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On the Stability of Sequential Updates and Downdates�G. W. StewartABSTRACTThe updating and downdating of QR decompositions has importantapplications in a number of areas. There is essentially one standardupdating algorithm, based on plane rotations, which is backwards sta-ble. Three downdating algorithms have been treated in the literature:the LINPACK algorithm, the method of hyperbolic transformations,and Chambers' algorithm. Although none of these algorithms is back-wards stable, the �rst and third satisfy a relational stability condition.In this paper, it is shown that relational stability extends to a sequenceof updates and downdates. In consequence, other things being equal,if the �nal decomposition in the sequence is well conditioned, it will beaccurately computed, even though intermediate decompositions maybe almost completely inaccurate. These results are also applied to thetwo-sided orthogonal decompositions, such as the URV decomposition.1. IntroductionLet A be a positive de�nite matrix of order p. Then A can be written in theform A = RTR, where R is an upper triangular matrix with positive diagonalelements. This factorization is called the Cholesky decomposition A, and thematrix R is called its Cholesky factor.In some applications|recursive least squares, for example| it is requiredto compute the Cholesky decomposition STS of B = A + xxT, where x is agiven p-vector. Although the ab initio calculation of S requires O(p3) arithmeticoperations, it turns out that S can be computed fromR and x in O(p2) operations,a process that is known as updating. The usual updating algorithm is numericallystable.The inverse process of computing the Cholesky decomposition RTR of A =B � xTx from that of B is called downdating. Three algorithms for downdatinghave appeared in the literature: Chambers' algorithm [4], the LINPACK algorithm[5] (due to Michael Saunders), and the method of plane hyperbolic transformations(which in another guise is due Golub [8]).1 Although Chambers' algorithm and1A close reading of the papers involved suggests that Chambers thought he was merely1



2 On Sequential Updates and Downdatesthe LINPACK algorithms are not stable in the usual backward sense, it has beenshown [11, 3] to have an important property, which we will call relational stability.Speci�cally, the mathematical relations that hold between the true quantities,continue to hold for the computed quantities provided they are perturbed slightly.We will show that relational stability is preserved in a sequence of updates anddowndates. This, combined with the block perturbation theory of Eld�en and Park[6], implies that if the �nal result of sequence of updates and downdates is wellconditioned then it will be computed accurately.The method of plane hyperbolic transformations is not relationally stable.Consequently, as we will show by an example, it can introduce unnecessary errorsin the course of a sequence of updates and downdates.Rank degenerate problems usually require a decomposition that reveals therank and provides a basis for the null space of the matrix in question. Two-sidedorthogonal-triangular, such as the URV and ULV decompositions [13, 15], performthese functions and in addition can be e�ciently updated and downdated. Wewill show that the relational stability of the updating and downdating algorithmsextends to these algorithms. In particular, if the nondegenerate part of the matrixis well conditioned then the basis for the null space is accurately computed.This paper is organized as follows. In the next section we sketch the resultsof rounding error analyses for the various algorithms. In x3 we review the pertur-bation theory for the Cholesky decomposition. In x4 we establish the relationalstability of a sequence of updates and downdates and derive error bounds for theresults. Section 5 is devoted to an example illustrating the results of the previoussection. In x6, we derive bounds for URV updating. The paper concludes withsome observations on downdating and exponential windowing.Throughout the paper, kAk will denote the Frobenius norm of the matrix A,which is de�ned by kAk2 =Xi;j a2ij:The quantity kxk is the ordinary Euclidean norm of the vector x. For more onnorms see [9].rederiving Golub's hyperbolic algorithm, since he explicitly attributes the algorithm to Golub.However, his derivation resulted in a di�erent formula for one of the downdated quantities| ine�ect a di�erent algorithmwith di�erent properties. Mention should also be made of the methodof corrected semi-normal equations in [1]. However, this method di�ers from the others in thatit uses all the original data contained in R, and is therefore expensive when R contains manyupdates.



On Sequential Updates and Downdates 32. Rounding Error AnalysesIn this section we will review the rounding error analyses of updating by planerotations and downdating by Chambers' and the LINPACK algorithms.The updating algorithm in general use is due to Bogert and Burris [2] andGolub [7]. The idea behind the algorithm is to compute an orthogonal matrix Qsuch that QT  RxT! =  S0! ;where S is upper triangular. It then follows from the orthogonality of Q thatRTR + xxT = STS;so that S is the Cholesky factor of RTR + xxT = A+ xxT:The algorithm is stable in the backward sense. The very general rounding-error of plane rotations by Wilkinson [17, p. 131 �.] applies to give the followingresult. If we let S denote the computed matrix, then there is an orthogonal matrixQ and a (p+ 1) � p matrix F satisfyingkFk � KkSk�Msuch that QT " RxT!+ F# =  S0! : (2.1)Here �M is the rounding unit for the machine in question and K is a constant thatdepends on p and the details of the computer arithmetic. Thus the computedresult, however inaccurate, comes from a slightly perturbed problem.In exact arithmetic, both Chambers' algorithm and the LINPACK algorithmproduce an orthogonal Q matrix such thatQT  S0! =  RxT! :It follows that RTR = STS � xxTThus R is the Cholesky factor of the matrix STS � xxT = B � xxT.For both downdating algorithms it has been shown [11, 3] that if R denotes thecomputed matrix then there is an orthogonal matrix Q and a (p + 1) � p matrixE satisfying kEk � KkSk�M (2.2)



4 On Sequential Updates and Downdatessuch that QT  S0! =  RxT!+ E: (2.3)This result is not backward stability, since it is not possible to concentrate theentire error in the matrix S and the vector xT. Instead we will call it relationalstability because the de�ning mathematical relation between the true quantitiescontinues to be satis�ed up to a small error by the computed quantities. We willsee later that relational stability has important consequences for the accuracy ofthe computed results.Note that equation (2.1) can be brought into the form (2.3) by de�ning E =�QTF . It is this common form that we will use to treat sequential updates anddowndates.The method of hyperbolic transformations is neither backward or relationallystable. The unhappy consequences of this fact will be seen in x5.3. Perturbation TheoryThe error analyses of updating and downdating say that the true result can beobtained from the computed result by perturbing its cross-product matrix slightlyand computing the Cholesky factor. To �nd out how accurate the result actuallyis, we must call on perturbation theory.The perturbation theory for Cholesky decompositions has been studied in anumber of places. Since here we are concerned with small perturbations, we willgive an asymptotic result that is sharp up to second order terms in the error [14].Theorem 3.1. Let A be positive de�nite, and let ~A = A+H, where H is sym-metric. Then for all su�ciently smallH, ~A is positive de�nite. IfR is the Choleskyfactor of A and ~R is the Cholesky factor of ~A, thenk ~R �RkkRk <� kR�1k2p2 kHk: (3.1)Note that this result puts an inherent limit on the accuracy we can expect ina computed Cholesky factor. For example, if we merely round the elements of A,then kHk � kAk�M � kRk2�M;



On Sequential Updates and Downdates 5where �M is the rounding unit. It follows thatk ~R �RkkRk <� �2(R)p2 �M; (3.2)where �(R) = kRkkR�1k is the condition number of R. It would be unfair toexpect an algorithm to produce a result more accurate than the right hand sideof (3.2).If A and R are partitioned in the formsA =  A11 A12A21 A22!and R =  R11 R120 R22! ;where A11 and R11 are of order k, then the Cholesky factor of A11 is R11. Theperturbation analysis above shows that the accuracy of ~R11 depends not on thecondition of R but on the condition of R11. Thus the Cholesky factor of a well-conditioned leading principal submatrix of A will by insensitive to perturbations,even though A as a whole may be ill conditioned: the large errors end up in theterminal columns of R. We will use this fact in analyzing URV decompositions.4. Sequential UpdatingIn this section we will show that a sequence of relationally stable updates anddowndates is relationally stable. We will begin by considering a single downdatefollowed by an update.Let R0 be the matrix to be downdated and let x0 be the vector to be removed.Let the computed result be R1. Similarly, let R1 be updated by the vector x1 togive R2. Then by the rounding error analyses just cited, there is an orthogonalmatrix Q0 and a small matrix E1 such thatQ00B@R00xT11CA = 0B@R1xT0xT11CA + E1Similarly there is an orthogonal matrix Q1 and a small matrix E2 such thatQT1 0B@R1xT0xT11CA = 0B@R2xT00 1CA + E2:



6 On Sequential Updates and DowndatesIf we set QT = QT1Q0and E = QT1E1 + E2then QT 0B@R00xT11CA = 0B@R2xT00 1CA+ E:Thus a downdate followed by an update is stable and the norm of the errorkEk � kE0k+ kE1kis bounded by the sum of the norms of the errors in the individual steps.This analysis clearly extends to any sequence of n updates and downdates.Speci�cally, collect the vectors appearing in updates in the matrix XTu and thevectors appearing in downdates in the XTd . Then there is an orthogonal transfor-mation Q and a matrix E such thatQ0B@R00XTu 1CA = 0B@RnXTd0 1CA + E: (4.1)The norm of the error E is bounded by the sum of of the norms of the backwarderrors in the individual updates and downdates.To derive a speci�c bound for the error, we note that the error bound (2.2)for updating and downdating involve computed Cholesky factors. Consequently,if we let � = maxfkRik : i = 1; : : : ; k; g;then a common bound all the errors Ek is K��M. It follows that the error in (4.1)is bounded by kEk � nK��M: (4.2)To assess the accuracy of Rn, we do a block perturbation analysis in the spiritof Eld�en and Park [6]. Speci�cally, from (4.1) it follows thatRTnRn = RT0R0 +XuXTu �XdXTd +H:If we set �̂ = max(�; 
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On Sequential Updates and Downdates 7and assume that nK�M < 1;then kHk = kEk(2 + kEk) 




 R0XTd !




 � 3nK�M�̂2; (4.3)It now follows from (3.1) that if Sn is the Cholesky factor of RT0R0+XuXTu �XdXTd(i.e., the true Cholesky factor) thenkSn �RnkkRnk <� p4:5nK�̂2kR�1n k2�M (4.4)This bound is quite crude and no doubt can be re�ned. However, it alreadytells us that if �̂2kRnk2 is not large, the computed Cholesky factor will be agood approximation to the true one, no matter how inaccurate the intermediatequantities may be. The factor R�1n will be large when R is ill-conditioned. Thefactor �̂ is essentially the norm of the matrix one would get if all the updatesbut none of the downdates were performed. If all the rows of XTu are of a size,then �̂ can be expected to grow like pn. However, if even one row is very muchlarger than the others, the bound tells us to expect a persisting inaccuracy in thesubsequent computed Cholesky factors. This phenomena has been observed in[1].5. A Numerical ExampleTo illustrate the the above results we will give a numerical example in which adowndate from a well-conditioned matrix R0 to an ill-conditioned matrix R1 isfollowed by an update to a well conditioned matrix R2. The calculations wereperformed in matlab with a rounding unit of 2 � 10�16.The following is a description of the experiment. The idea is generate anill-conditioned matrix R1 and create R0 and R1 by updating it.1. Let R1 be the R-factor from the QR-factorization of a matrix of independentnormal random variables with mean zero and variance one. This will producea well conditioned matrix.2. Set the (2; 2)-element of R1 to 10�7 to produce an ill-conditioned R-factor.3. Let x be a random normal vector and update R1 and x to get the matrixR0.



8 On Sequential Updates and Downdates4. Let y be a random normal vector and update R1 and y to get the matrixR2.5. Let Rl1 be the result of using the LINPACK algorithm to downdate R0 andx. Let Rl2 be the result of updating Rl1 and y.6. Let Rc1 be the result of using Chambers' algorithm to downdate R0 and x.Let Rc2 be the result of updating Rc1 and y.7. Let Rh1 be the result of using plane hyperbolic transformations to downdateR0 and x. Let Rh2 be the result of updating Rh1 and y.Table 5.1 gives the result of twenty repetitions (steps 1{6 above) of this pro-cedure for p = 5. The asterisks indicated cases where the hyperbolic downdatingcould not be carried out.The results are entirely consistent with theory. Since R1 is ill conditioned,any attempt to compute it by downdating a well-condition matrix must result ininaccuracies proportional to the square of the condition number. All the algo-rithms exhibit these inaccuracies. The di�erence between the algorithms becomesapparent when we examine the errors in the approximations to R2. Here the tworelationally stable algorithms restore almost full accuracy, while the hyperbolicalgorithm looses several �gures. However, not all of the error in Rh1 is carriedforward to Rh2: presumably some component of the error introduced by the hy-perbolic rotations can be accounted for by relational perturbations, a point whichdeserves further study.In three cases the hyperbolic downdate fails when a quantity that should bepositive turns out negative. In all cases the other algorithms go through to com-pletion. However, this comparison is a little unfair to the hyperbolic approach.The condition numbers of the matrices R1 in Table 5.1 are on the order of 108,close to the point where the perturbation theory predicts no accuracy for thecomputed results. If we make R2 even a little more ill conditioned, Chambers' al-gorithm begins to fail.2 Decrease the condition number a little, and all algorithmsgo through to completion.2The LINPACK algorithm continues to perform well, but this is an artifact of the simplicityof the example and special properties of the algorithm. In more realistic settings, the LINPACKalgorithm would also fail.



On Sequential Updates and Downdates 9�pi = kRpi �RikkRik�(R1) �(R2) �l1 �l2 �c1 �c2 �h1 �h21e+08 1e+01 4e�02 3e�15 1e�02 1e�15 2e�02 2e�102e+08 1e+02 8e�02 1e�13 1e�01 5e�13 � �2e+08 5e+00 1e�03 1e�16 3e�03 1e�16 7e�05 1e�104e+07 3e+00 7e�03 2e�16 8e�03 1e�16 3e�05 2e�101e+08 5e+00 3e�04 2e�16 2e�04 1e�16 9e�04 1e�117e+07 5e+00 4e�03 1e�16 7e�03 1e�16 8e�03 1e�106e+08 4e+00 7e�02 3e�16 1e�01 4e�16 � �1e+08 4e+01 3e�03 2e�16 1e�03 1e�16 5e�03 1e�101e+08 4e+00 6e�02 1e�16 1e�02 1e�16 1e�02 2e�104e+08 1e+01 4e�01 9e�16 3e�01 3e�16 � �1e+09 1e+01 1e�02 2e�16 1e�02 1e�16 � �7e+07 1e+01 1e�03 8e�16 8e�03 4e�16 2e�03 7e�106e+07 1e+01 5e�03 3e�16 7e�03 4e�16 8e�03 6e�106e+07 4e+01 1e�02 4e�15 4e�04 4e�16 1e�02 2e�105e+07 1e+01 5e�04 1e�16 6e�04 1e�16 5e�04 3e�111e+08 1e+01 1e�02 3e�16 9e�03 2e�16 6e�03 1e�093e+08 8e+00 3e�02 3e�16 7e�03 3e�16 2e�02 7e�112e+08 1e+01 8e�02 6e�16 6e�02 3e�16 8e�02 2e�101e+10 4e+02 2e�02 1e�14 1e�02 2e�15 3e�02 2e�106e+07 8e+01 9e�04 4e�16 1e�03 6e�16 1e�05 1e�11Table 5.1: A Downdate Followed by an Update6. URV DecompositionsIn this section we will apply our results to sequential updates and downdates ofURV decompositions. A URV decomposition of a matrix X is a decomposition ofthe form UTXV =  R0! ;where U and V are orthogonal and R is upper triangular. Anymatrix has in�nitelymany URV decompositions. One of them, the singular value decomposition (Rdiagonal), is widely used because it exhibits approximate rank degeneracies in X



10 On Sequential Updates and Downdatesand provides an orthonormal basis for an approximate null space of the matrix.However, it cannot be e�ciently updated or downdated.Rank-revealing URV decompositions overcome the computational de�cienciesof the singular value decomposition. Suppose that X has been obtained from amatrix of exactly rank k by perturbing it by some noise. (We use the term \noise"rather than \error" to distinguish the perturbation from e�ects due to roundingerror.) Then there is a URV decomposition in which R takes the formR =  T F0 G!where T is a well-conditioned conditioned matrix of order k and F and G are thesame size as the noise (F may actually be much smaller, even zero). The virtues ofa rank-revealing URV decomposition are that it can be updated and downdated.Moreover, if V is partitioned in the formV = (V1 V2);then V1 and V2 provide orthonormal bases for approximate row and null space ofR. Although the updating and downdating algorithms are quite complicated|they involve decisions about rank and procedures for keeping the small part ofthe decomposition small|nontheless they fall within the purview of the analysesdiscussed above. Speci�cally, if the LINPACK or Chambers' algorithm is usedto perform downdates, there are orthogonal matrices U and V such that thecomputed Rn satis�es UT 0B@R00XTu 1CA V = 0B@ RnXTd V0 1CA + E; (6.1)where as above kEk � nK��M [cf. (4.2)].In interpreting this bound, there are two questions we can ask. One questionis, \How accurate is V ?" Actually, this question is not well posed, since thereis no unique URV decomposition associated with the data. We can, however,show that the V-factor of any URV decomposition satisfying a relation like (6.1)must produce approximate null spaces that lie near that produced by V (see theappendix to this paper).But there is a simpler alternative. For any V , there is a unique URV de-composition of R0 that is obtained by computing the Cholesky decomposition of



On Sequential Updates and Downdates 11V T(RT0R0 + XuXTu � XdXTd )V . Now the URV algorithm does not compute theCholesky decomposition of this matrix; instead it computes the Cholesky decom-position of V T(RT0R0+XuXTu �XdXTd +H)V , whereH satis�es (4.3), and it is fromthis decomposition that we deduce that that we have revealed the rank. Thus, ifthis decomposition is accurate, V truly furnishes a basis for an approximate nullspace. Thus the second question is, \How accurate is Rn?"Here we are on familiar territory. If the matrix Tn is well conditioned, by thecomments at the end of x3 it will be accurately computed. The matrices Gn andFn, which consist of noise, will be less accurately computed. However, R�1n willbe approximated by G�1n , so that the factor �̂R�1n in (4.4) can be regarded as asignal-to-noise ratio. If this ratio is substantially abovep�M, then F and G will becomputed with reasonable accuracy. Speci�c bounds may be obtained as above.It should not be thought that V is near the matrix that would have beenobtained by exact computation. The algorithm for determining rank involvesdiscrete decisions, and if rounding error causes a change in any of these decisions,the computed decomposition will diverge sharply from the exact one. Nonetheless,by the analysis sketched above, we will have computed a rank-revealing URVdecomposition.One �nal point. The matrix V in (6.1) is de�ned as the exact product ofthe rotations computed in the course of the sequential updates and downdates.The computed V , being contaminated with rounding error, will diverge from theoriginal. However, this divergence will be very slow and corresponds to the factorn in (4.3).7. ConclusionsDowndating has had bad press in some circles. Part of it is no doubt due to unfor-tunate experiences with bad algorithms, such as hyperbolic downdating. However,a great deal of it is the result of not understanding the limitations of both updatingand downdating.An extremely simple example will illustrate the problems. Let R be the scalar1, and suppose that in ten-digit decimal 
oating-point arithmetic we wish toincorporate x = 5 � 10�6; that is we wish to update 15 � 10�6! :The exact update is 1 + 2:5 � 10�11. The computed update will be 1. There is



12 On Sequential Updates and Downdatesno trace of the number 5 � 10�6; it has been swallowed by the update, and asubsequent downdate cannot recover it. Thus, downdating is sometimes blamedfor inaccuracies that are implicit in the updating procedure.However, downdating has limitations of its own. If for example, the computedupdate is perturbed (as in real life it might be by rounding error) to become1:000000001, then the computed downdate will be about 3:2 � 10�5. This is in-accurate, as we would expect; but if a relationally stable algorithm is used theunaccuracy will go away on subsequent updates. Something worse happens whenthe problem is perturbed to become 0:9999999999. Now the downdating processfails completely, and there is no chance to regain accuracy in a subsequent update.The lesson is that when the condition numbers of the triangular factors ap-proach 1=p�M, both updating and downdating become problematical. But movea little o�, and relationally stable algorithms will perform well. When inaccuraciesare inherent in the problem, they will, of course, produce inaccurate answers; butwell-conditioned R-factors will be computed accurately.In some applications exponential windowing is an alternative to downdating.In this method, the matrix R is multiplied by a factor � < 1 before each update,which damps in
uence of older updates. Now when the sequence of vectors xTirepresents a stationary process, exponential windowing is to be preferred to down-dating. It is simpler and has better numerical properties [10, 12]. However, innonstationary situations, the two techniques will produce di�erent R-factors, sothat they are not just di�erent numerical algorithms computing the same thing.In this case, the decision between the two must depend on their behavior in theapplication in question. An important contribution of this paper, then, is to showwhen numerical considerations need not enter into this decision.AcknowledgementsParts of this paper were inspired by the block perturbation analysis of Park andEld�en [6], which showed how to avoid intermediate quantities in assessing theaccuracy of the �nal result. And many thanks to Haesun Park for her usefulcomments at every stage of this research.



On Sequential Updates and Downdates 13AppendixRecall that a computed URV decomposition satis�esUT 0B@R00XTu 1CA V = 0B@ RnXTd V0 1CA + E; (A.1)where U and V are orthogonal, and E satis�es the bound kEk � nK��M. Thematrix Rn will be rank revealing if it has the form Tn Fn0 Gn! ;where kT�1n kkGnk; kT�1n kkGnk � 1: (A.2)Now let �UT 0B@R00XTu 1CA �V = 0B@ RnXTd �V0 1CA + �E; (A.3)where �U and �V are orthogonal and �E satis�es the same bound. We are going toshow that if V = (V1 V2) and �V = (�V1 �V2)and we set W = �V TV =  �V T1 V1 �V T1 V2�V T2 V1 �V T2 V2! =  W11 W12W21 W22!then W12 is small. Note that this implies that the space R( �V1) spanned by thecolumns of �V1 is almost orthogonal R(V2). Since R(V1) is exactly orthogonalR(V2), it follows that R(V1) and R( �V1) are in some sense near each other.More precisely, we will show that kW12k2 is small, where kW12k2 the spectralnorm of W12|the largest singular value of W12. This number is also the sine ofthe largest canonical angle be between R(V1) and R(V2) (see [16, Ch. 1]).We begin with a lemma.Lemma A.1. Let A =  A11 A12AT12 A22!



14 On Sequential Updates and Downdatesbe positive de�nite and let W =  W11 W12W21 W22!be orthogonal. Suppose that kA�WTAWk2 � �and that � � kA�111 k(�+ 2kA12k+ kA22k) < 12 : (A.4)Then kW12k22 � 1 �p1� 4�22 < 2�2: (A.5)Proof. The (1; 2) block ofWTAW isWT11A11W12+WT11A12W22+WT21AT12W12+WT21A22W22. Hence� � kWT11A11W12k2 � kWT11A12W21k2 � kWT21AT12W12k2 � kWT21A22W22k2:Since kWijk2 � 1, kWT11A11W12k2 � �+ 2kA12k2 + kA22k2;and since kWT11A11W12k2 � kW12k2kA�111 k2kW�111 k2 ;kW12k2kW�111 k2 � �:By the orthogonality of W , we haveWT11W11 +WT12W12 = I:Thus, if ! = kW12k2 is the largest singular value of W12, then p1 � !2 is thesmallest singular value of W11. Hence kW�111 k�12 = p1� !2, and!2(1� !2) � �2:Thus !2 is the smallest root of the quadratic equation !4 � !2 + � = 0, whichgives (A.5).



On Sequential Updates and Downdates 15Now from (A.1) and (A.3)RT0R0 +XTu Xu �XTd = V RTnRnV T + V ETEV TRT0R0 +XTu Xu �XTd = �V RTnRn �V T + �V �ET �E �V TSet A = RTnRn =  TTn Tn TTn Fn0 FTn Fn +GTnGn!H = V ETEV T, �H = �V �ET �E �V T, and W = �V TV . Then it follows thatWTAW �A = WT �HW �H:If � = kHk+ k �Hkand �, de�ned by (A.4), de�ned by (A.4) is less than 12 , thenk�V T1 V2k2 < 2�:It is instructive to bound �. Since kHk and k �Hk satisfy (4.3), we have� � (6nK�̂2�M + 2kFnkkkTnk+ kFTn Fn +GTnGnk)kT�1n k2:The �rst term 6nK�̂2kT�1n k2�M, which represents the contribution of roundingerror, is precisely the term that must be small for Rn to be computed accurately.The term kFTn Fn + GTnGnkkT�1n k2 is small by virtue of (A.2). If we write themiddle term in the form 2�(Tn)kT�1n kkFnkwe see that, (A.2) notwithstanding, this term is potentially larger than the others.Now the algorithm for updating URV decompositions contains a re�nement stepthat is speci�cally designed to make Fn small. The above analysis suggests thatsuch a step is fully justi�ed.References[1] �A. Bj�orck, H. Park, and L. Eld�en. Accurate downdating of least squaressolutions. Department of Mathematics, Link�oping University. To appear inSIAM Journal on Matrix Analysis and Applications, 1992.
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