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Optical processors have potentially a major advantage ovetectronic proces-
sors because of their tremendous bandwidth. Massive pagdibm is another inherent
advantage of optical processors. However, it is traditiofig demonstrated with free
space components and seldom used for integrated opticalrafjprocessing. In this
thesis, we consider spatial domain signal processing in ged wave structures, which
brings a new dimension to the existing serial signal procé&sg architecture and takes
advantage of the parallelism in optics. A novel class of deds using holograms in
multimode channel waveguides is developed in this work.

Linear optical signal processing using multimode waveguwdolograms (MWHS)
is analyzed. We focus on discrete unitary transformation®ottake advantage of the
discrete nature of modes in multimode waveguides. We proveat arbitrary unitary
transformations can be performed using holograms in multiode waveguides. A
model using the wide-angle beam propagation method (WA-BPMs developed to

simulate the devices and shows good agreement with the thgomhe design princi-



ple of MWH devices is introduced. Based on the design prinég BPM models are
used to design several devices including a mode-order cate a Hadamard trans-
former, and an optical pattern generator/correlator. Optcal pattern generators are
fabricated to verify the theory and the model. Also, the bandidth and fabrication

tolerance of MWH devices are also analyzed.

Also, we examine the nonlinear optical switches which allothe integration
of MWHSs into modern optical communication networks. A simp optical setup
using an imaged 2-D phase grating is developed for charadtation of the complex
third-order nonlinearity @ to identify suitable nonlinear materials for integrated
optical switches. This technique provides a reliable way tcharacterize @ as new
materials are constantly being developed.

Finally, we demonstrate the concept of optical switching usg XPM in seg-
mented semiconductor optical ampli ers (SOA) based on therpven technology of
semiconductor waveguides. Segmented SOA switches allow ttounter-propagation
of control and signal pulses in the switch and avoid the probin of parasitic oscilla-
tions encountered in high gain SOA switches. A prototype d&e is experimentally
characterized to demonstrate the concept, and a model is ddoped to obtain opti-

mal parameters for future devices.
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Chapter 1
Introduction

1.1 Motivation

One major reason for considering optical signal processiigyits bandwidth
(speed) advantage over electronic processors. With the rease in the transmis-
sion speed in modern optical communication systems, the djgation of optical
signal processing in optical communication systems has bean active area of re-
search. An important class of operation involves e cient pocessing of optical pat-
terns consisting of multiple bits (words). The ability to process optical patterns
allows the realization of optical pattern recognition, andnore general tasks such as
matrix-vector multiplication. Matrix transformations such as the discrete Fourier,
the Hadamard, and the Haar transformations are useful for gfial signal processing
such as spectrum analyzing, Itering, coding and so on [1][2

In optical communications, the signals are generally trangitted serially using
guiding structures in the form of amplitude or phase encodedits. Most of the
current e ort in optical pattern processing uses linear or anlinear e ects in single
mode waveguide structures. A common approach for high speprbcessing is the
time domain bit by bit logical operation using nonlinear opical gates [3] just like in
electronic processors. Another approach for optical patte recognition is the cross-

correlation technique [4]-[8], using either a nonlinear hmgraphic medium [4][5],



nonlinearity in semiconductor optical ampli ers [7][8], @ linear delay line matched
Iters [6] to perform cross-correlation. However, the seal computation approach is
ine cient when more complicated processing such as matrixector multiplication
is needed.

The ine ciency of the serial computation approach for matrk-vector multi-
plication is illustrated by the following example. Matrix-vector multiplication can
be viewed as multiple cross-correlations in which a vectos cross-correlated with
the individual rows of a matrix. Consider multiplication of 8-bit words at 160 Gb/s
(the word rate is thus 160/8=20 G/s) with an 8 8 matrix as an example, which
involves 56 additions for calculating the 8 dot products usg electronic processors.
This would require a processor speed of 580 G = 1.12 T calculations per second.
Even for 4-bit words, the electronic processor speed has taeed 480 G calculations
per second. Modern desktop computers typically run at a cleeate of 2 GHz. Only
super computers consisting of multiple parallel processoor dedicated processing
chips using parallel architecture can deliver the requiregrocessing, which leads us

to explore the possibility of parallel optical signal procgsing using integrated optics.

1.2 Parallel processing using linear optics

In addition to speed, another advantage of optical signal pcessing is its
massive parallelism (connectivity). With parallelism, itis possible to complete com-
plicated computations in a single operation. For exampleniimage processing, an

entire image can be processed all at once using optical syste instead of sequential



processing of each pixel. This advantage is well known andshaeen explored mainly
in the spatial domain signal processing, leading to the dde@ment of holography,
spatial light modulators, optical neural networks, and maw other interesting appli-
cations [1][2]. Traditionally, spatial domain optical sigal processing is performed
using free space optics [9][10], which involves bulky opdién contrast to the small
guided wave components used in optical communications. Asesult, parallelism is
rarely utilized in guided wave optical signal processing. il recently, little e ort
has gone into spatial domain signal processing in guided weastructures [11][12]. In
this thesis, we consider spatial domain signal processingguided wave structures,
which brings a new dimension to the existing serial signal pcessing architecture

and takes advantage of the parallelism in optics.

1.3 Nonlinear optical processing

There is a limit to the types of operations that can be performd with linear
transformations. For many applications, we would also likeo be able to implement
Boolean algebra, thresholding, and gating functions, whiaequire nonlinear optics.
The thresholding function enables the digitization of sigals. The gating function
allows serial to parallel conversion of optical signals as@ained in section 1.6. These
applications have been demonstrated using nonlinearity ibers and semiconductor
waveguides [15][16] or using spectral holography with naméar optics [17].

The general requirement for these nonlinear operations igrfthe light to ac-

quire a phase shift in the processor. For integrated optical procesrs, strong



nonlinearities are required at short waveguides in order tobtain  phase shift.
The development of semiconductor optical ampli er (SOA) [&] technology enables
the realization of various integrated nonlinear optical ppcessors. The main draw-
back of a SOA based switch is that extra power is required to nmain gain in the
waveguides. No extra power would be required for materialstiva su ciently large
third order nonlinearity, © [19]. One class of promising materials for integrated
nonlinear processors is nonlinear polymers with a fast rafitive index nonlinearity.
Unfortunately, we have no suitable nonlinear polymers forrpactical implementation
at present. Instead, the focus is on characterizing the nonéarity of new ma-
terials as they are constantly being developed through DARYs super molecular
photonics (MORPH) program. Also, new semiconductor mateals grown by the
molecular beam epitaxy (MBE) facility in the Laboratory for Physical Sciences are

being tested.

1.4 Scope of this thesis

In order to utilize the parallelism of optics for signal proessing in guided wave
structures, it is natural to consider multimode waveguides In chapter 2, linear
optical signal processing using multimode waveguide holtagns (MWHS) [13][14]
is analyzed. The MWH consists of a multimode channel wavegi@ with a surface
relief hologram fabricated on top on the waveguide. We focum discrete unitary
transformations to take advantage of the discrete nature ahodes in multimode

waveguides. We prove that arbitrary unitary transformations can be performed



using holograms in multimode waveguides. Di erent functinalities are explored,
and the limitations of this class of devices are analyzed imapter 3.

Also, we examine the nonlinear optical switches which allothie integration of
MWHs into modern optical communication networks. We consil a simple switch
con guration using cross-phase modulation (XPM) [20] in nolinear waveguides.
For integrated optics, strong nonlinearities are requireth the waveguides. In chap-
ter 4, a simple optical setup using an imaged 2-D phase gragiff21] is developed
for characterization of the complex third-order nonlinedgty © to identify suitable
nonlinear materials for integrated optical switches. A ndimear polymer is charac-
terized using this technique.

Finally, we demonstrate the concept of optical switching usg XPM in seg-
mented semiconductor optical ampli ers (SOA) based on therpven technology of
semiconductor waveguides in chapter 5. A prototype device experimentally char-
acterized to demonstrate the concept, and a model is devetapto obtain optimal
parameters for future devices.

The subsequent sections provide a brief review of past worklating to this

thesis.

1.5 Discrete spatial optical signal processing in multimadwaveg-

uides using linear optics

We focus on processing of optical patterns using integrategtics. A particular

important class of operation that includes correlation, dicrete Fourier transforms



and Hadamard transforms involves multiplication of vecta by unitary matrices.
Many of these operations have been demonstrated with cohetrspatial signals using
conventional free space holography, and this technologydsscribed in various texts
[1]-[20], [22]. Planar holographic techniques using slalaveguides combine both the
advantages of traditional holography and integrated optie [23]. In this thesis, we
develop the theory necessary for designing holograms wittguided mode structures
to create compact devices that perform unitary operations.

The discrete Fourier and the Hadamard transforms have beemgposed using
single-mode star networks [24] [25] as shown in Fig. 1.1 or itmode interference
(MMI) waveguides [26]. Also, it has been shown that arbitrar unitary operation
can be realized with combinations of beam splitters, phasdifers, and mirrors
[27]. The holographic approach is another versatile techquie for implementation of
di erent transformations which can be readily implementedusing integrated optics.
Linear transformations using a holographic matrix-vectomultiplier incorporating a
slab waveguide with integrated 2-D lenses has been demoastd in photorefractive
waveguides under the assumption of undepleted inputs as shoin Fig. 1.2 [28].

In this thesis, we develop the theory for MWHSs, which is desitred in chapter 2.
By implementing holograms in a multimode channel waveguideve take advantage
of the discrete nature of the modes for e cient realization bdiscrete mathematical
operations. Modeling, fabrication, and analysis of MWHs arpresented in chapter
3. Unlike the previously described approach [28], our metdodoes not require

waveguide lenses and couples all of the input optical powes the output.
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Figure 1.1: Star network that performs an eighth-order digete Fourier transform.
The circles represent 3 dB couplers; the boxes represent addpohase shifts of value
g2 =N , whereq s the integer shown in the box [25].
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Figure 1.2: Architecture for a holographic integrated optial vector-matrix multiplier
[28].
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Figure 1.3: Schematic of an optical processor with serial parallel conversion using
splitter, delay lines, and fast optical switch.

1.6 Nonlinear optical switches using cross-phase modutati (XPM)

in nonlinear waveguides

The parallel processing architecture considered in this éisis are di erent from
the common serial architectures used in modern optical conumication system. In
order to utilize the spatial domain processors in traditioal serial architectures,
serial to parallel conversion and nonlinear switching futions are also needed [17].
A straightforward way of implementing serial to parallel caversion using splitter
and delay lines is illustrated in Fig. 1.3. In this architectire, optical switches are
needed to select the processed pulses for further opticaledectrical processing.

A simple con guration to perform all optical switching is to use cross-phase
modulation (XPM) [20] in nonlinear waveguide (NLWG) followed by a Iter as
illustrated in Fig. 1.4. The equations for pulse propagatio in nonlinear waveguide
are derived in chapter 5. It will be shown that the nonlineaty in refractive index is
responsible for the switching function. In this thesis, weeakcribe a simple method to

identify materials for the NLWG and explore all optical swithing using a segmented
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/\
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Figure 1.4: Schematic of an optical switch using XPM and optal Itering. NLWG:
nonlinear waveguide.

semiconductor optical ampli er (SOA) as the NLWG.

1.6.1 Study of materials for ultrafast nonlinear switches

The requirement on the nonlinear switches is that the respse has to be fast
enough for operation in modern optical communication systes (typically < 10 ps).
The ultrafast refractive nonlinearity in optical bers has been used as the NLWG
in Fig. 1.4 to demonstrate all optical demultiplexing [29]30]. In these approaches,
the signal spectrum is broadened by the pump induced frequenshift via XPM
and then selected by appropriate lters. The main drawback®f these schemes is
that relatively long bers are required. For example, 3.4 knof ber was used in ref.
[29], and 5 km of ber was used in ref. [30]. Recently, 80 Gb/sethultiplexing using
2 m of highly nonlinear ber was reported [31]. Although grealength reduction is
achieved by the development of highly nonlinear bers, it istill desirable to perform
the switching function using integrated optics.

For an integrated solution, materials with large nonlineamdex coe cient need



to be identi ed. The nonlinear index coe cient, n,, is proportional to the real part
of the third order nonlinearity, ), of materials; the imaginary part of &, causes
loss due to two photon absorption and limits the e ective ditance of the waveguide
[20]. Degenerate four-wave mixing (DFWM) [32] is a sensitvtechnique for studies
of the © of nonlinear materials. Typically, the measured signal isrpportional
to j ®j2, but the phase of @ is not available. A simple optical arrangement for

the measurement of the complex (131)11 [21] using DFWM with an imaged 2-D phase

grating is developed and described in chapter 4.

1.6.2 Ultrafast optical switching using XPM in semiconductr optical
ampli ers

The gain/loss and index dynamics in a semiconductor opticampli er (SOA)
make it a possible candidate for the NLWG in Fig. 1.4. Howevethe nature of the
nonlinearity in SOASs is di erent from the ultrafast refractive nonlinearity in bers.
The fast nonlinearity associated with saturation is accongmied by slow relaxation
[18] which limits its application in high speed operationsSpectral Itering can be
used to mitigate the e ect of slow relaxation [33]. A simplecheme [34] for ultrafast
optical switching using nonlinearities in semiconductor aveguide has been recently
demonstrated using the same con guration as in Fig. 1.4; and was followed by
reports from other groups [35] [36]. Similar to the opticalvgitches based on re-
fractive nonlinearity, this approach also uses a frequenghift induced by transient

nonlinear phase shift; and a lIter is used to select the sighavith frequency shift

10



and to reject the signal without frequency shift. This techique allows ultrafast gate
operation unrestricted by the slow nonlinearity relaxatio. However, this technique
also presents a number of issues. First of all, high gain isqrered in the ampli-

er, which can result in parasitic oscillation in the system Second, strong control
and weak signals co-propagate in the SOA. Their separatioequires a very high
contrast Iter, which is di cult to implement in integrated optics. Also, for many
applications that require cascaded gates, it is not desirbto operate at di erent

wavelengths for the control and the signal.

The problem with co-propagating switches can be alleviatedith a short loss
section and a longer gain section as will be explained in chiap5. In the same chap-
ter, we describe the theory, modeling, and experiment of w#ffast optical switching
using SOAs based on this general scheme. A improved designusing a segmented
SOA with a long ampli er section and a short saturable absorér section is proposed.
Optical sampling technique is used to test a prototype dewicfor demonstration of

the operating principle.
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Chapter 2
Theoretical Analysis of Multimode Waveguide Holograms (M\WMs)

2.1 Introduction

In this chapter, discrete unitary transformations using cmputer generated
volume holograms in multimode channel waveguides are anzadyl. The general case
of mode transformations in Fig. 2.1 is considered rst. Thenput can be considered
as a linear combination of the waveguide modes. The amplitadof these modes
can be expressed in vector form a&. The multimode waveguide with multimode
waveguide hologram (MWH) transforms the input mode amplitde vector A (0) to
the output mode amplitude vector A (L) through the unitary matrix H. We will
use coupled mode theory [37] to show that arbitrary unitary mde transformations
can be performed on coherent spatial signals using the MWHSs.

Next, an architecture for optical matrix-vector multiplication as shown in Fig.
2.2 is discussed, where the amplitudes of light in the accegaveguides represent the
input and output vectors. In this case, the MWH transforms tte input vector P (0)
to the output vector P (L) through the unitary matrix U. It is shown that arbitrary
unitary matrix-vector multipliers can be implemented usiy MWHSs in multimode

interference (MMI) devices [38] without the need for wavegde lenses (see Fig. 1.2).

The general design approach of MWHs is discussed, and an ititte design

12
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Figure 2.1: Schematic of unitary mode transformer using MWHA,;(0) and A;(L)
are the amplitudes of theith mode at the input and output, respectively. H is the
unitary matrix representing the MWH.

[RO)] [B(Z) |
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_[—]’\,{0)_ ﬁ | BAZ)]

Figure 2.2: Schematic of matrix-vector multiplier using MVWH. P;(0) and P;(L) are
the amplitudes of theith single mode access waveguide at the input and output,
respectively. U is the unitary transform matrix of the device.

13



method for MWHSs is outlined. For matrix-vector multipliers at imaging lengths
[38] of the MMIs, it is shown that the imaging property of MMIscan be used to
simplify the calculation of MWHSs to perform the desired trasformations. We also

mathematically show the equivalency of these two design amaches.

2.2 \Wave equation for electric eld in optical waveguides

In this section, the fundamental equations describing elgomagnetic wave
propagation in dielectric optical waveguides are summagd.

The electromagnetic elds inside a optical waveguide safis Maxwell's equa-

tions: [39]
r E = o%t, (21)
roH=(m)S (2.2)
r (H)=0; (2.3)
r (n?E)=0; (2.4)

whereE is the electric eld, H is the magnetic eld, o and , are the permittivity
and permeability of vacuum, andn is the refractive index pro le of the waveguide.
In the above expressions, we assume that the waveguide hascoorent source or
free charged = =0).

Next, assuming the electromagnetic eld oscillates at an gular frequency! ,

we obtain the following phasor expressions f& and H,

E(r;t) = RefE(r)exp('t )g; (2.5)
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H(r;t) = RefH(r)exp('t )g: (2.6)

With these expressions, we can rewrite the Maxwell's equatis (2.1)-(2.4) in terms

of E and H as,

r E= jl oH; 2.7)
r H=jl (ond)E; (2.8)
r (H)=0; (2.9)

r (n?E)=0: (2.10)

By computing the curl,r , of (2.7) and using the vector identity,r (r E)=

r(r E) r Z2E, we obtain the vectorial wave equation for the electric eldE
’E + Lim E +KenE=0; 211
r r Fr (n9) ¢n“E =0; (2.11)

where kg is the wave number in vacuum and is related to the speed of ligin
vacuum, ¢, as

Pp—

ko =1 00— (212)

!
E.
When the index prole n is constant in the medium, or when the spatial

variation of n is small over distances of the order of wavelength, the vecia wave

equation (2.11) can be reduced to the wave equation (Helmkolequation) for E,
r 2E + k3n’E =0: (2.13)

This approximate form of the wave equation is used throughothe analysis in this

thesis.
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2.3 Waveguide modes

Now, we consider a waveguide whose structure is uniform inglz direction.
Assuming the electric eld has a particular polarization, ay parallel to x, we can
write,

E=% (xy)exp( jz); (2.14)
where is the propagation constant to be determined. The exponeati factor

exp( j z ) contains all the z dependence, so that (x;y) is z-independent. Substi-

tuting (2.14) into (2.13), we obtain,
r2 +(kin> % =0; (2.15)

wherer 2 is the Laplacian in the lateral directions and is expressedsa

@ @.
T (2.16)

ra

The solutions to the eigenvalue equation (2.15) are the mosl®f the multimode
waveguide, and the propagation constant, can be calculated from the eigenvalue.
The waveguide supports a nite number of guided modes, and ¢huncon ned radi-

ation modes are not considered in the subsequent analysis.

2.4 Two-dimensional representation of the multimode waveagles

The multimode waveguides considered in this thesis (refev Fig. 2.1 and 2.2)
are single-moded in the y direction, and the x dimensions aneuch larger than the y
dimensions. It is justi ed to assume that the modes have theasne y-axis behavior
everywhere in the waveguides [38]. A 2-D representation isad to analyze the
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multimode waveguides hereafter. The 2-D representation mabtained from the 3-
D multimode waveguide by several methods. The e ective indemethod (Appendix
A) is used in our analysis.

In the 2-D representation, the guided modes(x)'s are the solutions to the
eigenvalue equation (2.15) with @=@¥ 0. The scalar electric eld in a M -mode
multimode waveguide can thus be written as a superpositiorf the guided modes
as

E(xz;t) = g am m(x)exp( j mz+jit); (2.17)
1
where a;, represents the amplitude corresponding to thenth guided mode, and
I is the optical frequency. The guided modes are normalizedtiithe following
condition [37],
Z 41 21

L mndX:j—mjmny

(2.18)

such that the power carried by themth mode is represented byanj?.

Consider a step index multimode waveguide of widthW,,, ridge (e ective)
refractive index n, , and cladding (e ective) refractive indexn. as shown in Fig.
2.3. The waveguide supportd/ lateral modes with mode numbersn =1;2;, ;M
at wavelength . The lateral wavenumberk,, and the propagation constant ., are

related by the dispersion relation,

k2 + 2 = k2n?; (2.19)

with
ko = z (2.20)
Ky = r\?v_e: (2.21)



1

Figure 2.3: 2-D representation of a step-index multimode waguide.

The approximation here is that the e ective width W, is the same for all the guided
modes, which essentially treats the multimode waveguide asplanar-mirror waveg-
uide [40]. This approximation is only used for explanation fothe Talbot [41] or
self-imaging e ect described in the next section, and is naised for the hologram
design described in the later sections.

The e ective width W, takes into account the lateral penetration depth of
mode elds associated with the Goos-Hahnchen shifts at thkoundaries. For high
index contrast waveguides (after the e ective index methods applied), the pene-

tration depth is very small so that W, ' W,,. The propagation constants ,, can

18



be calculated from (2.19)-(2.21),

m2

n' kon (2.22)

The propagation constants in a step-index multimode wavegle show a quadratic
dependence with respect to the mode numben. We de ne L as the beat length

between the fundamental and rst-order modes and obtain,

4n, W2
L = BUALCY (2.23)
1 2 3
The propagation constant spacing can be written as
m 1)(m+1
(v o MDY (224)

2.5 Self-imaging properties of multi-mode interference (Ml) de-

vices

The multimode interference device consists of a central $en of multimode
waveguide to support a large number of modes, with single m@@dccess waveguides
attached at the input and output planes to couple light in andout of the device as
shown in Fig. 2.4.

Consider an input eld ( x;0) at the input of the multimode waveguide, it

can be decomposed into the guided modes as

¥
(x0)=  an m(x); (2.25)
1

where the excitation coe cients a,, can be evaluated by

_ T (%0) m()dx,

2.26
2 (x)dx ( )

Am
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Figure 2.4: Schematics of & N MMI coupler.

The eld at position z can thus be written as

( x;z;t) = X an m(X)exp( ] mz+ 't ): (2.27)
1

Factoring out the phase of the fundamental mode and ignorintdpe time dependence
i't , the eld becomes,

NG
(xz;t) = am m(X)exp( 1 m)zl: (2.28)
1

At distance z = L, the following expression is obtained by substituting (24 into

(2.28),

(x2:t) = pd 2 1 (X)€XD J_(m 1)(m+1)

#
L : 2.2
1 “ (2.29)

Before imaging properties of MMI are analyzed, two useful pperties are given
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here:

8
5 even form odd
(m 1(m+1)= : (2.30)
odd for m even
8
5 m(xX)  for m odd
m( X) = 5 (2.31)

m(x) for m even

Equation (2.29) shows that the eld atz = L will be an image of the input eld if

exp | (m 1;|(_m +1)

#
L =1 or ( )™ (2.32)

The rst condition produces a direct replica of the input eld [41]. Using relation
(2.31), the second condition produces a mirror image of thegut eld with respect

to x = 0. The conditions in (2.32) are ful lled when
L=p3BL ) with p=0;12 (2.33)

for p even (direct image) andp odd (mirror image), respectively.

From the analysis above, it can be seen that by designing theuttimode
waveguide section of MMI at speci ¢ imaging lengths, the dact or mirror image
of the input electric eld can be replicated at the output. Ddailed analysis can
be used to show that multiple images can also be obtained atsthnces other than
the single image lengths with speci ¢ splitting ratios and pase relations [42]. As a
result, MMI devices have found broad applications in beam Bfters and couplers
[43] [44].

The self-imaging e ect comes from the quadratic dependenc# the propa-
gation constant to the mode number as approximated by (2.22)For the devices
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simulated and fabricated in the subsequent sections of thikesis, we calculated
the propagation constants of the guided modes of the full 3-daveguide structure
using a full-vectorial nite di erence optical mode solver[45] and found excellent

agreement with the approximation.

2.6 Unitary mode transformations using MWHSs

The formalisms introduced in the preceding sections are uké& develop the
theory for multimode waveguide holograms (MWHS) in the remader of this chap-
ter.

The propagation of the electric eld in anM -mode multimode channel waveg-
uide with imbedded MWH in Fig. 2.1 is considered. The hologma is implemented
as a weak perturbation to the e ective index of refractiom. of the core of the mul-
timode waveguide. The electric eld in the perturbed multinrode waveguide can be

written using the superposition of the unperturbed wavegdie modes as

E(x;z;t) = X Ai(z) ixX)exp( j iz+ jit); (2.34)
1

where A; represents the amplitude. The hologram is chosen to be of tifi@lowing

form
X -
n(x;z) = fo(x)+  f()expl j(i )z (2.35)
i6 |
The rst term adds di erent phase shifts to the modes dependlig on their overlap
integrals, and the second term represents phase gratingsathcouple the modes.
Each term of the series has an arbitrary amplitude pro le anda phase that follows

the beating between modes. For the index perturbation to bergal function (energy
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conservation) and physically realizable, we also requifg to be a real function and
fij = (f;i) . The coupled mode theory involves substituting (2.34)-(35) into the
wave equation (2.15) and collecting the synchronous termse bbtain the following

set of M coupled equations:

— = ] i Ajj (2.36)

where the coupling coe cients are given by

! onczf 210,
i = o(X) idx; (2.37)
Z
|
=2 f(x) 1 jdx (i6): (2.38)

2

The coupled mode equations in (2.36) can be expressed in nrafiorm as

dA .

— = jKA; 2.

i JKA; (2.39)
where theith row and jth column of the M M matrix K is j, and A =

[A1(2)A2(2):::Av (2)]7. The solution to (2.39) is

A(z) =exp( jJKz)A(0)= H(2)A(0): (2.40)

The requirements imposed orf, and f; makesK an Hermitian matrix, that is
KY=K. Asaresult, H =exp( jKz)isaM M unitary matrix. The operation
in Fig. 2.1 can thus be described as a unitary matrid transforming the input
mode amplitude vectorA (0) to the output mode amplitude vector A(L). Since
each component oK corresponds to an independent grating, changing the shape

and strength of the hologram throughf, and f; allows us to generate arbitrary
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unitary matrices. One speci ¢ approach for calculating, and f;; will be described
in section 2.8.

The derivations above assume energy conservation in the \gguide (real index
perturbation). Non-unitary transformations can be implenented by introducing
either gain/loss or additional channels in the waveguide. t lis beyond the scope
of this thesis to analyze the non-unitary transformationsyather we focus on the

analysis and design of arbitrary unitary transformations sing MWHSs.

2.7 Unitary matrix-vector multiplication using MWHSs

Consider the matrix-vector multiplier using MWHSs in Fig. 22. N symmetric
single mode input and output waveguides are attached to thigl -mode multimode
waveguide of lengthL. This is similar to an N N multimode interference (MMI)
coupler except that the device incorporates a hologram ante self-imaging property
is not required for the device to function.

The input and output vectors are represented by the amplituds of the input
and the output waveguides. First consider the multimode waguide behavior of the
device without the hologram. The elds at the input and the odput waveguides
can be decomposed into the guided modes of the multimode sectas in (2.25).
Since (2.25) can be interpreted as a discrete spatial Fourigansform [38] of the in-
put/output vectors, the amplitudes of the waveguidesP (0) = [ P1(0)P,(0):::Py (0)]"

and output waveguidesP (L) = [ P1(L)P2(L):::Py (L)]T can be related in matrix form
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as

P(L)=(VBV ")P(0): (2.41)
where 2 3
exp( j iL) 0 0
0 exp( j L) 0
VT = ; (2.42)
0 exp( j mL)

B isaM M diagonal unitary matrix that describes the phase change reking
from the propagation of a distance ot of each guided mode, an& isaM M
unitary matrix that relates the vectors P at the input and output waveguides to
mode amplitudes vectors. When the number of modéd in the multimode section
is greater than the number of access waveguidék, the expressions foilP (0) and
P (L) can be zero padded to account for the "virtual" waveguides.

When a hologram is incorporated into the multimode wavegu& equation
(2.41) is combined with (2.40) which describes the unitary ode transformation in
Fig. 2.1 to yield,

P(L) = (VBHV T)P(0)= UP (0): (2.43)

This is a vector-matrix multiplication mapping an input vecor P (0) to an output
vector P (L) through a unitary matrix U determined by the MWH. To generate an
arbitrary U, H is found by

H=B"VTUV: (2.44)
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2.8 Design of MWHs

From the previous derivations, the calculation of MWHSs to pdorm the desired
transformations involves determining the grating shapesstrengths, and periods
in (2.35) such that the resulting MWH gives the desired matx H in (2.40) for
unitary mode transformation and in (2.44) for matrix-vectad multiplication. Here,
an intuitive design method in which the gratings are generat by the interference
of propagating beams is discussed. This method involves ngithe interference
patterns of the guided modes to calculate individual gratig elements in (2.35). A
special case of this method to design a matrix-vector multigr using the imaging

property of MMIs is also discussed.

2.8.1 MWHs calculated using the guided modes as the basissset

By analogy to formation of a hologram by the interference ofwo waves, we
consider the interference of guided modasand j. The interference pattern that

couples moda andj can be described by
i jexpl j(i i)z] + c:c:: (2.45)

When the gratings in the hologram (2.35) are in the form of (25), that is, f; =

gi i j,the coupling coe cients j are proportional to the grating strengthsg; . By
calculating the interference patterns between guided moslegratings corresponding
to each components oK in (2.39) are obtained. The hologram can then be deter-
mined by simply varying the grating strength according to tle required coupling
coe cients.
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2.8.2 Matrix-vector multipliers calculated using the eigevectors of
MMI (a special case when the multimode waveguide is at imag-
ing length)

The general method outlined in 2.8.1 can be used to design matvector
multipliers as long as (2.44) can be satis ed. Self-imagingf multimode waveguide
is not essential. However, the design can be simplied wherng length of the
multimode waveguide is equal to its imaging length.

In section 2.5, we derived the self-imaging property, whictlescribes the re-
production of a single or multiple image of the input eld prole at periodic interval
along the propagation direction of a multimode waveguide §}. First of all, by
choosing the length of the multimode waveguide to be equal the self-imaging
length Ling, the problem can be simpli ed since the matrixB in (2.41) becomes
the identity matrix. For an N N MMI coupler, there are N orthogonal eigen-
vectors that represent the patterns at input, output, and ay intermediate imaging
planes [46]. These eigenvectors are obtained by sampling thuided mode pro les
corresponding to each access waveguides. Instead of usimgM guided modes as
a basis set to design the hologram as discussed in 2.8.1, thatiggs are calculated
directly from the interference patterns between thesl eigenvectors. The strengths
of these gratings are proportional to the coupling coe ciets in the N N ma-
trix, K, which now directly relate the amplitudes of the input wavegidesP (0) and

output waveguidesP (Ling ) by

I:)(I—img) = exp( J K Limg)P(O): (2-46)
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2.9 Comparison of two di erent design approaches

Here, we show that by writing the eigenvectors of MMI in the fon of the
mode amplitude vectors and going through the calculationgdm (2.41) to (2.44),
the hologram calculated using (2.46) is mathematically eqealent to the hologram
calculated using the general method in 2.8.1. The advantagé the method in 2.8.2
is its simplicity when the beam propagation method is used tdesign the hologram
as discussed later in the examples in chapter 3.

First, we derive the relation between the eigenmodes and ded modes. From
(2.25), we know that the matrix relating the eigenmodesN basis) to the guided

modes (M basis) can be written as

2 3
a1 ax am 1
T dip  ax av 2
V' = : (2.47)
aiv  dam avm

Consider theN basis eigenmodese(); and (ey);, in the N basis, they areN 1
unit vectors with 1's in the ith and the j th elements, respectively. The eigenmodes

can be zero padded and be expressed in terms of the guided nsodsing theM
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basis through 2 3

0

(em)= V18 (en) 7° (2.48)

Using (2.47) and (2.48), éu )i and (ew); can be obtained

2 3 2 3
a1 a1
a2 g2
(em)i = ;o (em); = : (2.49)
adim aim

And the eld expressions of these two eigenvectors are

bl
Eew) = aix kexp( J «z)
k=1

W
Eew)y =  ak kexp( | «2): (2.50)
k=1

Now, we calculate the hologram using the eigenmodes rst. line N basis,
the N N hologramK calculated using these two eigenmodes is a zero matrix with

1's in the ij th and the ji th elements.
2

K = O ¢ . (2.51)
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With (2.49) and (2.50), we can calculate the same hologramiong the guided

modes. The interference pattern (hologram) between thesed eigenmodes is

iEewy * Etew)i® 1 Etew)® | E(ew) ™

In matrix form, it is

2
a1t a1 0 0
0 g2+ > 0
H =
0 0 am t+ am
2
i1t a1 a2t Q> am t am
a1t a1 a2t @2 am T qm
a1t a1 a2t @2 am T qm
2 32
a1 O 0 A1 di2 adim
0 ap 0 A1 a2 adim
aim A1 di2 adim
2 32
a1 O 0 a1 o2 am
0 &> 0 a1 g2 am
ajm 1 g2 ajm

(2.52)
3
3
3

(2.53)

This hologram (M -basis) can be transformed into the basis set of the eigen-
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modes (N -basis) by

V expH)VT =exp(VHV T): (2.54)

Now, we calculateHV T rst

2 3
g1+ a1 0 0
oy T = 0 o+ Q> 0

0 O am 0 ::: 1 0
0O O am 0 ::: 1 0
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2

0 ::: a1+ @, a1+ a1
_ 0 ::: a2t gy Azt g
0 ::: am *+ au am T awm

2 3 2
0 ::: a 0 0 ::: &1
0 11 & 0 0 i &>
0 am 0 0 am

2

0 d a1
_ 0 i ap a2
0 i am am

The hologram in terms of the eigenmodes is thus
32

2

;1 Ao aim 0 ::: a1
VHY T dp; Ay aom 0 ::: a2
am 1

am 1 avm 0 i am

32

aim

(2.55)



2
0 0
. " ) " 3 . .
0 0
o 1
o
I TR
0 0
N N
o .

. . 0
2 gM M
0 0
= K (2.56)
0 . . .0
M M

It is obvious that the hologram is a grating coupling theith and the jth
eigenmodes. Compare (2.56) and (2.51), it can be concluddtht the holograms

calculated using two methods are mathematically equivalen

2.10 Discussion

For a speci ¢ unitary transformation, the hologram is not unque. The grating
shapes and strengths can be adjusted to suit speci ¢ desigansiderations as long

as the overlap integrals in (2.37) and (2.38) yield the degid coupling coe cients.
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While a set of MWHs can be physically di erent but mathematially equivalent,

one should not expect each member of this set to perform eqgyalThis is because
any gure of merit based on physical performance such as toéce and bandwidth
will be based on physical realization of the structure suchsavaveguide dimension
or index contrast. It is beyond the scope of this work to categize or evaluate the
various design approaches that are possible, rather we fgcan a speci c design

approach to demonstrate the concepts of this class of degce the next chapter.
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Chapter 3
Modeling, Fabrication, and Analysis of Multimode Waveguid
Holograms (MWHSs)

3.1 Introduction

The design principle of MWH devices was introduced in the pveus chapter.
Based on the design principle, beam propagation models arged to design several
devices including a mode-order converter, a Hadamard traiosmer, and a optical
pattern generator/correlator. Optical pattern generatos are fabricated to verify
the theory and the model. Also, the bandwidth and fabricatia tolerance of MWH
devices are also analyzed using a speci c design example.

From the previous chapter, the design of MWHSs involves the tailation of the
interference patterns between either the guided modes ofetmultimode waveguides
or the eigenmodes of the MMI couplers. In order to verify thedlogram design, we
have to model the propagation of beams in the MWH devices. Weguides with
nonuniform structures such as the MWH devices cannot be tresd with analytical
methods. For our simulations, we choose the beam propagationethod (BPM),
which has been developed for the analysis of nonuniform sttures as bends, tapers,
and crosses in the beam propagation direction.

The nite di erence beam propagation method (FD-BPM) has ben shown
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to be accurate, computationally e cient, and stable compaed to the conventional
fast fourier transform beam propagation method (FFT-BPM) #7]. A multi-step
wide-angle scheme developed by Hadley [48] [49] describedhe next section is

used for our simulations.

3.2 Finite di erence wide-angle beam propagation method (JAtBPM)

Here, we use the slowly varying amplitude approximation tolgain an approx-
imate form of Helmholtz equation for the beam propagation siulation [39].

The scalar Helmholtz equation is
r2+ kin? =0 : (3.1)

In the slowly varying envelop approximation, the wave fungbn of the light prop-
agating in the +z direction is separated into the slowly varying envelope fution

and the very fast oscillatory phase term exp(j z ) as

(= Mexp(jz), (3.2)
where
= Nref Ko: (3.3)

N IS the reference index, for which the refractive index of theubstrate or the

cladding is generally used. Substituting (3.2) into (3.1)we obtain

@ . @ 2 2.2 2 - N-
o3 2] e’ "’ +(k2n ) =0; (3.4)

wherer 3 is the Laplacian in the lateral directions and is expressedsa

_ @ @a.
_@7(+@—9. (3.5)

rs
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Substituting (3.3) into (3.4), we have

@ @ 2

2] @z @2 '’ +k3(n* i) (3.6)

If the second derivative of the wave function is neglectedhén (3.6) is reduced to

. @
2 = =r3 +ki(n® ni): (3.7)

This is called the Fresnel approximation or the paraxial apximation. The parax-

ial approximation is limited in treating wide-angle propagtion. Beams containing
appreciable Fourier components at angles of more than a fewgtees from the prop-
agation axis experience substantial phase errors. For theaysis of our multimode
waveguides, the wide-angle formulation is required.

The wide-angle formulation (3.6) can be written as

. @ @ _ ..
2j @z @2 P; (3.8)
where
P=r3+kin* nZk): (3.9)
Equation (3.8) can be rewritten in the form
|
@ je@ _ ..
@z 1+ 2@z 2—P ; (3.10)
and therefore
@ P
= = : : (3.11)
@z 1+1§,
Equation (3.11) suggests the recurrence relation
ip
@ 2 (3.12)

@z T+ g .
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Using (3.12) in the denominator of (3.11), we obtain a propagor of the form

@ _ .N_
@z ig (3.13)

whereN and D are polynomials inP. Equation (3.13) is a Pace (n,d) approximation

of the true Helmholtz operator. The most useful low-order R operators are shown

in table 3.1.
Table 3.1: Useful low-order Pag approximants for the Helm holtz oper-
ator
N
order B
(1,0) >
.
(111) 1+ 4F’_2
L L
22 S
1+ 4—2-+ T
(3!3) 1+ 5P ingiz p3
12 526 ®

If (3.13) is discretized using standard centered di erenog, we obtain

p( ™t m= L Iym ), (3.14)

which can be rewritten as

D j( z=2)N
m+l _ m.
" D+j( z2)N (3.15)

SinceN and D are polynomials inP, (3.15) can be recast in the form

n _Pi
ml= p O 1T m, (3.16)



1 = P% =1 and the other 's are easily determined from the coe cients of the
polynomials N and D. Since a polynomial of degrea can always be factored in
terms of its n roots, equation (3.16) can be written as

_ @+ aP)d+ aP) 1+ aP) .
- (1+aP)1+ aP) (1+a,P)

m+1

(3.17)

The parameters in (3.16) and (3.17) can be easily related. fexample, in our

simulation, a Pace (3,3) operator is used, we have

atataz= 1
1+ pagt aaz = 2

i draz = 3. (318)

In general, determination ofa's requires a one-time solution of anth-order complex
algebraic equation. From equation (3.17), it is apparent tht a propagator can be

decomposed into a multistep algorithm as

mei_ (A+aP) i

wherei =1;2; ;n. Inthe simulation, the a's are obtained by solving the following

equations
1
atdta= 1= 50 ] 2
1 .
At Bast @b = 2= 556 12 2
Qa3 = 3= i(1 i3 2): (3.20)
1d2d3 = 3= 64 © J : .

The beam propagation is then calculated by the multistep atgithm. Programming
of the BPM algorithm is discussed in Appendix B.

39



3.3 Two design examples of MWH devices

Based on the design principle, two devices are designed amaidated using
2-D wide-angle beam propagation method (WA-BPM) using the && (3,3) ap-
proximant operator. The e ective indices of the waveguideare (1.516) and of the
cladding region (1.0) are estimated using the e ective indemethod in accordance
with the fabrication technique used later for experimentademonstration. In the
simulations presented here, the hologram is modeled as sripperturbations to the

e ective index of the waveguide core.

3.3.1 Mode-order converter

A mode-order converter based on MWH using the con gurationni Fig. 2.1
is proposed and simulated. The design method described ircsen 2.8.1 is used
to calculate the hologram for an anti-diagonal matrix in (240) that converts the
mode-order in the multimode waveguide. The width of the wagriide is 16 m
and the length is 1.5 mm. The maximum index modulation depthsi approximately
0.003. The slices of the BPM simulation are illustrated in k. 3.1 for four di erent
mode conversion pairs, Fig. 3.1(a) shows Bkto TE 3, Fig. 3.1(b) shows Tk, to
TE o, Fig. 3.1(c) shows Tkg mode to TE;q, and Fig. 3.1(d) shows Tkg to TE go.
The advantage of the proposed approach is that the MWH mode eerter is only
1.5 mm long. This device is more than ten times more compactdéh the mode

converter made from multichannel branching waveguides [0
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Figure 3.1: Normalized intensity slices of the BPM simulatin showing the evolution
of modes along the proposed MWH mode-order converter.
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3.3.2 Hadamard transformer

The Hadamard transformer is capable of recognizing multiplphase-modulated
labels as demonstrated recently using a star network [51].sldg the matrix-vector
multiplier con guration, a Hadamard transformer is propo®d and simulated. The

transfer matrix of a 4 4 Hadamard transformer is described by

2 3
1 1 1 1
181 1 1 1
5 (3.21)
1 1 1 1
1 1 1 1

The MWH is designed using the eigenvectors of the MMI coupléo calculate the
grating as described in section 2.8.2. The width of the muiiode section of the
MMI coupler is 16 m, and the length is chosen to be at the rst imaging length
of 2052 m. The maximum index modulation depth is approximately 0.08. It can

be seen from the BPM simulation in Fig. 3.2 that four orthogoal phase modulated
spatial patterns are mapped into four di erent ports as desibed by the matrix in

(3.21). This approach o ers the advantage of compactness @rdoes not require
optical crossings (see Fig. 1.1) as encountered in the stagtwork approach [24]

[25].

3.4 Spatial optical pattern generator/correlator

In this section, the concept and theory of a spatial optical gttern genera-

tor/correlator is introduced. An experimental veri cation of the MWH theory and
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Figure 3.2: Normalized intensity slices of the BPM simulatin of four phase modu-
lated patterns in a MWH Hadamard transformer.
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Figure 3.3: Schematic of a MWH optical pattern generator/coelator using MMI.

(a) the stored pattern is regenerated when light is coupledhto the reference bit
port. (b) the reference bit is reconstructed with an amplitule that is proportional
to the correlation of the incoming pattern and the stored paern.

the BPM model using fabricated optical pattern generators i be described in the
subsequent sections.

The concept of a MWH optical processor is illustrated in Fig3.3. TheN N
MMI coupler with MWH in the gure is at the self-imaging length. In analogy to
traditional holograms, one input port is designated as theeference bit, and the
other ports are used to represent the image, which in this aass anN 1 bit
spatial pattern. When light is coupled into the reference biport, as shown in Fig.
3.3(a), the storedN 1 bit spatial pattern is reconstructed at the output ports.
On the other hand, when theN 1 bit spatial pattern is coupled into the device
as shown in Fig. 3.3(b), the reference bit is reconstructeditv an amplitude that

is proportional to the correlation of the incoming pattern ad the stored pattern.
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3.4.1 Solution for the output of optical pattern generatortorrelator
(MWH processor)

The pattern generator/correlator (MWH processor) is desiged by the inter-
ference of the reference biR and the stored patternS as outlined in section 2.8.2.
The combination of these two patterns can be written as a sitgvector, W = R+ S.
In the following calculations, W is a unit vector(jW j2 = 1).

As described in section 2.8, the interference patterns be#en any two eigen-
vectors correspond to individual grating components in théologram. ForW =

[W1; W2, ; Wy ], the corresponding hologram of lengtth can thus be written as,
exp( jKD): (3.22)

The coupling matrix K is related to individual components oW as

2 3
WiWy - WiW, - WiW3 W1 Wy
WoW;  WoW,  WpWa WoWy
K=CK=C8 WaW; W;W; WsW; WWy 25 (3.23)
WA W1 Wy W, Wy Ws Wi Wy

where C is the coupling e ciency. We calculate the following matrix product rst,
2 3

WiW;  WiW,  W;W; W3 Wy
W,oW; WoW,  WoW; W, Wy

RK = W8 WaWs WsWs  WaWs WaWy £ = K: (3.24)
WaW; WyW, WyWs3 Wy Wy
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We can expand (3.22) as

exp( K1) =exp[( JCHK]= 1+( JCI)K + & jg')zwh #: (3.25)
With input pattern P (0), the expression for the output is
Pout =exp( jKI)P(0): (3.26)
Using (3.24) and (3.25), we can rewrite (3.26) as
Por= PO+ (ich+ US4 ke ()
= PO)+[exp( jCI) 1JW P(O)W: (3.27)

Since we knowW = R + S, the solution for the optical processor is thus,

Pou = P(0)+[(R+S) P(0)][exp( jCI) 1]R + S): (3.28)

As a reminder here,P(0) is the input pattern, R is the reference bit,S is the
stored pattern, | is the length of the hologram, and the coupling e ciency,C, is
proportional to the index modulation depth. For pattern gereration, P(0) = R,
and it can be seen from (3.28) that the intensity of the genetad pattern S is
proportional to [1 cos(Cl)]. For pattern correlation, sinceR and P(0) do not
overlap at the input waveguides, the intensity of the genetad reference bitR is
proportional to

[S POl cosCl)]; (3.29)

which is proportional to the correlation of the stored patten and the input pattern.
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Reference bit
—

Target pattern

—

Figure 3.4: Simulated interference pattern between the rfence bit and the stored
pattern. This interference pattern is proportional to the ndex variation in the MWH
processor.

3.4.2 Simulation of optical pattern generator/correlator

MWH processors with 4-bit stored patterns are designed ugjrour theory and
simulated by the BPM model. The index of refraction variation of the 6 6 MWH
processor is proportional to the intensity pattern of the wite pattern, which consists
of the reference bit and the stored pattern as described inéhprevious section. The
index variation of constructed hologram is proportional tothe intensity pattern
shown in Fig. 3.4. The output waveguides are placed at the mar image plane as
can be seen in the gure. When the incoming pattern matches &t of the stored
pattern, the reference bit is reconstructed (circled) as cabe seen in Fig. 3.5. The
amplitude of the reconstructed reference bit is expected toe proportional to the

correlation of the incoming pattern and the stored pattern.
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Incoming pattern
—p

Figure 3.5: Reading the hologram with index variation propiional to the intensity
pattern in Fig. 3.4. The incoming pattern is the same as the sted pattern.

Optical pattern correlation of intensity modulated pattems

The simulated correlation outputs of a MWH correlator with @ 1 1 1) stored
pattern using di erent 4-bit intensity modulated input pat terns are shown in Fig.
3.6. The correlation outputs are normalized and compared thi ideal correlation
results. It can be seen from the gure that the correlation rsult is close to ideal
correlation as predicted by the derivation using coupled nu® theory. This shows

that our theory is valid.

Optical pattern correlation of phase modulated patterns

Using phase modulated input patterns, the correlation outpts of the MWH
correlator are simulated. The wavelength dependence of thMWH correlator is

also investigated at the same time. As shown in Fig. 3.7, ckgo ideal correla-

48



J ®  MWH correlator
16 ® ideal correlation -

normalized reference bit output
[o:]
|

0100 -
1000 -
0110 -
1010
1100
1101

1110 o

—
o
—
(=]

0001
0010
0011
1001
0111
1011
1111

incoming patter

>

S

Figure 3.6: Simulated correlation results of a MWH correlatr with the stored pat-
tern (1 1 1 1). Square: MWH correlator; Circle: ideal corretson.
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Normalizeq output

Figure 3.7: Correlation results and wavelength dependenoé a MWH correlator.

tion performance can be observed at the designed operatingwelength (1550nm).

Degraded correlation performance can be observed when thavelength is detuned

from the designed wavelength.

E ect of hologram and index modulation depth
The e ect of the hologram length in the MMI coupler is also inestigated.
Holograms are written on di erent fractions of the total lergth of the MMI coupler.
The correlation output of the matched pattern for di erent hologram lengths is
recorded. The simulated data are t with (3.29) and plotted n Fig. 3.8(a). The
parameterC in (3.29) is proportional to the depth of index modulation. The index

modulation depth is varied in the simulation with xed hologam length. The
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Figure 3.8: Simulated e ects of (a) hologram length and (b)ndex modulation depth
on the reference bit output. Square: WA-BPM simulation; Cuve: Fit using (16).

simulation result and the t with (3.29) are shown in Fig. 3.8b).

MWH with binary index modulation

The smooth index modulation used in the analytical theory idi cult to obtain
in lithographically fabricated devices. The feasibility © lithographically fabricated
devices is investigated by simulations of the MWH pattern geerator/correlator with

binary index modulation as illustrated in Fig. 3.9. Small dierences are found in the
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Figure 3.9: Pattern correlation using a MWH correlator degined for stored pattern
(1111) with binary index modulation

generation/correlation properties, but the overall devie performance is not a ected.

3.5 Experiment

The MWH pattern generators were fabricated using passive weguides on
a Si wafer. 4.6 microns of Si@was used for the bottom cladding layer. The core
consists of a 2.4 m layer of Cyclotené™ (BCB), and the upper cladding is air (Fig.
3.10). This asymmetric waveguide design was selected sottivaex variations for
each hologram could be created lithographically by etchinghallow indentations
on the top of the CyclotenéM surface (Fig. 3.11). The waveguide and hologram

pattern was transferred using conventional photolithognahy using i-line projection
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Figure 3.10: The layered structure of fabricated MWH pattem generators

aligner and reactive ion etching (RIE). The device width is@ m (Fig. 3.12), and
the length of the device is chosen at the rst mirror-imagindength, 1026 m (Fig.
3.13). Devices were probed by coupling a CW laser at 1560 nntarthe reference
bit port as shown in Fig. 3.14. The output was imaged with an HEctrophysics
MicronViewer 7290 IR camera. It can be seen from Fig. 3.15 ththe patterns
stored in the MWH pattern generator were reconstructed as pdicted by coupled
mode theory and WA-BPM simulation.

By varying the wavelength of the CW laser, the wavelength degmdent di rac-
tion e ciency of the device was measured. The light was coued into the reference
bit port of a pattern generator with 001 pattern. Fig. 3.16 sbws a measurement of

the output intensity pro le of pattern generators with and without hologram using a
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2um EHT = 0.60 kV Signal A = MPSE
Mag= 500KX —] WD= 5mm Photo No. = 3777

Figure 3.11: Plan-view SEM micrograph of a section of a MWH p@rn generator.
The shallow etched computer generated pattern is visible otne surface of the
device.
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Figure 3.12: Optical microscope picture showing the widthral access waveguides
of fabricated MWH pattern generators. The hologram pattera are visible on the
multimode waveguides.
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Figure 3.13: Optical microscope picture showing the wholergth of fabricated
MWH pattern generators. The hologram patterns are visible o the multimode
waveguides. The reference bit inputs are on the right sidend the generated pattern
outputs are on the left side.

3-bit pattern 100X objective

! <
image on
IR camera
N

reference

—

CW laser
1560 nm

Figure 3.14: Schematic of the experimental setup to measutiee spatial pattern
stored in the MWH pattern generator. The output spatial pattern is imaged with
an IR camera.
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Figure 3.15: Experimental results of 3 bit spatial pattern gneration by MWH
pattern generator.
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¥ furmj -2 -10

Figure 3.16: Output intensity pro le of a pattern generatorwithout embedded holo-
gram measured with a scanning lensed ber.

scanning lensed ber. When light was coupled into a patterneperator without em-
bedded hologram, the output shows the reference bit only. Véh light was coupled
into a pattern generator with 001 hologram, most of the refence bit is scattered
into the 001 output pattern as shown in Fig. 3.17.

The intensity of the "1" bit in the generated pattern was recoded as a function
of wavelength and plotted in Fig. 3.18. The results from WA-BM simulation are
also plotted, and good agreement between the BPM model andethmeasured data
can be seen in the gure. An estimation of the bandwidth of MWHdevices can
be obtained using co-directional coupling theory [53] as ®lwn in the next section.
Using the fabricated device parameter, the FWHM of the spel response for mode

coupling between the lowest and the highest order modes idadated to be 40
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Figure 3.17: Output intensity prole of a pattern generator with 001 hologram
measured with a scanning lensed ber.
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Figure 3.18: Wavelength dependence of the di raction e ciacy of a MWH pattern
generator patterned with 001 pattern.

nm. In reality, the MWH device consists of multiplexed gratngs with di erent

periodicity, and wavelength dependence of the self-imagjirproperty also needs to
be taken into consideration. The excellent agreement betee our BPM model and
experimental data shows that di erent e ects are predictedcorrectly by our model.

Our BPM model is thus a valuable tool for designing and analyzg these devices.

3.6 Analysis of MWH length, bandwidth, and fabrication toleance

In the theoretical analysis, it is assumed that the Bragg catitions are satis ed
for every grating element, and only the synchronous terms arcollected to obtain

(2.36). The validity of the condition and the e ect of the crcsstalk between gratings
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can be considered qualitatively as follows. Considering dwgrating vectorsk; =
i iand Kk = i, when thej th mode is present, gratingk; scatters it into

the ith mode, however, a small fraction of its power is also scatezl by the grating

Ky into the ith mode. The fraction of theith mode from gratingky; is the crosstalk

and can be estimated by [52]

pSINP(L)

(L Ly

(3.30)

where is the coupling coe cient of the grating, L is the length of the grating, and
= ¢ j. For a multimode channel waveguide of widtiW and core indexn. ,

can be estimated using (2.22) as

(k* %) (3.31)

4nW?2

where is the wavelength. Equations (3.30) and (3.31) give an estate of the range
of coupling coe cient for the Bragg condition approximations to be valid. Also, it
can be seen from (3.30) that wherL is su ciently large, the crosstalk is negligible.
Using the location of the second zero of (3.31) as a measurataf selectivity as in

ref. [52], the requirement on the minimum length of the holagm L, is

2 8n W2 8n.W?2

S Coa T B

(3.32)

The simulated and fabricated device in this thesis are desigd to be at the rst
mirror image length, A ;W?= , and the rst direct image length, 8n;W?= , of the
multimode waveguides, with the MWHSs covering the whole lenigs of the devices.

Although the self-imaging property is not essential for ttd class of devices, it o ers a
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simpli ed design method for MWH as described in 2.8.2 and sates the minimum
length requirement of (3.32).

The speci ¢ polymer waveguide system chosen for the expeent is used to
investigate the fabrication tolerances and scalability othe MWH devices. The
spatial pattern generator/correlator described in sectio 3.4 and demonstrated in
experiments is used in the simulations. First, the fabricadn tolerance on the lateral
shift between the MMI coupler and the hologram is investig&td since they are
fabricated in two di erent lithography steps. Using the BPM model, the di raction
e ciency and the discrimination capability are calculated and plotted in Fig. 3.19.

The discrimination capability is de ned as

maxjcj?.
jaj?

(3.33)

wherec is the cross-correlation andh is the auto-correlation.

From (2.37) and (2.38), the lateral shift can be estimated asrrors to the
coupling coe cients due to the change in the overlap integis. Since the MWH is
designed using the eigenvectors of the MMI in this examplejé error to the coupling
coe cient is estimated using the change in the overlap inte@l of these eigenvectors
due to the lateral shift. The input waveguides are well sepated in this case, and
the eigenvectors can be approximated using the guided modafsthe single mode
access ports. This way, each coupling coe cient is a ectedybthe same amount and
the e ect of the lateral shift can be estimated as a change tdhée overall coupling

e ciency, C, in (3.29). With these approximations,C can be written as a function
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Figure 3.19: BPM simulation and theoretical results on the ect of hologram lateral
shift on the diraction e ciency and the discrimination cap ability of the MWH
pattern generator/correlator.
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of the lateral shift x as

R 2 2
C( x)= Cp M 4((’)(() = x)dx. (3.34)

where C, is the coupling e ciency when the lateral shift is zero, and is the
mode of the single mode access ports. Since the lateral sbiftly a ects the overall

coupling coe cient, it is not surprising that the discrimin ation capability in Fig.

3.19 is almost constant with the lateral shift in the range 0f0.5t0 0.5 m o set. A

theoretical prediction of the di raction e ciency is obtai ned using (3.34) in (3.29)
and plotted in Fig. 3.19.

For applications in modern high-speed optical communicatns systems, the
scalability and bandwidth of the MWHSs are investigated. TheMWH consists basi-
cally of multiplexed long period gratings on a MMI coupler. Tie wide transmission
bandwidth of long period grating structure is well documerdd in the literature [54].
The spectral dependence of these long period gratings can determined by the
expressions [53] derived for co-directional coupling. Thatio of power coupled into

moden from modem is given by
P #
sin? L 1+

mn

o R (3.35)

mn

where is the detuning from the grating period, n, is the coupling coe cient, and
L is the grating length. Assuming maximum power transfer, thiais, ,.L = =2,

the FWHM of the spectral response given approximately by (3.35) is3p

0:8 ?
= T (3.36)

64



15}

excess loss (dB)

0.5

-

1 1 1 1 1
0 0.005 0.01 0.015 0.02 0.025 0.03
(a) wavelength detuning (microns)

25t ¢ -

15+ P _

excess loss (dB)

T
LY

05+ {7 _

1 1 1
0 0.05 01 0.15 02 0.25
(b) fabrication tolerances (microns)

Figure 3.20: Bandwidth (a) and fabrication tolerance (b) othe polymer MMI cou-
pler used in our experiment. The practical scaling of theseedices is limited by
the proportionality between the number of ports and the serisvity to wavelength
detuning and fabrication tolerance.
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where nn, is the di erence in the e ective indices of modesn and n. From (2.22),

we obtain,
(n2 m2) 2
Ny = ———o— 3.37
mn 8nCW2 ( )
where n; is the core index, andW is the waveguide width. The simulated and
fabricated waveguides are designed to be at the rst mirromage length, 4. W?2=

and the rst direct image length, 8n;W?= . Substituting these into (3.36), we have

16
(n? m?)’

(3.38)
It is obvious that the bandwidth decreases for modes that arfar apart. For the
simulated and fabricated devices, the number of supportediigled modes is around
8. It can be seen thatthe is 40 nm for mode coupling between modes 1 and 8.
For high speed applications, the decrease in bandwidth litsithe number of modes
in the MWH devices.

From our simulations, the optical bandwidth and fabricatio tolerances of the
MMI coupler are the dominating factor in the performance oftie MWH devices we
considered in this thesis. The scalability of the MWH deviseto perform transfor-
mation on large sized input vectors is thus determined by thecalability of MMI
couplers. Using the formalism introduced by Bessa. al. [55], the bandwidth and
fabrication tolerances of the polymer MMI coupler at the r¢ mirror image length
(N = M in ref. [55]) are analyzed. The calculated results are shovim Fig. 3.20.
The optical bandwidth and fabrication tolerances are invesely proportional to the
number of ports. It can be seen from the gure that devices wit larger than 8

ports will be di cult to fabricate using current fabricatio n technology owing to the
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rapid rise in excess loss. The examples given here are onlplagable to the specic
material system chosen for this demonstration. It is worth oting that these limita-
tions can be relaxed if a di erent material system with sma#r core/cladding index
contrast is chosen. However, the multimode waveguide has sapport at least the
same number of guided modes in order to perform the same trémsnations. The

tradeo will thus be increased device size.

3.7 Application to optical pattern recognition

The optical pattern generator/correlator analyzed in seddbn 3.4 computes the
correlation of the incoming patterns with a single stored géern. In order to recog-
nize multiple patterns using this con guration, multiple MWH devices are required.
A more e cient way for pattern recognition in which a MWH can be used to recog-
nize multiple patterns is described in this section. We begithis section by consider
the unitary transformation property of MWH devices.

If we look at the 4 4 Hadamard transform matrix (3.21) as an example, it is
obvious that each row of the matrix represents a four bit ph&modulated pattern,
and the output at each port represents the correlation of thencoming pattern and
the stored pattern. So, the 4 4 Hadamard matrix computes the correlations of the
incoming pattern with the four stored patterns simultaneosly. Since the MWH is
mathematically represented by an unitary matrix, the only estriction on the stored

patterns is that the four stored patterns have to be orthonanal.
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3.7.1 Pattern recognition of 4-bit phase modulated pattem

For 4-bit phase modulated patterns, there are 2= 16 possible variations,
which are not all orthogonal. If the absolute phase is negked, rather we focus on
the phase di erence between adjacent bits, the variationsao be reduced by half,
for example, ( 1-1 1 1) and (-1 1-1-1) are now considered thensa These eight

variations can then be separated into two orthogonal groupss in table 3.2.

Table 3.2: Patterns are separated into two orthogonal group s. The cor-

relation between any two patterns within a group is O.

groupl group2

(1111) (1111
(11-1-1) (11-11)
(1-11-1) (1-111)

(1-1-11) (-1111)

Each group can be stored in a MWH with the rows of the unitary mix
represented by the patterns of the individual group. Any ineming patterns can be
correlated simultaneously with all eight pattern using theschematic shown in Fig.

3.21 with two MWHs.
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Figure 3.21: Schematic for 4-bit pattern correlation usingvo MWHS.

3.7.2 Analysis on pattern recognition of 2-bit binary phase modu-
lated patterns

The same principle can be applied to longer patterns. We cadsr 2N -bit phase
modulated patterns. If we neglect the absolute phase as indgh4-bit example, the
number of patterns is 2' =2 = 2@" . The number of MWHSs needed to implement
a correlator for all patterns is thus

oM 1)
ON

=2@" N b (3.39)

It can be seen that whenN is greater or equal to 3, the number of MWHSs required
for correlation becomes vary large, which makes signal disution a challenge. It
is obvious that a correlator consisting of multiple MWHs follong bit length pattern

is di cult to implement with current fabrication technolog .
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Now, we analyze the contrast ratio of correlation de ned as

jaiz
maxjcj?’

(3.40)

wherejaj is the auto-correlation andjg is the cross-correlation. For matching pat-

terns, the auto-correlation of each 2-bit pattern is
jaj2=2N: (3.41)

The maximum value of cross-correlation with unmatched pattrns can be calculated
by consider the cross-correlation between two patterns vkitl bit di erence. The
result is thus

maxjcj? = ziN(ZN 2)%: (3.42)

The contrast ratio for 2V bit patterns is then

R = : (3.43)

For 4 bits pattern, N = 2, the contrast ratio is 4; for 8 bits pattern, N = 3, the
contrast ratio is 16=9; and it can be seen that the contrast ratio decrease quickly

with the increase ofN.

3.7.3 Bit-error rate of pattern recognition with ideal corelators

Pattern recognition is achieved by either optically or elé¢oonically determining
a match between the incoming pattern and the stored patternA threshold level,
Vin, SOmewhere between,, = jaj2 and vo;; = maxjc? has to be set in order for a

decision to be made. An error occurs when a match falls belohetthreshold or when
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a mismatch exceeds the threshold due to the noise on the indogn pattern. One
common approach to quantify the error is to divide the numbeof errors occurring
over a time interval by the number of pulses transmitted dung this interval, which
is called the bit-error rate (BER). In the following analyss, the MWH is assumed
to be perfect without fabrication errors.

To estimate the bit error rate, we assume each bk, of the incoming pattern
is an independent random variable with variance 2. The output o, at each port of

the 2V bit correlator can be written as

1 X
O = pﬁ chn; (3.44)

1
wherec= 1. The variance ofCh,, whereC is a constant, isC? times the variance
of b,; and the variance of the sum of independent random variablés the sum of

the individual variances. As a result, the variance o, is
— N= 2 (3.45)

which is the same as the variance of the individual bit.
By assuming the noise on individual bits has a Gaussian digtution function,

the BER can be estimated as [56]

BER po° i 3.46
= (3.46)
The parameterQ is de ned as
Q= Vih ~ Voff _ Von Vth: (3.47)
off on

A Q value of 6 or higher corresponds to a BER of 18 or less, which is considered
to be errorless in telecommunication standards.
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For MWH correlators, o, = of = , we dene

42N 1)

> (3.48)

V = Von  Voif =

where (3.41) and (3.42) are used. By setting;, midway betweenv,, and vy , we

have from (3.47) and (3.48)

e GRS (3.49)

V2N 1)
Q_z_ 2N

It can be seen that as the pattern length increases, th® parameter reaches an
upper limit limy, Q = 2= ("2" in the equation because one bit dierence in
phase modulated pattern causes 2 bits di erence in correlan). The amplitude

and phase noise of each bit, quanti ed by 2 in our analysis ultimately determines

the BER of pattern recognition, which is expected since a idécorrelator is assumed.

3.7.4 BER considering MWH imperfections

From the analysis in section 3.6, we know that the e ect of gtang cross
talk does not a ect BER when the length of the hologram is su dent. Although
the lateral shift of the hologram does not signi cantly a ed the discrimination
capability, it causes an overall decrease in the di ractior ciency. The fabrication
error and wavelength detuning analyzed in section 3.6 alsotioduces excess loss.
The decrease in di raction e ciency or excess loss cause thg, signal to fall below
the threshold levelvy,, which is set when the MWH is assumed to be perfect. An
error in recognition may result from these losses. Here, wealyze the BER caused

by MWH imperfections.
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We consider a more general case for both amplitude and phasedulated
patterns. For aN bit pattern, the auto-correlation is Vo, = jaj2 = N; and the cross-
correlation with the pattern with one bit di erence is vy = maxjg2= (N 1)>=N.

The threshold level setting midway betweenw,, and vy is thus

2N2 2N +1

o (3.50)

Vinh =

The lossL causes/,, to decrease td_N , and the corresponding Q de ned by (3.47)

thus decreases as

(2L 2)N2+2N 1
2N 1 !

Q=Qp (3.51)

where Q, is the Q when the MWH is assumed to be perfect.

Assuming Q, = 8, which corresponds to a BER of 10", the degradation of
BER for di erent pattern lengths due to loss is calculated usg (3.51) in (3.46)
and plotted in Fig. 3.22. From Fig. 3.19 and Fig. 3.20, it can & seen that with
this particular material system we analyzed, the excess kbsaused by small lateral
hologram shift, fabrication error, and wavelength detunig can severely degrade
the BER of the correlator. Thus, implementation of MWH corrdator in optical
communication systems for long pattern correlation is a bighallenge using current

fabrication technology.
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Figure 3.22: Degradation of BER due to loss caused by MWH imgections.
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Chapter 4
Measurement of the third order nonlinearity ©

4.1 Introduction

Using the third-order nonlinear optical properties of mataals for optical
switching has been an active area of research. The nonlineadex coe cient, n,,

is proportional to the real part of the third order nonlineaity, (131)11 of materials;

the imaginary part of (131)11 causes loss due to two photon absorption and limits the
e ective distance of the waveguide [20]. Knowledge of the phe and magnitude
of the nonlinearity of a material is important in determining its device potential.
A simple and reliable method to determine the nonlinear optal properties is thus
valuable.

Two experimental techniques are commonly used to determirtbe © of
materials. A common technique is the Z-scan method [57]. In-stan, the trans-
mittance of a sample is measured through a nite aperture ase sample is moved
along the propagation path of a focused Gaussian beam. Thevadtage of the Z-
scan technique is that the sign and amplitude of ® can be deduced from such a
transmittance curve. So, it is particularly useful when thenonlinear refraction is
accompanied by nonlinear absorption (imaginary part of @). However, in order

to obtain a measurable signal on a thin sample, relatively gh intensities and large

material nonlinearities are often required. The other teaique is the degenerate
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four-wave mixing (DFWM) technique [32], which is a sensiti technique for studies
of the @ of nonlinear materials. Typically, the measured signal isrpportional to

i @j2, but the phase of @ is not available. Additional measurements are needed
to determine the real and imaginary parts of & using DFWM technique, such as
the phase-mismatched DFWM method [58].

In this chapter, a simple optical arrangement for phase sdtige detection of
DFWM to characterize the real and imaginary parts of @ is demonstrated. This
technique can potentially improve the sensitivity of the coomon DFWM technique
by using the coherent detection scheme, which, at the samene, o ers phase infor-
mation of the nonlinearity. A processable polyacetylene s®le is characterized at

a wavelength of 1.5 m using this technique.

4.2 Degenerate four-wave mixing model

Consider degenerate four wave mixing! ¢ = !, = I3 =14 = 1)in an

isotropic material, the third-order susceptibility with the choice of frequencies given

by ju (! =11+ !, !3)can be represented as [19]
g (P =0+ D)= (P =+ D)y okt k)
+ (P =0 E D)Ca k): (4.1)

The nonlinear polarization from degenerate four-wave ming is given by

P)=3 o (=1 +1 DE()ECE( 1) 4.2)
ikl
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Figure 4.1: Energy level diagrams showing the (a)one photaasonant and (b) two
photon resonant contributions to the nonlinear polarizatn.

Using (4.1) in (4.2), we obtain

Pi=6 0 u2E(E E)+3 0 121 (E E); (4.3)
which can be written in vector form as

Pi=6 0 1122(E E)E+3 o 1221(E E)E: (4.4)

The two contributions to P can be represented in terms of energy diagrams in Fig.
4.1. Part (a) shows the one-photon-resonant contribution ekcribed by the rst
term in (4.4). Part (b) shows the two-photon-resonant conibution described by
the second term in (4.4).

Now, consider degenerate four-wave mixing with the total kel given by

E=E;+ E,+ Ez+ Eg; (45)
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where

Ey(rit) = %Al(r)expﬂ 0tk ]+ ce
E(r:t) = %Ag(r)expﬂ 0t kp N+ cc
Es(rit) = SAsexpli (it ks n]+ cc
Ea(ri)= AN expl(t ki 1]+ o

(4.6)
Phase matching is automatically achieved since
kg= ki + ky ka: (4.7)

Using (4.5) in (4.4), collecting the phase matched terms, drassumingE;,  Ej.»3,

we obtain the nonlinear polarization in the direction of bem 4

=3 o(2 1122+ 1221)E1E,E3: (4.8)

When all incident beam polarizations are the same, (4.8) gerates a polarization

parallel to the eld whose scalar amplitude is written as

PNt =3 o 1111E1E,E3; (4.9)

where &, =2 110+ 1201 (For simplicity, we'll refer to 2, as © from now

on). This is the third-order nonlinearity measured in our egeriment.

Each of the interacting waves obeys the wave equation

@E _ @ ..
@ @PNL. (4.10)
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Substituting (4.9) into (4.10) and making use of the slowlyarying amplitude ap-
proximation, we obtain

dA 3l
d—z“: i gon @ ALALAS: (4.11)

Assuming the pump beams are undepleted, the DFWM signal, bea4, after a

nonlinear sample of thickness is thus proportional to

.
l4= Cqgl ®@J2L21 1150153 = mlqllg; (4.12)
o''o

where C is a proportionality constant.

©)

ref and

In our experiment, a reference material with known nonlinedy
thicknessL e IS rst measured to obtain the proportionality constant m,.s . Then,
the same measurement is carried out on the sample to obtaim,,,. By comparing
the proportionality constants, m,e; and mgm, the absolute value of & can be

calculated as
m 12 L n 2
@) - (3) sam ref sam : (4'13)

samj = J refJ
Myet I—sam Nret

4.3 Di erent Phase-matching geometries of degenerate feuwave mix-

ing (DFWM)

In our experiment, the forward phase-matched geometry adustrated in Fig.
4.2 is used. With this geometry, the three incident beams (dfequency! ), labeled
as 1, 2, and 3 generate the output beam , 4, viad® . The phase matching geometry
is similar to the folded BOXCARS arrangement in coherent amStokes Raman

spectroscopy (CARS) [59].
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Figure 4.2: lllustration of the forward phase-matched geoetry.

In the planar BOXCARS arrangement, the phase matching diagm is illus-
trated in Fig 4.3. In order to separate the pump and generateldeams, it is generally
arranged that the pump beams and the generated beam are orgganally polarized.
However, the crossing beams do not need to be coplanar to &s@ phase matching.
In the folded BOXCARS arrangement as shown in the same guréhe planar BOX-
CARS phase matching diagram can be folded along the centemdi and the phase
matching condition can still be maintained. The advantage fothis arrangement is
that the beams are now completely separated spatially.

The di culty in implementing this geometry experimentally is to obtain good
spatial and temporal overlap of the interacting beams, whitt usually requires so-
phisticated setup of beam steering optics and delay linesrfspatial and temporal
alignment. In our experiment, a 2-D phase grating is desigdd¢o generate the beam
geometry, which also assures proper spatial and temporaleslap of the interacting

beams. A detailed description of the 2-D grating is given inestion 4.5. The use of
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Figure 4.3: Planar and folded BOXCARS phase-matching diagm.

a 2-D phase grating also allows the coherent detection of DAWwhich allows the

characterization of complex . Coherent detection of DFWM is described next.

4.4 Coherent detection of DFWM

As shown in (4.13), only the absolute value of &), can be obtained in the
direct DFWM measurement. Also, in the case when the nonlingty is small, it
becomes challenging to detect the weak DFWM signal with goasignal-to-noise
ratios (SNR's).

Coherent detection has long been recognized as a method tdiage signal

ampli cation [60]. In the coherent detection scheme, a refence eld, Es is mixed

coherently with the diracted DFWM signal, Eprwwm , the total intensity on the
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detector is

q___
| = lef + Iprwm +2  lref lDFwm COS; (4.14)

where is the phase di erence between the reference eld and the DFM/signal. In
addition to the improved SNR, another advantage of the cohent detection scheme
is that the detected signal is now phase sensitive. By varynthe phase of the
reference eld, the full complex eld of the DFWM signal can k& measured.

There are di culties in practical implementation of the coherent detection
scheme. One of the problems is that the reference and the DFWhtams have
to be overlapped temporally and spatially, which requiresaceful alignment. A
more challenging problem is to stabilize the relative phaseetween the reference
and the DFWM beams. In general, active stabilization with fedback control is
used to ensure phase stability [60]. However, the disadvagie is the considerable

complexity and added cost over the direct detection scheme.

4.5 Coherent detection using di ractive optical elements

Recently, optical heterodyne detection spectroscopy ugjrdi ractive optical
elements for passive phase stabilization has been proposedl demonstrated by
several groups [61]-[63]. A typical schematic of this teclyue is shown in Fig. 4.4.
In these schemes, one pump beam and one probe beam either emmglwavelength
separated are incident on a 1-D diraction grating to generg the required beam
geometry using the 1 diraction order. The beams are then imaged on to the sam-

ple with transmission or re ective optics with the other di raction orders blocked.
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Figure 4.4: Optical arrangement for heterodyne detectiorpgctroscopy.

The use of diractive optics ensures the spatial overlap ofhie interacting beams
automatically. The stabilization of the phase between theaference and di racted
beams is achieved passively without any additional compants, and the spatial and
temporal overlap of the reference and di racted beams is @obtained without the

need of additional alignment.

4.6 2-D phase grating

In our experiment, a 2-D phase grating is designed to geneeathe four beams
required for coherent detection of DFWM signal. The schematof the 2-D grating is
illustrated in Fig. 4.5. The phase shift between adjacent gting elements is such
that most of the di racted beams go into the ( 1, 1) orders and the (0,0) order
is suppressed. Fig. 4.6 shows the calculated diraction parn of the 2-D phase
grating in Fig. 4.5, it can be seen that the (0,0) order is conigtely suppressed

and most of the power is equally diracted into the ( 1, 1) orders as expected.
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Figure 4.5: Schematic of the 2-D grating used in the experimie The relative phase
between adjacent grating element is.

The four beams in the ( 1, 1) orders form the required beam geometry for our
experiment.

The 2-D grating fabricated on fused silica is shown in Fig. #. The di raction
pattern probed with a He-Ne laser is shown in Fig. 4.8. Sincée probe laser is
far from our design wavelength of 1.5m, the phase shift between adjacent grating
elements is no longer and strong (0,0) order can be seen in the picture. We
measured the di raction e ciency into the (1, 1) orders using a CW laser at 1.5

m and found the e ciency to be around 70% (total power in the far ( 1, 1)

order beams).
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Figure 4.6: Calculated di raction pattern of the grating in gure 3.4

Figure 4.7: 2-D diraction grating fabricated on fused silca.
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Figure 4.8: The diraction pattern of HeNe laser scattered y the 2-D grating in
Fig. 4.7

4.7 Measurement of @

4.7.1 Experimental setup

The schematic of the experimental setup for direct detectioof DFWM sig-
nal is illustrated in Fig. 4.9. The schematic for coherent dection is similar to this
schematic and will be described in later sections. The lasssurce used in the experi-
ment is an OPA (Spectra-Physics OPA800-C) pumped by a reganaéve Ti:sapphire
ampli er (Spectra-Physics Hurricane system). The systememerates 130 fs output
pulses at 1525 nm with a repetition rate of 1 kHz. A half-wavelate and a polarizer
are used to control the light intensity into the DFWM experimental setup. A small
amount of the beam is de ected onto a photodetector before tming the setup to
monitor the input power. The beam is focused onto the 2-D phasgrating with
grating period 40 m using a spherical lens with 20 cm focal length. After the 2-D

grating, the beam is diracted into four replicas ( 1, 1 diraction orders) with
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Figure 4.9: Schematic of the Direct detection gf @j.

70% e ciency. All the other di ractive orders are blocked with a mask. The beams
are arranged in the folded-BOXCARS geometry and are 1X imadeonto the sam-
ple with the telescope consisting of two identical spheritéenses with 10 cm focal
lengths. Beam 2 is chopped at 500 Hz before the sample to ehiatie pump-probe
contamination [63]. The use of a 2-D phase grating ensuresthh@hase matching
and the spatial and temporal overlap of the DFWM signal and th reference eld.
After the sample, a spherical lens with 10 cm focal length issad to collimate the
beams. By blocking the unwanted beams and scattered lightnly the reference
beam and the DFWM is allowed into the detection system consisg of a polar-
izer and a photodetector. The electrical signal from the phodetector is sent into a
lock-in ampli er which is phase-locked with the optical chpper. In this experiment,
a 520 m thick fused silica is chosen as the reference material faneparison with
the nonlinear polymer sample. The @ of fused silica has been well characterized

to be 15 10 4 esu [64][65].
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4.7.2 Direct detection ofj @]

In the direct detection experiment (Fig. 4.9), the referere eld (beam 4)
is blocked before the sample, and the DFWM signal is generdtén the direction
of beam 4 with an intensity proportional toj ®j2l4l,l5. In traditional DFWM
experiment, locating the direction of the DFWM signal is chkenging since the signal
is weak. In our experimental setup, since the DFWM is generad collinearly with
beam 4, by simply unblocking beam 4, the detection system cdre easily aligned,
and irises can be placed accurately to block the unwanted blea and scattered light.
The DFWM signal of a 100 m thick processable polyacetylene polymer provided by
the Georgia Tech Department of Chemistry (Joseph Perry, SetMarder, and Joel
Hales) is measured and compared to a fused silica referenéég. 4.10 shows the
cubic dependence of the DFWM signal to the input beam intertyi The magnitude,
i @], of the nonlinear polymer is calculated to be (@ 0:05) 10 *! esu from the

measurement.

4.7.3 Coherent detection of @

The experimental arrangement used for coherent detectio o® is illustrated
in Fig. 4.11. In the coherent detection experiment, the refence eld (beam 4) is
unblocked and mixed with the DFWM signal on the detector. A 16 m thick cover
slip (CS-1) is mounted on a rotation stage and inserted intche path of the reference
eld to control the relative phase between reference and sigl. An additional cover

slip (CS-2) and half-wave plates are inserted into the beamaths to ensure the

88



Figure 4.10: Cubic dependence of the DFWM signal of polyagétne and fused
silica to the input intensity.
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Figure 4.11: Schematic of the coherent detection of3.

proper temporal overlap and to adjust the intensity of the réerence and signal
beams on the detector.

Using 4.14, the coherent detection signal can be describey the following
eguation,

q -
| = lprwm + lret 2 lppwm + lrer COS( + ): (4.15)

is the phase di erence between reference and signal due te@oslip rotation and
i = o+ i,where ® =j ®jexp( ;). The DC signall ¢ is removed by chopping
beam 2. Rotation of the cover slip changes the path lengths tife reference beam
in air and in cover slip as shown in Fig. 4.12, which introdusephase di erence
between the reference and signal beams. The phase di erence is related to the
cover slip rotation angle by [66]

" ! I#

2d 1 1 cos( ) cos(o o)

= n n X 4,16
® cos  cos g a cos CcoS o (4.16)

where n¢ is the refractive index of the cover slipn, is the refractive index of air,
d is the cover slip thickness, is the wavelength, and are the incident and
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Figure 4.12: Path length di erence introduced by cover slipotation.

transmission angles at the air and cover slip interface anderelated byn,sin =
Nes SIN

The interference signals of the polyacetylene Im and the ference fused silica
are plotted and t with the above expressions in Fig. 4.13. Tl phase of the

nonlinear polymer is calculated to be 21.0 1.2 by comparing the t parameters.

4.8 Nonlinear refractive index, nonlinearity coe cient, and nonlinear

absorption coe cient

The third order nonlinearity © is responsible for the nonlinear refractive

index which can be used for ultrafast switching as describad chapter 1. In the
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Interferograms of the coherent detected DFWMgnals of polyacetylene

Figure 4.13

and fused silica.
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literature, the nonlinearity is usually quanti ed in terms of nonlinear refractive index
N, or in terms of nonlinearity coe cient , and the nonlinear absorption is quanti ed
by the two-photon absorption coe cient 5. In this section, the relation between
these quantities are summarized.

The nonlinear refractive indexn, is de ned as
n= ng+ nyl; (4.17)

whereny is the linear refractive index and is the intensity of the optical eld. The
parametern, has units of n?/W and is related to the real part of © as [20]

3Re ©®

= . 4.18
N2 4 ocnd ( )

Here, ; =8:8542 10 » F/mand ¢c=2:998 10 m/s. Normally, @ is measured

in the electrostatic units (esu) and can be converted in Sl uts as

"
m? 4
@ V- o 10 8 Olesu] (4.19)
With this, n, is related to © as
#
m 10 ®Re @ 4.20
Ny W o 3 ok e “Y[esu] (4.20)

For nonlinearity in optical bers, it is customary to evaluate the nonlinearity

using the nonlinearity coe cient (W tkm 1), which is de ned by

_ nolo,
CAetf

(4.21)

where Ag; is the e ective core area and is normally in the range of 50-80m? for
optical bers in the 1.5 m region [20]. The corresponding nonlinearity coe cient
can vary from 2-30 W *km ! if we usen, 3 10 ?° m?/W [65].
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Similarly, the two-photon absorption coe cient is de ned as

= o+ ol (4.22)

where g is the linear absorption coe cient. The parameter , has units of m/W

and is related to the imaginary part of @ as [20]

3im @

== . 4.23
2 2 Oczng ( )
When  is measured in the electrostatic units, it is related to @ as
m 2!
— = 10 8im ®[esu 4.24
2 W T 3o [esul (4.24)

From the magnitude and phase of the measured® of the polyacetylene sam-
ple, we calculated then, to be 53 10 ¥ (m?/W), and the , to be 17 10 1°
(m/W). Previous switching experiments using common dispseion shifted bers
[29][30] require several kilometers of bers for sucient onlinearity. A recent
switching experiment [31] using highly nonlinear ber with =1100W km ! re-
quires only 2 meters of ber. With the polyacetylene measucein the experiment,
the length can be further reduced from meters by a factor of 1@nother factor of
10 can be obtained by the reduction of waveguide dimension.oWever, it is still
insu cient for integrated components.

A more realistic gure of merit taken into account of two-phdon absorption
can be obtained as follows. For a third-order nonlinear matial to provide a useful
phase change before light is substantially absorbed, it issential that the two-

photon gure of merit T = ,=n, be less than 1 [67]. For the polyacetylene
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sample, the gure of meritT is calculated to be 4.8, which is insu cient for photonic

switching applications.

4.9 Discussion on DFWM measurement using 2-D phase grating

DFWM measurement using 2-D phase grating combines both therssitivity
of DFWM scheme and the passive phase stability using di racte optical elements.
This setup is applicable over a wide wavelength range as loag enough power is
obtained in the ( 1; 1) orders. The spatial and temporal overlap can be obtained
easily.

This setup does not provide time-resolved nonlinearity iofmation, which can
be obtained in sophisticated systems with optical delays.nlthe experiment, the
insertion of a 150 m cover slip into any one or two of the interacting beams elim-
inates the DFWM signal completely, which ensures no slow ecés is present. To
completely identify the individual i, components in (4.4), individual control of the
polarization of interacting beams is needed [58]. To impleant individual polariza-
tion control in the current setup is di cult since the spacing between the interacting

beams is only 1 cm.
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Chapter 5
Optical switching using cross-phase modulation (XPM) in
semiconductor optical ampli ers (SOAS)

5.1 Introduction

Optical switching using optical nonlinearities is very imprtant for optical sig-
nal processing applications. The nonlinearity of SOAs hasbn exploited for optical
switching by many researchers [68]-[70]. In order to acheewltrafast switching in
SOAs, it is necessary to eliminate the problem of slow relaan in semiconductors.
In this chapter, we demonstrate a simple con guration for utafast switching in
segmented SOAs. We start with a theoretical description ofamlinear pulse prop-
agation in nonlinear waveguides; the nonlinearity in SOA ishen introduced; and

the experiment and modeling of the switch are presented.

5.2 Nonlinear pulse propagation in single mode optical wayeide

The electric eld of a pulse in a single mode nonlinear optitavaveguide can

be written as

E(Xy;zit) = (Gy)A(Z;)exp[ j( oz !ot)]+cC.C; (5.1)
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where is the waveguide mode, o = n(! o)! o=G andA is the slowly varying envelope

of the pulse. The electric eld obeys the wave equation

@b _

"B oer -

0; (5.2)

whereD represents the total displacement eld, including both thdinear and non-
linear contributions. Now, we introduce the Fourier transbrms ofE (z;t) and D (z;t)

as in ref. [19]

21 d!
E(z;t) = . E(z;!)exp(j't )2—; (5.3)
N .
D(z;t) = . D(z;!)exp('t )2—. (5.4)

The Fourier componentsE(z;! ) and D(z;! ) are related by,

D(z;!')= (1)E(z!); (5.5)

where the dielectric constant describes both the linear amtbnlinear contributions.

In the frequency domain, the wave equation becomes

r 2+ g%)rz‘(z;!):o: (5.6)

This equation can be written in terms of the Fourier compondrof A(z;t), which is

given by
z
A(z;19= 11 A(z;t)exp( j! %)dt; (5.7)
and is related toE(z;! ) by
E(z;!)" (xy)Az! lo)exp( | o2): (5.8)
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Substituting (5.8) into (5.6) and dropping the @=@Zterm, we obtain the following

two equations for and A
rs + —— 2 =0; (5.9)

and

2] 0%;( 2 HK=0: (5.10)

Eq. (5.9) is the eigenvalue equation that gives the mode pri2  of the waveguide.
The propagation constant can be solved using rst-order perturbation theory.

Since only diers from ( by a small amount, we can approximate (5.10) as

A(z;! 1y

@z +j( 0A(z;! 19 =0: (5.11)

The propagation constant can be expanded as
1 2
= ot TR T O ) > 20 o) ; (5.12)

where \_ is the nonlinear contribution to the propagation constant.In (5.12), ;

is the reciprocal of the group velocity, and ; is the dispersion of the group velocity

as
d 1
1= a!z!o m, (5.13)
_d? _ 1dy
2 = le, = V_gw,:. (5.14)
=0 =10
Introducing (5.12) into (5.11), we obtain
. . 1
%{" J NLA T l(! ! 0)K+ EJ 2(! ! o)ZA—= 0: (5.15)
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By transforming this equation from the frequency domain to lte time domain, we

obtain the pulse propagation equation:

A @A 1 @A
@A, @+§J z% i NAZO: (5.16)

@z @t
In the next section, we discuss the nonlinear contributionat . from non-

linearities in SOAS.

5.3 Pulse propagation in semiconductor optical ampli ers

In semiconductor optical ampli ers (SOAs), the medium respnse to the op-

tical eld is described by the carrier density rate equation18]

@N _ ) I N a(N Ng)._.,
ot Dr °N + Qv - hi JEj%; (5.17)

whereN is the carrier density,D is the di usion coe cient, | is the injection current,
gis the electron chargeV is the active volume, . is the spontaneous carrier lifetime,
h! is the photon energya is the gain coe cient, and Ny is the transparency carrier
density.

The dielectric constant is given by
= o(n2+ ); (5.18)

where ny, is the background index accounting for dielectric waveguitg in SOASs.
The nonlinear susceptibility represents the gain of the material due to carrier
injection and is generally a complex number. The imaginaryapt is related to the

gain/loss in the SOA, and the real part accounts for the phasshift. A simple
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phenomenological model is used to describe the complicatedation between the

carrier density N and . In this model, the relation between and N is given by
nc .
(N) = G( +j)a(N  No); (5.19)

where n is the e ective mode index, and the linewidth enhancement &or ac-
counts for the carrier induced index change.
The susceptibility  contributes a nonlinear term . to the propagation

constant (5.12). The nonlinear contribution is

|
-0
= — 5.20
NL 2nc ( )

where is the optical con nement factor de ned by the fraction of optical energy
inside the active region. By neglecting the group velocityispersion term in (5.16),

the equation describing pulse propagation in SOA is then

=

@A 1@A .!'j
= 4+ _ = =]-— A _
@z vy @t I one 2 loss

A; (5.21)
where 055 IS the waveguide loss.
By neglecting carrier di usion and averaging (5.17) over th active region, the

carrier-density rate equation is simpli ed to

@N_ | N  g(N)

@t qv . hig

JAlZ; (5.22)
where the gain is de ned by
g(N)= a(N Ny): (5.23)

Combining (5.22) and (5.23), we obtain

@9 % g9 gAP®
@t C Esat,
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where Ego = h! g =a is the saturation energy of the ampli er, and is the mode

cross section ( = wd=). The small-signal gain is de ned by
I
o= N o(E 1); (5.25)

wherely = qV Ny= ¢ is the transparency current.

SinceA in (5.21) represents the power, we can writd in terms of the am-
plitude and phase asA = P Pexp( ), whereP(z;t) and (z;t) are the amplitude
and phase, respectively. Combining (5.21) through (5.24and transforming to a
reference frame moving with the pulse, = t  z=y, we obtain the following set of

equations describing nonlinear pulse propagation in SOAS:

@P_ _
@Z (g Ioss)P’ (5'26)
@ _ 1
@z 2 g; (5.27)
@9 o g 9P, (5.28)

@t c Esat
Eq. (5.27) shows the origin of the self-phase modulation (89 and cross-phase
modulation (XPM). The time dependence of the gairgy(z; ) leads to a temporal
modulation of the phase. The gain saturation and recovery wescribed by (5.28).
When waveguide loss is negligible, (5.26)-(5.28) can bev&al in a closed form
as follows. (5.26) and (5.28) can be integrated over the lehgof the amplier L to

obtain

I:)out( ): I:)in( )exp[h( )] (5-29)

- . 1 .
wi()= n 5N () (5.30)
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whereh( ) is the integrated gain over the pulse pro le and can be wrign as

L
h( )= . o(z; )dz: (5.31)

Integrating (5.28), we obtain the following di erential equation for h( ),

ek N PoOpoyom 13 (5.32)

Cc Esat

D_‘Q.
>

The output pulse can then be obtained by solving for the gain5(32) numerically,
and then applying the solution to the input pulse pro le P;, .

Using typical parameters for SOAs, we simulated the propagian of a 2.77 ps
(full width at half maximum, FWHM) Gaussian pulse in a SOA with 32.4 dB gain
by solving (5.26)-(5.28). The time dependent gain and phasift are illustrated in
Fig. 5.1. It can be seen in Fig. 5.1(a) that the gain is quicklgaturated within the
duration of the pulse, and then slowly recovers with time catant .. From (5.27),
we know that the gain saturation of the ampli er by the pulse § accompanied by a
phase shift as illustrated in Fig. 5.1(b). The phase shift ithe result of the increase

in refractive index caused by the decrease of carrier densés the gain saturates.

5.4 Optical switching using XPM in SOAs

5.4.1 Operating principle

Now, we consider a optical switch with control pulses (stray) and signal pulses
(weak) of di erent wavelengths propagating in the SOA as illstrated in Fig. 5.2.
As the gain is saturated by the control pulse, the refractivendex seen by the signal
pulse increases. The phase change consists of a fast sataratvithin the duration
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Figure 5.1: The time dependent gain (a) and phase shift (b) @ SOA with a 2.77
ps pump pulse.

of the control pulse and a slow recovery as illustrated in Fig5.1. If the pulse
width are much shorter than the carrier lifetime ., we can ignore the frequency
shift resulting from the slow recovery. Focusing on the fashcrease of phase, such a
monotonic change in phase is equivalent to a red shift in thegmal light frequency

described by the chirp

Q.|D_

()= (5.33)

Thus, when the control pulse is aligned with the signal pulsehe signal pulse is
shifted to longer wavelength. With a Iter aligned with the shifted spectrum, the
signal pulses with or without frequency shift can be seleae In this scheme, the

switching time is not limited by the slow recovery time of theSOA.

5.4.2 Experiment on XPM in SOAs

To experimentally demonstrate this principle of operationa CW laser is used

as the probe light, and a mode-locked (ML) semiconductor lesis used as the pump
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Figure 5.2: Schematic of a optical switch using XPM in SOA.

Figure 5.3: Experimental setup for characterizing the XPMriduced frequency shift
in SOA.

light as illustrated in Fig. 5.3. ML laser generates pulsesith pulse width of 2.77 ps
(FWHM) with a repetition rate at around 10 GHz at a wavelengthof 1550 nm. The
wavelength of the CW laser is 1560 nm. To ensure the four-wak@xing product is
negligible, the wavelength separation of the pump and probdght has to be large
enough so that the inverse of the beating frequency betweehettwo eld is much
smaller than the carrier lifetime.

The amplitude and phase of the CW laser are modulated by thentie depen-
dent gain and phase similar to Fig. 5.1 caused by the pump pels The measured

modulated CW output using a 45 GHz optical detector is showmiFig. 5.4. The
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Figure 5.4: The modulated CW output resulting from XGM in a canmercial SOA.

fast saturation of the gain and the slow recovery is evidennithe gure. It can

been seen in the gure that additional structure exists at tle bottom of the gain
saturation curve. These features can be explained by the rdfast phenomena in-
cluding carrier heating, spectral hole burning, and two phon absorption [71]. The
spectrum of the modulated CW light at di erent pump powers isshown in Fig. 5.5.
As predicted by theory, the spectrum is broadened by the XPM ect. A signi cant

red shift can be seen in the gure which is attributed to the fat saturation; and the
overall spectrum is blue shifted due to the slow recovery. Ehadditional feature in
the blue shifted part of the spectrum can be explained by theltmafast phenomenon

mentioned above.
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Figure 5.5: Broadening of the CW probe spectrum by the XPM ingced frequency
shift in a commercial SOA.

5.4.3 Characterization of the gain in SOAs

To obtain the SOA parameters for modeling, we rst characteze the CW
gain of the SOA with respect to pump pulse power using the seiun Fig. 5.6. In
order to measure the gain, we rst nd the transparency currat | of the SOA. The
transparency current is found by measuring the input powerersus output power
at di erent bias current level. When the bias current is bela the transparency, the
SOA acts as a saturable absorber, and we can see an positivevature. When the
bias current is above the transparency, the SOA acts as a satble ampli er, and
we can see an negative curvature. When the bias current is aahsparency, we see

a linear relation. The output power at transparency servessahe base value for gain
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Figure 5.6: Experimental setup for characterizing the SOAain as a function of
pump pulse power.

measurement with all the connection and coupling loss takjninto consideration.
The gain is then calculated by dividing the output power at dierent input power
with the base output value at the corresponding input power.

With xed CW power, the CW gain of the SOA is measured as a funabn of
the pump pulse input power. The results are plotted in Fig. 5. at two di erent
injection current levels. The measured gain then is used itné¢ modeling described

in subsequent sections.

5.4.4 Modeling of XPM in SOAs

The model solves for the time dependent gain and phase as ddxsad in section
5.2. By varying the pump pulse power and the corresponding C\gain, we simulated
the spectrum of the modulated CW signal. The result is showmiFig. 5.8, a
gualitative agreement between the simulation and the meased spectrum in Fig.
5.5 can be seen. By placing bandpass lters (Gaussian shap#dr with FWHM
of 1.5nm) at di erent positions of the modulated CW spectrum the Itered output
is simulated and shown in Fig. 5.9. It can be seen that pulsesrc be obtained

when the lter is placed su ciently far away from the CW center wavelength. The
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Figure 5.7: Measured SOA gain at two di erence bias currents

transmitted signal shape after the Iter corresponds to theswitch response when

the CW signal is replaced by pulses. Thus, short switching milow can be obtained

using this con guration. Fast operation unlimited by the carier time can thus be

obtained using lter assisted frequency shift in SOAs.

5.5 Optical switching using XPM in segmented SOAs

For good switching performance, the Iter has to be far enodgfrom the signal

frequency to suppress the slow recovery components and thechirped fundamental

frequency. Another way to suppress the slow recovery is toaia narrow bandwidth

Iter, however, this limits the application of the switch in high speed systems. It is

obvious that a su cient amount of frequency shift must be obained in the device for
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Figure 5.8: Modeled broadening of the CW probe spectrum by ¢hXPM induced
frequency shift.
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Figure 5.9: Modeling of Itered outputs of frequency shiftd CW spectrum.

110



high speed operation. From (5.33), it is obvious that a shagt control pulse produces
larger frequency shift and a shorter switching window, hower, the control pulse has
to be longer then the signal pulse for e cient switching. Inceasing the phase shift
is another way of increasing the switching time. From (5.30)t is obvious that a
large linewidth enhancement factor and large integrated gainh are bene cial.

The discussions so far only concern gain saturation in SOABpwever, the
same equations can also be used to describe loss saturatim®OAs by considering
the gaingin (5.28) as loss. When the SOA is reverse biased, it becomesaturable
absorber [7][8]. If the reversed biased SOA is used in the soie shown in Fig. 5.2,
the refractive index decreases as the loss is saturated byetpulse. As a result,
instead of a red shift, the frequency shift described by (533 is now to the blue side.
Fast switching can then be obtained by placing a Iter in the ltue side of the signal
spectrum. From previous experiments [7][8], it is more e @nt to obtain higher loss
by increasing reverse bias in a short waveguide section themobtain higher gain
by increasing injection current or by increasing ampli er éngth. Thus, a saturable
absorber is potentially a better candidate for high speed epations.

We propose using a segmented SOA with a long gain section to @ify the
control pulse and a short saturable absorber section for th&witching function.
With the gain/loss combination, the total gain in the devicecan be kept low and
thus avoid the problem of parasitic oscillation from the coipination of ampli ed
spontaneous emission and internal re ection [72]. The segmted SOA also allows
counter-propagation of control and signal in the device asilwbe explained in later
sections. This provides spatial separation of the controha signal. In the following
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Figure 5.10: Microscope picture of the segmented SOA.

section, we explore the switching operation of SOAs with segnted gain and loss

sections.

5.5.1 Segmented SOA

The top view of the segmented SOA is shown in Fig. 5.10. The dee is
composed of a six quantum well active region and a 3n wide ridge waveguide.
The segments are de ned by three separated gold contacts. &Hength of the
right section is 635 m, the middle section is 400 m, and the left section is 85

m. The separation creates electrical isolation between treegments and allows
individual control of the bias condition of each segment. lour experiment, the left
two sections are connected and reverse biased by a voltagerse as a saturable
absorber; and the right section is biased by a current sour¢e amplify the control
pulse. The built-in ampli er section allows lower power opmation of the switch.
The switching happens in the saturable absorber section ngithe blue shift caused
by XPM.

The device used in the experiment was originally designed aslaser, as a
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result, no anti-re ection coating is applied to the facet. When operating the device,
the total gain has to be kept below the lasing threshold of thelevice. In the
experiments and simulations presented below, the total gais always kept equal to

or lower than the total loss.

5.5.2 Counter-propagation in segmented SOA

In the previous discussions, the signal is cross-modulategthe co-propagating
pump pulse. The signal is modulated by the integrated gaindissh in (5.31), which
is independent of the length of the device and spatial disbution of gain/loss in the
device. If the signal and control pulse are co-propagated amsegmented SOA, the
gain and loss segment cancels out each other since only thatsdly independent
total gain/loss is seen by the signal. Now, we consider the miced case where the
signal and control are counter-propagating.

Using the formalism in section 5.3, the counter-propagatin signals in seg-

mented SOA can be described by

@4, 104
@z v, @t
@A 1@A_1 . .

@ v, @ é(1 j )9A: (5.35)

2@ i )eA (5:34)

The gain is related to the signals by

@9 % 9 g(iAj*+ A9
Qg : 5.36
@t C Esat ( )

where we assume the wavelengths of the signal and control dierent enough that

their beating can be neglected. By transforming to a referee frame moving with
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A, as before, we obtain

@A _1 : :
@A 1 @A_1, . ,
- -2 - -2

%gz %o C g g(JAle:atJAzl ). (5.39)

The amplitude and phase of the output ofA; can be expressed as in (5.29) and

(5.30) by

Piout( ) = Pun () explh( )] (5.40)

()= 2h () (5.42)

where the device responsk( ) is obtained by solving (5.38) and (5.39) over the
length of the device. The signal now sees the integrated eteaf the pump pulse at
di erent spatial location of the segmented device over theehgth of the device. If
the pulse width is shorter than the transit time through the cevice, any e ect that
occurs faster than the transit time through the device is avaged out. As a result,
if the device is longer then the pulse, the switching perforamce is limited by the
length of the device. On the other hand, if the device is shat than the pulse, the
switching performance is limited by the pulse width.

In the counter-propagating scheme, the interaction time bheeen the signal
and control is twice the transit time through the device. As an be seen in (5.38),
in the reference frame moving withA;, A, is e ectively moving at half the group
velocity, vg, thus the interaction time is doubled.

Fig. 5.11 shows the schematics of a CW signal modulated by tlentrol
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pulse in a two segments SOA. The control pulse rst saturatethe gain section,
which causes a decrease in gain (trace(a)). The control pelshen saturates the
loss section, which increase the gain (trace(b)). If the gaiis equal to loss, and
the sections have the same recovery time, the recovery of mand loss section
compensates each other, and the integrated gain over the d¢gh of the device is
thus described by trace(c). The transmission of the CW sigh& modulated by the
integrated gain, while its phase is also modulated by the sanpro le as related by
the linewidth enhancement factor, , in (5.41). The corresponding frequency shift
described by the chirp in (5.33) is shown in trace(d). As desbed before, since the
transit time through both sections is longer then the pulse idth, the saturation
time is determined by twice the transit time through the segrants. Thus, the time
constants in the gure are related to the segments lengths byy; = 2L4=v and
| = 2L=Vy. If the segment is short such that the transit time trough it 5 shorter
than the pulse width, the time constant is then twice the puls width.

Since the loss segment is shorter than the gain segment, ager chirp in
the blue side is expected as shown in trace(d). When a lter ialigned with the
blue shifted part of the spectrum, a switching window corrgsnds to the loss satura-
tion/positive chirp part will appear. When a lter is aligne d with the red shifted part
of the spectrum, a switching window corresponding to the gaisaturation/negative

chirp part will appear.
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Figure 5.11: XGM and XPM in a two segments SOA. It is assumed #t the gain
equals loss, and the gain and loss sections have the samewegotime. Trace(a)
shows the saturation and recovery of the gain segment. Trgbg¢ shows the satura-
tion and recovery of the loss segment. Trace(c) shows the egirated e ect of the
gain and loss segments. Trace(d) show the correspondingrphi The saturation
time window is determined by the transit time through the sements since the pulse
width is assumed to be shorter than the transit time.
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Figure 5.12: Experimental setup for characterizing the XPNhduced frequency shift
in segmented SOA.

5.5.3 Experimental demonstration of spectral broadeningdm XPM
in segmented SOA

The device used in the experiment is the same one as shown ig..10. The
experimental setup for characterizing the spectrum broadeng of CW signal in a
segmented SOA is illustrated in Fig. 5.12. ML laser generaeulses with pulse
width of 2.2 ps (FWHM) with a repetition rate at around 10 GHz & a wavelength
of 1566 nm. The wavelength of the CW laser is 1579 nm. The coolkpulse and the
CW laser are coupled into the device using lensed bers on xzystages. The gain
section of the device is forward biased at 120 mA, and the lossction is reverse
biased at 1.75 V. Fig. 5.13 shows the spectral broadening twitarious control pulse
energy. A larger broadening in the blue side of the spectrurs bbserved from the
measurement, which indicates larger loss than gain when theewidth enhancement

factor is considered to be equal in both segments.
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Figure 5.13: Broadening of the CW probe spectrum by the XPM oluced frequency
shift in a segmented SOA.
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The switching window is measured by ltering the CW signal wth a tunable
bandpass lter (3 dB bandwidth 1.7 nm). The un ltered CW spectrum with
0.3 pJ pump is shown in Fig. 5.14 together with the CW spectrunwithout
pump pulse. The e ect of spectral broadening from XPM is evient in the gure.
We rst align the Iter with the center of the spectrum and then move it to the
blue side (-1.5 nm from the center) of the spectrum. The Itershape and position
is measured and plotted together with the broadened CW speam in Fig. 5.15.
The ltered outputs are ampli ed with an EDFA and measured usng a 45 GHz
detector on an optical sampling scope. The results are showm Fig. 5.16. The
measured output is convolved with detector response and doaot represent the
real output. From the data, it is clear that the switching window is aligned with
the loss saturation/positive chirp part as predicted.

In order to obtain better temporal resolution unlimited by the detector re-
sponse, optical sampling technique is used, and a pulsedeiass used in place of
the CW laser in Fig. 5.12. The modi ed experimental setup isllustrated in Fig.
5.17. When the two pulsed lasers have the same repetition eathe probe pulse can
sample the device temporal response by changing the relaitime delay between
the probe and pump pulses. Instead of varying the time delag, small di erence f
is introduced in the repetition ratef of the two pulsed lasers; and the relative delay
between the probe laser and the pump laser is in e ect moduled with frequency

f . The material response repeating every=f seconds is now sampled with a rep-
etition rate of f. The signal can now be detected with a sensitive low bandwiut

detector. The resolution of this technique is limited by theemporal width of the
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Figure 5.16: Measured outputs on an optical sampling scoperesponding to dif-
ferent Iter positions. BPF 1 is aligned with the center of the spectrum. BPF 2 is
-1.5 nm from the center of the spectrum.
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Figure 5.17: Experimental setup for characterizing the XPNhduced frequency shift
in segmented SOA using optical sampling technique.

probe pulse. In our experiment, the wavelength of the pump $ar is 1560 nm, the
wavelength of the probe laser is 1577 nm, both lasers have pettion rate of 10.4
GHz, the di erence frequency f is 5 kHz, and both lasers have a pulse width of
2.2 ps.

The device response is measured with a tunable bandpass rlt3 dB band-
width 1.7 nm) at di erent positions of the output probe pulse specum. Fig. 5.18
shows the positions and shape of the Iter along with the probspectrum. Fig. 5.19
shows the device response when the lter is tuned to the bluede (BPF1-3) and
aligned with the center (BPF4); and Fig. 5.20 shows the dewcresponse when the
Iter is tuned to the red side (BPF5-8). The 1=f 100 ps repetition period is down
sampled to E f =200 s. In Fig. 5.19 and 5.20, the time axis is re-normalized
to 100 ps and shown as the delay between the pump and the probe pulses. The

gain saturation time (12 ps) and loss saturation time ( 10 ps) correspond to
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twice the transit time through the respective sections. Its clear that the loss is
larger than gain in the device, which results in the overshoof loss saturation. As
predicted by theory, when the lIter is tuned to the blue side,a switching window
corresponding to loss saturation/positive chirp part is otained. The lItered output

indicates insu cient Iter discrimination since the spectral width of the sampling
pulse is larger than that of the CW laser used in the previousxperiment; and
the Iter 3 dB bandwidth is 1.7 nm. When the lter is tuned to the red side,
no clear switching window can be seen. This indicates insuient negative chirp,
which could result from the slightly longer transit time through the gain section;
small gain in the gain section; or small linewidth enhanceme factor correspond-
ing to the gain saturation. The experimental result clearlyindicates that the loss

saturation is indeed more e cient for XPM switching applicaions in these devices.

5.5.4 Simulation of counter-propagation in segmented SOA

A simple model is developed to simulate the switching perfiaance using the
counter-propagating scheme in Fig. 5.11. The integrated dee responsen( ) is
solved using nite di erence method [73] by choosing the ration between time and
spatial steps as z = (v4=2) , whereN is an integer. The spatial step z is
chosen so that the corresponding is shorter than the pulse width so that the
response is not limited by the transit time. In each propag&in step, instead of
using a rst-order di erence approximation as in ref. [73]the di erential equations

(5.37)-(5.39) are solved numerically. The calculated eklare stepped in time and
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Figure 5.18: Measured bandpass Iter (BPF) positions with espect to the probe
spectrum (dashed black line).
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Figure 5.19: Measured outputs using optical sampling teclque corresponding to
di erent lter positions in the blue side (BPF1-3) and center (BPF4) of the spec-
trum. The lIter labels correspond to the Iter positions in Fig. 5.18.
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Figure 5.20: Measured outputs using optical sampling teclque corresponding to
di erent lter positions in the red side of the spectrum. The Iter labels correspond
to the lter positions in Fig. 5.18.
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used as the input for the next spatial step. The integrated dece responsé( ) is
obtained after transition through the whole length of the deice.

The schematics shown in Fig. 5.11 are simulated using the nad A device
with 300 m loss segment and 600m gain segment is simulated. The gain and
loss segments are assumed to have the same unsaturated das¥ of 25dB, the
same saturation energy of 10 pJ, the same linewidth enhancenh factor of 5, and
the same recovery time. The index of refraction of the wavemie is assumed to be
3. The 300 m saturable absorber section is chosen such that the corresgling
transit time is 3 ps, and the corresponding switching windows thus close to twice
the transit time at 6 ps.

The input control pulse has a Gaussian shape with FWHM of 2 psche CW
signal, presented by a delta function in spectrum, is assuch¢o be weak compared
to the control pulse. The XGM modulated CW signal output is sbwn in Fig. 5.21.
The asymmetrical shape is determined by the transit time though the gain and
loss segments. It can be seen that the time interval from nomathzed intensity 1 to
minimum intensity is twice the transit time, 6 ps, through the 600 m gain section.
The time interval from the minimum back to 1 is again twice thetransit time, 3 ps,
through the 300 m loss section. The corresponding chirp is shown in Fig. 5,22
which agrees with the prediction in Fig. 5.11.

The spectrum broadening of the CW signal is shown in Fig. 5.22s expected,
a larger blue shift is seen in the spectrum since the loss semhis shorter than
to gain segment. Increasing control pulse energy results larger broadening as
predicted, and the simulated data shows a qualitative agreeent with experimental
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Figure 5.21: Simulated CW signal output modulated by XGM in asegmented SOA.
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Figure 5.22: Simulated chirp of the CW signal by XPM in a segnmted SOA.
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Figure 5.23: Simulated broadening of the CW signal spectruby the XPM induced
frequency shift in a segmented SOA.

data in Fig. 5.13.

The switching window is simulated by Itering the output with a bandpass
Iter (assuming a Gaussian shaped lter with 3 dB bandwidth d 1.5 nm). The
pump pulse energy is 0.3 pJ. The result of the ltered output wh the Iter shifted
-2.2 nm from the center of the spectrum is shown in Fig. 5.24 dether with the
un Itered output and the corresponding chirp. It can be seeithat a clear switching
window 6.5 ps is obtained by placing the Iter in the blue shifted pafr of the
spectrum. The window corresponds to the loss saturation/sttive chirp part of the
un ltered output, which is expected since the lter only seect the blue shifted part

of the signal. The switching window again is limited by the tansit time through

130



1.5

I = = A = e o omm o omm o omm o omm mm mm o omm e omm o mm m
o
S 05F i
2
‘D
c
g
E O
e}
(]
N
©
E .05} 1
(]
c
1t = = =unfiltered output| |
= = =chirp
filtered output
-15 L 1 I I
0 20 40 60 80 100

time (ps)

Figure 5.24: Simulated switching window by the XPM inducedréquency shift in a
segmented SOA.

the loss segment of the SOA.

To further investigate the e ect of the length of loss segmeéron the switching
performance, the switching window is simulated by varyinghte loss segment length
while keeping the total device length, the gain, and the lossonstant. The control
pulse is a Gaussian pulse with FWHM of 2 ps, and the pulse engrig 0.3 pJ. The
bandpass Iter is a Gaussian shaped lter with 3 dB bandwidthof 1.5 nm detuned
2.2 nm to the blue side of the spectrum. Loss segment lengtHfss6 m, 100 m, 300

m, and 500 m are simulated. The results are shown in Fig. 5.25. For the 50n
and 100 m loss segments, the transit time is shorter than the pulse dth of 2 ps,
the window is approximately twice the pulse width of the conbl signal. For longer

loss segments, the switching window grows linearly with theansit time. While the
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Figure 5.25: Simulated switching windows by the XPM inducedrequency shift in
segmented SOA with di erent loss segment lengths.

gain and loss are the same in all four cases, shorter segmdetsl to larger positive
chirp, as a result, more energy is transmitted through the ble shifted lter. The
simulation veri es the limit on switching window by both the segment length and
the pulse width.

Various control pulse widths are also simulated with varyig segment length.
The simulated FWHM of the resulting switching window are shan in Fig. 5.26.
The simulation results provide a guideline for optimizingwitch design for high speed
applications. It can be seen that with a loss segment of 200n, 6 ps switching
window can be obtained with 2 ps control pulses, which allows demultiplexing of

160 Gbps data steams.
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Figure 5.26: Simulated FWHM of switching windows for varios control pulse widths
with di erent loss segment lengths for the counter-propagang geometry.
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5.6 Conclusion

The concept of optical switching using XPM in SOAs is inveggiated. Using
a commercial SOA, the spectral broadening from XPM in SOA is easured, which
agrees well with the theoretical model. For more e cient swiching performance, a
segmented SOA with gain and loss segment is proposed. Thengaggment lowers
the required switching power, and a short loss segment prdes a short switching
window. Experimental results with a prototype segmented déces agree well with
theoretical prediction. A model is developed to analyze thswitching performance
of the device. The simulations show that a 6 ps or less switdg window can be

obtained with loss segment smaller than 200m in a counter-propagation geometry.
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Chapter 6
Conclusion

6.1 Accomplishments

We set out to investigate the feasibility of integrated linar optical signal pro-
cessing using holograms in multimode waveguides. We dentoated, for the rst
time, that using multimode waveguide hologram (MWH), arbitary unitary trans-
formations can be implemented e ciently without the need ofintegrated waveguide
lenses. We also developed a recipe for MWH design using theatmepropagation
method (BPM).

For the development of nonlinear components for optical sigl processing, we
developed a simple optical setup for characterization of ¢hcomplex @ of nonlinear
materials based on an imaged 2-D phase grating. This techoiprovides a reliable
way to measure @ as new materials are constantly being developed.

Also, we proposed and demonstrated the operation principlef an optical
switch based on segmented SOAs. It allows the implementatiof counter-propagation
geometry in the switch, and avoids the problem of parasiticszillations in switches
using high gain SOAs.

The following section provides a brief summary of this thesi
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6.2 Summary

In order to implement useful signal processing operations, is necessary to
develop novel linear and nonlinear integrated optical congments. The di erent
aspects of linear and nonlinear optical signal processingvestigated in this work
are summarized in this section.

Implementation of arbitrary unitary transformation using MWH is presented
in this thesis. We take advantage of the parallelism of opticand perform linear
operations using MWHSs. In chapter 2, it is proven that arbitary unitary trans-
formations can be performed by holograms in multimode waveigles. The general
design principle of unitary mode transformation and unitay matrix-vector multi-
plier using MWH devices is presented. A special design casgng the self-imaging
property of multimode waveguide is also identi ed. It is ale shown that the design
method using the self-imaging property is equivalent to thgeneral design principle.

In chapter 3, a WA-BPM model using Pace (3,3) approximant ogrator is de-
veloped to simulate and design MWH devices. A mode-order a@nter, a Hadamard
transformer, and a optical pattern generator/correlator ae designed and simulated.
The model shows good agreement with the theory. 3-bit optitaattern generators
are designed using the WA-BPM model and fabricated using poher waveguides.
Characterization of the fabricated devices veri es the thery and model. The model
is used to investigate the bandwidth and fabrication tolemaces of MWH devices. It
is shown that devices with larger than 8 ports will be di cult to fabricate with cur-

rent technology. For applications to pattern recognition,the degradation in BER
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due to device imperfection is analyzed. The device performze is shown to be
closely related to bandwidth and fabrication tolerances.

Unfortunately, none of the existing nonlinear polymers ar@adequate for in-
tegrated nonlinear processing. Since new materials are tgimade available to
us through the DARPA's MORPH program, we constructed a sim@ and reliable
setup for characterization of complex . In chapter 4, a simple optical setup for
characterizing the complex @ of nonlinear materials using DFWM with a imaged
2-D phase grating is presented. The absolute value jof®] is obtained by compar-
ing the diraction e ciency of the nonlinear sample to that of the reference fused
silica sample. By passive phase stabilization with the 2-Dhase grating, coherent
detection of the DFWM signal is performed using the same sgiu By changing the
phase of the reference beam, the phase df is obtained. A polyacetylene sample
is measured with this setup. Its nonlinearity is 0 10 ! esu with a phase of 21.0

Although we do not have nonlinear polymers with su ciently large © for
integrated optical switches, the large carrier dependemdex change in SOAs allows
us to implement optical switching with available material. In chapter 5, ultrafast
optical switching using XPM in SOAs is investigated. The opmting principle is
rst experimentally veri ed with a commercial SOA with high gain. Switches with
high gain would lead to parasitic oscillations in the system As an alternative, a
segmented SOA with a long ampli er section and a short satutde absorber section
is proposed. This con guration allows counter-propagatio of the signal and control
pulses; and parasitic oscillations can be avoided since tiwaole device doesn't have
to be operated at high gain. The concept of counter-propagah in segmented SOA
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is presented. A prototype device is characterized using ol sampling technique
to demonstrate the principle. A model is developed to obtainptimum parameters

for future devices.

6.3 Discussions and future work

Discrete unitary transformations have many applicationsn signal processing.
Discrete Fourier transform (DFT), the discrete Hartley transform (DHT) are very
useful for 1-D and 2-D signal processing applications. Thesdrete cosine transform
(DCT) is the most e cient transform for compression of speele and image data.
Many algorithms have been developed for e cient computatio of the DFT, DHT,
and the DCT [74] by breaking the transformation of long pattens into multiple
transformations of smaller patterns. The importance of thee transformations leads
to the development of dedicated electronic chips designear imatrix-vector multi-
plication. However, the speed of these chips are still ling@tl. An example given in
ref [75] is a 16 16 analog matrix-vector multiplier with a operating frequacy of
500 kHz.

All of the aforementioned transformations can be implemeatl with a single
MWH using parallel processing in integrated optics. The pessing speed of the
MWH processors is basically limited by the bandwidth of the mitimode waveg-
uides as shown in our simulations. Recent work [76] shows thiae bandwidth still
exceeds 1 GHz when the port number is 128 when assuming no fedtion error.

Our simulations also indicate the inverse proportionalitypbetween the port number
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and the bandwidth/fabrication tolerance. Although the siz of the MWH proces-
sors is limited by the fabrication technology, it is obvioughat an optical processor
using MWH o er tremendous bandwidth advantage over electmuic processors. Fu-
ture work would involve identifying suitable algorithms toimplement long pattern
unitary transformations using multiple transformations ¢ smaller pattern with in-
tegrated MWH processors.

Possible implementation of programmable matrix using el&o-optic materials
can also be considered. In particular, new electro-optic fymers with high @
are under development, which could make implementation of@grammable MWH
devices possible. Future development of higH® materials could allow us to replace

the SOAs, which would dramatically reduce power consumptioof future processors.
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Appendix A

E ective Index Method
Here, we discuss the e ective index method, which allows thenalysis of 3-D
step index optical waveguides using 2-D slab optical wavegdas.

The scalar wave equation (2.15) is
r3 +kg(n’(xy) ni) =0; (A.1)

where ngss IS the e ective index to be determined. Assuming there is nordittle
interactions between thex andy eld components, the wave function (x;y) can be

written by variable separation as

(xy) = £ (x)g(y): (A.2)

Substituting (A.2) into (A.1) and dividing through by (X;y), we obtain

1 a1 dgy)

o0 e gl dyz T Kmay) ner)=0: (A3)

Let
1 d’g(y)
- + k2n?(x;y) = k2N 2(x): A4
we have
1 o?f (x) |
0 ax2 k§nZ; = KGNZ(x): (A.5)

The two equations above can be rewritten as

1 d*g(y)
o(y) dy?

+ k5[n?(x; y)N?(x)] = 0; (A.6)
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we have
1 d?f (x)

f(x) dx2

+ KGIN?(x) nZ;]1=0: (A7)

Equation (A.6) describes the rst step of the e ective indexcalculation. First,
we replace the 3-D structure Fig. A.1(a) with a combination b2-D slab waveguides
as in Fig. A.1(b). For each slab waveguides, the e ective i@k N along they axis
is calculated.

Then, the e ective index pro le N (x) calculated using (A.6) is used to model
the 3-D waveguide using the 2-D slab waveguide in Fig. A.1(che beam propa-

gation is solved by using the e ective index pro le in the 2-Dwave equation (A.7).

Appendix B
Programming of the WA-FD-BPM using Packe (3,3) approximate

operator
The theory of the multistep WA-FD-BPM using Pace approximations is de-
scribed in section 3.2. Here, we describe the FD expressidrthe algorithm.

First, the x and z coordinates are discretized as follows,

X=p X; (B.1)

z=m z; (B.2)

where p and m are integers. The corresponding discretized wave functior(x; z)
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Figure A.1: Concept of the e ective index method.
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and index pro le n(x; z) are

xz)! (B.3)

n(x;z)! ng: (B.4)

The next step is to discretize the propagator (3.19), whictsirepeated here

m+ri]— _ (1+ alP) m+in_1.

“d+ap) (B.5)
The operator P in the propagator is
P=r3+kin® n¥): (B.6)
The two terms of P, are expressed as
!
@p_ 1 o1 p p p1
@% X X X
1 2t
= (B.7)
and
ks(n?  nZ) p=KiInZ nZ1 o (B.8)
So, the operator can be calculated using the following exson,
_ el 2p%F p1_ o2 2 .
P p= ( )2 + kglng  Nnge ] p: (B.9)

With the expression forP |, the algorithm simply involves applying the propagator

on ™ multiple times to obtain M*! as described by (3.19).

143



[1]

[2]

[3]

[4]

[5]

[6]

[7]

BIBLIOGRAPHY

B. G. Boone,Signal Processing using OpticfOxford, New York, 1998).

F.T.S. Yuand S. Jutamulia,Optical Signal Processing, Computing, and Neural

Networks (Wiley, New York, 1992).

T. J. Xia, Y. Liang, K. H. Ahu, J. W. Lou, O. Boyraz, Y. -H. Kao, X. D. Cao,
S. Chaikamnerd, J. K. Anderson, and M. N. Islam, \All-opticd packet-drop
demonstration using 100-Gb/s words by integrating ber-baed components,”

IEEE Photon. Technol. Lett. 10, 153-155 (1998).

Y. S. Bai, W. R. Babbit, N. W. Carlson, and T. W. Mossberg, Real-time
otpical waveform convolver/cross correlator,” Appl. Phys Lett. 45, 714-716

(1984).

J. S. Wey, D. L. Butler,N. W. Rush, G. L. Burdge, and J. Goldhar, \Optical
bit-pattern recognition by use of dynamic gratings in erbim-doped ber," Opt.

Lett. 22, 1757-1759 (1997).

J. D. Shin, S. H. Paek, H. Y. Kim, K. J. Kim, and C. S. Kang, P\acket error
analysis of an all-optical packet switching node using a beoptical delay line
matched lter as an optical packet address processor," IEEPhoton. Technol.

Lett. 9, 1637-1639 (1997).

H.-Y. Yu, \High-Bit-Rate Optical Signal Processing Usng Nonlinear E ects
in Semiconductor Optical Ampli ers,” Ph.D. dissertation (University of Mary-
land, College Park, USA, 1999).

144



[8] P. V. Petruzzi, \Optical Pattern Recognition using a Seghented Semiconductor
Optical Ampli er,” Ph.D. dissertation (University of Mary land, College Park,

USA, 2003).

[9] A. Vanderlugt, Optical Signal ProcessindWiley, New York, 1992).

[10] P. Hariharan, Optical Holography: Principles, techniques, and applicgahs

(Cambridge, 1996).

[11] T. W. Mossberg, \Planar holographic optical processgndevices," Opt. Lett.

26, 414-416 (2001).

[12] C. Greiner, D. lazikov, and T. W. Mossberg, \Lithograplically Fabricated Pla-

nar Holographic Bragg Re ectors,” J. Lightwave Technol. 22136-145 (2004).

[13] S.-Y. Tseng, Y. Kim, C. Richardson, and J. Goldhar, \Opital Processor using
Waveguide Holograms in Multimode Interference (MMI) Cougdrs," in Confer-
ence on Lasers and Electrooptics on CD-RONThe Optical Society of America,

Washington, DC, 2005), JTuC70.

[14] S.-Y. Tseng, Y. Kim, C. J. K. Richardson, and J. Goldhar)Implementation
of discrete unitary transformations by multimode waveguid holograms,” to

appear in Appl. Opt.

[15] N. J. Doran and D. Wood, \Nonlinear-optical loop mirrot” Opt. Lett. 13, 56-58

(1988).

145



[16] J. D. Merlier, G. Mothier, S. Verstuyft, T. Van Caenegenl. Moerman, P. Van
Daele, and R. Baets, \Experimental demonstration of all-ofcal regeneration

using an MMI-SOA," IEEE Photon. Technol. Lett. 14, 660-662 2002).

[17] D. M. Marom, D. Panasenko, P.-C. Sun, Y. T. Mazurenko, YFainman, \Real-
time spatial-temporal signal processing with optical nomearities,” IEEE J.

Sel. Topics in Quantum Electron. 7, 683-693 (2001).

[18] G. P. Agrawal and N. A. Olsson, \Self-Phase Modulationral Spectral Broad-
ening of Optical Pulses in Semiconductor Laser Ampli ers,TEEE J. Quantum

Electron. 25, 2297-2306 (1989).
[19] R.W. Boyd, Nonlinear Optics (Academic Press, San Diego, CA, 1992).
[20] G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, CA, 1995).

[21] S.-Y. Tseng, W. Cao, L. Lucas, Y. Kim, V. Yun, Y. Leng, C. HLee, W.
N. Herman, and J. Goldhar \A Technique for Measuring Complex @ Using
DFWM with an Imaged 2-D Phase Grating," to appear inConference on Lasers
and Electrooptics on CD-ROM(The Optical Society of America, Washington,

DC, 2006), CThQs3.

[22] J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York,

1996).

[23] T. Jannson, \Information capacity of Bragg hologramsn planar optics," J.

Opt. Soc. Am. 71, 342-347 (1981).

146



[24] M. E. Marhic, \Discrete Fourier transforms by single-mde star networks," Opt.
Lett. 12, 63-65 (1987).

[25] A. E. Siegman, \Fiber Fourier optics,"” Opt. Lett. 26, 125-1217 (2001).

[26] A. R. Gupta, K. Tsutsumi, and J. Nakayama, \Synthesis oHadamard trans-
formers by use of multimode interference optical waveguislé Appl. Opt. 15,

2730-2738 (2003).

[27] M. Reck and A. Zeilinger, \Experimental Realization ofAny Discrete Unitary

Operator," Phys. Rev. Lett. 73, 58-61 (1994).

[28] D. J. Brady and D. Psaltis, \Holographic interconnectbns in photorefractive
waveguides," Appl. Opt. 30, 2324-2333 (1991).
[29] T. Morioka, K. Mori, and M. Saruwatari, \Ultrafast polarisation-independent

optical demultiplexer using optical carrier frequency sfii through crossphase

modulation," Electron. Lett. 28, 1070-1072 (1992).

[30] B.-E. Olsson and D. J. Blumenthal, \All-Optical Demultiplexing Using Fiber
Cross-Phase Modulation (XPM) and Optical Filtering," IEEE Photon. Technol.
Lett.,13, 875877 (2001).

[31] R. Salem, A. M. Lenihan, G. M. Carter and T. E. Murphy, \80 Gb/s

Polarization-Independent Optical Demultiplexing in HigHy Nonlinear Bismuth-

Oxide Fiber," to appear in Conference on Lasers and Electrooptics on CD-ROM

(The Optical Society of America, Washington, DC, 2006), CM3.

147



[32] G. M. Carter, \Excited state dynamics and temporally rsolved nonresonant
nonlinear-optical processes in polydiacetylene,” J. OpSoc. Am. B 4, 1018-

1024 (1987).

[33] H.-Y. Yu, D. Mahgerefteh, P. S. Cho, and J. Goldhar, \Opimization of the
frequency response of a semiconductor optical ampli er wakength converter

using a ber Bragg grating,” J. Lightwave Technol. 17, 308-85 (1999).

[34] S. Nakamura and K. Tajima, \Ultrafast all-optical gate switch based on fre-
guency shift accompanied by semiconductor band- lling e &t," Appl. Phys.

Lett. 70, 3498-3500 (1997).

[35] M. L. Nielsen and J. Mrk \Increasing the modulation bardwidth of
semiconductor-optical-ampli er-based switches by usingptical Itering,” J.

Opt. Soc. Am. B. 21, 1606-1619 (2004).

[36] Y. Liu, E. Tangdiongga, Z. Li, S, Zhang, H. de Waardt, G. DKhoe, and
H. J. S. Dorren, \Error-Free All-Optical Wavelength Conversion at 160 Gb/s
Using a Semiconductor Optical Ampli er and an Optical Bandmss Filter," J.

Lightwave Technol. 24, 230-236 (2006).

[37] A. Yariv, \Coupled-Mode Theory for Guided-Wave Optics' IEEE J. Quantum

Electron. 9, 919-933 (1973).

[38] L. B. Soldano and E. C. M. Pennings, \Optical Multi-Modelnterference Devices
Based on Self-Imaging: Principles and Applications," J. lghtwave Technol. 13,
615-627 (1995).

148



[39] K. Kawano and T. Kiton, Introduction to Optical Waveguide AnalysisWiley,

New York, 2001).

[40] B. E. A. Saleh and M. C. TeichJfundamentals of PhotonicgWiley, New York,

1991).

[41] H. F. Talbot, \Facts relating to optical science. No 1V} Philos. Mag. 9, 401-407

(1836).

[42] M. Bachmann, P. A. Besse, and H. Melchior, \General sdlhaging properties
in N N multi-mode interference couplers including phase relatis," Appl.

Opt. 33, 3905-3911 (1994).

[43] J. M. Heaton, R. M. Jenkins, D. R. Wright, J. T. Parker, J. C. H. Birbeck,
and K. P. Hilton, \Novel 1-toN way integrated optical beam splitters using
symmetric mode mixing in GaAs/AlGaAs multimode waveguides Appl. Phys.

Lett. 61, 1754-1756 (1992).

[44] P. A. Besse, E. Gini, M. Bachmann, and H. Melchior, \New 22 and 1 3 Mul-
timode Interference Couplers with Free Selection of Powepliting Ratios," J.

Lightwave Technol. 14, 2286-2293 (1996).

[45] T. E. Murphy, Optical mode solver Retrieved June 04, 2004, from

http://www.photonics.umd.edu/software/index.html

[46] J. M. Heaton and R. M. Jenkins, \General Matrix Theory ofSelf-Imaging
in Multimode Interference (MMI) couplers,” IEEE Photon. Technol. Lett. 11,
212-214 (1999).

149



[47] Y. Chung and N. Dagli, \An Assessment of Finite Di erene Beam Propagation

Method," IEEE J. Quantum Electron. 26, 1335-1339 (1990).

[48] G. R. Hadley, \Wide-angle beam propagation using Padepproximant opera-

tors,” Opt. Lett 17, 1426-1428 (1992).

[49] G. R. Hadley, \Multistep method for wide-angle beam prpagation,” Opt. Lett

17, 1743-1745 (1992).

[50] B.-T. Lee and S.-Y. Shin, \Mode-order converter in a mtimode waveguide,"

Opt. Lett. 28, 1660-1662 (2003).

[51] O. Moriwaki, T. Kitoh, T. Sakamoto, and A. Okada, \Novel PLC-Based Optical
Correlator for Multiple Phase-Mudulated Labels," IEEE Phdon. Technol. Lett.

17, 489-491 (2005).

[52] A. Yariv, Optical Electronics in Modern Communications(Oxford, New York,

1997).

[53] A. M. Vengsarker, P. J. Lemaire, J. B. Judkins, V. BhatiaT. Erdogan, and J.
E. Sipe, \Long-Period Fiber Gratings as Band-Rejection Fiers," J. Lightwave

Technol. 14, 58-65 (1996).

[54] T. Erdogan, \Cladding-mode resonances in short- andrig- period ber grating

lters,” J. Opt. Soc. Am. A 14, 1760-1773 (1997).

150



[55] P. A. Besse, M. Bachmann, H. Nelchior, L. B. Soldano, ard. K. Smit, \Op-
tical Bandwidth and Fabrication Tolerances of Multimode Inerference Cou-

plers,” J. Lightwave Technol. 12, 1004-1009 (1994).

[56] G. Keiser,Optical Fiber Communications(McGraw-Hill, Boston, 2000).

[57] M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and BW. Van Stryland,
\Sensitive measurement of optical nonlinearities using argjle beam," IEEE J.

Quantum Electron. 26, 760-769 (1990).

[58] F. P. Strohkendl, L. R. Dalton, R. W. Hellwarth, H. W. Sakas, and Z. H.
Kafa , \Phase-mismatched degenerate four-wave mixing: coplex third-order
susceptibility tensor elements oCgg at 768nm," J. Opt. Soc. Am. B. 14, 92-98

(1997).

[59] J. A. Shirley, R. J. Hall, and A. C. Eckbreth, \Folded BOXCARS for rotational

Raman studies,” Opt. Lett. 5, 380-382 (1980).

[60] H. J. Eichler, P. Gnter, and D. W. Pohl, Laser-induced dynamic gratings

(Springer-Verlag 1986).

[61] A. A. Maznev, K. A. Nelson, and J. A. Rogers, \Optical hetrodyne detection

of laser- induced gratings," Opt. Lett. 23, 1319-1321 (1998

[62] G. D. Goodno, G. Dadusc, and R. J. D. Miller, \Ultrafast leterodyne-detected
transient-grating spectroscopy using di ractive optics, J. Opt. Soc. Am. B 15,

1791-1794 (1998).

151



[63] Q.-H. Xu, Y.-Z. Ma, I. V. Stiopkin, and G. R. Fleming, \Wavelength-dependent
resonant homodyne and heterodyne transient grating speoscopy with a
di ractive optics method: solvent e ect on the third-order signal,” J. Chem.

Phys. 116, 9333-9340 (2002).

[64] D. Milam, \Review and assessments of measured values tbE nonlinear

refractive-index coe cient of fused silica,” Appl. Opt. 37, 546-550 (1998).

[65] T. Kato, Y. Suetsugu, N. Takagi, E. Sasaoka, and M. Nistmura, \Measurement
of the nonlinear refractive index in optical ber by the croephase-modulation

method with depolarized pump light,” Opt. Lett. 20, 988-990(1995).

[66] W. N. Herman and M. J. Roberts, \The sense of chromophomientation in
Ims made by alternating polyelectrolyte deposition,” Adv. Mater. 13, 744-746

(2001).

[67] M. Samoc, A. Samoc, B. Luther-Davies, Z. Bao, L. Yu, B. h&=h, and U.
Scherf, \Femtosecond Z-scan and degenerate four-wave mgximeasurements
of real and imaginary parts of the third-order nonlinearityof soluble conjugated

polymers,” J. Opt. Soc. Am. B 15, 817-825 (1998).

[68] D. Marcenac and A. Mecozzi, \Switches and Frequency Caarters Based on
Cross-Gain Modulation in Semiconductor Optical Ampli ers" IEEE Photon.

Technol. Lett. 9, 749-75 (1997).

[69] N. Calabretta, Y. Liu, F. M. Huijskens, M. T. Hill, H. de Waardt, G. D. Khoe,
and H. J. S. Dorren, \Optical Signal Processing Based on Séifduced Polar-

152



ization Rotation in a Semiconductor Optical Ampli er,” J. L ightwave Technol.

22, 372-381 (2004).

[70] Y. Ueno, S. Nakamura, and K. Tajima, \Nonlinear phase stis induced by
semiconductor optical ampli ers with control pulses at reptition frequencies in
the 40-160-GHz grange for use in ultrahigh-speed all-opgicsignal processing,"

J. Opt. Soc. Am. B 19, 2573-2589 (2002).

[71] J. Mrk and A. Mecozzi, \Theory of the ultrafast optical response of active

semiconductor waveguides," J. Opt. Soc. Am. B 13, 1803-18(1&®96).
[72] A. Siegman/asers(University Science Books, Sausalito, 1986).

[73] L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Caol, and R.
G. S. Plumb, \Dynamic Analysis of Radiation and Side-Mode Sppression in
a Second-Order DFB Laser Using Time-Domain Large-Signal avelling Wave

Model," IEEE J. Quantum Electron. 30, 1389-1395 (1994).

[74] S. S. Nayak and P. K. Meher, \High Throughput VLSI Implenentation of Dis-
crete Orthogonal Transforms Using Bit-Level Vector-Matrx Multiplier," IEEE

Trans. Circuits Syst. , 46, 655-658 (1999).

[75] A. Aslam-Siddiqi, W. Brockherde, and B. J. Hosticka, \A16 16 Nonvolatile

Programmable Analog Vector-Matrix Multiplier," IEEE J. Solid-State Circuits,

33, 1502-1509 (1998).

153



[76] H. Wei, J. Yu, Z. Liu, X. Zhang, W. Shi, and C. Fang, \Signa Bandwidth of
General N N Multimode Interference Couplers,” J. Lightwave Technol.19,

739-745 (2001).

154



