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1.

l nNntroducti on

Witht he rapi d advance of information technol

Information System) has become a crucial part of mottaffic management system
especially in urban regions where recurrent andrecnrrent traffic congeisin has become
a serious social problemAccording to théJrban Mobility Repor{2012), congestiorcauses

urban Americans to travel 5tbllion hours nore and to purchase an extra Bilon gallons

|

of fuel annually. One core taskofan ATISAdvanced Travel eridte | nf or |

provide reliable reatime trafficinformation to both travelers and traffic management
authorities ® support advanced traffic management strategies such as dynamics traffic
rerouting, reatime route guidance, and advanced traffic signal control.

Another trend in the field of intelligent transportation system is the proliferatidn
implementatiorof many advanced traffic sensing system, wireless communication and
mobile computing technology. The development of these technologiesweutionize the
conventional transportation management modes. Imagine a mobile device which can upload
i ndi vi wre &g pdas ontd the web server and in turn receive optimal departure time
and routing based on predicted future traffic condition. Such traffic information service may
not have beeiffieasiblea decade ago bus becoming more and more possible nowadaje.
truth behind the phenomenon is that the sgmedhichinformation procesag and
communicatiortechnologiehave advancedhasx c eeded most peopl eds
traffic surveillance point of view, large amount of GPS probe vehicles can pregkene
traffic information within a much wider spatial range compared with conventional fixed point
detectors Wireless sensors such as Bluetooth sensors can identify vehicles traveling inside

the network and report their experienced travel tivehide-to-vehicle and vehickeo-

e



station communicatiotechnologyalso allows each individual driver to communicate with

information centerdromusesd poi nt of v i esand GRSrate guidsnoear t ph
systens can be used to receive or send traffioimation. Hence the largest challenge of

constructing a modern ITS system is how to effectively and smartly utilize huge amount of

real time traffic information to alleviate congestion and improve the performance of the

network.

In order to provide relidb reattime traffic information to both network users and traffic
authorities, two types of information are of most concern: the traffic flow status of the
network in bothpresentandfuture time. Generally speaking, there are three categories of
informaion regading a transportation networle first category is the traffitow state
within network such as link speed, volume alahsity; the second category is the travel time
experienced by network users; and the third category @ the \clearastestics behavior
and trip related informatiosuch asharacteristicef driving population©OD demand
volume, routeand departure timehoiceandso on.This study focuses on the firsvo
categories of dafamamelythe network traffic flow state and travel time experienced by
drivers under different traffic conditions.

Asan essential componentIdfS systema high performance traffic state estimation and
prediction modetshould have the following properties:

1. Accuracy: The output of the model should be accurate enough for real world applications;
2. Robustness: The performance of the model should be stable under various traffic
conditions;

3. Flexibility: The model should be able to take advantage of information souttte wi

different format and quality;



Therefore the primary motivation of this research is to develop a solid traffic state
estimation framework for urban networks through which thetmeed traffic information can
be integrated and generalized both spatetigt temporallyBased on the estimated current
traffic state, the near future traffic flow states can be predicted.

Although many researclctvities have been reported in the field of traffic state
estimation traveltime prediction and data fusiomanyunresolved issues still exist when
one tries to construct a system that estimates andtcjwéide traffic condition of aignalized
arterial network. First of all, compared with freewsapetraffic state estimation and
predictionmethodologyfor arterid network is insufficientDue to the huge difference
between freewayand arterial roads in terms of capacity, control mechanism and network
topology, it is difficult to implement existing traffic flow models directly to arterial traffic
state estimatioproblem.Many ITS related studidecus on one particular type of the
detector and network structuamdas a result, the model becomes not applicable when the
external conditioa are changed even slightljhe second challenge we face in this area is
tha the integration of data sources with different quality and resolution is extremely difficult
from a generaperspectivesince @chmodel needs to be developed lthea particular form
of datainput. In viewing those issues, this study is dedicated teldp\a weHstructured
arterial traffic state estimation framework considering heterogeneous information sources.
Starting from the formulation of arterial traffic flow dynamics, the main part of this study
emphasizeon establishing a robust yet flexildata fusion algorithm which can take full
advantage of modern traffic surveillance system.

The organization athis dissertation iss follows Chapter 2 provides a compdet

summary of previous studies relatedraffic state estimatioand traffic flow heory,and



shortterm prediction method8ased on the literate review, the objective of the stuty
also given inChapte 2. In Chapter 3, a new type afterialtraffic flow model named

Ashi fting boun ddevelgpediCiiapter @ discsesed thel data fusen algorithm
for integratingmultiple field measurementhiring theestimationprocessChapter 5
discusses the relationship between traffic state andltiaveandChapter Gresents the
development of shoterm traffic flow prediction algorithm. Then Chapt&rand 8
demonstratéheresults ofseveral comprehensiveimerical studies order to support the

model validationFinally the conclusion and future warlaregiven in Chapter 9.



2.Li terature Review

Previous studiesegarding eaktime traffic state estimation and shaerm prediction
generally follows threavenuestraffic state estimation, sheterm traffic flow prediction
and traffic flow modelingln this section, thenajor research findingsf previous literature

are sumarized.

2.1. Traffic state esmation

The main focus of redlme traffic state estimation is how to sdiénally utilize field
measurement® assess the actusahffic flow condition of a transportation networkhe
reattime field measuremengsuch as flow, occupancy asdeedyre the foundabins of
traffic state estimation.fere are generally three crucial problems associatedhettraffic
surveillance devicemeasuremergrrors, limited spatialcoverageandheterogeneity inlata
formatand temporal resolutioThereforethereattime traffic state estimatioproblemis
usually formulated as a recursistochastic estimation modeherethe transition of traffic
state is describeloly someanalytical traffic flow modeand field measureménare usetb
adust the prior estimation resuincethe emergence dfalmanfilter technique inl9a0s,
the methodvas soon recognized by many transportation professiandsubsequent
research effias were reported in seeking its applicatiothefield of traffic state estimatian
Gazis and Knapi§1971)proposed a recursive estimator of freeway speed and density based on
time-series flow and speed measurements of dete@pe and Gazid 972)first introduced
extended Kalman filtering framewon&to recursive traffic state estimation applications and
proposed a flow density and speed estimation model for freeway segBienitar issue was

also discussed hyahi and Trived{1973)where the impact of downstream density is



explicitly considered Wwen computing the upstream flow. Based on some of the previous
works,Wang and Papageorgio{2005, 2007) proposed a comprehensive freeway traffic state
estimation model based on EKF teirjue Additionally, Boel and Mihaylovd2006) and
Mihaylova et al(2007) developed a freeway traffic state estimation algorithm using particle
filter technique.

In recent years, traffic state estimation of signalized arterial network has received
increasingattention However difficulties arisevhenone attemgto apply KF framework in
arterial applicationslueprimarily to three reasons: affic flows moving inside the arterial
network are periodically interrupted by signal lights at intersectionshenperiodical
accumulation and dissipation of the queue have pradorhimpact on the evolution of other
traffic flow parameterecluding density, speed and travel tin2¢ there is a huge difference
between the accessibility of freeway and arterial. Freeway network can be considered as a
perfect closd system whose inflows and outflows are controlled byamps and offamps.

In order words, the traffithatenters or exits the system can be monitored by ramp detectors,
however arterial network is an open system with many middle link demand genaration
extinction. Such condition will significantly increase the estimation error for any type of
traffic flow models 3) lastbut not least, the amount of traffic surveillance information
available is usually insufficient in arterial applications duthteemore complex traffic flow
movements and limited detector coverafeereforeexistingliteratureregardingarterial

traffic state estimatiors sparse compared with freeway studi@iset al. (2010)proposed a
arterial traffic density estimation modeldeal on Markov compartment model arsdlarge
population approximation to convert the system dynamics equatitina differentiable

form. The accuracy of their estimation result depdrads/ilyon the penetration rate of GPS



probe vehicle data which tee primary nformation source of the studghris et al.(2007)
integratel CTM (cell transmission modeiito the EKF traffic state estimation framework
usingimplicit switching techniqueKkwong et al(2009) proposed a travel time estimation
model basedn vehicle redentification techniqueLiu and Ma(2009),Liu et al.(2009),Wu

and Liu(2011) andan et al.(2009) developed their own queue and travel time estimation
model using high resolution signal and detector data. Recently, the integration of multiple
data sources becammemajor trend. A series of studies are conducted to investigate the
performance omobile sensing and smart phone data on traffic state estinjatien

Hofleitner et al.2012 Herrera and Bayer2010, andNork et al.2008. Table 1summarizethe
abovementioned studies in tlisld.

Tablel Summary of previous stlies regarding traffic state estimation

Authors Year Network Research Content
Gazis 1971 Freeway Density and speed, loop detector data, EKF
Szeto and Gazis 1972 Freeway Density and speed, loop detector data, EKF
Nahi and Trivedi 1973 Freeway Densityand speed, loop detector data, EKF
I?/I(i)r?zla’yll-‘;.\,/aa,nf. 2006 Freeway Density and speed, loop detector data, PF
Wang and Papageorgic 2007 Freeway Density and speed, loop detector data, EKF
Chris et al. 2007 Freeway Density and speed, loafetector data, CTM model with implicit Mode Switching
Kwong et al. 2009 Freeway Travel time, vehicle rédentification
Liu and Ma 2009 Arterial Queue and travel time, smart signal data
Di, Liu, and Davis 2010 Arterial Density and speed, GPS prolmhicle, EHKF (extended hybrid Kalman filter) with Mark

compartment model

Herrera and Bayen 2010 Freeway Density, Cell phone data/GPs probe data, Newtonian relaxation
Hofleitner et al. 2012 Arterial Travel time, density and speed, smart phone data

2.2. Shortterm traffic flow prediction

The shorterm traffic flow predictiortechniquereceived extensivamount ofattention
during the last three decades as a core component of most ITSsysfeauses on
forecastimg future traffic flow conditios basedn higorical information collected by traffic
surveillancedevices. The majority of literature in this fieddncentratedn predictingraffic

flow variables (volume, speed, densitf)one particular location usingrious statistical



methodsThe undeying rationale of statistical methods belongs to either of the following
two concepts: 1) thauture value of traffs state is some function péast values; 2) the future
traffic condition can be determined by finding the historical traffic conditishich are most
similar tothe current oneThe former is basis of regression methods and the latter is the
foundation of pattern matching techniques.

The literature on shoterm traffic flow prediction started to flourigbom 1980s. The
proposed methodsanged from time series models including linear andlm@ar regression,
ARIMA (autoregressive integrated moving averagghamic generalized linear modete¢
Cetin and Comer2006,Fei et al 2011,Hamed et al1995,Kamarianakis and Prastaccd003,

Min and Wynte2011,Vlahogianniet al. 2004, 2005 Williams and HoeR003, Zhang et al. 20},1
Kalman filtering method Okutani and Stephanedek984), nomparametric statistical methods
(Davis and Niharl991,Smith et al2002), spectral analysis methofi&tathopoulos and Karlaftis
2003, artificial neural network method€l¢en et al2001,Dia 2001,Jiang and Adel2005,

Park and Rilettl998 Park et al.1999, K-nearest neighbor method3ido et al.2012),

sequential learning methodShen and GranMuller 2001) to cusp catastrophe theory method
(Pushkar et al1995).

Compared with local traffic state prediction models, the traffic flow theory based short
term predictiomperformsforecast on a system levélhe statistical methods usually do not
consider the traffic flow property behind the detector data and treat each measurement source
as independent daséream, meanwhile an alternative solution is to use macroscopic traffic
flow model to approximate thieture traffic flow condition based on 1) the estimated current

traffic state and 2) the predicted inflows and other boundary conditions of the network.



Previous research along this direction is very sp&=#o et al(2009) reported a prediction

modelbased on SARIMA and cell transmissiomodel.

2.3. Macroscopic traffic flow model

The majority ofliteratures in this area focas the development of mathematical
formulations that are capable of replicating the traffic flow evolution in freeway or arterial
networks. Starting from the earliest first order traffic fluid models developédbthill and
Whitham(1955) ancRichards(1956), many subsequent research effoatve reported to
either enhance the computational aspects of the mbdgafzo1994 andaganzol995) or
incorporate stochastic property into the traffic flow models (zeés and KangL994,

Geroliminis and Su2011 andSumalee et a2011). Recently, there is an increasing concern on
the development of arterial traffic flow models that can accommodate the unique nature of
interrupted flows under the impact of signal controls. Several relevant studies in@ude th
shockwave theory while estimating the arterial queue and delaySésdninis and
Skabardonis2005,Wu and Liu2011) and empirical study of arterial fundamental diagram was
also reported in literatur&\u et al.2011).

One the other hand, traffic flotheory in signalized network is developed revolving the
gueue evolution ofignalized intersectiag Many traffic problems arise when a signalized
road network is loaded with high demand volume due to the accumulation of queues. As a
result, the primargoncern of studies of arterial traffic flow is how to effectively estimate the
gueue length at signalized intersection.

Many early studies in ofine queue estimatiofocused on evaluating the queue lergith
isolated intersection with fixed cycle traffiight using stochastic queuing theory. Important

early works in this field includ@vebster(1958),McNeil (1968) Newell(1965) Darroch (1964)



andOhno(1978) Later the queue computation was expanded into dynamic caytext

switching from equilibrium geue length to timelependent queue length. Relevant works
ranged fronKimber and Hollis(1979) Akcelik(1980) Akcelik(1988) Akcelik and Rouphail

(1994) toviti and Zuylen (2010) However these offline queue models are only applicable for
intersection design and evaluation purpose while most ITS system demands fomeal

gueue estimation technique that can take advantage of different detector data. The most
widely useddynamic queue estimation model is called cumulative count method or input
outputmethod.Sharma et a(2007)proposed an cfine queue estimation method using this
classical method. In cumulative count method, the queue length is obtained by computing the
vertical distance between the cumulative arrival and departure curve at tsedtioe. The
cumulative arrival curve is usually obtained through the traffic volume measurement of
upstream detectors and the cumulative departure curve is usually obtained by either installing
downstream detectors or by comgitnbased on signal parameteviore relevant works
includeBhaskar eal. (2009),Geroliminis andSkabardonis(2005) Liu et al.(2009) Comert and
Cetin(2009)andMehran et al(2012).Unlike freeway traffic flow models, various arterial

gueue models shatess common theoretical foundation and each researcher tends to develop

their own methodology based on the available input and desitput of the application.

2.4. Summary and research objective

Through literature survey, one can find that there is a ngdsik between macroscopic
traffic flow formulation and the sheterm traffic flow predictiorof arterial networks. Once
applied toshortterm prediction, the traffic flow theory based model will demonstrate the

following unique advantages:
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1 The forecasof traffic flow statesis conducted on a netwolevel, therefore the model
inherently considers the complex correlations between traffic flow measuieme
obtained from different locatien

1 The model does not require a large historicéhbiase foparameter calibration purpgse

1 The model is highly robust and flexible, therefore easy to incorporate heterogeneous data
sources;

1 The model not only predicts traffic state variables that are directly observable from field
detectors (flow, density, speed)tkalso is capable of predicting unobservable traffic flow
variables suclas queue length darning ratios.

1 With the help of traffic flow modekhe proposed prediction model can esséptia
perform whatif analysis giverdifferent traffic control stratags. Hence the modean
also apply tesignalcontrol optimizationproblems

The objective of this research is to seek theoretical adwafreattime traffic state

estimation and shoterm predictionn the following aspects:

1 Propose an innovative retne traffic state estimation framework for arterial network

considering the technical challenges discussed in the earlier part of this chapter. The

proposed framework should be accurate, flexible and applicable.

1 Discuss the mathematical formulation cfffic flow dynamics of arterial road network

considering the impact of signal control devices. Develop appropriate expressions for system

dynamics under different type of traffic control strategies.

1 Developadata fusion algorithm under the proposed framomx to accommodate

heterogeneous data sources to increase the overall accuracy and flexibility of the model

11



1 Discuss the relationship between arterial traffic state and travel time and establish a

reliable travel time estimation mechanism.

1 Discuss the apation of the proposed arterial traffic state estimation model in short

termtraffic statepredictionand its accuracy

1 Through extensive numerical studies, quantitatively evaluate the performance of the

proposed modeainderdifferent degrees of congest.
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33.The Shifting Boundar yM&Lerl ds Mogied

Traffic FISiw nvoldite2@ afraaki d or

3.1. State definition and notations

Consider a hypothetical arterial corridor consisting of m consecutive links. Signal control
devices are installed at the end of each link to control theofgivlly of through traffic
streams. Each link of the arterial corridor is modeled as an indegandereferred to as a
cell. The spatial boundary of each cell is aligned with the start and end point of the link in
the longitudinal direction; and is aligned with the outer rim of the through lartkes in

lateral direction. Figuré illustrates the geuetric layout of the hypothetical arterial

corridor with four links and corresponding cell network representations.

Figurel The cell representation of a hypothetical arterial corridor

Assuming there are no bottlenecks other than signalized intersection, each link can be
divided into two distinct areas with different traffic flow characteristics: one is the
Aqueuing areaod which is in frontopof the si
completely during the red phase or move at very low speed during the queue discharge
period of the green phase; and the remaining part of the link can be viewed as the

Aimoving areao where vehicles travel at a

13



macroscopic speedensity relationship of the link. Therefore the traffic state oficsh

be described by a triple variable set: the
denotedbyN O; t he average travel spe¢edbyod® vehicl
and the number of vehicles con®ained in th
Alternatively, the queuing and moving area can be viewed as two sub cells of its mother

cell and the boundary between them is shifting constantly as the size okt qu

changes.

Figure 2 presents the above idea through graphic illustration.
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Figure2 lllustration of moving and queuing area within a cell

To facilitate the model presentation, key notations used in the state definition are
sunmmarized as follows:

N O is the number of queued vehicle in front of the stop line of cell i at time X,
is also referred to as the queue mass of cell i;

T Ois the number of vehicles contained in the moving area of cell i;

O Ois the averag traffic flow speed of vehicles traveling in the moving area of cell i;
E Ois the traffic flow density of the moving area of cell i;

P Ois the physical length of the queue within cell i

x is the number of lanes contained in cell i;

14



| is the lengh of cell i;
Eis the average vehicle length;
Y is the computation time interval;
Since all traffic flow states are tirdependent, t represents time index in all above
definitions.
At each time step, the traffic flow state of signalized corridor consistingoaflls can be
quantified by the following 3m dimensional vect8rO:
8O0 N OA OnO O OH OO OB On O O (31)

We define such vector X as the state variable oatterial network.

Although in reality the traffic flow state changes continuously with respect to time,
one still needs to approximate it with appropriate discrete form for computational
purpose, namely the temporal discretization of the traffic state.idagine the
continuous time axis is divided into small time intervals with uniform lebgthen
8 OO : actually represents the traffic flow state at the beginning of time interval

GhO p Y. Andinstead of t, notation u is used to represent the continuous time
variable in the remaining part of this paper. The continuous form of each traffic state
variable is represented by adding a cap above their original notations. For instance,
N OrDv : represents the queue mass of cell i at the beginning of interval t while
DD O~ 2 represents the queue mass of cell i at time u.

The following relations are directly obtainable from the definition.

N OE | o (3-2)

(3-3)
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Thederivation of Equation (2) and (33) is straightforward.

One primary purpose of this study is to formulate a set of stochastic equations to
replicate the transition of arterial traffic states between two consecutive time intervals,
namely

80 p Q8 OO : (3-4)

Here"Q8 OO is usually referred to as the system dynamics equations.

Compared with the freeway traffic state estimation models, this study treats the
number of queued vehicles at each link as an explicit state variable. The underlying
rationaleis that the evolution of traffic flow states on arterials is governed by two
different mechanisms. Within queuing areas, the formation and dissipation of queues are
mainly determined by the signal control changes, while in moving areas, the evolution of
traffic flow density and speed is mainly governed by the fundamental diagram. There are
at least two advantages in doing so. First of all, queue lengths are important traffic state
variables in arterial applications such as travel time estimation or sigtialization.

Those applications will certainly benefit a lot from the estimated queue lengths of the
proposed model. Second, such state definition allows us to model the traffic condition on
arterial roads with less number of state variables. If the frpevaaleling paradigm were
used for signalized arterial, then one needs to divide each arterial links into a large
number of small cells in order to capture the evolution of queues. The dilemma here is
that while cell model always adopts homogeneous assomyithin each cell, the traffic
density distribution around the boundary between the queuing and moving area is not
homogeneous. Also, replicating arterial traffic flow with large number of cells will put

huge computational burden for online applicationany real scale network.
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3.2. Evolution of cell queue and density

The change of O andN O involves four types of traffic flow movements within a
cell: 1) The incoming traffic flow from external network to cell i during interval t denoted
byr O; 2) The traffic flow moving from cell i to cell i+1 during interval t denoted by
A O; 3) The traffic flow exiting the network from cell i during interval t denoted by
s O; and 4) The traffic flow passing the boundary between the moving area and the
queting area denoted By O. The relationship between these four types of movements

is illustrated by Figure 8).
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Figure3 Traffic flow movements inside a c€l) and traffic flow between two adjacent cells (b)
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By applying vehicle conservation law to each area, one caniwriie p and

N O p asafunctionofE  O,& O,r Of Oandl O.
T O0p TO0 £:y0 06 s06 160 (3-5)
NOp NO 10O A& O (3-6)

The main concern here is to writeQ and& O as some explicit functions of
T O O and other state variables.

First of all, consider the number of vehicles crossing the boundary between moving
and queuing area during interval t. The computation @ depends on the current
queuing condition. If a vehicle is waiting before the intersection, namely i®

then the probability of an arbitrary vehicle inside the moving area to pass the boundary of
the cell during current interval |sy— Herez Ois the probability of vehicles

to exit netvork from cell i during interval t. Since there areQ vehicles inside the

moving area at the beginning of interval t, the total number of vehicles reaching the end

of the cell follows a binomial distribution with successful rateyi. Hence,

10 xEOOOp 3 0¥ v O (37)
Wheres O is the random error term associated WittO.

To derive Equation (3), one only needs to take the expectatioh dd.

O oy o) e A A . 38
b_3 xEO0OOp 3 OV (3-8)

On the other hand, fi O is greater than zero, then the boundary between the
moving and queuing area will move toward upstream direction at a speed which can be

determined by the LWR shockwave theory given by the following equation,
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~ o~ ~ o~

O mE MO (3-9)
E EO

. mEO
A0

Where
A Ois the backward shockwave speed of the boundary between the moving and queuing
area;
mE OM O is the flow capacity given density and queue mass, namely the
fundamental flondensity diagramandE is the jam density;

The fundamental diagramtypically represents the quantitative relationship between
the flow rate and density. In this study, we formulate the fundamental diagesna
two-dimensional function of both densify O and queue mas$ O. The modeling of
the fundamental diagram willbeelabbrad i n t he next secti on.
assume that for any given queue n\agd, the flow rate is a continuous and
differentiable function of densitiy O. Based on condition {8), the maximum number
of vehicles joining the end of the queue during interval i OYE x , however,
considering possibility of vehicles exig the network, the actual number of vehicles

joining the queue follows a binomial distribution given by Equatichd

10 A0 xp 30 v O (3-10)
Wheres O is the random error associated withO anda O is the shockwave speed
given by (39).

To summarizel O can be obtained by combing expressio7and (310).

OENMEO m (3-11)

19



Note that3 OHE plth8 | are timevarying model parameters representing the exit
flow rates from cells. The estimation ®f O is discussed in later sections.

So far, we have emphasized the computation of the number of arrivals observed at the
end of queue .ontdtbenmodlekny @ Bowsmetween adjacent cells. The
traffic flow that connects neighboring cels, O, is more sophisticated due to several
reasons. Firstg O should not exceed the maximum number of vehicles that can be
accommodated by the dostream cell; second O is affected by the signal light
status during time interval t; furthermod®, O also depends on both the queuing
condition at the beginning of the interval and the arrival rate during the interval.

The analysis off O begins with defining two additional variables, the number of
vehicles sending flow from cell i denoted ©yO and the maximum number of vehicle
receivable by cell i+1 denoted by O. These two variables are usually referred to as
the sending flow funotin and the receiving flow function in most literatuég. E can

then be written into the minimum value betwézi©® andO O,

-~ A~

A O TEDVLOO O (3-12)
O O depends on the remaining capacity of cell i+1 which can be computed using the
following equation,
O 0 EI x N 01 O (3-13)
Equation (312) considers both maximum number of sending flow of upstream cell and
the maximum number of vehicle receivable by the downstream link. \dhenstream

is not congested, then the shockwave propagates forward and the flow between two

adjacent cls equals to the sending flow; contrarily, when the downstream is congested,
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the shockwave will propagate backward toward upstream, therefore thiectoxsen

cells equals to the maximum number of vehicle accommodated by the downstream cell.
The minimum @erator of Equation ¢32) reflects sah concept. Figure 3 (b) illustrated
these two possible scenarios.

In order to derivé® O, the following assumptions are introduced.

Assumption The traffic signal phasing of each cell remains unchanged during o@e tim
interval.

Assumption Zhe number of arrivals observed at the end of the queue spreads evenly
within each time interval, namely O —-fO% OhO p y.

Assumption Ihe maximum dischagyateduring the effective green tinad the
intersection is greaterain arrival rate for any cell at any time.

The complexity of® O originates from the fact that the discharge flow rate from cell i
depend on queuing condition. L&l be the sending flow rate at time u, tH@®D is a

stepwise function oD given by thefollowing equation,

@D YOt O p vO 165 &6 6 py (3-14)
Py 1 i
vg boT (3-15)
Where

~

t O is the maximum dischaegate of queue at time u; and,
1 O is the arrival flow rate observed at the end of the queue at time u.
t Ois also known as the saturation flow rate and is determined by signal control status

during interval t. Given , O is a constant due to Assumption 1. Equaticti4Band

(3-15) modeled sending flow ra@®® as a stepwise linear function @ andl O:
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whenNDD is positive, @D is equal to the saturation flow rate which is the maximum
number of vehicle discharged from the queue per unit time; while ib#nbecomes
zero,D is equal to the arrival flow rate O . AndO O is the integral form ofDD

overtime, namely,

600 DHAOD
(3-16)

) DOt O p O 1 OAOD

Yy

The closed form of integral {B6) cannot be obtained directly since piecewise linear
functiony @ is not continuous. However computing the integration with numerical
method will not only generate huge computational burden to the algorithm but also
prevents one from exploring the mathematical property of the model. To overcome this
issue, the followingproposition is stated to provide a numerical approximation of integral

(3-16).

Proposition 1

00 =11 % A O (3-17)
Where,
A Ois the maximum number of discharge during current time intefva
x t OY; and,
Lt are model parameters, by default one can taketly 1@®.

Proof.
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First, create an artificial variablé O to represent the change of queue mass over time

within the current interval,

NGO NO O 10 t Oy &6 O pVy (3-18)
Equation (318) establishes a reversible (eimeone) mapping betweefl O and time u.
Note thatN O may take negative value if the queue vanishes completely at certain time
point in the middle of the intervall & Y1 & ¥t O. In reality the value of
quee mas$DD never drops below zero, however, by allowing the artificial variable

N O to take negative value, we are trying to approximate the sending flow with the

following continuous function given by condition-{3).

. t O 1 OA e A A e
3-19
0))2) SR SR Ky 6 O pVy (3-19)
Consequently, the integral (16) can be computed analytically as follows,
7z ~ y, ~ ~
06 = ®@HAOD (3-20)
y
S‘/ A ~
t O 1 OA o
AO (3-21)
y p A p A
P y t © 1 0A .
= = AU 3-22
10 1 O p A p A (3-22)
p P . A ~
= — =1 | O 10
5 [ 6 ¥ Pt
(3-23)
t 66 7
p. . A o Ao
-1 1 € = = oy 3-24
1 K vy 0 t (3-24)
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Note that from Equation (31) to (322), we changed the variable of the integral from u

~ ~

toN O 1 using condition (318) and replacel O [ with z for simplicity purpose,

a NO r R6 6 &106 t+ 6 (3-25)
AO AU 3-26
16 [ 0 (3-26)

Ohd pYto NO N O Y1 & t O r accordingly. The proof is
finished by replacing O Y andi OYwithl O andA O respectively.

In order to help readers better understand the outpduattion (317), Figure4 plots

O O as a function of arrival rate O and initial queudN O givent O 1@ and

Y pm

By inserting Equation (33) and (317) into condition (3L2), the flow between adjacent

cells& O can now be written as the following explicit form:

Py ALNO 1 0 p AL . ]
o} 'E'I||£4NE01EOAEor 5 A:OFE T x N O 1 O (3-27)

24



Sending flow (veh)

Arrival rate (veh/s)

Initial queue (veh)

Figure4 3-D plot of approximated sending flow rate

3.3. Evolution of cell speed

In the moving area of each cell, the change of traffic flow speed is induced by two

primary causes: first, traffic flow speed is changed for the mixture between the incoming
flow from bothupstream cell and external demand sources and the existing vehicles
within the moving area; second, the speed of vehicles also adapts dynamically to the local
traffic conditions based on the macroscopic spaaukity relationship. Again, consider

the trafic flow movements within a cell shown Figure 5.
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Figure5 lllustration of traffic flow movements and their speeds

During interval t, the composition of the traffic flow in the moving area will change due
to the traffic flows noving inbound and outbound. At the beginning of inte@alp, the
moving area contains three groups of vehicles. The first group is the vehicles remaining
in the area from previous time stepO s O 1 O, the second group is the inflow
vehicles from upseam cellE ; O and the third group is the inflow vehicles from

outside of the network O. Letl O andz O denote the average flow speed of the

latter two groups,hten the average speed of the mixed traffic at the beginning of interval

O pis computed as,

I O s
)

Ol o

56 O £;0 O
P o ]

,1£E - (3-28)

In the above formulatior®) O p is the anticipated flow speed only considering the
blending effect of different movements. Meanwhile, vehicles tend to adjust their speed to
adapt to the local traffic condition, and such behavior is usually described mathematically
by the fundamental digam. A majority of the literature formulated the speed as some
decreasing function of density. While such macroscopic sgeesity function is well
accepted in general, another important relevant concept is the anticipated traffic density
of drivers. Thadea is that drivers adjust their speed not only according to the local

density surrounding them but also the predicted traffic flow condition of downstream

link. Several studies have discussed this issue from both theoretical and empirical
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prospectivdseeWang and Papageorgid2005, 2006 an&oel and Mihaylov2008.
On arterial links, drivers tend to reduce their speed when they see a red signal or queue
accumulation. Hence the target traffic flow speed in the moving area is modeled as a
function of bah density and queue mass. The speed adjustment process is modeled with
the following equation,

OO0 p JOOOP p JOWEON O (3-29)
Where,
» E O O is the macroscopic spee@nsityqueue relationship for the moving area
of arterial cells; and,
[ Ois a model parameter representing the adapting rate of traffic flow speefd,O
p.
Equation 8-29) compute® O p as a linear combination § O p and the
theoretical speedd E ORN O . And the changing rate of speed is controlled by a-time
dependent paraeter] O. The specific form of speed functidhis given by Equation €3
30).

WEONO O p i—OA— (3-30)
Where,

O is the free flow speed of the cell;

E isthe jam density;

A is the storage capacity of link i measured by the maximum number of vehicles
contained on the link as shown in equatiof313;

A xIE (3-31)

and,
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r is a model parameter representing the rate of speed decay as the queue ratio increases;
The speed function given by-@) is a two dimensional convex functiontbfO and

N O in which the cell speed decreases linearly with normalized density (the ratio
betweerE O andE ) and exponentially with normalized queue length (the ratio

betweerN O andA). There are many alternative forms of Equatio3@® such

macroscopic correlation between the speed, density and queue within an arterial link
should be determined and calibrated using field data available. The calibration of

Equation (330) will be further discussed in numerical investigation sections.

3.4. Dynamic estimation of model parameters

So far we have accomplished two important tasks. First, the traffic flow state of an
arterial corridor is defined as the collection of its link density, sp@edjueue length.
Then based on such traffic state definition, we have formulated the transition equations
for system state variables includiNgO,7 O and® O. However without careful
calibration of the model parameters that determines the propesygteim transition
equations, the estimation result may quickly diverge from the actual situation. Model
parameters defined in this study can be generally categorized into two groups: parameters
describing the route choice behavior of the drivers suctramy fractions at each
intersectiorg O, and parameters that describe the driving behavior such as speed
adaption rat¢ O. Generally, the change of those model parameters over time is not
dominated by any type of traffic flow model. And those model patara need to be

dynamically estimated because of their tidependent nature. Such dynamic calibration

of the model is realized by state augmentation technique.
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To begin with, the original system state variable is expanded to incorporate additional
modelparameters. Le8 O be the system state variable after the state augmentation.
80 80 O OBz O O (3-32)
Here X(t) is original traffic state variable defined previously and
3 Ofg O 3 O O are additional model parameters to be estimated. The new
system state variab& O not only contains all the traffic flow variables but also those
unknown model parameters associated with the transition process.

Then the change of ndraffic flow relatedpart of8 O is then modeled as following

random walk process,

.3 0p 30 W

w3 O p 3 O Y

co e . (3-33)
3 O0p 3 O Yu

* [ Op [O Y

Whereuis the random walk step with zero mean and unit variance.
We have thus far formulated the transition of system state along wits tathe-

varying parameters into the stagace form given by condition-@l), (313), (315) (3

27), (329) and (333).

3.5. ChapterSummary

In this chapter, an innovative macroscopic traffic flow model is developed to describe
the arterial traffic flow dyamics under given signal timing parameters. In later parts of
the dissertation, the traffic flow model developed in this chapter will serve as the
theoretical foundation for the real time traffic state estimation and-sdrantprediction.

Such analyticalraffic flow model can become very powerful tool once combined with

other recursive stochastic estimation methods such as Kalman filter or particle filter.
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Compared with existing traffic flow models such as CTM, the proposed model
emphasizes on the modwaji of queue formation and dissipation along signalized arterial
corridor. The traffic flow models discussed in this section attempts to explain the high
nortlinearity and stochastic nature of arterial traffic flow dynamics based on rigorous
mathematical devation. The proposed model decomposed each arterial link into two
distinct areas (moving and queuing area) and formulated the transition of flow density,
speed and queue length using a set of stochastic equations. Such model is capable of
predicting themovement of the boundary between the moving and queuing area without
dividing the entire link into many tiny cells. From a theoretical point of view, the
proposed model attempts to overcomehtbmogeneityassumptioradopted by most
freeway traffic flow malels. The homogeneity condition always assume that the vehicles
are uniformly distributed within each cell and their sgeatidentical within each time
period, therefore appropriate size of the cell needs to be selected in order to validly
replicate theoropagéion of shockwave along freewalowever he traffic flow
condition inarterial corridor is considerably different from that of freeway mainly
because shockwaves form regularly within each link due to the signal, hence each arterial
link needs to b represented by a large number of small cells in order to implement
conventional freeway traffic flow model. However such approach is not only
computationally expensive but also to some extent clumsy. To contend with such issue,
the proposed model refedasshifting boundary queue modeitended to adapt
conventional traffic flow model to arterial networks and offer a more straightforward and

computationally efficient modeling framework.
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The second contribution of this study is that it proposed théeexis of some
macroscopic relationship between traffic flow speed, density and queue within an arterial
link. In freeway traffic flow studies, the correlation between speed and density is a
fundamental concept usually refertedchs speedoncentration cwe or speedlensity
curve. In this study, we first proposed the three dimensional sjeresityqueue
function as an extension of the conventional splssity curve on arterial links. The
three dimensional speet&nsityqueue diagram describes the spekd link as a
function of both density and the ratio between queue length and link length, therefore it
explicitly considers driversod6 reaction to
extensive numerical studies are conducted to fit the tireensional speedensity
gueue curve using field dataset.

The last noticeable contribution of the proposed model is the formulation of queue
evolution in an analytical form considering the signal impact. Usually in stochastic
estimation problems, the ggerty of transition equations determines both the
applicability and performance of the model. In this chapter, the transition of queue length
or the boundary between queuing and moving area is a primary challenge in the modeling
process. By using numericapproximation technique, we derived analytical transition
expression for the queue length consideringitrecontinuous change of signal and
discharging process. A further extension of the proposed model is capable of predicting
the queue over multipléme steps during which the signal status changes according to
some prdixed timing plan. Therefore the formulation obtained in this chapter is not only
meaningful for traffic state estimation but also in other traffic control applications such as

signaloptimization.
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4.1l ntegrating Heter ogewietohu sP arettiecclt eo

Filtering

4.1. Fundamentals of #lmanFilter and ExtendKalmanFilter

Many dynamic systems can be modeled with stpsece formulations. In such
formul ation, the fAstateo of the system at a
denoted by O. Each component & O represents the value of variable that characterizes
certain aspect of the system. Thus,

80 @ O O fE O 1)

X(t) is mathematical representation of the system state at time t. Consequently the
change of system stangth respect taime can be described by a set of partial differential
equations, whie is known as the fundamental dynamics equation of the sy$tem.
arterial traffic flow model proposed in previous section is a specific exampldyoiamic
systemlf the stochastic system dynamics equation is linear then the state estimation can be
dore by using Discrete Kalman filter. Mathematically,

g8 '8 "0 «x (4-2)

Here the continuous time t is rewritten with discrete time stép g the control
variables of the system at time step k ands the noise of system dynamics. And the
system is also associated with the following measurement equations, thus

(8 O (4-3)

Where: is the field measurements obtained at time k@nid the noise of the

measurement.
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If both x andO are white noises following Gaussian distribution, the optimal
estimation of system state can be computedrsively usindg<alman filter. At each time
step, the following two expressions are used to compute the prior and posterior estimation
of 8 .
8 !8 "0 (4-4)
8 8 + : (8 (4-5)
Where
8 s the prior estimation @& without considering the measurement at time k;
8 s the posterior or adjusted estimatiorBof
+ is Kalman gairat time step k
The weighting factor between prior estimatomd t he fAmeasur ement
the actual observation and estimated measurements is called Kalman gain. The Kalman
gain represents statistically optimal weighting fattetween the estimation and
observation values

R (4-6)

(0 (C 2
o !0 ! 1 (4-7)
Where0O and Q are error covariance matrix of state vari8bland system noise .
When applying Kalman filter, one needs to follow a{step computation procedure:
time update and measurement update. The former projects the estimated system state at
previous time step to current time step, and the latter adjusts the prior estimatgpn us

Kalman gain. The general procedure of discrete time Kalman filter is illusiratédure 6
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Time Update Measurement Update
8 1 8 "B Compute Kalman gain
Project the error N 0 (
covariance (0 ( 2
0 ro ! 1 Adjust estimation with measurement
8 8 + : (8
Update error covariance matrix
0 ) + (0

Figure6 Computation step of KF

The original lineaKF can be used to solve the estimation problem of a dynamic system
governed byinear stochastic dfferential equations. However when the system dynamics
eqguation is notlinear, theEKF technique can be implemented to handle thelinear
transition equationdVathematically, the system governed by #ioear stochastic partial
differential equatiorcan be expressed as follows,

8 08 MO (4-8)
Q8 O (4-9)

All notations appeang in above equatiahave the same definitionas in theprevious
section. The notinear function f and h are the fundamental system dynamics equation and
measurement equation.

For nonlinear system, one can still use E4r10) to perform the time update, thus,

8 "8 Mhn (4-10)

And compute the predicted measurement using4fj1)
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U Q8 hn (4-11)
However in order to compute Kalman gain using @ef) ~ (47), the nonrlinear
system dynamics equation and measurement equation need to be linearized first using
Taylor expansion technique. The system transition and measurarsapproximatedy
the following set of linear equations,
8 8 !'8 8 7 x (4-12
(8 8 60 (4-13
Where
8 and: are the system state and measurement vasiabteme k;
8 is the posterior estimation of system state at time k;
8 is the approximated state obtained from &4.Q);
x andO are process and measurement noise;
A, W, Hand V are determined by the Jacobian matricéSanfd’QQ more specifically,

HES O ht

1 Ag — (4-14)

e EER 19

7 X p 'F;CE?Ffo)Fn (4-16)
h

6 O % (4-17)

All the remaining computation procedures of EKF tli@sameasthat of KF. There are
several noticeable points regarding the application of EKF:
1 In order to compute the linear approximation of the system, the dynamics

equation'Qnust be continuous andff@érentiable;
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1  The change of system should at least be locally linear sthiéhapproximation
result of (412) do not deviate too far from the actual state;

1  After nonlinear transformation, the distribution of process and measurement
noise x andO beameno longer normal. Wweverwhen computing Kalman gain with

EKF technique, such distortion effect on the error term distributions are not considered.

These can be regarded as the constraints of EKF. For more detail information of KF

and EKF, readersan reér to other publications such Bsul and Howard2005)

4.2. Fundamentals of Particle Filter (PF)

Particle filter is a type of recursive Bayesian filter designed to estimate the state of
stochastic dynamics system with high Aorearity. The algorithnwasfirst proposed by
Gordon et al(1993)and later studied and improved by many other researdpemnticle
filter uses a large number of particles to represent the distribution of system state and
compute the probability of each particle using the measurement funcgam ket
"Q8 hx be the nodinear system dynamic equations

8 08 (4-18)
wherex is the noise term of system transitiémd ateach time step, the measurement
values are related to the state vector via the observation equation,

Q8 O (4-19)

whereQ is the white noise of observation equation. PF uses a set of particles
8 B ;B B | torepresent the system state at each time step and a weight is associated
with each particle to represent its probability; hix 8 Fx  , thus

08 85 xp (4-20)
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Then using the system model it is possible to obtain the prior PDF of system state at

each time step Kk,

08 s 08B 08 s A8 (4-22)
Where$ h Bh
Since the probabilistic model of the state evolutio8 B is described by

"Q8  x wherex is a Markov model with known distributiptherefore
088 ¥8 08 Kk 0x Ax (4-22)
wherey @ is the Dirac delta function, since the delta function arise when&oth

andx are known, theB is computed based on a pure deterministic relatipns

According toBayes rule,

08 $ 0TS (4-23)

The dove equation can be used to update the probability of each particle at every time
step k.At each iteration in PF, first the prediction of system state is done by using system
transition function to each particle; and then the weight of each patrticle is updated using

measurement . The prediction and update algorithm in PF is summaizdain.
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Prediction: For each particle in the set, compute its predicted valut
using system transition function,

8 Ay E plt8 H
Where uis the random error drawn from the distributiorxof;.
Update weight: update the weight of each particle,

Xp x F0O8 js

For more detaddinformationon PF, readers can refar articles by Gordon(1993)
Chen and Liu(1996) andCarpenter et al(1999) The primary advantage of PF includes two
points First, it does not require the computationJatobian matrix of the transition
function therefore it can handle dynamic system with highlimearity. In the arterial
traffic flow formulation, the first order derivative of system dynamic equation is not
continuousAs a result, it is very difficulto implement EKFRusing the proposed traffic
flow model. However introducinBF techniquean solve this problen$econd, in a nen
linear system, the distribution of error term in transition functwdhbecome nomormal
afternonlinear transformation,dwever the computation of Kalman gain is based on the
assumption of normigl distributed error term. Therefore applying EKF on a higion
linear system will yield considerabéemount ofestimation errar To overcome this
problem, PF usealarge numbeof particles to approximate the distribution of system state
so that the algorithm remains effective even when the distribution of systens siatte
normal. That is the performance of PF is superior compared with EKF when the system

transition is highlynortlinear.
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In this study, we use PF as a mathematical tool to incorporate detector measurements.

4 .3. Evaluate the probability of traffic state with fixed location detectors

Fixed location detectors are one of the most widely deployed detectors worldwigle. Th
family of fixed detectors includes inductive loops, magnetic loops, laser detectors and so
on. Although different types of detectors are made based on different technologies and
have their respective accuracy and resolution, one common feature obfiatidmh
detectors is that they can provide measurements of traffic flow speed, volume and
occupancy around a particular point of the roadway.

Traffic volume count is the most basic measurement of deteartdrepresents the
number of vehicles observedrthg each time interval The traffic flow occupancy
readings represent the proportion of time that the detector is occupied by theatrdffie
speed reading of detector represents the average speed of passing vehicle.

In reality, the measurement oétectors is always subject to some degree of random
error. The random error stems from two souréest is the measurement erneheredue
to some technical arontechnicalreasons the detector readings deviate from the actual
value Second is the sampling error. Sampling error can be defined as the discrepancy
between average traffic state of sampled vehicle set and the average traffic state of the
entire traffic population on a link. More specifically, suppose m vehicle samples are
observed by the detector during one time interval, and each of their observed dpeed is
then the measurement vector of the link can be written as:

- ~ -

URJm RJ
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We are interested in the conditional probability of link traffic speed v given above
observéion. LetO be the actual speed of vehicle j within the cell and the total number of
vehicle at time t is n. Then the random error between measured and actual cell state can be

computed as follows:

—l©

O (4-24)

Where,
U is the speed ofth vehicle captured by fixed detector, edtls a sampling of traffic
speed of the cell;

, IS the random error associated with ith observation;

The first term of Eq4-24) represents the observed average traffic flow speed and the
second ternof Eq. (4-24) represents actual average traffic flow speed. By taking the

expectation and variance at both sides of above equation, we can obtain,

%,R u B (@) R B O £ o
I | | | | (4-25)
Tt
6AC§1 U u TE 9] |,£6AC) U u
(4-26)
P6Ad 6AD

Note that is assumed to be 1.1.D. following normal distribution with zero mean and

fixed variance, thus,
6 AD oy T (4-27)

The variance obJ is determined by the distribution of current system state,
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5

6AD oiﬂ

(4-28)

However since the true speed of each individual vehicle is unknown during the
estimation process, we need to approximate it with the estimated speed variance during the
PF method.

6 A0 6 x0 429

Where

Ois the estimated speed of cell by particle i;

x is the weight of particle i;

N is the total number of particle;

The variance computed from Eq-24) is influenced by three factors: 1) the number of
observations, m; 2) the variance of measurement g@&ad 3) the variance of the cell
speedTherefore distance between estimated cell speed v and observed traffic speed

follows a normal distribution with zeroean and variance given by Eg30).

(4-30)

Note thatwhen m=0, the variance tends to be infinity and the conditional probability of
any estimation will become identical. This make sense because under some rare condition,
when no observation is obtained or the detector is occupied by one single vehiate, then
useful information can be obtained from the detector. Therefore the conditional probability

of any given state should be equal to each other under such circumstance.
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4.4. Evaluate the probability of traffic state with probe vehicle data

Probe vehicle technig is receiving increasirgtentionfrom many transportation
professionals due to its unique advantages. By installing GPS and wireless communication
devices in probe vehicletheycan reportheir speed and location in a retgdhe manner to
any informaion processing units around the world. And the high mobility of probe vehicles
allow them to cover a wide range of the area in the network, another merit of probe
vehiclsi s t hat they dondét require installati on
the network.

This section focuses on the formulations of conditional probability of traffic state given
speed and location information of probe vehicles. We will show that under the proposed
framework, it is very easy to incorporate different types dfitranformation into the
process.

First of all, according to the location of each probe vehicle and network topology, one
can map each probe vehicle into its corresponding cell. This work should be done before
the state estimation. Within cell, suppose lication and speed of m probe vehicles are
reported. Suppose their location and speed are represented by the following vectors,

DB
zfr B Iy

Secondly, according to each of their speed, we can divide probe vehicles within the cell
into two gioups The first group contains vehicles traveling at normal speed (higher than
particular threshold), and vehicles assigned to the first group are considered as moving
vehicles The second group contains vehicles traveling at very low speedse thatre
completelystopped, and vehicles in the second group are considered as in queuing

condition.
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Assunethat there aré vehicle in group one arid vehicles in group two, and their

respective speed and location are denoted as follows:

bl MBMPD andz g B
B

fz,  for group 1 and;
bl MM andz gk Big

for group 2

4.4.1. Probe data and flow speed at moving area

The average flow speed of moving area should be correlated only with the observed
vehicle speed in the first group. Siresch reported probe speed can be treated as a
sampling process of the entire traffic populatior, ¥ariance computed from Eq-248) is
also applicable to probe vehicle case. Thus,

P P . p o P
6 A C?— z v o7 0] — 6 AD 6 A®

| (4-31)

Therefore the conddnal probability of each speed state givenfz, 8 fz,  can

be computed using condition-84).

4.4.2. Probe data and flow density and queue length

In order to discuss the conditional probability between number of probes observed at
each group and the celénsity and queue length, the concept of penetration rate of probe
vehicles needs to be introduced. The penetration rate of probe vehicle represents the
proportion of probe vehicle to the total number of vehicles traveling within the network.

Hence probe gnetration rate is a probability value between 0 and 1. If one randomy pick
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a vehicle from the entire population, then the probability that the selected vehicle is a probe
vehicle is p.
Figure6 illustrates a typical scenario of probe distribution with cell There ard
probes in moving area amd probes in queuing area. Meanwhile, the estimated density
and queue are Kk(t) and q(t) respectively, then given the probe penetration rate p, the

conditional probability of the estimation can be computed with the following expression:

PEOMNOYd H (4-32)
# D p b # D p b

Where,

w is the number of lanes of the cell;

T Ois estimated number of vehicles in movingate® EO1 DO x;

Probe vehicles in Probe vehicles in
moving area queuing area

Non-probe vehicles

:l-z =t

Moving area Queuing area
k(t) av |

Figure7 Probe vehicles in a cell

Condtional probability expression {32) is quite seHexplanatory, since given the
probe penetration rate, the probability of obsenfingprobe vehicles amorig O total
vehicles follows binomial distribution. And such condition is the same in queuing area.

Therefore a necessary condition far.@-32) to be valid isthat T OH x NO,
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otherwise the conditional probability should be zero since the total number of vehicle

within each zone cannot be less than the actual observed number of probe vehicles.

4.5. Computation procedure of PF algorithm

This section provides a detilsummary of the computational procedure of PF applied
in this study. The notations used in this section are first summarized as follows:
M- total number of particles contained in the estimation set;
8 O -the ith estimation particle at time step t;
3 O -the particle setattime ste@Bt® 8 OB OB O
x  O- the weight associated with particle i at time step t;
9 Oi the field measurements obtained from traffic sensors at time t;
"Q8h i the system dynamics equation or system transition equation at time t;
"Q 8 O O ithe conditional probability computation function at time t;

The computation procedure of PF given above notations is summarized by Procedure 1.
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Procedurel Computation procedure of particle filter

1) Initialization: According to particle set size M, set
3 8 nfB mMMB 1 andrepeat step 2)4) until the
estimation process is finished;

2) Forward State Projection: For each particle, pata its projected state
at next time step usiri@ 8h)
8 O p Q8 Oh FE pktB -

3) Update weights: For each particle, first evaluate its conditional
probability given measuremersO p , and update its weight.

x Op x O0Q 8 0 pmMO p FE plthsh

4) Resampling: Compute the number of effective samples according t
following condition,

P
B x O p

Then perform resampling if the number drops below particular
threshold. In resampling process, a new particle set is created with tl
following condition,

30p 8 OpmB OpmwmB O p

4.6. ChapterSummary

In this chapter, we emphasized the integration of estimation results from traffic flow
models with the field observations considering the possible errors at both sides. As a
mathematical tool, PF is selected as the primary filter algorithm in this stedy dis
unique advantages over other filtering algorithms. The simple yet flexible computation

procedure provided by PF allows us to incorporate highlinear andhoncontinuous
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system dynamics equatiomdso the estimation result of PF can providethus entire
distribution of traffic flow state over its mean value and by multiplying conditional
probability obtained from multiple information sources, the framework can accommodate
heterogeneous data sources and take full advantage of the additiomaatida provided

by multiple dataset.

The applications of two types of traffic sensing technologiesdiscussed in this
chapter: the fixed location detectors and probe vehicles. The correlation between-the real
time measurements from those two typesefsors and the estimated traffic Staes
analyzed. In the following chapters, a more dethilumerical investigation will be
performed usin@real world dataset, and the performancetbemodel will be discussed

in more detail.
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5, Esti matiioml ofr &AvdlerTi me and | ts Vi

5.1. Summary of previous studies

Travel time estimation (TTE) techniques are designed to evaluate the current or
historical travel time of a path based on all external information provided by traffic sensors.
Generally speakig, there is an intimate connection between TTE and travel time prediction
(TTP) since TTP focuses on predicting the future travel time value based on historical
information while TTE emphases on computing the present or past traveldines
Although hese two are closely related concepts, they are still quite different in many ways.
First of all, as a commonly used performance indicator of transportation network, the travel
time is not a simple state variable of the network rathera complex fun@n of many
network stateincluding traffic flow speed and density, queue length, signal timings and so
on. The essential part of a TTE algorithm is to develop an effective method to link those
traffic states with the travel time. On the other hantR emphasizes more on the
prediction side of the problem, namely how to compute the future travel time value
effectively based on existing traffic information. Also, prediction can be done with or
without estimation process, and we can categdriZeé studies mto two groups, direct and
indirect travel time prediction modglaccording to whether the prediction is performed
based on an embedded TTE algorithm or not.

In a directTTP, future travel time is often treated as a function of historical travel times
ard statistical methods are employed to describe the quantitative relation between the
historical and future values. This family of algorithm includes regression medhdtisne
series method@-ei et al.2011,Yang et al2004) KNN methodqQiao et al.2012) ANN

methodgKwon and Petty?005,Park and Rilettl998,Stathopoulos and Karlafti2003),
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Kalman filter methodsL{u et al.2005)and fuzzy regression method3iritriou et al 2008)
All direct TTP relies on large amount of observed travel timewder to obtain stable
parameter set for statistical models, and historical travel time data of a link or path can
easily be obtained from various vehicle matching sensors including Bluetooth sensors,
vehicle plate recognition cameras, magnetic sensalvideo cameras. In summary, direct
TTP methods are usually data driven models that require extensive data manipulation
without considering the underlying traffic condition of the network.

Contrary to direct TTP methods, indirect travel time predictiauefs take an
alternative approach in terms of how to obtain the travel time value. As mentioned
previously, the indirect TTP methsdttempt to quantify the complex relationship between
travel time and underlying traffic flow state variables. Hence imectd TTP, future
network traffic states are predicted first, as an intermediate step, in order to compute future
travel times. The relationship between network infrastructure, traffic flow state, travel time

and traffic surveillance system is illustraied=igures.
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Figure8 Relationship between traffic state, travel time and traffic surveillance data

The traffic flow condition of an arterial network is influenced by three major factors:
the user demand, the network capacity taflic control strategies employed@he
interaction between these three factors determines the density, speed and queue distribution
of the network. According to different network status, drivers may experience different
travel times, however it is usuglery difficult to write down analytical expression of
travel time as a function of traffic state especially in arterial case. Hence TTE often serves
as a numerical procedure to obtain +&ale travel time. On the other hand, both traffic
state and travdime can be measured by traffic surveillance system.

TTE i s an essenti al component in indirect
TTE and TTP are sometimes used interchangeably. There are several advantages
developing an indirect TTP algorith First of all, indirect TTP does not rely on the direct

observation of actual travel times from vehicle matching sensors since travel time in this
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case is computed from estimated traffic states (link speed and debsitg). observation

of field traveltime is very difficult if not impossible under certain scenarios even without

considering the availability of the vehicle matching devices, for example, the number of

observatios decreases significantly as congestion |leweteasesnd statistical modsl

cannot achieve stability without sufficient data sampl&iso in a complex network where

the travel times between multiple OD pairs are concerned, it is very challenging to monitor

the historical travel time between every OD pair. The indirect TTRh@other hand, is

able to take advantage of multiple data sources and does not rely on measurement of real

time travel time hence it can tackle above problems with additional modeling effort.
Amongtheresearctihat deat with TTE, trajectory method one of the most famous

and widely use@lgorithms The core concept of trajectory method is to reconstruct the

trajectory of a virtual probe vehicle based on estimated traffic states of the network.

Trajectory method can be used for both freesand aterials. Coifman(2002) first

proposed a trajectory estimation method for freeway segments using densely deployed

detector data. In his study, the local speed of traffic flow measured by loop detectors was

expanded to the entire freeway segment basednamidtic shockwave theory from which

the vehicle trajectory linevascomputed. Later, similar trajectory methods for arterial roads

werediscussed by several researchers includdhgskar et al (2009),Liu and Ma(2009),

Liu et al.(2009),Sharma et al(2007)andGeroliminis and Skabardon{2005). Compared

with freeway trajectory methadthe arterial trajectory methstbcus more on the

estimation of queue length and delay experienced by drivers at each intersection. More

specifically,Geroliminis and 8abardonis(2005) proposed an arterial queue model

considering the shockwave propagation from upstream to downstream intersection based
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on which the average delay traveling along the arterial corridor is estirshtecha et al.
(2007)proposed a redlme queue estimation method using detector colBitailar

approach was also cadsered byBhaskar et al(2009)who employed both upstream and
downstream vehicle counters to determine the number of queued vehicles before the
intersectionLiu and Ma(2009)andLiu et al.(2009) proposed a queue estimation method
considering the occupancy change of loop detector during the accumulation and dissipation
of the queue in front of a sign&ased on their proposed dynamic queue method, a virtual
probe method wasedteloped to estimate the arterial travel time in which the trajectory of

an imaginary probe vehicle traveling along the road is computed according to the estimated
gueue lengthBhaskar et al(2009)computed arterial queue length based on detector and
probe vehicle data explicitly considering the demand generation and extinction-&tknid
points. In general, trajectory methods are widely used in agdual totheir capacity of
accurately regenerating the full trajectory and travel time of vehiclett#edore part of

arterial trajectory method is a higheffective queue estimation model sinces provedin

multiple studiesthat the travel time estimated from trajectory methods arereéapleas

long as the underlying traffic states are computadectly Readers can se@umerical

results providedh theliterature.

Due to the proliferation of probe vehicle technology, many recent studies focused on
estimating the travel time with probe dasathi et al(1995 proposed an incident detection
system based on travel time measured from probe vehicleQdgitaet al.(2005),andChen
and Chien(2000)discussed the determinationtbE number of probes for freeway travel
time estimation problem€haudhuri(2011)discussed the accuracy of the lpgorehicle in

speed estimatiorComert and Cetiff2009)proposed a probabilistic model to estimate the
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arterial queue distribution according to probe detllinga and Fu (2003)iscussed the
method of reducing the bias of speed estimation from probe vehicldvitatarecently
Mehranet al.(2012)proposed a trajectory reconstruction method based on probe data and
fixed location sensors using kinematic wave theory. In genessarch on probe vehicle
technologyis very versatile and each study htssown objective and methodology.
Another research direction TTE is the computation of travel time variability over its
mean value. Since travel time can be view as a complexdanaf the congestion level
and other external factors such as road condition, signal control parameters and weather
conditions, it is highly stochastic in nature especially under congested traffic condition. The
range of travel time, not onlysimean véue, can affect the decision making process of
individual drivers since depending on the expected mean value and potential range of the
travel time, users magonsider théradeoff between the mean travel time and its reliability.
The reliability of travétime is usually measured by its variance over the mean value.
However due to the dynamic and high stochastic nature of the travel time, computing travel
time reliability through mathematical derivation is a challenging task. Hence most existing
literatures usually seek alternative approaches. We can largely categorize the research in
this field into two groups: statistical models and simulabased models. Statistical
models work on large amount of historical travel time dataset and describe theitiostri
of link travel time with particular statistical modeOn the other hand, simulation based
models try to investigate the stochastic property of travel time via microscopic simulation
programs. Recently, the emergence of advanced vehicle matctinmjoiees such as
Bluetooth sensors has created more opportunity for researches to colléce masaint of

actual travel time dat@gseeHaghani et al2010,Aliari and Haghani2012) Fei et al.(2011)
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propose a Bayesian inferenlbased dynamic linear metifor predicting route travel time
by combining an a priori known initial distribution and réate traffic information. They
predict the posteriori route travel time distribution in terms of the variation of travel time
around its historical mediahlollander and Liu(2008 analyzed théravel time distribution
of a network using repeated simulati@oth Sunet al (2003)andKwong et al(2009)
studied the distribution of travel time based on the actual path travel time measured by
vehicle matchingechmique.Hollander and Liu(2007)investigated the travel time
distribution using data generated from repeated simulation. More redauntyal.(2012)
proposed a data fusion model to combine the historical travel time distribution with real
time meaarement data to obtain a more reliable short term link travel time distribution. In
summary, compared with the estimation of mean travel time, study on the short term travel
time reliability is sparse due to huge amount of travel time information reduyrsdch
studies and most existing literature use artificial methods such as microscopic simulation to
generate travel time data.

In this chapter, thtundamentals of trajectory method dirst explained. Then an
arterial travel time estimation algorithisiproposed combining the conventional trajectory

methods with the traffic state estimation framework proposed in this study.

5.2. Trajectory Method for Arterial Travel Time Estimation

As it has beementioned earlier, the idea of trajectory method is vegigditforward.
The estimation of travel time is performed by replicating the trajectory of a virtual probe
vehicle traveling along the designated path. Consider a vehicle traveling along a freeway

corridor. The freeway is divided into M segments. The agertraffic flow speed within
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segment i at time ti® O (this value could be obtained from traffic state estimation
models or through direct observation), then the travel time of the vehicle to travel through

the corrdor can be approximated by tfadl owing expression,

00 (5-1)

Where

| Ois the estimated travel time at time t;

, Is the length of segment i;

The trajectory of this hypothetical probe vehicle can be described by the following set

of pointsin the spacetime diagram.

m h , Bh (5-3)

Similar algorithm was employed I53pifman(2002), and he demonstrated the
effectiveness of this type of simple trajectory method. (In his paper, the primary challenge
was to obtain the traffic flow speed tbieentire freeway segment using point

measurements; the computation of travel time ig ardmall part of his study.)

However when the problem comes down to arterial travel time, the situaticoturn
to be much more complicated. Because the travel time estindatprgno longer valid
due to the fact that vehicles will experience adddl delays at intersection if theye

caught by red signal. Hence in arterial roads, the travel time is composed of travel time on
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the link and waiting time before the intersection. More sophisticated trajectory method is
required for arterial case. Land Ma (2009proposed a trajectory method for arterial
corridors where the maneuver of a virtual probe vehicle is computed based on estimated
queue length at each time step. The model is built on another dynamic queue model which
uses high resolution sigl and detector data.

Now suppose the timdependent traffic flow state during the entire period of analysis
is obtained by applying the traffic state estimation model proposed in the previous chapters.
Then the network traffic state during the periodoélysis can be represented by the

following two matrces

1s E 15

' 1 3 1 Z (5-4)
6n E 65

6 6eﬁ EE 6eﬁ (5-5)

MatricesQ and V contain N*T elements where N is the number of cells and T is the
period of analysis. Now again suppose each element of Q and V follows normal
distribution with estimated mean and variance.

%6 ; Ore A 6 161 N6 A O, AR
. SN 5-6
E plt8.HE plgs3t 56

Note that above traffic states are outputs of our arterial traffic state estimation model.
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Now consider a virtual probe vehicle moving along the arterial path, the objective of
trajectory method is to reconstruct the trajectory of this imaginary vehicle based on the
traffic state matrix Q and V.

The trajectory of an imaginary vehicle can be pated using the procedure described

by Procedure 2.

Procedure& Description of arterial trajectory method computation procedure

Step 1: initialization, set time t=0, simulation time st€p E, set the
initial state of the vehiel to traveling, the current location of vehicle

p(0)=0. At each time step, repeat the following computation steps

Step 2: determine the current status of the vehicle. If the vehicle is

traveling mode then go to step 3), otherwise go to step 4)

Step3: update the location and status of vehicle under traveling ma
First determine the traffic flow speed according to current time t an
current location p(t). Then the position at next time slot would be

PO E PO OGE
Obtain current queue length of the lik; O, compare the location of
vehicle and the length of moving area of the link. If the vehicle is
caught by the queue, then set the vehicle status to waiting mode al
X N and go to step 5), otherwise go topsE directly
Step 4: update the location and status of vehicle under waiting moc
Compute the number of vehisldeparted from the queue within the
current time slot from estimated traffic statds. N Ni. Update
the number of vehicles that remdefore the virtual probe vehicle at
theend of current time slot,

x x A

If x 11, then the vehicle is still in the waiting mode after time sl
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t; otherwise ifx 11, then it indicates that the vehicle is advancin
to the next link, seti=i+1anB O E B , where, is the length
of link i.

Step 5: advanc® the next time step. Set t=t+1 and check if the pro
vehicle has finished the travel based on the cutosation and the
length of the path, if yes then set j=j+1 and return to step 1), otherv
go to step P

Note that above trajectory method can be applied multiple times to form a travel time

distribution.

5.3. ChapterSummary

In thischapter a newtype of travel time estimation algorithm is proposed to evaluate
the reliability of travel time along a signalized arterial road. By combining the real time
traffic state estimation and trajectory method, the advantage of the proposed TTE algorithm
is two-fold. First, the model can estimate the approximate distribution of travel time based
on the traffic state estimation model discussed in the earlier chapters. Compared with other
analytical models, the proposed method is very simple and easily undepdtardso the
utilization of the model does not rely on particular traffic state estimation model. Second,
compared with other simulation based models, the proposed method is computationally
more efficient since it does not involve any microscopic simadind obtaining the travel

time distributionby repeatedly simulating the netwaskichis averytime consuming task.
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6.Shoetretrm Traffi cAIFdomwi tPhhmdi cti on

6.1. Traffic state transition equation and shdaerm prediction

Recall the arterial traffic state definition given byl(B
80 N OB ORF OMH O OB O (6-1)
The vector X(t) represents the traffic states of the corridor at time t, later such state
vector X(t) is expanded to include additional turning ratigables. The enhanced traffic
state variabl® O was defined by condition {33). And the transition of X(t) is described
by the system transitiorgaations developed in Chapter 3 which is summarized as follows,

I O p p 3010 £706 r 0 10 v

o xEOOOp 3 OY vEMEO m

AOYE xp 30 v EMEO ¢

(6-2)

. A P o A
/EOlEl—ll% 5 A OhE | x N O | (@]
56 OTOsOlC)C)C) A0 O r 020

P T0 £:0 r0 s0 10

p | OwE OWN O

The forecasted system st&& p B O ¢ BB O + can be obtained by

repeatedly applyinthe above system transition equations to the estimated current system

state,8 O, given the following two types of additional information:
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1)  The predicted inflows at allemanl generating nodes fromtto titk O E FE
plth8 h;

2)  The predicted turningatio of each cell fromtto ttlks O EFE plghs h+;

HereK is the prediction time range defined as the maximum number of time steps to be
predicted from the current time t.

The above two pieces of information are both essential because they represent two
crucial aspects of the arterial network:O represents the boundary condition of the
network, namely the number of vehicles that will enter the network in the near future; o
the other hands O represents the route choice behavior of drivers within the network and
will determine the proportion of traffic flow volume at diverging points. A common feature
shared by these two variables is that both of their transition candesbebed by traffic
flow models, hence statistical methods need to be employed.

In this study, the SARIMA (Seasonal Autoregressive Integrated Moving Average) time

series technique is applied to conduct the prediction & and3 O.

6.2. Description of SARIM model

The SARIMAIs an enhanced ARIMA model consideriting effect of seasonal change
of the time series. Let be a seasonal time series with period S then if the series
9 p " p 3 : isa stationary autoregressive moving average process (ARMA),
thenthe original time series is a SARIMA process whose stochastic property can be

degribed by the Equation {8) and (64).
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9 p " p 3 : (6-3)
S5"m" 9 ¢r"uw" A (6-4)

where,
B is the backshift operator defined by:
58 p 58 58 E b8,
m8 p m8 m8 E m8;

¢" p €8 ¢8 E ¢ 8;

w P w8 w8 E w8,

A is the white noise error with zero mean and fixed varisdviok, mand$ A £
andA T DhA rtfor any k;

The model parametep and P represent the neeasonal and seasonal autoregressive
polynomial order and g and Q represent the-seasonal and seasonal moving average
polynomial order respectively. And d and D are the order of differencing fesemsonal
and seasonal part of the time series.

Equation 6-3) and (64) established a linear oelation between  and its prior
values: it I8, thus both the single step or multiple step prediction ofcan be
realized. In order to implement SARIMA model, the followfiogr-step procedure is
required,

1)  Model identification: Determine th&tructure of SARIMA(p,d,q)(P,D,Q) based on

historical data.

2) Parameter estimation: Estinsdtthe unknown parameter in4h

3) Diagnostic checking: Compute the goodness of fit performance measurements.
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4)  Model optimization: Select optimal model from severatalative candidates

according to diagnosis result.

In our model, the model identification is conducted offline using historical database. The
inflow demand rate O is observed by detectors deployed at the demand generating links
and turning ratig O is computed from the estimation model developed in chapter 3.
Therefore the historical database is composed of both field observation and estimated

results.

6.3. Reattime traffic state prediction procedure

Figure9 illustrates the overafprediction procedure based on existirgffic state
estimation steps. In the figure, N represents the total number of particles contained by the
filtering algorithm and S represents the seasonal period of the pred&ti@represents
the ith particleat time t and@ O and8 O are the prior and posterior estimation of
8 0.8 Ois the predicted traffic state at time t. The system transition equation at time t is
denoted byQ8 ORO and the system measurement equation is denoté&igbyOro O
whetre Y(t) represents the measurement vector at time t. The lower circle represents the
reattime traffic state estimation process and the upper circle illustrates theeshort

prediction.C represents the SARIMA prediction function.
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Figure9 Realtime traffic state estimation and sheetm prediction flow chart

Figure 9presented the overall computation procedure of the proposed model. The

estimation cycle contains three crucial procedures which are respectively state projection,

state adjustment and resampling; on the other hand the prediction cycle also includes three

key steps which are prediction of boundary conditions, state projection and state update.
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The detaiéd compuation procedureorresponding taFigure 9is summarizd by

Procedure 3

Procedure88 Computation procedure of shderm traffic state prediction

1)

2)

3)

4)

5)

6)

State projection (for estimation): For each part&le€, compute the prior

estimation of the particle at t+1 using transition equagor©O p Q8 ORD;
State adjustment: Using field measurement collected at time t+1, compute tt
conditional probability of each particle, O p x O0C8 O pm O ;
Resampling: According to the update weights at t+1, resample the particle s
compute the distrilition of traffic state at time t+1,
Prediction of boundary conditions: For prediction, the algorithm stores recen
system state up to S previous time s&pd pB O ¢h B O 3.Using
the SARIMA model, predict the future inflows and turning ratio® p and
3 0 p.

rOp wr O O phir O 3

3 0p 3 O O phig O 3
whereuw represents the SARIMA model determined through offline calibratio
process.
State projection (for prediction): Compute the predicted traffic state at t+1 be
on system transition equation andO p andr O p .

80 p M8 O O phr O pid

State projection (for prediction): Compute the predicted traffic state at t+1 be

on system transition equation and® p andr O p .
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Note that the predicting cycle needs to be repeated K times where K is the prediction time

range.

6.4. ChapterSummary

This chapter discussed the development of dleon traffic flow prediction method
within the proposed model frameworkeXpoints of this chapter is summarized as
follows,

1 Grounded on the rediime traffic state estimation results, the future traffic condition is
predicted by repeatedly applying the system transition equation to asdichep

1 A well accepted time series model, SARIMA model, is applied in order to obtain the
future boundary condition of the network. Future boundary condition is an extended
concept which includes incoming demand flow rate and turning fractions of dich ce

1 The prediction model also inherited the particle set and weight system, therefore the
future traffic flow state is predicted as distributions instead of mean values;

1 Based on the predicted traffic flow state, the future travel time can also be mtedicte

using trajectory method
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7.Numer i cal |l nvestigation Part |

7.1.Introduction of NGSIM dataset

The NGSIM program is initiated by Federal Highway Administration (FWHA) and the
main objective of the program is to validate th&trgeneration simulation program using
reliable field data. The NGSIM dataset contains Higgolution vehicle trajectory data
which is collected through video devices. In this research, NGSIM data collected from two
arterial segments are used for modeidaion purpose. The overall situation of arterial

database used in this chapter is summarized in Table 2:

Table2 The number of trajectory data samples contain@dGisSIM dataset

Datase Location Time Observed Number of
Trajectory
1 Peachtree Street, Atlanta, 12:45 to 1:00 1114
Georgia PM
2 Peachtree Street Atlanta, 4:00 to 4:15 1222
Georgia PM

The study area contains four signalized intersections which are respectively the
intersection between Peachtree Street affldStONE, 11" St. NE, 18" St. NE and 14 St.

NE. The arterial road is divided into three segments by those four intersections; hence we
use six cells to represent the structure of the network of the study area.

Vehicle trajectory data contained in aleadwo dataset is collected from video devices
deployed at high storage building within the study area. The location of each vehicle is
extracted from the video files at an interval of 0.1 second, and all vehicle speed and
acceleration information is obteed by parsing the vehicle trajectories. Ground truth traffic

flow state including average flow speed, flow density and queue length in front of each
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stop line is extracted from trajectory data using the program code developed by the author.
For more detded information regarding the data collection process, readers can refer to the
original study reporpublished by FWHA Peachtree Data Rep2aQ7).

The NGSIM dataset contains vehicle trajectory data of two periods, 12:45 pm to 1:00
pm and 4:00 pm to 4:13m on November 8, 2006. Figure 10 shows the satellite map view
of the target region and Figure 11 provides detailed geometric layout of the arterial corridor
and the cell network used. The target arterial segment is modeled with a cell network
composed os$ix cells which are marked by C1 ~ C6 in Figure 11 (b). In order to study the
model performance under different types of sensors, the model is tested under two different
scenarios (Al, A2). In scenario Al, six virtual detectors are installed in theenafldach
cell (marked with P1 ~ P6 in Figure 11 (a)) to provide traffic flow s@e®boccupancy
readings every fiveeconds; and in scenario A2, 15% of the vehicles is randomly selected
as probe vehicles and their positions and speeds are reportedifoineainterval. Both
the ground truth link traffic states (queue, density and speed) and virtual detector readings
are generated by analyzing the high resolution trajectory data. A trajectory plot sample is
given by Figure 12 which contains the northbdwehicle trajectory between 12:45 to 1:00

pm.
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Figurel12 Trajectory plot of Peachtree street between 12:45 to 1:00 northlb@difici

7.2.Calibration of speediensitygueue function using field data

In order to implement the proposed framework, the fundamspéseadensityqueue
relationship needs to be calibrated based on observed trajectory data. The speed, density
and queue length (queue length ratio) are extracted from the high resolution trajectory data
provided by NGSIM database. The following two sefigifires show the relationship
between traffic flow density, queue length ratio (ratio between physical queue length and
link length) and traffic flow speed in the form of scatter plots organized by idinesnd
time period. Figure 18isplays the correlain betwen density and speed; Figure 14
displays the correlation betwegqoeue and speed; and FiguredEBnonstrates the

correlation between density, queue and speed in three dimensional scatter plots.
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Figurel4 (a) ~ (d) The speedqueue satter plots of Peachtree street

(a) 12:45 ~ 1:00 Northbound traffic; (b) 12:45 ~ 1:00 Southbound traffic; (c) 4:00 ~ 4:15

Northbound traffic; (d) 4:00 ~ 4:15 Southbound traffic;
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Figurel5(a) ~ (d) The speedensityqueue three dimensionalagter plots of Peachtree street

(a) 12:45 ~ 1:00 Northbound traffic; (b) 12:45 ~ 1:00 Southbound traffic; (c) 4:00 ~ 4:15
Northbound traffic; (d) 4:00 ~ 4:15 Sdugound traffic;

According to observed traffic flow data, the following functbform is selected as the

fundamental speedensityqueue correlation:

AU E -
6 BN O p E.—A (7-1)

Equation 71 is referredo as linearexponential speedensityqueue functiorwhere,

k is the traffic flow density of the moving area;
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Nis the queue length ratio defined as the ratio between physical queue length and link
length;

O can be interpreted as free flow speed;

E is the jam density;

r is the speed decay factor;

O andr are model parameters to be calibrated and the curve fitting is performed using
nonlinear least square method with trust region algorithm. All the curve fitting process is
done with Matlab curve fitting toolboX:ables 3 and 4summarized the fitted R sq@aand
parameter values.

Table3 Summary of speed function fitted resutdNGSIM dataset

Arterial Speed Model Direction and time period R-Square Adjusted RSquare RMSE

LinearExponential model 12:45 to 1:00 northbound traffic  0.158 0.147 7.608
12:45 to 1:00 southbound traffi ~ 0.21 0.203 7.82
4:00 to 4:15 northbound traffic 0.18 0.178 7.8
4:00 to 4:15 southbound traffic  0.198 0.192 6.3
Average 0.186 0.18 7.382

Table4 Summary of fitted parameter valuesNGSIM dataset

Arterial Speed Model Direction and time period Free flow speed (m/s Speed decay facto
LinearExponential model 12:45 to 1:00 northbound traffis 14.42 3.109
12:45 to 1:00 southbound traffi 13.87 1.27
4:00 to 4:15 northbound traffic 14.10 111
4:00 to 4:15 southbound traffic 13.36 1.087
Average 13.93 1.64

Based on Tabke3 and 4 the following functioml form is used for both traffic state

estimation and prediction in this numerical example.

E_ 4 (7-2)
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7.3. Validation of traffic state estimation

First of all, we want to demonstrate the model performance in estimating temeal
traffic flow condition of the arterial using detector data as field observation source. Three
guantitative performance measures including MAEB, MAPEB and CIE are catnpute
order to assess the accuracy of the model. In all definitions, the ground truth values are
represented by UHRJFB hJ and the estimated mean, upper and lower boundaries are
represented b§ GBI and8 GHIMBHD B GBI D respectively. T
is the analysis period. The upper and lower bound of the traffic state is computed by taking
15 and 75 percentile of the estimated distribution.

Mean Absolute Error comparing with the boundary (MAEB) is computed as:

-!%--g U o0 @s v@ U U @ (7-3)

Mean Absolute Percentage Error comparing with the boundary (MAPEB) is computed as:

P ) U os .U g
S 10 %S i i 7-4
.O/o4 yU O W @ U ¥ (7-4)

Confidence interval of the estimation (CIE) is computed as:

#) %2 g @ (7-5)
wherey @ is the stepwise linear function defined as follows.
vg P W T

mTw T

74



Table 5 provides an overview of performance measures computed based on the model
outputs. For each type of traffic state variable estimated (queue length, density and speed),
the MAEB, MAPEB and CIE indices are displayed for each individual cell. The performance
indices are organized according to the type of traffic state, detector scenariagfantgrece
index types Table 6demonstrates similar content regarding the travel time estimarhe

units for queue, density and speed are meter, veh/km and m/s respectively.

Table5 Summary of model performance indiadsestimatiornresults in NGSIM dataset

Cell Number(Link)

Traffic state variables Scenario Performance index Total average
CL Cc2 €3 Cc4 C5 C6

MAEB (m) 197 138 4.16 136 246 223 2.26
Al MAPEB (%) 21.8% 10.0% 27.5% 17.6% 21.1% 13.0% 18.5%

CIE (m) 453 299 750 298 381 555 456

Queue length MAEB (m) 362 198 468 179 256 347 3.02
A2 MAPEB (%) 40.7% 14.5% 30.3% 24.5% 20.7% 23.6%  25.7%

CIE (m) 212 170 354 154 239 277 2.34

MAEB (veh/km) 117 164 295 089 267 3.03 2.06
Al MAPEB (%) 77% 9.6% 28.7% 9.1% 16.7% 17.7% 14.9%

CIE (veh/km) 6.13 784 7.17 461 929 7.16 7.04

Traffic flow density MAEB (vehkm) 161 206 224 104 181 201 1.80
A2 MAPEB (%) 10.7% 12.1% 21.8% 10.4% 12.6% 12.1% 13.3%

CIE (veh/km) 432 468 354 321 6.67 5.06 4.58

MAEB (m/s) 092 045 084 170 060 062 0.85

Al MAPEB (%) 10.3% 45% 9.2% 17.3% 6.3% 7.0% 9.1%

CIE (m/s) 121 1.63 1.39 073 151 169 1.36

Traffic flow speed MAEB (ms) 101 056 117 168 063 061 0.04
A2 MAPEB (%) 11.3% 55% 12.7% 17.1% 6.6% 6.8% 10.0%

CIE (m/s) 080 1.12 084 050 104 1.24 0.92

As we can see from Table 5, the proposed model has excellent performance under all three
types of traffic flow states. In scenario Al, the MAEB of queue length, cell density and cell
speed are respectively 2.26 (m), 2.06 (veh/km) and 0.85 (m/s) with enoéidnterval 4.56

(m), 7.04 (veh/km) and 1.36 (m/s), these numbers remain similar in scenario A2. Considering
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another primary performance index MAPEB, among three types of traffic states, the model
performed better in estimating the traffic flow densiyg &peed compared with queue length.

In Al, the relative error of density and speed estimation are 14.9% and 9.1% respectively,
while the relative error of queue estimation is 18.5%; in A2, the relative error of density and
speed estimation are 13.3% an@.(R6 respectively, while the relative error of queue
estimation is 25.7%. Two possible reasons that caused comparatively large error in queue

estimation are:

Table6 Summary of model performance indices of travel time estimatidiGSIM dataset

Scenario Time period and direction MAEB MAPEB CIE
1245 to 100 Northbound 8.25 85% 055

1245 to 100 Southbound 6.56 9.1% 3.19

Al (Detector) 415 to 430 Northbound 7.08 6.7% 3.74
415 to 430 Southbound 9.36 8.9% 9.47

Average 7.81 8.3% 4.23

1245 to 100 Northbound 7.85 8.1%  0.49

1245 to 100 Southbound 6.98 9.6% 2.10

A2 (Probe vehicle data) 415 to 430 Northbound 6.30 6.0% 2.18
415 to 430 Southbound 9.11 8.6% 6.26

Average 7.56 8.1% 2.76

1) For queue estimation, there are no field measurements which can be used for state
adjustments. Therefore the estimation error will accumulate as the analysis period becomes
longer.

2) The proposed model assumes all queued vehicles are evenly didtemdag all lanes,
which may not be true in reality due to various reasons.

The overall estimation accuracy in scenario Al is higher than that of A2 indicating that
although two types of traffic sensors are complementary to each other, the model attains
higher degree of accuracy when receiving inputs from fixed location detectors in this dataset.
Compared with fixed location detectors such as inductive loops, probe vehicle data does not

provide continuous observations of traffic flows therefore the pdiwtraate of probe
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vehicle is a crucial factor affecting the estimation reliability. The traffic volume along
Peachtree street during the observation period is quite low, hence in our example, the 15%
penetration rate only provided sparse data pointhfestimation.

To further demonstrate the model outputs versus ground truth traffic state values, the
estimation results of individual cells are selectively displapeBigures 20 through 2ZFor
each type of traffic state variable, the estimation resflthree cells are selected and plotted
against the ground truth values. And for comparison purpose, the estimation results under
both scenarios (detector and prolshicle data are presented togethdrhe estimated and
ground truth travel time data jdotted for each directiom Figure 16 through Figure 18or

a complete list of estimated traffic states, readers can refer to Appendix A.
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Figure20 Estimated and ground truth qudeagth plot of selected cells in NGSIM dataset

(a) and (b) Queue of C2, 400 to 415 NB; (c) and (d) Queue of C1ta24® NB; (e) and (f) Queue of C3, 400
to 415 SB
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400 to 415 NB

81



16

14

[
N

Speed(m/s)
=
o

16

Scenario Al (using detectmformation)

o . o o fLo‘wer bound

e T T T T —
Estimated mean

J‘\ © Ground truth

‘H ° ° : ——Upper bound

| L L
40 60 80 100 120 140 160
Time (sec)

(3) MAPEB= 5.0% Al

14

12

Speed(m/s)
=
o

——Estimated mean
° © Ground truth
——Upper bound
—Lower bound

14

12

10ff!

Speed(m/s)
(2]

(a) and (b) speed of C2,42to 100SB; (c) and (d) Speed of C2, 400 to 415 NB; (e) and (f) speed of C2, 400 to

415 SB

I I I I
40 60 80 100 120 140 160

Time (sec)

(c) MAPEB=4.5%

o]

——Estimated mean
/| © Ground truth
——Upper bound
r bound

L L L
40 60 80 100 140 160

Time (sec)

(e) MAPEB=7.6

16

14

[
N

Speed(m/s)
=
o

16

Scenario A2 (using probe information)

@ ——Estimated mean
\1\ R ©  Ground truth
[ °© —Upperbound ||
S . o | o | ——Lower bour;d

40 60 80 100 120 140 160
Time (sec)

(b) MAPEB= 6.4%

14f |

Speed(m/s)

Estimated mean

© Ground truth
——Upper bound
——Lower bound

v

. . c .
40 60 80 100 120 140 160
Time (sec)

(d) MAPEB=6.3%

14

12

10

[e2)

Speed(m/s)
(=)

Estimated mean

© Ground truth

——Upper bound
—Lower bound

J il

c . r c
40 60 80 100 120 140 160
Time (sec)

(f) MAPEB=6.7%

Figure22 Estimated and ground thuspeed plot of selected cellsNiGSIM dataset

82



7.4.Validation of traffic state prediction

This section examines the accuracy of predictesults offered by the proposed model.
There are two important aspects of model performance we want to investigate through this
section: 1) the overall prediction accuracy of different type of traffic state (queue length,
density, speed and travel timegded on the proposed prediction method; 2) the change of
prediction accuracy w.r.t. prediction range. The prediction range is usually measured by the
number of time steps over which the traffic state variables are predicted. It is one of the
most importantmeasurements of effectiveness of a particular prediction model because
longer prediction range implies obtaining the future information in a more advanced
manner. In this part of the study, the MAEB and MAPEB indices are computed from 1 to
30 time step pdiction. Since each time step represents a duration of 5 seconds in this
numerical study, 30 time steps prediction represents a two and half minutes ahead
prediction of traffic flow conditions.

The measurement criteria of the prediction accuracy aretlglidifferent from that of
the estimation since the variance (uncertainty) of predicted values always becomes larger
as the prediction range increases. Therefore fixed error tolerance boundaries are employed
when evaluating thquality of the model output3 he error tolerance value depends on the
type of the traffic flow variable to be predicted, in this study, the error tolerance of queue,
density, speed and travel time are selected as 10 (meters), 10 (veh/km), 2.5 (m/s) and 10
(seconds) respectively.

Tales 7 and8 presented the summary of prediction error afet time and Tab&9

and10 summarized the prediction error of queue, density and speed. The contents of tables
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are organized vertically based on individual cells and horizontally aceptdiniferent

prediction time steps

Table7 Summary of travel time prediction MAEB of different time pericd®GSIM dataset

Direction and timeperiod 1-5 510 1015 1520 2025 2530
Travel time(sec.) 1245 to 100 Northbound 5.53 5.71 5.75 5.18 515 5.25
1245 to 100 Southbound 5.86 6.57 557 525 543 534
400 to 415 Northbound  3.67 3.85 456 476 4.76 451
4151t0 430 Southbound 748 7.11 6.08 560 598 555
Average 563 581 549 520 533 5.16

Table8 Summary of travel time prediction MAPEB of different time periodslGSIM dataset

Direction and timeperiod 1-5 510 1015 1520 2025 2530
Travel time 1245 to 100 Northbound 5.7% 5.9% 6.0% 54% 5.3% 5.4%
1245 to 10Bouthbound  8.1% 9.1% 7.7% 7.2% 7.5% 7.4%
400 to 415 Northbound 35% 3.6% 4.3% 45% 45% 4.3%
415to 430 Southbound 7.1% 6.7% 5.8% 53% 5.7% 5.3%

Average 6.1% 6.3% 59% 56% 57% 5.6%
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Table9 Summary of average prediction MAEB of different cells and time perobi<sSIM
dataset

MAEB of Prediction

Traffic State . Prediction Time Step (One step = 5 seconds)
Variable Direction Cell 1-5 510 1015 1520 2025 2530
Cell 1 240 343 199 264 404 312
1245 t0100 Northbound Cell 2 078 110 080 041 0.86 0.93
Cell 3 544 459 3.09 442 516 4.03
Cell 4 0.17 012 016 035 024 0.13
1245 to 100 Southbound Cell 5 1.07 113 1.02 114 127 053
Queue Length Cell 6 138 276 217 120 216 276
(m) Cell 1 166 154 0.86 194 208 111
415 to 430 Northbound Cell 2 271 3.69 3.03 1.20 2.80 3.17
Cell 3 6.70 7.68 466 413 704 7.24
Cell 4 166 154 095 1.03 183 1.26
415 to 430 Southbound Cell 5 404 407 231 091 380 362
Cell 6 470 853 693 288 453 839
Cell 1 188 215 180 232 258 2.30
1245 to 100 Northbound Cell 2 324 423 302 194 400 4.28
Cell 3 186 1.32 114 090 104 0.87
Cell 4 0.13 0.32 047 033 027 044
1245 to 100 Southbound Cell 5 234 205 240 269 272 264
Density (vehvk) Cell 6 263 371 317 132 282 3.68
Cell 1 119 155 1.64 154 180 1.94
415 to 430 Northbound Cell 2 216 3.19 312 134 226 3.04
Cell 3 132 074 139 052 118 0.62
Cell 4 107 126 155 217 216 174
415 to 430 Southbound Cell 5 547 001 001 279 307 3.68
Cell 6 557 001 001 296 377 531
Cell 1 0.39 057 080 047 039 057
1245 to 100 Northbound Cell 2 0.36 048 035 049 037 052
Cell 3 054 0.60 057 036 047 059
Cell 4 114 119 113 099 100 1.07
1245 to 100 Southbound Cell 5 061 0.76 116 077 060 0.72
Speed (i) Cell 6 033 031 036 028 020 017
Cell 1 0.74 077 074 060 070 0.75
415 to 430 Northbound Cell 2 057 0.80 063 040 052 0.71
Cell 3 0.93 063 073 087 088 057
Cell 4 0.89 0.89 082 074 080 0.76
415 to 430 Southbound Cell 5 099 113 075 037 0.84 093
Cell 6 057 041 047 031 043 0.33
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Table10 Summary of average prediction MAPEB of different cells and time pemoN&SIM

dataset

MAPEB of Prediction

Prediction Time Step (One step = 5 seconds)

Traffic State Variable Direction Cell
1-5 5-10 1015 1520 2025 2530
Cell 1 23.9% 34.1% 19.7% 26.2% 40.2% 31.0%
1245 t0100 Northbound Cell 2 73% 103% 7.5% 3.8% 8.0% 8.7%
Cell 3 40.7% 34.3% 23.1% 33.0% 38.6% 30.1%
Cell 4 3.4% 23% 31% 6.8% 4.6% 2.5%
1245 to 100 Southbound Cell 5 18.1% 19.2% 17.3% 19.3% 21.6% 9.1%
Cell 6 11.7% 23.3% 18.3% 10.1% 18.3% 23.3%
Queue Length (m)
Cell 1 20.3% 18.8% 10.5% 23.7% 25.4% 13.6%
415 to 430 Northbound Cell 2 16.1% 21.9% 18.0% 7.2% 16.7% 18.9%
Cell 3 40.0% 45.8% 27.8% 24.6% 42.0% 43.2%
Cell 4 18.6% 17.2% 10.7% 11.5% 20.5% 14.2%
415 to 430 Southbound Cell 5 21.7% 21.9% 125% 4.9% 20.5% 19.5%
Cell 6 240% 435% 35.4% 14.7% 23.1% 42.8%
Cell 1 11.4% 13.1% 10.9% 14.1% 15.7% 13.9%
1245 to 100 Northbound Cell 2 18.7% 24.4% 17.4% 11.2% 23.1% 24.7%
Cell 3 18.6% 13.1% 11.4% 9.0% 10.4% 8.6%
Cell 4 1.6% 39% 57% 4.0% 32% 5.3%
1245 to 100 Southbound Cell 5 20.5% 18.0% 21.0% 23.6% 23.9% 23.2%
Cell 6 19.2% 27.2% 23.2% 9.6% 20.6% 26.9%
Density (veh/km)
Cell 1 8.7% 11.3% 12.0% 11.3% 13.2% 14.2%
415 to 430 Northbound Cell 2 129% 19.1% 18.6% 8.0% 13.5% 18.2%
Cell 3 126% 7.0% 13.3% 50% 11.3% 5.9%
Cell 4 8.0% 9.4% 11.6% 16.3% 16.2% 13.0%
415 to 430 Southbound Cell 5 29.1% 27.5% 27.1% 14.8% 16.3% 19.5%
Cell 6 29.7% 33.9% 34.8% 15.8% 20.1% 28.3%
Cell 1 4.3% 6.2% 8.7% 52% 42% 6.3%
1245 to 10MNorthbound Cell 2 3.4% 46% 33% 4.7% 35% 4.9%
Cell 3 5.6% 6.3% 6.0% 3.7% 49% 6.2%
Cell 4 11.5% 12.0% 11.4% 10.0% 10.1% 10.8%
1245 to 100 Southbound Cell 5 5.9% 74% 112% 7.4% 58% 6.9%
Speed (m/s) Cell 6 3.5% 32% 38% 29% 20% 1.8%
Cell 1 8.4% 87% 84% 6.8% 7.9% 85%
415 to 430 Northbound Cell 2 5.8% 82% 6.4% 41% 53% 7.2%
Cell 3 104% 7.0% 81% 97% 9.8% 6.4%
Cell 4 9.1% 9.2% 84% 7.6% 83% 7.8%
415 to 430 Southbound Cell 5 11.3% 129% 85% 4.2% 9.6% 10.6%
Cell 6 6.8% 49% 56% 3.6% 51% 3.9%
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In the following set of figures, the change of prediction accuracy of all traffic state
variables is plotted. The change of MAPEB versus prediction time step is the best
representation of model germance over time. Figure 23 the predicted MAPEB of
travel times over time; Figus24 and 25are the predicted MAPEB of que length over
time; Figures 26 and 2present the predicted MAPEB ofrdsty over time; and Figus28
and 29present the prected MAPEB of speed over time.

Figures 23 to 29 are simply the grphic representation of Table 716, therefore readers

can refer to the tables for detadlperformance statistics.

10.0%
9.0% =
8.0% — \\/\
04 -

'6'_J 6.0% - e ——— —— 1245 to 100 Northbound
< 5.0%
= 4.0% ——1245 to 100 Southbound

3.0% 400 to 415 Northbound

2.0% 400 to 415 Southbound

1.0%

00% T T T T T 1

1-5 5-10 10-15 15-20 20-25 25-30
Prediction Range (time steps)

Figure23 Plots of predicted travel time MAPEB over different prediction range using NGSIM
data
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Figure25 Plots of predicted queue length MAPEB over different prediction range with NGSIM
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Figure26 Plots of predicted density MAPEB over different prediction range with NGSIM

Peachtre data from 12:45 to 1:00
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Figure27 Plots of predicted density MAPEB over different prediction range with NGSIM

Peachtree data from 4:00 to 4:15
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Figure28 Plots of predicted speed MAPEB over differerggiction range with NGSIM

Peachtree data from 12:45 to 1:00
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Figure29 Plots of predicted speed MAPEB over different prediction range with NGSIM

Peachtree data from 4:00 to 4:15

There are several conclusions obtainable from abiguees and tables which deserve

our special attention:

1)  First of all, the change of MAPE depends on both the type of traffic state and

geometric and signal configuration of the arterial link. Generally speaking, the trend of

MAPEB curve can be divided into five categories: monotonic increase, stable, monotonic
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decrease, periodic and nperiodic. The forrer three types of change are quite-self
explanatoryand the lattetwo types of trend curve ref& curves without monotonic
increase or decrease property and with multiple local peaks and valleys. The periodic curve
demonstrates repeated patterns at fixed intervals while ip@oodic curves no periodicity
is observed. In prediction problems, one would expect that the acairdeyprediction
decays as the number of time steps increases however here that is not the casetlhased on
observation from Figus23 to 29 The trend of prediction curves of different traffic flow
variables are summarized as follows:

Travel time:stable

Queue length: mostly periodic, some are stable

Density: mostly nofperiodic, some are stable

Speed: mostly stable, some are periodic orpemodic

Therefore, the mean prediction error of the proposed model does not increase w.r.t. the
prediction ime range. This is a very important property because it implies that the
performance of the prediction does not deteriorate quickly as we increase the number of
time steps to be predicted. On the other hand, the prediction of queue, density and speed
demorstrate different degree of periodicity in their MAPEB plots indicating that the model
is very sensitive to the signal timing configuratior&ich phenomenon is particular obvious
in queue prediction. One reasonable explanation is that since the propussedeties on
traffic flow model in order to perform prediction, the primary error source comes from the
discrepancy between the actual traffic flow dynamics and its mathematical approximation.
The periodicity of density and speed prediction is much weadk@pared with that of queue,

however readers can still observe such periodicity on the prediction of some cells.
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2)  The order of prediction accuracy of different traffic state variable is: travel time >
speed > density > queue. However since the statddtidferent state variables are
computed based on different error tolerance rates, such comparison is not very rigorous and

serves only for future reference purpose.

To help readers further understand outputs of prediction model, the prediction curves of
selected individual cells are presented together with corresponding ground truth values. Due
to the space constraint of the dissertation, only the prediction result of part of the cells is
listed here (three cells for each type of iafftate variable) Figures 30 ~ 33are predicted
travel time plots and Figus&4~ 36are quee prediction plots, Figuss87 ~ 39are density
prediction plots and Figure 40 ~ 42e speed prediction plotSor a complete list of

predicted traffic states, readers can radehppendix A.
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Figure30 Predicted and ground truth travel time of Peachtree street northbound 12:45 to 1:00
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93



160

©  Ground Truth
5 step ahead prediction
— 10 step ahead prediction
— 15 step ahead prediction
140 ‘\\ o ~— 20 step ahead prediction
| \ — 25 step ahead prediction
A\ 30 step ahead prediction
120
—
©
Q
@
Q
£ 100
g
©
= o [¢o} [¢3)
o % ° %
80 © % °
° © o
o
o
o
60~
© o
40 [ [ [ [ [ [ [ [
20 40 60 80 100 120 140 160
Time (sec)

Figure33 Predicted and ground truth travel time of Peachtree street southbound 4:00 to 4:15
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Figure36 Prediced and ground truth queue of Peachtree street 4:00 to 4:15 cell 5
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Figure39 Predicted and ground truth queue of Peachtree street 12:45 to 1:00 cell 2
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Figure40 Predicted and ground truth speed of Peachtree street 12:45 to 1:00 cell 2
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7.5. Comparison analysis using SMARignal data

In order to vertically compare the result of the proposed model with other state of art
methods, the SMART signal data is used for further analysis and comparison purpose.
Henry Liu et al. (2009) proposed a r¢iahe queue estimation method bdson high
resolution signal and detector data. In this section, a comparison study is performed for
gueue estimation between the proposed modeLands entodea | . 6 s

The study site is selected at I3 highway between Lynn Ave and ®al 5 in state

of Minnesota where the SMART signal system is installed.

Figure43 The map of study area along TH 13, Minnesota

Figure 44 (a) and (b) presents respectively the detail geometric layout and the

corresponding cell network structure apglin this example.
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The queue length along with other traffic flow state of C1 ~ C4 (in Figure 44 (b)) is
estimated using the proposed model. Both measured link traffic states and signal data is
extracted from the high resolution SMART signal event based dataset. The ektimate
queue lengthof i u eniodehid obtaireed through an active web application of their
project. The test time period is selected between 7:00 and 8:00 AM on Novetfiper 14
2012. The computation time step is 10 seconds.

Figures 45 ~ 48 demonstrate tlstimated queue length from the proposed modelLand

et mddel.6 s
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As we can observe from above figures, the estimation result from the proposed model
coincides withL i u  enmodelunderonost situations with slight under estimation. The
overall difference between the two magiel this example is less than 15%. The
maximum queue length is undestimated sometimes by the proposed model due at least
to two reasons:

1) First of all, the physical queue lengthalways larger than the theoretical queue

length which is computed as the product between number of queued vehicles and
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average queue length due to the propagation of backward shockwave during the
beginning perioaf the green phase.
2) The model always assumes that vehicles are evenly distributed among all the lanes.

Such assumption may easily be violated in reality.

Developing an extended traffic flow model in order to overcome above issiaésfor

future work.

7.6. ChapterSummary

This chaptereported the results offaist round of numerical investigation regarding
the proposed shifting boundargll queue model. The validation is conducted using the
high resolution trajectory data contained in NGSIM dataset.fikeyngs of this chapter
are summarized as follows:
1) The linear exponential speddnsityqueue function is adopted in this numerical study
and the parameters of speed function is calibrated using link speed, density and queue data
extracted from trajeory data;
2) The Peachtree arterial dataset represents light traffic condition with stable traffic flow
dynamics, such fact is observed from travel time plots;
3) The reatime estimation model is capable of reproducing the arterial corridor traffic
flow condition accurately with multiple type of data source including detector and probe
vehicle data;
4) The change of prediction accuracy over time measured by MAPEB is stable for travel

time and changing periodically for queue;
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5) The change of prediction@gacy of density and speed over time is sometimes
periodic but sometimes neperiodic;
6) The prediction error of the proposed model is always constrained even if the prediction
range increases and no lagging effect is observed from the prediction curves.
7) The queue estimation results are also compared against entodehulsingd s
SMART signal dataset.
In the next chapter, another set of numerical investigation is done to explore the
performance of the motlender heavy traffic conditiowhere tempary cycle failure and

gueue spillback may occur.
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8 Numeri cal | nvestigat:i

Dat a

8.1. Network Description

on Par t | |

In this chapter, we want to further examine the mogedrformance under congested

traffic conditions. Due to the lack of field datssimulated traffic flow data on a

hypothetical arterial is employed. The simulation was conducted using VISSIM,-a well

established microscopic simulation software, on adwectional arterial road network

consisting four signalized intersections. The geometric layout

presented inigure49.

of the arterial nétwork

W ua‘ﬂj‘“-
#

Figure49 Geometric layout of the hypothetical arterial corridor

The arterial iglivided into five links along each direction by

signals which give us

eight nonsink links. The links are numbered according to their location with regard to the

most upstream link, eastbound links are numbered from 1 to 4 and westbound links are

numbeedfrom 5 to 8 The link numbers are also presentedigufe 50 The length and

number of lane oéach link and the size of turning bay associated with leaclare

summarized in Table 11
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Table11 Link and turning bay length ohé simulationnetwork

Eastbound links

Number 1 2 3 4
Link length (m) 303 397 196 304
Left-turn bay(m) N/A 150 95 130
Westbound links

Number 5 6 7 8
Link length(m) 794 304 196 397
Left-turn bay(m) N/A 100 110 166

The simulation experiment is desegito replicate the arterial traffic status under time
varying demand volume and temporary esaturated traffic condition. The performance
of proposed traffic flow estimation and prediction model is then tested and validated using
the trajectory data erdctedfrom the simulator. Figure 5@resents the location of all
demar generation nodes and Tabl and 13ummarize the OD ratio table and
incoming traffic flow rate of each demand generating node within the simulation period

respectively The simuhtion time period is one hour and the computation is done every 10

seconds.
T
[ = s == e e 1]
T e
[o] [n] e

Figure50 Number of demand generation and sink nazfebe simulation network
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Origin/Dest 1

Table12 The demand volume ratio between OD pairs

2 3 4 5 6 7 8 9 10 11 12

1 0.0%
2 0.0%
3 0.0%
4 0.0%
5 0.0%
7 0.0%
8 0.0%
9 0.0%
10 0.0%
11 0.0%

77% 77% 7.7% 7.7% 385% 00% 7.7% 7.7% 7.7% 00% 7.7%
0.0% 14.3% 143% 143% 143% 0.0% 14.3% 143% 143% 0.0% 0.0%
16.7% 0.0% 16.7% 16.7% 16.7% 0.0% 0.0% 0.0% 0.0% 16.7% 16.7%
14.3% 143% 0.0% 14.3% 143% 0.0% 0.0% 0.0% 14.3% 143% 14.3%
14.3% 143% 143% 0.0% 0.0% 0.0% 0.0% 143% 14.3% 143% 14.3%
154% 7.7% 7.7% 7.7% 0.0% 00% 7.7% 7.7% 7.7% 7.7% 30.8%
14.3% 143% 143% 0.0% 0.0% 0.0% 0.0% 143% 14.3% 143% 14.3%
0.0% 0.0% 0.0% 20.0% 0.0% 0.0% 20.0% 0.0% 20.0% 20.0% 20.0%
0.0% 0.0% 143% 143% 143% 0.0% 14.3% 143% 0.0% 14.3% 14.3%
0.0% 14.3% 143% 143% 143% 0.0% 14.3% 143% 143% 0.0% 0.0%

Table13 The total demand volume of different demand generating nedagour)

Demand Generation Node/Time Peric 0-600 6001200 12001800 18002400 24003000 30003600

© 0o U, WNSNPRP

[EnY
o

1000 1400 1800 1800 1400 800
1600 1800 2200 1000 1000 1000
150 200 250 250 200 150
150 200 250 250 200 150
150 200 250 250 200 150
150 200 250 250 200 150
150 200 250 250 200 150
150 200 250 250 200 150
150 200 250 250 200 150
150 200 250 250 200 150

*Time in seconds and volume veh/hour

In this simulation example, we try to predict the traffic flow statistics including traffic

density, queue and speed together with travel time along each direction of the road. The

following figure plots the observed travel time points (cagdusy VISSIM) during the

simulation period, the solid line represents the travel time along eastbound and the dash

line represents the travel time along westbound roadbservable from the Figure ,3he

travel time demonstrates high variability for both directions. The average free flow travel

time under normal traffic condition is around 130 seconds according to the simulation

results, however the highest travel time of westbound direction re2®0eskconds
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approximately at 1970 seconds time mark due to the congestion; on the other hand, the

eastbound traffic also experienced additional delay (but not as high as westbound traffic).

300

Arterial Travel Time (sec.)
&
3

50

Lt
t r‘*o«*.’\"\

K/‘*,*J : \ !
\ ,“

N

’A“}L‘A"" fi \ I\W & i \,;(JW%J&

l y y v v ——Eastbound Travel Time
—+ -Westbound Travel Time

Simulation Time (sec.)

Figure51 Observed travel time of treorridor obtained from VISSIM
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Speed (km/h)

8.2. Calibration of speediensityqueue function using simulatedta

In order to implement the proposed framework, the fundamental siegwsttyqueue
relationship needs to be calibrated based on simulated data. The spséy ahel queue
length (queue length ratio) are extracted from the trajectory data cdlfecte the
simulator. Figure 58isplays the correlation betewr density and speekigure 53displays
the correlation betweegueue andpeed; and Figure S¥emongtates the correlation

between density, queue and speed in three dimensional scatter plots.
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Figure52 Observed speed and density plot of (a) Eastbound traffic (b) Westbounddfailiec
simulated network
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Figure54 Observed speed, density and queue raflodot of (a) Eastbound traffic (b)
Westboundraffic of simulated network

According to observed traffic flow data, the following two functibiorms are selected

as the candidate speddnsityqueue function:
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O E -

- (8-2)
. E .
6 BN p =— OA
E
In Equation (81) and (82), V is the macroscopic spedédnsityqueue relationship; k is
the traffic density of the moving area; g is the queue length ratio of the cell defined as the
ratio between physicalugue length and the link length; The parameters to be calibrated
include free flow spee®, jam densitye  and speed decay factarThe curve fitting is
performed using nehnear least square method with trust region algorithm and all the

curve fittingprocess is done with Matladurve fitting toolbox Tables 14 and 15isplay

the resul$ of curve fitting procedure.

Table14 Summary of speed function fitted results

SpeedDensity Queue Functic Direction R-SquareAdjusted RSquareRMSE
LinearExponential function Eastbound traffic0.39 0.389 9.07
(Equation 81) Westbound traffii0.36 0.359 10.53
Average 0.375 0.374 9.8
ParabolieExponential model Eastbound traffic0.403  0.402 8.975
(Equation 82) Westbound traffil0.359  0.359 10.54
Average 0.381 0.38 9.75

Table15 Summary of fitted parameter values

SpeedDensity Queue Functic Direction Free flow spee Jam densit Speed decay fact:

LinearExponential function Eastbound traffic 52.36 250 (max) 2.572
(Equation 81) Westbound traffi 51.98 229 3.05
Average 52.17 239.5 2.811

ParabolieExponential model Eastbound traffic 48.56 160.3 2.674
(Equation 82) Westbound traffi 47.54 111.8 3.118
Average 48.05 136.05 2.896
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Speed (km/h)

Figure 55shows the three dimensional plot of fitted curve under different speed function
form.

Comparing the Bquare of Equation {8) and (82), we can conclude that the
parabolicexponential speed function slightly oyaerforms lineatexponential speed

function alang both directions. Therefore the parabolic exponential spessityqueue

function is selected in this numerical example.
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8.3. Validation of traffic state estimation

First of all, we wanto demonstrate the model performance in estimating theineal
traffic flow condition of the arterial using detector data as field observation source. Three
guantitative performance measures including MAEB, MAPEB and CIE are computed in
order to assegle accuracy of the model. In all definitions, the ground truth values are
represented by URJ HJ and the estimated mean, upper and lower boundaries are
represented b§ GBI and8 QGBI B G HD respectively.
T is the analysis peod. The upper and lower bound of the traffic state is computed by
taking 15 and 75 percentile of the estimated distribution.
Mean Absolute Error comparing with the boundary (MAEB) is computed as:

-1 %t yU U @s @ U U @ (8-4)

~|O

Mean AbsolutéPercentage Error comparing with the boundary (MAPEB) is computed as:

p . U Js

- oH" _

' 0% 7 yU @ ¥
(8-5)

g U Vv ¢
¥ U
Confidence interval of the estimation (CIE) is computed as:
P

#) %, O O (8-6)

wherey @ is the stepwise linear function defined by comidn (8-7).
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Table16 provides an overview of performance measures computed based on the model
outputs. For each type of traffic state variable estimated (queue length, density and speed),
the MAEB, MAPEB and CIE indices are displayed for each individual cell. The
performancendices are organized according to the type of traffic state, detector scenario
and performance index types. The units for queue, density and speed are meter, veh/km and

m/s respectively.
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Table16 Summary of performance index of the model under simulation dataset

Traffic State Variable Direction Performance index Cc1 c2 C3 Cc4 Average
MAEB (m) 3.78 9.38 1.71 4.58 4.86
Eastbound  MAPEB (%) 89% 21.8% 9.2% 22.8% 15.7%
Queue Length CIE (m) 3.58 5.84 2.66 4.05 4.03
MAEB (m) 6.77 12.62 2.45 5.55 6.85
Westbound MAPEB (%) 16.0% 29.3% 13.2% 27.6% 21.6%
CIE (m) 3.79 4.95 2.99 4.88 4.15
MAEB (m) 540 620 650 6.40 6.125
Eastbound MAPEB (%) 24.3% 26.7% 23.7% 40.2% 28.7%
. CIE (m) 2.40 6.40 6.70 5.00 5.125
Density
MAEB (m) 15.90 7.20 7.00 5.20 8.825
Westbound MAPEB (%) 40.3% 25.1% 22.7% 27.8% 29.0%
CIE (m) 2.50 6.30 8.40 3.90 5.275
MAEB (m/s) 051 092 168 0.95 1.01
Eastbound MAPEB (%) 4.0% 7.4% 12.5% 7.2% 7.8%
Speed CIE (m/s) 0.43 0.51 0.57 0.53 0.51
MAEB (m/s) 0.50 1.06 2.12 0.86 1.14
Westbound MAPEB (%) 3.8% 9.6% 17.4% 6.4% 9.3%
CIE (m/s) 0.44 0.58 0.64 0.47 0.53
MAEB (sec.) 7.89
Eastbound MAPEB (%) 4.73%
) CIE (sec.) 13.78
Travel Time MAEB (sec.) 12.57
Westbound MAPEB (%) 6.53%
CIE (sec.) 12.98

The estimated and observed travel time is presented in Figufe S&ther demonstrate
the model outputs versus ground truth traffic state values, the estimation results of
individual cells areselectively displayettrom Figures 57 through Figure 5Bor each type
of traffic state variable, the estimation results of three cells are selected and plotted against
the ground truth valueg-or a complete list of estimated traffic states of each iddal

cell, readers can refer Appendix B.
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traffic of simulation dataset
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As one piece of very important information, #&imated travel timeesult is displayed
in Figure %. As observable from the figure, the travel time is estimated accurately for both
direction of the arterial, the average error in percentage is around 5% considering both
directions. Such statistics inigs that the proposed model can offer very reliable travel

time information even under congested situation.
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8.4.Validation of Shorterm Prediction Results

This section examines the accuracy of prediction results offered by the proposed model
using simulated traffic state as ground truth values. There are two important aspects of
model performance we want to investigat¢his section: 1) the overall predimh
accuracy of different tyseof traffic states (queue length, density, speed and travel time)

2) the change of prediction accuracy w.r.t. the prediction range. The prediction range,
usually measured by the number of time steps over which the trafiéc\striables are
predicted, plays a very importamtie when investigating the potential effectiveness of
particular prediction model. In this numerical example, the MAEB and MAPE indices are
computed from 1 to 60 time step prediction for each individual traffic state variable. Since
each time step represemtsiuration of 10 seconds, 60 time steps prediction represents a 10
minutes ahead prediction of the traffic flow condition.

Tables 17 and 1&resent the summary of average prediction error for each type of traffic
state including queue, density, speed aadd time at different @diction anges. Figure

60 and 6lare gaphical presentation of Talslé7 and 18
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Table17 Summary of average prediction MAEB of different traffic state variatlasmulation

dataset

Prediction Time &p (one step=10 seconds)

5 10 15 20 25 30 35 40 45 50 55 60
Queue (m) 9.62 6.41 866 730 7.83 7.70 733 7.34 758 6.88 8.23 6.35
Density (veh/km)| 11.19 7.35 10.21 8.77 8.34 9.74 6.88 10.30 7.12 9.87 7.85 8.85
Speed (m/s) 0.928 0.59 0.951 0.599 0.934 0.621 0.906 0.631 0.857 0.671 0.813 0.661
Travel time (s) |10.59 10.17 10.11 10.41 10.46 9.75 9.96 9.58 9.77 9.07 8.83 8.89

Table18 Summary of average prediction MAPE of different traffic state variaidfleanulation

dataset

Prediction Time Step (one step=10 seconds)

5 10 15 20 25 30 35 40 45 50 55 60
Queue |27.4% 20.1% 24.7% 22.6% 22.4% 23.7% 20.9% 22.5% 21.4% 21.0% 22.9% 19.4%
Density [44.3% 29.0% 39.8% 35.3% 32.1% 39.5% 26.2% 41.5% 27.5% 39.1% 30.8% 34.6%)
Speed | 74% 4.7% 75% 4.7% 7.4% 49% 7.1% 50% 6.7% 54% 6.4% 5.3%
Travel timg] 5.8% 5.6% 5.6% 5.7% 5.8% 54% 55% 53% 54% 5.0% 4.9% 4.9%
12.00
\
10,00 1S =
‘\\ // \\\ /// \ / \\ P
8.00 \ \// /\\,;;\’;\%/__,,\A«\/\A/
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Figure60 Line plot of average prediction MAEB of different traffic state varialofiesmulation

dataset
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There are several notigkle points regarding Taldé7 and 18Firstof all, the
predictionaccuracy of travel time, queue length and speed remains relatively stable as the
prediction time step increases; as for the density prediction, the MAPEB curve
demonstrates periodic changing pattern. Secondly, the average prediction accuracy (since
the MAPEB of travel time, queue and speed are stable, checking the average error is
meaningful) of travel time, queue length and speed are respectively 5%, 18% and 5.5%
within 60 time step prediction range. Such performance measure indicates that the
proposed moel can offer very reliable prediction of those three traffic state variables
within comparatively long prediction time range. Compared with the remaining three
variables, the density prediction is comparatively low and demorshigte periodical
fluctuaton in this numerical study. The average prediction MAPEB of density fluctuates
between 30% and 45% with the prediction rangkis implies that predicting the future
density of each cell using the proposed model may yield large biased results. However if
one just concentrag®n the queue and speed values then such model weakness will not

cause much trouble because travel time or delay along signalized arterial is primary
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dominated by the link g®d and queue length. Tabld and 2(orovide more detagd

information about the change of MAEB and MAPEB of each cell.
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Table19 Summary of prediction MAEB of individual celtf simulation dataset

Traffic State

Prediction Time Step

Variabl Direction Link
araple 5 10 15 20 25 30 35 40 45 50 55 60
Celll 1548 332 1516 361 1500 3.86 1473 3.95 1445 428 1407 4.41
Cell2 1585 1329 1275 1620 993 17.67 821 16.64 948 1498 12.94 13.27
Eastbound
Cell3 327 104 277 191 203 275 145 312 124 309 131 271
Queue Cell4 369 579 354 563 360 494 363 406 374 339 387 329
Length (m) Cell5 1555 527 1524 532 1516 531 1492 559 14.69 607 1429 6.18
Cell6 16.36 1420 1357 17.05 11.17 1843 10.14 17.38 1158 1576 13.93 13.86
Westboun
Cell7 320 132 289 219 234 283 198 311 171 311 156 2.84
Cell8 354 7.04 332 647 341 576 359 490 378 434 388 422
Cell1 085 1.90 118 205 136 216 139 221 157 237 151 231
Cell2 835 479 807 484 827 468 841 446 827 445 7.87 423
Eastbound
Cell3 1946 9.36 18.81 12.92 13.80 16.17 810 1840 870 17.89 954 16.97
. Cell4 1076 7.83 898 1021 6.70 1150 510 1156 6.26 1002 7.67 8.32
Density
(veh/km) Cell5 916 971 954 985 936 933 884 0904 877 907 895 930
Cell6 11.75 7.19 11.63 655 1155 6.66 11.80 7.48 11.72 7.73 1193 7.78
Westbouul
Cell7 2141 12.83 17.84 1632 12.05 1859 9.31 2037 9.45 2005 11.32 16.13
Cell8 776 517 565 743 363 883 204 890 226 736 396 578
Celll 1176 036 1194 0377 1177 0.382 1182 0.372 1124 0.381 1.091 0.365
Cell2 0.686 0.316 0.668 0.355 0552 0.442 0457 0.544 0.405 0.647 0.408 0.622
Eastbound
Cell3 0.665 0.857 0.742 0.869 0783 0.73 0.881 0.622 0.913 0.649 0.845 0.725
Cell4 1.017 0524 1.089 0662 1.067 0.738 0.986 0.674 0.927 062 00948 0.57
Speed (m/s)
Cell5 101 068 101 062 099 063 098 065 093 063 089 059
Cell6 129 059 111 071 088 093 070 107 067 111 075 1.05
Westbouul
Cell7 080 100 099 075 125 060 134 060 120 082 091 091
Cell8 079 039 080 044 077 051 073 052 068 051 066 046
Travel Time  E@stbound 842 837 825 851 887 802 824 792 810 738 7.8 6.86
©) Westbound 1277 11.97 11.97 1230 12.05 11.48 11.68 11.24 1143 10.75 1048 10.92

**QOne time steprepresents 10 seconds
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Table20 Summary of prediction MAPEB of individual celté simulated dataset

Traffic State o ) Prediction Time Step
. Direction Link
Variable 5 10 15 20 25 30 35 40 45 50 55 60

Celll 36.6% 7.9% 359% 85% 355% 9.1% 34.8% 9.3% 34.2% 10.1% 33.3% 10.4%

Cell2 36.8% 30.9% 29.6% 37.6% 23.1% 41.1% 19.1% 38.7% 22.0% 34.8% 30.1% 30.8%
Eastbound
Cell3 17.6% 5.6% 15.0% 10.3% 11.0% 14.8% 7.8% 16.8% 6.7% 16.7% 7.1% 14.6%

Cell4 18.4% 28.8% 17.6% 28.0% 17.9% 24.6% 18.1% 20.2% 18.6% 16.9% 19.3% 16.4%
Queue Length
Cell5 36.8% 12.5% 36.1% 12.6% 35.9% 12.6% 35.3% 13.2% 34.7% 14.4% 33.8% 14.6%

Cell6 38.0% 33.0% 31.5% 39.6% 25.9% 42.8% 23.5% 40.4% 26.9% 36.6% 32.4% 32.2%
Westbound
Cell7 17.2% 7.1% 15.6% 11.8% 12.6% 15.5% 10.7% 16.8% 9.2% 16.8% 8.4% 15.3%

Cell8 17.6% 35.1% 16.5% 32.3% 17.0% 28.7% 17.9% 24.4% 18.8% 21.6% 19.3% 21.0%

Celll 38% 86% 53% 93% 6.1% 9.8% 6.3% 10.0% 7.1% 10.7% 6.8% 10.4%

Cell2 36.2% 20.8% 35.0% 21.0% 35.8% 20.3% 36.4% 19.3% 35.8% 19.3% 34.1% 18.3%
Eastbound

Cell3 71.2% 34.3% 68.8% 47.3% 50.5% 59.2% 29.7% 67.4% 31.8% 65.5% 34.9% 62.1%

Cell4 67.7% 49.2% 56.5% 64.2% 42.2% 72.3% 32.1% 72.7% 39.4% 63.0% 48.3% 52.3%

Density
Cell5 23.2% 24.6% 24.2% 25.0% 23.7% 23.7% 22.4% 22.9% 22.2% 23.0% 22.7% 23.6%
Cell6 40.8% 24.9% 40.4% 22.7% 40.1% 23.1% 41.2% 25.9% 40.7% 26.8% 41.4% 27.0%
Westbound
Cell7 69.9% 41.8% 58.2% 53.2% 39.3% 60.6% 30.4% 66.5% 30.8% 65.4% 36.9% 52.6%
Cell8 41.4% 27.6% 30.2% 39.7% 19.4% 47.2% 10.9% 47.5% 12.0% 39.3% 21.1% 30.8%
Celll 93% 28% 94% 3.0% 93% 3.0% 93% 29% 89% 3.0% 8.6% 2.9%
Cell2 55% 25% 54% 29% 44% 36% 3.7% 44% 33% 52% 3.3% 5.0%
Eastbound
Cell3 49% 64% 55% 65% 58% 54% 66% 46% 6.8% 48% 63% 54%
Cell4 77% 4.0% 82% 50% 81% 56% 75% 51% 7.0% 4.7% 7.2% 4.3%
Speed
Cell5 75% 51% 75% 46% 74% 4.7% 73% 49% 7.0% 4.7% 6.6% 4.4%
Cell6 11.6% 5.3% 10.0% 6.4% 7.9% 84% 63% 9.7% 6.0% 10.0% 6.8% 9.4%
Westbound
Cell7 65% 82% 81% 62% 103% 4.9% 11.0% 4.9% 9.8% 6.7% 7.5% 7.5%
Cell8 58% 29% 60% 33% 57% 38% 54% 39% 51% 3.8% 4.9% 3.4%
Eastbound 50% 50% 49% 51% 53% 48% 49% 4.7% 49% 4.4% 4.3% 4.1%
Travel Time
Westbound 6.6% 62% 62% 64% 63% 6.0% 6.1% 58% 59% 56% 54% 57%

**Qne time step represents 10 seconds

To help readers further understand outputs of prediction model, the prediction curves of
selected individual cells are presented together with corresponding ground truth values. Due
to the spaceonstraint of the dissertation, only the prediction result of paheo€ells is
listed here (twaells for each type of traffic state variabldjigures 62 and63 are predicted

travel time plots and Figus&4 and65 are queue prediction plotSigures 66 and67 are
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density prediagon plots and Figuie68 and69 are speed prediction plotsor a complete list

of predicted traffic states of each individual cell, readers can refer Appendix B.
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Figure62 Eastbound predicted versus ground truth travel time for 5, 15, 30 and 60 time step
predictionof simulation dataset
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8.5. ChapterSummary

This chapter performed model validation using simulated arteaiffic flow data. Key
findings of this chapter are summarized as follows:

1) The paraboli@xponential speedensityqueue function is applied in this numerical
study and the parameters of speed fundi@talibrated using link speed, density and
gueuedata extracted from the simulated trajectory data;

2) The simulation dataset represents the traffic flow dynamics of congested (near
capacity) traffic flow condition which is observed from the travel time plots given by
Figure51

3) The change of predicticaccuracy over time measured by MAPEB is stable for travel
time, queue length and speed. On the other hand, the prediction error of traffic flow density

demonstrates high fluctuation and periodicity property;
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4) The model can offer reliable prediction tpreue length, speed and travel time under
long prediction time range (>60 time steps). The average MAPEB of predicted queue,
speed and travel time are 5%, 18% and S:&8pectively.

5) Predicting the future traffic flow density with the proposed moddIgeiherate

considerable amount of prediction errors (30% ~ 40%);
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9.Concl usi on and Future Research Di

9.1. Summary of the dissertation

This study proposed an innovative traffic state estimation and-t&nortprediction
framework for signalized arterial netwouking an integrated solution consisting of
macroscopic traffic flow model, particle filtering and time series methbd.propose
methodis composed of two modules: the réiate estimation module and shoetrm
prediction module. The former takes traffic detector information as input and provides
estimatecturrenttraffic flow status while the latter forecasts near future tréiibe
conditions. The main contributions of this research are summarized as follows,

1 In the proposed model, queue length before the intersection stop lines is modeled
as one state variable in the estimation process. Such approach not only highlighted the
mgor characteristic of signalized arterial, but also significantly reduced the computational
load of the model by avoiding segmenting linkoiatlarge number of small cells;

1 A set of system state transition equations are developed based on trafficdlow an
gueuing theory. The transition equations are mathematical representation of traffic flow
dynamics of arterial cells unddre proposed state definition;

1 The study first proposed the fundamental relationship between speed, density and
queue length of ant@al links. Such concept is a natural expansion of freeway fundamental
di agram considering drivers6 reaction towar

1 This study established a re@he traffic state adjustment and feedback estimation
mechanism for arteri@aoads using particle filtering technique. And using the flexibility
provided by PF, this study discussed the data fusion approach to integrditmedehffic

information from different sources;
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1 The study proposeashortterm traffic flow prediction rathod for arterials
through a combination of traffic flow model and time series method (SARIMA). The
SARIMA model is employed to predict the future boundary conditions of the network and
other traffic flow states are predicted by iteratively applyingflihwe transition model;

1 The study conducted a series of numerical investigation regarding the
performance of the proposed model under different traffic conditions. Botivoelal and
synthetic datavere usedThe validation result showed that the proposexdiel can yield
accurate queue, density and speed estimation using both detector and probe vehicle data; as
for the prediction, the model can predict queue and speed with high degree of accuracy
which does not deteriorate w.r.tegliction interval,

1 Usingtrajectory method of imaginary vehicle, the travel time is estimated from
the traffic states of links. Through numerical examples, the model performed excellently in
estimating and predicting arterial travel time. Also the accuracy of travel time pradictio

remains almost constant Wih the entire prediction range;

9.2. Conclusion

Following the findings of existing literaturethe studydeveloped a shoterm traffic
state prediction framework for signalized arterial corridor based on macroscopic traffic
flow model, timeseries method and stochastic estimation theory. The primary contribution
of the study is to propose an arterial quengglel called shifting boundary cell model to
describe the periodical shockwave propagation before each intersection. Then the transition
of arterial traffic flow state is quantified by a set of continuous system dynamic equations.

Based on the traffic flownodel developed in this study, the r#ate traffic state
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estimation and shoterm prediction are conducted by combining particle filtering and
SARIMA technique.

Compared with most existing shderm prediction methods, the proposed approach
opened anew avenue to the field of shdadrm traffic state prediction by combining the
advantage of traffic flow theory and other statistical methods. Given the boundary
conditions, the model can perform reliable prediction of near future queue, density, speed
which can be wed for various traffic control purposes including skertn travel time
prediction and signal timing optimization. We can argue the primary feature of the
proposed model from several prospective:

First of all, instead of large amount of teiscal data, the proposed model replies more
on the traffic flow model to perform the shderm prediction of traffic flow state.

Thereatfter, the proposed method reguireither massive amount of historical traffic flow
data nor long computation time for model specification and calibration purpose. Through
state augmentation method, all the parameters associated with the shifting boundary cell
model are automatically calited during the redime traffic state estimation process.
Meanwhile, anothemerit of the proposed model is that traffic flow measurements obtained
from different types of detectors can be integrated using particle filtering framework with
relatively less modeling effortin the numerical examplehere the NGSIM dataset is used

to examine the accuracy of the réiahe estimation resulthe proposed model

demonstrated similar degree of accuracy ufided location detector and probe vehicle

data indicang different types of detector measurements can be integrated to yield reliable

estimation result through the proposed approach.
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Secondly, the proposed traffic state estimation model has its unique state definition and
state transition equations which a@eveloped particularly for signalized corridors. The
computational performance of the model is significantly higher than that of other existing
macroscopic traffic flow models such as CTM. Also, by dividing each link into two distinct
regimes (queuing aaeand moving area), the model traces the movement of the end of
gueue based on detector information. By doing so, the proposed method casabfiere
gueue estimation without dividing the link into a large number of smaller Badisewise
continuoussystem state transition equations are derived for signalized cells. Thus, the
proposed model is both analytically traceable and computationally efficient.

Thirdly, the study revealed the important correlation between traffic flow speed, density
and the gaue length within an arterial cellhe study found that the average flow speed
within the moving regime of each cell is significantly affected by both the traffic flow
density of the moving area and the ratio between physical queue length and thetell len
Therefore traffic flow speed thenmodeled as some convex function of density and queue
length which can be viewed as arterial fundamental diagram. In this study, two types of
arterial speedlensityqueue relationship are fitted and employed: thedrexponential
speed function and linegarabolic speed function. In either caseedicted traffic flow
speed decreases linearly w.r.t. flow density andlim@arly w.r.t. physical queue ratio.
Compared with freeway cells where speed is usually depis a univariable function of
density, this study explained the complex nature of speed transition of arterial links.

Lastly, the system transition equation developed is also used foftehmrprediction
purposeThe boundary conditions (input flows tme boundary links of the network) is

predicted by applying SARIMA algorithm. And based on the-tiea¢ estimation results,
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all traffic state variables are predicted by iteratively applying the system transition
equations developed in this study. Theutesf numerical study showed that the proposed
framework can be considered as an excellent multiple step prediction algorithm. The
change oprediction erroof density and queugemonstrated periodical pattern,
meanwhile that of speed and travel time demonstrated stable naturgeedibgon range
Is increased. Compared with other statistical prediction methods such aetisemodel
or KNN model, the accuracy of the propdsmodel deteriorates very slowly wheerease
the prediction range.

The proposed model can have numerous applications includingmedairavel time
prediction, dynamics route guidance and signal control optimization. Themeairavel
time predicton of urban streets is beneficial to both traffic management authority and
network user because travel time, as a very important network performance indicator,
one essential piece of information regarding the near future traffic condition of the network
Traffic control center can monitor the current traffic flow condition of the network and
identify all congested arsaisingthe proposed modebimilarly drivers can also change
their pre-planned route if bottlenecks are identified through the modeldyiemic route
guidancds an extension of rediime travel time prediction. Based on the future travel time
information provided by the algorithm, a dynamic route guidance system can provide
recommended optimal path for road users. Combined witBliicle navigation system,
the dynamiaoute guidance can balance the flow distribution of the network and mitigate
the congestion level at bottleneck locatiofise realtime signal optimization is another
major applicatbn of the model. In arterial networkbgttraffic flow is controlled by signal

system and signal optimization is one of the most effective ways to improve the network
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performance. Based on the proposed traffic state prediction model, one can perform signal
timing optimization in a reaime mamer.
Overall, the study successfully developed a reliable and robust traffic flow prediction

model for arterial networkonsidering heterogonous data sources

9.3. Future research direction

The realtime traffic state estimation and short term predictioartérial network is a
very challengig field of researchThefollowing issues remain to be explored during
future research:

1 Traffic state predictiominder actuged and adaptive signal control

So far only the traffic flow dynamics of arterial road undexfpmed signal control
strategy is discussed. For actuated and adaptive signal cottteotsgnal timing plan
cannot be obtained in advance. Therefore the model needs to estimate (predict) signal
timing parameters simultaneously with other traffic fldatss;

1 Investigae the model accuracy given precise future demafamation

In this study, we proposed a traffic state prediction modesisting of reatime traffic
state estimation and shdadrm prediction modules. The future boundary conditiorthef
network are predicted with SARIMA technique. One important numerical study is to study
the model performance given the precise future demand information. The purpose of such
study is to isolate the demand prediction fromphmposed framework and exara the
prediction power of the traffic flow theory.

i Study the impact of link length on the model output

The length of arterial link is a crucial factor that affects the traffic flow dynamics due to

the existence of platoon dispersion. It is therefore very important to study the impact of
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link/bay lengthon the final output of the model. The proposed shiftiagndary cell model
approximates the traffic flow state of each arterial link with a queuing area and a moving
area where vehicles are assumed to be uniformly distributed. Hence if the link is so short
that vehicles departed from upstream link move dst@@n before reaching the
downstream intersection, then the model performance will be affected. In the future study,
we want to perform various sensitivity analyses regarding the impact of link length on the
model performance.

1 Quantitatively investigatéhe benefit of integration of multiple data sources

One unique advantage of the proposed model is that it can utilize measurements from
different types of traffic surveillance devices and combine them to increase the
estimation/prediction accuracy. Two ggof traffic flow detectors (loop detector and
probe vehicle) are discussed in the numerical example. In the future work, we need to
guantitatively evaluate the effect the integrating multiple data sources.

i Developmentf network fow model

The current wffic flow model only emphasiz®n the traffic flow dynamics along one
corridor, however in reality, the arterial road is a-mensional network where each link
can have more than one upstream and downstream links. Hence the traffic flow of a link is
not only affected by the signal but also the traffic flow status of all adjaicdst In a
network context, both flow merging, diverging, queue blockage and spillback from turning
pockets need to be considered,;

1 Numerical comparison with other predictiorethods

The shat-term traffic flow prediction is very hot topic. Many statistical methods are

proposed in literatures including tinseries model, ANN model, KNN odlel, spectral
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analysis method. The comparison between proposed model and other statdeiakmn

very interesting research topic.
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