
University of Maryland Department of Computer Science TR-4986
University of Maryland Institute for Advanced Computer Studies TR-2011-12

June 2011

EFFICIENT ITERATIVE SOLVERS FOR STOCHASTIC GALERKIN
DISCRETIZATIONS OF LOG-TRANSFORMED RANDOM

DIFFUSION PROBLEMS

ELISABETH ULLMANN†, HOWARD C. ELMAN‡ , AND OLIVER G. ERNST†

Abstract. We consider the numerical solution of a steady-state diffusion problem where the dif-
fusion coefficient is the exponent of a random field. The standard stochastic Galerkin formulation of
this problem is computationally demanding because of the nonlinear structure of the uncertain com-
ponent of it. We consider a reformulated version of this problem as a stochastic convection-diffusion
problem with random convective velocity that depends linearly on a fixed number of independent
truncated Gaussian random variables. The associated Galerkin matrix is nonsymmetric but sparse
and allows for fast matrix-vector multiplications with optimal complexity. We construct and analyze
two block-diagonal preconditioners for this Galerkin matrix for use with Krylov subspace methods
such as the generalized minimal residual method. We test the efficiency of the proposed precondi-
tioning approaches and compare the iterative solver performance for a model problem posed in both
diffusion and convection-diffusion formulations.
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1. Introduction. We are interested in constructing efficient numerical methods
for the steady-state diffusion equation where the diffusion coefficient is a positive
random field of specific structure. The problem is

−∇ · (exp(a)∇u) = f, (1.1)

posed on a bounded domain D ⊂ R2 together with appropriate boundary conditions.
The log-transformed diffusion coefficient a = a(x , ω) is a random field, that is, for
each elementary event ω in a given probability space (Ω,A, P ) we obtain a scalar
function a(·, ω) varying in the physical domain D . Such problems arise, for example,
from groundwater flow simulations, where the permeability is often modelled as a
lognormal random field, see [19, 50].

The nonlinearity of the diffusion coefficient complicates the numerical solution of
(1.1). For example, as we show in Section 2 below, if stochastic Galerkin methods
are combined with a polynomial chaos expansion of exp(a), then computations must
be carried out with matrices of dense structure that are expensive to use. However,
the particular form of this coefficient allows for a “log-transformed” reformulation
of the problem as a convection-diffusion problem. This approach is mentioned, for
example, in [50, section 1.4] and [40]. Multiplying both sides of (1.1) by exp(−a) and
rearranging, we obtain the equation

−∆u+ w · ∇u = f exp(−a) (1.2)
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with (advective) velocity w = −∇a. Indeed, since

exp(−a)∇· (exp(a)∇u) = exp(−a) exp(a)∆u+exp(−a)∇ exp(a) ·∇u = ∆u+∇a ·∇u

we have arrived at (1.2). Notably, the convection-diffusion problem (1.2) contains
the gradient of the log-transformed diffusion coefficient a on the left-hand side of the
equation; the fact that this is linear in a will lead to discrete problems with simpler
structure and sparse system matrices. The inverse of the term exp(a) appearing on
the right-hand side of the equation raises no special difficulties.

In this study, we will explore the stochastic Galerkin discretization [22] of the
convection-diffusion formulation of the diffusion problem and show that the associ-
ated discrete systems can be solved efficiently by iterative methods. In particular, we
show that preconditioning operators derived from a matrix associated with the mean
of a can be combined with Krylov subspace methods to give convergence rates that
are independent of the characteristic mesh size of the spatial discretization and only
slightly sensitive to parameters of the stochastic discretization, for example the stan-
dard deviation of a. We consider two ways to construct preconditioners, one based on
a discrete diffusion operator, and the other derived from a discrete convection-diffusion
operator. For both these methods, the required computations needed to implement
the preconditioning operation can be done efficiently using multigrid methods, leading
to textbook multigrid behavior.

An outline of the paper is as follows. In Section 2, we review the treatment
of the original stochastic steady-state diffusion equation (1.1) by Galerkin methods,
describe the details of the random field model for this formulation, and discuss the
iterative solution of the Galerkin equations. In Section 3, we present the convection-
diffusion formulation (1.2) in detail, introduce its weak formulation, and describe
the construction and properties of the associated Galerkin matrix. In addition, we
touch upon some aspects of stability and implementation for the convection-diffusion
formulation. Section 4 contains the major contribution of this work. Here, we present
the preconditioning methodology for the discrete convection-diffusion equations and
derive bounds on eigenvalues and convergence rates associated with it. In Section 5,
we demonstrate the effectiveness of the new preconditioning strategies for the discrete
convection-diffusion formulation of the problem and compare their performance with
solvers for the discrete diffusion formulation. Finally in Section 6, we make some
concluding observations.

2. Stochastic steady-state diffusion problem. Our point of departure is
the diffusion equation (1.1) with stochastic diffusion coefficient of the form exp(a). A
formal statement of the problem is to find a random field u(x , ω) satisfying

−∇ · (exp(a(x , ω))∇u(x , ω)) = f(x ), in D × Ω,
u(x , ω) = g(x ), on ∂DD × Ω,

n · ∇u(x , ω) = 0, on ∂DN × Ω a.e.
(2.1)

For simplicity, we consider deterministic boundary conditions on ∂D = ∂DD ∪ ∂DN

and a deterministic source term f = f(x ).

2.1. Log-transformed diffusion coefficient. Assume that the function a is a
Gaussian random field; then it can be specified in terms of its mean value a0(x ) =
〈a(x , ·)〉 and covariance function

Cov(x ,y) = 〈(a(x , ·) − a0(x ))(a(y , ·) − a0(y))〉 , x ,y ∈ D .
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Here, 〈·〉 denotes the expectation with respect to the probability measure P . A widely-
used tool for the representation of Gaussian random fields is the Karhunen-Loève (KL)
expansion [32]

a(x , ω) = a0(x ) + σ
∞∑

m=1

√
λmam(x )ξm(ω), (2.2)

where {ξm}∞m=1 are independent standard Gaussian random variables, σ2 = Cov(x ,x )
denotes the (spatially constant) variance of a, (λm, am)∞m=1 are eigenpairs of the
integral operator C : L2(D) → L2(D),

(Cu)(x ) =

∫

D

c(x ,y)u(y) dy , (Cam)(x ) = λmam(x ), (2.3)

and the kernel function is Cov(x ,y)/σ2. We assume that the eigenvalues λm in (2.2)
are arranged in decreasing order. In actual computations, only the first M + 1 terms
in the KL expansion are retained, yielding an approximation of a of the form

a(M)(x , ω) = a0(x ) + σ

M∑

m=1

√
λmam(x )ξm(ω). (2.4)

In the current treatment of stochastic diffusion problems by Galerkin methods it
is standard to assume that the random diffusion coefficient can be bounded a.e. in
D × Ω by deterministic constants in order to obtain a well-posed weak formulation
[1, 3, 4, 5, 13, 18]. A major complication arising from lognormal diffusion coefficients
is, however, that realizations of a (and thus exp(a)) cannot be uniformly bounded
with respect to ω ∈ Ω. Instead, we have

0 < emin(ω) ≤ exp(a(x , ω)) ≤ emax(ω) <∞ a.e. in D × Ω,

where emin(ω) and emax(ω) are random variables, see [20] and [24]. Note that each
individual realization of exp(a) is bounded away from zero and infinity. A well-
posed weak formulation of (2.1) can be obtained under additional assumptions on
the regularity of the source term f and e−1

min (see [2]). Other approaches involve
weak formulations in weighted versions of standard Sobolev spaces, see the works
[20, 24, 34].

Since the focus of our study is on iterative solvers for the discrete Galerkin equa-
tions we do not adopt these advanced techniques here and follow the standard ap-
proach. To this end, we modify our model for the log-transformed diffusion coefficient
slightly and make the simplifying assumption that the random variables {ξm}M

m=1 in
the KL expansion (2.4) of a are independent and have a truncated Gaussian density
of the form

ρm(ξm) = (2Φ(c/s) − 1)−1 × (
√

2πs)−1 × exp(−ξ2m/(2s2)) × 1[−c,c](ξm) (2.5)

form = 1, . . . ,M . Above, Φ(·) denotes the standard Gaussian cumulative distribution
function, c > 0 denotes a cut-off parameter and the constant s > 0 is chosen such that
ξm has variance one. Now, |ξm| ≤ c and for sufficiently regular covariance functions
it can be shown that the KL eigenfunctions in (2.2) are bounded (see [42, Theorem
2.24]). In summary, then, |a(M)(x , ω)| is bounded a.e. in D × Ω, and thus it follows

0 < emin ≤ exp(a(M)(x , ω)) ≤ emax <∞ a.e. in D × Ω, (2.6)
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where emin and emax are deterministic constants.
We mention that stochastically linear models of the form (2.4) with independent

random variables often approximate Gaussian random fields irrespective of the dis-
tribution of their random parameters (see [26, Section 2]). In addition, the idea of
reformulating the original lognormal diffusion problem (1.1) as a convection-diffusion
problem is applicable to all log-transformed diffusion coefficients of the form (2.2)
regardless of the statistical properties of the random variables {ξm}∞m=1 in (2.2).

2.2. Stochastic Galerkin formulation. With a(M)(x , ω) of (2.4) used for
a(x , ω), the weak formulation of (2.1) is to find u ∈ H1

0 (D) ⊗ L2
ρ(Γ) such that

∫

Γ

∫

D

exp(a(M))∇u · ∇v ρ dx dξ =

∫

Γ

∫

D

fv ρ dx dξ ∀v ∈ H1
0 (D) ⊗ L2

ρ(Γ). (2.7)

Here, H1
0 (D) = {v ∈ H1(D) : v|∂DD

= 0} ⊂ H1(D) is a subset of the standard
Sobolev space H1(D), and L2

ρ(Γ) denotes the Sobolev space of square-integrable func-
tions on the joint image Γ = Γ1 × · · · × ΓM of the truncated Gaussian random vari-
ables ξm(Ω) = Γm = [−c, c] weighted by the M -variate probability density function
ρ(ξ) = ρ1(ξ1)ρ2(ξ2) · · · ρM (ξM ). Since the log-transformed diffusion coefficient in (2.7)
satisfies (2.6), the well-posedness this problem follows (see, for example, [3]).

We will consider piecewise (bi)linear finite elements for the physical discretization
and complete M -variate (generalized) chaos polynomials of total degree ≤ d for the
stochastic discretization. In other words, the finite-dimensional physical subspace is

Xh = span{φ ∈ H1
0 (D) : φ|K ∈ P1(K) ∀K ∈ Th}, (2.8)

where K ∈ Th denotes an element (triangle, rectangle) in a triangulation Th of the
physical domain D , and P1(K) is the space of (bi)linear functions on K. Defining
nx = dim(Xh), we write Xh = span{φ1, φ2, · · · , φnx

}.
For the stochastic discretization, we use as shape functions the (generalized)

chaos polynomials ψα consisting of products of orthonormal (univariate) polynomi-
als ψ0, ψ1, . . . , ψn, . . . , deg(ψn)= n, generated by the truncated Gaussian probability
density function in (2.5). (These polynomials are known as Rys polynomials, see [21]
and the references therein.) That is,

ψα(ξ) =

M∏

m=1

ψαm
(ξm) . (2.9)

Here, α ∈ I = NM
0 is a multi-index with M components. We define

Id = {α ∈ I : |α| ≤ d},
and write

Sd = span{ψα : α ∈ Id}. (2.10)

We will enumerate the stochastic shape functions {ψα} with multi-indices ι(j) ∈ Id,
where j ∈ {1, . . . , nξ}, nξ = dim(Sd) = |Id| =

(
M+d

M

)
. Discretization using the spaces

(2.8) and (2.10) produces the discrete Galerkin equations

nx∑

i=1

nξ∑

j=1

∫

Γ

∫

D

exp(a(M))∇φi · ∇φk ψι(j)ψι(`)ρ dx dξ u
(diff)
i,j =

∫

Γ

∫

D

fφk ψι(`)ρ dx dξ

(2.11)
for k = 1, . . . , nx and ` = 1, . . . , nξ.
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2.3. Generalized polynomial chaos expansion of exp(a). As detailed in
Section 2.1, the diffusion coefficient exp(a(M)) in (2.11) is a nonlinear function of
the components of the KL expansion of a of (2.2). It can be represented using a
generalized polynomial chaos expansion [49],

exp(a(M)(x , ω)) =
∑

α∈I

aα(x )ψα(ξ(ω)),

aα(x ) =
〈
exp(a(M))ψα

〉
= exp(a0(x ))

M∏

m=1

〈
exp(σ

√
λmξm)ψαm

(ξm)
〉
.

(2.12)

Again, α ∈ I = NM
0 is a multi-index. For results on the convergence of such an

expansion see [16]. Since analytic expressions for the chaos coefficients aα are in
general lacking, we compute these with the help of Gauss quadrature rules generated
by the truncated Gaussian density (2.5). Inserting the expansion (2.12) into the
Galerkin equations (2.11), we arrive at

∑

α∈I2d

nx∑

i=1

nξ∑

j=1

∫

D

aα∇φi · ∇φk dx
〈
ψαψι(j)ψι(`)

〉
u

(diff)
i,j =

∫

D

fφk dx
〈
ψι(`)

〉
(2.13)

Above, we have used the notation 〈g(ξ)〉 =
∫
Γ
g(ξ)ρ(ξ) dξ. Note in particular that〈

ψαψι(j)ψι(`)

〉
= 0 for α ∈ I \I2d, so that the chaos expansion of exp(a(M)) in (2.12)

is implicitly truncated in (2.13) and involves chaos polynomials of total degree ≤ 2d
in the M random variables. Introducing the finite element matrices

[Aα]i,k =

∫

D

aα∇φk · ∇φi dx , i, k = 1, . . . , nx , α ∈ I2d, (2.14)

and the stochastic Galerkin matrices [17]

[Gα]j,` =
〈
ψαψι(`)ψι(j)

〉
, j, ` = 1, . . . , nξ, α ∈ I2d, (2.15)

we have arrived at the Kronecker product representation of the matrix Â associated
with the Galerkin equations (2.13) of the original stochastic diffusion problem,

Â =
∑

α∈I2d

Gα ⊗Aα. (2.16)

This matrix is symmetric positive-definite, so the conjugate gradient (CG) method

[28] can be used for iterative solution of the Galerkin system. It is known that Â is
ill-conditioned with respect to the mesh size h, the standard deviation σ of the log-
transformed diffusion coefficient a(M), and the total degree d of the chaos polynomials;
see [17, 37, 47]. Ill-conditioning with respect to the spatial mesh size can be handled
by a mean-based block-diagonal preconditioner derived by approximating the random
diffusion coefficient exp(a(M)) by its mean value

〈
exp(a(M))

〉
, see [23, 31, 35, 36].

Analysis in [36] shows that the spectrum of the mean-based preconditioned Galerkin
matrix is independent of h. (The analysis is performed for stochastically linear diffu-
sion coefficients but it carries over to stochastically nonlinear diffusion coefficients.)
The robustness with respect to σ and d can be improved using a “Kronecker product”
preconditioner developed in [47].
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Unfortunately, the matrix-vector products required by CG are expensive. Al-
though each finite element matrix Aα in (2.16) is a sparse nx ×nx matrix, the global

Galerkin matrix Â is block dense [33]. As a result, matrix-vector multiplications with

the fully assembled Â require O(n2
ξnx ) work. Storing only the Kronecker factors in

(2.16) does not cure this problem. In fact, matrix-vector multiplications with Â in
the form (2.16) cost at least O(nxn

2
ξnd) operations, where nd = |I2d|/|Id| � nξ,

see [47]. These costs do not scale linearly in the total number of unknowns and thus
preclude from the outset the design of iterative solvers with optimal, i.e., O(nxnξ)
complexity.

2.4. Karhunen-Loève expansion of exp(a). A sparse Galerkin matrix can be
obtained by representing the diffusion coefficient exp(a) in (1.1) using a KL expansion,
see [48] for details of this approach. Precisely,

exp(a(x , ω)) = e0(x ) +
∞∑

m=1

√
νmem(x )ηm(ω). (2.17)

Here, (νm, em)∞m=1 are the eigenpairs of the covariance integral operator defined as
in (2.3) with the covariance function of exp(a) as the kernel function. If the sum in

(2.17) is approximated using M̃ terms, the resulting approximate diffusion coefficient

is a linear function of M̃ basic random variables {ηm}M̃
m=1. In this case, the Galer-

kin matrix analogous to (2.16) will be sparse (see, for example, [36]) and allows for
inexpensive matrix-vector products.

We will not pursue this approach here. Note that the random variables {ηm}
are uncorrelated but dependent and their probability density functions are not known
in general, nor is their joint density function. This issue is addressed in [48], where
the marginal densities of each random variable are estimated, and the joint density is
estimated using the assumption that the variables {ηm} are statistically independent.
The stochastic discretization is then carried out in terms of generalized polynomial
chaos functions of the form (2.9) generated by the (estimated) density functions of the
random variables {ηm} in (2.17). A postprocessing step is required to approximate
the actual law of probability of the random solution. Moreover, it is not clear how
the decay of the eigenvalues in the KL expansion of exp(a) relates to the decay of the
respective eigenvalues in the KL expansion of the log-transformed diffusion coefficient
a. The eigenvalue decay determines the number terms to be retained in order to
parameterize and approximate the random input. Depending on the correlation length
and standard deviation of a, it can happen that the number of variables required in
the expansion of exp(a) is (significantly) larger than the number of variables to be
retained in the expansion of a.

3. Reformulation as a convection-diffusion problem. In this section, we
use the reformulated convection-diffusion variant of the problem, (1.2), in combination
with a stochastically linear expansion of the gradient ∇a of the log-transformed diffu-
sion coefficient, to generate an alternative discrete Galerkin system built from sparse
matrices. A formal statement of the transformed problem is to find the random field
u(x , ω) satisfying almost everywhere

−∆u(x , ω) + w(x , ω) · ∇u(x , ω) = f(x ) exp(−a(x , ω))
u(x , ω) = g(x )

n · ∇u(x , ω) = 0

in D × Ω,
on ∂DD × Ω,
on ∂DN × Ω,

(3.1)
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where the velocity w(x , ω) = −∇a(x , ω) is a vector-valued random field. As above,
we use the truncated KL expansion a(M) of (2.4) as the log-transformed diffusion
coefficient a. In addition, we make the assumption that the gradient of a(M) is well-
defined. We will discuss this point in Section 3.3 below.

Following the procedure in Section 2.2, the weak formulation of (3.1) is to find
u ∈ H1

0 (D) ⊗ L2
ρ(Γ) such that for all v ∈ H1

0 (D) ⊗ L2
ρ(Γ)

∫

Γ

∫

D

∇u·∇vρ dx dξ+

∫

Γ

∫

D

vwM ·∇uρ dx dξ =

∫

Γ

∫

D

f exp(−a(M))v ρ dx dξ , (3.2)

where wM = −∇a(M). Since the log-transformed diffusion coefficient a(M) is uni-
formly bounded in our model (see (2.6)), we can choose the modified test function
v · exp(−a(M)) ∈ H1

0 (D) ⊗ L2
ρ(Γ) in the weak formulation (2.7). Then it is easy to

see that the weak formulation (3.2) of the convection-diffusion version is equivalent to
the corresponding original weak formulation (2.7). Hence, the well-posedness of (3.2)
follows from the well-posedness of (2.7).

Remark 3.1. The connection between diffusion and convection-diffusion prob-
lems through logarithmic transformation is documented in the literature, see, for ex-
ample, [38] and [45, 46]. In the latter works, the existence of a velocity potential is
assumed, which enables a recasting of the convection-diffusion formulation (1.2) as a
diffusion problem of the form (1.1). Here, we are following the opposite strategy in
order to construct efficient iterative solvers for our model problem.

3.1. Galerkin equations. Use of the finite-dimensional subspace Xh ⊂ H1
0 (D)

in (2.8) and Sd ⊂ L2
ρ(Γ) in (2.10) yields a conforming Galerkin finite element dis-

cretization of the stochastic convection-diffusion problem (3.1). The discretized Gal-
erkin equations for the nx · nξ degrees of freedom (d.o.f.s) that define u ∈ Xh ⊗ Sd

can be derived from (3.2) as

nx∑

i=1

nξ∑

j=1

[∫

D

∇φi · ∇φk dx −
∫

D

φk ∇a0 · ∇φi dx

] 〈
ψι(j)ψι(`)

〉
u

(cd)
i,j

−
M∑

m=1

nx∑

i=1

nξ∑

j=1

∫

D

σ
√
λmφk∇am · ∇φi dx

〈
ξmψι(j)ψι(`)

〉
u

(cd)
i,j

=
∑

α∈Id

∫

D

tαfφk dx
〈
ψαψι(`)

〉

(3.3)

for k = 1, . . . , nx and ` = 1, . . . , nξ. In (3.3), tα =
〈
exp(−a(M))ψα

〉
, α ∈ I , denotes

the generalized polynomial chaos coefficients of exp(−a(M)). Since
〈
ψαψι(`)

〉
= 0 for

α ∈ I \Id, the chaos expansion of exp(−a(M)) above is implicitly truncated. We
define the finite element matrices

[L]i,k =

∫

D

∇φk · ∇φi dx , (3.4a)

[N0]i,k = −
∫

D

φi ∇a0 · ∇φk dx , (3.4b)

[Nm]i,k = −
∫

D

σ
√
λmφi ∇am · ∇φk dx , i, k = 1, . . . , nx , m = 0, . . . ,M. (3.4c)
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The matrix L corresponds to a discretized Laplace operator in the spatial domain,
and N0 and Nm correspond to the convection operators ∇a0· and σ

√
λm∇am·, re-

spectively. In addition, we define the stochastic Galerkin matrices

[G0]j,` =
〈
ψι(`)ψι(j)

〉
, (3.5)

[Gm]j,` =
〈
ξmψι(`)ψι(j)

〉
, j, ` = 1, . . . , nξ, m = 1, . . . ,M. (3.6)

Thus, noting that G0 = I is the nξ × nξ identity matrix in our setting, the Galerkin
matrix associated with the Galerkin equations (3.3) of the stochastic convection-
diffusion problem are given by

Ĉ = I ⊗ (L+N0) +
M∑

m=1

Gm ⊗Nm. (3.7)

We mention that the nonsymmetric matrices Nm, m = 0, . . . ,M , in (3.4b) and (3.4c)
are in general not skew-symmetric, since the terms ∇a0 and σ

√
λm∇am are in general

not divergence-free.

3.2. Stability considerations. The convection-diffusion problem in (3.1) can
be written as

−σ−1∆u+ w̃ · ∇u = σ−1fe−a,

where the velocity is

w̃ = −σ−1∇a = −σ−1∇a0 −
M∑

m=1

√
λm∇amξm.

Thus, for large values of σ, the stochastic convective term dominates the diffusive term
−σ−1∆u as well as the mean convective term −σ−1∇a0 · ∇u. In this situation, the
matrix Ĉ in (3.7) could have qualities like those associated with convection-dominated
flow problems, where for large mesh Péclet numbers, stabilization techniques might
be required (see [15]).

We examine this question using the benchmark problems from Section 5 below,
where complete specification of the PDEs and discretizations are given. In particular,
we compute two quantities,

Prc = P (ω ∈ Ω: ‖wc(ω)‖ ≤ 2/h), (3.8)

the probability of the event that the stochastic element Péclet number ‖wc‖h/2 is
less than or equal to one, where wc(ω) = −∇a(M)(xc, ω) denotes the random velocity
evaluated at a finite element centroid xc ∈ D ; and the mean element Péclet number

P̄c =
√
〈‖wc‖2h2/4〉 = (h/2)

(
‖∇a0(xc)‖2 + σ2

M∑

m=1

λm‖∇am(xc)‖2

)1/2

. (3.9)

Using bilinear elements and a variety of discretization mesh sizes (see Tables 3.1–
3.2), we estimated Prc in (3.8) in each element via Monte Carlo integration with
2.5× 105 samples. We found that max{Prc} = 1.00 and min{Prc} = 1.00 for all but
one combination of n and σ, where min{Prc} = 0.99. Table 3.1 shows the maximum
values of P̄c over all elements, for the benchmark Examples 5.1 and 5.2. These two
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Table 3.1

Examples 5.1–5.2: Maximum of P̄c of (3.9) over all elements in an n × n mesh.

M = 5, ` = 1 M = 10, ` = 0.5
n = h−1 σ = 0.1 σ = 1.0 σ = 2.0 σ = 0.1 σ = 1.0 σ = 2.0

16 0.006 0.062 0.124 0.012 0.124 0.247
32 0.003 0.031 0.062 0.006 0.062 0.124
64 0.002 0.015 0.031 0.003 0.031 0.062

128 0.000 0.008 0.015 0.002 0.015 0.031

Table 3.2

Examples 5.3–5.4: Maximum of P̄c of (3.9) over all elements in an n × n mesh.

M = 5, ` = 1 M = 10, ` = 0.5
n = h−1 σ = 0.1 σ = 1.0 σ = 2.0 σ = 0.1 σ = 1.0 σ = 2.0

16 0.607 0.609 0.615 0.607 0.616 0.645
32 0.308 0.309 0.312 0.308 0.312 0.327
64 0.155 0.156 0.157 0.155 0.157 0.164

128 0.078 0.078 0.079 0.078 0.079 0.082

examples differ in the number M of terms in a(M) and correlation length of the
covariance function. Table 3.2 shows the analogous quantities for Examples 5.3–5.4.
It can be seen that in all these examples, the mean element Péclet number is smaller
than one.

These data suggest that stabilization is not needed for these benchmark problems.
In contrast to what happens for flow problems, where flows can be highly convection-
dominated and give rise to Péclet numbers of many orders of magnitude in size,
here we do not expect the standard deviation σ to be larger than O(1). Since the
components of {∇am} are bounded for sufficiently regular covariance functions of a
(see [42, Theorem 2.24]), this trend is likely to be representative, and we do not expect
stabilization to be required.

We also mention that if stabilization were actually needed, it can be implemented
cheaply when linear finite elements are used for the spatial discretization defining Xh

in (2.8) and the streamline diffusion methodology (see [15] and references therein) is
applied to the convection-diffusion problem. In this case, the term

〈∫

D

δ(w · ∇φi)(w · ∇φk)ψι(j)ψι(`)

〉

is added to the left-hand side of the Galerkin equations, where w = −∇a(M) denotes
the stochastic velocity. If the stabilization parameter δ > 0 is a deterministic con-
stant, then the streamline diffusion method yields a stochastically quadratic problem
formulation, since w depends linearly on a fixed number of independent truncated
Gaussian random variables. It is easy to see that the associated Galerkin matrix has
at most 2M2 + 2M + 1 nonzero blocks per row, and thus it is block sparse (hence
sparse) for M2 � nξ.

3.3. Expansion of ∇a. The convection-diffusion formulation requires ∇a. To
this end, we differentiate the truncated KL expansion (2.4) of a and arrive at

∇a(M)(x , ω) = ∇a0 + σ

M∑

m=1

√
λm∇am(x )ξm(ω).

9



This allows us to formulate the weak version of the stochastic convection-diffusion
problem in terms of the exact same random variables that appear in the original KL
expansion of a.

The gradient of am can be computed using the integral eigenproblem equation
∫

D

c(x ,y)am(y) dy = λmam(x ). (3.10)

Assume that a is continuously differentiable in the mean-square (m.-s.) sense;
necessary and sufficient for this is the existence and continuity of ∇a0 and the partial
derivatives (∂2/∂xj∂yk)c(x ,y), x ,y ∈ D , j, k = 1, 2 (see, e.g., [12, Chapter 2]). Then,
by Lebesgue’s Dominated Convergence Theorem (see, e.g., [43, Chapter 2]), we can
interchange the order of differentiation and integration in (3.10) and obtain

∂am

∂xi
(x ) = λ−1

m

∫

D

∂c

∂xi
(x ,y)am(y) dy , i = 1, 2. (3.11)

In the experiments in Section 5, we consider random fields with covariance function

Cov(x ,y) = σ2 exp(−(r/`)2), r = ‖x − y‖2,

which satisfies the assumptions above.
The assembly of the finite element matrices N0, N1, . . . , NM in (3.4b) and (3.4c)

requires the evaluation of (3.11) at certain quadrature nodes {x`} ∈ D . We discretize
the action of the integral operator on the right-hand side of (3.11) by a Galerkin
projection onto the subspace Zh of piecewise constant functions on a given triangu-
lation Th of D . Let Zh = span{π1(x ), . . . , πn(x )} ⊂ L2(D). With ∂am(x )/∂xi ≈∑

j a
(i)
m,jπj(x ), i = 1, 2, and am(x ) ≈∑j a

(0)
m,jπj(x ), it follows that the n coefficients

that determine the partial derivative of an (approximate) eigenfunction am ∈ Zh

satisfy the Galerkin equations

n∑

j=1

a
(i)
m,j

∫

D

πj(x )πk(x ) dx = λ−1
m

n∑

j=1

a
(0)
m,j

∫

D

∫

D

∂c

∂xi
(x ,y)πj(y)πk(x ) dy dx .

for k = 1, . . . , n and i = 1, 2. The matrix formulation of these equations reads

Qa (i)
m = λ−1

m K a (0)
m , (3.12)

where Q ∈ Rn×n denotes the Gramian matrix of {π1, . . . , πn} with respect to the
L2(D) inner product, K ∈ Rn×n is a discrete integral operator with kernel function

∂c/∂xi, the vector a
(0)
m ∈ Rn contains the coefficients of the KL eigenfunction am,

and the vectors a
(i)
m ∈ R

n contain the coefficients of ∂am/∂xi, i = 1, 2, respectively.
The action of Q−1 can be computed in O(n) operations since Q is a diagonal matrix
in this setting. However, the matrix K in (3.12) is in general a dense n × n matrix.
Therefore we approximate K by a hierarchical H 2-matrix (see [6, 8, 27] and refer-
ences therein), which allows us to perform matrix-vector products with K in O(n)
operations. The assembly of an H 2-matrix costs O(n log n) operations. The vector

a
(0)
m solves a discrete version of the KL integral eigenproblem (3.10). An efficient

way to compute approximate KL eigenpairs is outlined in [14] where H -matrix tech-
niques are combined with a thick-restart Lanczos method. This approach requires
O(n log n) operations. In summary, then, approximations to the gradients ∇am of
KL eigenfunctions can be obtained with O(n log n) complexity.
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An alternative way to obtain a stochastically linear expansion of ∇a is by direct
computation of the KL expansion of the vector-valued random field ∇a (see [39,
Chapter 10]). An algorithm for computing the vector KL eigenpairs with O(n log n)
complexity is presented in [11]. However, the (marginal and joint) densities of the
random variables in such a KL expansion are in general not known a priori and must
be inferred from the probability law of ∇a.

The fundamental difference between the two expansion strategies lies in the order
of truncation and differentiation. In the first approach, we truncate the KL expansion
of a and then compute the gradient ∇a(M). In the second approach, the KL expansion
of ∇a is computed and then truncated. We used the first approach in the computations
described below. We mention that for m.-s. continuously differentiable a its KL
expansion can be differentiated termwise and ∇a(M) converges to ∇a in the m.-s.
sense uniformly on D for M → ∞ (see [30] 1).

3.4. Piecewise smooth coefficient exp(a). The convection-diffusion formu-
lation (3.1) requires a well-defined gradient ∇a. However, it can happen that the
diffusion coefficient exp(a) is well-defined but the gradient ∇a does not exist. Such sit-
uations occur, for example, for piecewise constant mean values 〈a〉. This issue can be
addressed as follows. Assume the log-transformed diffusion coefficient a can be written
as a(x , ω) = a0(ω) + a1(x , ω), where exp(−a1) and ∇a1 exist for (x , ω) ∈ D ×Ω a.e.
Then we can write exp(a) = exp(a0) exp(a1), and, following the ideas in Section 1,
we obtain

− exp(−a1)∇ · (exp(a)∇u) = − exp(−a1) exp(a0)∇ · (exp(a1)∇u)
= − exp(a0)∆u− exp(−a1) exp(a0)∇ exp(a1) · ∇u
= − exp(a0)∆u− exp(a0)∇a1 · ∇u.

The associated weak formulation is: find u ∈ H1
0 (D) ⊗ L2

ρ(Γ) such that
∫

Γ

∫

D

exp(a0)∇u ·∇v ρ dx dξ +

∫

Γ

∫

D

exp(a0) vw ·∇u ρ dx dξ =

∫

Γ

∫

D

fe−a1v ρ dx dξ

for all test functions v ∈ H1
0 (D) ⊗ L2

ρ(Γ). The velocity is w = −∇a1. This problem
is meaningful for piecewise constant a0.

4. Iterative solvers for the convection-diffusion formulation. We now
consider the iterative solution of the discretized stochastic Galerkin convection-diffu-
sion equations of (3.3). Crucially, the associated Galerkin matrix (3.7) discretizes a
stochastically linear problem. Thus, it is block-sparse with at most 2M + 1 nonzero
blocks per row [36]. Moreover, each block

〈
ψι(`)ψι(j)

〉
(L+N0) +

M∑

m=1

〈
ξmψι(`)ψι(j)

〉
Nm

is a sparse nx × nx matrix. (The matrices L and N0, N1, . . . , NM all have the same

sparsity pattern.) Therefore, matrix-vector products with Ĉ can be performed in
O(nxnξ) operations for M � nξ, which is optimal in terms of the total number of
unknowns. To solve (3.3), Krylov subspace methods such as GMRES [41] designed
for nonsymmetric systems must be used, and it is critical that preconditioners be used
to achieve fast convergence.

1This result is proved in [30, Theorem A.2] for random functions a : D × Ω → R defined on
D ⊂ R but it carries over to random fields defined on D ⊂ R

d with d > 1.
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4.1. Symmetric part of the Galerkin matrix. Before turning to precondi-
tioning approaches we identify the symmetric part of the Galerkin matrix Ĉ in (3.7),

Ĥ = 1
2 (Ĉ + Ĉ>) = I ⊗ L+ I ⊗ 1

2 (N0 +N>
0 ) +

∑M
m=1Gm ⊗ 1

2 (Nm +N>
m).

To explore the symmetric part of the matrices N0, . . . , NM , we utilize the relation

∇ · (rs t) = r · ∇(s t) + s t∇ · r = tr · ∇s+ sr · ∇t+ s t∇ · r .

Then, letting s = φi, t = φk for φi, φk ∈ Xh ⊂ H1
0 (D), and integrating over the

domain D we obtain
∫

∂DN

n · rφiφk ds =

∫

D

∇ · rφiφk dx +

∫

D

φkr · ∇φi dx +

∫

D

φir · ∇φk dx .

By choosing r = −∇a0 and r = −σ
√
λm∇am, respectively, we arrive at 1

2 (Nm +
N>

m) = Hm, where the symmetric matrices Hm are defined as

[H0]i,k = 1
2 (
∫

D
φi φk ∆a0 dx −

∫
∂DN

φiφkn · ∇a0 ds), (4.1a)

[Hm]i,k = 1
2σ

√
λm(

∫
D
φi φk ∆am dx −

∫
∂DN

φiφkn · ∇am ds), (4.1b)

i, k = 1, . . . , nx , m = 1, . . . ,M.

In summary, then, the symmetric part Ĥ of the Galerkin matrix Ĉ reads

Ĥ = I ⊗ (L+H0) +

M∑

m=1

Gm ⊗Hm. (4.2)

4.2. Diffusion preconditioner. First, we consider the matrix P̂L = I ⊗ L as
preconditioner for the stochastic convection-diffusion Galerkin matrix Ĉ in (3.7). We

note that P̂L is a symmetric positive-definite block diagonal matrix representing only
the deterministic diffusive part of the stochastic convection-diffusion operator. We
are interested in bounds on the generalized field of values

FOV(Ĉ, P̂L) =

{
vH Ĉv

vH P̂Lv
: v ∈ C

nx nξ , v 6= 0

}
.

Theorem 4.1. The generalized field of values of the Galerkin matrix Ĉ in (3.7)

with respect to the preconditioner P̂L = I ⊗ L is contained in the circle

{z ∈ C : |z − 1| ≤ 2 cD δL} , δL = ‖∇a0‖∞ + σνd+1

M∑

m=1

√
λm‖∇am‖∞, (4.3)

where ‖w‖∞ = supx∈D |w(x )|, νd+1 denotes the largest root of the univariate, or-
thonormal Rys polynomial of exact degree d+1, and cD > 0 is a constant independent
of h, σ and d.

Proof. Observe that Ĉ = I ⊗ L+
∑M

m=0Gm ⊗Nm = P̂L + N̂ , hence

FOV(Ĉ, P̂L) = 1 + FOV(N̂ , P̂L).

We enclose FOV(N̂ , P̂L) in a circle, which must be shifted by +1 in order to en-

close FOV(Ĉ, P̂L). To this end, we recall that the field of values is subadditive, i.e.,
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FOV(A+B) ⊂ FOV(A) + FOV(B) for matrices A, B ∈ Cn, where the set sum con-
tains sums of all possible pairs [29, Property 1.2.7]. Furthermore, if the matrix A is
normal, then FOV(A⊗B) = conv(FOV(A) ·FOV(B)) the convex hull of the product
of all possible pairs from FOV(A) and FOV(B), see [29, Theorem 4.2.16]. Again, if
A is normal, FOV(A) = conv(λ(A)) is the convex hull of the spectrum of A. Thus, if
A is symmetric, then FOV(A) is a closed real line segment whose endpoints are the
smallest and largest eigenvalue of A, respectively. Therefore, the generalized field of
values FOV(N̂ , P̂L) can be bounded as follows:

FOV(N̂ , P̂L) ⊂
M∑

m=0

FOV(Gm ⊗Nm, I ⊗ L) =
M∑

m=0

conv(conv(λ(Gm)),FOV(Nm, L)).

(4.4)
Next we wish to bound quantities |z|, where z ∈ FOV(Nm, L), m = 0, 1, . . . ,M . To
this end, we establish a bound for finite element shape functions u, v ∈ Xh ⊂ H1

0 (D).
We utilize the Cauchy-Schwarz inequality and Friedrich’s inequality (see e.g. [9]) and
arrive at

∣∣∣∣
∫

D

vw · ∇u dx
∣∣∣∣ ≤

∫

D

|v|(w2
x + w2

y)1/2
(
(∂u/∂x)2 + (∂u/∂y)2

)1/2
dx

≤ ‖w‖∞
(∫

D

v2 dx

)1/2(∫

D

(∂u/∂x)2 + (∂u/∂y)2 dx

)1/2

= ‖w‖∞‖v‖ ‖∇u‖ ≤ ‖w‖∞cD‖∇v‖‖∇u‖,
where we have introduced ‖w‖∞ = supx∈D |w(x )|. The constant cD > 0 appears in
Friedrich’s inequality and is independent of the characteristic mesh size h. Now, we
wish to translate this bound into matrix notation. For a vector v ∈ R

nx we define
the corresponding finite element shape function v ∈ Xh by v(x ) =

∑
i viφi(x ). Then,

the above estimate reads

|v>Nmu | ≤ ‖wm‖∞cD(v>Lv)1/2(u>Lu)1/2, m = 0, 1, . . . ,M, (4.5)

where we have defined w0 = −∇a0, and wm = −σ
√
λm∇am, m = 1, . . . ,M . Now,

for z ∈ FOV(Nm, L) there is a vector w ∈ Cnx \{0}, such that z = wHNmw/wHLw .
We decompose w = u + iv , u , v ∈ Rnx , and, utilizing the estimate (4.5), we obtain

|wHNmw | ≤ |u>Nmu | + |v>Nmv | + |u>Nmv | + |v>Nmv |

≤ ‖wm‖∞cD
(
u>Lu + v>Lv + 2(u>Lu)1/2(v>Lv)1/2

)

≤ ‖wm‖∞cD
(
u>Lu + v>Lv + u>Lu + v>Lv

)

= 2‖wm‖∞cD(u>Lu + v>Lv) = 2‖wm‖∞cD wHLw .

Hence, for z ∈ FOV(Nm, L), m = 0, 1, . . . ,M , we arrive at the estimate

|z| ≤ 2‖wm‖∞cD . (4.6)

Finally, it is well known that λ(Gm) ⊆ [−νd+1, νd+1], m = 1, . . . ,M , where νd+1

denotes the largest root of the univariate orthonormal Rys polynomial of degree d+1
(see e.g. [17]). Thus, combining (4.4) with (4.6) and the estimate on the spectral
interval of Gm, we have arrived at

|z| ≤ 2cD

(
‖w0‖∞ + σνd+1

M∑

m=1

‖wm‖∞
)
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for z ∈ FOV(N̂ , P̂L) which completes the proof.
Remark 4.2. The components of ∇am, m = 0, . . . ,M are bounded for sufficiently

regular covariance functions of a, see again [42, Theorem 2.24].

From Theorem 4.1 we conclude that the field of values of Ĉ preconditioned by
P̂L is insensitive to the characteristic mesh size h. For sufficiently small values of σ,
the generalized field of values FOV(Ĉ, P̂L) is tightly clustered around z = 1 and does
not contain the origin; thus we can expect fast convergence of GMRES (see e.g. [25]).
However, the radius of the circle around the generalized field of values increases when
σ increases. In addition, since the zeros of ψd+1 alternate with those of ψd+2 [21,
Theorem 1.20] we have νd+1 < νd+2 for two consecutive total degrees d. Fortunately,
all zeros of the chaos polynomials are located in the interior of the support interval of
the corresponding density [21, Theorem 1.19], meaning that νd+1 ≤ c in our setting,
where c is the cut-off parameter in (2.5). Thus, the impact of d on the GMRES
convergence behavior is limited. In summary, the GMRES convergence behaviour is
determined by σ and d and may deteriorate for large values of σ.

4.3. Mean-based preconditioner. Next, we choose the matrix P̂0 = I ⊗ (L+

N0) as preconditioner for the stochastic convection-diffusion Galerkin matrix Ĉ in

(3.7). In particular, P̂0 contains a convective term when ∇〈a〉 6= 0, and it is identical

to the diffusion preconditioner P̂L when ∇〈a〉 ≡ 0. In general, P̂0 is not symmetric
and it may not be positive-definite.

Theorem 4.3. Assume N0 is a positive semi-definite matrix. Then, the eigen-
values of the Galerkin matrix Ĉ in (3.7) preconditioned by P̂0 = I ⊗ (L +N0) (from
the left or right-hand side) are contained in the circle

{z ∈ C : |z − 1| ≤ 2 cD δ0} , δ0 = σνd+1

M∑

m=1

√
λm‖∇am‖∞, (4.7)

where ‖w‖∞ = supx∈D |w(x )|, νd+1 denotes the largest root of the univariate, or-
thonormal Rys polynomial of exact degree d+1, and cD > 0 is a constant independent
of h, σ and d.

Proof. Given the assumptions stated in the theorem, observe that the matrix
L+N0 is positive definite, and hence so is P̂0 = I⊗(L+N0). Now, let w ∈ Cnxnξ\{0}
and λ ∈ C denote an eigenvector and the corresponding eigenvalue of the matrix
P̂−1

0 Ĉ, respectively. Then, the Rayleigh quotient reads

λ =
wHĈw

wH P̂0w
=

wHI ⊗ (L +N0)w +
∑M

m=1 wHGm ⊗Nmw

wHI ⊗ (L+N0)w

= 1 +

M∑

m=1

wHGm ⊗Nmw

wHI ⊗ (L+N0)w
.

Hence we obtain the estimate

|λ− 1| ≤
M∑

m=1

∣∣∣∣
wHGm ⊗Nmw

wHI ⊗ (L+N0)w

∣∣∣∣ . (4.8)

Next, we wish to bound the quantities |wHGm ⊗ Nmw |, m = 1, . . . ,M , in terms
of |wHI ⊗ (L + N0)w |. By linearity and the properties of the Kronecker product
it suffices to establish such a bound for vectors w = w` ⊗ wr, where w` ∈ Cnξ and
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wr ∈ Cnx . Then, wHGm⊗Nmw = (wH
` Gmw`)(w

H
r Nmwr). We proceed by bounding

the factors in this expression, separately.
It was observed in the proof of Theorem 4.1, that the spectrum of Gm is con-

tained in the interval [−νd+1, νd+1]. Thus, we arrive at wH
` Gmw` ≤ νd+1w

H
` w`.

Furthermore, in the proof of Theorem 4.1 we have established the bound

|wH
r Nmwr| ≤ 2σ

√
λm‖∇am‖∞cDwH

r Lwr, m = 1, . . . ,M, (4.9)

where cD > 0 is a constant independent of the characteristic mesh size h. Now, let
wr = u + iv , u , v ∈ Rnx . We write N0 = H0 + S0, where H0 = (N0 + N>

0 )/2 and
S0 = (N0 −N>

0 )/2. That is, we split the matrix N0 into its symmetric part H0 and
skew-symmetric part S0, respectively. Then,

wH
r (L +N0)wr = u>(L+H0)u + v>(L+H0)v + 2iu>S0v .

Recall that the matrix H0 is positive semi-definite by assumption. (L is positive
definite.) Moreover, for z = a + ib ∈ C, there holds |z| =

√
a2 + b2 ≥ |a|. Thus, the

bound

|wH
r (L+N0)wr| ≥ u>(L+H0)u + v>(L +H0)v ≥ u>Lu + v>Lv = wH

r Lwr

follows. Combining this estimate and (4.9), we obtain the bound

|wH
r Nmwr| ≤ 2σ

√
λm‖∇am‖∞cD |wH

r (L +N0)wr|, m = 1, . . . ,M.

Finally, we arrive at

|wHGm ⊗Nmw | = |wH
` Gmw`||wH

r Nmwr|
≤ νd+1w

H
` w` 2σ

√
λm‖∇am‖∞cD |wH

r (L +N0)wr|
= 2cDσνd+1

√
λm‖∇am‖∞|wHI ⊗ (L +N0)w |, m = 1, . . . ,M.

Combining these bounds with (4.8) completes the proof.
Remark 4.4. The convection matrix N0 defined in (3.4b) is positive semi-definite

iff the matrix H0 in (4.1a) is positive semi-definite. The latter condition is satisfied
if ∆a0 ≥ 0 on D and n · a0 = 0 along ∂DN , for example.

Remark 4.5. The statement of Theorem 4.3 can be generalized by assuming
that there exists a constant ε, 0 ≤ ε < 1, such that w>H0w ≥ −εw>Lw for all
vectors w ∈ Rnx . Then, the eigenvalues of Ĉ preconditioned by P̂0 are contained in
the circle

{
z ∈ C : |z − 1| ≤ 2 cD δ0(1 − ε)−1

}
, where δ0 is defined in (4.7). Clearly,

if the matrix N0 (that is, H0) is positive semi-definite, we can choose ε = 0 and the
assertion of Theorem 4.3 follows.

We note that the spectral inclusion regions in (4.3) and (4.7) coincide for ∇a0 ≡ 0,

since P̂L = P̂0 in this case. In general, however, if the mean value a0 of the log-
transformed diffusion coefficient is such that ∇a0 6= 0, it follows that δ0 < δL. That
is, the spectral inclusion bounds for the matrix P̂−1

0 Ĉ are tighter than the bounds

for P̂−1
L Ĉ, and we expect the mean-based preconditioner to outperform the diffusion

preconditioner. This will be explored in Section 5.
Theorem 4.3 tells us that the spectral inclusion bounds for the matrix Ĉ precon-

ditioned by P̂0 are insensitive to the characteristic mesh size h. For suffiently small
values of σ, the eigenvalues of P̂−1

0 Ĉ are tightly clustered around z = 1. The radius
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of the circle containing the eigenvalues increases when σ and/or d increase. However,
the impact of d is limited since νd+1 ≤ c in our setting (see the discussion at the end
of Section 4.2).

Remark 4.6. The results in Theorem 4.1 and Theorem 4.3 can be generalized
as follows. First, the inclusion regions in (4.3) and (4.7) hold for any stochastic Gal-
erkin convection-diffusion discretization as long as the velocity w depends linearly on
a finite number M of independent truncated Gaussian random variables. Second, if
w can be represented in terms of M independent, identically distributed, not neces-
sarily truncated Gaussian, basic random variables {ξm}M

m=1 with probability density
function ρm, then spectrum of the matrices Gm, m = 1, . . . ,M is contained in the
interval [θd+1,Θd+1], where θd+1 and Θd+1 denote the smallest and largest root of the
univariate orthonormal polynomial of degree d + 1 generated by ρm (see e.g. [17]).
Hence the quantity νd+1 in (4.3) and (4.7) must be replaced by max{|θd+1|, |Θd+1|}
for other basic random variables.

4.4. Practical preconditioners. The application of the proposed precondi-
tioners P̂L and P̂0 in conjunction with Krylov subspace methods requires the solution
of nξ linear systems with the sparse coefficient matrices L and L +N0, respectively,
in each iteration.

These operations can be done efficiently using geometric or algebraic multigrid
methods, see, e.g., [10]. Moreover, these operations can be replaced with “approximate
solves” in which the action of L−1 or (L + N0)

−1 is replaced by application of a
small number of multigrid steps. In experiments described below, the actions of L−1

and (L + N0)
−1 are replaced by application of one V-cycle of an algebraic multigrid

method (AMG) (see [44]). We denote these preconditioners by P̂L,amg and P̂0,amg,

respectively. One V-cycle costs O(nx ) operations, and thus one application of P̂L,amg

and P̂0,amg incurs a computational cost of O(nxnξ), which is essentially as cheap as

a matrix-vector product with the Galerkin matrix Ĉ.

5. Numerical experiments. The experimental setting is as follows.
Example 5.1. We consider the diffusion problem (2.1) and the associated con-

vection-diffusion formulation (3.1) on the unit square domain D = (0, 1)× (0, 1) with
zero source term f ≡ 0. The northern and eastern boundary are no-flow boundaries,
that is n ·∇u = 0. We impose u = 0 along the southern, and u = 1 along the western
boundary, respectively. The log-transformed diffusion coefficient has constant mean
value a0 = 1, and covariance function

Cov(x ,y) = σ2 exp(−(r/`)2), r = ‖x − y‖2,

where ` > 0 denotes the correlation length. With this choice of mean value and
covariance function, a is m.-s. continuously differentiable. In this example, we set
` = 1. The physical discretization uses n × n square bilinear finite elements on D .
For the stochastic discretization we employ complete chaos polynomials in M = 5
truncated Gaussian random variables with cut-off parameter c = 2.575 (see (2.5)) and
capture more than 98% of the total variance of a, which is

∫
D

Cov(x ,x ) dx = σ2|D |
in this setting.

Example 5.2. The problem is as in Example 5.1, but with a smaller correlation
length ` = 0.5 and M = 10 truncated Gaussian random variables in the expansion of
a. Again, we capture more than 98% of the total variance of a.

Example 5.3. The problem is as in Example 5.1, the exceptions being the bound-
ary conditions and mean value of a. We use a0 = 1 + 10x2, thus ∆a0 = 20 ≥ 0.
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This time, the northern and southern boundary are no-flow boundaries. Note that
n · ∇a0 = 0 along these boundaries. In addition, we impose u = 1 along the west-
ern, and u = 0 along the eastern boundary, respectively. With this choice of a0 and
boundary conditions, the assumptions of Theorem 4.3 hold, see Remark 4.4.

Example 5.4. The problem is as in Example 5.3 with a smaller correlation length
` = 0.5 and M = 10 random variables.

In our implementation, we utilize software based on the IFISS package [44] for the
physical finite element discretization and the AMG V-cycle as part of the practical
preconditioners in Section 4.4, respectively. The gradient ∇a(M) is computed as
described in Section 3.3 with software based upon the HLib package [7].

5.1. Preconditioned GMRES. We solve the discretized convection-diffusion
Galerkin equations (3.3) for Examples 5.1 – 5.4. We explore the performance of

(right preconditioned) GMRES in conjunction with the diffusion preconditioner P̂L

introduced in Section 4.2, the mean-based preconditioner P̂0 (Section 4.3), and their
practical versions (Section 4.4). The stopping criterion is ‖rk‖2 < 10−8‖b‖2 in all
experiments, where for a linear system Ax = b and kth approximate solution xk, rk
is the residual b−Axk.

5.1.1. Diffusion preconditioner. We start with Examples 5.1 and 5.2 and
employ the preconditioner P̂L = I ⊗ L. This is also the mean-based preconditioner
P̂0, since ∇a0 ≡ 0 in these examples. Tables 5.1–5.2 show preconditioned GMRES
iteration counts for the AMG (P̂L,amg) and exact (P̂L) versions of the diffusion precon-

ditioner. Replacing P̂L by P̂L,amg does not yield a significant increase of the iteration

count, so the computational cost will be much lower with P̂L,amg. For standard devi-
ations σ less than or equal to one, iteration counts are completely insensitive to the
mesh width h = n−1 and largely insensitive to the total degree of the chaos polyno-
mials d, Theorem 4.1 suggests. For fixed degree d, the number of GMRES iterations
required to satisfy the stopping criterion decreases slightly as the mesh is refined. For
fixed mesh width, the observed iteration count is almost independent of d and σ, ex-
cept for the case of (relatively large) standard deviation σ = 2 in Example 5.2, where
the preconditioner breaks down. Iterations for n = 128, d = 5 terminated before the
stopping criterion was satisfied due to memory limitations. This is not inconsistent
with the analysis of Section 4, which establishes convergence bounds only for small
enough σ. We found no difficulties for σ = 1.5 (see Table 5.2).

5.1.2. Mean-based preconditioner. Tables 5.3–5.4 show GMRES iteration
counts for Examples 5.3 and 5.4 using both the mean-based preconditioner P̂0 and
the diffusion preconditioner P̂L (note that they are different for these examples) as
well as the variants using AMG. These results reproduce the trends (insensitivity to h
and d) seen in Section 5.1.1 for the diffusion preconditioner, and similar trends can be

seen for the mean-based preconditioner. As expected, performance of P̂0, which takes
account of the fact that ∇a0 6= 0, is superior to that of P̂L. Since the computational
costs of the two preconditioners are identical, the mean-based preconditioner is more
efficient. Use of practical AMG versions leads to insignificant changes in iteration
counts.

5.2. Comparison of formulations. Finally, we compare the performance of
iterative solvers for the discretized Galerkin equations (2.13) associated with the dif-
fusion formulation and those arising from the convection-diffusion formulation (3.3),
for the model problem in Example 5.1. For the physical discretization we use a
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Table 5.1

Example 5.1: GMRES iteration counts with AMG and exact (in parentheses) versions of the

diffusion preconditioner P̂L = I ⊗ L. In this example, M = 5 and ` = 1.

n σ d = 1 d = 2 d = 3 d = 4 d = 5 d = 6
16 0.1 5 (4) 6 (5) 6 (5) 6 (5) 6 (5) 6 (5)
32 - 5 (4) 6 (5) 6 (5) 6 (5) 6 (5) 6 (5)
64 - 5 (4) 6 (4) 6 (4) 6 (4) 6 (4) 6 (4)

128 - 5 (4) 6 (4) 6 (4) 6 (4) 6 (4) 6 (4)
16 1.0 9 (9) 11 (11) 13 (12) 14 (13) 15 (13) 16 (14)
32 - 9 (8) 11 (10) 12 (12) 13 (12) 14 (12) 15 (13)
64 - 8 (8) 10 (10) 12 (11) 12 (11) 13 (12) 14 (12)

128 - 8 (7) 10 (9) 11 (10) 12 (11) 12 (11) 13 (11)
16 2.0 13 (12) 18 (18) 23 (22) 27 (25) 31 (27) 35 (30)
32 - 12 (12) 17 (17) 21 (21) 25 (23) 29 (26) 32 (28)
64 - 11 (11) 16 (16) 20 (19) 24 (22) 27 (24) 29 (26)

128 - 11 (10) 14 (15) 19 (18) 22 (20) 25 (23) 27 (24)

Table 5.2

Example 5.2: GMRES iteration counts with AMG and exact (in parentheses) versions of the

diffusion preconditioner P̂L = I ⊗ L. In this example, M = 10 and ` = 0.5.

n σ d = 1 d = 2 d = 3 d = 4 d = 5
16 0.1 6 (5) 6 (5) 6 (5) 6 (6) 6 (6)
32 - 6 (5) 6 (5) 6 (5) 6 (5) 6 (5)
64 - 6 (4) 6 (5) 6 (5) 6 (5) 6 (5)

128 - 6 (4) 6 (4) 6 (5) 6 (5) 6 (5)
16 1.0 11 (11) 16 (15) 18 (17) 20 (19) 22 (21)
32 - 11 (10) 14 (14) 17 (16) 18 (18) 20 (19)
64 - 10 (10) 13 (13) 16 (15) 17 (17) 19 (18)

128 - 10 (9) 13 (12) 15 (14) 16 (15) 17 (17)
16 1.5 14 (14) 22 (22) 29 (28) 39 (37) 50 (49)
32 - 14 (13) 21 (21) 28 (26) 36 (34) 44 (44)
64 - 13 (13) 20 (19) 26 (25) 33 (31) 41 (40)

128 - 12 (12) 19 (17) 24 (23) 30 (28) 37 (36)

16 2.0 17 (17) 33 (32) 65 (63) 170 (168) 563 (550)
32 - 17 (16) 32 (31) 59 (58) 176 (174) 513 (501)
64 - 16 (15) 30 (29) 56 (55) 158 (154) 533 (521)

128 - 15 (14) 28 (26) 54 (53) 148 (145) - -

64 × 64 grid of square bilinear elements, yielding nx = 4, 096. The parameters of
the stochastic discretization are summarized in Table 5.5. Recall that the Kronecker
product representation of the convection-diffusion Galerkin matrix Ĉ in (3.7) requires
M + 1 = 6 terms in Example 5.1. We employ right-preconditioned GMRES with
the diffusion preconditioner P̂L = I ⊗ L (see Section 4.2) to solve the discretized
convection-diffusion Galerkin equations. For the linear system of equations associ-
ated with the diffusion formulation we employ the CG method in conjunction with
the Kronecker product preconditioner P̂1 = G⊗A0 from [47] (where it is shown that
this choice is superior to a mean-based preconditioner I ⊗ A0). Here, A0 ∈ Rnx×nx

denotes the finite element stiffness matrix in (2.14) with coefficient function 〈exp(a)〉,
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Table 5.3

Example 5.2: GMRES iteration counts with AMG and exact (in parentheses) versions of the

mean-based preconditioner P̂0 = I ⊗ (L + N0) and diffusion preconditioner P̂L = I ⊗ L. In this
example, M = 5 and ` = 1.

P̂0 = I ⊗ (L+N0) P̂L = I ⊗ L
n σ d=1 d=2 d=3 d=4 d=1 d=2 d=3 d=4

16 0.1 5 (4) 5 (4) 5 (5) 5 (5) 24 (22) 25 (24) 25 (26) 26 (26)
32 - 6 (4) 6 (4) 6 (4) 6 (4) 23 (22) 25 (25) 25 (25) 25 (26)
64 - 6 (4) 6 (4) 6 (4) 6 (4) 23 (21) 24 (24) 24 (24) 24 (24)

128 - 5 (4) 5 (4) 5 (4) 5 (4) 21 (21) 22 (22) 22 (22) 22 (23)
16 1.0 8 (7) 9 (9) 10 (10) 10 (10) 27 (26) 30 (31) 32 (33) 33 (34)
32 - 8 (7) 9 (8) 9 (9) 10 (10) 26 (25) 29 (30) 31 (32) 32 (33)
64 - 7 (7) 8 (8) 9 (9) 9 (9) 25 (24) 28 (28) 30 (30) 30 (31)

128 - 7 (6) 8 (8) 8 (8) 9 (9) 23 (23) 26 (27) 28 (28) 29 (29)
16 2.0 10 (10) 12 (12) 14 (14) 16 (16) 28 (28) 34 (34) 37 (38) 39 (40)
32 - 10 (9) 12 (12) 14 (14) 15 (15) 28 (27) 33 (33) 36 (37) 38 (39)
64 - 9 (9) 11 (11) 13 (13) 14 (14) 27 (26) 31 (31) 34 (35) 36 (37)

128 - 9 (9) 11 (11) 12 (12) 13 (14) 25 (24) 29 (30) 32 (33) 34 (34)

Table 5.4

Example 5.4: GMRES iteration counts with AMG and exact (in parentheses) versions of the

mean-based preconditioner P̂0 = I ⊗ (L + N0) and diffusion preconditioner P̂L = I ⊗ L. In this
example, M = 10 and ` = 0.5.

P̂0 = I ⊗ (L+N0) P̂L = I ⊗ L
n σ d=1 d=2 d=3 d=4 d=1 d=2 d=3 d=4

16 0.1 6 (5) 6 (5) 6 (5) 6 (5) 24 (24) 26 (27) 27 (27) 27 (27)
32 - 6 (5) 6 (5) 6 (5) 6 (5) 24 (23) 25 (26) 26 (27) 27 (27)
64 - 6 (4) 6 (5) 6 (5) 6 (5) 23 (22) 24 (24) 25 (25) 25 (26)

128 - 6 (4) 6 (4) 6 (4) 6 (5) 21 (21) 23 (23) 23 (24) 24 (24)
16 1.0 10 (10) 12 (12) 14 (14) 15 (15) 28 (29) 32 (33) 35 (35) 37 (38)
32 - 10 (9) 12 (12) 13 (13) 14 (15) 28 (28) 32 (32) 34 (34) 36 (36)
64 - 9 (9) 11 (11) 13 (12) 14 (14) 26 (26) 30 (31) 32 (33) 34 (35)

128 - 9 (9) 11 (10) 12 (12) 13 (13) 25 (25) 29 (29) 30 (31) 32 (33)
16 2.0 14 (14) 20 (20) 24 (24) 30 (30) 31 (31) 37 (38) 42 (43) 47 (48)
32 - 13 (13) 19 (20) 24 (24) 28 (29) 30 (31) 37 (37) 41 (42) 46 (47)
64 - 13 (13) 18 (19) 23 (23) 27 (28) 29 (29) 35 (35) 39 (40) 44 (45)

128 - 12 (12) 17 (18) 21 (22) 26 (26) 28 (27) 33 (34) 37 (38) 41 (42)

and G ∈ Rnξ×nξ is a specific linear combination of the stochastic Galerkin matrices
{Gα : α ∈ I2d}. The solver methodologies are summarized in Table 5.6. The stop-
ping criterion is ‖rk‖2 < 10−8‖b‖2 for both approaches. Once again, we replaced the
action of L−1 and A−1

0 by one AMG V-cycle.

We present the preconditioned CG and GMRES iteration count along with itera-
tion time and setup time for the preconditioners in Tables 5.7, 5.8 and 5.9, respectively.
Timings are elapsed times, in seconds. The numerical experiments were performed
on a single processor of a four processor quad-core Linux machine with 128 GB RAM
using MATLAB 7.10.

The trends for the CG and GMRES iteration counts presented in Table 5.7 agree
well with the observations made in [47] and in Section 5.1.1. As previously shown in
[47], the CG iteration counts deteriorate for large values of the standard deviation σ of
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Table 5.5

Example 5.1: Number of stochastic d.o.f.s nξ , total number of d.o.f.s nx · nξ , and number of
terms |I2d| in Kronecker product representation (2.16) of the Galerkin matrix associated with the
diffusion formulation.

d=1 d=2 d=3 d=4 d=5 d=6
nξ 6 21 56 126 252 462

|I2d| 21 126 462 1,287 3,003 6,188
nx · nξ 24,576 86,016 229,376 516,096 1,032,192 1,982,352

Table 5.6

Iterative solver types and preconditioners, and costs of matrix-vector products, for the diffusion
and convection-diffusion formulations.

formulation solver preconditioner cost mat-vecs

diffusion CG P̂1 = G⊗A0 O(nxn
2
ξ)

convection-diffusion GMRES P̂L = I ⊗ L O(nxnξ)

the log-transformed diffusion coefficient and degree the d of the chaos polynomial. In
contrast, as has been shown above, performance of GMRES is only slightly sensitive
to variations in σ and d, and at most 27 GMRES iterations are required for the range
of parameters considered here. Moreover, the amount of time needed for the diffusion
formulation is dramatically larger. This is because the associated Galerkin matrix is
block dense so that matrix-vector products are very expensive (see Table 5.6). Be-
cause it depends linearly on the stochastic random variables, the convection-diffusion
formulation avoids this difficulty and the costs of matrix-vector products are signif-
icantly lower. Finally, the setup costs for the Kronecker product preconditioner P̂1

increase with the degree d of the chaos polynomials (see [47] for details), whereas the

setup costs for the diffusion preconditioner P̂L (and its AMG version) are clearly in-
dependent of all parameters of the stochastic discretization. The setup timings listed
in Table 5.9 agree with this observation.

Table 5.7

Example 5.1: Iteration counts for the discretized diffusion formulation and for the discretized
convection-diffusion formulation.

diffusion: CG convection-diffusion: GMRES
σ d=1 d=2 d=3 d=4 d=5 d=1 d=2 d=3 d=4 d=5

0.1 7 8 8 9 9 5 6 6 6 6
0.2 8 9 11 12 12 6 6 6 6 6
0.4 10 13 16 19 21 6 7 7 8 8
0.6 12 18 23 28 32 7 8 9 9 9
0.8 15 23 32 41 49 8 9 10 11 11
1.0 17 29 43 57 72 8 10 12 12 13
2.0 32 78 152 257 393 11 16 20 24 27

We note that the infinite-dimensional weak formulations (3.2) and (2.7) are equiv-
alent as was observed in Section 3. However, this is not the case for the discrete weak
formulations (3.3) and (2.13) since v · exp(−a(M)) /∈ Xh ⊗ Sd for v ∈ Xh ⊗ Sd. This
observation is consistent with the results in Table 5.10 where the maximal difference
of the chaos coefficients u

(cd)
i,j and u

(diff)
i,j determined by the Galerkin equations (3.3)
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Table 5.8

Example 5.1: Iteration time (in seconds) for the discretized diffusion formulation and for the
discretized convection-diffusion formulation.

diffusion: CG convection-diffusion: GMRES
σ d=1 d=2 d=3 d=4 d=5 d=1 d=2 d=3 d=4 d=5

0.1 0.35 5.64 53 517 2,712 0.28 0.88 2.71 6.23 13.1
0.2 0.33 6.11 89 682 2,972 0.24 0.83 2.34 6.26 12.9
0.4 0.38 9.88 108 1,122 5,916 0.24 0.98 2.75 8.37 17.3
0.6 0.46 11.4 155 1,358 8,521 0.29 1.17 3.60 9.53 19.8
0.8 0.58 17.2 218 2,104 11,486 0.33 1.26 4.03 11.6 23.8
1.0 0.65 17.5 288 3,214 17,905 0.33 1.41 4.83 12.7 29.4
2.0 1.18 50.0 1,003 12,031 100,503 0.46 2.32 8.68 28.3 71.9

Table 5.9

Example 5.1: Setup time (in seconds) for the AMG versions of the Kronecker product precon-

ditioner P̂1 = G ⊗ A0 and for the diffusion preconditioner P̂L = I ⊗ L, respectively.

diffusion: P̂1 = G⊗A0 convection-diffusion: P̂L = I ⊗ L
σ d=1 d=2 d=3 d=4 d=5 d=1 d=2 d=3 d=4 d=5

0.1 1.11 1.10 1.29 1.74 3.14 1.12 1.05 1.05 1.05 1.07
0.2 1.06 1.10 1.29 1.76 3.17 1.06 1.05 1.05 1.05 1.05
0.4 1.05 1.10 1.28 1.77 3.05 1.05 1.05 1.05 1.05 1.06
0.6 1.05 1.11 1.28 1.76 3.10 1.05 1.06 1.05 1.06 1.05
0.8 1.06 1.10 1.28 1.76 3.06 1.05 1.05 1.05 1.06 1.06
1.0 1.06 1.11 1.30 1.80 3.30 1.06 1.06 1.05 1.05 1.05
2.0 1.06 1.11 1.28 1.74 3.02 1.05 1.05 1.06 1.05 1.05

Table 5.10

Example 5.1: Maximal variation max
i,j

|u
(cd)
i,j −u

(diff)
i,j | of the nx ·nξ solution coefficients associated

with the convection-diffusion formulation (3.3) and the diffusion formulation (2.13).

σ d = 1 d = 2 d = 3 d = 4 d = 5
0.1 6.410 6.410 6.410 6.410 6.410 ×10−5

0.2 1.319 1.282 1.282 1.282 1.282 ×10−4

0.4 9.840 2.564 2.564 2.564 2.564 ×10−4

0.6 31.744 3.846 3.846 3.846 3.846 ×10−4

0.8 71.424 5.129 5.129 5.129 5.129 ×10−4

1.0 131.120 6.411 8.688 6.411 6.411 ×10−4

2.0 68.985 7.588 11.251 1.412 2.746 ×10−3

and (2.13), respectively, is presented.

6. Conclusions. In this study, we have tested iterative solvers for Galerkin dis-
cretizations of a steady-state diffusion problem with log-transformed random diffusion
coefficients. Specifically, we have focused on a reformulated version of this problem
in terms of a convection-diffusion equation with stochastic convective velocity. We
have introduced and analyzed two block diagonal preconditioners for the associated
Galerkin equations, one based on the diffusive part of the operator and the other one
based on a convection-diffusion operator where the log-transformed diffusion coeffi-
cient has been replaced by its mean value. Spectral inclusion bounds obtained for the
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preconditioned Galerkin matrix are insensitive to the characteristic mesh size of the
spatial discretization and only slightly sensitive to the degree of the chaos polynomials
used in the stochastic discretization and the standard deviation of the log-transformed
diffusion coefficient. Numerical tests showed that the mean-based preconditioner can
outperform the diffusion preconditioner for problems where a mean convective part
occurs. In addition, GMRES in combination with a simple block-diagonal precon-
ditioner employed for the iterative solution of the convection-diffusion formulation
far outperformed the CG method used with a more elaborate Kronecker product
preconditioner to solve the associated diffusion formulation. In conclusion, the avail-
ability of a robust iterative solver together with cheap matrix-vector products make
the convection-diffusion formulation of the log-transformed random diffusion problem
extremely appealing.
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