














































































































































































































2. The Propagation of High-Frequency Sound Waves

Let E, E and g be the energy density, pressure and the four velocity
of the fluid, and let €', p' and u' be the small amplitude, high-frequency

perturbations on the above solution. The propagation of the disturbance is

governed by the energy equation:

M M,
€, u + (p + €)u by = 0 (A2.1)

and the Euler equation:

W Vo Hv MoV
(@ +eyus w’ = - g™ (42.2)
Substituting p = p +p', € =€+ €' and u =4 + u' in the equations (A2.1)
and (A2.2) and linearising we obtain
1 —H 1 H ' oy = = M
€ i u + e,uu + (e¢' + p")u b + (e + p)u' ;u =0 (A2.3)

and

- - = Vv -V - -
€+ @5 u Y+ ut W)+ e+ p) @Y T
v —H-V -y= - -
= - " + o' I u'M P>y, = u“u'Vp,v . (A2.4)

Differentiating equations (A2.4) with respect to p and substituting for

ulU,

;  from equation (A2.3) we get,

v =HU=V
"+ utapt, -ty W = (A2.5)

where F is a scalar function which contains the high-frequency perturba-
tions €', p' and u' only up to their first derivatives.

s i ; / )
Writing p' = Ae  , where ¢ is a rapidly varying function and setting

the dominant terms in the equation (A2.5) equal to zero, we obtain

62



63

g" + u'u )¢, ’ (E)s 2y P2y s’ = 0 (A2.6)

0 . .
where v, = (—P—) is the sound velocity. The equation(A2.6) is a

Hamilton-Jacobi equation corresponding to

=)
ol (A7)

1 U

o AL HV g oL K
H—z(g +uu)pp vzzu
s

as a particle Hamiltonian. To obtain the corresponding Lagrangian, we

solve for pp from one set of Hamilton's equations:

Y
dx~ _ _oH _ UV, =p=v _ 1 =u=y
o "9 - (g tuudp 7 wup, (A2.8)
H Vs'
where XLl = (t,e9¢’q))'

= 9 : :
Noting that u = e for comoving coordinates, we can invert (A2.8) to obtain

U
dx 2,— -
i [gw + (1-v, )uuuv] E (A2.9)

ge]
I

\%

Thus, we get the Lagrangian L as follows:

H
_ dx _
L=p, G H
dxu dxv 2 1 dX d 2
= ———_——— e o ! - X "
. dn [gu\) + {1 vy )uuuv] T [guv + (1—vS )uuuv] (A2.10)
M v
- 1 dxt dx S 2= =
=T o a Lgy,, t AvDuul . (A2.11)

The propagation of rays is then given by the Lagrange's equations,

v \Y Vv 3
P dx Lo 2y= = dx'q _ dxP dx” %8y (A2.12)
= 12 8w ar T 2V )uu, 3 Ji= v W

Consider a possible set of solutions with 6 = constant and ¢ = constant.

Then the Lagrange's equations reduce to

2g
& [ 28k v a-w gD T « bt (A2.13)



BEPJQ ( ﬂ )2 = 0
90 dA
(A2.14)
37 [gw%] = 0 (A2.15)
[¢ ¥ ]- ()2 By (A
ax “Byy dl TN oy 2.16)

Since By is a function of t only, eqn.(A2.14) is identically satisfied,

while (A2.15) and (A2.16) reduce to
-2Q 2
j—k [cose e 85——%] 0 (A2.17)

and

d_
dA

For 6 = constant,(A2.17) reduces to (A218). So the Lagrange's eqns. now

reduce to . (A2.13) and eqn. (A28) which can be solved for g&-a d dw
Putting H = 0 in the equation (£.10) we obtain
H v
ax”  dx’ iy & B )
dx_ da £ F =vg) 0 U, o
or
t
9Ey2 4 gy (2452 + ()2 avd) = 0 (22.19)
for 6 = constant, ¢ = constant class of solutions. From eqn. (A219) we
obtain
dy Vs R B3
® ¢ m= bn v e e g (A2.20)

33

—20 283 d B ,
[a= e o ﬁ] - 0 (A2.18)
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By putting L 1, we get the law of propagation for light going in the

Y — direction.
3. The Removal of Horizons

Let us now study the behavior of the above high-frequency sound waves
during the u = ® epochs. First consider the axial case when the system
pgint is very close to the B+ —axis and is running towards the corner. This
is the case which Belinskii’ etc call the case of small oscillations. The
appropriate solution to Einstein's equations as derived in the next section
is

28
2e” o
B = ZO( = ) [see (a4.8)]

where Zo is a Bessel function of order zero. K is a constant and B is
o)

defined as

The variation of Bo is given by

8 == % [seed4.3)]

Writing B, = ~df, W = 2(80 + Q) in equation(A2.20), we reexpress the

equation of the sound-wave propagation in the y-direction as
- |- ver v e3Q e260 .
dt
Using equation(Al.3), the change in y can be given in terms of the

variable  as

d d dt 2
G e BWEE o, o efo (43.1)

dse  —  dt  do Vs
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Hence, the change in Yy along the sound wave between the epochs Ql and L,
is given by
Q2 Q2
= = 2 _2Bo
Ay = J dy J voq e dQ
1 q, &
(A3.2)
= v g-eZBO <R, dg
s H dBO o
Ql
Substituting equation (A4.3) in equation (A32), we obtain
2
= 2 280
Ay = - Vg Je dg (A3.3)
- !
=1, (6280) ‘
-2 V%" VK (A3.4)
e280
Therefore, a Chagfe of 87T/VS in =7 would give a change of 47 in V.
y 2e .
Since B_ = ZO( K ) which for small K goes roughly as
S am 2Bo
"/ ;B COS(ZeK - w/4) or
e "0

280
‘/—‘?%8— sin(®&— - w/4)
e 0O )

B_ would go through four cycles as its argument changes by 8w. Thus setting

v
S

Y—direction (i.e. Y going from 0 to 4m) during four cycles of 8 . This

corresponds to the DN result of Ne = %Nm' For radiation filled universes,

= 1, we see that the light ray would circumnavigate the universe in the

the velocity Vg of the sound-wave propagation will be 1/V3; as a result
these waves would go round the universe in the yY-direction during seven

cycles of B_. Similarly, when the system point is running towards the other
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two corners, the causal and the high - frequency sound wave influence would
circumnavigate in the other two principal directions.
Next consider the off-axial case with u very large and 8 > 1. The

appropriate solution to Einstein's equations as derived in the next
section again gives

dBo
5 = - K /H . [See (A4.11) ]

while total change in BO during one bounce with the inclined potential wall

for large u is given by

1
AB N [See (A4.17)]

where uy is the walue of u before the bounce. The change in y along the
high-frequency sound wave ray going in the yY-direction is again given by

equation (A3.3

2v

i = = f"'zsc’ A, 8

So during one collision with the wall, the change in Y would be

v
AUJ = S (Q—ZBO)i [1 _ QZA(BO)]

Il

=~ 4 =
o 7|

2B 1
(e™70)y q (A 3.5)




where the subscript i denotes the values of the variables before the

collision. The value of the constant K can be obtained in terms of u. and
i

H. from equation (Al.6):
i

dB+ _ u2+u—l/2
dQ

u2+u+l

and the equation (A4.11)

das
FRl o S

K
dq H

Then Ay is given in terms of the initial values as

3

2
u, +u,+1
E 2 280y 1
Ay Ve 3 -y (e )l 5
4 i
285
- =y E ) £ -
3 ‘s H wy or large Uy 5 (A3.6)

As the system point evolves, consider the epoch when the system point
had its first collision with the inclined wall for large u. So the system
point has just bounced back off the vertical wall and is going towards

the inclined wall at say Q@ = Qb. The position of the potential wall is

then given by

= 4 y(py

=
|

wall

e—4ﬂb %_e-8(8+)

120, _-8(8o)

Py g
=3 e wall

Substituting the expression for H in the equation (A3.6) and dropping

the subscripts, we get
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ap = (v, 2 e2Poy) sl ¢™6%,4B0)
8 3 /3

v efPyarg : (A3.7)

2_
{3 °
Therefore, for all solutions for which at the beginning of the series of

collisions with the inclined wall, the value of u is such that

u > /3 b e~6(6+)wall
2VS

then the high-frequency sound wave communication has an open channel in

. . ; . ; < Q
the Yy-direction. Since (B4) wall is negative (it goes as: 3+: = 5.+

constant), we find that there exist small sectors around the lines parallel
to the B+—axis such that when the system point is running along these
sectors at Qb’ a horizon is removed in the Y-direction during the next bounce
with the inclined potential wall. The angular extent of these sectors
depends upon @ and it goes to zero as § goes to o,

One concludes, therefore, that at each epoch , there exist certain
subsets of initial conditions [B+, B_s; u()], such that some rays of
high-frequency sound waves and null-geodesics will proceed to circum—
navigate the corresponding universe. It will be shown in a future
publication that the universe point wanders about in a truly ergodic
fashion and that by finding a measure on initial conditions, one can com-

pute the probability for a typical solution to have no horizon along

one axis.



4. u = @ SOLUTIONS OF EINSTEIN EQUATIONS

In this secction we will derive the relevant information about u =

golutions which we used in the last section. First consider the axial case

vl

en the system point is very close to one of the corner axes and is running

rovards the corner. TFor the corner on the B+ —-axis, the asymptotic form

of the potential is

2 4Py 1; B, > = and |p_|<<l.

v(B) ~ 168_ "

Then the Hamiltonian of the system is
2 2 2 =40 4 1/2
H = [p+ +p "+ 168" e e B+ L (A4.1)

To get a time-independent Hamiltonian, substitute

g+ = 30 + @ in the action integrand
w=p, d8, + p_df_ -HdQ  to give
w = p+d80  p @8 = o - p+)dQ .

so the new Hamiltonian is

2 2 2 4 1/2
K = [:p+ +p T+ 168 " e Bo:] / S8 s (44.2)
snd the correspending Hamilton's equations give
an ' ’
Yo w . P+, __K (4. 3)
Q G s .
d Py K Py H
AR, B ,
si-r il | (M. 4)
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doy -k _ - 328.% %Fo P

e a8y H , - (a4.5)

e R S

e 9B_ H (A4.6)
and

dr oK

——— b—1 — = O .

dg a0 ; (4.7)

Equation (A4.7) tells us that K is a constant while Eqns.(A 4.3) » (A4.4) and

(A4.6) can be manipulated to give

dg_ P_
dB,, K i
dBO = an /dQ B K
Hence
d28__ 2 1 e, "163_@480
B = = 2
d,, K dp K
or dZB 480
( dBO;} + (1(;@0 ) B =0 which has
the solution
g, . ) _ (A4.8)

where 7, is a Bessel funct;on of order zero. Note from Eqns.(A4.1) and (A42)
that K and H are strictly positive. Then from Eqn. (A4, 3) BO is always de-
creasing, so Eqn.(A4.8) is valid starting from some initial value of 60 until

80 decreases to the point where the argument of the Bessel function gets

small and B_ gets large contradicting the IB |<tl assumption.



Next consider the off-axial case (R_ > 1). When the system point is
almost parallel to the B+ -axis (large u) and is following one of the in-

clined potential walls, the asymptotic form of the potential is

v(p) v L AP+ V38

Then the Hamiltonian of the system is

2 2 -
H = [p_{_ +p_ + % e e e4(8+ i /3—6')']1/2 . (A4.9)

Substituting 8+ B 60 + @ in the action, we get the time-—indépendent

Hamiltonian

B - 2 ., 1 4By 4V/3R_-1/2
K= [P_,_ TR, @ EE 0 e N - Py (A4,10)
The Hamilton's equations give
g & Py P i
= p.  KAp.~ ~ 1,
de.  ap, Kby H | -)
f]_fi: _ kP -
ao dp_ H (A4,12)
e S WL G
d Q@ B,  3H (A4.13)
dp 4(Bg + V3B.) '
i R TR S (A4.14)
dse B_ /3 H
and
dK _ K _ | \
o - 9 i : (A4.15)

From Eqns. (A4.13) and (A414) we get

V3 dp+ dp_
a. Taw T



7.3

or

/-3— p+ o p_ = CODSt;ﬂt = d, Say. . (A4-16)

Substituting for P, and p_ in Eq. (#4.16) from Eqs(A 4,11) and(A4.12) we

obtain
/__d6+ di_
H( 3?{2 — ’—‘d'Q) = .
: dB+
Also from Eq.(A4-15) K=1H1- P, = H(1l - Ty ) is a constant. These two

constants of motion enable us to find B! , B' after the bounce in terms of

their values before. Let uy and ug be the values.of the parameter u,

characterising the velocities of the system point well before and well after

the bounce. Then the constancy of K = H(1 - B;) and /§'p+ -p = H(/E-Bi - 8Y

gives respectively.

w? + u, - = . W2 4 - ;
. i al 2 3 £ 2
B {1 - ) = H(1 - ) .
uz + u, +1 u2 + u_ + 1
i i _ 4 £
and ﬁf
u? -1 SouZ -1
i f
= ) = H(— ) ,
A
uf +ouy + 1 ug + ug +11
Hence,
2
E£< I ug Ao ug + 1
H. 2
b § uy i uy o
and ug = - Uy where Hi and Hf are the values of H before and after the

bounce, respectively.

During the collision with the wall,

2 4 o~h QL 4G4+ /38)

12 = 2 .
H p+ + pe 3

dg

dB
_{- - -—
B o J% 4 B = )2 3G

4Q G + /3 8)

L
3

il
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< l > at 1 O) d,“. = _a..li v o
So the equation an %) gives
di 2 =49 4(p, + V3 B) .
—— = - — - -+ L
H dq : B e

: g, dpg
sing this result and solving for = i ;
Using this result c fod do » J0 in terms of H, K and a,

v

one obtains

H2 = H2(1 - %)2 + H?2[/3(1 - %) ~8q2 1 548 .
L 1

_ H 2 " an
X
dH ' s
Hogg = -6, -m@-H) ; !
hence
' 8
dg 3 d~0 daa _ E_/ di  _ K
dii 2 de H

dg 6(H, - H)(H - Hp)

A lower limit on the change in 80 during the collision can be computed as

dg
= I, = ini 7 -9 .
A(Bo) (Li Hf) (mlnlmum.\alue of T
dg dZB

0
5 g - =2t : o X
The minimum value of di is at that value of H, where TR vanishes;

i.e., at

2
H (Hi + Hf)/z :
_ N 1
Therefore, A(Bo) - 3(H, - H,.) g
i £
But
i £ 3 1 i S
4 , X
= 3 }\ ui ; Since Uf s —ui .
Hence,
1 .
B Y
A(8 ) a : (A4.17)
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1. The Geodesic Equations

As covariant basis vectors, we take the orthonormal tetrad:

o
w = dt

S S I SO

W =
véu | ‘
2 1 -Q By (B1.1)
w = —e€ e a,
von i
w3 = --l—-e—Q e83 oq 3 ] o e
B
The set of basis vectors dual to the wu is S
> .2
eo ot
+ o S ~B1r.. . _ cosp B d
ey 6m e’ e [slfnp el e a¢)+c05\,[) cotO—aE]
- . ' (B1.2)
- ~ Q —82 g_ siny 3 L P) AR
e, Yor e e [co?wae e 29 siny cot® m
- B e —i
e3 6m e e o0
The connection forms w" as determined uniquely by 0 = dg = w + w
v UV pv VM
and dw? = - wuv ﬁ\wvare j
Q
N T . 4 1
wq =Wy T (-9 + Bl)w
0 2 lhe . 2
W, = Wiy -0 + Bz)m ’
(Bl.3)
. SN W Wl
w4 = W'y = (-9 + 83)m



| 2 3130 0nt s sseces -

and
1 2 /65 . 2B3y 3
Wo=~-w, = Gzﬂ CQ(cz81 +.e2P2 - "o
w2 = w3 _ Ybu eQ(GZBZ 2 e2[33 _ ezBl)wl (BL.4)
3 2 2 ;
o Yon 285, 2
B, n o ik - T 825 2P P
. . L e
where - denotes the differentiation with respect to t. IEw = N8, T 5%
is a tangent vector to a geodesic parametrized by %, then
- . .
D'> v = 0 . <
v X
or
u . '
d : ' -
L AR (B1.5)

H ' ) ’
where T . are the components of the connection forms, 1.e.

wl—‘ — 1—.11 wp
v v P
‘ P H
i Sy dv o dv
Computing the values of I‘u\"."-).‘from (B.l.3 and (Bl.4) and writing d—;\- o T
= vo\'.ru, the geodesic equations (B1.5) reduce to
0-0 . 1. . gely .,
PP+ (HEaey) + (DB + (V)T -ag) = 0
. . . o 9
vovl + val(——Q+Bl) + vzv3 Jor e 9(6282 - e B3) = 0
- (B1.6)

» VO\']Z + Vovz(—fﬂt&z) + v?’v:L Yo e_Q(3283 = 3281) =0

and . - y
v0v3 S & v0v3(~-§z+83) + vlv2 Y6 e Q(9,28'1-%3282) =

(=]
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