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Abstract

Short-lived TCP traffic (e.g., web mice) composes the majority of the current In-
ternet traffic. Accurate traffic modeling of a large number of short-lived TCP flows
is extremely difficult due to (i) the interaction between session, transport, and net-
work layers; and (ii) the explosion of the size of state space when the number of flows
is large. Typically, ad-hoc assumptions are required for the analysis to be tractable
under a certain regime.

We introduce a stochastic model of a bottleneck ECN/RED gateway under a large
number of competing TCP flows. Our main result shows that as the number of flows
becomes large, the queue dynamics and the aggregate traffic are simplified and can
be accurately described by simple statistical recursions. These recursions can be eval-
uated independently of the number of flows, and hence the resulting traffic model
is scalable. Furthermore, the limiting model is also consistent with other previously
proposed models in their respective regime. Simulation results are also presented to
confirm the results.

1 Introduction

Due to the growing size and popularity of the Internet, Internet traffic modeling has become
an important research area. Internet traffic consists of many heterogeneous traffic sources,
the majority of which utilize TCP congestion control mechanism [4]. One type of applica-
tions, such as FTP and Telnet, are relatively long-lived, while another type of applications
are typically short-lived, e.g., web browsing.

Characterization and modeling of TCP traffic yields an understanding of the interac-
tion between the transport layer (TCP) and the network layer. Such interaction is well-
understood in the context of a single long-lived TCP flow. However, when the number of

*This material is based upon work supported by the Space and Naval Warfare Systems Center — San
Diego under Contract No. N66001-00-C-8063. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views of the Space and
Naval Warfare Systems Center — San Diego.



TCP flows is large, straightforward modeling usually results in a model that is not scalable
because of the explosion of the size of the state space required to model all flows. Fur-
thermore, for short-lived TCP flows, one has to further take into account an extra layer of
dynamics, i.e., the session layer. These present two major obstacles to modeling short-lived
TCP flows accurately.

Existing literature on short-lived TCP traffic modeling usually relies on ad-hoc assump-
tions, which render the model to be accurate only in certain regimes. Hollot et al. model
short-lived TCP flows as exponential pulses, whose interarrival times are exponentially dis-
tributed, i.e., Poisson process [3]. They characterize the statistics of these exponential pulses
using their time reversal, which is described by the shot noise process. This model assumes
that the short-lived flows last only a few round-trip times and do not experience packet drops
or marks, and hence implicitly assumes that congestion level is relatively low. Furthermore,
flows are always in either congestion avoidance (long-lived connections) or slow start (short-
lived connections), and they do not transition from one to the other. In other words, they do
not explicitly model the session dynamics, where connections arrive and leave the network
after transfers are completed. A similar approach to modeling short-lived flows is also taken
in [7].

On the other end of the spectrum, Kherani and Kumar suggest that as the bottleneck
capacity becomes very small, the queueing model for the bottleneck queue can be accurately
described as a processor sharing queue [6]. When the capacity is large, however, the processor
sharing model becomes less accurate because newly arrived TCP flows cannot fully utilize
their allocated bandwidth. In fact, in the large capacity regime these short-lived flows may
terminate even before they can increase their transmission rates to fully utilize their allocated
bandwidth due to slow start.

The shortcomings of these models suggest a need for a unified model that is accurate in all
regimes, instead of being restricted to one regime or another. Since the number of connections
that share a bottleneck link is likely to be large, we follow the approach in [9] and [10],
which consider “macroscale” modeling of aggregate TCP flows competing for the capacity of
a bottleneck link [2]. Macroscale TCP models can be developed by systematically applying
limit theorems to derive a limiting traffic model when the number of TCP flows is large. The
potential benefits of doing so are three-fold. First, model simplification (with the promise of
scalability) typically occurs when applying limit theorems, with irrelevant details filtered out
without relying on ad-hoc assumptions. Second, limit theorems are central to the modern
theory of probability, and as such have been the focus of a huge literature that contains a
large number of results and techniques. Hence, given this large body of knowledge, it is
reasonable to expect the existence of suitable limit theorems (under very weak assumptions)
which can be applied to the situation of interest. Finally, in the networking context, resource
allocation problems are interesting in networks operating at high utilization, e.g., when the
number of users is large. In such a scenario, the limit behavior will become increasingly more
accurate as the number of users increases.

In this paper we extend the model in [10] and incorporate an additional layer of dynamics,
namely the session layer. We show that the queue size per session and the workload per ses-
sion brought in during a round-trip time converge to deterministic processes asymptotically
as the number of sessions increases. Furthermore, we demonstrate that the sessions becomes
asymptotically independent, indicating that the RED mechanism does alleviate the synchro-



nization problem among the connections. The rest of the paper is organized as follows. The
model and dynamics of network, transport, and session layers are described in Section 2,
followed by our asymptotic results in Section 3. Section 4 gives a brief discussion on the
results and a comparison with the other previously proposed models mentioned earlier. A
numerical example and simulation results are presented in Section 5 and 6, respectively. We
conclude the paper with a suggestion for future work in Section 7.

2 The Model

In our model, we have three layers of dynamics, namely network, transport, and session
layers, which interact with each other through mechanisms that will be specified shortly. At
the lowest level, the network is simplified to be a single bottleneck router with an ECN/RED
marking mechanism controlling the congestion level. The traffic injected into the network
is controlled by TCP congestion control mechanism in the transport layer, which reacts to
the marks from the network. Each TCP connection is initiated by a session. A session can
be either active or idle. If a session is busy, a file or an object is transferred through a TCP
connection. A busy period of a session lasts until it no longer has any more data to transfer,
at which time it goes idle. The duration of an idle period is random and represents the
idle time between consecutive file transmissions. When a new file/object to be transferred
arrives, the session becomes active again and sets up a new TCP connection. We now give
detailed descriptions of the model for each layer and the interaction of these three layers.
Let N = {1,---, N} be the set of sessions that share a bottleneck RED gateway. Time is
assumed to be discrete and slotted in contiguous time slots of duration equal to the round-
trip delay of TCP connections. We write XM to indicate the explicit dependence of the
quantity X on the number N of sessions. Equivalence in law or in distribution between
random variables (rvs) is denoted by =;. The indicator function of an event A is given

by 1[A4], and we use =, (resp. =>,) to denote convergence in probability (resp. weak
convergence or convergence in distribution) with n going to infinity.

2.1 Session Dynamics

Each session i € N is either active or idle. An idle session at the beginning of time slot
[t,t 4+ 1) does not have any packets to transmit in the time slot. An idle session in time
slot [t,¢ + 1) becomes active at the beginning of time slot [t + 1,¢ + 2) with probability
P,.,0 < P,. <1, independently of the past. In other words, the duration of an idle period
is geometrically distributed with parameter P,, and has a mean of 1/P,,. This attempts to
capture the dynamics of connection arrivals, where the interarrival times are reported to be
exponentially distributed [8]. * Let {U;(¢),7 € Nt = 0,1,---} be a collection of i.i.d. rvs
uniformly distributed on [0, 1]. Let 14y, (t+1)<p,.} be the indicator function of the event that
a new file/object arrives in the time slot [t + 1,¢ + 2) for an idle session i.

Let {F;(t),i € N;t =0,1,---} be a collection of i.i.d. non-negative integer-valued rvs
with a general distribution function F. The workload of a connection of session i that

'Recall that one can approximate an exponential rv X with parameter a with [X], which is a geometric
rv with parameter p =1 — e~ ?.



becomes active at the beginning of time slot [t,¢ + 1) is given by Fj(t). This workload
represents the total amount of workload a TCP connection brings in before it is torn down
rather than workload brought in by an object or a file. In other words, if a same TCP
connection is used to transfer more than one object while is alive, Fj(t) represents the total
amount of workload brought in by all objects during the active period. We denote the
remaining workload of connection 7 at the beginning of time slot [¢,¢ + 1) by X;(¢). Clearly,
X;(t) = 0 if session i is idle during [t, ¢+ 1). The evolution of X;(t) is given by the following:

N N N
Xi( )(t +1) = l{Xi(N)(t)>0} (Xi( )(t) - Az( )(t)) + l{Xi(N)(t)ZO}1{Ui(t+1)<Par}‘P1i(t +1), (1)

where AEN) (t) denotes the number of packets injected into the network by connection i at
the beginning of time slot [¢,¢ + 1). This will be explained in the following subsection.

2.2 TCP Dynamics

For each i € N, let Wi(N) (t) be an integer-valued rv that encodes the congestion window
size (in packets) at the beginning of time slot [t,# + 1). We assume that the range of rv
W) (t)is {0,1, -+, Wiax}, where Wi, is a finite integer representing the receiver advertised

window size of the TCP connection. We assume that the congestion window size of an idle
session is zero. When an idle session becomes active at the beginning of time slot [t,¢ + 1),
the congestion window size of TCP connection is set to one at the beginning of time slot
[t +1,¢+ 2). This models one round-trip delay for three-way handshake. Here we describe
how the congestion window sizes of active connections evolve. Each TCP source transmits
as many of the remaining data packets as possible that are allowed by its congestion window
in that time slot. In other words, suppose that connection i has Xi(N) () remaining packets
(or workload) waiting to be transmitted at the beginning of time slot [¢,¢ + 1),? the number
of packets connection i transmits at the beginning of time slot [t, ¢+ 1), denoted by AN (1),
is given by

AN (t) = min (W (1), XM (1)) . (2)

The congestion control mechanism of TCP operates in two different modes: slow start
(SS) and congestion avoidance (CA). A new TCP connection starts in SS. In SS, the con-
gestion window size is doubled every round-trip time until one or more packets are marked.
If a mark is received, then the congestion window size is halved and TCP switches to CA.
The congestion window size is limited by the receiver advertised window size W,.. Hence,
the evolution of the congestion window of connection ¢ in SS can be written as
Wiga(t + 1) = min (20 (8) V 1, W) MY (£ + 1)

) 2

(V)
+min ((W"T(t)hwm) (1= MM (t+1)) (3)

where a V b = max(a, b) and Mi(N) (t+1) is an indicator function of the event that no marks

have been received in time slot [¢,¢ + 1), i.e., M) (¢t + 1) = 1 when no packet from Session

2We refer to a TCP connection of an active Session i by connection i when there is no confusion.
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i is marked in the time slot and MZ-(N) (t + 1) = 0 when at least one packet is marked. The
marking mechanism will be explained in more detail in Subsection 2.3.

In CA, the congestion window size in the next time slot is increased by 1 if no marks are
received in time slot [t,¢ + 1), and if one or more packets are marked in time slot [¢,¢ + 1)
the congestion window in the next time slot is reduced by half. The congestion window size
in CA can be described by the following:

Wieh(t+1) = min (W™ (1) + 1, Winae) MOV (£ +1)

2y

(N)
+min ([WiT(t)} , Wmax) (1= M™(t 1 1)), (@)

We use {0, 1}-valued rvs {S™(1),i € N} to encode the state of TCP connections. We
interpret Si(N) (t) = 0 (resp. Si(N) (t) = 1) as connection i being in CA (resp. in SS) at the
beginning of the time slot [t,¢ + 1). Therefore, the complete recursion of the congestion
window size can be written as

(V) _
wipt(t+1) = 1{Xi(N)(t)7Wi(N)(t)>0} (5)

<[SM (O Wiss(t +1) + (1= SNV @) Wi calt + 1)),

where the first indicator function is used to reset the congestion window size to zero when
Session ¢ runs out of data to transmit and returns to its idle state.
Finally, the evolution of Si(N) (t) is given by

sME+1)=1 SMOM™M (¢ 4 1) (6)

)

+1

xMey-wM <oy T HxM @) -wNM (1)>0}

This equation can be interpreted as follows. Connection 4 is in SS in time slot [t + 1,¢ + 2)
if either (1) there is no packet left to transmit (so the connection resets) at the beginning of
the time slot or (2) the connection was active and in SS in time slot [¢,¢ + 1) and received
no mark in the time slot. From (6) we assume that a new TCP connection in SS is ready
to be set up after the previous connection is torn down after finishing its workload, and
the new TCP connection becomes active when a new file/object arrives initiating three-way
handshake.

2.3 Network Dynamics

In this subsection we explain how packets are marked to provide the congestion notification
to the active TCP connections. The capacity of the bottleneck link is NC' packets/slot for
some positive constant C'. The buffer size is assumed to be infinite so that no packets are
dropped due to buffer overflow. Thus, congestion control is achieved solely through the
random marking algorithm of the RED gateway.

Let Q™) (t) denote the number of packets queued in the buffer at the beginning of time
slot [¢,¢+1). Connection i injects AEN) (t) packets into the network, and they are put in the
buffer at the beginning of time slot [t,¢ 4+ 1). Let the rv

AM(1) = fj AN (@) (7)
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denote the aggregate number of packets offered to the network by the N sessions at the
beginning of time slot [¢,2+1). Hence, Q™) (¢)+A®™)(t) packets are available for transmission
during that time slot. Since the bottleneck link has a capacity of NC packets/time slot,
[Q(N) (t) + AN (t) — NC’]Jr packets will not be served during time slot [t,¢ + 1), and will
remain in the buffer. Hence, their transmission is deferred to subsequent time slots. The
number of packets in the buffer at the beginning of time slot [t + 1, +2), Q™) (¢ + 1), is
therefore given by

QM (t+1) = [Q™ (1) - NC + AM ()] " (8)
Each incoming packet into the router in time slot [¢t,# + 1) is marked with a probability
V) (Q(N) (t)), depending on the queue length at the beginning of the time slot [t, ¢+1). This
model approximates the case where the memory of the queue averaging mechanism is long,
which is the case for the recommended parameter settings of RED [1]. We represent this
possibility by the {0, 1}-valued rvs Mi(,];f) (t+1) (G =1,.., AZ(N) (t)) with the interpretation
that Mi(fjv) (t+1) =0 (resp. Mi(fjv) (t+1) = 1) if the jth packet from source i is marked (resp.
not marked) in the RED buffer. To do so we introduce the collection of i.i.d. [0, 1]-uniform
rvs {V;;j(t+1), ¢,j=1,---; t=0,1,---} that are assumed to be independent of other rvs.
The process by which packets are marked is as follows. For each i € N and j =1,2,..., we
define the marking rvs

N
M (E+1) = Live s t41)> F™M @M (1))}

so that the rv MZ-(,]JY) (t + 1) is the indicator function of the event that the jth packet from
source i is not marked in time slot [t,¢ + 1). The indicator function of the event that no
packets from connection ¢ in time slot [t,¢ + 1) are marked can now be written as

A(N) (t)
MMNM (@t +1) 1‘[ J(t +1) (9)

3 The Asymptotics

The main result of the paper consists of the asymptotics for the normalized buffer con-
tent as the number of sessions becomes large. This result is discussed under the following
assumptions (A1)-(A2):

(A1) There exists a continuous function f: Ry — [0, 1] such that for each N =1,2,...,
™ 2) = f(N'2), 22>0;
(A2) Foreach N =1,2,..., the dynamics (1), (5), (6) and (8) start with the initial conditions
QM) =0, wN0) =0, SM0)=1,and XM (0)=0; i=1,...,N. (10)
Assumption (A1) is a structural condition while (A2) is made essentially for technical conve-
nience as it implies that for each N and all ¢ =0,1,---, the rvs (WI(N) (1), g (1), x) (1)),

(WN ( ), SN ( ),X](VN) (t)) are exchangeable. Assumption (A2) can be omitted but at
the expense of a more cumbersome discussion.
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Theorem 1 Assume that (A1)-(A2) hold. Then, for each N = 1,2,... and t = 0,1, ...,
there exists a (non-random) constant q(t) and rvs (W (t), X (t), S(t)) such that the following
holds: (i) The following convergences take places:

Q(]]Vv)(t) B vqlt) and (11)
(WM (@), X1V (1), PV (1)) = n (W (1), X (1), S(1)) (12)
(ii) For any bounded function g : N* — R
¥ 2 (W0, X1V (0), S5V (1) 5w Elg(W(1), X(1),S)], (13)
Also, £ 5N AM @) 5§ E [min (W(t), X(1))] . (14)
Moreover, if the workload distribution F' has a finite second moment, then
Y XM () S VE[X (1) (15)

(iii) For any integer I = 1,2,..., the triplets {(W-(N)(t),X-(N)(t),S-(N)(t)),i =1,...,1}

1 1 1
becomes asymptotically independent as N becomes large, with

Jim PN (@), XM (), S () = (wi, @iy s), i =1, 1]

) 7

= [IP[W(),X(t),S() = (wi, i, si)] (16)
i=1
for any wy, ..., wy,x1,...,2; in IN and sq,...,s; in {0, 1}.

In addition, with initial conditions ¢(0) = 0, W(0) =0, S(0) =1, X(0) = 0, it holds
that

q(t+1) = (q(t) - C+E[AN)])" (17)

where A(t) = min (W (t), X (¢t)). Further, the recurrence
X(t+1) = Lix=0y L <pu ) F (T +1) + x>0 (X (1) = A1), (18)
A(t) =5 min (W (t), X(t)) , (19)

Wss(t 4+ 1) =5 min (2W (t) V 1  Winax) M (t + 1)
+ min < max) (1-M(t+1)), (20)

Wea(t+ 1) =g min ( + 1 s Winax) M(t + 1)
+ min ( max) (1—M(t+1)), (21)
Wt +1) = Lixp-wysoy - (SOWss(t+1) + (1 = S@)Wealt +1)),  (22)
S(t+1) =s Lixy-wn>0p SO M(E +1) + Lixy-w<oy (23)

holds in law, where

M(t+1) = Liyv(ey<a-aenan) (24)

for i.i.d. [0,1]-uniform rvs {U(t +1),V(t+1); t=0,1,...}.
Proof: The proof is given in A. n



4 Discussion

Theorem 1 shows that the dynamics of the queue at time ¢, denoted by QW) (t), can be
approximated by Ng¢(t) with ¢(¢) determined via a simple deterministic recursion, which is
independent of the number of sessions. The offered traffic into the network during the time
slot, AN)(t), can also be approximated by N - E [A(t)]. These approximations become more
accurate as the number of sessions becomes large, and the computational complexity does
not depend on N. The limiting model is therefore “scalable” as it does not suffer from the
explosion of state space, nor does it require any ad-hoc assumptions.

Theorem 1 also shows that the dependency between each session becomes negligible under
a large number of sessions, i.e., “RED breaks the global synchronization when the number
of sessions is large.”

Although the sequence {(q(t), W (t),X(t),S(t)), t = 0,1,...} is a time-homogeneous
Markov chain with values in Ry x {1,..., Wy} x Ny x {0, 1}, we shall not address here
the existence of the steady-state when ¢ — oo as complications arise due the fact that the
first component is degenerate (i.e., deterministic). However, we note that the numerical
calculations for the limiting model are very simple. The number of steps required for the
calculation for each time step is independent of N. We can determine ¢(t) through the
following steps:

(i) Let t = 0. Assume ¢(0) =0, (0) =0, X(0) =0, and S(0) = 1. Use E[A(0)] = 0 to
calculate ¢(1) = 0;

(ii) Use (18) through (23) with the corresponding ¢(t) to calculate the transition prob-
abilities and P[(W(t+1)=w, X(t+1)=2,S(t+ 1) =s)] for w € {0,..., Whax},
z € N;, and s € {0,1}. Then calculate E[A(t + 1)];

(iii) Use E[A(t + 1)] from (4i) to update ¢(t + 2) using (17);
(iv) Increase t by one then repeat steps (ii)-(iv).

We now consider the resulting model from Theorem 1 in the regime when C' is either
very large or very small with the following assumption

(A3) The marking function f : R — [0, 1] is monotonically increasing with f(0) = 0 and
limg, o0 f(x) =1

(A4) The average session layer input traffic P,, [ zdF(z) is strictly non-zero.

As C' — o0, it is easy to see that ¢(t) — 0. Hence the marking probability per flow
also converges to zero from (A3) for all ¢. Therefore, each incoming flow will always operate
in the slow start (exponential growth) mode and hence the resulting input traffic into the
network will become a multiplexing of (discrete-time) Poisson arrival of streams of random
number of packets, each of which doubles its window size every round-trip. The aggregate
input traffic is therefore similar to the shot-noise processes, which agrees with [3].

On the other hand, as C' — 0 the queue will start building up, and hence as t goes to
00, q(t) approaches oo. Thus, for large ¢, all TCP flows (including incoming TCP flows) will
experience marking probability close to one from Assumption (A3). Therefore, all active
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connections will be able to inject only one packet per round-trip into the network because
every packet transmitted will be marked, and TCP congestion window cannot grow larger
than one. Since the bottleneck router will transmit packets non-selectively, any active flow
will receive roughly equal throughput and hence the queue behavior approaches that of
processor-sharing, which is in agreement with [6].

5 Numerical Example

This section presents a numerical example to study the behavior of the queue size per flow.
The system and control parameters are set as follows:

C = 3 (packets/RTT), ¢~,, =2-N, ¢Y.. =10+ N, ppee = 0.1,

The initial values are set to W;(0) = 0,X;(0) = 0, and S;(0) = 1, and the queue size
is initialized to Q(0) = 0 at the beginning. The variables W;(t), X;(¢), and S;(t) evolve
according to (5), (1), and (6), respectively, and the queue size Q(t) is updated according to
(8). We assume the gentle mode of the RED gateway in order to have a continuous marking
function. The workload F;(t) ~ Geometric(p),i =1,2,---and t = 0,1, ---, where p = 0.01,
i.e., E[F;(t)] = 100 packets. The idle periods of sessions are geometrically distributed with
a mean of 20 time slots. The receiver advertised window size W,,,; is set to 64.

queue sizes per user
T T T

T
N=100
— N=250
N=500
7* — N=1000 []
— N=3000
— a@®

queue size per user
>

I I I I I I I I Lol
0 50 100 150 200 250 300 350 400 450 500
time (iteration)

Figure 1: Evolution of queue size per flow.

Fig. 1 plots the evolution of the queue size per flow with N = 100, 250, 500, 1,000, and
3,000 as well as the deterministic process ¢(t) computed through steps (i)-(iv) in Section
4. As expected, the oscillation in the queue size per flow decreases and the queue process
converges to ¢(t) with increasing N. Although we have not formally stated the convergence of
q(t) to a steady state, numerical examples indicate that for all reasonable set of parameters,
the queue size per flow exhibits stationary behavior after a short transient period for all
sufficiently large V.



6 Simulation

In this section we verify our analysis through ns-2 simulation results. In the simulation we
gradually vary the number of sessions from 25 to 1,000, and study the queue behavior. Other
system parameters are scaled with the number of sessions /N as follows:

CN =0.24- N Mbps, BN =25-N,
N =2-N, ¢~ =10-N, Ppas = 0.1,

Qmin

where C™ is the bottleneck link capacity, ¢X;, and ¢ are the threshold values used by the
RED gateway [2], and B” is the buffer size. The receiver advertised window size is set to 64
packets, and the packet size is set to 1,000 bytes. The exponential averaging weight of the
RED gateway is set to 0.02/N in order to have a similar time constant in all cases. A session
generates a workload that is exponentially distributed with a mean of 100 packets, and the
interarrival times of the new workloads for each connection are exponentially distributed
with a mean of 3.3 seconds. When a session runs out of data to transfer, it terminates the
TCP connection. A new TCP connection is initiated by the session when the next workload
arrives for the session. The round-trip propagation delays of the sessions are randomly
selected from [52, 121.5] ms, with a mean of approximately 87 ms. The gateway implements
the RED mechanism with ECN option, and the gentle mode of the RED mechanism is turned
on so that the marking function is continuous in the average queue size. Also, the drop_front_
option of the RED gateway is enabled, i.e., the RED gateway marks the packet at the front
of the queue rather than the packet that has just arrived, in order to reduce the feedback
delay. The TCP connections are Reno connections that are ECN capable, i.e., connections
react to ECN marks set by the gateway.

queue size per user

queue size per user

time (sec)
Figure 2: Evolution of queue size.

Fig. 2 shows the evolution of the queue size per flow with different number of sessions. As
one can see the magnitude of oscillation in the queue size per flow decreases with increasing
N, and the queue size per flow converges to a deterministic process as predicted by our
results.
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7 Conclusions

In this paper, we have developed a stochastic model for general TCP flows, which has taken
into account the interaction between three layers, namely the network, transport, and session
layers. The resulting model is scalable and is more accurate as the number of sessions grows
large. A sharper approximation can also be developed with a central limit theorem-type
complement similar to [10].

While the limiting result applies only to TCP flows with identical round-trip, it will be
of use in a number situations, e.g., the buffer dimensioning problem in an intercontinental
Internet link, where the intercontinental link is typically a bottleneck, its large propagation
delay dominates the round-trip delays of the connections, and the number of sessions is
extremely large. Also, our limited simulation results indicate a similar limiting behavior for
connections with heterogeneous round-trip delays.

Although we have yet to prove the existence of a steady state regime for the limiting re-
cursion identified here, the limited simulation results suggest the existence of such a steady
state under some conditions. Future work on this class of models also includes the incorpo-
ration of random round-trip delays and non-responsive UDP flows.
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A A. Proof of Theorem 1

A.1 Some simple and useful facts

To facilitate the presentation of the proof of Theorem 1, we begin with a few simple and
useful facts. Fix i = 1,..., N and consider an arbitrary bounded mapping g : N* — RR:
Through careful case analysis, it follows from (1), (5) and (6) that

g (e + 1), XV (e +1), S,V (t+ 1))
=1 =y (0. 1w, 1)<puy Filt + 1), 1)
L™ 0w ™ 0,5 =0}
x (MMt +1)F) (W), XM @) + (1 - MM+ 1)) B2 (w0 0), XM (1))
T w ™ 0,5 =1}
x (MM +1)F (W), X)) + (1 - MVt + 1) FF (W), XV (1))

1 oex™ g ew® 90 0,1), (25)
where the N x IN mappings F,, F; and F, are associated with g and defined as follows:
F} (W), xM(1) = g (min (W) + 1, Waae) , XM () = W (1), 0)
Ey (WM ), XM ) = g (mm ( )1,Wm) @) =WV ), o)
Fy (W0, X 0) = g (min (20(0) V1L Waa) XV (0) - WY 0),1) . (26)

Despite the complicate form of (25), it can be constructed intuitively. First, note that the
state of the triplet (X (t+1), W™ (t+1), 5™ )(t + 1)) depends on the state of the triplet
at time ¢. For example, if X\ () = 0, then W™ (¢ + 1) has to be zero and S™ (¢ + 1) is
always one while the value of Xi(N) (t + 1) depends on whether a new request arrives or not,
hence we have the first term on the RHS of (25). The rest of (25) can also be understood
in a similar fashion and the detail will be omitted here. This simple fact that any arbitrary
mapping of the triplet at time ¢ + 1 can be expanded as a function of the triplet at time
t with additional random elements that are independent of any events up to and including
time ¢ is crucial later in the proof of Theorem 1.

Let F; denote the o-field generated by the rvs {Q™)(0), I/VZ-(N)(O), X-(N)(O), Ui(s), Fi(s),

)

Vi(s),Vij(s) , i, = 1,2,... 5 s = 1,...,t }. with the rvs QM (¢), XM (t), 5™ (¢) and

W) (t) (i = 1,...,N) being all F;-measurable, it holds under the enforced independence
assumptions that

E M+ DA =1- fNQM@1), j=12,...

12



so that

E MY (t+1)|F] = 21 (27)
by conditional independence, where we have set
(N) (V) (V) (A ()
zM(t) = (1 - fMQWM (1)) (28)
It is now clear that -
N
M+ 1) = Ly <z (29)

It readily follows from (25) that

E g™t +1), XMt +1), Mt + 1)) F)
- I{Xi(N)(t):[]}E [9 (07 L, e1)<poy Fi(t + 1), 1)]

N N N N N N
1w ™ sV (20 OF W0, XN @) + (1= 27 0) 7™ 0, X7 (1))
N N N N N N
+ 1w ™ sV ey (20 OF W0, XN 0) + (1= 27 0) 7™ ), X7 (1)
F Locx™paw™ 900 1)
= F,(2," (0, W (0), XV (1), 5, (1)) (30)

where the mapping F, : [0,1] x N x IN x {0,1} — R is associated with ¢ through

Fo(z,w,z,5) = lp—oE [g (0, L r1)<pay Fi(t + 1), 1)]

+ 1wt l—o (ngl (w,z) + (1 — z)F;(w,x))
+ sy Lamyy (2F (w,2) + (1 = 2)F2 (w, 7))
+ 1{0<m§w}g(07 07 1) (31)

We note that E [g (0, l{Ui(t+1)<pM}Fi(t +1), 1)] always exists and is finite because the map-
ping ¢ is bounded. Further, the mapping F| is continuous with respect to the product
topology on [0,1] x N x N x {0, 1}.

Upon taking expectations on both sides of (30) we see that

Elg (W e+1, XM +1), 57+ 1)] = E[F, (2770, WiV 0), XV 1), 577 (1)) ] (32)

A.2 A Weak Law of Large Numbers

We introduce the following terminology to facilitate the discussion: For each t = 0,1,..., the
statements [A:t], [B:t], [C:t] and [D:t] below refer to the following convergence statements:

[A:t] For some non-random ¢(¢), it holds that

= nq(t); (33)



[B:t] For some {1,..., Wpax}-valued rv W(t), non-negative integer-valued rv X (¢), and
{0, 1}-valued rv S(t), it holds that

(WM (1), X1 0), ST (1)) =n (W (1), X(2), (1) (34)

[C:t] For any integer I = 1,2,..., the rvs {(Wi(N) (1), x® (1), Si(N) (t)) ,i=1,...,1} become

asymptotically independent with large N as described by (16) where (W (t), X (¢), S(t))
are the rvs occurring in [B:t];

[D:t] For any bounded mapping g : N* — IR, the convergence (13), (14) hold with (W (#),
X(t), S(t)) the rvs occurring in [B:t]. Moreover, if the file arrival distribution has a
finite second moment, then the convergence (15) also holds.

With the help of a series of lemmas, we shall prove the validity of the statements [A:t]-
[D:t] forallt =0,1,.... We do so by induction on ¢ and in the process we establish Theorem
1.

Lemma 1 Under (Al), if [A:t] and [B:t] hold for some t = 0,1, ..., then [B:t+1] holds
with W(t + 1), X(t + 1), S(¢t + 1) related in distribution to W (t), X (t), S(t) by (22), (18),
and (23).

Proof: Together the convergence [A:t] and [B:t] imply [5, Thm. 5.28, p. 150] the joint
convergence (N 1QM) (t), W™ (1), XM (1), S™M (1)) =n (q(t), W(t), X (¢),S(t)). Next the
continuity of the mapping f implies that of (y,w,z) — (1 — f(y))™™®) on R, x [0, 00) x
[0,00), so that

(ZM @), WM (1), XV (1), SV (1) =w (Z(8), W(t), X (1), S(t)) (35)
by the Continuous Mapping Theorem [5, Thm. 5.29, p. 150] with
Z(t) = (1 — f(q(t)))mmVOX®)

Consider (32) for any bounded arbitrary mapping g : N* — R, and recall that the
mapping Fj, defined by (31) is continuous on [0,1] x IN x IN x {0,1}. Consequently, the
Continuous Mapping Theorem can again be invoked to yield

Fy(ziM (), WiV (1), XM (1), SV (1)) = n Ey(2(t), W (1), X (2), S(t)), (36)
whence

lim E [F,(Z]"™ ), W™ (1), X{V (1), SV (1)] = B[F,(Z(t), W (1), X(1),S1)]  (37)

N—0

by the Bounded Convergence Theorem [5, Thm. 4.16, p. 108]. Combining (32) and (37) we
get

lim E [g(W™V (¢ +1), XV (¢ + 1), 7V (1)] = E[F,(Z(1), W(t), X (1), S@®)]  (38)

N—o00
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and since the bounded mapping ¢ is arbitrary, it follows immediately that
(Wit +1), XV (¢ +1), S+ 1)) =y (W(E+1), X(t+1),S(t+1))

for some {1,..., Whax}-valued rv W (¢ + 1), non-negative integer-valued X (t+1) and {0,1}-
valued rv S(t + 1) with

Elg(W(t+1), X(t+1),5(+1))] =E[F, (2(1), W(t), X(1), S(1))]- (39)
A moment of reflection and a comparison to the analysis in (30)-(32) will convince the reader
that (39) is equivalent to (18)-(23). =

Lemma 2 Under (Al), if [A:t] and [D:t] hold for some t = 0,1,..., then [A:t+1] also
holds.

Proof: From [A:t] and [D:t] ( specifically, (14) ), we conclude that

QM(t)
N

and the desired result is a simple consequence of the continuity of the function z — z™ as
we note that since

~C+ AN By alt) - C+E[AQ) (40)

N (¢ 41 M (¢ '
Q §V+ ) QNU_cﬁzgilAEN)(ﬂ

forall N =1,2,.... n

The proof of Lemma 2 also shows that

(N)
W EN Nq(t+1)

with non-random ¢(t + 1) determined by (17).

Lemma 3 Under (Al1)-(A2), if [A:t], [B:t] and [C:t] hold for some t = 0,1,..., then
[C:t+1] also holds.

Proof: = We first observe that for a fixed N, the triplets (Wi(N) (1), x (1), S (t) are
coupled only through the marking probability which depends only on Q™) (¢). Fix a positive
integer I. The rvs Vi(t+1),...,V;(t+1) are i.i.d. [0, 1]-uniform rvs which are independent
of F;. Thus, upon making use of the representation (3)-(4) with (29), we see that the rvs
W™t +1), XM (t4+1), SNt +1)), ..., (Wt +1), XM (£ 41), SN (¢4 1)) are mutually
independent given JF;. Consequently, for arbitrary bounded mappings ¢1,...,9r : N — IR,
we get

I
E [H Wt +1), XM+ 1), 5™t + 1)|’ﬁ]
=1
I
= TIE[aW ™ +1), xM(t+1), 5™ +1)|7]
=1
I
= T Fu (2@, W™ ), xM (@t +1), 85 + 1))
=1
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with the help of (30) and (31).
Now it follows from (16) in [C:t] that the joint convergence
W@, X0, 570 W (0, X7 (0, 577 (1)
=y (Wi(t), Xa(2), S1(2) ..., Wi(t), Xi(2), Si(t))

holds with limiting rvs (W (t), X1(t), S1(t)) ..., (Wi(t), X;(t), Si(t)) which are i.i.d. rvs each
distributed according to (W (t), X(¢),S(t)). As in the proof of Lemma 1, the arguments
leading to the convergence (36) also lead to

(

(Fou (21 (0), W™ (1), X7

=N (Fg, (Z1(t), Wh(t), Xa (¢
where the limiting rvs (Z;(t), Wi(t), X1 (t), S1
each distributed according to the pair (Z(t)
Convergence Theorem,

'), S (@)), ..., Fy (286, Wi (1), XM (2), S (1))
), S1(8)), .., Fy (Z1(t), Wr(1)), X1 (t), Si(t))

), X (), ..., (Zi(t), Wi(t), X1 (t), Si(t)) are iid. rvs
,W(t), X(t),S(t)). Therefore, by the Bounded

lim E [H WM+ 1), XM +1), 5™t + 1))]

N—o0 1

N—00

 mE [f[Fi(Zi(N)(t),Wi(N)(t)in(N)(t)aSz'(N)(t))]
= B[[T 0.0 %0 5.0)
= [ BF(Z0), W), Xi(t), Si(1))]

- HE gi(Wit + 1), Xi(t + 1), Si(t +1))] (41)

where the last equality made use of the relation (39). The desired result [C:t41] now follows
from (41) given that the mappings g1, ..., g; are arbitrary. n

Lemma 4 Under (A1)-(A2), if [A:t], [B:t] and [C:t] hold for some t =0, 1,. .., then [D:t]
holds.

Proof: Pick a mapping g : N* — IR. We begin by observing that under (A2) the rvs
(I/Vi(N) (1), Xi(N) (1), Si(N) (t)); i=1,..., N are exchangeable. As a result, we get

var [ N oWV (), X\ (1), i (1))]

= N2 g: var[g(VVi(N) (1), Xi(N) (1), Si(N) ()]

+ N°? i cov[g(WV (1), X1V (1), SV (1), g(W ™M (), X1V (t), S5 (8))]
1,j=1,i#]
= N tvarlgW ™M), XNV (1), S (2))]

~ e Seorlg(W) (), XM (0), (1)), g (W5 1), X5 1), SV 1)) (42)




Now let N go to infinity in (42): The validity of [C:t] and the Bounded Convergence
Theorem already imply

lim covlg(W{™ (), X{V(t), STV (1)), (Wi (1), XM (1), S8V (1))

N—00

= cov[g(Wi(t), Xu(t), Si(1)), g(Wa(t), Xa(t), Sa(t))] = 0 (43)

by asymptotic independence. On the other hand,

(V)

lim sup varlg(W{™ (1), X{™ (1), 51" (1))] < oo
N—oo
since ¢ is bounded.
Combining these observations we readily see that

lim var [+ 58, g™ (), XV (1), ™ (0)] = o,

N—00

whence, by Chebyshev’s Inequality,

2

N N N N N N P
% g (0, X1 (@), (1) - B [§ =g (0, XV (1), 57 ()] S w0,
This last convergence is equivalent to

Ly g @), X @), S5 () — B [ (1), XM (1), S{V ()] 5 w0

)

by exchangeability, and the desired convergence result (13) w immediate once we remark
under [B:t] that limy_o B [g(W™ (1), XV (1), S{V(#)) [ (W(t), X(t),S(t))]. Tt is

then straightforward to get (14) with g(W ™ (¢), X§N> (1) = A§N> (t) = min(W ™M (2), XM (#))
which is bounded by W, ax.
Finally, if the file arrival distribution F' has a finite second moment, the Convergence (1

follows from the dominated convergence theorem on (43) with g(I/VZ-(N) (1), XMt (t), S ( )

2

5)
X™M(t) and note that X\ (¢) is dominated by a random variable with the dlstrlbutlo F
]

A
which has a finite second moment.

We now conclude with a proof of Theorem 1: We first note that under (A1)-(A2) the
statements [A:t]-[D:t] trivially hold for ¢ = 0. Moreover, if [A:t]-[C:t] hold for some
t=0,1,..., then so do the statements [D:t] [B:t+1], [A:t4+1] and [C:t+1] by Lemma 4,
Lemma 1, Lemma 2 and Lemma 3, respectively. Consequently, the statements [A:t]-[D:t]
do hold for all t = 0,1, ... by induction and the validity of Claims (i)-(iii) of Theorem 1 is
now established. The dynamics (17) is a byproduct of the proof of Lemma 2, while (18)-(24)
are already contained in Lemma 1.
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