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ABSTRACT

The updating and downdating of QR decompositions has important
applications in a number of areas. There is essentially one standard
updating algorithm, based on plane rotations, which is backwards sta-
ble. Three downdating algorithms have been treated in the literature:
the LINPACK algorithm, the method of hyperbolic transformations,
and Chambers” algorithm. Although none of these algorithms is back-
wards stable, the first and third satisty a relational stability condition.
In this paper, it is shown that relational stability extends to a sequence
of updates and downdates. In consequence, other things being equal,
if the final decomposition in the sequence is well conditioned, it will be
accurately computed, even though intermediate decompositions may
be almost completely inaccurate. These results are also applied to the
two-sided orthogonal decompositions, such as the URV decomposition.

1. Introduction

Let A be a positive definite matrix of order p. Then A can be written in the
form A = R'R, where R is an upper triangular matrix with positive diagonal
elements. This factorization is called the Cholesky decomposition A, and the
matrix R is called its Cholesky factor.

In some applications —recursive least squares, for example—1it is required
to compute the Cholesky decomposition S*S of B = A + zz', where z is a
given p-vector. Although the ab initio calculation of S requires O(p®) arithmetic
operations, it turns out that S can be computed from R and x in O(p?*) operations,
a process that is known as updating. The usual updating algorithm is numerically
stable.

The inverse process of computing the Cholesky decomposition RTR of A =
B — 2%z from that of B is called downdating. Three algorithms for downdating
have appeared in the literature: Chambers’ algorithm [4], the LINPACK algorithm
[5] (due to Michael Saunders), and the method of plane hyperbolic transformations
(which in another guise is due Golub [8])." Although Chambers’ algorithm and

LA close reading of the papers involved suggests that Chambers thought he was merely
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the LINPACK algorithms are not stable in the usual backward sense, it has been
shown [11, 3] to have an important property, which we will call relational stability.
Specifically, the mathematical relations that hold between the true quantities,
continue to hold for the computed quantities provided they are perturbed slightly.
We will show that relational stability is preserved in a sequence of updates and
downdates. This, combined with the block perturbation theory of Eldén and Park
[6], implies that if the final result of sequence of updates and downdates is well
conditioned then it will be computed accurately.

The method of plane hyperbolic transformations is not relationally stable.
Consequently, as we will show by an example, it can introduce unnecessary errors
in the course of a sequence of updates and downdates.

Rank degenerate problems usually require a decomposition that reveals the
rank and provides a basis for the null space of the matrix in question. Two-sided
orthogonal-triangular, such as the URV and ULV decompositions [13, 15], perform
these functions and in addition can be efficiently updated and downdated. We
will show that the relational stability of the updating and downdating algorithms
extends to these algorithms. In particular, if the nondegenerate part of the matrix
is well conditioned then the basis for the null space is accurately computed.

This paper is organized as follows. In the next section we sketch the results
of rounding error analyses for the various algorithms. In §3 we review the pertur-
bation theory for the Cholesky decomposition. In §4 we establish the relational
stability of a sequence of updates and downdates and derive error bounds for the
results. Section 5 is devoted to an example illustrating the results of the previous
section. In §6, we derive bounds for URV updating. The paper concludes with
some observations on downdating and exponential windowing.

Throughout the paper, ||A|| will denote the Frobenius norm of the matrix A,
which is defined by

A = Y d
ij

The quantity ||z|| is the ordinary Euclidean norm of the vector . For more on
norms see [9].

rederiving Golub’s hyperbolic algorithm, since he explicitly attributes the algorithm to Golub.
However, his derivation resulted in a different formula for one of the downdated quantities—in
effect a different algorithm with different properties. Mention should also be made of the method
of corrected semi-normal equations in [1]. However, this method differs from the others in that
it uses all the original data contained in R, and is therefore expensive when R contains many
updates.
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2. Rounding Error Analyses

In this section we will review the rounding error analyses of updating by plane
rotations and downdating by Chambers’ and the LINPACK algorithms.

The updating algorithm in general use is due to Bogert and Burris [2] and
Golub [7]. The idea behind the algorithm is to compute an orthogonal matrix ¢

such that
(R [S
o (4)=(0):

where S is upper triangular. It then follows from the orthogonality of () that
RYR + 22t = 8715,
so that S is the Cholesky factor of R'R+ z2t = A+ 22",

The algorithm is stable in the backward sense. The very general rounding-
error of plane rotations by Wilkinson [17, p. 131 {[.] applies to give the following
result. If we let S denote the computed matrix, then there is an orthogonal matrix
@ and a (p+ 1) x p matrix F satisfying

]} < K[|S]lent

o[(5)41-()

Here €y is the rounding unit for the machine in question and K is a constant that
depends on p and the details of the computer arithmetic. Thus the computed
result, however inaccurate, comes from a slightly perturbed problem.

In exact arithmetic, both Chambers’ algorithm and the LINPACK algorithm
produce an orthogonal () matrix such that

S R
T _
o (3) = ()
R'R =575 — a2
Thus R is the Cholesky factor of the matrix STS — 22T = B — 22T,
For both downdating algorithms it has been shown [11, 3] that if R denotes the

computed matrix then there is an orthogonal matrix @) and a (p + 1) X p matrix
FE satistfying

such that

It follows that

IE] < K|S ]len (2.2)
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such that
Qr (g) = (ﬁ) +E. (2.3)

This result is not backward stability, since it is not possible to concentrate the
entire error in the matrix S and the vector 2. Instead we will call it relational
stability because the defining mathematical relation between the true quantities
continues to be satisfied up to a small error by the computed quantities. We will
see later that relational stability has important consequences for the accuracy of
the computed results.

Note that equation (2.1) can be brought into the form (2.3) by defining £ =
—QUF. It is this common form that we will use to treat sequential updates and
downdates.

The method of hyperbolic transformations is neither backward or relationally
stable. The unhappy consequences of this fact will be seen in §5.

3. Perturbation Theory

The error analyses of updating and downdating say that the true result can be
obtained from the computed result by perturbing its cross-product matrix slightly
and computing the Cholesky factor. To find out how accurate the result actually
is, we must call on perturbation theory.

The perturbation theory for Cholesky decompositions has been studied in a
number of places. Since here we are concerned with small perturbations, we will
give an asymptotic result that is sharp up to second order terms in the error [14].

Theorem 3.1. Let A be positive definite, and let A=A+ H, where H is sym-
metric. Then for all sufficiently small H, A is positive definite. If R is the Cholesky
factor of A and R is the Cholesky factor of A, then

12— Rl IR
e~ V2

1] (3.1)

Note that this result puts an inherent limit on the accuracy we can expect in
a computed Cholesky factor. For example, if we merely round the elements of A,
then

| < [[Allem < || BlPem,
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where €\ is the rounding unit. It follows that
If— R ),
1B~ V2
where x(R) = ||R||||R™!|| is the condition number of R. It would be unfair to
expect an algorithm to produce a result more accurate than the right hand side
of (3.2).
It A and R are partitioned in the forms

An A
A=
(A21 Azz)

_ (Ru R
w0 )
where A7 and Ry; are of order k, then the Cholesky facNtor of Ay; 1s Ri1. The
perturbation analysis above shows that the accuracy of Ry; depends not on the
condition of R but on the condition of Ry;. Thus the Cholesky factor of a well-
conditioned leading principal submatrix of A will by insensitive to perturbations,

even though A as a whole may be ill conditioned: the large errors end up in the
terminal columns of R. We will use this fact in analyzing URV decompositions.

(3.2)

and

4. Sequential Updating

In this section we will show that a sequence of relationally stable updates and
downdates is relationally stable. We will begin by considering a single downdate
followed by an update.

Let Ry be the matrix to be downdated and let zg be the vector to be removed.
Let the computed result be R;. Similarly, let B; be updated by the vector z; to
give Ry. Then by the rounding error analyses just cited, there is an orthogonal
matrix ()g and a small matrix F; such that

Ry Ry
Qo 0 = J}OT —|— E1
i i

Similarly there is an orthogonal matrix ()7 and a small matrix F; such that

Ry Ry
Qv [z | = |0 | + F2.
T

x4 0
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If we set

Q" =Q1Qo

and
E=QlE + E,

then

Ry Ry

QT o | =] +E.
zf 0

Thus a downdate followed by an update is stable and the norm of the error
IEN < [ Eoll + [|£4]]

is bounded by the sum of the norms of the errors in the individual steps.

This analysis clearly extends to any sequence of n updates and downdates.
Specifically, collect the vectors appearing in updates in the matrix X and the
vectors appearing in downdates in the XJ. Then there is an orthogonal transfor-
mation () and a matrix £ such that

Ro R,
Ql o |=[Xi|+E. (4.1)
X7 0

The norm of the error £ is bounded by the sum of of the norms of the backward
errors in the individual updates and downdates.

To derive a specific bound for the error, we note that the error bound (2.2)
for updating and downdating involve computed Cholesky factors. Consequently,
if we let

p=max{||Ril|:e=1,... k,},

then a common bound all the errors Fy is Kpep. It follows that the error in (4.1)
is bounded by
1]l < nK peu (12)

To assess the accuracy of R,, we do a block perturbation analysis in the spirit

of Eldén and Park [6]. Specifically, from (4.1) it follows that
R'R, = R{ Ry + X, X! — XqX| + H.

sl

If we set

.



On Sequential Updates and Downdates 7

and assume that
nKey <1,

then

R .

i = 1+ 15| ()] < s, (13

It now follows from (3.1) that if S, is the Cholesky factor of R} Ro+ X, X! — X X

(i.e., the true Cholesky factor) then
157 — Ra

2n = Pl < A Bn K p2
[ 2]

B e (4.4)

This bound is quite crude and no doubt can be refined. However, it already
tells us that if p*||R,||* is not large, the computed Cholesky factor will be a
good approximation to the true one, no matter how inaccurate the intermediate
quantities may be. The factor R' will be large when R is ill-conditioned. The
factor p is essentially the norm of the matrix one would get if all the updates
but none of the downdates were performed. If all the rows of X are of a size,
then p can be expected to grow like \/n. However, if even one row is very much

larger than the others, the bound tells us to expect a persisting inaccuracy in the
subsequent computed Cholesky factors. This phenomena has been observed in

[1].
5. A Numerical Example

To illustrate the the above results we will give a numerical example in which a
downdate from a well-conditioned matrix Ry to an ill-conditioned matrix R; is
followed by an update to a well conditioned matrix Ry. The calculations were
performed in matlab with a rounding unit of 2 - 107,

The following is a description of the experiment. The idea is generate an
ill-conditioned matrix R; and create Ry and Ry by updating it.

1. Let Ry be the R-factor from the QR-factorization of a matrix of independent
normal random variables with mean zero and variance one. This will produce
a well conditioned matrix.

2. Set the (2,2)-element of Ry to 1077 to produce an ill-conditioned R-factor.

3. Let x be a random normal vector and update R, and = to get the matrix

Ry.
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4. Let y be a random normal vector and update R; and y to get the matrix

Rs.

5. Let Ry be the result of using the LINPACK algorithm to downdate Ry and
x. Let Rys be the result of updating Ry and y.

6. Let R be the result of using Chambers’ algorithm to downdate Ry and z.
Let Ry be the result of updating R.; and y.

7. Let Ryi be the result of using plane hyperbolic transformations to downdate
Ry and z. Let Ryy be the result of updating Ry and y.

Table 5.1 gives the result of twenty repetitions (steps 1-6 above) of this pro-
cedure for p = 5. The asterisks indicated cases where the hyperbolic downdating
could not be carried out.

The results are entirely consistent with theory. Since R; is ill conditioned,
any attempt to compute it by downdating a well-condition matrix must result in
inaccuracies proportional to the square of the condition number. All the algo-
rithms exhibit these inaccuracies. The difference between the algorithms becomes
apparent when we examine the errors in the approximations to Ry. Here the two
relationally stable algorithms restore almost full accuracy, while the hyperbolic
algorithm looses several figures. However, not all of the error in Ry is carried
forward to Rys: presumably some component of the error introduced by the hy-
perbolic rotations can be accounted for by relational perturbations, a point which
deserves further study.

In three cases the hyperbolic downdate fails when a quantity that should be
positive turns out negative. In all cases the other algorithms go through to com-
pletion. However, this comparison is a little unfair to the hyperbolic approach.
The condition numbers of the matrices Ry in Table 5.1 are on the order of 10%,
close to the point where the perturbation theory predicts no accuracy for the
computed results. If we make R, even a little more ill conditioned, Chambers’ al-
gorithm begins to fail.? Decrease the condition number a little, and all algorithms
go through to completion.

?The LINPACK algorithm continues to perform well, but this is an artifact of the simplicity
of the example and special properties of the algorithm. In more realistic settings, the LINPACK
algorithm would also fail.
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[ £pi — Bi|
P IR
/1(31) K(Rz) P11 P12 Pcl Pc2 Phi Ph2
1le4+08 1le+01 | 4e—02 3e—15|1e—02 le—15]|2e—02 2e—10
2e+08 1e402 | 8e—02 le—13 | 1le—01 be—13 * *

2e+08 He+00 | 1le—03 1le—16 | 3e—03 le—16 | 7e—05 1le—10
4e+07 3e4+00 | 7Te—03 2e—16 | 8e—03 1le—16 | 3e—05 2e—10
1le4+08 5e+00 | 3e—04 2e—16 | 2e—04 1le—16|9e—04 1le—11
Te+07 b5e+00 | 4e—03 le—16 | 7Te—03 le—16 | 8—03 1le—10
6e+08 4e+00 | 7Te—02 3e—16 | le—01 4e—16 * *

1le4+08 4e+01 | 3e—03 2e—16 | le—03 1le—16 | be—03 1le—10
1le4+08 4e+00 | 6e—02 le—16|1e—02 le—16|1e—02 2e—10
4e+08 1le+01 | 4e—01 9e—16 | 3e—01 3e—16 * *

le+09 1le+01 | 1le—02 2e—16|1e—02 le—16 * *

Te+07 le401|1e—03 8e—16|8—03 4e—16|2e—03 Te—10
6e4+07 le+01 | 5e—03 3e—16 | 7e—03 4e—16 | 8e—03 6e—10
6e+07 4e+01 | 1le—02 4e—15|4e—04 4e—16|1e—02 2e—10
5e+07 1le+01 | be—04 1le—16 | 6e—04 1le—16 | 5e—04 3e—11
1le4+08 1le+01 | 1e—02 3e—16|9e—03 2e—16| 6e—03 1le—09
3e4+08 8e+00|3e—02 3e—16|Te—03 3e—16 |2e—02 Te—11
2e+08 1le+01 | 8e—02 6e—16 | 6e—02 3e—16 | 8e—02 2e—10
le+10 4e+02 | 2e—02 le—14 | 1e—02 2e—15]|3e—02 2e—10
6e+07 8e+01|9e—04 4e—16|1e—03 6e—16|1le—05 le—11

Table 5.1: A Downdate Followed by an Update

6. URV Decompositions

In this section we will apply our results to sequential updates and downdates of
URYV decompositions. A URV decomposition of a matrix X is a decomposition of

the form
UTxXv = (?) ,

where U and V are orthogonal and R is upper triangular. Any matrix has infinitely
many URV decompositions. One of them, the singular value decomposition (R
diagonal), is widely used because it exhibits approximate rank degeneracies in X
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and provides an orthonormal basis for an approximate null space of the matrix.
However, it cannot be efficiently updated or downdated.

Rank-revealing URV decompositions overcome the computational deficiencies
of the singular value decomposition. Suppose that X has been obtained from a
matrix of exactly rank & by perturbing it by some noise. (We use the term “noise”
rather than “error” to distinguish the perturbation from effects due to rounding
error.) Then there is a URV decomposition in which R takes the form

T F
w= (i 4
where T' is a well-conditioned conditioned matrix of order £ and /' and G are the
same size as the noise (F' may actually be much smaller, even zero). The virtues of

a rank-revealing URV decomposition are that it can be updated and downdated.
Moreover, if V' is partitioned in the form

V=MW W),

then Vi and V; provide orthonormal bases for approximate row and null space of
R.

Although the updating and downdating algorithms are quite complicated —
they involve decisions about rank and procedures for keeping the small part of
the decomposition small — nontheless they fall within the purview of the analyses
discussed above. Specifically, if the LINPACK or Chambers’ algorithm is used
to perform downdates, there are orthogonal matrices /' and V' such that the
computed R, satisfies

Ry R,
Ut o |v=|Xxiv|+E, (6.1)
X7 0

where as above ||E|| < nKpey [cf. (4.2)].

In interpreting this bound, there are two questions we can ask. One question
is, “How accurate is V77 Actually, this question is not well posed, since there
is no unique URV decomposition associated with the data. We can, however,
show that the V-factor of any URV decomposition satisfying a relation like (6.1)
must produce approximate null spaces that lie near that produced by V' (see the
appendix to this paper).

But there is a simpler alternative. For any V', there is a unique URV de-
composition of Ry that is obtained by computing the Cholesky decomposition of
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VI RERy + Xo XTI — X4X1)V. Now the URV algorithm does not compute the
Cholesky decomposition of this matrix; instead it computes the Cholesky decom-
position of VI (R} Ro+ X, X — X XTI+ H)V, where H satisfies (4.3), and it is from
this decomposition that we deduce that that we have revealed the rank. Thus, if
this decomposition is accurate, V' truly furnishes a basis for an approximate null
space. Thus the second question is, “How accurate is R,?7”

Here we are on familiar territory. If the matrix 7}, is well conditioned, by the
comments at the end of §3 it will be accurately computed. The matrices G,, and
F,., which consist of noise, will be less accurately computed. However, B! will
be approximated by G, so that the factor pR;' in (4.4) can be regarded as a
signal-to-noise ratio. If this ratio is substantially above /ey, then I and & will be
computed with reasonable accuracy. Specific bounds may be obtained as above.

It should not be thought that V is near the matrix that would have been
obtained by exact computation. The algorithm for determining rank involves
discrete decisions, and if rounding error causes a change in any of these decisions,
the computed decomposition will diverge sharply from the exact one. Nonetheless,
by the analysis sketched above, we will have computed a rank-revealing URV
decomposition.

One final point. The matrix V in (6.1) is defined as the exact product of
the rotations computed in the course of the sequential updates and downdates.
The computed V, being contaminated with rounding error, will diverge from the
original. However, this divergence will be very slow and corresponds to the factor

n in (4.3).

7. Conclusions

Downdating has had bad press in some circles. Part of it is no doubt due to unfor-
tunate experiences with bad algorithms, such as hyperbolic downdating. However,
a great deal of it is the result of not understanding the limitations of both updating
and downdating.

An extremely simple example will illustrate the problems. Let R be the scalar
1, and suppose that in ten-digit decimal floating-point arithmetic we wish to
incorporate x = 5 - 107%; that is we wish to update

0]

The exact update is 1 + 2.5 - 107, The computed update will be 1. There is
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no trace of the number 5 - 107%; it has been swallowed by the update, and a
subsequent downdate cannot recover it. Thus, downdating is sometimes blamed
for inaccuracies that are implicit in the updating procedure.

However, downdating has limitations of its own. If for example, the computed
update is perturbed (as in real life it might be by rounding error) to become
1.000000001, then the computed downdate will be about 3.2 - 107°. This is in-
accurate, as we would expect; but if a relationally stable algorithm is used the
unaccuracy will go away on subsequent updates. Something worse happens when
the problem is perturbed to become 0.9999999999. Now the downdating process
fails completely, and there is no chance to regain accuracy in a subsequent update.

The lesson is that when the condition numbers of the triangular factors ap-
proach 1/,/ey, both updating and downdating become problematical. But move
a little off, and relationally stable algorithms will perform well. When inaccuracies
are inherent in the problem, they will, of course, produce inaccurate answers; but
well-conditioned R-factors will be computed accurately.

In some applications exponential windowing is an alternative to downdating.
In this method, the matrix R is multiplied by a factor f < 1 before each update,
which damps influence of older updates. Now when the sequence of vectors !
represents a stationary process, exponential windowing is to be preferred to down-
dating. It is simpler and has better numerical properties [10, 12]. However, in
nonstationary situations, the two techniques will produce different R-factors, so
that they are not just different numerical algorithms computing the same thing.
In this case, the decision between the two must depend on their behavior in the
application in question. An important contribution of this paper, then, is to show
when numerical considerations need not enter into this decision.
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Appendix

Recall that a computed URV decomposition satisfies

Ry R,
Ut o |v=[XIV]+E, (A1)
X7 0

where U and V are orthogonal, and F satisfies the bound ||E|| < nKpey. The
matrix R, will be rank revealing if it has the form

T, F,
0 G,/

where
1T Gl TG < L (A.2)
Now let
Ut o |v=|Xxiv|+E, (A.3)
XE 0

where U and V are orthogonal and E satisfies the same bound. We are going to
show that if

V=MWV and V= V)
and we set - -
—_ vy _ Vlvl V1V2 _ Wll W12
W=r= (VQTvl vive) = e
then Wiy is small. Note that this implies that the space R(V1) spanned by the
columns of V; is almost orthogonal R(V3). Since R(V1) is exactly orthogonal
R(Vz), it follows that R(V;) and R(V}) are in some sense near each other.
More precisely, we will show that |[Wis||2 is small, where ||Wis||2 the spectral
norm of Wi, —the largest singular value of Wi5. This number is also the sine of
the largest canonical angle be between R(V]) and R(V2) (see [16, Ch. 1]).

We begin with a lemma.

Lemma A.1. Let

A An
A=
(it )
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be positive definite and let

Wir Wi
W =
(W21 sz)

be orthogonal. Suppose that
|A—WEAW]; < e

and that

_ 1
1= AT e + 2 Avel] + | Azll) < . (A.4)
Then ,
1—+1—-4
W2 < — Y"1 < o2, (A.5)

2

Proof. The (1,2) block of WTAW is WL Ay Wia+ WL ApaWay + Wi AL W, +
WQTIAQQWQQ. Hence

€ > W A Wiz — [[WApWar ||z — W ALWia|[2 — W3l Az Waslfa.
Since ||Wii|lz <1,

HW1T1A11W12H2 < e+ 2||A1zll2 + ||Azz]|2,

and since Wil
WAL W, > —— 202
H HAan?HVanH?7
[Wial|2 .
Wit ~

By the orthogonality of W, we have
WEWL + WhEW, = 1.

Thus, if w = |[Wia||2 is the largest singular value of Wis, then v/1 — w? is the
smallest singular value of Wy;. Hence |W3t||z1 = V1 — w?, and

W1 —wy) < 2

Thus w? is the smallest root of the quadratic equation w* — w? + 7 = 0, which

gives (A.5). m
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Now from (A.1) and (A.3)

RERo+ X Xy — XJ =VRIR V" + VETEV"
RERo+ XX, — X§ =VRIR VT + VETEVT

Set

T T
amrgn = (0T

0 F'F, +d6a,
H=VE'EVY H=VEYEVT and W = VIV. Then it follows that
WTAW — A= W'THW — H.

If
¢ = |[H|[ + [|H]|

and 7, defined by (A.4), defined by (A.4) is less than £, then
Vi Vallz < 21,
It is instructive to bound 5. Since | H|| and || H|| satisfy (4.3), we have
n < (60K p*en + 2| BTl + 1 F B+ GG DT

The first term 6nK p?
error, is precisely the term that must be small for R, to be computed accurately.
The term ||[FTF, + GLG,||[IT1]]? is small by virtue of (A.2). If we write the

middle term in the form

T-|*em, which represents the contribution of rounding

26(T)|I T Ll

we see that, (A.2) notwithstanding, this term is potentially larger than the others.
Now the algorithm for updating URV decompositions contains a refinement step
that is specifically designed to make F), small. The above analysis suggests that
such a step is fully justified.
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