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The stellarator is a fusion energy concept that relies on fully three-dimensional

shaping of magnetic fields to confine particles. Stellarators have many favorable

properties, including, but not limited to, the ability to operate in steady-state,

many optimizable degrees of freedom, and no strict upper limit on the plasma den-

sity. Due to the three-dimensional character of stellarators, theoretical and compu-

tational studies of stellarator physics are challenging, and they also possess some

disadvantages compared with tokamaks. Namely, particle confinement and impurity

control are problems in generic stellarator magnetic fields that must be addressed

with optimized magnetic fields. Further, simulations will require a substantial in-

crease in grid points because of the three-dimensional structure, leading to more

expensive computations. This thesis will address both topics, by first exploring the

behavior of impurity particle transport in optimized stellarators, and then introduc-

ing a boundary condition to reduce the cost of stellarator turbulence simulations.

Impurity temperature screening is a favorable neoclassical phenomenon in-



volving an outward radial flux of impurity ions from the core of fusion devices.

Quasisymmetric magnetic fields lead to intrinsically ambipolar neoclassical fluxes

that give rise to temperature screening for low enough ��1 � d lnn=d lnT . Here

we examine the impurity particle flux in a number of approximately quasisymmet-

ric stellarator configurations and parameter regimes while varying the amount of

symmetry-breaking in the magnetic field. Results indicate that achieving tempera-

ture screening is possible, but unlikely, at low-collisionality reactor-relevant condi-

tions in the core. Further, in configurations optimized for quasisymmetry, results

suggest that neoclassical fluxes are small compared with a gyro-Bohm estimate of

turbulent fluxes.

Calculating these turbulent fluxes is generally done by solving the gyrokinetic

equation in a flux tube simulation domain, which employs coordinates aligned with

the magnetic field lines. The standard “twist-and-shift” formulation of the bound-

ary conditions [7] was derived assuming axisymmetry and is widely used because

it is efficient, as long as the global magnetic shear is not too small. A generaliza-

tion of this formulation is presented, appropriate for studies of non-axisymmetric,

stellarator-symmetric configurations, as well as for axisymmetric configurations with

small global shear. The key idea of this generalization is to rely on integrated local

shear, allowing one significantly more freedom when choosing the extent of the sim-

ulation domain in each direction. Simulations of stellarator turbulence that employ

the generalized parallel boundary conditions allow for lower resolution to be used

compared with simulations that use the (incorrect, axisymmetric) standard parallel

boundary condition.
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Chapter 1: Introduction

1.1 Magnetic Con�nement Fusion

Nuclear fusion as an energy source has the potential to generate clean, safe,

and sustainable energy using a near-inexhaustible fuel supply. The promise of fusion

energy has prompted the design of many concepts aimed at achieving fusion in a

practical sense, with arguably the most successful of these being magnetic con�ne-

ment fusion (MCF). MCF aims to con�ne a high-temperature plasma (ionized gas)

using magnetic �elds for a long enough time in order to allow for self-sustaining

nuclear fusion reactions to occur.

The MCF devices that will be considered here achieve plasma con�nement

with toroidally-shaped vessels that use electromagnetic coils and/or plasma cur-

rents to generate a set of nested magnetic surfaces, or 
ux surfaces (see Figure

1.1). The innermost 
ux surface is a line that is referred to as the magnetic axis.

The magnetic �eld lines are tangent to these 
ux surfaces, approximately con�ning

charged particles to the surface, in principle. Further, the magnetic �eld lines have

an average pitch, or twist, within the surface known as the rotational transform.

A nonzero rotational transform is required to prevent the secular motion of

particles away from 
ux surfaces that arises due to the shaping of the magnetic �eld.
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There are two prominent MCF concepts that use distinct approaches to generate

the rotational transform, the tokamak and the stellarator, which will be discussed

presently.

Figure 1.1: Depiction of a set of nested toroidal magnetic surfaces (
ux surfaces),
on which magnetic �eld lines will be con�ned. Figure courtesy of Matt Landreman.

1.1.1 Tokamaks

The most studied MCF concept to date is the tokamak (see Figure 1.2), which

generates toroidal 
ux surfaces that have a continuous rotational symmetry in the

toroidal direction (axisymmetry). By the toroidal direction, we are referring to the

direction of increase of the toroidal angle,� , which is taken to be the long way around

the torus, and the poloidal angle,� , is the short way around the torus (see Figure

1.3). This toroidal symmetry in tokamaks leads to favorable con�nement properties,

and can simplify the engineering of the electromagnetic coils that are required to

create the 
ux surfaces. Further, the ability to ignore toroidal variation has led to

extensive theoretical progress in the understanding of tokamak plasmas. However,

in order to produce the poloidal magnetic �eld component that is responsible for a
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nonzero rotational transform, tokamaks require the presence of a toroidal current.

The presence of a large toroidal current is a major drawback because it makes the

plasma vulnerable to instabilities that lead to disruptions, which can cause a loss

of con�nement, and potentially damage the machine. It is also di�cult to drive the

required current in steady-state, forcing tokamaks toward pulsed operation.

Figure 1.2: Cartoon of a tokamak experiment, where the purple torus represents a

ux surface. The blue toroidal �eld coils generate the toroidal component of the
magnetic �eld (blue arrow). The green transformer circuit generates the toroidal
current, which is depicted by the green arrow. This current produces a poloidal
magnetic �eld that gives the twist to the magnetic �eld that can be seen in the
black line on the 
ux surface. Figure from [62].

1.1.2 Stellarators

Stellarators are an alternative to the tokamak, and although the concept was

introduced �rst [91], they are not as well understood. Stellarators aim to con�ne

particles through the use of three-dimensional 
ux surfaces, removing the axisymme-
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Figure 1.3: Toroidal coordinate system (r; �; � ).

try constraint that de�nes tokamaks (see Figure 1.4). A consequence of having 3-D

surfaces is that stellarators possess the superior properties that they are not prone

to disruptions, and are able to operate in steady-state. This is possible because of

how the rotational transform is generated.

There are three di�erent ways to produce a rotational transform [46]: an

electric current (tokamaks), torsion of the magnetic axis, or rotation of the cross-

section along the magnetic axis. Stellarators employ the second and third techniques

by using complex electromagnetic coils to create the 
ux surfaces and �elds, and

thus do not require a plasma current. In principle, this also means that stellarators

are able to operate with minimal toroidal current, making the positional equilibrium

more robust as it will not be so reliant on the state of the plasma.

Further, the variation of the rotational transform across 
ux surfaces, which is

related to the (global) magnetic shear is often made to be small in stellarators. This
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avoids the low-order rational surfaces that lead to magnetic islands, and is enabled

by the robustness of the positional equilibrium.

Along with the general problems in MCF, such as turbulence, there are of

course unique challenges that arise when considering 3-D surfaces. Generating this

shaping requires complex coils, which can be exceptionally di�cult and expensive to

engineer. Con�nement of particles is also of concern because of secular drifts away

from 
ux surfaces that result from asymmetries in the magnetic �eld.

These problems can be overcome, however. For the case of coils, the stellarator

Wendelstein 7-X (W7-X) [40] currently operates with 50 of these modular coils,

and experiments are able to create the desired 
ux surfaces to within errors of

�B=B � 10� 5 [79]. The issue of particle transport can be addressed by a special

type of symmetry known as quasisymmetry, which will be discussed in detail in

Chapter 2. Stellarators designed to be quasisymmetric will have improved particle

con�nement similar to that of tokamaks.

Figure 1.4: Cartoon of the W7-X stellarator showing the modular coils (blue) that
produce the 3-D 
ux surfaces.
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1.2 Transport in Plasmas

Before MCF can be realized as a practical energy source, there are a number of

outstanding problems that must be overcome. Many of these outstanding issues are

related to plasma transport, which covers the 
ow of particles and energy within the

plasma. In this thesis, we will only address transport in thecore of fusion devices.

The core is de�ned to be the region of closed 
ux surfaces, where magnetic �eld

lines ergodically cover the surface or connect with themselves, and do not intersect

with the wall. In certain regions of the core, chaotic �eld lines or magnetic islands

may be present, both of which do not lead to 
ux surfaces. However, in this work

it is assumed that good 
ux surfaces exist in the regions where simulations are

performed. Figure 1.5 provides a visual for the relative locations of di�erent regions

in toroidal fusion devices.

Since a long con�nement time of particles and energy is central to MCF, the

issues of plasma transport deserve considerable attention. For example, turbulence

is a ubiquitous problem in tokamaks and stellarators that causes an increase in

radial transport, which leads to decreased con�nement times. There is also the

issue of con�ning the hot alpha particle by-products of fusion reactions that are

necessary for a self-sustaining reactor. However, not all particles participate in the

fusion reaction. Speci�cally, impurity ions and the cold alpha particles (ash) that

accumulate, need to be 
ushed from the core to avoid radiative power losses and

fuel dilution. Improving the con�nement time by addressing such issues in plasma

transport will both enable the construction of smaller (cheaper) devices, and push

6



devices closer to the Lawson criterion, which is a threshold for achieving a state of

self-sustaining fusion reactions.

Figure 1.5: Toroidal cross section of a tokamak. The red area depicts the core region
where the �eld lines are (ergodically) closed, leading to 
ux surfaces. The core is
the region of interest for this thesis. Figure adapted from [96].

The study of transport in plasma revolves around solving the Fokker-Planck

equation. The Fokker-Planck equation describes the evolution of the distribution

function, which represents the number of particles per unit volume with position

x = ( x; y; z) and velocity v = ( vx ; vy; vz). The position and velocity together (x ; v)

represent all possible states of a dynamical system, and is referred to as the phase

space of the system. In the presence of collisions, this evolution of the distribution

function in 6-D phase space is the Fokker-Planck equation and can be written as

df a

dt
=

@fa
@t

+ v � r f a +
F
ma

�
@fa
@v

=
�

@fa
@t

�

coll

= C(f a): (1.1)

Here, f a is the distribution function, and C(f a) is the collision operator. Solving a
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6-D equation plus time is a di�cult problem irrespective of the method, making it

useful to simplify the problem in some way.

In transport theory, this is done by choosing particular orderings of certain

quantities in the Fokker-Planck equation to describe di�erent physical processes.

To describe what is meant by orderings, assume that any physical quantity can be

expanded in some small parameter� . For example, for the distribution function f a,

this would look like

f a = f a0 + �f a1 + � 2f a2 + : : : (1.2)

where � � 1. Each additional term will then be O(� ) smaller than the previous

one. Once the small parameter is selected, choices can be made about the size of

each quantity. For example, if a quantityQ is known to be small, one could drop

the O(1) term to get Q = �Q 1 + � 2Q2 + : : : . By then substituting these expansions

for each part of an equation in powers of� , one can derive a set of equations at

each order in� . Depending on how the orderings are chosen, the resulting equations

provide information about the behavior and relative importance of di�erent physical

processes.

As an example, the particle gyroradius� a = vta =
 a, wherevta is the thermal

velocity of speciesa and 
 a = eB=m is the gyrofrequency, is one instance of a

parameter that is commonly used in the ordering procedure. The gyroradius is

typically small compared to larger, equilibrium-scale quantities such as the device

size, and the ratio can be used as a small parameter� � a � � a=L � 1, in which to

take asymptotic expansions.
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In this thesis, two sets of orderings are covered that lead to equations describing

the primary channels of transport in fusion devices. The �rst leads to the drift-

kinetic equation (DKE), which describes transport due to collisions and guiding-

center drifts that exist in the absence of turbulence. This type of transport is

termed neoclassical. The other leads to the gyrokinetic equation, which describes

turbulent transport. This is concerned with the 
ow of particles and energy caused

by instabilities that develop from 
uctuating �elds. The following subsections aim

to cover the di�erences in the orderings that lead to the respective drift-kinetic

and gyrokinetic equations. It should be noted here that taking an appropriate time

average in the gyrokinetic ordering can actually reproduce neoclassical processes [1],

indicating that turbulence and neoclassical processes can coexist. However, with

the hope of both highlighting some of the properties of neoclassical and turbulent

processes, as well as their di�erences, separate orderings will be used in the following

sections.

1.2.1 Neoclassical Transport

1.2.1.1 The Drift-kinetic Ordering

To begin to describe the processes behind neoclassical transport, the following

orderings are assumed:� � a = � a=L � 1, @=@t� � 2
� avta =L, and � a � vta =L, where

� a is the collision frequency. In the expansion of the Fokker-Planck equation,� � a =

� a=L � 1 is taken to be the small parameter. It is important to note that all length

scales are ordered as the equilibrium scale lengthL, in contrast to the gyrokinetic
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ordering (Section 1.2.2.1).

The O(� � ) terms resulting from this ordering of the Fokker-Planck equation

give rise to what is known as the drift-kinetic equation (DKE) [41], which is the

governing equation of neoclassical transport theory. The DKE will be discussed in

more detail in Section 2.2.1.

There are a number of consequences resulting from this drift-kinetic ordering.

Taking � � � 1 removes information concerning the �nite size of the fast particle

gyration around the magnetic �eld, and treats the motion based on the guiding-

center of its orbit (see Figure 1.6). The ordering@=@t� � 2
� vta =L assumes a slow

variation in time of all physical quantities compared to all terms ofO(� � ). Thus, for

the DKE, the plasma is assumed to be in a state of equilibrium (on each 
ux surface),

where quantities such as the density and temperature, as well as their gradients are

taken as constants. Finally, the choice of� a � vta =L allows for subsidiary expansions

to describe di�erent levels of collisionality. These limits are discussed more in Section

2.6.

Since neoclassical transport is strongly in
uenced by both collisions and trapped

particles, a brief subsection has been devoted to each. This is with the hope of clar-

ifying some of the underlying processes that lead to the calculation of neoclassical

quantities, which will be covered in the �nal subsection.
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Figure 1.6: Depiction of the motion of a charged particle along a curved magnetic
�eld. Guiding center motion concerns the motion of thecenter of the gyromotion,
which will drift relative to the magnetic �eld due to the E � B , r B , and curvature
drifts. Figure adapted from [55].

1.2.1.2 The Fokker-Planck Collision Operator

The typical collision operator of the DKE (the so-called Fokker-Planck colli-

sion operator) considers the frequent small-angle collisions between charged parti-

cles. Due to the long-range forces acting between charged particles, the large-angle

collisions that are seen in neutral gases are not as important in plasmas. Instead,

the frequent small-angle collisions will have a much larger e�ect on the plasma as

a whole. This behavior is standard in high-temperature plasmas with plasma pa-

rameter � � 1, where � is a measure of the kinetic to potential energy of the

system. The small perturbations in velocity space that result from these collisions

lead to simpli�cations and a more intuitive understanding of the collision operator.

By performing an expansion in velocity space, the collision operator can be seen as

a drag term plus a di�usion in velocity space [42,60]. The drag term tends to slow
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particles down, bringing the plasma as a whole toward a Maxwellian distribution.

1.2.1.3 Trapped Particles

Along with collisions, the magnetic �eld structure is an integral component of

neoclassical transport. The variation in magnetic �eld strength gives rise to particles

that become trapped between regions of strong magnetic �elds. The cause of this can

be traced back to the kinetic energy of a particleE = 1
2m(v2

k + v2
? ), which is conserved

in the absence of an electric �eld. In the above equationvk and v? represent the

velocity parallel and perpendicular to the magnetic �eld, respectively. The kinetic

energy can also be written in terms of the magnetic moment,� = mv2
? =2B as

E =
1
2

mvk + �B: (1.3)

The magnetic moment is an adiabatic invariant if the time variation of the magnetic

�eld is small compared to the gyrofrequency (! B =
 � 1). This is a condition that

is almost always satis�ed for the 
uctuations relevant for transport. In this case it

becomes clear thatvk must decrease with increasingB in order to conserveE and

� . Further, for a given E, there can be a limiting value ofB that will lead to vk = 0.

Along a �eld line, the parallel velocity can be expressed as

vk(� ) = �

r
2
m

(E � �B (� )) ; (1.4)

where � = � 1 represents the direction of the parallel velocity. Particles with rel-
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atively large v? will not have the parallel velocity to overcome the increase inB

along a �eld line and will be re
ected via the mirror force whenvk = 0 for some

� = � 0. For the case of a tokamak, the �eld strength takes the form of a single well

along a �eld line, and the re
ected particle will then be re
ected back at� = � � 0,

which can be seen in Figure 1.7. The particle then becomes \trapped" in the sense

that it becomes localized in the poloidal angle, and does not traverse the entire �eld

line/
ux surface. Conversely, for particles with largevk, the particle will not be

re
ected, and will traverse the entire 
ux surface.

Figure 1.7: The blue curve is a plot of the magnitude of the magnetic �eld as a
function of the poloidal angle for a tokamak. The dashed line represents a passing
particle, and the solid line represents a trapped particle. Here, the locations� = � � 0

are the bounce points for the trapped particle. Note: The zero ofjB j is suppressed
in this �gure.

While the conservation principles remain the same, trapping becomes more

complicated in stellarator magnetic �elds (or tokamaks with magnetic �eld ripple),

which have multiple wells of di�erent sizes. An example of this can be seen in Figure

1.8, which shows a portion of the magnetic �eld as a function of� for the W7-X
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stellarator. Figure 1.8 shows that there are di�erentclassesof trapped particles,

where the trapping occurs between di�erent poloidal angles. More importantly, some

of these regions are not symmetric about the center. Unlike stellarators, neoclassical

transport in tokamaks is independent of the radial electric �eld, which leads to zero

net radial motion of particles and good con�nement. This net radial particle drift

is zero because the drift that is experienced in moving from one bounce point to

the other is equal and opposite to the drift experienced by returning to the starting

bounce point in the opposite direction. In asymmetric stellarator trapping regions

this cancellation does not occur. The result is secular radial motion away from

the 
ux surface, and poor con�nement of trapped particles. The exploration of

techniques to mitigate this problem for impurity ions is the focus of Chapter 2.

Figure 1.8: The blue curve is a plot of the magnitude of the magnetic �eld as a
function of the poloidal angle for some stellarator. The dashed line represent a
passing particle, and the solid lines represent di�erent classes of trapped particles
(i.e. localized in� ). Note: The zero ofjB j is suppressed in this �gure.
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1.2.1.4 Neoclassical Fluxes

The DKE solves for the distribution function on a 
ux surface. The distribu-

tion function enables the calculation of macroscopic quantities by integrating the

distribution function over velocity space

A �
1
ns

Z
Af sd3v; (1.5)

whereA is some function of the particle velocityv. For example, the macroscopic


uid velocity Va(x ; t) and temperatureTa(x ; t) are calculated via

Va(x ; t) = v (1.6)

3
2

Ta(x ; t) =
mav02

a

2
; (1.7)

where v0
a � v � Va. Using Eq 1.5, quantities such as the particle and heat 
ux

at any given point on a 
ux surface can be calculated. Of principal interest is

the radial component of such quantities, as it is a direct measure of how well the

plasma is con�ned in a given magnetic �eld. As a function of position within a 
ux

surface, however, these quantities can have considerable variation. It is thus more

practical to obtain 
ux surface averages of the radial component of these quantities

to determine the total transport across surfaces. The neoclassical heat 
ux for such

an average would be

Qnc =
� Z

d3vf s
msv2

2
vds � r r

�
; (1.8)
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where vds is the drift velocity, and r r is a vector normal to the surface, whose

magnitude varies within the 
ux surface. The notationh: : : i in Eq 1.8 represents a


ux surface average, de�ned by

hf (r )i =
1

V 0(r )

Z 2�

0

Z 2�

0
f (r; �; � )

p
gd� d�; (1.9)

where V 0 is the radial derivative of the volume bounded by the 
ux surface, and

p
g is the Jacobian. The drift velocity is related to the slow motion (relative to

the gyromotion) of the particle guiding center. For the work in this thesis,vds

speci�cally refers to a combination of the motion caused by inhomogeneities in the

magnetic �eld (Eq 2.2), and theE � B -drift

vE =
c

B 2
E � B : (1.10)

Detailed calculations of neoclassical quantities in stellarators can be found in [93].

In summary, neoclassical transport is mainly concerned with the surface av-

erage of the radial component of quantities, which are a result of charged-particle

collisions in the presence of toroidal magnetic �elds.

1.2.2 Turbulent Transport

1.2.2.1 The Gyrokinetic Ordering

The assumed ordering of plasma turbulence is based on four main assump-

tions: strong magnetization, low frequencies, small 
uctuations, and anisotropy of
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these 
uctuations. Strong magnetization is the equivalent of� s=L � 1, and the

low frequency assumption considers only frequencies well below the gyrofrequency

! � 
 s. Fluctuations of �elds, distributions and potentials are small compared

to their equilibrium quantities j ~f j=f � 1 (
uctuations will be de�ned in the next

section). Further, turbulent 
uctuations are strongly anisotropic. They have long

wavelengths parallel to the magnetic �eldkkL � 1, and short wavelengths perpen-

dicular to the �eld k? L � 1 (which can be seen in Figure 3.2). Here,k = 2�=�

is the typical wavenumber for a wavelength� . The gradients of physical quantities

will then scale di�erently depending on the direction relative to the magnetic �eld.

Speci�cally, parallel gradients vary on the equilibrium scaler kf � f=L , and per-

pendicular gradients vary on the gyroradius scaler ? f � f=� . This scale disparity

is caused by rapid, sound speed communication along �eld lines, and diamagnetic

speed communication perpendicular to �eld lines. The 
ux tube simulation domain

(the topic of Chapter 3) was developed as a minimum simulation domain based on

this natural scale separation.

Assuming these orderings (known as the gyrokinetic ordering) for the Fokker-

Planck equation will lead to the derivation of the gyrokinetic equation (Appendix

A). The derivation exploits != 
 s � 1 to average over the fast gyromotion, which

consequently leads the gyrokinetic equation to describe the evolution of a distribu-

tion of rings in 5-D phase space.
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1.2.2.2 Fluctuating Quantities

Fluctuations in gyrokinetics and turbulence refer to a particular part of some

physical quantity. For instructive purposes, one could consider the distribution func-

tion f to be comprised of an equilibrium Maxwellian part,F0, plus a perturbation

to the Maxwellian, �f , such that f = F0 + �f . Figure 1.9 presents an example

distribution function decomposed into its equilibrium and perturbed parts. The

perturbed part of the distribution function is formally much smaller than the equi-

librium Maxwellian part in this ordering, and this should be evident from Figure 1.9

(it is important to note that the small-scale v-dependence of Figure 1.9 is exagger-

ated for instructional purposes, as it is standard to assume@F0=@v� @(�f )=@v).

One can further subdivide�f by de�ning the 
uctuations ~f of the distribution

function as

~f � �f � h �f i t ; (1.11)

where h: : : i t is a time average that is de�ned so that
D

~f
E

t
= 0. Speci�cally, the

time average is performed on a time scale that is well-separated from the time scale

of 
uctuating quantities ! � 1 and equilibrium variation of the gradients � E . Thus,

for an intermediate time T satisfying ! � 1 � T � � E , the time average as de�ned

in [1] is

h�f i t �
1
T

Z t+ T=2

t � T=2
�f dt0: (1.12)

The averaged part of the perturbationh�f i t is the quantity that is calculated in

neoclassical transport. Since the above discussion is generally true for any physical
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Figure 1.9: The upper �gure represents an example of what a total distribution func-
tion might look like. The bottom �gures represent the Maxwellian (left) and per-
turbed distribution (right), which together create the upper total distribution func-
tion. Each �gure is plotted as a function of velocity. The small-scalev-dependence
of �f is not typical (usually @F0=@v� @�f=@v), and is meant for instructional
purposes.

quantity (apart from the assumption of a Maxwellian for the equilibrium part), it

should then be apparent that neoclassical processes ignore 
uctuating quantities

and involve only the steady-state behavior of small deviations to the equilibrium

part of some quantity.

Turbulent processes treat these averaged quantities as constants, and instead

involve the time evolution of 
uctuations. The 
uctuations are typically expressed

as a series of Fourier harmonics~f =
P

k
~f k exp (ik � x ). This makes it convenient to
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study the evolution of plasma waves, using thek values as labels.

A common way to use the 
uctuations to understand turbulence is through

the use of correlation functions. The spatial correlationC(z) of ~f along the �eld

line (z here represents the parallel coordinate) can be de�ned by

C(z) =

D
~f (x ? ; z) ~f (x ? ; z = 0)

E

D
~f (x ? ; z = 0) 2

E ; (1.13)

where the angled brackets denote an average over the perpendicular coordinates.

This measures how well correlated the 
uctuations are at di�erent points along the

�eld line, once a quasi-steady state is reached. A similar expression for the per-

pendicular coordinates can be constructed. The parallel (perpendicular) correlation

length lz (l? ) can be taken as the constant length scale in

C(z) � exp
�

�
j� zj

lz

�
; (1.14)

describing the typical length scale over which 
uctuations are correlated. Knowledge

of the correlation lengths allow one to e�ciently set the dimensions of a simulation

domain. This is in the sense that the 
uctuations should be su�ciently decorrelated

from one end of the domain to the other, which is discussed further in Chapter 4.

1.2.2.3 Important Quantities in Turbulent Transport

Analogous to neoclassical transport, turbulent transport concerns the trans-

port of particles and energy across surfaces to diagnose the con�nement properties
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under various conditions. Simulations of the linearized gyrokinetic equation are a

common way to study the evolution of each individual mode in the absence of inter-

actions with other modes. Determining the growth rate is a standard goal of linear

simulations, as it reveals which instabilities can be most problematic. Further, the

structure of each mode along a magnetic �eld line can be found. This provides

valuable information about where in the device such modes tend to concentrate.

However, the full physical picture that is seen with the nonlinear interaction

is quite di�erent. Growth rates, for example, which can be useful in determining

how fast turbulence is reached, become less important at the state of turbulent

saturation. For a saturated turbulent state, quantities such as the turbulent particle


ux, and the 
uctuation amplitudes for each individual mode are usually of interest.

Perhaps the most valuable information, however, is the radial heat 
ux, summed

over each of the Fourier modes, since we're really concerned about the total transport

across surfaces. Like neoclassical transport, this provides a direct measure for how

well the plasma is able to con�ne heat under a given set of parameters.

1.3 Optimized Stellarator Con�gurations

As discussed in Section 1.1.2 above, stellarators have a distinct advantage over

tokamaks in that the positional equilibrium is well-maintained as the plasma state

changes. This is because stellarators use external coils to generate the con�ning

magnetic �elds, and do not rely on the self-organization of plasma currents like in

tokamaks. The consequence is that one can create optimized equilibria that will not
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be strongly a�ected during operation. The equilibria can then be created to target

the improvement of certain properties. This has led to e�orts in the stellarator

community to explore how to best optimize stellarators for future experiments or

reactors [37].

While the possibility of optimizing the behavior of stellarators is exciting, the

large number of possible parameters to optimize will require trade-o�s. This typi-

cally leads to the choice of optimizing for a particular behavior, while still keeping

other behaviors in check. For example, because stellarators have poor neoclassi-

cal transport, e�orts have been made to optimize the equilibrium in order to reduce

that transport. W7-X is an example of a stellarator optimized for neoclassical trans-

port. It is also possible to optimize for properties like fast particle transport [5],

turbulence [107], or even certain types of symmetry (explored in Chapter 2).

One speci�c optimization technique is to make stellarators quasisymmetric.

Quasisymmetry is a property that appears only in a particular coordinate system

known as Boozer coordinates. Such a symmetry in stellarators leads to guiding-

center transport properties that are identical to tokamaks. This could eliminate

the issue of poor particle con�nement in stellarators. However, actual devices will

deviate from perfect quasisymmetry, and the transport properties of these con�g-

urations must be studied. The topic of Chapter 2 addresses impurity transport in

such quasisymmetric stellarators with \symmetry-breaking".

These cases are only a few examples of the potential of stellarator optimization.

There is a vast landscape of parameter space that remains to be explored, making

the future of stellarator experiments (or reactors) very hopeful.
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1.3.1 Visualization of Optimized Stellarator Flux Surfaces

A number of optimized stellarator con�gurations are considered throughout

this work. For visualization and reference, a 
ux surface is shown for each of these

con�gurations in Figures 1.10-1.17 below. While nost con�gurations are visually dis-

tinct from one another, the Wistell-A [5] and ARIES-CS [75] con�gurations evolved

from the HSX [3] and NCSX [109] designs, respectively. This results in similar-

looking 
ux surfaces in Figures 1.11,1.12 and 1.13,1.14.

Figure 1.10: Henneberg-QA [48]

Figure 1.11: NCSX [109]
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Figure 1.12: ARIES-CS [75]

Figure 1.13: Wistell-A [5]

Figure 1.14: HSX [3]
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Figure 1.15: Garabedian [33]

Figure 1.16: Nuhrenberg [77]

Figure 1.17: CFQS [63,90]
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Figure 1.18: TJ-II [47]

Figure 1.19: LHD [72]

Figure 1.20: W7-X [40]

1.4 Unsolved Problems in Stellarator Plasma Transport

There remain a number of open problems in stellarator transport that must

be addressed [38].
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Turbulence has a strong impact on plasma con�nement, and it is not well-

understood, especially in stellarators. Part of the problem can be traced to the high

cost of turbulence simulations that have severely limited the size and scope of the

runs. Therefore, to better understand and characterize turbulence, it is necessary

to reduce simulation times as much as possible.

Energetic particle con�nement is another transport issue that must be over-

come to reach a state of self-sustaining fusion reactions. The low-collisionality of

fast particles promotes the importance of achieving con�gurations very close to qua-

sisymmetry to bring neoclassical transport levels closer to the respective tokamak

values. Instabilities can also develop in the presence of energetic particles through

wave-particle interactions that can lead to further losses.

Another foreseen problem in the stellarator community is impurity control.

Impurities in the core can cause fuel dilution and radiative power losses, while im-

purities near the edge can reduce heat 
uxes on the divertors. Speci�cally, the

neoclassical theory of impurity particle transport in various optimized stellarators

(including � 1 e�ects) needs to be better understood, along with the relative impor-

tance of turbulent vs. neoclassical processes in impurity transport.
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Martin M.F., Landreman M. Journal Plasma Phys.86 905860317 (2020) [67]

The content in this chapter borrows heavily from the work in:

Chapter 2: E�ects of Magnetic Field Symmetry-Breaking on Impu-

rity Transport in Quasisymmetric Stellarators

2.1 Introduction

The ideal makeup of particles in the core of magnetic con�nement fusion de-

vices would consist exclusively of particles participating in the fusion reaction. The

presence of any impurity ions can degrade fusion performance by means of fuel di-

lution and radiative cooling of the plasma [50, 80]. Removing impurities from the

plasma core and preventing further accumulation is then of primary importance in

present devices, and when designing future experiments.

Due to the symmetric nature of a tokamak, its neoclassical transport properties

yield a distinct advantage over non-axisymmetric con�gurations because they are

independent of the radial electric �eld,Er , at leading order in (� i =L) [42,86]. Here,� i

is the ion gyroradius, andL is some equilibrium scale length. In particular, if certain

conditions are met (see Section 2.2.2), this absence ofEr in the transport equations

leads to a property known as temperature screening [101], which guarantees an

outward radial 
ux of impurities for large enough temperature gradients.

Conversely, unoptimized stellarator designs have been predicted to behave
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poorly with regards to impurity accumulation [45, 50, 56, 57]. The lack of toroidal

symmetry in the magnetic �eld complicates the transport quantities because of a

dependence onEr in order to maintain ambipolarity of the constituent particle


uxes. This can become an issue in reactor-relevant plasmas, which are expected

to operate in the ion-root regime [65], where the negative (inward)Er will tend to

pull impurities into the core. Recent work [43], however, has found that outward

impurity 
uxes can be achieved in the \mixed-collisionality" regime in a stellarator

(later quali�ed analytically with 
ux-surface variations in Er by [15,16]), alleviating

some of the concern.

Improving the behavior of impurities in stellarators could be addressed by con-

temporary stellarator design optimization, where one of the current foci is on qua-

sisymmetric magnetic �elds [77]. Quasisymmetric �elds have the allure of possessing

the superior transport properties of tokamaks alongside the stability of stellarators.

Ideally, perfect quasisymmetry would lead to neoclassical and guiding-center trans-

port properties identical to tokamaks [12,81]. However, it has been shown [36] that

perfect quasisymmetry can likely be achieved only on a single 
ux surface. There-

fore, any future experiment or reactor will necessarily have some �nite degree of

symmetry-breaking. This makes it important to study quasisymmetric equilibria

with some departure from perfect symmetry.

In this chapter, we examine the temperature screening e�ect using the SFINCS

[61] (Stellarator Fokker-Planck Iterative Neoclassical Conservative Solver) drift-

kinetic solver to calculate the impurity particle 
ux for a number of quasisymmetric

equilibria. As we proceed, it will be necessary to distinguish between a perfectly

29



quasisymmetric magnetic �eld, and the quasisymmetry of con�gurations such as the

National Compact Stellarator Experiment (NCSX) [109] or the Helically Symmetric

Experiment (HSX) [3]. For example, the magnetic �eld of HSX is quasisymmetric

in the sense that its quasisymmetric harmonics are dominant compared with the

smaller, but non-zero, symmetry-breaking harmonics. Such a magnetic �eld will

be referred to as the actual, or true, magnetic �eld of a con�guration. Aperfectly

quasisymmetric magnetic �eld is one in which the symmetry-breaking modes are

identically zero.

With this distinction, the unanswered question we would like to address is

whether, in a nominally quasisymmetric stellarator with realistic deviations from

perfect symmetry, the sign of the neoclassical impurity 
ux is outward like in toka-

maks at low collisionality, or inward like in a generic stellarator.

By altering the magnitude of symmetry-breaking harmonics in the magnetic

�eld of a given equilibrium (see Section 2.3), we are able to probe the region where

temperature screening is lost. Holding the temperature constant, this e�ect was

studied at three distinct densities, and correspondingly three distinct collisionalities

(all of which are considered to be low collisionality, as de�ned in Section 2.6). At

the lowest collisionality, no con�gurations are able to maintain an outward impurity


ux at the true magnetic �eld, even for � � 1 � d ln(na)=dln(Ta) = 0, where a

refers to species. (Introducing a �nite peaked density gradient for the main ions,

� � 1
i > 0, always makes the impurity particle 
ux more inward, which is explained

in Section 2.6.1.2). Increasing the collisionality has a favorable e�ect, where some

con�gurations were even found to have an outward impurity 
ux. However, there
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is an upper collisionality limit, beyond which temperature screening is not observed

for most con�gurations, even in perfect quasisymmetry.

Impurity accumulation in perfect quasisymmetry with � � 1 = 0 can either be

caused by exceeding some collisionality limit, or by a dependence of the neoclassical

transport on Er , indicative of a breakdown in the intrinsic ambipolarity assumption.

In the latter case, theE � B drift, vE , is close to being in violation of thevE � � � vt�

ordering in deriving the equations solved in neoclassical codes. In Section 2.4, we

examine this in further detail and calculate the resonant radial electric �eld,E res
r ,

in quasisymmetric con�gurations. One �nds that E res
r is fundamentally smaller in

quasi-axisymmetry (QA) than in quasi-helical symmetry (QH).

We have also compared the magnitude of the resulting neoclassical 
uxes to a

gyro-Bohm estimate for turbulence [22,29,103]. At reactor-relevant parameters, the

neoclassical impurity particle 
ux did not exceed the respective turbulent 
ux for any

impurity species or con�guration. Even in the presence of a strongly peaked (� � 1 =

0:5) density gradient, in most con�gurations the neoclassical impurity particle 
ux

is less than 10% of the estimated turbulent value. This suggests that regardless

of whether a con�guration can achieve temperature screening, the nature of the

turbulence will determine the sign of the particle 
ux on a surface.

The total (bulk ion + impurity) neoclassical heat 
ux also did not exceed the

turbulent contribution. However, the ratio was larger than the analogous impu-

rity particle 
ux ratio. Furthermore, the neoclassical contribution is largest near

the magnetic axis, and results indicate that turbulence becomes increasingly more

dominant as one moves further out radially. This is in agreement with experimen-
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tal observations [19,78] in Wendelstein 7-X (W7-X) [40] and HSX, which �nd that

neoclassical transport is the dominant radial transport channel near the magnetic

axis.

Finally, we compared the critical amount of symmetry-breaking that it takes

to change the sign of the particle 
ux, � c
sb, to two metrics that have been used to

quantify symmetry on a 
ux surface. These metrics are the e�ective helical rip-

ple [76], � ef f , which is a measure of neoclassical transport in the 1=� regime, and

the magnitude of the symmetry-breaking terms on a 
ux surface,S (see Eq. 2.17).

While it was found that there was some anti-correlation between� c
sb and S, there

does not appear to be much of a relationship between� ef f and � c
sb. (This should

not be surprising, however, if one considers that W7-X has a very low� ef f , yet it

is far from quasisymmetry). This di�erence between how� ef f and S depend on

� c
sb, a quantity related to symmetry, motivates a comparison between� ef f and S.

Results indicate a con�guration-speci�c dependence of� ef f on S, which in many

cases is non-monotonic. There is thus a disconnect between these two quantities,

such that minimizing the amount of symmetry-breaking on a 
ux surface does not

simultaneously minimize� ef f . So while � ef f is a useful proxy for optimizing neo-

classical transport in stellarator optimization, it is a poor proxy for achieving good

quasisymmetric surfaces.

This chapter is organized as follows: In Section 2.2.1, we introduce the govern-

ing equation and ordering assumptions of SFINCS in the results presented herein.

In Section 2.2.2, we explain the principle of ambipolarity, the fundamentals of the

temperature screening phenomenon, and the issues that arise in non-axisymmetric
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geometries. In Section 2.3 we explain our approach to varying the degree of qua-

sisymmetry on a 
ux surface. The quasisymmetric con�gurations that have been

explored, and the way that these equilibria have been scaled can be found in Section

2.5. Section 2.4 explains an issue in present neoclassical stellarator codes based on

the vE � � � vta ordering, which limits the value of the radial electric �eld when impu-

rities are included. Section 2.6.1 presents results on how the amount of symmetry-

breaking, collisionality, and density gradient a�ect the behavior of the impurity

particle 
ux for various quasisymmetric con�gurations. Section 2.6.2 compares the

results of Section 2.6.1 to a gyro-Bohm estimate of turbulent particle and heat 
uxes

as a function of the impurity species, and normalized radius. Finally, Section 2.7

compares the e�ective helical ripple to the amplitude of symmetry-breaking terms

on a 
ux surface.

2.2 Background

2.2.1 Drift Kinetic Equation

Neoclassical transport follows from a drift-ordering of the Fokker-Planck equa-

tion in toroidal magnetic geometry, and solving the resulting drift-kinetic equa-

tion (Eq.19 in [41]). The drift ordering assumes� � a = � a=L � 1, vE � � � avta ,

@=@t� � 2
� avta =L, and � a � vta =L, where � a is the collision frequency. The gyro-

radius of speciesa is � a = vta =
 a, the thermal velocity vta =
p

2Ta=ma, with Ta

and ma the temperature and mass of speciesa, respectively. The gyrofrequency is


 a = ZaeB=mac, whereZa is the species charge,B is the magnetic �eld magnitude,
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c is the speed of light, ande is the proton charge.

Results in this chapter have been obtained by solving the drift-kinetic equation

(DKE) using the SFINCS [61] code over a range of collisionality regimes, for various

impurity ions. SFINCS is a radially-local DKE-solver that has been generalized

to non-axisymmetry, allowing for an arbitrary number of species, fully linearized

Fokker-Planck collision operator, and the capability of simulating on-surface varia-

tions in the electrostatic potential, � 1. The exact form of the DKE that is solved in

SFINCS for this chapter (with the exception of Section 2.6.2.2) is given by Eq.(16)

in [61]

_r � (r f a1)xa ;� + _xa

�
@fa1

@xa

�

r ;�

+ _� a

�
@fa1

@�

�

r ;xa

� Ca = � (vma � r r )
�

@Fa
@r

�

Wa0

;

(2.1)

where Fa and f a1 represent a Maxwellian distribution and the �rst-order pertur-

bation to the distribution function, respectively. The position vector is given by

r , the cosine of the pitch angle is� � vk=v, the velocity is xa � v=vta , Wa0 =

v2=2 + Zae� 0=ma is the lowest-order total energy,Ca is the collision operator, and

vma is the magnetic drift velocity de�ned by

vma � r r =
mac

ZaeB2

�
v2

k +
v2

?

2

�
b � r B � r r: (2.2)

The coordinate r =
p

2 t=Bav is a surface label, where 2� t is the toroidal 
ux,

and Bav is some averaged magnetic �eld, such as the �eld on the magnetic axis.

The electrostatic potential is split into zeroth- and �rst-order contributions � =
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� 0(r ) + � 1(r; �; � ), where � and � are the poloidal and toroidal angles. The zeroth-

order term � 0 � h � i , where h: : : i is a 
ux surface-average, and �1 is determined

from the �rst-order quasineutrality equation

X

a

�
�

Z 2
ae� 1

Ta
na + Za

Z
d3vf a1

�
= 0: (2.3)

The time derivative terms, _r , _xa, and _� a are the phase space particle trajecto-

ries. Since SFINCS o�ers variations in how these trajectories are de�ned, we have

chosen to use the \full trajectories" de�nition (Eq.(17) in [61]). This choice takes

into account the change in potential energy as a particle drifts radially, with the

corresponding change to_� a in order to conserve the magnetic moment,� . Finally,

note that � 1 e�ects are neglected in these phase space trajectories and in Eq 2.2.1;

we will discuss how �1 e�ect can be included in Section 2.6.2.2.

2.2.2 Ambipolarity and Temperature Screening

The property of ambipolarity can be expressed as

X

a

Za� a = 0; (2.4)

where � a is the radial component of the particle 
ux of speciesa

� a =
� Z

f a (vma � r r ) d3v
�

: (2.5)
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This results from the charge density being small for length scales much longer than

the Debye length. Ambipolarity is then a statement that the 
ux surface-averaged

radial current vanishes on each 
ux surface. While this is true in both tokamaks

and stellarators, the radial electric �eld is set by di�erent physical mechanisms, and

Er only a�ects the ambipolarity condition in stellarators. The value of the radial

electric �eld that satis�es the ambipolarity condition in a non-axisymmetric plasma

is referred to as the ambipolar radial electric �eld.

Neoclassical 
uxes are determined from a linear combination of the equilibrium

gradients in the system. The radial neoclassical impurity particle 
ux can be written

in the form of Eq (1) in [100]:

� z = � nz

X

a

La
11

�
1
na

dna

dr
�

ZaeEr

Ta
+ � a

1
Ta

dTa

dr

�
; (2.6)

wherer is an arbitrary radial coordinate, andLa
11 and � a are transport coe�cients

[10,65,100] that can have a complicated dependence onEr and the collision frequency

� z = � zi + � zz, where

� ab =
4
p

2�n bZ 2
aZ 2

b ln �

3
p

maT3=2
a

: (2.7)

In the case of a tokamak, the toroidal symmetry causes the electric �eld dependence

to cancel out in Eq 2.4, making transportintrinsically ambipolar. This, in principle,

allows for rapid toroidal rotation of the plasma, as the radial electric �eld pro�le

is not governed by the ambipolarity constraint, but rather by angular momentum

conservation [1,42,52,89]. Moreover, for a plasma in the banana regime with� i + � z >
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0, this cancellation assures a radially outward 
ux of the impurity species when

� � 1
i � d ln ni =d ln Ti < � � 1

c , where � � 1
c is some critical ratio of the density and

temperature gradients (the ratio� � 1
i is used here sincer ln ni drives inward impurity

transport, whereasr ln nz drives outward transport). This bene�cial phenomenon is

generally referred to as temperature screening. Speci�cally, we de�ne temperature

screening to be present when the 
ux surface-averaged impurity particle 
ux is

positive. This de�nition makes clear how certain parameters a�ect the direction of

travel of the impurities, which is ultimately the quantity of interest. However, it

should be noted that temperature screening can also be de�ned by the sign of the

temperature gradient coe�cient in Eq 2.6.

The situation is less positive in stellarator geometries since the ambipolarity

condition is dependent on the radial electric �eld, and the temperature screening

e�ect is no longer guaranteed. For fusion-relevant, high-density plasmas, the radial

electric �eld is directed inward [65] and will presumably act to drive higher-Z impu-

rities into the core. It should be stated clearly here that temperature screening is a

neoclassicale�ect, and its presence, or lack thereof, is independent of the turbulent


uxes.

A potential solution to this situation in stellarators lies in the design of qua-

sisymmetric con�gurations. A truly quasisymmetric device, whose magnetic �eld

varies through a �xed linear combination of Boozer angles on a 
ux surface, will

have neoclassical and guiding-center transport properties identical to a tokamak,

up to O(� � a) [12,81]. However, evidence suggests that in the absence of axisymme-

try, quasisymmetry cannot be achieved exactly throughout a volume [36], meaning
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that quasisymmetric devices will necessarily deviate from symmetry to some level.

Therefore, it would be informative to optimization e�orts to know how much break-

ing in the symmetry of the magnetic �eld can be tolerated before the temperature

screening e�ect is lost. In the following sections, we explore the e�ect that magnetic

�eld symmetry-breaking has on the impurity particle 
ux.

2.3 Magnetic Field Symmetry-breaking

Any magnetic �eld within a 
ux surface can be written as a sum of harmonics

in the Boozer poloidal� , and toroidal � angles [13]

B(r; �; � ) =
X

m;n

Bmn (r )ei (m� � n� ) : (2.8)

Only by expressing the magnetic �eld in Boozer coordinates will the property of

quasisymmetry become apparent. A magnetic �eld is considered quasisymmetric if

its magnitude varies within a 
ux surface only through the �xed linear combination

� = M� + N� , whereM; N are �xed integers, one of which may be zero. However,

since perfect quasisymmetry is not practically achievable, it is possible to express

the magnetic �eld of a quasisymmetric con�guration as a sum of quasisymmetric

and non-quasisymmetric Boozer harmonics, the latter of which will be referred to

as symmetry-breaking terms. Therefore, symmetry-breaking terms with smaller

magnitudes will produce better approximations to perfect symmetry.

Our approach to understanding temperature screening in stellarators exploits

this fact by allowing one to adjust the amplitude of the symmetry-breaking terms
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by an overall, constant scaling factor. The way we have decided to approach this is

to expand in the harmonics of 1=B2, which can be expressed as

1
B 2

=
X

q

hq(r )eiq� + � sb

X

m;n

hmn (r )ei (m� � n� ) ; (2.9)

where the quantitieshq and hmn are the quasisymmetric and non-quasisymmetric

harmonics of the 1=B2 expansion, respectively. The parameter� sb is a scaling factor

(�xed for a given simulation) that controls the amplitude of the symmetry-breaking

terms. The special case of� sb = 0 denotes a truly quasisymmetric �eld, while� sb = 1

corresponds to the original magnetic �eld that one would get from an equilibrium

code. By running simulations with � sb between these values, one can gain further

insight into how temperature screening is a�ected under magnetic �elds with varying

degrees of symmetry-breaking.

In the context of MHD, arti�cially scaling the magnetic �eld with � sb 6= 1

will lead to a plasma that no longer satis�es the equations of an MHD equilibrium.

However, if we consider the work of Garren/Boozer [36], it is likely that the con-

struction of a single quasisymmetric 
ux surface is possible. Then, an arbitrarily

quasisymmetric magnetic �eld could be constructed on one of many 
ux surfaces

that, in principle, will satisfy an MHD equilibrium. Since this applies to only one


ux surface, our approach prevents the scaling of multiple 
ux surfaces simultane-

ously.

To understand our choice of expanding 1=B2, it is important to recognize that

arti�cially scaling the magnetic �eld of an MHD equilibrium can potentially become
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problematic if large currents are introduced near rational surfaces [14,46]. This can

be seen in the expression for the parallel current [46]

Jk �
hmn

r � rmn

dp
dr

: (2.10)

Since our simulations will always assume a �nite pressure gradient, thehmn modes

must vanish on rational surfaces to avoid an in�nite P�rsch-Schl•uter current. There-

fore, scalinghmn modes as opposed toBmn modes will guarantee that such currents

will not appear in this altered equilibrium.

2.4 Resonant Radial Electric Field Considerations

In tokamaks, it is well known that rapid plasma rotation is possible in the

toroidal direction as a result of symmetry. If one then assumes the ordering of

vE � vta , then radial electric �elds are capable of producing sonic 
ows. The radial

electric �eld that corresponds to sonic rotation is known as the resonant electric

�eld, which in axisymmetry is E res
r = r�Bv ta =(Rc) [11]. We take the radial electric

�eld here to be de�ned by Er � � d� =dr.

Constraints on the symmetry of the magnetic �eld, however, prevent order-

ing the 
ow velocity with the thermal speed in generic stellarators [44], as well as

perfectly quasisymmetry ones [95]. The form of the drift kinetic equation that is

solved in SFINCS uses thevE � � � avta ordering to avoid the symmetric restrictions

to the magnetic �eld that result from sonic 
ows. From the SFINCS ordering, the

vast majority of parameter regimes, geometries, and species, yield ambipolar ra-

40



dial electric �elds, E a
r , that are considerably smaller than the resonant electric �eld

magnitude. However, them� 1=2
a dependence of the resonant electric �eld can cause

the ordering to break down for heavy impurities under certain conditions. Solving

this issue completely would demand a reordering to derive a new form of the drift

kinetic equation. We do not attempt to tackle this problem here, but leave it to

future work.

It is also very interesting and relevant to note that quasi-helically-symmetric

(QH) con�gurations produce a considerably larger gap betweenE a
r and E res

r than

quasi-axisymmetric (QA) con�gurations for otherwise identical plasma parameters.

The relative size of these electric �elds for a given simulation can be found by deriv-

ing an analogous expression for the resonant radial electric �eld in quasisymmetry.

If we start by assuming thevE � vta ordering, then thevE and parallel stream-

ing terms will be of the same order

vkb̂ � r � �
c

B 2
E � B � r �; (2.11)

where� = M� � N� . The contravariant and covariant representations of the mag-

netic �eld are, respectively,

B = r  t � r � + �r � � r  t (2.12)

B = Lr  t + I r � + Gr �; (2.13)
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where 2� t is the toroidal 
ux, L = L( t ; �; � ) is some scalar, and as detailed in [46]

Z

S�

J � r �
p

gd� d t =
c
2

I ( t ) (2.14)

Z

S�

J � r �
p

gd� d t =
c
2

G( t ); (2.15)

where 1=
p

g = ( r  t �r � ) �r � is the Jacobian, andS� and S� correspond to surfaces

where � = const and � = const, respectively. Solving forEr when vE � vk � vth

yields an expression for the resonant electric �eld

E res
r �

�
�
�
�
rv ta B 2

c
M� � N

MG + NI

�
�
�
� : (2.16)

Typically, I � G, so the QH devices examined in the following sections (all of which

have M = 1, jN j � 4) will have (E res
r )QH ' j (� � N )=�j (E res

r )QA . This allows one

to run neoclassical codes at largerE a
r before the ordering breakdown is reached.

For this reason, only QH results are available in some SFINCS simulations with

steep gradients and/or heavier impurity ions. As a workaround for QA, we have

only considered cases whereE a
r =Eres

r < 1=3, in order to be su�ciently far from the

resonance to avoid unreliable results due to the breakdown ofvE � � � avta .

2.5 Magnetic Field Con�gurations

Throughout the remainder of this chapter, we aim to provide results that are

general to a wide range of quasisymmetric stellarators. We have therefore chosen

eight distinct quasisymmetric stellarator con�gurations (summarized in table 2.1)
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Quasisymmetric Stellarators
Con�guration QS Type N fp Aspect Ratio
Henneberg [48] QA 2 3.40
NCSX [109] QA 3 4.37
ARIES-CS [75] QA 3 4.56
Wistell-A [5] QH 4 6.94
HSX [3] QH 4 10.17
Garabedian [33] QA 2 2.60
Nuhrenberg-Zille [77] QH 6 11.76
CFQS [63,90] QA 2 4.35

Table 2.1: Quasisymmetric stellarator con�gurations that have been studied in this
work. QA-quasi-axisymmetric, QH-quasi-helically-symmetric,N fp -Number of Field
Periods.

to examine, some of which were designed to be QA, and the others QH. Here, we

have used the C09R00 equilibrium from NCSX, the Nuhrenberg con�guration from

�gure 1 and table 1 in [77], and the quasi-helically-symmetric con�guration of HSX.

HSX is the only con�guration in this list that has been constructed to date. To allow

for a fair comparison between devices, each device was scaled to the minor radius,

a, and on-axis magnetic �eld, B0, of the Henneberg et al QA con�guration [48],

a = 0:602m andB0 = 2:10T.

2.6 Results

The results generated below employ the full linearized Fokker-Planck collision

operator of SFINCS, with two ion species. The main ions are taken to be hydrogen

in each of the simulations, while the charge and mass of the impurity ion can vary

between runs. Unless otherwise speci�ed (2.6.2.2), the electrostatic potential is

taken to be constant on a 
ux surface � = � 0(r ). It is assumed here that ion

43



temperatures are equivalent,Ti = Tz, due to the fast equilibration time. The choice

of the temperature and density pro�les in the following results is based on the

modeling of an ECRH-heated, W7-X plasma in Fig 5 of [98]. The density gradient,

however, is not determined from Fig 5 in [98], but rather chosen so as to give

particular values of � � 1. Further, the density gradient is taken to be equivalent

between ion speciesr ln ni = r ln nz (or equivalently � � 1 = � � 1
i = � � 1

z ), meaning

that the pro�le of Zef f is 
at.

The recent work of [43] has shown that temperature screening can be achieved

in reactor-relevant, mixed-collisionality plasmas (highly-collisional impurities and

low-collisionality bulk ions) at large normalized radiusrN = 0:88. With the in-

creased temperature in the core, however, it is possible that the bulk ions and

impurities in reactor-grade plasmas will both have low collisionalities, depending of

course on the particular impurity ion. The picture for temperature screening be-

comes more pessimistic as collisionality decreases, which can be seen in Fig 1 and

2 in [43]. For our purposes of understanding how much symmetry-breaking can be

tolerated prior to losing this e�ect, we choose to study collisionalities below the

region of temperature screening in [43], in order to ensure that this transition will

be observed in at least some cases.

Speci�cally, in the results that follow, both the ions and impurities will fall

into what is generally considered the low-collisionality regime in stellarators� a
� �

1, where we de�ne� a
� � � aR=vta . The low-collisionality regime can be further

subdivided into the plateau, 1=� , and
p

� regimes, as derived for realistic aspect

ratio in [16]. The plateau regime is de�ned by� 3=2 � � a
� � 1, the 1=� regime by

44



� � 1� � a � � a
� � � 3=2, and the

p
� regime by� a

� � � � 1� � a, where� � a=R. We further

explicitly de�ne the equilibrium length scale in � � a � � a=R to be consistent with

the use of the major radius in the de�nitions of [16].

2.6.1 Impact of Magnetic Field Symmetry-Breaking on Impurity Par-

ticle Flux

2.6.1.1 Flat Density Pro�le: � � 1 = 0

As one increases the magnitude of� sb from 0 up to the true magnetic �eld, the

transport due to the helical wells will also increase. It is not clear a priori exactly

how this incremental breaking of symmetry will change the impurity particle 
ux.

However, it is clear that for many cases of interest there should be some critical value,

� c
sb, where the radial impurity particle 
ux, � z, changes sign, which will depend on

the particular magnetic equilibrium.

In this section, we examine the� sb dependence of �z for each of the con�gu-

rations in table 2.1 in select parameter regimes. It should be understood that the

magnitude of � z is less important than the sign in this section.

The Er for each simulation was chosen to be the ambipolarEr for the � sb = 1

case, considering thatEr becomes progressively less important in calculating radial


uxes as the magnetic �eld approaches symmetry (this can be seen from Figure 2.6,

which is discussed at the end of this section). It also becomes di�cult to accurately

calculate the radial electric �eld for small values of� sb. We choose fully-ionized

carbon, C6+ , as the impurity in Figures 2.1 and 2.3 in order to avoid proximity to
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Figure 2.1: (Color online) The impurity particle 
ux at � � 1 = 0 for C6+ is plotted
as a function of the symmetry-breaking amplitude at a normalized radius ofrN =
0:25. T = 4 keV, dT=dr = � 0:97 keV/m, and Zef f = 2 were kept constant for all
subplots. The upper, green-shaded region denotes positive �z (impurity screening).
The lower, red-shaded region corresponds to negative �z (impurity accumulation).
The normalizedC6+ gyroradius is� � z = 4:17� 10� 3� , and the collisionalities for each
subplot are (a)� z

� = 2:26�10� 4� � 1, (b) � z
� = 2:26�10� 3� � 1, and (c) � z

� = 3:29�10� 2� � 1.

the resonant electric �eld in all con�gurations (see Section 2.4). Finally, we take

� =
P

a6= i naZ 2
a=(ni Z 2

i ) = 1, corresponding toZef f = 2.

In Figure 2.1(a)-(c), we have plotted results atrN ' 0:25 for all devices at

increasing values of collisionality, which is achieved by varying the ion density at

constant temperature. Here, and in the results that follow,rN � r=a =
p

 t= a,

where a is the minor radius, and 2� a is the toroidal 
ux at the last closed 
ux

surface (computed in VMEC [53]). At this radial location we takeTi = Tz = 4 keV

and dTi =dr = dTz=dr = � 0:97 keV/m. In the lowest-collisionality case of Figure

2.1(a) (with ni = 1018 m� 3), there is a similar � sb dependence of �z for each of the
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devices, regardless of the type of quasisymmetry (QA or QH). For a magnetic �eld

with near-perfect quasisymmetry (� sb = 10� 2), the resulting � z is positive, indicating

a presence of the temperature screening e�ect. As� sb is increased, �z decreases until

eventually changing sign at some value of� sb < 1.

The �rst thing that can be understood from this plot is that at this collision-

ality, none of the devices that were studied displayed temperature screening at the

actual magnetic �eld, � sb = 1. However, the value of� c
sb where temperature screening

is lost will depend on the magnetic con�guration. In the case of Nuhrenberg-Zille,

for example, the transition occurs at� c
sb ' 0:6, which is essentially saying that the

symmetry-breaking terms must be� 60% of their actual values to ensure tempera-

ture screening under these conditions. Toward the left side of the plot, the NCSX

transition occurs at � c
sb ' 0:1, requiring the symmetry-breaking terms to be� 10x

smaller.

In Figure 2.1(b), the same plot as in Figure 2.1(a) is constructed, however, the

density (and hence collisionality) has been increased by an order of magnitude. First,

it should be remarked that at this collisionality, the Nuhrenberg-Zille con�guration

actually achieves temperature screening at� sb = 1. While this is the only such

con�guration to do so, it is also true that � c
sb has increased for each con�guration

from the respective values in Figure 2.1(a). Since� c
sb can approximate closeness to

quasisymmetry, it follows that increasing the collisionality appears to improve the

\e�ective quasisymmetry" of a 
ux surface, as it relates to impurity transport.

The meaning behind our use of the term \e�ective quasisymmetry", which is

only applicable for impurity transport and not bulk particles, can nevertheless be
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Figure 2.2: (Color online) De�nitions of normalizations, markers/colors, and details
can be found in Figure (14) of [10]. TheD11 transport coe�cient is plotted as a
function of collisionality for HSX geometry. Here, the colors represent di�erentvE

values. DKES [51,99] results are depicted by triangles (4 ), NEO-2 [59,76] by �lled
circles (� ), and Monte-Carlo results are plotted using open circles (
 ) [97], and
right-point triangles (. ) [2]. The dotted line is a simulation with equivalent perfect
helical symmetry andEr = 0.

understood from a �gure in [10] looking at bulk ion transport (which has been reused

in Figure 2.2 with permissions). For comparison, the normalized ion collisionality

of Figure 2.1(a) corresponds to� � � 10� 5 in Figure 2.2. At low collisionality, there

is a di�erence (depending onEr ) between the D11 coe�cient (describing radial

transport) for HSX and the perfectly quasisymmetric case, indicating a sensitivity

of the particles to the exact structure of the magnetic �eld. As collisionality is

increased, this di�erence becomes less pronounced as the contribution to transport

from helically trapped particles decreases. At a high-enough collisionality,D11 in
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Figure 2.2 is about the same for perfect quasisymmetry as it is for HSX, regardless

of Er . Noting that the magnetic trapping structures can be quite di�erent in perfect

symmetry and a nominally quasisymmetric �eld, the similarities inD11 indicate a

decreased sensitivity of the particles to the exact structure of the magnetic �eld

at higher collisionalities. Thus, in the context of quasisymmetry, increasing the

collisionality brings the transport closer to symmetric levels, \e�ectively" increasing

quasisymmetry.

However, there is a limit to the bene�cial impacts of increasing the density,

as can be seen in Figure 2.1(c), whereni = 1:46� 1020 m� 3. Aside from the Wistell-

A con�guration, all of the other con�gurations at near-perfect quasisymmetry do

not display an outward impurity 
ux. There are two possible explanations for

why this might take place in perfect symmetry. First, for QA con�gurations, it is

possible thatE a
r and E res

r are close enough that ambipolarity no longer holds, and

the higher-order Er terms [94] become important. To explain this e�ect in QH,

one must recall that temperature screening in axisymmetry is not predicted at high

collisionalities [87], except for cases where� ! 0 for collisional ionsand impurities.

In Appendix C, it can be seen that beyond some critical� ii
� in axisymmetry, the

impurity 
ux becomes negative for most� � 1. Figure 2.1(c) is thus indicating that

we are hovering around that critical collisionality where temperature screening is

not possible, even in perfect symmetry. It is interesting to note here that in Figure

2.1(a) and 2.1(b), the impurities are mostly in the
p

� or 1=� regime. However, in

Figure 2.1(c), all QH con�gurations are well into the plateau regime, and most of

the QA con�gurations have transitioned to the plateau regime as well. The ions are
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Figure 2.3: (Color online) The impurity particle 
ux at � � 1 = 0 for C6+ is plotted as
a function of the symmetry-breaking amplitude at a normalized radius ofrN = 0:50.
T = 3:3 keV, dT=dr = � 4:78 keV/m, and Zef f = 2 were kept constant for all
subplots. The upper, green-shaded region denotes positive �z (impurity screening).
The lower, red-shaded region corresponds to negative �z (impurity accumulation).
The normalizedC6+ gyroradius is� � z = 3:79� 10� 3� , and the collisionalities for each
subplot are (a)� z

� = 3:32�10� 4� � 1, (b) � z
� = 3:32�10� 3� � 1, and (c) � z

� = 4:58�10� 2� � 1.

in the
p

� regime in all but a couple cases at the highest collisionality.

The situation is less pessimistic in Figure 2.3, where we look atrN = 0:50 with

T = 3:3 keV and dT=dr = � 4:78 keV/m. The trends are largely similar to Figure

2.1 at each collisionality, however, there are a handful of cases where temperature

screening can be seen at� sb = 1. Furthermore, at the highest collisionality, the

Wistell-A, Garabedian, and Nuhrenberg con�gurations have an outward impurity

particle 
ux for all � sb. The collisionality at rN = 0:50 is only slightly higher than

at rN = 0:25, and � � 1 = 0 at both rN , so the di�erences at these radii are likely

caused by the distinct magnetic �eld modes,Bmn .
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The di�erences between Figures 2.1 and 2.3 can be understood by looking at

the magnitude of symmetry-breaking terms

S �
s X

m;n 6= mN

B 2
mn =B2

00; (2.17)

as a function of rN in Figure 2.4. The summation in Eq 2.17 includes all modes

that are not an integer multiple of the dominant magnetic helicity� (i.e. M = 1,

N = 4 for HSX). If we consider the curves for Henneberg QA and Garabedian, we

can compare the di�erence in the values of� c
sb in Figure 2.1(a) and Figure 2.3(a). In

moving fromrN = 0:25 to rN = 0:50 in Figure 2.4, the symmetry-breaking amplitude

for Henneberg QA and Garabedian decreases by� 4. The corresponding increase

in � c
sb from rN = 0:25 to rN = 0:50 is � 2 � 3 for both con�gurations. If we were to

then consider the respective CFQS curves (Figure 2.1(a) and Figure 2.3(a)), there

is an increase inS between these radii of� 2, where adecreasein � c
sb is observed.

This presents a connection between the closeness to quasisymmetry of a 
ux surface,

and the realization of temperature screening. The remaining con�gurations have a

di�erence in S of less than a factor of two at these radii, andS is also larger at

rN = 0:50. Unlike the connection betweenS and the change in� c
sb for Henneberg

QA, Garabedian, and CFQS, the change in� sb is positive (although small) for the

remaining con�gurations. This could potentially be accounted for by a complicated

dependency on collisionality,Er , and the aspect ratio.

The arguments in this section are also relevant when considering higher-Z

impurities. In Figure 2.5, a similar plot to Figures 2.1 and 2.3 has been constructed
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Figure 2.4: (Color online) The amplitude of the symmetry-breaking terms,S, are
plotted as a function of normalized radius,rN .

for Cr 24+ , where results from bothrN = 0:25 andrN = 0:50 have been consolidated

into Figure 2.5. To restate from Section 2.4, only con�gurations whereE a
r =Eres

r <

1=3 have been considered. One di�erence betweenCr 24+ and C6+ is that the value

of � c
sb decreasesfor the QA con�gurations between Figure 2.5(a) and 2.5(b). This

behavior is likely due to the increase in collisionality from Figures 2.1 and 2.3,

(where the impurities are now in the plateau regime in Figure 2.5(b) and collisional

in 2.5(c)), meaning that the critical density where temperature screening is lost has

decreased. Further, the behavior of Wistell-A in Figure 2.5 is interesting compared

with other con�gurations. From Figure 2.4, the values ofS at rN = 0:25 and

rN = 0:50 are quite similar, however, there is clearincrease in � c
sb that may not be

related to the amplitude of symmetry-breaking terms.

As mentioned at the beginning of this section,E a
r at � sb = 1 has been used

as the Er value for all � sb simulations. In Figure 2.6, we use the Wistell-A curve
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Figure 2.5: (Color online) The impurity particle 
ux at � � 1 = 0 for Cr 24+ (mz =
52mi ) is plotted as a function of the symmetry-breaking amplitude. Forr N = 0 :25:
T = 4:0 keV, dT=dr = � 0:97 keV/m, and � � z = 2:17� 10� 3� with collisionalities (a)
� z

� = 3:61� 10� 3� � 1, (b) � z
� = 3:61� 10� 2� � 1, and (c) � z

� = 0:53� � 1. At r N = 0 :50:
T = 3:3 keV, dT=dr = � 4:78 keV/m, and � � z = 1:97 � 10� 3� with collisionalities
(a) � z

� = 5:31 � 10� 3� � 1, (b) � z
� = 5:31 � 10� 2� � 1, and (c) � z

� = 0:73� � 1. Zef f = 2
was kept constant for all subplots. The upper, green-shaded region denotes positive
� z (impurity screening). The lower, red-shaded region corresponds to negative �z

(impurity accumulation).
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Figure 2.6: (Color online) (left y-axis) The impurity particle 
ux is plotted as a
function of the symmetry-breaking amplitude in Wistell-A using the parameters of
Figure 2.1(b). The yellow curve is identical to the yellow curve of Figure 2.1(b).
The red curve uses the calculatedE a

r value for each� sb. (right y-axis) The blue
dashed line is theE a

r for each point in the red curve.

from Figure 2.1(b) and compare it to one generated withE a
r calculated at each� sb,

as evidence for our argument in making this approximation. From the dashed blue

curve indicating the calculatedE a
r value, there is little variation as � sb decreases.

More importantly, this variation also has a minor impact on �z, as evinced by the

red curve in Figure 2.6, which utilizes theEr values from the dashed blue curve at

each� sb.

The overall results in Figures 2.1, 2.3, and 2.5 indicate that for reactor-relevant

plasma parameters, temperature screening could be achievable in certain con�gura-

tions. However, as it is unlikely that the density pro�le will be completely 
at, it is

imperative to understand how �z varies with � � 1.
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2.6.1.2 Finite Peaked Density Gradients:� � 1 > 0

Peaking of the main ion's density pro�le drives an inward neoclassical impurity


ux. This result is shown for axisymmetry or quasisymmetry in Appendix C. In

non-symmetric stellarators, the situation is complicated by not only the presence of

the radial electric �eld as a driving gradient in the impurity 
ux, but the fact that

L11 depends onEr , and in di�erent ways depending on the collisionality regime.

An exact analytic solution for � z is therefore intractable in most cases. However,

it is possible to approximate the solution by using a similar procedure to that used

in [100], but generalizing for arbitrary Zef f . We start with an expression for the

particle 
ux of an arbitrary species that is valid far from quasisymmetry at low

collisionality

� a = � naLa
11

�
1
na

dna

dr
�

ZaeEr

Ta
+ � a

1
Ta

dTa

dr

�
: (2.18)

It is possible to then explicitly solve the ambipolarity condition
P

a Za� a = 0 for

Er . If we take Ti = Tz = Te, it is possible to drop the contribution of � e to the

ambipolar condition sinceLe
11 � L i

11 (though this approximation does not hold at

very low collisionalities, as described in [100]). Finally, we take the temperature

(T0
a=Ta) gradients to be equivalent for the bulk ions and impurities. This allows one

to solve for the radial electric �eld

eEr

T
=

L i
11

n0
i

n i
+ �

Z L z
11

n0
z

nz
+ A T 0

T

L i
11 + �L z

11
: (2.19)
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By plugging this back into the expression for �z

� z = nzL z
11

"
L i

11(Z
n0

i
n i

� n0
z

nz
)

L i
11 + �L z

11
+ C

T0

T

#

; (2.20)

where A and C are scalars that are not relevant to the following discussion, and

La
11 > 0 in all cases so that the di�usive 
ux is always oppositedna=dr. In the

approximation that La
11, A, and C (which are implicitly dependent on the pressure

gradient through Er ) do not vary strongly with n0=n, and assumingZef f = constant

(n0
i =ni = n0

z=nz), Eq 2.20 indicates that for n0=n < 0, the density gradient will

have an unfavorable e�ect on impurity accumulation, and one that worsens asZ

increases. If one were to instead assume that the ions alone determineEr , yielding

a peakedZef f pro�le, this would lead to n0
z = ( �=Z )n0

i if terms proportional to T0

are neglected. Therefore, for� = 1, we havejn0
zj � j n0

i j and a slightly stronger, yet

similarly adverse e�ect on impurity accumulation whenn0=n < 0.

This is evident in Figure 2.7 in the context of how �z is a�ected by � sb. Each

curve in the �gure was calculated with the Wistell-A con�guration at various � � 1.

The red curve is the� � 1 = 0 case (identical to the Wistell curve in Figure 2.1(c)),

where the degree of quasisymmetry is nearly good enough to retain temperature

screening at such parameters. If a small density gradient� � 1 = 0:03 is introduced,

� c
sb decreases by nearly a factor of 2. Any further increase in� � 1 pushes the plasma to

the point where even perfect quasisymmetry cannot support temperature screening.

This makes the situation of temperature screening even more pessimistic, because

even if � z > 0 in a particular collisionality regime, simply introducing a density
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Figure 2.7: (Color online) The impurity particle 
ux for C6+ in Wistell-A is plotted
as a function of� sb, the scaling factor for the symmetry-breaking terms, atrN = 0:25.
Each curve represents a di�erent relative density gradient, but the physical parame-
ters are otherwise identical to those of Figure 2.1(c). The upper, green-shaded region
denotes positive �z (impurity screening). The lower, red-shaded region corresponds
to negative � z (impurity accumulation).

gradient can 
ip the sign.

In all likelihood, there will be some �nite density gradient in a reactor-relevant

plasma, likely corresponding to an inward 
ux of impurities. It is then of interest to

see how the magnitude of �z changes, relative to its value at� � 1 = 0, as the strength

of the density gradient is increased. In Figure 2.8, the ratio �z=j� zj � � 1=0 is plotted

as a function of� � 1 for various con�gurations, where each simulation was calculated

at the true magnetic �eld, and used its ownE a
r . In every case shown in Figure

2.8(a), � z is negative and a decreasing function of� � 1, indicating that increasing

the strength of the peaked density gradient will intensify impurity accumulation.
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In a scenario where the length scale of the density gradient is only twice that of

the temperature gradient (� � 1 = 0:5), the enhancement in �z at this radius can be

increased by a factor of� 20. The picture appears to at least slightly worsen at

rN = 0:50 in Figure 2.8(b), where the enhanced accumulation has close to doubled

from the values in Figure 2.8(a) in most cases.

2.6.2 Comparison to Gyro-Bohm Turbulence Estimate

In this section, we use results from the parameter scans in the previous section

to compare the neoclassical particle 
ux, �z, and heat 
ux, Qtotal = Qi + Qz, to

a gyro-Bohm estimate for turbulent transport, � gb
z � nzDgbjr Tj=T, and Qgb

total �

Dgbjr Tj(ni + nz). In these expressions,Dgb = � 2
� vti a is the gyro-Bohm di�usion

coe�cient, where we have taken the minor radius to be the relevant length scale. The

gyro-Bohm estimate is not a substitute for turbulent 
uxes obtained from solving the

gyrokinetic equation, but rather an order of magnitude estimate of the turbulence.

2.6.2.1 Impurity Particle Flux with � = � 0(r )

Figure 2.9 examines how the neoclassical particle 
uxes compare to �gb
z as a

function of the impurity ion charge for each device, using the equilibrium magnetic

�eld, � sb = 1. At Z = 6, the impurities are in the plateau regime, and byZ = 24 all

impurities have become collisional� z
� � 1 (depending on the aspect ratio, theZ = 13

impurities are also collisional). Only 
at density pro�les (� � 1 = 0) are considered

in Figure 2.9. In Figure 2.9(a), we look at the impurity particle 
ux for rN = 0:25,
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Figure 2.8: (Color online) The impurity particle 
ux for C6+ has been normalized
to its magnitude at � � 1 = 0 and plotted as a function of � � 1 at (a) rN = 0:25, and
(b) rN = 0:50. Every simulation was performed at the true magnetic �eld� sb = 1,
with the E a

r independently calculated at every� � 1. The physical parameters are
otherwise identical to those of Figures 2.1(c) and 2.3(c). The data points above
� 100 in (b) are those corresponding to devices with positive �z at � sb = 1, thus
giving a value of +100 at � � 1 = 0.
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Figure 2.9: (Color online) The neoclassical impurity particle 
ux at� � 1 = 0 has
been normalized to a gyro-Bohm estimate of the turbulent impurity particle 
ux
(see text). This ratio is plotted as a function of the impurity charge (and mass) for
(a) rN = 0:25, and (b)rN = 0:50. Plasma parameters correspond to those of Figures
2.1(c) and 2.3(c). Collisionalities can be found from (a)� z

� = 9:14� 10� 4Z 2� � 1, and
(b) � z

� = 1:27� 10� 3Z 2� � 1.
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where the temperature gradients are weaker. At this radial location, the ratio of


uxes does not have a consistent strong trend withZ . This is observed in both QA

and QH con�gurations, as well as thenon-quasisymmetric TJ-II stellarator [47], and

the W7-X standard con�guration. Note that symmetry-breaking harmonics ofB are

not modi�ed in Figure 2.9. The most striking feature of Figure 2.9(a), however, is

the dominance of turbulent transport. Of the quasisymmetric con�gurations that

were studied, thelargestcalculated neoclassical 
ux atrN = 0:25 is only� 5% of the

turbulent value. These small ratios indicate that regardless of whether temperature

screening is present at a given collisionality, it is possible that the turbulence could

control the sign of the particle 
ux.

At rN = 0:50 in Figure 2.9(b), the overall sensitivity of this ratio to the

impurity species in QA is unclear since the larger gradients pushE a
r close enough to

E res
r that results are unreliable (see Section 2.4). Only con�gurations with at least

two points have been shown in Figure 2.9, eliminating all but one QA con�guration.

Apart from W7-X, there is an eventual point for each con�guration at which further

increase inZ corresponds to an increase in the relative importance of neoclassical


uxes. Even with this increase in the ratio, the neoclassical contribution to the

radial particle 
ux is < 3% of the turbulent value.

It should be reiterated here that these results have been generated with a 
at

density pro�le. While it is still unknown exactly how the density pro�les will behave

in a reactor, it is likely that j� � 1j > 0. From Figure 2.8, it can then be inferred

how this neoclassical to turbulence ratio will change if a peaked density gradient

is introduced. In a non-ideal scenario, where� � 1 = 0:5, the ratio could increase
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by more than a factor of 10, depending on the con�guration. AtrN = 0:25, this

would still only lead to the neoclassical 
ux being� 10% of the turbulence for most

con�gurations.

It is also of practical importance to understand how this ratio of neoclassical

to turbulent particle 
ux varies with distance from the magnetic axis. This radial

pro�le is shown in Figure 2.10, where the radial pointsrN = 0:15 and rN = 0:40

(pro�les can be found in the caption of Figure 2.10) have been added to the previ-

ously calculated values atrN = 0:25 andrN = 0:50. For most but not all, the ratio

tends to either decrease or remain constant as one moves out radially, indicating that

turbulence becomes increasingly more important. This follows experimental obser-

vations [19,78] that show neoclassical 
uxes at negligible levels when compared with

turbulence far from the magnetic axis.

While these results point to reactor-relevant plasmas where turbulence is likely

the dominant impurity particle transport channel, more work is needed to fully

understand the signi�cance of these �ndings. The most obvious step would be a more

accurate value for the turbulent 
uxes such as a quasilinear model or gyrokinetic

simulations, so as to better quantify this neoclassical to turbulence particle 
ux

ratio. Also, a recent study comparing neoclassical simulations and experimental


uxes from an laser blow-o� injection of iron in W7-X [39] similarly found that

j� NC
z =� anom

z j � 1. However, by separately considering the di�usive and convective

contributions to the particle 
ux, it was found that neoclassical 
uxes could still

be responsible for determining the sign of the total particle transport, while the

turbulence (anomalous transport) could control its magnitude.
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Figure 2.10: (Color online) The neoclassical impurity particle 
ux at� � 1 = 0 for
C6+ has been normalized to a gyro-Bohm estimate of the turbulent impurity particle

ux (see text). This ratio is plotted as a function of the normalized radiusrN .
Plasma pro�les at rN = 0:25 and rN = 0:50 correspond to those of Figures 2.1(c)
and 2.3(c), respectively. At rN = 0:15: T = 4:1 keV, dT=dr = � 0:58 keV/m,
ni = 1:51 � 1020 m� 3. At rN = 0:40: T = 3:75 keV, dT=dr = � 3:88 keV/m, ni =
1:43� 1020 m� 3.
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2.6.2.2 Impurity Particle Flux including � 1 E�ects

The form of the DKE in Eq. 2.1 was found by linearizing about �0, assuming

that it is close to a 
ux function, where � 1 � � 0. When including � 1 e�ects,

one can no longer neglect the contributions of �1 in the zeroth-order distribution

function f a0 � Fa[1 � Zae� 1=Ta], and the energyWa = Wa0 + Zae� 1=ma, as was

done in Eq 2.2.1. Furthermore, the radial component of theE � B vanishes when

� = � 0, but enters the DKE for non-zero �1, which would change the �nal term of

Eq 2.2.1 to

� (vma + vE ) � r r
�

@fa0

@r

�

Wa

; (2.21)

where vE = ( c=B2)B � r � 1. The above replacements in the DKE will have the

e�ect of both altering the phase space trajectories, and making the DKE nonlinear.

For details on the implemented equations with �1 e�ects see [70].

When considering �1 in neoclassical transport, recent results [34] indicate that

it has only a moderate impact on the particle 
ux for highly-charged impurities

(W 40+ ), in the case of thenon-quasisymmetric Wendelstein 7-X (W7-X) stellarator.

While not quasisymmetric, W7-X is still a neoclassically optimized stellarator and

will have reduced radial excursions of helically-trapped particles, limiting the size of

density variations on a 
ux surface. Since �1 is closely connected to these density


uctuations [73], it would make sense to assume (and indeed [34] has shown) that

� 1 
uctuations are small in such con�gurations. In quasisymmetric experiments

not deviating too far from perfect symmetry, it is reasonable to expect a similarly
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Figure 2.11: (Color online) The neoclassical impurity particle 
ux in Wistell-A at
� � 1 = 0 has been normalized to a gyro-Bohm estimate of the turbulent impurity
particle 
ux (see text). A kinetic electron species has been included for all points,
and plasma parameters correspond to those of Figure 2.3(c). The red curve includes
� 1 e�ects in the DKE, and � 1 is neglected for the blue points.

small � 1. However, the impact of � 1 on the neoclassical particle 
ux in stellarator

con�gurations optimized for quasisymmetry has yet to be shown. We present a �rst

look at this behavior using the Wistell-A con�guration.

In the blue curve of Figure 2.11, we recreate the Wistell-A curve from Figure

2.9(b), but now include a kinetic electron species (maintaining� = 1 and � 1 = 0).

In plasmas where quasineutrality is satis�ed, this permits one to solve the DKE

with � 1 e�ects, which is shown in the red curve of Figure 2.11 (whereE a
r has been

calculated at each point through the inclusion of �1 e�ects). It is evident from

Figure 2.11, that � 1 has a minimal e�ect on impurities with low charge, especially

so for C6+ and Al 13+ . However, with increasingZ , the di�erence in � z with and

without � 1 e�ects becomes non-negligible, di�ering by about a factor of 2. Also
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of interest is the magnitude of �1 
uctuations, which in our results range from

ej� max
1 j=Ti = 8:9 � 10� 4 to ej� max

1 j=Ti = 1:4 � 10� 3, which are generally smaller than

the analogous W7-X values of Figure 18 in [34].

Considering how our results di�er from those for W7-X in [34], there are some

di�erences that must be appreciated. In [34], the authors take� = 0:1 (Zef f = 1:1),

and use this to solve a quasineutrality equation that does not consider the e�ect of

the impurities on � 1. While this is reasonable for a lowZef f plasma, when� = 1 the

impurity contribution will be commensurate with bulk ions in the quasineutrality

equation and their e�ect on � 1 must be considered. Second, because Wistell-A is

quasisymmetric,j� zj is small in the sense that it is closer to the transition between

positive and negative �z than the non-quasisymmetric W7-X. This could result in

similarly-sized ej� max
1 j=Ti values having a comparatively stronger e�ect on �z in

Wistell-A than in W7-X. Finally, results presented in [34] employ a small but �nite

density gradient, where we have taken� � 1 = 0. As we have outlined in detail in

Section 6.1.2, introducing a peaked density gradient tends to have a strong in
uence

on the impurity particle 
ux. Therefore, the result of introducing a density gradient

alongside �1 e�ects can be expected to modify the curves of Figure 2.11.

It is not our aim in this section to exactly quantify the di�erences between our

results and [34]. This has been meant to both introduce new results on the e�ect of

� 1 in a quasisymmetric geometry, and attempt to identify key di�erences between

similar � 1 studies. Therefore, a more comprehensive study will be left to future

work.
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2.6.2.3 Total Heat Flux

Along with particle 
uxes, it is also of great practical importance to compare

the neoclassical and turbulentheat 
uxes at di�erent locations within the plasma.

If the dominant transport channel can be identi�ed, this can better inform future

e�orts in optimizing for a certain type of transport over a particular radial domain.

In this section we do not distinguish between ion and impurity heat 
uxes, since

we primarily care about the total heat 
ux (ion+impurity) that is crossing a 
ux

surface.

Thus, shifting our attention to the ratio of neoclassical to turbulent heat 
uxes,

the results in Figure 2.12 show the radial pro�les of this ratio for each con�guration.

The overall trend is similar to Figure 2.10, except that the magnitude of this ratio

is a bit higher than the respective points in Figure 2.10, especially closer to the

magnetic axis.

However, it is important to mention here that unlike the impurity particle


ux, we have found this ratio to be independent of� � 1, and the particular impurity

species. So while the ratios in Figure 2.10 may appear smaller in comparison, a

heavy impurity in the presence of a density gradient could change that. This is

to say that these heat 
ux ratios are more robust over a wider range of potential

reactor-relevant parameters than the impurity particle 
ux.

The general trend of the decreasing relative importance of neoclassical heat 
ux

compared with turbulence with respect to radius is in agreement with experimental

results [19,78]. With that said, forrN � 0:25, the neoclassical heat 
ux is, at best,
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30% of the turbulent value, and in many cases this ratio is even smaller.

These magnitudes appear to be at odds with Figure 7 in [78], where neoclas-

sical simulations (SFINCS) of an ECRH-heated W7-X experiment show that the

neoclassical electron heat 
ux constitutes� 65% of the input power through the 
ux

surface atrN = 0:25. If the remaining 
ux is presumed to be turbulence-driven, then

the neoclassical electron heat 
ux should be about twice the turbulent value. By

comparing this neoclassical result to a gyro-Bohm estimate using� s = 3:21� 10� 3 m,

and LTe � (1=TejdTe=drj)� 1 = 0:66 m in the expressionQgb
e � ne� 2

� scsaTeL � 1
Te

one

�nds jQe=Qgb
e j � 0:05, whereQe is the computed neoclassical electron heat 
ux. The

above expression uses the ion sound speedcs =
p

Te=mi and gyroradius� s = cs=
 i ,

where� � s � � s=a. A similar comparison can be done for HSX with Figure 13 in [19],

where the neoclassical electron thermal di�usivity appears to account for� 10% of

the experimentally measured di�usivity at rN = 0:25. Using the above approxima-

tion for Qgb
e , with length scales� s = 3:42 � 10� 3 m and LTe = 0:042 m, results in

jQe=Qgb
e j � 0:02.

These inconsistencies in how well gyro-Bohm approximates the turbulence

underlines the nature of gyro-Bohm as only anestimate of turbulence.

Setting the coe�cient of Dgb to 1 for every con�guration and set of plasma

parameters is bound to yield results that can di�er by an appreciable amount relative

to the actual turbulent 
uxes.

It should be mentioned that for the above cases,Te � Ti , indicating that

electrons will likely be important for both neoclassical and turbulent energy trans-

port. This is in contrast to the majority of results in our work, where electrons
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Figure 2.12: (Color online) The total (ion+impurity) heat 
ux at � � 1 = 0 for C6+

has been normalized to a gyro-Bohm estimate of the total turbulent heat 
ux (see
text). This ratio is plotted as a function of the normalized radiusrN . Plasma
pro�les are the same as for Figure 2.10.

were excluded from simulations. For plasmas with largeTe=Ti , the ion temperature

gradient is no longer the relevant driving gradient, which is whycs and � s have been

used in Qgb
e above, in place ofvti and � i . While the HSX result in particular is

interesting in the sense that it is the only experimental quasisymmetric stellarator

data comparing transport channels, it is unclear of how relevant it is to the rest of

the results in this chapter, considering thatTe � Ti .

2.7 E�ective Helical Ripple as a Quasisymmetry Metric

From Section 2.6.1, we showed how there was a connection betweenS and

� c
sb that helped to explain how� c

sb changed between the two 
ux surfaces that were

studied. This connection can be seen more clearly in Figures 2.13(a)-(b), where

the value of � c
sb from Figures 2.1(a) and 2.3(a) has been plotted as a function ofS
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on the respective surfaces for each of the con�gurations. For bothrN = 0:25 and

rN = 0:50, there is a visible anti-correlation between the two quantities even when

considering that these con�gurations have very di�erent properties. It thus seems

reasonable to expect that minimizingS on a 
ux surface will increase� c
sb.

Along with S, the e�ective helical ripple, � ef f , is sometimes taken to be a

metric for quasisymmetry that could be used for stellarator optimization. � ef f ,

which is a measure of neoclassical transport in the 1=� regime, was computed with

the NEO code [76].

In Figure 2.14, the e�ective helical ripple is plotted as a function ofS for

each con�guration. A number of these curves are multi-valued, indicating a non-

monotonic change in quasisymmetry from the magnetic axis to the last closed 
ux

surface (LCFS). To clarify the radial dependency of each curve, the open circle at

the end of a curve denotes the magnetic axis,rN = 0, and a closed circle the LCFS,

rN = 1. It can be seen [48,74] that if individual symmetry-breakingBmn harmonics

are plotted as a function ofrN , that the amplitude tends to increase with distance

from the magnetic axis. Indeed, this trend can be seen for a handful of con�gu-

rations in Figure 2.14, indicating a correlation between� ef f and the closeness to

quasisymmetry. However, this is decidedly not universal among QA con�gurations.

Henneberg QA, for example, has a symmetry-breaking amplitude that decreases by

nearly an order of magnitude fromrN = 0 ! rN ' 0:6, and then increases again to

a value at rN = 1 that is larger than its value at the rN = 0.

Moreover, this monotonicity in S, or lack thereof, is not necessarily tied to the

value of � ef f . Returning to Henneberg QA as an example, the initial decrease inS
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Figure 2.13: The critical symmetry-breaking parameter� c
sb for each con�guration as

a function of the correspondingS value has been plotted at (a)rN = 0:25, and (b)
rN = 0:50, which correspond to the� c

sb values from Figure 2.1(a) and Figure 2.3(a),
respectively.
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Figure 2.14: (Color online) The e�ective helical ripple (calculated with NEO [76]) is
plotted as a function of the amplitude of the symmetry-breaking terms. The open
circles here denote the value on-axis (rN = 0). The closed circles correspond to the
value at rN = 1. These curves do not change with plasma parameters.
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with rN is accompanied with a decrease in� ef f . Then, the subsequent increase inS

corresponds to an increase in� ef f , indicating a possible correlation betweenS and

� ef f . However, the behavior is di�erent in the core of ARIES-CS, where the smallest

value ofS corresponds to a relatively large value of� ef f , which decreases considerably

as S is increased. The point here is that while there are certainly con�gurations

where � ef f scales withS, it is just as likely that they may not correlate well at

all, and the assumption that small � ef f indicates good quasisymmetry cannot be

justi�ed a priori. It has in fact been shown in [20] that one can achieve omnigeneity

(� ef f = 0) far from quasisymmetry.

It is further interesting to note that in the cases where� ef f doesnot scale with

S, the radial location where this disagreement happens is usually withinrN ' 0:5.

Above this rN (or in some con�gurations, a position much closer to the magnetic

axis), the scaling of� ef f with S can be observed in every case. An interpretation of

this behavior is left to future work.

2.8 Conclusions

In this work, we have examined how impurity particle 
ux and the temper-

ature screening e�ect are in
uenced by varying the closeness of the magnetic �eld

to perfect quasisymmetry. For realistic departures from symmetry, at the lowest

studied collisionality (both species in the
p

� regime) with a 
at density gradi-

ent, temperature screening was not observed for any quasisymmetric con�guration.

However, with increasing collisionality one can see an increase in the \e�ective qua-
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sisymmetry" of a 
ux surface. This can lead to temperature screening in some

cases. Unfortunately, there is an upper limit to the bene�ts of increasing collision-

ality, where any further increase will lead to impurity accumulation even in perfect

quasisymmetry.

When peaked density gradients are introduced, there is an overall negative

e�ect on the impurity particle 
ux. Increasing the density gradient peaking (� � 1 >

0) enhances the strength of the impurity accumulation, and also leads to a reduction

in the \e�ective quasisymmetry". Overall, while temperature screening is technically

possible at the true magnetic �eld in select cases, it is unlikely to be present in low-

collisionality reactor-relevant regimes.

The magnitudes of these results at the true magnetic �eld (� sb = 1) were then

compared with a gyro-Bohm estimate for the turbulent 
uxes. Even in the non-

ideal scenario of� � 1 = 0:5, the majority of con�gurations show neoclassical impurity

particle 
uxes that don't exceed 10% of the respective turbulent 
ux, even for highly

charged impurities. However, a complete understanding of the implications of a

relatively large turbulent particle 
ux will require further work, since determining

sign of the particle 
ux may be more complicated than taking the sign of the largest

transport channel [39]. In other words, while neoclassical 
uxes may potentially be

small, they cannot be considered irrelevant.

It was also found that when studying highly charged impurities in Wistell-

A in relevant Zef f plasmas, one cannot disregard the e�ect that including �1 can

have on � z. Even though the e�ect on � z is considerable, the absolute value of �1

is quite small, indicating that its relationship to � z is more complicated than just
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considering its magnitude.

Finally, it was shown that the critical value of symmetry-breaking,� sb, where

the impurity particle 
ux changes sign, appears to be anti-correlated with the am-

plitude of symmetry-breaking harmonics,S, on a 
ux surface. That this trend

appears when considering con�gurations with widely varying properties suggests

that minimizing the S on a 
ux surface will increase� sb.
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Chapter 3: Flux Tube Geometry

Calculating turbulent 
uxes through simulations using the gyrokinetic equa-

tion generally require enormous computational e�ort. Solving the gyrokinetic equa-

tion with impurities enhances this cost since at least one additional kinetic species

must be evolved. Therefore, it is important to choose the correct simulation domain

and boundary conditions (Chapter 4) to minimize the overall cost.

3.1 What is a Flux Tube?

For instance, a gyrokinetic simulation of a full 
ux surface that uses �eld-line-

following coordinates [7] and adiabatic electrons in stellarator geometry using the

GENE code [58] currently requires on the order of 0.1 M CPU hours. The most

cost-e�ective option is to run these codes in a 
ux tube (� 10-20 times faster), a sim-

ulation domain that follows a magnetic �eld line, is much longer than it is wide, and

conserves magnetic 
ux throughout. The advantages of 
ux tube simulations and

�eld-line-following coordinates can be seen no matter how one chooses to represent

the distribution function (as f (v), moments off (v), with particles, etc.). Figure 3.1

presents a visualization of a 
ux tube in the W7-X stellarator geometry.

The construction of this simulation domain starts with the expression of the
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Figure 3.1: (Color online) 3D visualization of a 
ux tube domain in real space
superimposed on a 
uxsurface in the W7-X stellarator. (The perpendicular extent
of the tube in was set for visualization purposes).

magnetic �eld in Clebsch coordinates

B = r  � r �; (3.1)

where  is the magnetic surface label (e.g. toroidal or poloidal 
ux), and � is a

magnetic �eld line label. This form ofB leads toB �r  = B �r � = 0, meaning that

 and � are constant along magnetic �eld lines and thus create ideal coordinates

in the plane perpendicular toB . The parallel coordinatez, identi�ed with the

poloidal angle� , measures distance along the �eld line. These are known as�eld-

line-following coordinates.

The �eld-line-following coordinate system is a particularly �tting choice in

gyrokinetic simulations because of the anisotropic nature of turbulent 
uctuations,

which are elongated along a �eld line, and very short across itkk=k? � 1 (see

Figure 3.2). The perpendicular coordinate requires resolution on the gyroradius

scale, while the parallel coordinate can be much more coarse-grained. For a more

arbitrary chunk of plasma volume, one would need to resolve the gyroradius scale

in all directions. Thus, the advantage to using �eld-line-following coordinates is not
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solely convenient based on the structure of turbulent 
uctuations, but also leads to

an O(� � ) reduction in the required resolution.

Figure 3.2: Cartoon representation of the scale of a perturbed quantity (the electro-
static potential � in this case, in black) in the direction parallel and perpendicular
to the magnetic �eld (blue).

Now since the 
ux tube has nonzero perpendicular extent, and and � are

being used as perpendicular coordinates, the logical conclusion would be that the

domain simulates multiple magnetic �eld lines. However, 
ux tubes arelocal in both


ux surface and magnetic �eld line, so it is important to understand how certain

quantities are treated in the perpendicular domain.

The small-scale nature of turbulent 
uctuations perpendicular toB helps to

explain this. As will be discussed in 4.2, the extent of the domain is chosen to

ensure that it is not shorter than the correlation length in any direction. For core

plasmas, this will result in the perpendicular domain being on the order of a few

ion gyroradii. Equilibrium quantities will have minimal variation across this domain

and can be considered constants to lowest-order. This does not, however, restrict
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variation of certain equilibrium quantities along the �eld line, such as the Jacobian

g1=2( 0; � 0; z) = [( r  � r � ) � r z]� 1 : (3.2)

This is because the parallel correlation length is on the order of the equilibrium

scales.

The parallel gradients@=@zof perturbed quantities (such as the electrostatic

potential) will be assumed small compared to perpendicular gradients. This is a

result of the anisotropy of plasma turbulence. It can then be shown that the spatial

operators found in the gyrokinetic equation do not explicitly contain the perpen-

dicular coordinates and � . As shown in [7], the perpendicular Laplacian of some

scalar functionA

r 2
? A = jr  j2

@2A
@ 2

+ r  � r �
@2A

@ @�
+ jr � j2

@2A
@�2

; (3.3)

is an important example of this fact. The above discussion (which is more thoroughly

explored in [7]) demonstrates that physical quantities may vary along a �eld line,

but will not depend on the location within the perpendicular plane ( ; � ).

The rotational transform

� = �( ) =
d�
d�

=
B � r �
B � r �

; (3.4)
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