations (PLS) described later in Chapter 12

Likewise, we compute E[JF (Ni, Nj)|Ci, Cj] analytically by approximating the jdf

of 〈Ni(t), Nj(t)〉 given 〈Ci(t), Cj(t)〉 as the product of the pdf’s of Ni(t)|Ci(t) and

Nj(t)|Cj(t) and verify the analysis by simulations.

Values of E[JF (Ni, Nj)] are shown for varying M in Table 6.1 for 1) Ni, Nj

unconditioned on Ci, Cj; and 2) conditioned on a fixed value of Ci(t) = 16 for

varying Cj(t). The value predicted by the analysis matches that obtained from

PLS for the unconditioned Jain’s index almost exactly. For the conditioned case,

45

M Ci Cj

E[JF (Ni, Nj)|Ci, Cj]

PLS Analysis

4 Unconditioned 0.94 0.95

4 16 16 0.96 0.97

4 16 256 0.89 0.90

4 16 512 0.68 0.83

8 Unconditioned 0.83 0.84

8 16 16 0.91 0.92

8 16 256 0.83 0.82

8 16 512 0.60 0.74

16 Unconditioned 0.73 0.74

16 16 16 0.88 0.88

16 16 256 0.77 0.75

16 16 512 0.56 0.68

Table 6.1: Short-term unfairness illustrated by E[JF (Ni, Nj)] and

E[JF (Ni, Nj)|Ci, Cj] as obtained by PLS and analysis for various values of

M . For two stations, Jain’s fairness index ranges in [1/2, 1] where the value of

1/2 corresponds to lowest fairness while the value of 1 corresponds to highest

fairness. The extent of fairness varies depending on the contention window for

conditioned goodputs.

46

PLS results match the analysis almost exactly for small values of Cj(t) (16, 256).

However, for large values of Cj(t) (512) the analysis overestimates the fairness.

This is because the analysis allows Nj to be high (with some probability) jointly

with high values of Ni due to the independence assumption. However, in reality,

when Ni is high (which is likely due to low Ci), Nj is less likely to be high (due

to negative correlation).

47

Chapter 7

Convolution of Total Backoff Duration Distribution

To evaluate the pdf obtained in the previous chapter, we need the n-fold

convolution fn
X of the pdf fX of the total backoff duration X in a tagged packet’s

lifetime. We first obtain fX and explain why the structure of this pdf precludes a

normal approximation to fn
X . Then we present a simple and efficient convolution

algorithm that exploits the structure of fX to obtain fn
X . The basic idea behind

the convolution algorithm is to first approximate fX as a weighted mixture of

gaussians and then obtain fn
X as a weighted mixture of gaussians efficiently using

heuristics; the result is discretized to obtain the discrete pdf fn
X .

7.1 Distribution of total backoff duration

Recall that for a tagged packet, K denotes the number of transmission at-

tempts to success, and Y1, Y2, · · · , YK denote the backoff values chosen for those

attempts. As seen in Chapter 5, K is a truncated geometric variable with param-

eter p. Let Zi , Y1+Y2+· · ·+Yi denote the total backoff duration if K = i. Then

fX =
∑i=β

i=1 Pr(K = i).fZi
. To obtain fZi

, we proceed as follows. Yi is sampled

from Uniform[0..γ2i−1–1]. Because Zi is the sum of such uniformly distributed

random variables, we approximate fZi
by the pdf of a normal distribution with

48

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 50 100 150 200

P
D

F

number of slots

PDF of total backoff

Approximate gaussian representation
Actual pdf of total backoff

Figure 7.1: Illustrating the accuracy of the weighted gaussian approximation to

the pdf of the total backoff duration in a packet’s lifetime X.

mean mi given by
∑j=i

j=0 E[Yj] and variance s2
i given by

∑j=i
j=0 Var[Yj]. Because

Y1, Y2, etc. have smooth uniform distributions, the normal approximation to Zi

works very well for i > 1 though the number i of random variables being added

is small. Thus fX can be written as
∑

wigi(mi, si), i.e., a weighted combination

of gaussian pdf functions. Here each weight wi is Pr(K = i) and gi is the pdf of

a gaussian with mean mi and si described before.

Figure 7.1 illustrates the accuracy of the approximation. It compares the pdf

fX obtained by the analytical approximation with that obtained by packet level

simulation for a collision probability of 0.4. For the lowest lobe, i.e., for K = 1

the approximation is not very accurate. However, this approximation suffices in

practice in computing n-fold convolutions of fX .

49

7.2 Impracticality of a normal approximation

A natural approach would be to use a normal approximation to the n-fold con-

volution of fX . This would be similar to approximating the aggregate goodput

NA(t) using the central limit theorem for renewal processes. Because X has finite

support, both E[X] and E[X2] are finite and therefore a normal approximation

is theoretically feasible. However, the convergence to normal is very slow for f n
X

because of the “cascading” tail of the distribution. (For examples, see results in

Section 7.6. The modes of fX are approximately the E[Zi]’s. E[Zi] grows expo-

nentially with increasing i while the associated weight wi shrinks exponentially,

implying a power-law dependence between E[Zi] and wi. Thus, the envelope of

fX at its modes can be thought of as a truncated Pareto distribution, and the

sum of Pareto random variables can be approximated only by a Levy distribution

[44, 45, 10, 55, 53].) Therefore, we need another method of approximating f n
X for

our purposes.

In the case of NA(t) however, the aggregate goodput renewal period G, ne-

glecting the contribution from the idle intervals is distributed as a well-behaved

geometric random variable, which is why the normal approximation works well

for NA(t).

7.3 Algorithm for obtaining convolution

Recall that the convolution of a normal distribution with mean m1 and devia-

tion s1 with another of mean m2 and deviation s2 results in a normal distribution

with mean m1 + m2 and deviation
√

s2
1 + s2

2 [4]o. Because fX =
∑i=β

i=0 wigi, we

have f 2
X =

∑i=β
i=0

∑i=β
j=0 wiwjg(mi +mj,

√

s2
i + s2

j) to have β2 normal terms. Like-

50

wise, fn
X will have βn terms in general. We need a way to evaluate this distribution

efficiently. We observe the following:

• The weights wi, being the probability of i consecutive losses, decrease ex-

ponentially with increasing i; Therefore, not all wi are equally significant.

• The term-by-term convolution yields several gaussian terms whose means

and deviations are close enough to be approximated by a single term which

absorbs the weights of such close terms.

These two observations yield an efficient and accurate approximation of f n
X as

per Algorithm Convolve.

The loop in lines 3 through 10 iterates to compute to f i+1
X from f i

X in two

phases. In the first phase (lines 5-9), the convolution of terms f i
X (stored as

curr -list) with fX (stored in init-list) is computed and stored in new -list. In the

second phase (line 9), new -list is shrunk by calling procedure Shrink-List with

new -list as parameter and curr -list is updated from the return value. Procedure

Shrink-List first sorts list in lexicographically increasing order according to the

tuple (mk, sk) in line 9.

The algorithm maintains 〈w, (m, s)〉 as the candidate entry to be added to

shrunk -list. For each entry 〈wk, (mk, sk)〉 in the sorted new -list, the following

heuristics are used:

• If wk is small compared to a threshold ε (typically, 0.001), the entry 〈wk, (mk, sk)〉

is ignored by simply adding wk to current candidate weight w. This is done

in line 7.

• If wk is significant and mk and sk are comparable to the current m and

s values, then m and s are combined with mk and sk respectively after

51

Convolve(fX , n)

1 init-list ← list of < wi, (mi, si) > in fX

2 curr -list ← init-list , count ← 0

3 while (count < n)

4 count ← count + 1

5 new -list ← {}

� Phase-1: Obtain convolution of weighted

� gaussian sums by term-by-term convolution

6 for each 〈wi, (mi, si)〉 in init-list

7 for each 〈wj, (mj, sj)〉 in curr -list

8 m← mi + mj; s←
√

s2
i + s2

j ; w ← wi × wj

9 Add 〈w, (m, s)〉 to new -list

� Phase-2: Shrink the obtained result

10 curr -list ← Shrink-List(new -list)

weighting by w and wk. The value m is deemed comparable to mk if |mk−

m| < θm, where θ < 1 (typically, 0.1) is a small number. This is done in

lines 9 through 11.

• If wk is significant and 〈wk, (mk, sk)〉 cannot be combined with 〈w, (m, s)〉

then 〈w, (m, s)〉 is added to shrunk -list and the shrinking continues with

〈wk, (mk, sk)〉 becoming the new candidate shrunk -list entry. This is done

in lines 13 and 14.

52

Shrink-List(list)

1 shrunk -list ← {}

� Input list has tuples of form

� 〈weight, (mean, dev)〉

2 Sort list according to increasing (mean, dev)

3 〈w0, (m0, s0)〉 ← first(list)

4 w ← 0, m← m0, s← s0

5 for each successive 〈wk, (mk, sk)〉 in list

� ε is a threshold

6 if (wk < ε)

� Ignore gaussian of very low weight

7 w ← w + wk

8 elseif |mk −m| ≤ θm and |sk − s| ≤ θs

� Combine two “close” gaussians

� Closeness parameter is θ

9 p1 ← w/(wk + w) ; p2 ← wk/(wk + w)

10 m← p1m + p2mk; s←
√

p1s2 + p2s
2
k + p1p2(m−mk)2

11 w ← w + wk

12 else � This entry cannot be combined anymore

13 Add 〈w, (m, s)〉 to shrunk -list

14 w ← wk, m← mk, s← sk

15 Add 〈w, (m, s)〉 to shrunk -list

16 return shrunk -list

53

7.4 Runtime

We assume that n–1 fold convolutions have been computed and want to obtain

the runtime of the n-th convolution. Recall that we start with fX having β terms.

In the worst case, the shrinking algorithm (depending on the tunable threshold

θ) may not reduce any terms at all from the partial convolutions. However, in

practice, we see that the shrinking algorithm keeps the number of terms in any

partial convolution to be within O(β). Under this assumption, the run-time for

the n-th convolution is O(β2 log β). If a is the number of discrete support points

in fX , fn
X will have n(a−1)+1 points, which is O(na). Discretizing the gaussian

mixture approximation of fn
X with worst case O(β2 log β) gaussian terms over

O(na) points takes O(naβ2 log β). The use of an FFT based convolution , which

starts with a discrete representation of fX over a points and computes the partial

convolutions proceeding with a similar strategy would take O(na log na) time for

the n-th convolution [34]. If β2 log β is O(1) w.r.t. input size O(na), then our

approach reduces O(na log na) to O(na).

7.5 Optimization

Our optimizations are based on the observation that we are interested in the

pdf’s of the n-fold convolutions for support points lesser than δη, the total backoff

in a timestep of length δ.

Suppose F n∗

X (δη) ≈ 0 for some n∗, i.e., the probability that X1+X2+· · ·+Xn∗

takes a value lesser than ηδ is negligible, then the algorithm for computation of

the convolution can be halted at n∗ because for any n > n∗, F n
X(ηδ) ≈ 0 and does

not give any more information required for obtaining P (Ni|Ci) and the other

54

pdf’s for timesteps of length δ.

Another related optimization is to to represent the a n-fold partial convolution

only up to an interval length of δη rather than over the entire support range of

O(na). Thus this would help optimize both the gaussian approximation method

as well as the FFT-based approach specifically for our case.

7.6 Validation and speedup

To estimate the order of speedup achieved by the convolution algorithm, we

obtained 100 samples of the time taken to compute a 20-fold convolution for

a per-station collision probability of 0.4. MATLAB’s FFT-based convolution

(with the script launched from the command line to avoid any overheads due to

MATLAB’s GUI) takes a mean time of 2.4s (deviation 8ms) to compute a 20-fold

convolution without any logging to file, while our approach takes a mean duration

of 1.19s (deviation 7ms). With file logging enabled, our approach takes a mean

time of 0.12s (deviation 2ms) for a 2-fold convolution while MATLAB takes 6.48s

(deviation 12ms).

Figure 7.2(a) compares the approximated distribution of the f n
X with the pdf

obtained by straightforward convolution in MATLAB for n = {2, 4, 8, 16}. The

probability of collision is 0.4. Note how the tail of the distribution is faithfully

reproduced by the analytical approximation. In a realistic probability regime

(p < 0.5), there are few modes in the convolution’s pdf and thus the approxima-

tion works extremely well. Even for a very high per-station collision probability

regime, the method works well as can be seen in Figure 7.2(b) which consider the

same convolutions for p = 0.8. In this regime, the errors tend to accumulate as

the number of convolutions increases because the distributions tend to become

55

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 100 200 300 400 500

P
D

F

number of slots

Convolutions of fX with p = 0.4

2-fold

4-fold

8-fold
16-fold

Approximate 2-fold convolution
MATLAB 2-fold convolution

Approximate 4-fold convolution
MATLAB 4-fold convolution

Approximate 8-fold convolution
MATLAB 8-fold convolution

Approximate 16-fold convolution
MATLAB 16-fold convolution

(a)

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0 500 1000 1500 2000 2500 3000

P
D

F

number of slots

Convolutions of fX with p = 0.8

2-fold

4-fold

8-fold

Approximate 2-fold convolution
MATLAB 2-fold convolution

Approximate 4-fold convolution
MATLAB 4-fold convolution

Approximate 8-fold convolution
MATLAB 8-fold convolution

(b)

Figure 7.2: Comparisons of n-fold convolution of fX for p = 0.4 and p = 0.8

as obtained from our convolution algorithm with that obtained by MATLAB for

various n.

56

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

 0 100 200 300 400 500

P
D

F

number of slots

9-fold convolution of fX with p = 0.8

Approximate 9-fold convolution
MATLAB 9-fold convolution

Figure 7.3: Comparison of 9-fold convolution of fX for p = 0.8 as obtained from

our convolution algorithm with that obtained by MATLAB.

multimodal and eventually smoothen out for higher convolutions. For instance, in

Figure 7.3, the analytical approximation predicts a mode around 50 when there is

none in reality. However, the total probability mass in [0, 100] is less than 0.0005,

which is ignorable for our purposes. Overall, the method is highly accurate for

realistic regimes and handles higher collision regimes with sufficient accuracy.

57

Chapter 8

Dependent Sampling of Per-station Goodputs

The goodput sample Ni(t) of an active station i in [t, t + δ] is determined by

two factors: 1) its initial state Ci(t); and 2) its interaction with all other active

stations in [t, t + δ]. If Ci(t) is too high, with high probability, i will not attempt

often enough to get a high goodput. Likewise, if the goodputs obtained by other

stations are high, then Ni(t) will necessarily go down since there is only so much

channel capacity in [t, t + δ]. So far we have obtained Pr(Ni(t)|Ci(t)), which

captures the effect of the first factor by approximating the interaction with all

other stations by a constant per-attempt collision probability in [t, t + δ]. If the

Ni(t) were independent of each other, all that needs to be done is to sample each

Ni(t) from the distribution Pr(Ni(t)|Ci(t)). However, in reality, the interactions

within stations in [t, t + δ] ensures that Ni(t) is correlated with every Nj(t) for

i 6= j. Further, because Ci(t + δ) depends on Ni(t), the states of all stations

are also weakly correlated. Note that the marginal goodput distribution does

indicate that if the number of active stations goes up, the per-station collision

probability goes up and hence the range of values of Ni(t) goes down. However,

the extent of correlation will not be captured adequately by this abstraction of

other stations, because we are abstracting the random variables by some form of

58

average behavior. Thus we want a method that will sample Ni(t)’s from their

conditional distributions in a manner that reflects their negative correlation ac-

curately. In this chapter, we present a randomized algorithm that dependently

samples the conditional distributions. Specifically, stations are ordered accord-

ing to a random permutation, and a station’s marginal distribution is sampled

according to the sum of the samples of all goodputs allocated prior to it.

8.1 Aggregate goodput constraint

We obtained the distribution of the aggregate goodput NA(t) independent of

any constraint (even from NA(t − δ)). Therefore, in each timestep, we sample

NA(t) from its distribution and require that any sampling of Ni(t) should be

such that they add up to the sampled NA(t). Note that if the Ni(t) were chosen

independent of each other, the variance of the sum would be cumulative and not

be as low as V ar[NA(t)], which is a result of the negative correlation. Clearly, the

constraint NA(t) =
∑

Ni(t) requires that the Ni(t) be sampled in a way reflecting

the negative correlation.

8.2 Preliminary approaches

We want to obtain N(t) where:

• each Ni(t) is sampled from Pr(Ni(t)|Ci(t));

•
∑

Ni(t) = NA(t); and

• Ni(t) are negatively correlated.

59

One option is to first obtain tentative samples N ′

i(t) from the respective distri-

butions Pr(Ni(t)|Ci(t)) independently and then obtain each Ni(t) as N ′

i(t).NA(t)/
∑

N ′

i(t).

While this approach does handle negative correlation, the resulting distribution

of Ni(t) as obtained by TSS does not match the distribution of Ni(t) obtained

by PLS well. A second approach is to consider a random permutation π of the

indices of stations that are in the set of active stations M. Suppose we sample

Ni(t) for each i in π from Pr(Ni(t)|Ci(t) and assign the remainder to the station

not seen so far. This ameliorates the bias in favor of stations with lower indices,

but it increases the negative correlation between stations whose indices are con-

sidered last (because they have the lowest goodput to share). Further, it leaves

open the possibility that all stations whose goodputs are chosen initially by the

random permutation do not add up to a significant value thereby making the last

station to be assigned have an arbitrarily large goodput.

8.3 Algorithm for sampling per-station goodputs

The basic idea is to sample the goodput of a station from a“suitable”portion of

its pdf depending on how much the aggregate of all previously allocated goodputs

deviates from what could be expected for that aggregate. Algorithm Sample-

Goodputs shows our approach.

The variable count keeps track of the number of stations that have been

allotted goodputs, and variables allotted and expected represent the actual and

expected goodput allocated to count number of stations with allowable tolerance

upper -tolerance and lower -tolerance. All variables are initialized as shown in

lines 1 through 3. Note that the goodputs of all stations Ni(t) are assigned

zero initially. The algorithm generates a random permutation π of 1..M and a

60

Sample-Goodputs(N,M)

� Pr(Ni|Ci), Pr(NA) are global to this routine

1 count ← 1

2 allotted , expected , upper -tolerance, lower -tolerance ← 0

3 ∀i Ni(t)← 0 , M ← number of active stations

4 π ← random permutation of id’s in M

5 NA(t)← sample from Pr(NA(t))

6 while count < M and allotted < NA(t)

7 i← π(count)

8 if allotted > expected + upper -tolerance

9 s← sample lower tail of Pr(Ni(t)|Ci(t))

10 elseif allotted < expected - lower -tolerance

11 s← sample upper tail of Pr(Ni(t)|Ci(t))

12 else

13 s← sample from full distribution Pr(Ni(t)|Ci(t))

14 if allotted +s ≤ NA(t)

15 Ni(t)← s

16 else

17 Ni(t)← NA(t)− allotted

18 allotted ← allotted +Ni(t)

19 count ← count +1

20 expected ← count× NA(t)
M

21 upper -tolerance ← θ1× expected

22 lower -tolerance ← θ2× expected

23 if (count = M)

24 Nπ(M)(t)← max(NA(t)− allotted , 0)

61

sample of NA(t) from Pr(NA(t)) in lines 4 and 5 respectively. Each iteration

of the while loop from lines 6 through 22 assigns the goodput of the station i

chosen in the position count of the random permutation. If the actual allotted

goodput for the count−1 stations is higher (lower) than expected subject to an

upper -tolerance (lower -tolerance) as checked in line 8 (line 10) then a tentative

sample s is obtained from the lower (upper) tail of distribution of P (Ni|Ci) in line

9 (line 11). Let n∗ be a goodput such that Pr(Ni ≤ n∗|Ci) = 1/2. By sampling

the lower (upper) tail of Pr(Ni|Ci), we mean sampling from the distribution

Pr(Ni|Ci, Ni ≤ n∗) (distribution Pr(Ni|Ci, Ni > n∗)). If both tolerances are

not exceeded, then Ni(t) is sampled from the full distribution Pr(Ni|Ci) in line

13. As long as the tentative sample s taken with the goodput allotted so far

does not exceed the sampled NA(t) as checked in 14, Ni(t) is set to s in line

15 or is assigned the residual goodput in line 17 and the assignment stops. In

lines 18 through 22 the variables count , allotted , expected , upper -tolerance, and

lower -tolerance are updated. The last station in the random permutation π is

assigned the residual goodput, if any, in line 23.

8.4 Runtime

Like mentioned before, all pdf’s are precomputed or cached after computation

during the simulation run. Because this has a one-time fixed cost, we analyze the

algorithm assuming that all pdf’s are precomputed. The random permutation

can be generated in O(M) time by a Knuth shuffle [18]. Each iteration of the

while loop takes O(1) time to sample a random variable from a distribution

(independent of the pdf size by building and indexing a table of the inverse of the

cdf) and update state variables. Because there are at most M−1 iterations of the

62

loop, the runtime of Algorithm Sample-Goodputs takes O(M) deterministic

time. Even the most efficient implementation of a packet level simulator would

take O(Mδ×bit-rate) because each packet-transmission by any station schedules

events in the other M−1 stations. This is the reason why TSS scales much better

with increasing bitrates.

63

Chapter 9

Conditional Distribution of New MAC State

So far we obtained the marginal per-station goodput distributions Pr(Ni(t)|Ci(t))

in Chapters 6 and 7, and presented a dependent sampling algorithm that uses

these marginal distributions to obtain the per-station goodputs in Chapter 8. To

complete the inductive step of TSS in each timestep, we need to update the MAC

state at t + δ, i.e., obtain Ci(t + δ).

In this chapter, we obtain the distribution Pr(Ci(t + δ)) of the new MAC

state given the old state Ci(t) and the goodput Ni(t) that was obtained after

accounting for correlation. We analyze the per-station attempt process in the

backoff timeline and obtain the distribution of the time instant of the last suc-

cessful packet transmission in the interval. Given the instant of the last successful

transmission, the distribution of the new state can be obtained by Bayes theorem.

9.1 Analysis with non-zero goodput

We first analyze the case Ni(t) 6= 0. Figure 9.1 shows the backoff timeline

interval [t′, t′ + δη]. In this backoff timeline, X∗

f is the backoff time to the first

success from the beginning of the interval. Likewise, X∗

l is the backoff time from

the last success to the end of the interval. Because Ni(t) 6= 0, X∗

f and X∗

l are

64

X f X l

t
f

X2X1 Xn−1

t
l

Y0 Y1

Backoff timeline

Last successful transmission of station iFirst successful transmission of station i

Time from last success

t ηδt+

Time to first success

Figure 9.1: Transmissions of a tagged station in the backoff timeline interval

[t′, t′ + ηδ] corresponding to the real timeline interval [t, t + δ]. A longer arrows

indicates a successful transmission, a shorter arrow failure.

well defined. Recall that we have already seen how to obtain the distribution of

the backoff time to the first success X∗

f given Ci(t) in Chapter 6. Our goal is to

obtain the distribution Pr(X∗

l |Ci(t), Ni(t)). Once this is done, we can obtain the

distribution of Ci(t + δ) given that X∗

l slots have been spent in backing off since

the last successful transmission.

We can rewrite Pr(Ni(t) = n|Ci(t)) as follows:

Pr(Ni(t) = n|Ci(t)) =

r=ηδ
∑

r=0

Pr(X∗

f = r|Ci(t))

s=ηδ−r
∑

s=0

f(r, s)

where

f(r, s) , Pr(X1 + · · ·+ Xn−1 = s)Pr(Xn > ηδ–r–s)

By Bayes’ theorem we have:

Pr(X∗

l = s|Ni(t) = n, Ci(t))

=

r=ηδ−s
∑

r=0

Pr(X∗

f = r|Ci(t))f(r, ηδ − r − s)

Pr(Ni(t) = n|Ci(t))

65

Suppose X∗

l = x. This means the total backoff Xn of the n + 1-th successful

transmission is greater than x. Recall the notation that Y1, · · · , YK are the the

backoff counter values chosen in successive transmission attempts of a tagged

packet, if there are successive transmission attempts at all. For Ci(t + δ) =

2c−1γ to occur after spending a backoff duration x from a reset state < Ci(t) =

0, Bi(t) = 0 >, we want c − 1 unsuccessful transmissions, Y1 + · · · + Yc to just

exceed x, and Y1 + · · ·+ Yc−1 should be less than x. Therefore, we have

Pr(Ci(t + δ) = 2c−1γ|X∗

l = x)

= pc−1Pr(Y1 + · · ·+ Yc−1 ≤ x ∧ Y1 + · · ·+ Yc > x)

Pr(Xn > x)

= pc−1Pr(Y1 + · · ·+ Yc−1 ≤ x)− Pr(Y1 + · · ·+ Yc ≤ x)

Pr(Xn > x)

Unconditioning on X∗

l yields Pr(Ci(t + δ)|Ci(t), Ni(t)).

9.2 Analysis with zero goodput

When Ni(t) = 0, as in Chapter 6, we approximate Bi(t) as the forward re-

currence time of Ci(t). Note that because the goodput is zero, the transmission

attempts, if any, are all unsuccessful. Specifically, if the station makes k un-

successful attempts, then the time spent for backoff in the timestep for the first

transmission is Bi(t). Now let backoff times for each of the remaining k − 1

attempts be Yi1 , Yi2, · · ·Yik−1
. The new Ci(t + δ) corresponds to Ci(t) and ik−1

unsuccessful attempts if Bi(t) + Yi1 + · · ·+ Yik−1
just exceeds ηδ. Thus the prob-

ability distribution of the new MAC state can be obtained by convolving the

distributions of the Yi’s and Bi(t) .

66

Chapter 10

The Timestepped Simulator

We describe how the analysis fits together as the TSS generates a sample

path. The pseudo-code of the simulator is shown in Algorithm TSS -WLAN .

The simulator initializes the state of all stations at t = 0 in line 2. The while

loop in line 4 iterates through sim-duration in timesteps of δ. The number of ac-

tive stations M is obtained in line 6 from either the simulation input or from the

outputs of higher layer protocols (e.g., TCP) making the WLAN output queues

non-empty. The corresponding collision probability is computed or looked up

from M in line 7. By looked up, we mean looked up from a cache that was popu-

lated either before the simulation began or during the simulation run itself. The

precomputation phase is possible because all required probability distributions

(Pr(NA(t)), Pr(Ni(t)|Ci(t)), Pr(Ci(t + δ)|Ni(t), Ci(t)) are parametrized easily

by δ and M (and other fixed protocol parameters like the initial contention win-

dow γ and the maximum number of attempts β).

Within each timestep, the following steps occur:

• NA(t) is sampled from its distribution in line 9.

• For each active station i, Pr(Ni(t)|Ci(t)) is obtained in 10.

67

TSS-WLAN(α, γ, δ)

� α : total stations

� γ : initial contention window

� δ : simulation timestep

1 t← 0

2 for i = 1 to α

3 Ci(t)← γ

4 while (t < sim-duration)

� All this is for interval [t , t + δ].

� We omit t everywhere for brevity except in line 14.

5 M← set of active stations

6 M ← |M| (number of active stations)

7 compute/look up collision probability p for M stations

8 compute/look up Pr(NA) using M, δ, p

9 NA ← sample from Pr(NA)

10 for each station i in M

11 compute/look up Pr(Ni|Ci) using M, δ, p

12 Sample-goodputs(N,M)

13 for each station i in M

14 compute/look up distribution of Pr(Ci(t + δ)|Ni(t), Ci(t)) and sample

15 t ← t + δ

68

• Algorithm Sample-goodputs is used to sample the goodput of each sta-

tion i in line 12.

• For each active station i, the distribution of Pr(Ci(t+δ)) is obtained given

Ci(t) and Ni(t) and sampled to obtain the new state. This is done in lines

13 through 14

Algorithm Sample-goodputs takes O(M) time. All further random sam-

pling for updating the MAC state can be done in O(M) time. Hence each iteration

of the while loop in line 4 takes O(M) time assuming that all pdf’s are precom-

puted. Because the precomputation of the pdf’s can be amortized over various

runs of the simulation, we do not consider the runtime for it. Thus the runtime of

Algorithm TSS-WLAN is O(M. sim-duration), which is independent of the

bit-rate.

69

Chapter 11

Runtime Speedup

Our main results are broadly along two directions: quantifying speedup and

validating accuracy. In this chapter, we quantify the speedup. Chapters 12 and

13 validate the accuracy of TSS against PLS.

Because the pdf’s required for TSS are precomputed using the transient anal-

ysis, we first quantify the cost for precomputation in (memory) space and time.

Then we compare the runtime improvement offered by TSS over PLS. For the

runtime of PLS, in addition to the actual runtime of the code, we include the time

to load the precomputed pdf’s from disk as well as the amortized precomputation

time.

11.1 Simulation setup

Because TSS models only the MAC layer, to insure a fair comparison of the

time taken for a simulation, we have implemented a simple 802.11 MAC layer

packet level simulator (PLS) instead of resorting to a full blown simulator such

as ns-2 [1]. This avoids the overheads of upper layer (routing, transport) as well

as lower layer (physical) events in ns-2 which TSS for 802.11 does not model. As

an illustration of ns-2 overheads, a simulation run of 1000 seconds for a scenario

70

of two constant bit rate (CBR) flows sharing one 802.11 channel takes about 4.5

seconds in our custom simulator with logging enabled, while ns-2 takes about 70

seconds with all logging disabled.

All simulations were carried on a machine with a 3.2GHz Pentium-4 processor

and 1.5Gb RAM running Red Hat Enterprise Linux release 3. We use a fixed

packet size of 1500 bytes including the MAC-layer overhead and the 802.11a

parameters: slot size of 9µs, SIFS of 16µs, data bitrate of 54Mbps, ACK bitrate

6Mbps, PHY-layer overhead of 20µs, and contention window ranging over the 7

values [16, 32, · · · , 1024] with 7 maximum attempts. Unless otherwise mentioned,

all stations always have packets to transmit in their output queues, i.e., M(t) is

constant, during the entire run of the simulation.

11.2 Precomputation costs in space and time

Using the transient analysis, for each tuple 〈M, Ci(t)〉, a table of tuples of

the form 〈Ni(t), pdfval〉 is obtained for Pr(Ni(t)|Ci(t)). Likewise, for each tuple

〈M, Ci(t), Ni(t)〉, a table of tuples of the form 〈Ci(t + δ), pdfval〉 is obtained for

Pr(Ci(t + δ)|Ni(t), Ci(t))). Because Ci(t) ranges over the standard seven val-

ues [16, · · · , 1024], for a fixed M , the sizes of all tables are determined by the

maximum value Ni(t) can take.

For a fixed M , let nm denote the maximum value of Ni(t) for which entries of

tables are computed. So the tables for Pr(Ni(t)|Ci(t)) have 7nm entries in all.

Likewise, the tables for Pr(Ci(t+ δ)|Ci(t), Ni(t)) have 7×nm×7 = 49nm entries

in all. Each entry in the table is stored as a double of size eight bytes. So the

space required is 400nm bytes. For M = 2, nm is about 130, and this yields a

space requirement of about 52000 bytes (in uncompressed form).

71

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 0 10 20 30 40 50 60 70

S
pa

ce
 (

by
te

s)

Number of active stations M

Space consumed in storing precomputed pdf’s (uncompressed)

Memory

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70

T
im

e(
se

cs
)

Number of active stations M

Time taken to precompute pdf’s

95% confidence intervals

Avg time

(b)

Figure 11.1: The space and time costs of precomputation of Pr(Ni(t)|Ci(t)) and

Pr(Ci(t + δ)|Ci(t), Ni(t)) for δ = 50ms with M varying in [2, 4, 8, · · · , 64].

72

Figure 11.1(a) shows the space requirement for pdf’s for δ = 50ms with M

varying in [2, 4, 8, · · · , 64]. Because nm decreases with increasing M , the space

required decreases with increasing M . A similar trend can be seen in Figure

11.1(b), which shows the time taken to precompute the pdf’s and store it to disk.

The space requirement is almost negligible compared to memory consumed

in typical packet level simulators, and the time requirement is a one-time cost

shared across all runs of a simulation scenario. Nevertheless, these costs can be

reduced by interpolating the pdf’s among the parameters M and Ni (Ci is likely

not a suitable candidate for interpolation for large M).

We note that nm increases with increasing δ, so the table sizes increase with

increasing δ. Even though the memory required is low, the nature of TSS allows

us to trade off space with time as follows: instead of precomputing tables for

large δ, precompute for, say, δ/2 and perform computation for two smaller sub-

timesteps of δ/2 before updating metrics for the required timestep of δ. This sort

of trade-off is very difficult, if not impossible, to achieve in PLS.

11.3 Runtime comparison

TSS for WLANs provides an improvement up to two orders of magnitude in

the runtime over PLS. Figure 11.2(a) shows the average time taken by both PLS

and TSS for a 1000s simulation run with M in [2, 4, 8, · · · , 64]. Figure 11.2(b)

shows the ratio of the runtimes for PLS and TSS. Each point plotted in Figure

11.2(a) and its associated 95% confidence interval is obtained from 100 runs. For

PLS, the curve is shown scaled down by a factor of 50 to enable visual comparison

with TSS. For TSS, the runtime includes the time taken to load precomputed

pdf’s from disk, and the time taken for precomputation is amortized over 100

73

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 10 20 30 40 50 60 70

T
im

e
(s

ec
on

ds
)

Number of active stations M

Time taken for 1000s simulation

PLS runtime/50
(with 95% intervals)

TSS runtime
(with 95% intervals)

1/50 of PLS runtime
TSS runtime

(a) Runtime of TSS and PLS for a 1000s simulation with M

varying in [2, 4, 8, · · · , 64]. Each point is an average of 100 runs.

For PLS, the runtime has been scaled down by a factor of 50

to enable visual comparison with TSS. For TSS, the runtime

includes the time taken to load precomputed pdf’s from disk,

and the time taken for precomputation is amortized over 100

runs.

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60 70

P
LS

 r
un

tim
e

/ T
S

S
 r

un
tim

e

Number of active stations M

Improvement in simulation runtime

Min ratio of runtimes (for 2 active stations M) = 5.9

Max ratio of runtimes (for 64 active stations M) = 233

(b) Ratio of PLS runtime to TSS runtime

74

runs. The PLS curve shows a linear increase in the runtime as expected. The

TSS curve shows a dip and then an increase. This is because the amortized time

to calculate precomputed pdf’s is significant compared to the actual simulation

loading time and runtime for smaller M ; once a threshold has been crossed in

M , the computational costs predominate. The trend in the TSS runtime curve

for smaller M is similar to the precomputation cost curves in Figures 11.1(b) and

11.1(a).

75

Chapter 12

Validation of TSS with Fixed Number of Active Stations

In this chapter, we validate 1) the transient analysis of 802.11; and 2) the

overall TSS technique for WLANs. For validation of the transient analysis of

802.11, we compare the conditional pdf’s, namely, Pr(Ni(t)|Ci(t)) and Pr(Ci(t+

δ)|Ni(t), Ci(t)). For validation of TSS, we compare an “internal” (to the method)

metric, namely, Ci(t) and an “external” metric, namely, Ni(t). Specifically, we

consider:

1. the pdf of Ci(t);

2. the autocorrelation function of the timeseries Ci(0), Ci(δ), · · · that captures

correlations across time;

3. the crosscorrelation function between the series Ci(0), Ci(δ), · · · and Cj(0), Cj(δ), · · ·

that captures correlations across stations.

The same three points of comparison are considered for the metric Ni(t) as well.

Note that the average delay in a timestep can be obtained as the inverse of Ni(t).

In addition, we also consider the pdf of the aggregate goodput NA(t).

Finally, a secondary result is presented in this chapter for a closed form ap-

proximation and analysis of the per-station collision probability as a function of

76

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

70 80 90 100 110 120 130 140 150

P
D

F

Number of packets in timestep of 50ms

PDF of NA(t)

M=32 M=8 M=2

PLS: M=2
Analysis: M=2

PLS: M=8
Analysis: M=8

PLS: M=32
Analysis: M=32

Figure 12.1: Comparison between empirically obtained pdf of NA(t) for t = 5s

and δ = 50ms for varying M . The deviations of NA(t) predicted by the analysis

are overestimates for M > 2 while for M = 2, it is an underestimate.

M .

12.1 Aggregate goodput distribution

We obtain the distribution of the instantaneous aggregate goodput for δ =

50ms through simulations and analysis. In each run of the simulation, the system

is “warmed up” for 5s from a “cold start” and then a sample of the instantaneous

aggregate goodput is obtained. We obtain the pdf of the instantaneous aggregate

goodput from the samples of 10000 such runs and the results comparing it with

analytically predicted distribution are shown in Figure 12.1.

We make the following observations:

• The distribution of NA(t) can be well approximated by a gaussian as pre-

dicted by the analysis.

77

• The means of the distributions obtained by simulation coincide almost ex-

actly with those obtained by analysis.

• The peaks (deviations) of the normal distributions obtained by simulations

are higher (lower) than those obtained by analysis; for M = 2 the scenario

is reversed.

The last observation can be explained as follows. For the analysis, we had

assumed that each throughput renewal in the global timeline is a failure with a

fixed probability independent of the past. In reality, there are two factors that

affect the variance, namely:

1 The size of an idle interval is positively correlated with the event that the

preceding throughput renewal(s) is a collision.

2 The event that a throughput renewal is a failure is negatively correlated

with the event that previous throughput renewal(s) is a failure.

Because a collision in a throughput renewal increases the contention windows

of at least two stations, it increases the range of values over which a minimum

is chosen for the next attempt thereby causing factor 1. For exactly the same

reason, a collision reduces the probability of future collisions, thereby causing

factor 2. Factor 1 increases the variance of the goodput renewal period over

that of completely independent idle intervals and transmission successes, whereas

factor 2 decreases the variance of the goodput renewal period. For M > 2,

factor 2 dominates over factor 1, thereby explaining why simulations yield lower

deviation. For M = 2, factor 1 dominates because after any collision, there are

no other stations whose backoff counters could be in a lower range.

78

We illustrate these correlation factors through simulations. On some sample

path, let I1, I2, . . . denote the idle intervals in some sample path of the system,

and let F1, F2, . . . be indicator random variables such that Fi is 1 iff the the

transmission preceding Ii is a failure. Figure 12.2 shows the cross-correlation

function between the sequences {Ii} and {Fi}. The peak at lag 1 illustrates

factor 1. Figure 12.3 shows the autocorrelation function of the sequence {Fi}

obtained over 1000000 samples for varying M . As can be seen, there is negative

correlation over a significant lag, illustrating factor 2.

12.2 Conditional distributions of per-station goodput and

MAC state

We now consider the distributions Pr(Ni(t)|Ci(t)) and Pr(Ci(t+δ)|Ni(t), Ci(t)).

For each value of M , we do 100000 simulation runs with M constant throughout

the simulation runs. In each simulation run, at t = 5s and δ = 50ms, a sample

of Ni(t), Ci(t), and Ci(t+ δ) is obtained. From 100000 samples from 100000 such

runs, a frequency distribution of Ni is obtained for each fixed Ci as an estimate of

the conditional probability distribution Pr(Ni|Ci). From this same set of sam-

ples, a conditional distribution of Ci(t + δ) given Ci(t), Ni(t) is also obtained.

This entire exercise is repeated for varying values of M .

Figure 12.4(a) shows the PDF Pr(Ni|Ci) for smaller contention windows for

varying M . The pdf’s do not match exactly because of our approximation in

obtaining the random total backoff in an interval [t, t + δ] by a constant ηδ.

However, the accuracy improves with increasing M . For two stations, the distri-

bution is almost normal. While the mean matches, the deviation doesn’t quite

match; this is due to the small lag correlations as explained before. As M and

79

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 6 11 16

C
ro

ss
co

rr
el

at
io

n
F

un
ct

io
n

Lag

Crosscorrelation between {Fi} and {Ii}

Number of stations-2
Number of stations-8

Number of stations-32

Figure 12.2: Crosscorrelation function between sequences {Ii} and {Fi} obtained

over 1000000 samples for each M

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

1 5 9 13 17

A
ut

oc
or

re
la

tio
n

F
un

ct
io

n

Lag

Autocorrelation of {Ii}

Number of stations-2
Number of stations-8

Number of stations-32

Figure 12.3: Autocorrelation function of Ii sequence obtained over obtained over

1000000 samples for each M . At lag 0, the function is exactly 1 and not shown

in the figure.

80

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 10 20 30 40 50 60 70 80

P
D

F
 o

f N
i(t

)|
C

i(t
)

Number of packets in timestep of 50ms

PDF of Ni(t)|Ci(t)

M=2
Ci(t)=16

M=4
Ci(t)=32

M=8
Ci(t)=32

PLS: M = 2	, Ci(t) = 16
Analysis: M = 2	, Ci(t) = 16

PLS: M = 4	, Ci(t) = 32
Analysis: M = 4	, Ci(t) = 32

PLS: M = 8	, Ci(t) = 32
Analysis: M = 8	, Ci(t) = 32

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20 25 30 35 40

P
D

F
 o

f N
i(t

)|
C

i(t
)

Number of packets in timestep of 50ms

PDF of Ni(t)|Ci(t)

M=16,Ci(t)=1024

M=8,Ci(t)=256
M=32,Ci(t)=16

PLS: M = 8	, Ci(t) = 256
Analysis: M = 8	, Ci(t) = 256

PLS: M = 16	, Ci(t) = 1024
Analysis: M = 16	, Ci(t) = 1024

PLS: M = 32	, Ci(t) = 16
Analysis: M = 32	, Ci(t) = 16

(b)

Figure 12.4: PDF of Ni(t)|Ci(t) for various values of Ci(t) and varying M .

81

contention window size increase, the goodput starts deviating from normal sig-

nificantly with an increased probability of zero instantaneous goodput. The anal-

ysis captures this trend as can be seen in Figure 12.4(b). We also note that

Pr(Ni(t) = 0|Ci(t) = 1024) for M = 16 is much higher (around 0.45) than

Pr(Ni(t) = 0|Ci(t) = 16) for M = 32 (around 0.075) illustrating the short-term

unfairness; even though the number of active stations is doubled (i.e. M = 32),

the probability of zero goodput is much lower (than for M = 16) because of a

favorable contention window (in this case 16).

Figures 12.5(a) and 12.5(b) shows the distribution of Ci(t+ δ)|Ni(t), Ci(t) for

varying values of M, Ni(t), and Ci(t). Figure 12.5(a) covers low values of Ci(t)

while Figure 12.5(b) shows the same distribution for relatively higher values. The

accuracy is quite good for both Ni(t) = 0 as well as Ni(t) 6= 0, thereby validating

both cases of the analysis in Chapter 9.

12.3 Unconditional distributions of per-station goodput

and MAC state

We now compare the unconditional distributions of Ni(t) and Ci(t). As can

be seen from Figures 12.6(b) and 12.6(a), the distribution of Ni(t) as obtained

from TSS is very close to that obtained from PLS except for a large M (e.g.,

64) where it overestimates the time with zero goodput (and underestimates the

others). This is because TSS overestimates the probability of Ci(t) being high

for large M ; the reason for this is explained in the next paragraph.

Next, we compare the distribution of Ci(t) obtained by both TSS and PLS

in Figures 12.7(a) and 12.7(b). Note that this distribution so obtained is an

approximation of the frequency distribution of the time spent by the tagged

82

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1024512256128643216

P
D

F

Ci(t+δ) in slots (in logarithmic scale)

PDF of Ci(t+δ)|Ci(t),Ni(t)

M=2,Ci(t)=16

M=8,Ci(t)=32

M=32,Ci(t)=16

PLS: M=2,Ci(t)=16,Ni(t)=70
Analysis:M=2,Ci(t)=16,Ni(t)=70

PLS: M=8,Ci(t)=32,Ni(t)=20
Analysis:M=8,Ci(t)=32,Ni(t)=20

PLS: M=32,Ci(t)=16,Ni(t)=4
Analysis:M=32,Ci(t)=16,Ni(t)=4

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1024512256128643216

P
D

F

Ci(t+δ) in slots (in logarithmic scale)

PDF of Ci(t+δ)|Ci(t),Ni(t)

M=32,Ci(t)=1024

M=32,Ci(t)=16

M=8,Ci(t)=128

PLS: M=8,Ci(t)=128,Ni(t)=0
Analysis:M=8,Ci(t)=128,Ni(t)=0

PLS: M=16,Ci(t)=64,Ni(t)=0
Analysis:M=16,Ci(t)=64,Ni(t)=0
PLS: M=32,Ci(t)=1024,Ni(t)=1

Analysis:M=32,Ci(t)=1024,Ni(t)=1

(b)

Figure 12.5: PDF of Ci(t+δ)|Ni(t), Ci(t) for various values of Ci(t),Ni(t),and M .

83

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 10 20 30 40 50 60 70

P
D

F

Packets in timestep

Distribution of Ni(t)

M=4M=8

PLS: M=4
TSS: M=4
PLS: M=8
TSS: M=8

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5 10 15 20 25 30

P
D

F

Packets in timestep

Distribution of Ni(t)

M=16

M=64

PLS: M=16
TSS: M=16
PLS: M=64
TSS: M=64

(b)

Figure 12.6: Distribution of unconditional Ni(t)

84

station in each possible value of the contention window. When M is low, TSS

tracks the trend quite accurately. However, when M is very high (e.g., 64) TSS

overestimates the time spent in high backoff states (e.g., Ci = 1024), which

are more likely with more stations. This is because we track only Ci(t) and

approximate Bi(t) by the forward recurrence time. Suppose Ci(t) = 1024 and that

Ni(t) was probabilistically chosen to be zero in some timestep [t, t + δ] according

to the algorithm. With high probability Ci(t + δ) = Ci(t), i.e., there were no

transmissions and the state is unchanged. Now note that Pr(Ni(t+ δ)|Ci(t+ δ))

is the same as Pr(Ni(t)|Ci(t)), i.e., there is no credit for the backoff duration of

the timestep [t, t + δ]. This would have been modeled if Bi(t) was also tracked

and used in obtaining Pr(Ni(t)|Ci(t), Bi(t)) instead of just being approximated

as Pr(Ni(t)|Ci(t)). Thus TSS overestimates the frequency of Ci(t) being high for

high M , and therefore it also overestimates the frequency of a station obtaining

zero goodput as observed in the previous paragraph.

12.4 Comparing sample paths

We now compare sample paths generated by TSS and PLS for statistical

similarity. To do this, we obtain one single sample path of the system for a run of

10000 seconds both by TSS and PLS for a fixed M . Like before, all comparisons

are repeated for varying values of M .

In a fixed sample path, we compare how TSS handles the correlations both

across time for a tagged station as well across stations at a given timestep. To

do this, we obtain the autocorrelation function for the per-station goodput time-

series, i.e., Ni(0), Ni(δ), Figures 12.8(a) and 12.8(b) show the autocorrelation

function obtained from TSS and PLS. TSS tracks the correlation in Ni across time

85

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1024512256128643216

P
D

F

Ci(t) in slots(in logarithmic scale)

Distribution of Ci(t)

M=8

M=4

M=2
PLS: M=2
TSS: M=2
PLS: M=4
TSS: M=4
PLS: M=8
TSS: M=8

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

1024512256128643216

P
D

F

Ci(t) in slots(in logarithmic scale)

Distribution of Ci(t)

M=16

M=64

PLS: M=16
TSS: M=16
PLS: M=64
TSS: M=64

(b)

Figure 12.7: Distribution of Ci(t) for varying values of M .

86

for a tagged station well for small M . For higher M , while the exact values do not

match as well, TSS captures the trend in the autocorrelation function. The reason

for this mismatch can be seen in Figures 12.9(a) and 12.9(b), which compare the

autocorrelation function of the timeseries Ci(0), Ci(δ), · · · for a tagged station

i. For high M (e.g., 64), TSS does not track the negative correlation between

successive samples of Ci in a sample path at higher lags (e.g., 2 through 6).

This is because, as mentioned before, the remaining backoff time Bi(t) is being

approximated depending on Ci(t).

Next, we consider the crosscorrelation function computed between the good-

put samples of two tagged stations i and j, i.e., between the timeseries Ni(0), Ni(δ), Ni(2δ), · · ·

and Nj(0), Nj(δ), Nj(2δ), · · · . As can be seen in Figures 12.10(a) and 12.10(b),

the method to ensure negative correlation between goodputs works well for vary-

ing M including larger values. Finally, we consider the crosscorrelation between

the timeseries Ci(0), Ci(δ), · · · and Cj(0), Cj(δ), · · · for the contention windows of

two tagged stations i and j in Figures 12.11(b) and 12.11(a). The curves match

except for the case M = 2 when the Ci and Cj are positively correlated (because

the two stations can collide only with each other) which TSS doesn’t track.

12.5 Per-station collision probability

References [3, 8, 20, 29] all provide a formula for computing the per-station

collision probability as an implicit function of M . While one can use a fixed point

iteration to obtain the per-station collision probability from the implicit function

of M , we are interested in a simple closed-form expression. We obtained the per-

station collision probability as a function of M for varying M by PLS and used

MATLAB to fit the curve 0.1519 log(M)+ 0.0159. Figure 12.12 shows the curves

87

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

A
ut

oc
or

re
la

tio
n

fu
nc

tio
n

Lag (in timesteps)

Autocorrelation function of Ni(0), Ni(δ), Ni(2δ),... in one sample path

M=8

M=2

M=4

PLS: M=2
TSS: M=2
PLS: M=4
TSS: M=4
PLS: M=8
TSS: M=8

(a)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

A
ut

oc
or

re
la

tio
n

fu
nc

tio
n

Lag (in timesteps)

Autocorrelation function of Ni(0), Ni(δ), Ni(2δ),... in one sample path

M=64

M=16

PLS: M=16
TSS: M=16
PLS: M=64
TSS: M=64

(b)

Figure 12.8: Autocorrelation function obtained from samples

Ni(0), Ni(δ), Ni(2δ), · · · of one sample path for various values of M .

88

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

A
ut

oc
or

re
la

tio
n

fu
nc

tio
n

Lag (in timesteps)

Autocorrelation function of Ci(0), Ci(δ), Ci(2δ),...

M=8

M=2

M=4

PLS: M=2
TSS: M=2
PLS: M=4
TSS: M=4
PLS: M=8
TSS: M=8

(a)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

A
ut

oc
or

re
la

tio
n

fu
nc

tio
n

Lag (in timesteps)

Autocorrelation function of Ci(0), Ci(δ), Ci(2δ),...

M=64

M=16

PLS: M=16
TSS: M=16
PLS: M=64
TSS: M=64

(b)

Figure 12.9: Autocorrelation function obtained from samples

Ci(0), Ci(δ), Ci(2δ), · · · of one sample path for various values of M .

89

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0 2 4 6 8 10

C
ro

ss
co

rr
el

at
io

n
fu

nc
tio

n

Lag (in timesteps)

Crosscorrelation function between {Ni} and {Nj}

M=2

M=4

M=8

PLS: M=2
TSS: M=2
PLS: M=4
TSS: M=4
PLS: M=8
TSS: M=8

(a)

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0 2 4 6 8 10

C
ro

ss
co

rr
el

at
io

n
fu

nc
tio

n

Lag (in timesteps)

Crosscorrelation function between {Ni} and {Nj}

M=16

M=64

PLS: M=16
TSS: M=16
PLS: M=64
TSS: M=64

(b)

Figure 12.10: Crosscorrelation function obtained from samples

Ni(0), Ni(δ), Ni(2δ), · · · and Nj(0), Nj(δ), Nj(2δ), · · · of one sample path

for varying values of M .

90

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0 2 4 6 8 10

C
ro

ss
co

rr
el

at
io

n
fu

nc
tio

n

Lag (in timesteps)

Crosscorrelation function between {Ci} and {Cj} in one sample path

M=16

M=64

PLS: M=16
TSS: M=16
PLS: M=64
TSS: M=64

(a)

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 2 4 6 8 10

C
ro

ss
co

rr
el

at
io

n
fu

nc
tio

n

Lag (in timesteps)

Crosscorrelation function between {Ci} and {Cj} in one sample path

M=2

M=8

PLS: M=2
TSS: M=2
PLS: M=8
TSS: M=8

(b)

Figure 12.11: Crosscorrelation function obtained from samples

Ci(0), Ci(δ), Ci(2δ), · · · and Cj(0), Cj(δ), Cj(2δ), · · · of one sample path for

various values of M .

91

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60 70 80 90 100

P
er

-s
ta

tio
n

co
lli

si
on

 p
ro

ba
bi

lit
y

p

Number of active stations M

95% lower interval (PLS)

95% upper interval (PLS)

PLS
alog(M)+b

Figure 12.12: p(M) from simulations and an analytical fit of 0.1519 log(M) +

0.0159 for various values of M and β = 7. The 95% confidence interval of each

simulation point is within 2% of the mean.

obtained by both simulation and the logarithmic fit for M = 1..100. In one run of

the simulation, all M stations were active throughout an interval of length 100s

and a tagged station’s collision rate was obtained as a sample of the per-station

collision probability for that run. Each point on the simulation curve is an average

of 100 such runs. The 95% confidence interval of each simulation point is within

2% of the mean. Figure 12.13 compares the fit of min(0.1519 log(M) + 0.0159, 1)

with simulations for M = {100, 200, . . . , 1000}. The two curves diverge above

400 stations around p = 0.93, the simulation based curve goes to one slower than

the analytical fit.

We consider the question “Why does a logarithmic fit work?” in the appendix.

Briefly, reference [3] obtains a closed form expression for the per-station collision

probability when β →∞ using the Lambert functionW (W(c) = x s.t. xex = c).

We extend this work and present an approximate analysis for the per-station

92

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 100 200 300 400 500 600 700 800 900 1000

P
er

-s
ta

tio
n

co
lli

si
on

 p
ro

ba
bi

lit
y

p

Number of active stations M

95% upper interval (PLS)

95% lower interval (PLS)

PLS
min(alog(M)+b,1)

Figure 12.13: p(M) from simulations and an analytical fit of min(0.1519 log(M)+

0.0159, 1.0) for M = {100, 200, . . . , 1000} and β = 7. The two curves diverge after

M = 400 stations at a per-station collision probability greater than 0.935.

collision probability with finite β. The logarithmic fit works because it fits the

expression involving the Lambert function that occurs in the function p(M).

93

Chapter 13

Validation of TSS with Varying Number of Active

Stations

In the previous chapter, we evaluated the accuracy of TSS by comparison

against PLS with the number of active stations being fixed throughout a sim-

ulation scenario. In this chapter, we evaluate the accuracy of TSS again by

comparison against PLS with the number and the set of active stations varying

across time. First, we present an example, where the variations are simple. Then,

we present an example where the complex variations are randomly chosen.

13.1 Simple variations in set of active stations

We now consider an example where M deterministically varies over time. We

allow the number of active stations to vary during a simulation run and compare

the ensemble metrics predicted by TSS and PLS. Each run of this simulation lasts

for 100s and the M is initially 32. M is halved at 25s,50s,and 100s eventually

leading to two active stations. Note that a station that becomes inactive remains

so throughout the simulation run. The time evolution of the ensemble mean and

deviation of Ni(t) of a tagged station i is obtained as an average over 1000 such

runs. The evolution of E[Ni(t)] is shown in Figure 13.1(a) and the evolution of

94

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70 80 90 100

E
[N

i(t
)]

 (
pa

ck
et

s/
tim

es
te

p)

Time (secs)

Ensemble mean of Ni(t)

PLS
TSS

 6

 11

 16

 49.8 50 50.2

(a)

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60 70 80 90 100

D
ev

[N
i(t

)]
 (

pa
ck

et
s/

tim
es

te
p)

Time (secs)

Ensemble deviation of Ni(t)

PLS
TSS

 6

 11

 49.8 50 50.2

(b)

Figure 13.1: Time evolution of the ensemble mean and deviation of Ni(t) for a

tagged station i with time-varying M . After every 25s, M is halved.

95

Dev[Ni(t)] is shown in Figure 13.1(b). TSS captures the ensemble mean accu-

rately for all M , while it does not capture the ensemble deviation accurately for

M = 2 (the time interval from 75s through 100s). A zoomed-in version of curves

around the transition point at 50s is shown; TSS shows the same trend as PLS

in the very next timestep.

13.2 Complex variations in set of active stations

We now evaluate the performance of TSS where a station is randomly ac-

tive/inactive. Specifically, we consider a WLAN of 9 stations. Stations 1 through

8 are active for a random period chosen from Uniform[0, 200] timesteps and are

inactive for a random period chosen from Uniform[0, 100]; these periods alternate

for the duration of the simulation. Station 9 is always active; this is done to en-

sure that there are at least two active stations at any point during the simulation

run. An activity pattern is generated given this model for a a total duration of

20000 timesteps (corresponding to 1000s). Given this activity pattern, 1000 runs

of PLS and TSS are executed and performance metrics obtained.

13.3 Activity pattern

Figure 13.2(a) shows the number of active stations as a function of time for

the entire 20000 timesteps, while Figure 13.2(b) shows the same for the first

2000 timesteps (for which ensemble curves are obtained later). In this activity

pattern, the (sample path) average number of active stations in a timestep is

6.35 (with a deviation of 1.29), which can be explained as follows. Neglecting

the initial transient (when all stations are active to start with), by the renewal-

96

rewards theorem [56, 39], the probability of a station being active in any timestep

is 2/3 because of the expected active/inactive periods. For stations 1 through

8, by independence of the station’s activities, the number of active stations is

binomially distributed with parameters B(8, 2/3). Because station 9 is always

active, the expectation of the number of the total active stations is 5.33+1 = 6.33

and its deviation is 1.33, which closely matches what is observed.

13.4 Sample path metrics - Aggregate

All sample path metrics are obtained over one long-run of 20000 timesteps For

instance, the sample path averaged distribution of NA is computed from samples

NA(0), NA(δ), · · · , NA(19999) Unless otherwise, mentioned the tagged station is

the one with id 1, i.e., it is a station that has varying activity.

First, we consider the aggregate goodput NA. The sample path averaged

distribution is shown in Figure 13.3(a) for both PLS and TSS. There is a very

good match between TSS and PLS. The distribution of NA appears gaussian

even though it is sample path averaged and doesn’t have a stationary number

of active stations. This result can be explained as follows. For a given t, NA(t)

is a gaussian distribution determined by the number of active stations. For a

sample path, the distribution of NA is a compound distribution. Specifically, it

is a gaussian mixture distribution where the mixing parameters are determined

by the time-varying number of active stations. The number of active stations is

between 2 and 9 with the corresponding gaussian means of 137 packets/timestep

through 122 packets/timestep and deviations of 3.62 packets/timestep and 3.98

packets/timestep. As we saw in Chapter 7, gaussian mixture distributions that

are close in mean and deviation can be approximated well by a single gaussian

97

 2

 3

 4

 5

 6

 7

 8

 9

 0 4000 8000 12000 16000 20000

N
um

be
r

of
 a

ct
iv

e
st

at
io

ns

Time (timesteps)

Number of active stations

(a)

 3

 4

 5

 6

 7

 8

 9

 0 400 800 1200 1600 2000

N
um

be
r

of
 a

ct
iv

e
st

at
io

ns

Time (timesteps)

Number of active stations

(b)

Figure 13.2: Number of active stations as a function of time in the random activity

pattern.

98

distribution with a suitable mean and deviation. Hence, the time-averaged ag-

gregate goodput distribution is gaussian.

The autocorrelation function of NA(t) is shown in Figure 13.3(b). It exhibits

a cyclic dependency which decays over time. This behavior can be explained as

follows. The aggregate goodput in a timestep is essentially determined by the

number of active stations. The number of active stations, in turn, is determined

by the superposition of the activity patterns of all stations. The activity of

each station is determined by a renewal process with a renewal period whose

expectation is 300 timesteps (200 for active and 100 for inactive). Thus the

aggregate goodput has a dependency which can extend to a lag of 300 timesteps,

which seems to be observed in the autocorrelation of the aggregate goodput with

the peaks being separated by 300 timesteps.

13.5 Sample path metrics - Per-station

We next consider the per-station goodput Ni(t). Figure 13.4 shows the sam-

ple path averaged distribution of the per-station goodput Ni for i = 1. This

distribution is obtained from samples through one run, i.e., it is a time-averaged

distribution. The match between PLS and TSS for the distribution of Ni is ex-

cellent. The probability of zero goodput is about 0.37, which can be explained

as follows. The station is inactive for about 1/3 the time, and 0.04 comes from

contending with “5.3” active stations on average (as explained in Section 13.3).

Figure 13.5 shows the autocorrelation function of a tagged station’s (station 1)

goodput in one sample path. The correlation are determined by two factors: one,

the semi-markovian nature of the arrivals, and two, the MAC level interactions.

Specifically, the cyclic nature of the crosscorrelation is due to the alternation of

99

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 105 110 115 120 125 130 135 140 145 150

P
D

F

Number of packets in timestep of 50ms

PDF of NA

PLS
TSS

(a)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

A
ut

oc
or

re
la

tio
n

fu
nc

tio
n

Lag (timesteps)

Autocorrelation function of NA(0), NA(δ), NA(2δ),... in one sample path

PLS
TSS

(b)

Figure 13.3: Time-averaged distribution of NA(t) and its autocorrelation function

computed over one long run of 20000 timesteps.

100

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 10 20 30 40 50

P
D

F

Number of packets in timestep of 50ms

PDF of Ni

PLS
TSS

Figure 13.4: Sample path averaged PDF of the instantaneous per-station goodput

Ni(t) for i = 1 computed over 20000 samples from one run.

the active/inactive periods. As can be seen in the figure, the numbers predicted

by TSS are in close agreement to those of PLS.

Figure 13.6 shows the crosscorrelation between two tagged stations, in this

case, stations 1 and 2; this, too, is obtained from one sample path. Again, the

crosscorrelation is determined by two factors: one, the semi-markovian nature of

the arrivals, and two, the MAC level negative correlations. At lag 0, the negative

correlation is pronounced, i.e., if two stations are active in the same timestep, then

their goodputs are negatively correlated as expected. At low lags, the numbers

predicted are visually indistinguishable between PLS and TSS (e.g, at lag 0, TSS

predicts −0.1612 while PLS predicts −0.1603), while at higher lags, the numbers

are in close agreement with each other.

Figure 13.7 shows the sample path averaged distribution of the contention

window Ci for i = 1. The curves do not match exactly. Specifically, TSS over-

estimates Pr(Ci(t) = 16). The reason for this behavior is as follows. When a

101

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

A
ut

oc
or

re
la

tio
n

fu
nc

tio
n

Lag (timesteps)

Autocorrelation function of Ni(0), Ni(δ), Ni(2δ),... in one sample path

PLS
TSS

Figure 13.5: Autocorrelation function obtained from samples

Ni(0), Ni(δ), Ni(2δ), · · · of one sample path for i = 1.

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0 100 200 300 400 500 600 700 800 900 1000

C
ro

ss
co

rr
el

at
io

n
fu

nc
tio

n

Lag (timesteps)

Crosscorrelation function between {Ni} and {Nj}

PLS
TSS

Figure 13.6: Crosscorrelation function obtained from samples

Ni(0), Ni(δ), Ni(2δ), · · · and Nj(0), Nj(δ), · · · of one sample path for i = 1, j = 2.

102

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1024512256128643216

P
D

F

Contention window (in slots)

PDF of Ci

PLS
TSS

Figure 13.7: Sample path averaged PDF of the contention window Ci for i = 1

computed over 20000 samples from one run.

station i becomes inactive at the boundary of a timestep, TSS resets the con-

tention window Ci(t) of the station to be 16 immediately at the boundary of the

timestep. However, PLS does not updates the Ci(t) even if it became inactive till

the current ongoing transmission either results in a success or is aborted well into

the next timestep. Because the distribution Ci(t) is obtained only from samples

at the boundaries of timesteps (and not over all time), the TSS distribution is

skewed from the actual computed by PLS. This can be confirmed by examining

the ensemble-averaged curves for the distribution of Ci(t) for t = 20s and t = 40s

in Figures 13.18 and 13.19 respectively on page 111. There is no change in ac-

tivity at these two time instants for station i. Consequently, there is a very close

match between PLS and TSS.

Figure 13.8 show the crosscorrelation of the contention windows of two tagged

stations Ci and Cj. Figure 13.9 and autocorrelation of the contention window

Both figures have TSS values that do not completely match with those of PLS.

103

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

A
ut

oc
or

re
la

tio
n

fu
nc

tio
n

Lag (timesteps)

Autocorrelation function of Ci

PLS
TSS

Figure 13.8: Autocorrelation function obtained from samples

Ci(0), Ci(δ), Ci(2δ), · · · of one sample path for stations with random activ-

ity.

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0 100 200 300 400 500 600 700 800 900 1000

C
ro

ss
co

rr
el

at
io

n
fu

nc
tio

n

Lag (timesteps)

Crosscorrelation function between {Ci} and {Cj} in one sample path

PLS
TSS

Figure 13.9: Autocorrelation and crosscorrelation function obtained from samples

Ci(0), Ci(δ), Ci(2δ), · · · and Cj(0), Cj(1), · · · of one sample path for stations with

random activity.

104

The reason, as explained before, is that TSS overestimates Pr(Ci(t) = 16). How-

ever, the trend in PLS is captured by TSS for the autocorrelation function, while

the crosscorrelation function seems to indicate that there is not much dependence

between the Ci(t) and Cj(t) timeseries.

13.6 Ensemble metrics - Aggregate

We now consider the ensemble metrics for t = 20s and 40s. The ensem-

ble means, deviations, and distributions were obtained from 1000 samples corre-

sponding to 1000 different simulation runs by both TSS and PLS for i = 1. At

t = 20s and t = 40s, there were 6 and 5 active stations respectively.

Figures 13.10 and 13.11 show the ensemble mean and deviation of the in-

stantaneous aggregate goodput NA(t) as a function of time for the first 100s or

2000 timesteps. The curve obtained for TSS is consistently off from that of PLS

by an insignificant value; we believe this is due to minor inaccuracies from the

analytical approximations. Note that this curve is almost a (scaled and inverted)

mirror-image of the number of active stations that is shown in Figure 13.2(b).

The ensemble deviation computed by TSS also matches that of PLS reasonably

well. The seemingly significant difference is due to the small scale of the Y-axis of

Figure 13.11, but the relative difference in the ensemble deviation in comparison

to the ensemble mean is trivial.

Figures 13.12 and 13.13 show the pdf of the instantaneous aggregate goodput

NA(t) at t = 20s and t = 40s. Note that the mean of NA(t) at t = 20s is about

125 packets/timestep and lower than the mean at t = 40s which is about 130

packets/timestep. This is in line with the number of active stations; an decrease

in the number of active stations (from 6 to 5) causes the increase in aggregate

105

 118

 120

 122

 124

 126

 128

 130

 132

 134

 136

 0 400 800 1200 1600 2000

E
[N

A
(t

)]
 P

kt
s/

tim
es

te
p

Time in timesteps of 50ms

Ensemble mean of NA(t)

PLS
TSS

Figure 13.10: Ensemble mean of the instantaneous aggregate goodput E[NA(t)]

as a function of time. Each point is computed over 1000 runs.

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 4.6

 0 400 800 1200 1600 2000

D
ev

[N
A
(t

)]
 P

kt
s/

tim
es

te
p

Time in timesteps of 50ms

Ensemble dev of NA(t)

PLS
TSS

Figure 13.11: Ensemble deviation Dev[NA(t)] of the instantaneous aggregate

goodput. Each point is computed over 1000 runs.

106

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 110 115 120 125 130 135 140 145 150

P
D

F

Number of packets in timestep of 50ms

PDF of NA(t) for t=20s (400 timesteps)

PLS
TSS

Figure 13.12: Ensemble PDF of NA(t) at t = 20s computed over 1000 runs.

goodput. The distributions look gaussian for reasons explained before.

13.7 Ensemble metrics - Per-station

Figure 13.14 shows the ensemble mean of the instantaneous goodput of one

tagged station as a function of time; Figure 13.15 shows the corresponding ensem-

ble deviation. The ensemble average which was obtained over 1000 runs shows a

close correspondence between the values predicted by TSS and PLS for the mean;

they are visually indistinguishable. The deviation for PLS differs slightly from

TSS, but the trend is captured effectively by TSS.

Figures 13.18 and 13.19 show the pdf of the contention window Ci(t) at t = 20s

and t = 40s. The curves show an excellent match between PLS and TSS. Note

that, as explained before, this explains the apparent discrepancy in the sample-

path averaged distribution of Ci(t) that is shown in Figure 13.7. Thus TSS tracks

107

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 110 115 120 125 130 135 140 145 150

P
D

F

Number of packets in timestep of 50ms

PDF of NA(t) for t=40s (800 timesteps)

PLS
TSS

Figure 13.13: Ensemble PDF of NA(t) at t = 40s computed over 1000 runs.

 0

 5

 10

 15

 20

 25

 30

 35

 0 400 800 1200 1600 2000

E
[N

i(t
)]

 P
kt

s/
tim

es
te

p

Time in timesteps of 50ms

Ensemble mean of Ni(t)

PLS
TSS

Figure 13.14: Ensemble mean of the instantaneous per-station goodput Ni(t) for

i = 1 versus time computed across 1000 runs.

108

 0

 2

 4

 6

 8

 10

 12

 14

 0 400 800 1200 1600 2000

D
ev

[N
i(t

)]
 P

kt
s/

tim
es

te
p

Time in timesteps of 50ms

Ensemble dev of Ni(t)

PLS
TSS

Figure 13.15: Ensemble deviation of the instantaneous per-sta goodput Ni(t) for

i = 1 versus time computed across 1000 runs.

the contention window accurately.

Figures 13.16 and 13.17 show the pdf of the per-station goodput Ni(t) at

t = 20s and t = 40s respectively. The means of the distributions are 15.61 and

26.11 respectively. The increase in the per-station mean is due to the decrease

in the number of active stations from 6 to 5. At t = 20s and t = 40s, station 1

is active, therefore probability of zero-goodput in those timesteps is only due to

the MAC level interactions. These probability values of 0.074 and 0.024 are in

line with the number of active stations.

Note that once a precomputed pdf is loaded from disk into memory by TSS,

it is cached. Thus repeated loading of precomputed pdf’s is avoided. The av-

erage time taken for one 1000s PLS run was 40.28s while for TSS it was 1.35s

including the amortized pre-computation time and the full time for loading the

precomputed pdf’s from the disk for each simulation run.

109

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 5 10 15 20 25 30 35 40 45 50

P
D

F

Number of packets in timestep of 50ms

PDF of Ni(t) for t=20s (400 timesteps)

PLS
TSS

Figure 13.16: Ensemble PDF of the instantaneous per-sta goodput N1(t) at t =

20s computed over 1000 runs.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 5 10 15 20 25 30 35 40 45 50

P
D

F

Number of packets in timestep of 50ms

PDF of Ni(t) for t=40s (800 timesteps)

PLS
TSS

Figure 13.17: Ensemble PDF of the instantaneous per-sta goodput N1(t) at t =

40s computed over 1000 runs

110

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

1024512256128643216

P
D

F

Contention window (in slots, log scale)

PDF of Ci(t) at t=20s (400 timesteps)

PLS
TSS

Figure 13.18: Ensemble PDF of the instantaneous contention window C1(t) at

t = 20s computed over 1000 runs.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1024512256128643216

P
D

F

Contention window (in slots, log scale)

PDF of Ci(t) at t=40s (800 timesteps)

PLS
TSS

Figure 13.19: Ensemble PDF of the instantaneous contention window C1(t) at

t = 40s computed over 1000 runs.

111

Chapter 14

Conclusion and future work

Performance evaluation of computer networks is crucial. Analytical meth-

ods of performance evaluation are unable to adequately handle state dependent

control mechanisms. Packet-level simulation, the de facto standard for perfor-

mance evaluation, does not scale with increasing network size and workloads.

Timestepped Stochastic Simulation (TSS) was previously developed as an al-

ternative to packet-level simulation for point-to-point networks. This method

generates sample paths of system state and instantaneous metrics over discrete

timesteps, rather than at every packet arrival or departure. Because TSS updates

the system state at timesteps, it is much faster than packet-level simulation. Be-

cause TSS generates sample paths, it can model state-dependent control accu-

rately. This dissertation extends TSS for the case of shared links, specifically,

802.11 DCF based links. The key challenge is the combination of random access

and history based scheduling. These factors cause short-term correlations across

time and stations that need to be captured for accurate performance evaluation.

This dissertation presented a transient analysis of 802.11 and its application

for TSS of WLANs, accounting for all the short-term correlations. The workload

assumed that the number of active stations within an timestep remained constant.

112

First, the distribution of the aggregate goodput NA(t) was obtained. Next, we

considered a tagged station within a timestep and obtained the conditional pdf

of its instantaneous goodput Ni(t) in the timestep conditioned on the MAC state

Ci(t) at the beginning of the timestep. Then, we obtained the conditional distri-

bution of the new MAC state Ci(t + δ) conditioned on the old MAC state Ci(t)

and Ni(t). All the analysis for these marginal distributions assumed that the

rest of the stations’ activity can be modeled by a constant collision probability

for each attempt determined by the number of active stations irrespective of the

history. Because these transient distributions can be easily parametrized in terms

of the number of active stations and the timestep size, they can be precomputed

or cached across simulation runs. The TSS technique used the pdf’s computed by

the transient analysis to sample instantaneous goodputs of all stations such that

they 1) add up to the instantaneous aggregate goodput and 2) have the required

correlation structure. This dependent sampling accounted for the negative corre-

lation by choosing station id’s according to a random permutation, and allocating

a station’s goodput depending on both its marginal distribution and the sum of

all the goodputs allocated so far. In sum, the method obtains the sample path

evolutions of the contention windows and instantaneous goodputs of all stations

with time.

We validated the transient analysis and TSS technique against PLS, and quan-

tified the runtime speedup obtained by TSS over PLS. The metrics that we con-

sidered included both those internal to the method (such as the pdf’s obtained

by the transient analysis) and those external to the method (the distribution, au-

tocorrelation, and crosscorrelation of the contention window and the per-station

goodputs). We found that TSS is accurate apart from the minor deviations from

113

PLS noted in Chapters 12 and 13. Further, TSS scales well with increasing num-

ber of stations and is independent of the bit-rate. Specifically, TSS provides up

to two orders of magnitude improvement over our custom MAC level packet-level

simulator; NS-2 is two orders still slower.

14.1 Future work

Some possible directions for future work include: 1) a timestepped TCP model

over 802.11; 2) accounting for the physical layer; and 3) timestepped MAC models

for related random access protocols.

References [47] and [70] provide models for TCP over 802.11, but they con-

sider steady state performance and obtain bounds on long-term goodput; we are

interested in a timestepped sample path. We believe this is a challenging problem

for several reasons. First, existing results for TSS cannot be used directly for a

TCP model because a TCP connection that has packets to transmit in a timestep

is not typically fully active, i.e., it does not have packets to transmit throughout

the timestep. Therefore these (TCP-level) idle intervals have to be modeled in

obtaining any sample path metrics. This requires tracking the queuing process

of all stations and obtaining the per-station collision probability for skewed un-

saturated load regimes. One approach might be to obtain an empirical model

for the per-station collision probability as a function of the load in the system.

Second, the dependent sampling of the goodputs would be subject to additional

constraints. For instance, consider a station performing a TCP upload using

an 802.11 access point. The TCP ACKs of the station compete with the TCP

DATA of the station for the same channel, and hence their goodputs are nega-

tively correlated. However, whether the DATA is available for transmission in the

114

timestep itself depends on the ACK flow achieving a goodput. Finally, because

data and ACKs of a TCP connection running over 802.11 share the same media,

the model should handle packets of varying size. This would require replacing

the transmission interval τ by the mean of the packet size distribution.

The PHY layer has been modeled implicitly in this technique. Specifically, we

assumed that all stations sense each other and all collisions are lost. This sharing

of the medium is reflected in the goodputs of flows being correlated. In past

work, the physical layer has been accounted for in references [14, 46]. However,

they obtain long-term average goodputs by modeling the average interference in

the PHY layer. Modeling a general PHY in a timestepped manner with several

interacting WLANs is challenging for the following reasons. First, goodputs of two

wireless flows are correlated if the transmitter and receiver of one flow influence

or are influenced by those of the other. For instance, goodputs of all stations in

a WLAN cell associated with the same AP would be correlated. Next, in order

to model PHY induced imbalances, different stations would obtain their goodput

distributions in each timestep with different probabilities of collision. That is,

the collision probability is generalized to be the loss probability which includes

non-collision channel-condition induced losses. A PHY-layer with higher fidelity

fading models is also possible if the channel conditions can be abstracted within

a timestep by a suitable noise-loss probability. However, it is likely that handling

fast fading will be challenging within a timestepped model if the mean of the loss

probability is not stationary over a timestep duration.

MAC protocols that are based on history are amenable to timestepped simu-

lation on these lines. For instance, the 802.11e Enhanced DCF (EDCF) [50, 64]

is one such protocol. It provides for priority classes in DCF by allowing differ-

115

ing DIFS values for multiple classes, allowing higher priority stations to always

precede lower priority stations if they both have traffic. Reference [64] presents

an analysis for obtaining the per-station collision probability in a scenario with

multiple classes of traffic, and shows that multiple operating points of the pro-

tocol exist even in the steady state. We believe that the dependent sampling

naturally captures this scenario as the protocol operation can move from one

operating regime to another. However, obtaining the marginal distributions for

unsaturated regimes would still be challenging as in the regular DCF.

116

Appendix A

Analysis of collision probability for finite retries

Recall that λ is the attempt probability (rate), i.e., probability a tagged sta-

tion starts transmission in an 802.11 slot and p is the probability that a tagged

station’s transmission encounters a collision. By definition, λ(p) = E[K]/E[X],

where K is the number of attempts to transmit a packet successfully with max-

imum number of attempts β or abort, and X is the total backoff duration. It is

easy to see that E[K] = 1 + p + . . . + pβ−1 and E[X] =

i=β
∑

i=1

pi−1 (γ2i−1 − 1)

2
.

Consider the following two equations:

λ(p) = E[K]/E[X] (A.1)

p(λ) = 1− (1− λ)M−1 (A.2)

For each M , equations A.1 and A.2 can be solved for λ(M) and p(M) by a fixed

point iteration as in all prior work.

Reference [3] analyses this system under the assumptions β →∞ and E[X] =

γ−1
2

i=β
∑

i=1

(2p)i−1. When β → ∞, λ(p) → 2
γ−1

(

1−2p
1−p

)

and a closed form expression

can be obtained for the solution p(M) involving the Lambert function (i.e., inverse

function for xex).

We consider the case where β is finite (in this case, β = 7). The solution p(M),

obtained from simulations, looks as in Figure 12.12. Specifically, the solution

117

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 0.2 0.4 0.6 0.8 1

A
tte

m
pt

 p
ro

ba
bi

lit
y

λ(
p)

Per-station collision probability p

Actual
Approximation

Figure A.1: λ(p) approximated as a(1− p)2.

p(M) looks like 0.1519 loge(M) + 0.0159 as fit by MATLAB. Our goal is to show

some analytical justification for p(M)’s log-like behavior.

We start by approximating λ(p) as 2(1− p)2/(γ − 1) for β = 7 by matching

the actual λ(p) and the approximation at p = 0. Figure A.1 shows the accuracy

of this approximation. Clearly, the accuracy can be made better by fitting higher

order polynomials, but we stick to a second-order approximation for sake of a

simple analytical expression.

We have

p = 1− (1− λ)M−1

≈ 1− e−λ(M−1)

= 1− e−
2(1−p)2

γ−1
(M−1)

Strictly speaking, the exponential approximation requires that Mλ go to a con-

stant as M → ∞, i.e., the system operates in a regime where BEB keeps the

118

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60 70 80 90 100

P
er

-s
ta

tio
n

co
lli

si
on

 p
ro

ba
bi

lit
y

p

Number of active stations M

PLS
Lambert analytical model

alog(M)+b

Figure A.2: Confirming the prediction of the model with simulation studies

attempt probability λ to scale as 1/M with increasing M . If β →∞ this condi-

tion is satisfied, but for finite β, as M → ∞, p → 1 and λ → λ∗ > 0. However,

even with this approximation we are able to obtain intuition on how p(M) behaves

with increasing M for finite β.

Rearranging terms we have (1 − p)e2(1−p)2(M−1)/γ−1 = 1. Let W denote the

Lambert function, i.e., x = W(c) is the solution of the equation xex = c. We

want to solve an equation of the form xaebx = 1. Straightforward algebraic

manipulations yield the solution as x = a
b
W(b

a
). In our context, x = (1 − p)2,

a = 1/2, and b = 2(M − 1)/γ − 1). Thus (1− p)2 = γ−1
4(M−1)

W
(

4(M−1)
γ−1

)

In sum,

p = 1−

√

γ − 1

4(M − 1)
W

(

4(M − 1)

γ − 1

)

(A.3)

This expression for p(M) function can be approximated by a log(M) + b.

We confirm this by plotting p(M) as predicted by this analysis and com-

puted using MATLAB, p(M) as computed by the logarithmic approximation,

119

and p(M) as obtained by simulations in Figure A.2. The model works best when

p < 0.6 approximately. A more refined model that works better for higher p

can be obtained by considering a fit for λ(p) of the form λ + λ2/2 = a(1 − p)2

and 1− p = e−(M−1)(λ+λ2/2). This gives a similar Lambert based solution. Inter-

estingly, reference [26] shows an analysis of a log-like behavior for simple binary

exponential backoff (in lemma 3 and theorem 4) without freezing backoff counters

and infinite retries. Thus an exponential backoff mechanism leads to a logarith-

mic collision probability increase. However, with finite retries as the number of

stations increases, the collision probability also tends to 1.

120

BIBLIOGRAPHY

[1] NS-2 network simulator. http://www.isi.edu/nsnam/ns.

[2] Qualnet network simulator. http://www.scalable-networks.com.

[3] A. Kumar, E. Altman, D. Miorandi and M. Goyal. New Insights from a

Fixed Point Analysis of Single Cell IEEE 802.11 WLANs. In Proceedings of

IEEE INFOCOM, 2006.

[4] A. Papoulis, S. U. Pillai. Probability, Random Variables, and Stochastic

Processes. McGraw-Hill, 2001.

[5] Imad Aad and Claude Castelluccia. Differentiation mechanisms for IEEE

802.11. In INFOCOM, pages 209–218, 2001.

[6] Zakhia Abichar, J. Morris Chang, and Daji Qiao. Group-based medium ac-

cess for next-generation wireless lans. In WOWMOM ’06: Proceedings of the

2006 International Symposium on on World of Wireless, Mobile and Multi-

media Networks, pages 35–41, Washington, DC, USA, 2006. IEEE Computer

Society.

[7] Albert Banchs, Pablo Serrano, and Arturo Azcorra. End-to-end delay anal-

ysis and admission control in 802.11 DCF WLANs. Computer Communica-

tions, 29, 2006.

121

[8] G. Bianchi. Performance analysis of the IEEE 802.11 Distributed Coordi-

nation Function. In IEEE Journal On Selected Areas in Communications,

March 2000.

[9] G. Bianchi and I. Tinnirello. Kalman filter estimation of the number of

competing terminals in an IEEE 802.11 network. INFOCOM 2003. Twenty-

Second Annual Joint Conference of the IEEE Computer and Communica-

tions Societies. IEEE, 2:844–852 vol.2, 30 March-3 April 2003.

[10] M. Blum. On the sums of independently distributed pareto variates. SIAM

Journal on Applied Mathematics, 19(1):191–198, jul 1970.

[11] S. Bohacek, J. P. Hespanha, J. Lee, and K. Obraczka. A hybrid systems

modeling framework for fast and accurate simulation of data communication

networks. In ACM SIGMETRICS, pages 58–69, June 2003.

[12] Luciano Bononi, Marco Conti, and Enrico Gregori. Runtime optimization

of IEEE 802.11 wireless LANs performance. IEEE Trans. Parallel Distrib.

Syst., 15(1):66–80, 2004.

[13] Frederico Cal̀ı, Marco Conti, and Enrico Gregori. Dynamic tuning of the

IEEE 802.11 protocol to achieve a theoretical throughput limit. IEEE/ACM

Trans. Netw., 8(6):785–799, 2000.

[14] M. Carvalho and J. Garcia-Luna-Aceves. A scalable model for channel access

protocols in multihop ad hoc networks, 2004.

[15] Harshal S. Chhaya and Sanjay Gupta. Performance modeling of asyn-

chronous data transfer methods of IEEE 802.11 MAC protocol. Wirel. Netw.,

3(3):217–234, 1997.

122

[16] Jaehyuk Choi and Joon Yoo. Eba: An enhancement of the IEEE 802.11

DCF via distributed reservation. IEEE Transactions on Mobile Computing,

4(4):378–390, 2005. Member-Sunghyun Choi and Member-Chongkwon Kim.

[17] D. Malone, K. Duffy, and D. Leith. Modeling the 802.11 distributed coor-

dination function in non-saturated heterogeneous conditions. IEEE/ACM

Transactions on Networking., 15, February 2007.

[18] D.E.Knuth. The Art of Computer Programming: Seminumerical Algorithms.

Addison-Wesley Publishing Company, 1981.

[19] M. Ammar et. al. Simulation of Large-Scale Communication Networks How

Large? How Fast? In MASCOTS, 2003.

[20] F.Cali, M. Conti, and E. Gregori. IEEE 802.11 Wireless LAN: Capacity

Analysis and Protocol Enhancement. In Proceedings of INFOCOM, 1998.

[21] W. Feller. Diffusion Processes in One Dimension. In Transactions of the

American Mathematical Society, volume 77, pages 1–31, July 1954.

[22] C. H. Foh and M. Zukerman. Performance Analysis of the IEEE 802.11 MAC

Protocol. In Proc. European Wireless Conference, 2002.

[23] C. H. Foh, M. Zukerman, and J. W. Tantra. A Markovian Framework for

Performance Evaluation of IEEE 802.11. IEEE Transactions on Wireless

Communications, 6:1276–1265, April 2007.

[24] G. Berger-Sabbatel, A. Duda, O. Gaudoin, M. Heusse, and F. Rousseau.

Fairness and its Impact on Delay in 802.11 Networks. In Proceedings of

IEEE GLOBECOM, 2004.

123

[25] G. Berger-Sabbatel, A. Duda, O. Gaudoin, M. Heusse, and F. Rousseau.

Short-Term Fairness of 802.11 Networks with Several Hosts. In Proceedings

of the Sixth IFIP IEEE International Conference on Mobile and Wireless

Communication Networks, MWCN, 2004.

[26] Jonathan Goodman, Albert G. Greenberg, Neal Madras, and Peter March.

Stability of binary exponential backoff. J. ACM, 35(3):579–602, 1988.

[27] Z.J. Haas and Jing Deng. On optimizing the backoff interval for random

access schemes. Communications, IEEE Transactions on, 51(12):2081–2090,

Dec. 2003.

[28] Martin Heusse, Franck Rousseau, Romaric Guillier, and Andrzej Duda. Idle

sense: an optimal access method for high throughput and fairness in rate

diverse wireless lans. SIGCOMM Comput. Commun. Rev., 35(4):121–132,

2005.

[29] H.Kim and J.Hou. Improving protocol capacity with model-based frame

scheduling in IEEE 802.11-operated WLANs. In Proceedings of the 9th an-

nual international conference on Mobile computing and networking (Mobi-

Com), 2003.

[30] H.Kim and J.Hou. A fast simulation framework for IEEE 802.11-

operated wireless LANs. In Proceedings of the joint international confer-

ence on Measurement and modeling of computer systems ACM SIGMET-

RICS/PERFORMANCE, 2004.

[31] Chen K. Ho T. Performance analysis of IEEE 802.11 csma/ca medium access

control protocol. In Proc. PIMRC, Taipei, pages 407–411, Oct 1996.

124

[32] David P. Hole and Fouad A. Tobagi. Capacity of an IEEE 802.11b wireless

LAN supporting VoIP. In Proc. IEEE Int. Conference on Communications

(ICC), 2004.

[33] K. Medepalli and F. A. Tobagi. Throughput analysis of IEEE 802.11 wire-

less lans using an average cycle time approach. In Proceedings of IEEE

GLOBECOM, 2005.

[34] J. Kleinberg and E. Tardos. Algorithm Design. Addison Wesley, 2006.

[35] L. Kleinrock and F. Tobagi. Packet switching in radio channels: Part

i–carrier sense multiple-access modes and their throughput-delay charac-

teristics. Communications, IEEE Transactions on [legacy, pre - 1988],

23(12):1400–1416, Dec 1975.

[36] A. Kochut and A.U. Shankar. Timestep Stochastic Simulation of Computer

Networks using Diffusion Approximation. In Proceedings of IEEE/ACM

MASCOTS 2006, 14th International Symposium on Modeling, Analysis, and

Simulation of Computer and Telecommunication Systems, Monterey, Cali-

fornia, 2006.

[37] Andrzej Kochut. Timestep Stochastic Simulation of Computer Networks

using Diffusion Approximation. PhD thesis, University of Maryland, August

2005.

[38] A. Kolmogorov. Ueber die analytischen Methoden in der Wahrscheinlichkeit-

srechnung. In Mathematical Annals, volume 104, pages 415–458, 1931.

[39] L. Kleinrock. Queueing Systems, Volume I. John Wiley and Sons, 1976.

125

[40] Anders Lindgren, Andreas Almquist, and Olov Schelén. Quality of Service

schemes for IEEE 802.11 - a simulation study. In Proceedings of the Ninth

International Workshop on Quality of Service (IWQoS 2001), June 2001.

[41] Y. Liu, F. Lo Presti, V. Misra, D. Towsley, and Y. Gu. Fluid Models and

Solutions for Large-Scale IP Networks. In ACM SIGMETRICS, pages 91–

101, June 2003.

[42] M. Ergen and P. Varaiya . Throughput analysis and admission control for

IEEE 802.11a. Mobile Networks and Applications, 10:705–716, 2005.

[43] M. Gast. 802.11 Wireless Networks - The Definitive Guide. O’Reilly, 2003.

[44] Benoit Mandelbrot. The pareto-levy law and the distribution of income.

International Economic Review, 1(2):79–106, may 1960.

[45] Benoit Mandelbrot. The variation of certain speculative prices. The Journal

of Business, 36(4):394–419, oct 1963.

[46] Mohammad Hossein Manshaei, Gion Reto Cantieni, Chadi Barakat, and

Thierry Turletti. Performance analysis of the IEEE 802.11 MAC and physi-

cal layer protocol. In WOWMOM ’05: Proceedings of the Sixth IEEE Inter-

national Symposium on World of Wireless Mobile and Multimedia Networks,

pages 88–97, Washington, DC, USA, 2005. IEEE Computer Society.

[47] Daniele Miorandi, Arzad A. Kherani, and Eitan Altman. A queueing model

for http traffic over IEEE 802.11 WLANs. Comput. Networks, 50(1):63–79,

2006.

126

[48] V. Misra, W. Gong, and D. Towsley. Fluid-based analysis of a network

of AQM routers supporting TCP flows with an application to RED. In

SIGCOMM, pages 151–160, 2000.

[49] The Institute of Electrical and Electronic Engineers

Inc. IEEE 802.11, 1999 edition (ISO/IEC 8802-11:1999).

http://standards.ieee.org/getieee802/802.11.html.

[50] The Institute of Electrical and Electronic Engineers

Inc. IEEE 802.11e, 2005 edition (amendment)).

http://standards.ieee.org/getieee802/download/802.11e-2005.pdf.

[51] Daji Qiao, Sunghyun Choi, and K.G. Shin. Goodput analysis and link adap-

tation for IEEE 802.11a wireless lans. Mobile Computing, IEEE Transactions

on, 1(4):278–292, Oct-Dec 2002.

[52] R. Jain, D. Chiu, and W. Hawe. A Quantitative Measure Of Fairness And

Discrimination For Resource Allocation In Shared Computer Systems. DEC

Research Report TR-301, 1984.

[53] Colin M. Ramsay. The Distribution of Sums of Certain I.I.D. Pareto Variates.

Communications in Statistics - Theory and Methods, 35(3):395–405, April

2006.

[54] R.Jain. The Art of Computer System Performance Analysis. John Wiley

and Sons, 1991.

[55] Roehner, Bertrand and Winiwarter, Peter. Aggregation of independent pare-

tian random variables. Advances in Applied Probability, 17(2):465–469, jun

1985.

127

[56] S. M. Ross. Introduction to Probability Models. Academic Press, Inc., 2000.

[57] G. Sharma, A. Ganesh, and P. Key. Performance analysis of contention based

medium access control protocols. In Proceedings of the IEEE INFOCOM,

2006.

[58] O. Tickoo and B. Sikdar. ‘‘On the Impact of IEEE 802.11 MAC on Traf-

fic Characteristics”. IEEE Journal on Selected Areas in Communications,

21(2):189–203, February 2003.

[59] O. Tickoo and B. Sikdar. Queueing analysis and delay mitigation in IEEE

802.11 random access MAC based wireless networks. In Proceedings of IEEE

INFOCOM, Hong Kong, China, 03/2004 2004.

[60] Kuo-Chang Ting, Mao yu Jan, Sung huai Hsieh, Hsiu-Hui Lee, and Feipei

Lai. Design and analysis of grouping-based DCF (GB-DCF) scheme for the

MAC layer enhancement of 802.11 and 802.11n. In MSWiM ’06: Proceedings

of the 9th ACM international symposium on Modeling analysis and simula-

tion of wireless and mobile systems, pages 255–264, New York, NY, USA,

2006. ACM.

[61] F. Tobagi and L. Kleinrock. Packet switching in radio channels: Part iii–

polling and (dynamic) split-channel reservation multiple access. Commu-

nications, IEEE Transactions on [legacy, pre - 1988], 24(8):832–845, Aug

1976.

[62] F. Tobagi and L. Kleinrock. Packet switching in radio channels: Part ii–

the hidden terminal problem in carrier sense multiple-access and the busy-

128

tone solution. Communications, IEEE Transactions on [legacy, pre - 1988],

23(12):1417–1433, Dec 1975.

[63] Alberto Lopez Toledo, Tom Vercauteren, and Xiaodong Wang. Adaptive

optimization of IEEE 802.11 DCF based on bayesian estimation of the

number of competing terminals. IEEE Transactions on Mobile Computing,

5(9):1283–1296, 2006.

[64] V. Ramaiyan, A. Kumar, and E. Altman. Fixed Point Analysis of Single Cell

IEEE 802.11e WLANs: Uniqueness, Multistability and Throughput Differ-

entiation. In Proceedings of ACM SIGMETRICS, 2006.

[65] Andras Veres, Andrew T. Campbell, M. Barry, and Li-Hsiang Sun. Sup-

porting service differentiation in wireless packet networks using distributed

control. IEEE Journal on Selected Areas in Communications, 19(10):2081–

2093, 2001.

[66] W. Stallings. Wireless Communications and Networks. Prentice Hall, 2001.

[67] H. Wu, Y. Peng, K. Long, S. Cheng, and J. Ma. Performance of Reliable

Transport Protocol over IEEE 802.11 Wireless LAN: Analysis and Enhance-

ment. In Proceedings of the IEEE INFOCOM, 2002.

[68] Yang Xiao and Jon Rosdahl. Performance analysis and enhancement for

the current and future IEEE 802.11 MAC protocols. SIGMOBILE Mob.

Comput. Commun. Rev., 7(2):6–19, 2003.

[69] Y.C.Tay and K.C. Chua. A Capacity analysis for the IEEE 802.11 MAC

protocol. In Wireless Networks, January 2001.

129

[70] Jeonggyun Yu and Sunghyun Choi. Modeling and analysis of tcp dynam-

ics over IEEE 802.11 WLAN. Wireless on Demand Network Systems and

Services, 2007. WONS ’07. Fourth Annual Conference on, pages 154–161,

24-26 Jan. 2007.

[71] Z. Li, S. Nandi, and A. K. Gupta. Modeling the Short-Term Unfairness

of IEEE 802.11 in Presence of Hidden Terminals. In NETWORKING 2004,

Networking Technologies, Services, and Protocols; Performance of Computer

and Communication Networks; Mobile and Wireless Communications, 2004.

[72] Hongqiang Zhai, Xiang Chen, and Yuguang Fang. How well can the IEEE

802.11 wireless lan support quality of service? IEEE Transactions on Wire-

less Communications, 4(6):3084–3094, December 2005.

130

