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Dense liquids above their glass transition exhibit spatially heterogeneous dy-

namics (SHD) in which regions within the liquid exhibit enhanced or diminished

mobility relative to the average on some time scale. The spatially heterogeneous

nature of local dynamics in supercooled liquids is fairly well established both exper-

imentally and computationally. However, many questions remain concerning why

and how this complex dynamics arises. Here we address these questions and present

results of a detailed investigation of SHD in models of a one-component supercooled

liquid and a low-molecular-weight polymer melt, via molecular dynamics simulation.



We find that particles or chain segments (monomers) with high mobility exhibit

a correlated motion in which they move in a quasi-one dimensional “string-like”

paths that aggregate into larger, ramified clusters. These dynamical clusters grow

in size with decreasing temperature. The mean string and cluster sizes show a

transient nature, with peaks at the late-β/early-α relaxation time of the mode-

coupling theory (MCT). The size distribution of the strings shows an exponential

behavior, while that of the clusters approaches a power law near TMCT. We further

investigate the microscopic details of local particle dynamics in order to understand

the mechanisms by which particles move along string-like correlated paths. We find

that the degree of coherence, i.e., the simulataneous motion by consecutive particles

along a string, depends on the length of the string.

We also explore the thermodynamic behavior of the one-component liquid via

the inherent structure formalism to study the connection between the dynamical

strings and clusters we have investigated and the “cooperatively rearranging region

(CRR)” of the Adam-Gibbs (AG) theory. We find that the average cluster size is

linearly related to the inverse of the configurational entropy Sconf , as observed in

simulated water. However, we also find a similar linear relationship between the

average string size and configurational entropy.
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Chapter 1

Introduction

When a liquid is cooled, it can solidify in two distinct ways. The familiar route pro-

duces an ordered crystal. An equally important but subtle transformation occurs

when crystallization is avoided during cooling. This can be achieved, for instance,

by a rapid quenching of the liquid below its freezing point. Other ways include reac-

tive precipitation, electrolyte deposition (starting from a liquid), ion implantation,

and chemical vapor deposition, to name a few [1, 2]. As a result, a wide variety of

materials are capable of glass formation (vitrification) under certain conditions. For

example, in addition to the commonly available inorganic oxides such as SiO2, GeO2,

B2O3, etc, that commonly form glasses, other materials such as organic polymers

(e.g. poly(ethylene oxide), polystyrene, poly(vinyl chloride)), low molecular weight

organic compounds (e.g., glycerol, glucose, o-terphenyl), molten salts, metallic liq-
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uids, and water are known to form glasses [1]. Even biomacromolecules like proteins

are known to exhibit a dynamic transition known as a protein glass transition, or

sometimes referred to as the “slaved” glass transition to emphasize the influence of

the solvent (e.g. water) in which the proteins are usually embedded [2, 3] .

In general, a glass can be formed by any substance, provided nucleation is

suppressed. The question is not whether a given substance vitrifies or not, but

under what condition it can do so. For example, metallic liquids are known to

vitrify, but bulk metallic glasses (BMG) were not found until recently due to the

large quenching rates (≈ 106 − 108 K s−1 as compared with 0.1 − 1 K s−1 for ‘easy

glass formers’ such as SiO2 and B2O3 [4]) required to produce them .

A liquid that succeeds in avoiding crystallization below its melting temperature

Tm, but that is not yet a glass, is referred to as being in the supercooled liquid

state, which is metastable with respect to the crystalline state. As the supercooled

liquid is cooled to lower temperatures, its density and viscosity increase, and the

molecules in the liquid move more and more slowly. At sufficiently low temperatures,

the molecules in the liquid will rearrange so slowly that they can not adequately

sample configurations in the available time allowed by the cooling rate. The liquid’s

structure therefore becomes frozen on the laboratory time scale. In other words, the

characteristic time for the structural relaxation becomes comparable to the duration

of a macroscopic experiment (e.g., of the order of 100 seconds) [5]. On this and

shorter time scales the supercooled liquid is structurally arrested, and is called a

glass.

The temperature at which a liquid falls out of equilibrium and transforms
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into a glass is known as the glass transition temperature, Tg. This occurs across a

narrow transformation range where the rate of change of volume or enthalpy with

respect to temperature decreases abruptly to a value comparable to that of the

crystalline solid [6]. Fig. 1 illustrates the temperature dependence of a liquid’s

volume (or enthalpy) as it is rapidly cooled under isobaric conditions. Unlike Tm,

Tg is not unique for a given substance. It depends on the cooling rate; the slower

a liquid is cooled, the longer the time available for configurational sampling at

each temperature, and hence the colder it can become before falling out of liquid-

state equilibrium [7]. Consequently, Tg decreases with the cooling rate. Fig. 1

shows different values of Tg resulting from different cooling rates. Typically, the

dependence of Tg upon cooling rate is weak; an order of magnitude change in cooling

rate may change Tg by only 3−5 K [8]. Despite its (weak) dependence on the cooling

rate, when defined consistently, Tg is an important material property that can be

used, e.g., in estimating the mechanical properties of materials.

Because glass formation can be achieved by a variety of materials, under-

standing the nature of glasses and supercooled liquids has impact in areas as diverse

as environmental, biological, pharmaceutical, technological and many other fields.

Environmentally, for example, glasses are important geological materials on earth,

where rapid cooling of magma produces about a billion cubic meters of glass each

year [9]. Further, it has been argued that most of the universe’s water exists in the

glassy state [1, 2]. In the area of life sciences, the dynamics of proteins is intimately

related to that of glass-forming liquids, one example being the protein glass tran-

sition mentioned above [2, 3]. Additionally, the concept of the energy landscape,
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Figure 1.1: Schematic representation of the specific volume as a function of T for a

liquid that can both crystalize and form a glass. Tm is the melting temperature, and

Tg1 and Tg2 represent the glass transition temperatures of the liquid resulting from

relatively faster (glass 1) and slower (glass 2) cooling rates, respectively. Adapted

from Ref. [8].

originally developed for glass-forming liquids, is extensively used in the study of the

protein folding problem [10].

In the pharmaceutical area, the use of supercooled water as a storage medium

is considered to be a way of preserving the biological activity of isolated proteins

in solution during the storage process for the purpose of therapeutic or biochemical

applications. The effectiveness of supercooling as a means of prolonging the shelf life

of proteins hinges on the availability of reliable techniques for preventing freezing [5],

which in turn relies on understanding the dynamic and thermodynamic behavior of

supercooled liquids, in this case water. Along this line, saccharide glasses are used
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to preserve biological structures (tissues, cells, enzymes) for storage and transporta-

tion [11]. Additionally, glassy pharmaceuticals are known to be more rapidly taken

up by the body than pharmaceuticals in crystalline form [11].

In the technological arena, on the other hand, polymers can be cited as one

simple example where the knowledge of the glass transition temperature Tg has a

significant role in harnessing them for technological uses. All synthetic polymers

are solids that are at least partially amorphous. Depending on their technologi-

cal applications, polymers can be used either above or below their glass transition.

For example, hard plastics like polystyrene and poly(methyl methacrylate) are used

below their glass transitions, while rubber elastomers like polyisoprene and poly-

isobutylene are used above their glass transitions. Therefore, Tg is an important

material property that is useful in estimating the mechanical properties of a poly-

meric material.

The above few examples demonstrate the wide range of applicability of glasses

that spans from the archetypal inorganic window glasses to a biologically active

material. Despite their wide applicability, the formation of glasses is not well under-

stood. In particular, several aspects of their relaxation properties are still a mystery.

Part of the mystery lies in the dramatic slowing down of dynamics upon glass forma-

tion. When the liquid is cooled towards its glass transition temperature Tg, several

dynamical quantities such as relaxation times, diffusivities or viscosities change by

up to 14 orders of magnitude. Yet structurally, glasses look almost indistinguishable

from the liquid from which they are formed, when subjected to typical structural

measures such as the radial distribution function. The primary issue of the glass
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transition phenomena is thus understanding the cause of the dramatic change in the

dynamics without any significant change in the structure. Of course, a dramatic

change in the dynamics can also be observed when a liquid crystallizes. But in this

case the change in the dynamics can be attributed to the change in the structure,

i.e., a change from a disordered liquid to an ordered solid.

In the past, several theories have been proposed to explain the origin of slow-

ing dynamics and the cause of the glass transition under deep supercooling. Among

these are the entropy theory of Adams, Gibbs, and DiMarzio [12, 13], the free vol-

ume theory of Turnbull, Cohen and Grest [14, 15, 16], the mode-coupling theory

(MCT) of Götze and co-workers [17], and the frustration-limited domain theory of

Kivelson, Tarjus and co-workers [18], to name a few. These theories have explained

several aspects of the relaxation of liquids upon cooling towards Tg. However, thus

far, a comprehensve theory that captures all the salient features of this phenomenon

is still missing. In fact, nearly a decade ago, Anderson [19] described this problem

as being “the deepest and most interesting unsolved problem in solid state physics”.

Still presently, this phenomenon remains a challenge to the scientific community,

although much progress has been made over the past several decades in the under-

standing of many aspects of the glass transition.

Part of the reason for the difficulty in resolving the mystery of glass formation,

and the lack of a comprehensive theory that has universal acceptance, lies in the

absence of a detailed microscopic description of this complex phenomenon. Such a

picture has begun to emerge only recently with the advent of novel experimental

techniques (e.g., confocal microscopy [20, 21], 4D-NMR experiments [22], and oth-
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ers), and the advancement of computational capabilities. Our research, being part

of the general effort in understanding the dynamic and thermodynamic properties

of glass-forming liquids, is dedicated to exploring the supercooled state by making

use of computer simulation of model systems. In particular, we strive to shed light

on the microscopic behavior of glass-forming liquids that may contribute to our

understanding of the origin of slow dynamics upon cooling towards Tg.

The thesis is organized as follows: In Chapter 2 we provide a brief background

on the properties of glass-forming liquids, where the theories describing their re-

laxation behavior is discussed. In this chapter, we also present in more detail the

context for our studies with respect to the general effort on the study of glass for-

mation. In Chapter 3 we describe the two models used in our simulations: a model

of a polymer melt and a liquid metal. In this chapter we describe the structural and

dynamic properties of these systems. In Chapter 4 and 5 we discuss the cooperative

dynamics of chain segments in polymer melts, and their tendency to form clusters

to escape from the cages formed by neighboring chains. In Chapter 6, we explore

a similar behavior for a model of liquid metals known as the Dzugutov liquid, with

an emphasis on a detailed description of string-like particle motion, where we in-

vestigate the local rearrangements of particles that lead to the formation of the

strings. In Chapter 7, we explore the thermodynamic properties of the Dzugutov

liquid using the inherent structure formalism. This final chapter describes part of

ongoing research effort to make a connection between a microscopic description of

dynamics in terms of strings and clusters, and the macroscopic quantity, configu-

rational entropy, thereby bridging the spatially heterogeneous dynamics observed
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in glass-forming liquids and the well known Adam-Gibbs theory. Conclusions are

given in chapter 8. Relevant analysis code is included in the Appendix.
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Chapter 2

Background

In this chapter we discuss the relaxation properties of glass-forming liquids and the

different viewpoints describing the glass transition. We begin our presentation by a

brief discussion of the salient features of supercooled liquids and glasses. We then

present different theories of glass formation, followed by experimental and compu-

tational observations that describe the most prominent features of glass-forming

liquids. Our description is focused on those properties and theories that are most

relevant to our discussion in the following chapters. Moreover, here and in the

remainder of the thesis, our description is restricted to the dynamics and thermo-

dynamics of glass-forming liquids approaching the glass transition from high T , i.e.,

glass transition viewed ‘from the liquid’, which is the scope of our research.
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2.1 Canonical features of glass-forming liquids

The temperature dependence of the transport properties of liquids such as viscosity

η, diffusivity D, and conductivity σ, as well as relaxation times like shear mechan-

ical relaxations τs, dielectric relaxations τD, and other characterisitic times have

been extensively studied for all classes of glass-forming liquids (See Ref. [23] for

review). With few exceptions, the temperature dependence of these quantities is

found to deviate from an Arrhenius behavior that is familiar in most physical pro-

cesses. Such deviation is known to be one of the most important canonical features

of glass-forming liquids. To characterize this non-Arrhenius behavior, a wide vari-

ety of mathematical equations have been proposed that describe the temperature

dependence of relaxation times or viscosity in glass-forming liquids. Among these

are τ ∝ exp(B/(T − T0)
3/2) of Bendler and Shlesinger [24], τ ∝ exp(T 2

0 /T 2) of

Bässler and Richert [25, 26], τ ∝ (T − Tc)
−γ with Tc < Tg of Colby [27] and with

Tc > Tg of the idealized mode-coupling theory, to mention a few equations that re-

quire only three fitting parameters. Here Tc is a critical temperature. There are also

other mathematical equations that provide an excellent fit to the temperature de-

pendence of transport properties, but they contain four or more fitting parameters,

e.g. the Cohen-Grest equation [28].

The most frequently used equation to characterize the temperature dependence

of the transport coefficients of supercooled liquids is the equation proposed by Vogel,

Tammann, and Fulcher (VTF) [29],
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τ = A exp(
B

T − T0

), (2.1)

where B is the activation energy of the system, and T0 is the so-called Vogel temper-

ature. When T0 = 0, the familiar Arrhenius equation results. As will be discussed

shortly, T0 is related to the ideal glass transition temperature. An important aspect

of this equation is its implication that the relaxation time τ diverges at a nonzero

temperature, T0 > 0, which in turn provokes the existence of an underlying phase

transition. In practice, however, this has never been observed because of the finite

cooling rate that causes the system to fall out of equilibrium and enter the glassy

state before T0 is reached. The VTF equation is mathematically equivalent to the

Williams-Landel-Ferry (WLF) relation that is used to describe the temperature de-

pendence of viscosity or relaxation times in polymers [30].

Another salient feature of glass-forming liquids is the decoupling between

translational diffusion and viscosity, and between rotational and translational dif-

fusion [31, 32, 33]. Translational and rotational diffusion coefficients are related to

the viscosity through the familiar Stokes-Einstein-Debye equations as [34]

DT =
kBT

6πηR
(2.2)

DR =
kBT

8πηR3
(2.3)

where DT and DR are the translational and rotational diffusion coefficients, re-
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spectively, and kB is the Boltzmann’s constant, T is temperature, R is radius of

sphere, and η is viscocity. At higher temperatures, both DT and DR are propor-

tional to T/η in glass-forming liquids, in agreement with the Stokes-Einstein (SE)

and Stokes-Einstein-Debye (SED) equations [35]. However, upon deep supercooling

(approximately below 1.2 Tg), several experiments [33, 36, 37] have revealed that the

inverse relation between DT and η breaks down. Molecules are observed to trans-

late faster than what is expected based on their viscosity, resulting in translational

diffusion that is two orders of magnitude faster than predicted from the measured

viscosity [35]. On the other hand, the inverse relation between the rotational motion

and viscosity continues to conform reasonably well near Tg [35]. This means that,

as the temperature is lowered, molecules on average translate progressively more

for every rotation they execute [38], the consequence of which is the decoupling of

translational and rotational motion.

Another characteristic feature of glass-forming liquids is the non-exponential

relaxation behavior of macroscopic responses to perturbations. Experimentally,

there are numerous ways in which a system of interest can be perturbed from its

equilibrium state for the investigation of structural relaxations [39]. These include

mechanical stress where, e.g., the stress in response to an imposed deformation

is measured, electrical stress where, e.g., the dielectric relaxation or polarization is

measured in response to an applied elctric field or voltage jump, and a thermal stress

where, e.g., the fluctuation in enthalpy, volume or entropy is measured after a tem-

perature jump. All these responses involve some sort of molecular rearrangements,

and are used to study the relaxation behavior.
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Almost universally, all measured response or correlation functions of viscous

liquids close to Tg exhibit a non-exponential relaxation [23]. The temporal behavior

of these non-exponential response functions are often described by the streched

exponential, or Kohlraush-Williams-Watts (KWW) [40] function

Φ(t) = exp[−(t/τ)β], (2.4)

where Φ(t) represents the correlation function that measures the fluctuation of a

given physical quantity, τ is the characteristic relaxation time, and β is the stretching

exponent, which measures the extent of exponentiality. For example, if β = 1

then an exponential behavior is recovered. For many glass formers, the KWW

equation describes rather well a major portion of the primary relaxation process

that is responsible for the glass transition [23]. Deviations from the KWW form are

often found in the short time (t << τ) and in the long time (t >> τ) regimes [8].

Apart from these deviations, KWW type decays appear to be a universal behavior

of relaxation in disordered matter.

In general, the above discussed canonical features of glass-forming liquids may

be interconnected with one another, and, of course, with the dramatic slowing down

of dynamics upon deep supercooling. Next, we discuss some of the theories that

have been somewhat successful, and widely applied, in explaining different aspects

of the above relaxation behaviors.
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2.2 Theories of glass formation

Theories of glass formation can be catagorized under thermodynamic or dynamic

view points. In the thermodynamic view point, the experimentally observable glass

transition is viewed as a kinetically controlled manifestation of an underlying sin-

gularity [5], which is explained in purely thermodynamic terms. This view point

underlies both the entropy and the free volume theories, where the entropy theories

view the experimentally observable glass transition as a manifestation of an under-

lying entropy crisis at a temperature known as the Kauzmann temperature TK [5].

This is a temperature at which the entropy difference between the liquid and the

corresponding crystal vanishes. When a liquid is cooled below its melting temper-

ature, the entropy of the liquid Sliquid decreases at a much faster rate than that of

the crystal Scrystal. One expects that, upon extrapolation of the liquid’s entropy

to much lower T , the difference between Sliquid and Scrystal vanishes at a nonzero

temperature TK [41]. Upon further extrapolation for T < TK , Sliquid becomes lower

than Scrystal for the same T .

Although it is strange to imagine a liquid with smaller entropy than crystal,

thermodynamics places no restriction on the sign of the entropy difference between

the liquid and the crystal. In fact, a system of hard spheres, e.g. colloids, freezes to

a solid that has higher entropy than the liquid [5]. The entropy crisis rather arises

from further extrapolation of the crystalline and the amorphous entropies much

below TK , assuming such an extrapolation is possible. In this case, Scrystal → 0 as

T → 0. The entropy of the disordered phase, on the other hand, would approach
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negative values. Negative entropies are inconsistent with the classical expression

S = kBlnΩ, since the number of accessible states Ω can not be less than unity. This

impossible scenario, first pointed out by Kauzmann in 1948 [42], constitutes the

entropy crisis and has come to be known as the Kauzmann paradox since then.

As a resolution to this paradox, TK is viewed as an absolute limit, or underlying

singularity, below which the liquid can not exist. Succeeding to avoid crystallization

thus far, the supercooled liquid can only escape the apparent entropy crisis by un-

dergoing a sharp glass transition at TK . For this reason TK is called the ideal glass

transition temperature [43]. In practice however, TK is not attainable experimen-

tally, because vitrification intervenes at some higher temperature Tg > TK .

An important critique of the validity of the extrapolation of the liquid entropy

below Tg was put forward by Stillinger [44] based on the energy landscape paradigm.

This paradigm is based on the idea, first proposed by Goldstein [45], that molecu-

lar motions in a deeply supercooled liquid consists of thermally driven anharmonic

vibrations about deep potential energy minima, and infrequent transitions between

different minima. Stillinger and co-workers [46, 47, 48] extended this idea by de-

veloping the concept of inherent structures, which are the local potential energy

minima in a multidimensional potential energy hypersurface (or ‘energy landscape’)

about which the system vibrates.

For the simple case of N particles with no internal degrees of freedom, the

multidimensional hypersurface is a 3N + 1-dimensional object in which each point

represents the coordinates of the N particles and the corresponding value of poten-

tial energy U , i.e., (U, r1, r2, ..., rN) [45]. The implication of this paradigm is that
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vibrational and configurational contributions to the supercooled liquid’s entropies

(or other properties) are separable, where the configurational entropy is associated

with the number of accessible basins in the potential energy hyperspace [44]. A

basin is defined as a collection of points in the multidimensional hypersurface that

lead to the same inherent structure upon steepest descent quenching of configura-

tions [44]. Based on the examination of the basin enumeration function γ(u) that is

defined as the number of potential energy basins whose depth lies in the range be-

tween u± du/2, where u ≡ U/N , i.e., total potential energy per particle, Stillinger

concluded that in nonpolymeric supercooled liquids the rate of entropy loss pre-

dicted by extrapolating liquid properties from above Tg cannot persist indefinitely.

Instead, as T → 0, the entropy of the supercooled liquid approaches zero smoothly,

resulting in a sharp change in the entropy versus temperature curve.

The arguments for the existence or lack of the ideal glass transition are not

yet definitive [5]. Nevertheless, in many current studies, the ideal glass transition

temperature is estimated from extrapolation or fitting of measurements of transport

coefficients such as η or D as a function of T , and is used as a reference temperature

for the lower limit of transformation from a liquid to a disordered solid state. In

general, the entropy-based view point of vitrification aims at quantifying the above

pictures. An important theory in this category that has proven to be useful in the

interpretation of the transport and relaxation properties of supercooled liquids is

the Adam-Gibbs theory [12]. This theory provides a relation between the relaxtion

time τ (equivalently, the viscosity η or the self diffusion coefficient D) and the

configurational entropy Sconf of the system as
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τ ∝ exp

(
C

TSconf

)
(2.5)

where C is a constant. In the derivation of the above equation, Adam and Gibbs

invoked the concept of a cooperatively rearranging region (CRR), which is defined

as a group of molecules that, as a result of energy fluctuations, rearranges itself into

different configurations independently of its environment [5]. The minimum size of

the cooperatively rearranging region z∗ is related to the system’s configurational

entropy through the relation

z∗ =
s∗confNA

Sconf

. (2.6)

In this equation, z∗ is the minimum size of a CRR in one mole of molecules that

consists of n = NA/z cooperatively rearranging regions, which are asssumed to have

equal sizes. Each of these regions contributes sconf to the configurational entropy

Sconf of the whole system so that Sconf ≈ nsconf . This additivity follows from the as-

sumption that a cooperatively rearranging region is independent of its surroundings.

Based on this concept Adam and Gibbs derived an expression for the relaxation time

τ as

τ ∝ exp(
A

T − TK

). (2.7)

17



This equation is identical to the VTF equation (Eq. 2.1) discussed in the last sec-

tion, with the identification of the Vogel temperature T0 to be the same as TK . In

general, the Adam-Gibbs theory interprets the slowing down of dynamics in terms

of the decrease in the number of configurations that the system is able to sample

upon deep supercooling. That is, as the liquid is supercooled, the cooperatively

rearranging regions grow, and relaxation requires the concerted participation of a

larger and larger number of particles that progressively increases with decreasing

temperature. This increased cooperativity upon cooling is reflected in the loss of

configurational entropy, which in turn is manifested by the increase in the relax-

ation time or viscosity. Since the entropy difference between the supercooled liquid

and the crystal, or equivalently the configuratioanl entropy Sconf , vanishes at the

Kauzmann temperature, the theory thus predicts structural arrest to occur at TK .

Another theory in the category of the thermodynamic view point is the free

volume theory proposed by Turnbull and Cohen [14], and later revisited by Grest

and Cohen [15, 16]. According to the theory, vitrification occurs when the volume

available for transitional molecular motion falls below a critical value. If v is the

volume per molecule, and vo is the volume per molecule excluded from all other

molecules, the excess volume is v − vo. A part of the excess volume that can be

randomly distributed without any energy penality is referred to as the free volume

vf [49]. Accordingly, the ideal glass transition is viewed as a phenomenon that

occurs when the free volume vf vanishes [14], and thus the excess volume falls below

the critical volume δvc, which is part of the excess volume that can not be randomly

distributed. The main result of the Cohen-Turnbull theory is the relation between
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the translational diffusion coefficient and free volume, i.e., D ∝ exp(− C
vf

), where

C is the product of a geometric factor that corrects for the overlap of the free

volume and the minimum free volume capable of accomodating another molecule

after the original displacement in the cage. The theory predicts that D, and hence

the possiblity for translational motion, will vanish when vf = 0.

The above models of glass formation predict thermodynamic transitions at

temperatures below the laboratory glass transition temperature Tg. There are also

other models that similarly predict a low-temperature phase transition. Some of

these models are based on the study of spin glasses that are known to have much

similarity with that of structural glasses. By making an analogy with the spin-

glass problem, Binder and Young [50] argued for a thermodynamic transition at

TK . Kirkpatrick, Thirumalai and Wolynes concluded that the universal behavior

of supercooled liquids arises from proximity to the underlying random first-order

transition which is found in the mean-field theories of spin glasses [51]. Another

model that predicts a low-temperature phase transition for glass formation and that

is not based on the spin glass models is the recent theory by Colby [27], where the

author utilized a critical phenomena description of phase transitions for understand-

ing glass formation. Using the idea that free volumes diffuse randomly, the author

constructed a scaling description of glass formation, in which he predicted a phase

transition at a temperature Tc roughly 10 K below Tg.

A nonthermodynamic view of glass formation that can be categorized under

the dynamic viewpoint describes the glass transition as a purely dynamic singu-

larity that occurs upon deep supercooling. Mode-coupling theory belongs to this
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class. In simple terms, this theory views vitrification as a transition from ergodic to

nonergodic behavior in the relaxation dynamics of density fluctuations [17]. The

theory starts from well known microscopic dynamics [52], and derives a set of

dynamic equations for the density correlation function F (q, t), more precisely for

Φq(t) = F (q, t)/S(q). The equation gives a self-consistent description of the dynam-

ics of particles in the system. The solution of this equation is completely determined

by the knowledge of the static structure factor S(q) which, in principle, can be cal-

culated from the microscopic interactions by means of statistical mechanics.

The main predictions of MCT is that for certain values of density and temper-

ature, Φ decays to zero, while for other values it decays to a finite, nonzero number.

The former condition is identified with the liquid or ergodic behavior, while the lat-

ter is identified with glass, i.e., non-ergodic behavior. MCT thus predicts a critical

temperature TMCT (or critical density) where a dynamic transition from an ergodic

to nonergodic phase takes place. Since this transition is accompanied by a diverging

relaxation time of the time correlation functions, it was identified with the glass

transition temperature. However, such a sharp transition, with the exception of col-

loidal systems [53], has never been observed either in simulations or experiments [54].

In fact, in most real systems TMCT ≈ 1.2 Tg.

The lack of a singularity at TMCT and the breakdown of the ideal MCT near

TMCT is attributed to the onset of hopping processes that restore ergodicity below

TMCT, but that are neglected in the idealized version of the theory. The extended

version of the theory [55] incorporates this effect, but, lacks a detailed microscopic

description. This model is an ad hoc addition to the ideal MCT, and the relevant
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coupling parameters have to be determined by fitting to experimental data [8].

Despite its failure to predict the glass transition temperature Tg, MCT succeeds

in describing many aspects of the relaxation behavior of moderately supercooled

liquids. In fact it is regarded as the only theory so far that, starting from first

principles, succeeds in describing the transport properties of supercooled liquids

above TMCT.

Another alternative view point of glass formation that has also contributed to

the current understanding of some aspects of supercooling and the glass transition

is the frustration limited domain theory of Kivelson and co-workers [18]. Similar to

MCT, the interpretations of this model invoke a narrowly avoided singularity above

Tg. The basic physical ingredient of the model is the concept of structural frustra-

tion. According to the theory, molecules in a liquid tend to arrange themselves into

a locally preferred structure that minimizes the local free energy. This preferred lo-

cal structure is different from the structure in the actual crystalline phase, and the

spatial extension of it is prevented because of geometrical frustration owing to the

fact that the local structure does not tile space. An example of such energetically

favored but non-space-tiling local structure is the icosahedral packing. This geomet-

ric frustration causes the system to build up strain. Below some temperature T ∗,

because of the competition between the short-range tendency to order and the strain

generated by the frustration, the liquid breaks up into frustration-limited domains,

thereby avoiding a phase transition (singularity) at T ∗. The avoided transition tem-

perature T ∗ acts as a critical point, below which two length scales emerge. One

is the locally preferred, but strained, frustation-limited domain, and the other is a
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domain that governs density fluctuations in the absence of frustration. With this

model, reasonable agreement between the prediction of the theory and experimental

data has been demonstrated on the temperature dependence of viscosity [18], but

at the expense of introducing a number of fitting parameters [56].

The theories of glass formation are by no means restricted to the above models.

There are still several other models that are relevant in improving our understanding

of the relaxation properties of glass-forming liquids. Some of these models (e.g.,

the coupling model of Ngai and coworkers [57], the replica model of Parisi and

co-workers are long-standing, while others (e.g., the trap model of Bouchaud and

co-workers [58], the cluster model of Fan and Fecht [59], the non-topographic view

of Garrahan and Chandler [60, 61], etc.) are catagorically new emerging theories.

The non-topographic model of Garrahan and Chandler appears to be relevant in

describing some aspects of our computational results. We will, therefore, discuss

this model later in the context of our results.

2.3 Spatially heterogeneous dynamics

From the wide range of models and theories that exist, it may be reasonable to ex-

pect that our search for understanding the mystery of glass formation is still far from

being over. However, recently some important concepts are gaining nearly universal

acceptance in almost all new emerging theories, as well as in explaining several ex-

perimental results related to the study of glass formation. The most prominent ones

are the concepts of spatially heterogeneous dynamics (or dynamical heterogeneity)
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and cooperativity. In fact, these two concepts are essentially inseparable in almost

all instances. In some cases, however, the concept of cooperativity is discussed with

out invoking heterogeneity, e.g., the Adam-Gibbs theory.

Spatially heterogeneous dynamics (SHD) refers to the fact that upon deep

supercooling different regions within a liquid consists of subensembles of particles

that exhibit temporarily enhanced or diminished mobility relative to the average.

These regions can be only a few nanometers away from each other [32]. Those par-

ticles with higher mobility than the average are commonly referred to as “mobile”

or “fast” particles, while those with low mobility are referred to as “immobile” or

“slow” particles. Although not stated explicitly, the concept of dynamical hetero-

geneity is not an entirely new idea. For example, the “two-fluid” model of Cohen

and Grest [15, 16] in their free volume theory involves such an idea, where the ex-

istence of “solidlike” and “liquidlike” regions have been hypothesized. Stillinger et

al., on the other hand, proposed a “fluidized domain model”, where they presented a

description of diffusive motion in strongly supercooled liquids as spatially localized

thermal excitations of particles in an otherwise solid-like matrix [35].

The concepts of dynamical heterogeneity and/or cooperativity are invoked for

providing explanations for an increasing number of experimental observations on

the macroscopic properties of supercooled liquids and glasses [32, 62]. In partic-

ular, the notion of heterogeneity primarily arose from an effort to rationalize the

non-exponential relaxation responses discussed above. At the molecular level, the

non-exponential relaxation can be explained by two fundamentally different sce-

narios. One can imagine that the deviation from an exponential pattern is due

23



to the presence of a heterogeneous set of environments that relax exponentially,

with the relaxation times varying significantly among the different sets. This is

the heterogeneous scenario. Alternatively, one can imagine that each molecule in

the supercooled liquid relaxes nearly identically in an intrinsically non-exponential

manner, such that the local and the ensemble-averaged dynamics will be the same.

This is the homogeneous scenario.

The issue of homogeneous versus heterogeneous description of non-exponentiality

has provoked quite a large number of experimental techniques that are targeted

in understanding the macroscopic responses, and hence the nature of slowing dy-

namics, at the molecular level. The most important techniques [62] include the

multi-dimensional nuclear magnetic resonance (NMR) [22], deep photobleaching,

and dielectric and magnetic hole burning, which are collectively referred to as ‘dy-

namic hole burning’ experiments [32, 62]. These experimental techniques allow the

dynamics of subensembles to be selectively observed, where the subensembles are

selected based on the distribution of relaxation times.

The observation of a subensemble that has a relaxation time different from the

ensemble average is already a proof of the presence of dynamical heterogeneity, albeit

without spatial information [32]. The above experiments also characterize the persis-

tence time, often referred to as the rate memory or rate exchange time, of a particular

relaxation. This quantity measures for how long a particular subset survives with-

out evolving into the average set, providing the lifetime of heterogeneities. Other

experimental techniques performed to detect dynamical heterogeneity include meth-

ods such as solvation dynamics [63], atomic force microscopy [64], single-molecule
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spectroscopy [65] and confocal microscopy [20, 21].

In all these experiments the dynamics of supercooled liquids approaching Tg

is found to be dynamically heterogeneous. The emergence of dynamical heterogene-

ity not only explains the deviation from the exponential behavior of macroscopic

responses, but also other canonical features. For example, the decoupling of trans-

lational and rotational motion upon supercooling has been related to the emergence

of dynamical heterogeneity [32, 62, 66, 67]. Therefore, understanding the nature of

dynamical heterogeneity is believed to be an important step towards understanding

the molecular mechanisms leading to the formation of glasses [62]. Consequently,

dynamical heterogeneity gained a great deal of attention in the search for the origin

of slowing dynamics, which in turn became the source for several new questions [62]:

How do we quantify dynamical heterogeneity? What is the best measure that re-

veals this behavior? How does this property change with T? Is there any transient

nature in this dynamical anomaly? How big are the heterogeneities? What is the

persistence time associated with it? How does the dynamics vary between the fastest

and the slowest regions? And why are dynamics spatially heterogeneous?

Despite the overwhelmingly large experimental evidence for the existence of

dynamical heterogeneity, the spatial character of heterogeneity has been inferred un-

ambiguously by only a few experiments. The first experiment to quantify a length

scale of heterogeneity is the experiment of Tracht et al. that combined multidimen-

sional NMR with the effect of spin diffusion [68]. This experiment makes use of the

transfer of magnetization between 13C and 1H nuclei via cross polarization that is

only efficient for nuclei that are sufficiently close to each other [32]. In this work,
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the characteristic size ξH of the slow region of the heterogeneous dynamics is found

to be in the range of 2− 4 nm for polyvinylacetate at Tg + 10 K [68]. Subsequently,

similar measurements were conducted by Reinsberg et al. [69] on glycerol. They

found that ξH ≈ 1 nm. However, these experiments did not provide information

on the temperature dependence of this length scale, which, in fact, is an important

piece of information needed for understanding the fundamental origin of slow dy-

namics near Tg. One would like to know if there is a growing length scale associated

with these dynamical regions upon cooling towards Tg.

The existence of a growing length scale had been an issue for some time [70].

Despite theoretical predictions for a growing range of correlation length, e.g., the

CRR model of the Adam-Gibbs theory, there had been a number of unsuccessful

attempts to unambiguously identify such regions. For example, Ernst et al. [71]

examined the relaxation of near neighbor pairs and bond orientational correlations

using computer simulation and found no indication of a growing length upon cooling.

A similar result was reported by Dasgupta et al. [72] using a four-point spatial

correlation function. The main challenges in identifying such length scales is in

finding a suitable correlation function that clearly signifies any increase in length

scale upon supercooling. Recently, a number of correlation functions and their

corresponding generalized susceptibilities have been devised to search for growing

length scales. One of the pioneering work in the search for such length scales is that

of Mountain [70], where the author found a hydrodynamic length L that is rapidly

increasing with decreasing T [73].

A more direct approach in which a specific domain is selectively studied was
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used by Glotzer and co-workers [74, 75, 76, 77, 78, 79, 80, 81, 82]. For example,

by studying the slow particles in the simulation of binary LJ mixtures [83], Lacevic

et al. analyzed the properties of the generalized susceptibility χ4(t) that is related

to the time-dependent, four-point density correlation function G4(r1, r2, t) . The

main result of their study revealed a growing spatial correlation between localized

particles as T approaches TMCT. Additional evidence for an increasing length scale

associated with solid-like properties in supercooled liquids has also been reported in

Refs. [84, 85].

To study the regions consisting of mobile particles, a generalized susceptibil-

ity χU(t) that corresponds to the displacement-displacement correlation function

Gu(r, t) has been proposed [78, 80]. This quantity reflects the correlation of highly

mobile particles since, by construction, particles with large displacements contribute

most to the function. The analysis of χU(t) indicates that dynamics in the mobile

domains is also highly correlated over a distance that grows upon cooling towards

TMCT. χU(t) is found to have a maximum at shorter time scales than χ4(t).

The growing dynamical correlation length quantified by the generalized sus-

ceptibility χU(t) is found to be in agreement with the simulation results obtained by

directly analyzing the size of clusters formed by the mobile particles [76]. It has been

found that highly mobile particles move cooperatively forming dynamical clusters

whose length scale increase with decreasing T towards the glass transition tempera-

ture Tg. This is actually one of the central themes of our research where we further

investigate the transient nature and temperature dependence of these clusters in an

effort to understand the spatial and temporal aspects of dynamical heterogeneity.
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Such a direct observation of correlated motion that is growing upon cooling is an

interesting discovery since, at least conceptually, it confirms the notion of cooper-

ativity as a cause for the slowing down of dynamics upon cooling, as proposed by

the phenomenological CRR theory of Adam, Gibbs, and DiMarzio [12, 13].

The above finding regarding the clustering of mobile particles has also been

confirmed experimentally by Weeks et al. [21] using confocal microscopy on dense

colloidal particles. Analogous to molecular liquids, colloids exhibit a glass transition.

In these materials, the parameter controlling the glass transition is density instead

of temperature. As the density increases beyond some critical value, particles in the

dense liquid become trapped within the “cage” formed by their neighbors leading to

the colloidal glass transition. Hard sphere colloids are known to obey several predic-

tions of MCT [53], and are good candidates for studying glass transition phenomena

using confocal microscopy. In particular, if dyed with appropriate labels, the indi-

vidual particle motion can be traced in real space as a function of time by rapid

imaging through confocal laser scanning microscopy, and thus provide microscopic

information that can be utilized to investigate the cooperative nature of dynamics

in these systems. Accordingly, Weeks et al. [21] demonstrated that highly mobile

particles move in cooperatively rearranging dynamical clusters whose length scales

increase with increasing density towards the corresponding glass transition density.

As will be shown in later chapters, a closer inspection of these clusters reveals

that within any cluster of mobile particles, smaller subsets move together in a corre-

lated way whereby several particles replace each other along quasi-one dimensional

paths forming elementary units referred to as “strings”. These strings appear to
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be the rudimentary element of cooperative motion, and are found to play an im-

portant role in different aspects of dynamical heterogeneity (see chapter 6 for more

detail). It is therefore essential to conduct a detailed investigation on the nature

and formation of these elementary units. It is our belief that understanding these

dynamical units will have contribution to our understanding of the nature of cage

rearrangement and cooperative motion, which in turn may shed light on the origin

of dynamical heterogeneity.

As mentioned earlier, despite a large number of theoretical, computational

and experimental advances, there are many issues of dynamical heterogeneity that

remain to be understood, the main challenge being understanding the origin of dy-

namical heterogeneity itself. To unveil this challenging phenomenon, it is necessary

to trace particle motions at the microscopic level. Because strings organize to form

larger, ramified clusters that represent one of the domains of a dynamically hetero-

geneous system, a microscopic understanding of the local rearrangement of particles

that form strings will be a prerequisite to rationalizing the macroscopic properties

observed in glass-forming liquids. In fact, as will be described in later chapters,

these dynamical objects are relevant in the development of new emerging theories

as well as in understanding some aspects of the well-established theories of glass for-

mation. Therefore, part of our research is dedicated to tracking particle motion at

the microscopic level, and understanding how particles are moving upon supercool-

ing. This is, in fact, a ground work for understanding why particles are moving in a

certain way. Is there any driving force, local structure, or other factor that makes

the particles reorganize in a certain way? In order to answer these and similar other
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questions, one needs to know in the first place how the particles are rearranging. A

combination of these two may provide, hopefully, a rigorous account for the origin

of dynamical heterogeneity, and hence the slowing down of dynamics.
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Chapter 3

Models of glass-forming liquids

In this thesis, we study in detail two different models of glass-forming liquids - a

bead-spring polymer melt and a Dzugutov liquid. This chapter is devoted to the

description of these systems. First, the models are described, and then we discuss

their static properties, measured in terms of the pair correlation function g(r) or

the static structure factor S(q), and their dynamic properties, measured in terms

of the mean square displacement (MSD), the structure factor F (q, t) and the van

Hove correlation function G(r, t). Prior to this we briefly describe the basics of the

molecular dynamics simulation method that we used to generate our data.
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3.1 Simple models for glassy dynamics

The relaxation behavior of glass-forming liquids has been studied computationally

using a wide range of model systems that are conceived to imitate a particular class

of material, or a specific substance. In addition to the systems of polymer melt and

the Dzugutov liquid we studied, some other examples that model a class of material

include the binary Lennard-Jones (LJ) mixtures [75, 86], and the 2D and 3D binary-

mixtures of purely repulsive soft-core potentials [87, 88, 89]. One example of the

latter model is the Weeks-Chandler-Andersen (WCA) [90] model in which a repul-

sive potential is obtained from the application of purturbation theory to split the LJ

potential into repulsive and attractive components. Other simple models that have

proved to be useful for studying glass-forming liquids are those resulting from the

hard-sphere potentials [91]. These models are often considered as representatives

for colloidal systems [91]. It is also interesting to note that simple models like spin

glasses [50, 51, 92] and lattice gas models [93] have been utilized in studying glass

forming behaviors. Spin glasses are considered to reproduce phenomenologically sev-

eral features of structural glasses, and have a considerable impact in understanding

glassy phenomena [51, 92, 94].

Specific materials like water [95, 96], silica [97, 98], lithium metasilicate (Li2SiO3) [99]

and others have also been modeled for studying glassy dynamics. In all these mod-

els one first selects a generic potential that describes a given class of material. The

parameters in the potential are then tuned to reproduce the macroscopic property,

e.g., the structure factor, of the real material to be studied. These parameters
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may be obtained either from experimental data, or from ab-initio calculations, and

their validity is checked at different state points within a particular ensemble (NPT,

NVT, etc). In this way, different classes of materials as diverse as molecular liq-

uids, colloids, polymers, ionic glasses, oxides and others have been explored in an

effort to understand the relaxation behavior of supercooled liquids and glasses. Once

the models are set, a simulation method is selected among the different techniques

available that are applicable to the problem. Traditionally, this field is investigated

using molecular dynamics (MD) and Monte Carlo (MC) simulation methods, with

few exceptions of Brownian dynamics for colloids (BD).

Our analysis of the dynamic and thermodynamic properties of supercooled

liquids is based on the data obtained from MD simulations of a polymer melt,

and a one-component liquid obtained from the Dzugutov potential (to be described

shortly). The latter was conceived as a structural model for metallic liquids. Our

choice for these systems is motivated by our desire to investigate the clustering

behavior and string-like motion of a homogeneous system that does not involve

different compositions as in, e.g., the binary LJ mixture, although the primary in-

vestigations of these dynamical behaviors were done using the binary LJ system. For

a detailed study of these phenomena, which we intend to accomplish, one would like

a system in which composition is not an issue. Additionally, the observations made

in the LJ system should be tested in different systems to establish the universality

of the phenomena across a variety of systems.

Historically, we began exploring these dynamical anomalies on a system of

polymer melts using data generated by Bennemann et al. [100]. Due to their struc-
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tural complexity, polymers constitute a class of material that have reduced crys-

tallization tendency. Upon cooling, several polymeric materials undergo a glass

transition, and hence they are good candidates for studying glass forming behav-

ior. However, the issue of connectivity present in the polymer melts motivated us

further to study a clean one-component glass-forming system. The Dzugutov liquid

is one good choice in that respect. Following the work of Dzugutov et al. [101],

we generated data for this system. This system has been studied by Dzugutov and

co-workers for its glass-forming behavior, and it has been found that it behaves as

a typical glass former [101, 102, 103].

3.2 Molecular dynamics simulation

Molecular dynamics simulation is a method by which the classical equation of motion

of a system of interacting particles are solved. Given the initial coordinates and

momenta of a set of particles, the position and momenta of the particles at any

later time are obtained by solving Newton’s equations of motion, i.e., for a system

of N particles one solves a set of 3N coupled, second order, differential equations

mir̈i = −∇VN(rN) (3.1)

where mi and r̈i are the mass and the acceleration of particle i. When the in-

teraction potentials VN(rN) are known, the positions and velocities of all particles

are calculated by numerically integrating the above equations of motion using a
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finite difference method. There are several algorithms for integrating the equa-

tions of motion using finite difference methods [104, 105]. These include the Verlet

algorithm [106], the leap-frog algorithm [107], the Beeman algorithm [108], etc.

Among these, the Verlet algorithm is probably the most widely used integration al-

gorithm [104]. The integration algorithms use an appropriate integration time step

δt that is large enough to cover a given amount of phase space, but small enough

to guarantee stability. The maximum time step chosen in the MD simulations is

limited by the time scale of the shortest motion in the system, e.g, the mean time be-

tween collisions in an atomic fluid, or the shortest period of vibrations in molecular

or polymeric liquid.

MD simulations are carried out in a particular ensemble, such as the micro-

canonical (NV E), canonical (NV T ) or isothermal-isobaric (NPT ) ensemble. The

choice of a specific ensemble is dictated by the nature of the problem under study.

For example, a constant temperature simulation is required if we wish to understand

how the behavior of a system changes with temperature while its density remains

fixed. Examples of such problems include the unfolding of a protein. To simulate a

system under constant T or constant P conditions (or both), the system will be cou-

pled to an “external reservoir”, e.g., heat bath or piston, that is designed to regulate

these quantities as in real experiments. Such methods are commonly referred to as

thermostat or barostat, where different methods like the extended system method

(e.g. Nosé-Hoover thermostat [109], Anderson barostat [110], Parrinello-Rahman

barostat [111]), or scaling method (e.g., Berendsen thermostat/barostat [112]) are

utilized to maintain T or P (see Ref [104, 105] for details).
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For a given ensemble, the positions and velocities of all particles are calcu-

lated at every time step, from which the trajectories (and sometimes velocities) of

the particles are saved at a predetermined time interval for further analysis. The

static and dynamic properties of the system are finally determined using the gener-

ated data. On the other hand, since many thermodynamic quantities are expressible

as statistical averages of certain functions of the coordinates and momenta, the ther-

modynamic properties of the system can also be obtained from the generated data.

That is, if F (rN ,pN) is a function of the 6N dimensional phase space (rN ,pN), and

if F is the associated thermodynamic quantity, then

F =
〈
F (rN ,pN)

〉
, (3.2)

where the angular bracket denotes the statistical ensemble average. For an ergodic

system this is equivalent to a time average

F = 〈F 〉t = lim
τ→∞

1

τ

∫ τ

0

F [rN(t),pN(t)]dt. (3.3)

In computer simulations, this equivalence is exploited to calculate several statistical

averages, where the integral is replaced by discrete time steps. Therefore, informa-

tion on thermodynamic quantities such as temperature, pressure, potential energy,

and many more can be easily extracted from the time average of the corresponding

instantaneous functions. For example, temperature and pressure are calculated from
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the instantaneous temperatures T (t) and pressures P(t) that are derived using the

3N coordinates and momenta generated by the simulation as follows:

T = 〈T (t)〉t =
1

NMD

NMD∑
t=1

T (t) (3.4)

where,

T (t) =
1

3NkB

N∑
i

1

mi

|pi(t)|2, (3.5)

and NMD is the total number of time steps. Note that Eq. 3.5 is a result of the

virial theorem. In a similar way, the pressure P is obtained from the virial equation

expressed as

βP

ρ
= 1− β

3N

〈
N∑

i=1

ri(t) · ∇VN [rN(t)]

〉
(3.6)

where the averaging is done as in Eq. 3.4.

3.3 Simulation models

In this section we describe the two models we investigated. The first model is

polymer melt, and the second model is a one-component Dzugutov liquid.
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3.3.1 Polymer melt

We studied a coarse-grained, bead spring model of a polymer melt to investigate the

spatially heterogeneous motion of monomers. This is a simplified model in which

chains with chemical monomers and realistic potentials are replaced by chains of

beads (LJ particles) connected by nonlinear springs. The system consists of 120

polymer chains, each of which is composed of 10 monomers (beads) with mass m

set to unity. All monomers interact by means of a truncated LJ potential [105],

VLJ(r) =





4ε
[(

σ
r

)12 − (
σ
r

)6
]

+ C, if r ≤ 2rmin

0, if r > 2rmin

(3.7)

where C is a constant that guarantees the potential vanishes continuously at r =

2rmin, rmin = 21/6σ is the position where the LJ potential is minimum. The pa-

rameters ε and σ are set to unity. These parameters define the well depth of the

potential, and the hard-core diameter of the LJ particles, respectively. In addition

to the LJ potential, the nearest-neighbor monomers along the backbone of a chain

are bonded to each other by a finitely extensible, nonlinear elastic (FENE) potential

given by [113]

VFENE(r) = −(k/2)R2
0ln

[
1− (r/R0)

2
]
. (3.8)

The parameters of the FENE potential are chosen as k = 30 and R0 = 1.5 [113].

These values guarantee a certain stiffness of bonds while avoiding high-frequency
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modes and crossings. For these values, the superposition of the two potentials

(LJ and FENE) leads to a steep effective bond potential with a minimum at about

0.96 σ [114]. This minimum is slightly smaller than the length favored by the pure LJ

potential. The presence of these two incompatible preferred length scales prevents

long-range ordering (i.e., crystallization) at low temperatures by causing packing

frustration.

For this system, the radius of gyration Rg varies very little over the whole

temperature range, i.e., Rg ranges between 2.09 ≤ Rg ≤ 2.23 for a temperature

range as large as 0.48 ≤ T ≤ 2.0 [114]. This indicates that the chains do not show

any tendency of becoming stiffer as the temperature is lowered. Note that, because

the simulation was not intended for a specific polymer, all the quantities mentioned

above are quoted in reduced units. It is a common practice in computer simula-

tions to express quantities in dimensionless reduced units unless one is interested

in simulating a particular system. In that case, the reduced units may be con-

verted to their corresponding actual dimensions. In general, in the reduced units,

length is expressed in units of σ, temperature in units of ε/kB, and time in units of

σ
√

m/ε. For Argon atom these units correspond to σ = 0.34 nm, ε/kB = 119.8 K,

m = 39.95 g mol−1 and hence time τ = 2.149 ps.

The simulation data we analyzed consisted of eight state points with an average

pressure p = 1, and temperature T ranging between 0.46 ≤ T ≤ 0.7 [115]. The

corresponding density ρ is adjusted between 1.04 ≥ ρ ≥ 0.98 to follow the isobaric

path. This simulation is done in two steps (see Benneman et al. [100] for details).

For any temperature T , the simulation is first run under isobaric condition (NPT
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ensemble) at p = 1 to obtain an equilibrium density corresponding to that state

point. Then, the simulation is continued in the canonical (NV T ) ensemble using the

Nosé-Hoover thermostat at the fixed density obtained from the NPT ensemble. As a

result, ρ is different for the different temperatures. Strictly speaking, this simulation

method may be regarded as an NV T ensemble simulation with an isobaric cooling.

But, because of the fact that the average pressure is monitored to be constant within

5% at all T , it may still be regarded as an NPT ensemble simulation as stated by

the authors. In any event, Bennemann et al. [100] performed a comparative study

of constant volume and constant pressure cooling methods, and the two methods

show no qualitative difference in the measured observables. The integration of the

equation of motion was performed using the Heun algorithm, with a time step of δt =

0.002 [100]. For reference, the ideal glass transition temperature is T0 = 0.34±0.02,

and the critical temperature TMCT of the MCT is TMCT = 0.45± 0.01 [100, 114].

3.3.2 Monoatomic Dzugutov liquid

The second model we investigated is a monoatomic system described by the Dzugutov

potential [101], which is designed to prevent the nucleation of the ground state crys-

tal structures. This potential evolved from a pair potential that was originally

developed for metallic liquids [116]. In the original potential, the parameters were

optimized to reproduce the static structure factor S(q) of liquid lead measured in

a neutron scattering experiment close to the melting point Tm = 623K. This pair

potential includes, in addition to terms describing the strong short-range interac-
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tions and the usually predicted Friedel oscillation [117], a soft repulsive component

representing the screened Coulomb repulsion between the ions.

In its present form, the Dzugutov potential is characterized by the presence of

two repulsive regimes and one attractive region. Its main repulsive part is identical to

that of the LJ potential, but the Dzugutov potential features an additional maximum

at a range typical of next-nearest-neighbor coordination distances in closed-packed

crystals [118]. This maximum suppresses crystallization by disfavoring closed-packed

ordering. On the other hand, the maximum is located in a region between the

distances bounded by the first and the second neighbor shells in the icosahedral

polytope [101, 119], causing the preferred local order in the system to be icosahedral.

This type of local order is known to play an essential role in the glass formation

of some simple systems [119, 120, 121], since the ‘frustration’ inherent in packing

icosahedra in Euclidean three-dimensional space makes it impossible to form a long-

range crystalline structure in which each atom has such an environment. Hence,

a system described by the Dzugutov potential is a good glass-former, and can be

studied in the supercooled regime prior to nucleation of the crystal. Near and

below Tg this system is known to exhibit a first sharp diffraction peak and a split

second peak in the structure factor [102]. These are common features of metallic

glasses, which have an inherent structure that can be accounted for by icosahedral

coordination of the first neighbor shell. These systems are, however, multicomponent

systems whose structure is mostly dictated by the presence of short-range chemical

ordering. The Dzugutov liquid can thus be perceived as a one-component reference

system for multicomponent metallic glass-formers, whose relaxation on supercooling
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involves both topological and chemical ordering. Hence, the model provides a unique

opportunity to separate the contribution of these processes to the formation of

glasses.

The explicit form of the Dzugutov pair potential is expressed as [101]

V = V1 + V2

V1 = A(r−m −B) exp

(
c

r − a

)
, r < a

V1 = 0, r ≥ a,

V2 = B exp

(
d

r − b

)
, r < b,

V2 = 0, r ≥ b, (3.9)

m A c a B d b

16 5.82 1.1 1.87 1.28 0.27 1.94

Table 3.1: Parameters of the Dzugutov pair potential.

where the parameters are compiled in Table 3.1. In Fig. 3.1, we plot the Dzugutov

potential together with the LJ potential, where the latter is shifted up by an amount

0.419 ε to align the minima for the sake of comparison. Both potentials have minima

at the same position, but unlike the LJ potential, the Dzugutov potential has an

additional repulsive piece.

The Dzugutov model has been used in studies of supercooled liquids [101, 102,
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Figure 3.1: Dzugutov potential plotted together with LJ potential, where the LJ

potential has been shifted up by 0.419 ε to emphasize that the two potentials have

minima at the same position. The Dzugutov potential has a maximum at a distance

r ≈ 1.6 σ.

103] as well as in simulations of freezing [122, 123], where the observed solid struc-

ture for sufficiently long relaxation upon supercooling is found to be a monoatomic

dodecagonal quasicrystal. By construction, however, such transformation can be

delayed, and the potential stabilizes the one-component liquid in a metastable su-

percooled state, allowing a time window long enough for the observation of the

essential dynamical properties [102]. In terms of its glass transition behavior, the

model is known to be a fragile liquid [102]. The supercooled regime, characterized

by the super-Arrhenius slowing down of the diffusion coefficient D, is found to set

in at around T = 0.8 [102]. The critical temperature of MCT, estimated from a

power law fitting of D, is TMCT = 0.4 [102].

Our MD simulations are performed for a system of 17576 particles in a tem-
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perature range 0.42 - 1.6. For all state points studied, the simulations are done

under isothermal conditions using a Berendsen thermostat, and at a constant den-

sity ρ = 0.85 (NV T ensemble). Periodic boundary conditions are used in all three

spatial directions. To prepare the system, the liquid is cooled and equilibriated in

a stepwise manner starting from T = 1.6. At each T studied, several independent

samples are prepared to improve statistics. All analysis of bulk dynamic properties

is conducted over the entire range of T , however, our detailed study of string-like

motion is restricted to the lowest temperature simulated, T =0.42. The integration

was done using the velocity Verlet algorithm, and the integration time step used in

the simulation is 0.01. All units are quoted in LJ reduced units: length in units of

σ, temperature T in units of ε/kB and time in units of σ
√

m/ε. The mass m and

the distance σ are set to unity. The simulations carried out for the present study,

prior to post analysis, required roughly 1300 cpu hours on a AMD Athlon 2000+

MP Myrinet cluster.

3.4 Static properties

3.4.1 Pair correlation function

A fundamental static property that can probe the structure of a fluid in real space

is the pair distribution function g
(2)
N (r1, r2). It measures the extent to which the

structure of a fluid deviates from an ideal gas. For an isotropic and homogeneous

system g
(2)
N (r1, r2) is a function of only the separation r12 = |r1 − r2|, and g

(2)
N (r1, r2)
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is simply written as g(r). The pair correlation function g(r) can be expressed in

terms of the local particle density

ρ(r) =
N∑

i=1

δ(r− ri) (3.10)

as follows,

g(r) =
V

N2

〈
N∑

i=1

N∑

j 6=i

δ(r + rj − ri)

〉
. (3.11)

in which case g(r) is related to the static two point density-density autocorrelation

function G(r) that is defined as

G(r) =
1

N

∫
〈ρ(r′ + r)ρ(r)〉 dr′ (3.12)

= ρg(r) + δ(r). (3.13)

The time dependent generalization of G(r) is the van Hove correlation function that

plays an important role in the description of the dynamic properties, which will be

discussed in the next section.

In Fig. 3.2(a) and 3.2(b) we show g(r) for the two models we studied as

calculated using Eq. 3.11. The overall shape of these correlation functions resembles

that of typical liquids [105], where one observes a sharp first nearest-neighbor peak

followed by smaller, oscillating peaks that decrease and asymptotically approach a

value of one at large r. However, each of the pair correlation functions shows a

distinct signature that is peculiar to the system under investigation. For example,
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g(r) of the polymer melt (Fig. 3.2(a)) exhibits a split in the first nearest neighbor

peak reflecting the two competing preferred length scales of the model. The first of

the two peaks is due to the length scale corresponding to the bond length rbond =

0.96 [114], while the second is due to the minimum of the LJ potential at rmin = 21/6.

The temperature dependence of g(r) is also shown in the figure. It is clear from the

figures that, upon cooling towards Tg, the structural change depicted by g(r) is not

so dramatic. As will be shown in the following sections, this is in contrast to the

dynamic changes observed on cooling, presenting an example for the main source of

the challenge in glass formation discussed in the introduction.

The radial distribution function g(r) of the Dzugutov liquid is shown in

Fig. 3.2(b), where a first sharp peak and a splitting of the second peak of the

pair correlation function is manifested characterizing typical metallic liquids. The

splitting of the second peak becomes more pronounced near TMCT, reflecting the

peculiar feature of these systems. In general, g(r) provides the information, in real

space, that the structure of the systems under study are representatives for models

of a polymer melt (Fig. 3.2(a)) and a structural metallic liquid (Fig. 3.2(b)).

3.4.2 Static structure factor

Another static quantity that provides information on the structure of a fluid, and

that can be measured by experiments like X-ray or neutron scattering is the static

structure factor, S(q). It is defined as

S(q) =
1

N
〈ρ(q)ρ(−q)〉 (3.14)
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Figure 3.2: The pair correlation function g(r) of (a) the polymer melt and (b) the

Dzugutov liquid for different temperatures. The temperatures are, when viewed

from top to bottom at the main peak, T = 0.46, T = 0.5, T = 0.6, T = 0.65,

and T = 0.7 for the polymer melt, and T = 0.42, T = 0.46, T = 0.55, T = 0.65,

T = 0.75 and T = 1.6 for the Dzugutov liquid.

where ρ(q) is the Fourier transform of ρ(r)

ρ(q) =

∫
exp(−iq · r)ρ(r)dr

=
N∑

i=1

exp(−iq · ri). (3.15)
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Then, S(q) is expressed as

S(q) =
1

N

〈
N∑

i=1

N∑

j=1

exp[−iq · (ri − rj)]

〉
(3.16)

From the above equation, it can be shown that S(q) can be expressed as the Fourier

transform of g(r) as

S(q) = 1 + ρ

∫
exp(−iq · r)g(r)dr. (3.17)

For an isotropic system the above equation reduces to

S(q) = 1 + 4πρ

∫
r2g(r)

sinqr

qr
dr. (3.18)

This last equation provides a second method for calculating S(q). For most practical

purposes Eq. 3.18 is more efficient than the direct method Eq. 3.16. The latter is

computationally less intensive than the former. However, when one is interested in

accurately determining the value of S(q) in the small q regime, the latter method is

considered a method of choice, since in the former the lowest q value accessible by

the Fourier transformation is limited by the size of the simulation box. As a result,

it is impossible to reach substantially low q values for a small system.

The structure factor for the polymer melt is computed in Ref. [100]. In

Fig. 3.3(a) we show the plot of a similar calculation. As shown in the figure, similar

to the pair correlation function, S(q) exhibits a behavior typical of a liquid. The plot
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Figure 3.3: The static structure factor S(q) of (a) the polymer melt and (b) the

Dzugutov liquid for different temperatures. The temperatures are, when viewed

from top to bottom at the main peak, T = 0.46, T = 0.5, T = 0.6, T = 0.65,

and T = 0.7 for the polymer melt, and T = 0.42, T = 0.46, T = 0.55, T = 0.65,

T = 0.75 and T = 1.6 for the Dzugutov liquid. Note that S(q) is calculated using

Eq. 3.18. The oscillation observed at the low q value of S(q) in the polymer melt

is an artifact of the small system size, while this is not a problem for the Dzugutov

liquid, which is approximately 17 times larger.
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of S(q) for the Dzugutov liquid is shown in Fig. 3.3(b). As expected, S(q) exhibits

a first sharp diffraction peak and a split second peak, which are typical features of

metallic glasses [119, 120]. In addition to structure, S(q) also provides information

on the isothermal compressibility κT from the relation S(0) = ρkBTκT. The very

low value of S(q → 0) apparent from Fig. 3.3 are typical for all liquids far from any

critical point [124] reflecting the very low compressibility of the simulated system,

as expected.

3.5 Dynamic properties

3.5.1 Mean square displacement

The simplest parameter that can be easily calculated from simulation data, but

that has a wealth of information on the dynamic properties of a system, is the mean

square displacement, 〈r2(t)〉. It is defined as

〈
r2(t)

〉 ≡ 〈|ri(t)− ri(0)|2〉 (3.19)

where the angular brackets represent an ensemble average. At short times, the mean

square displacement increases quadratically with time, i.e., 〈r2(t)〉 ∝ t2. This can

be understood by noting that

ri(t) = ri(0) +

∫ t

0

vi(t
′)dt′. (3.20)

For short times, vi(t) can be approximated to be constant, say, vi, and |ri(t)− ri(0)|2 =

50



v2
i t

2. Hence,

〈
r2(t)

〉
=

〈
v2

i

〉
t2 =

(
3kBT

m

)
t2, (3.21)

where we used the equipartition theorem in the last part of the above equation. A

more rigorous approach for arriving at this conclusion may be found in Ref. [4, 125].

In the long time limit, i.e., t → ∞, the mean square displacement scales

linearly with time, 〈r2(t)〉 ∝ t. This can be seen if one writes the mean square

displacement in terms of the velocity autocorrelation function. From Eq. 3.20 it is

clear that

|ri(t)− ri(0)|2 =

∫ t

0

dt′
∫ t

0

dt′′vi(t
′) · vi(t

′′). (3.22)

For long times, the mean square displacement can be shown to reduce to [125]

〈
r2(t)

〉
= 2t

∫ ∞

0

dτ 〈v(0) · v(τ)〉 . (3.23)

On the other hand, the self-diffusion coefficient D can be expressed in terms of

the Green-Kubo relation as the time integral of the velocity autocorrelation func-

tion [125],

D =
1

3

∫ ∞

0

dτ 〈v(0) · v(τ)〉 , (3.24)

Then, comparing Eq. 3.23 and 3.24 we find that 〈r2(t)〉 is related to the self-diffusion

coefficient D by

〈
r2(t)

〉
= 6Dt, (3.25)
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which is the well-known Einstein relation. In general, the motion of particles is

ballistic at short times, i.e., the particles move as if they were free, and is diffusive

at long times.

In Fig. 3.4(a) and 3.4(b), we show the plots of the mean square displacement

for the two systems at different T . The plot for the Dzugutov liquid depicts that,

at high T , a ballastic regime is followed by a diffusive regime as expected. But as

the temperature is lowered towards TMCT, the ballistic and the diffusive regimes

are separated by a plateau at intermediate times. This is the typical behavior of

glass-forming liquids, where the plateau observed at low temperatures is a result of

temporary “caging” of each particle by its neighbors. With decreasing temperature,

the plateau regime extends to longer times indicating that, upon deep supercooling,

the particles are caged for a longer period of time. In this regime the motion of

particles is restricted within a cage. This regime corresponds to the β-relaxation

regime of the MCT. The α-relaxation regime, on the other hand, corresponds to the

time when the particles break out of their cage and become diffusive, or sub-diffusive

in the case of polymer melts (described below).

The behavior of 〈r2(t)〉 is slightly different in the polymer melts. To describe

this dynamics we first denote the mean square displacement of the monomers by

〈r2
m(t)〉 and that of the center of mass of the polymer chains by 〈r2

c(t)〉 as

〈
r2
m(t)

〉
= 〈|ri(t)− ri(0)|〉 ; 〈

r2
c(t)

〉
= 〈|Rcm(t)−Rcm(0)|〉 , (3.26)
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Figure 3.4: (a) Time dependence of the mean square displacement (MSD) 〈r2(t)〉 of

particles in the Dzugutov liquid for different temperatures. The temperatures are,

from left to right,T = 1.0, 0.75, 0.65, 0.55, 0.52, 0.49, 0.46, 0.43, 0.42. (b) Time

dependence of the MSD 〈r2
m(t)〉 of monomers (lines) at all T studied, and the MSD

〈r2
c(t)〉 of the center of mass (shown by ¤) at T = 0.46. The temperatures are, from

left to right, T = 1.0, 0.7, 0.65, 0.6 0.55, 0.52, 0.50 0.48, 0.47, 0.46. The dashed

horizontal lines indicate the values of the radius of gyration R2
g (= 2.09) and of the

end-to-end distance R2
e (= 12.3).
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where ri represents the position of a monomer, and Rcm represents the position of

the center of mass of a chain. For our system in which m is set to unity, Rcm(t)

can be defined as Rcm(t) = (1/M)
∑M

i=1 ri(t), where M(= 10) is the total number

of monomers in a chain. The plot of these quantities is shown in Fig. 3.4(b), where

〈r2
m(t)〉 is plotted for all T studied while 〈r2

c(t)〉 is plotted for the lowest T simulated.

As can be seen from the figure, at short times both 〈r2
m(t)〉 and 〈r2

c(t)〉 increase

quadratically with t, showing a ballistic regime as seen in other simple liquids. With

decreasing T towards TMCT, the ballistic regime is followed by a plateau regime.

Upon further progress in time (or, immediately after the ballistic regime for T = 1),

a distinct regime emerges that is specific to the polymer melt. In this regime the

mean square displacement of the monomers 〈r2
m(t)〉 ∼ tx, where x = 0.63 ± 0.02.

This regime is referred to as the sub-diffusive regime. The diffusive regime in this

system is reached only after long simulation times. Specially, for low T , since the

plateau regime itself extends over a long period of time upon cooling, the diffusive

regime is reached at a time much longer than that at high T .

The sub-diffusive nature of the long time dynamics of the polymer melt is a

consequence of chain connectivity. This is in contrast to the short and intermediate

time scales, where 〈r2
m(t)〉 is so small that the monomers feel no or little effect of

the chain connectivity. As a result, 〈r2
m(t)〉 is essentially identical to those observed

in simple supercooled liquids, and the plateau is simply due to the transient caging

of each monomer by neighboring monomers as in simple liquids. The sub-diffusive

relaxation behavior is also predicted by the Rouse model. In the Rouse model,

however, x = 0.5. This deviation shows that the model behaves slightly differently
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than what is expected from the ideal Rouse model. Unlike 〈r2
m(t)〉, the mean square

displacement of the center of mass 〈r2
c(t)〉 directly crosses over to the diffusive regime

for long times. In this case the sub-diffusive regime is absent because the center of

mass is not subject to chain connectivity.

3.5.2 van Hove correlation function

Another quantity of interest that describes the dynamics of a system of particles by

measuring the time dependent spatial correlations of particles position is the van

Hove correlation function G(r, t), which is defined in terms of the density-density

time correlation function as

G(r, t) =
1

ρ
〈ρ(r, t)ρ(0, 0)〉 . (3.27)

That is,

G(r, t) =
1

N

〈
N∑

i=1

N∑
j=1

δ[r + rj(0)− ri(t)]

〉
. (3.28)

The physical meaning of this function is that G(r, t)dr is proportional to the prob-

ability of finding a particle i in a region dr around a point r at time t given that

there was a particle j at the origin at time t = 0 [125]. The above summation can

be decomposed into summations over single terms (j = i) and cross terms (j 6= i),

which leads to the separation of G(r, t) into the “self” (s) and “distinct” (d) parts

as,
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G(r, t) = Gs(r, t) + Gd(r, t) (3.29)

where

Gs(r, t) =
1

N

〈
N∑

i=1

δ[r + ri(0)− ri(t)]

〉
(3.30)

Gd(r, t) =
1

N

〈
N∑

i6=j

δ[r + rj(0)− ri(t)]

〉
(3.31)

At t = 0 we find that G(r, 0) = ρg(r) + δ(r), which is simply the static two-point

density-density autocorrelation discussed in the last section. Thus, Gs(r, 0) = δ(r)

and Gd(r, 0) = ρg(r). For isotropic fluids both Gs and Gd will be a function of the

scalar quantity r. In what follows we discuss Gs(r, t) for our systems.

Gs(r, t) measures the probability distribution of the particle displacements in

a time interval t. To investigate the nature of particles dynamics in a system, it is

customary to compare Gs(r, t) with the Gaussian distribution function [125] G0(r, t),

defined as

G0(r, t) =

(
3

2π〈r2(t)〉
)3/2

exp

(
− 3r2

2〈r2(t)〉
)

. (3.32)

At sufficiently high temperatures, since the motion of particles is sampled from

the Maxwell-Boltzmann distribution, Gs(r, t) is well approximated by the Gaussian
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distribution. But at low T , the Gaussian approximation holds only at short (t → 0)

or long (t →∞) time limits. At intermediate times, Gs(r, t) is significantly different

from G0(r, t) [74, 86]. The deviation from Gaussian behavior can be quantified by the

non-Gaussian parameter α2, which is known to show a maximum at a time t∗α2
in the

late-β/early-α relaxation regime [74, 76, 86, 126]. We postpone the discussion of α2

to the following chapters where we describe the spatially heterogeneous dynamics of

each of the systems. Here, we show the self part of the van Hove correlation function

for the two liquids.

Fig. 3.5(a) shows a plot of 4πr2 Gs(r, t) for the polymer melt at T = 0.46.

As shown in the figure, Gs(r, t) shows Gaussian behavior at early (t = 2.24) and

late (t = 14000) times. These times correspond to the time scales in the ballistic

and sub-diffusive regimes, where the time t = 14000 belongs to the α-relaxation

regime of the polymer melt and corresponds to the time when 〈r2
m(t)〉 ≈ 2.38. At an

intermediate time t∗α2
, a significant deviation from Gaussian behavior is observed.

The long tail of 4πr2 Gs(r, t) seen at this time indicates the presence of particles

that have moved much larger distances than one would expect from a Gaussian

distribution [74], cf. Fig. 3.5(a). These highly mobile particles will be the focus of

our later analysis.

A similar behavior is observed for the Dzugutov liquid. Fig. 3.5(b) shows

the self part of the van Hove correlation function for the Dzugutov liquid at T =

0.42. In the insets, 4πr2 Gs(r, t) and 4πr2 G0(r, t) are compared for two dynamically

significant time scales. For t = t∗α2
a long tail is observed as in the polymer case.

However, for t = 3393.31, in the α-relaxation regime, the development of a significant
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Figure 3.5: (a) The self part of the van Hove correlation function Gs(r, t) of the

polymer melt at T = 0.46. Gs(r, t) is plotted together with the Gaussian distribution

function, Go(r, t) for the times t1 = 2.24, t2 = t∗α2
, and t3 = 14000. (b) Gs(r, t) of the

Dzugutov liquid at T = 0.42. Gs(r, t) is plotted for the times t = 11.01, 140.77(∼

t∗α2
), 811.15, 1115.3(∼ τα), 3399.31. In the inset we plot Gs(r, t) together with Go(r, t)

for two selected times, t = 140.77 and t = 3399.31. These times correspond to

the late-β/early-α relaxation regime, and the α-relaxation regime, respectively (see

Fig. 3.4).
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secondary peak in 4πr2 Gs(r, t) is striking, cf. Fig. 3.5(b). At this time 〈r2(t)〉 ≈

2.0. Such a secondary peak was also observed for a binary LJ mixture at T ≈

TMCT [128, 129, 130], and it is commonly interpreted as indicating single-particle

“hopping” [131, 132], although it has been demonstrated that the hopping indicated

by the secondary peak is not due to transitions over single energy barriers [130]. The

lack of a secondary peak in the polymer melt may be attributed to the presence of

connectivity in this system.

3.5.3 Intermediate scattering function

Another important quantity for describing the dynamic behavior of a system of

particles is the intermediate scattering function F (q, t). It measures the density-

density correlation in Fourier space and is defined as

F (q, t) =
1

N
〈ρ(q, t)ρ(−q, 0)〉 , (3.33)

where ρ(q, t) is the Fourier transform of ρ(r, t) =
∑N

i=1 δ(r, t). Using the expression

for ρ(r, t), F (q, t) can be expressed as,

F (q, t) =
1

N

〈
N∑

i=1

N∑
j=1

exp[−iq · ri(0)] exp[iq · rj(t)]

〉
, (3.34)

The above equation can be easily found by taking the Fourier transform of the van

Hove correlation function G(r, t),
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F (q, t) =

∫
G(r, t) exp(−iq · r)dr. (3.35)

Because G(r, t) can be decomposed into the self and distinct parts, the intermediate

scattering function can also be decomposed into these parts. However, due to their

connections with scattering experiments, only the self Fs(q, t) and the full F (q, t)

intermediate scattering functions are considered to be useful in the study of dynamic

properties. Additionally, these quantities serve as important tools for investigating

the relaxation behavior of supercooled liquids in terms of MCT, where they are borne

in the development of the theory. The calculation of these dynamical variables using

computer simulations has been a means for testing several aspects of MCT. Here we

use Fs(q, t) for investigating the relaxation behavior of our systems, and for testing

the main predictions of MCT, especially the nature of the power law divergence of

relaxation times upon cooling [17].

Fs(q, t) is obtained from the Fourier transformation of Gs(r, t) that yields an

expression given by

Fs(q, t) =
1

N

〈
N∑

i=1

exp[−iq · (ri(t)− ri(0))]

〉
(3.36)

F (q, t) and Fs(q, t) are usually referred to as the coherent and incoherent correlation

functions, respectively, because of their correspondence, through the dynamic struc-

ture factor S(q, ω), with the coherent and incoherent parts of the neutron scattering
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cross-section. S(q, ω) is related to F (q, t) through a Fourier transform as

S(q, ω) =
1

2π

∫ ∞

−∞
F (q, t) exp(iωt)dt. (3.37)

A similar transformation of Fs(q, t) yields the self dynamic structure factor Ss(q, w).

The intermediate scattering function thus provides insight into the dynamic proper-

ties of a given system upon supercooling that can be related to experiments. Here,

we demonstrate the properties of Fs(q, t) for the Dzugutov liquid. A similar behavior

is observed for the polymer melt. (see Ref. [100] for the details)

In Fig. 3.6(a) we show Fs(q, t) of the Dzugutov liquid for different T evaluated

at the wave vector qm = 6.82, which corresponds to the value of q at which S(q)

is maximum, cf. Fig. 3.3. At high T , i.e., T > 0.8, the relaxation of Fs(q, t) is ex-

ponential as found in “normal” liquids that can be described in terms of Brownian

dynamics. As the temperature is lowered, Fs(q, t) exhibits a two step relaxation,

which is a typical behavior of glass forming liquids that is found in several exper-

iments [133] and simulations [86], including the polymer model we studied. The

temperature at which the two-step relaxation is first observed is considered as an

indication for the onset of caging, and hence for the Dzugutov liquid this tempera-

ture corresponds to T ≈ 0.8 as seen from the figure.

It is now well established for supercooled liquids [86] that the short-time

decay, the plateau and the long-time decay of Fs(q, t) corresponds to vibrations,

the β-regime and α-regime, respectively. The average relaxation time of the α-
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Figure 3.6: (a) The self part of intermediate scattering function Fs(q, t) of the

Dzugutov liquid plotted as a function of time for different temperatures. The tem-

peratures from left to right areT = 1.0, 0.75, 0.65, 0.55, 0.52, 0.49, 0.46, 0.43, 0.42.

Fs(q, t) is evaluated at the wave vector qm = 6.82 that corresponds to the first peak

position of the corresponding static structure factor. (b) Temperature dependence

of the α-relaxation time, where the relaxation time is characterized by extracting

τ1/e or τα, cf. text. A fit for τKWW is also shown for comparison.
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process, τα, can be characterized either by extracting τ1/e, i.e., the time where

Fs(q, t) has decayed to 1/e of its initial value, or by fitting the long-time decay

of Fs(q, t) to a Kohlrausch-Williams-Watts (KWW) function, A exp[−(t/τKWW)β],

and calculating the mean time constant τα from the fit parameters according to

τα =(τKWW/β) Γ(1/β), where Γ(x) is the Γ-function [127]. MCT predicts that any

definition of the relaxation time that measures the time scale of the α-relaxation

process exhibits the same T dependence. Fig. 3.6(b) shows that the temperature

dependence of τ1/e and τα are well described by a power-law (T−TMCT)−γ. While

TMCT ≈ 0.4 results consistently from both approaches (also, from a power-law fit

of the diffusion coefficient [102]), somewhat different exponents γ(1/e) = 2.03 and

γave = 2.33 are found, where γ(1/e) and γave are the exponents corresponding to

τ1/e and τα, respectively. The stronger T -dependence of τα can be traced back

to the variation of the streching parameter β with change in T , i.e., the time-

temperature superposition principle may not hold. For our system, as observed in

other systems [130], we find a value of β ≈ 0.5 for the lowest T , which increases

with temperature.
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Chapter 4

Spatially heterogeneous dynamics in a polymer

melt: Dynamic clusters

This chapter is the first part of the study of dynamical heterogeneity in the model

of a polymer melt, where we quantify the spatial extent of cooperative motion in

highly mobile dynamical subensembles. We measure the clusters formed by the

mobile particles, and investigate the transient nature and temperature dependence

of the mean cluster size formed by these dynamical units. We first present the

calculation of the non-Gaussian parameter that measures the extent of deviation

from Gaussian behavior. The deviation from Gaussian behavior, and the increase in

the size of the non-Gaussian parameter, is considered to be a signature of dynamical

heterogeneity. The work presented in this chapter is published in Ref. [134].
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4.1 Cooperativity and spatial correlation

Stretched exponential relaxation as well as the decoupling of translational and ro-

tational motion in glass-forming liquids have been attributed to the emergence of

dynamical heterogeneity [32, 62, 66, 67]. Several experiments have shown that it

is possible to select subensembles of slow or fast particles close to Tg, and this has

been a simple proof for the existence of dynamical heterogeneity, but only few ex-

periments have suceeded in measuring the spatial extent of dynamical heterogeneity

directly. Quantifying the correlation length of these dynamical subensembles is an

important aspect of glass transition phenomena, since several theories postulate a

divergence of a characteristic length scale at the glass transition. For example, the

length scale of dynamical heterogeneity can be related to the size of a cooperatively

rearranging region of the Adam-Gibbs theory, which is postulated to diverge at the

Kauzmann temperature TK where the configurational entropy vanishes.

Generally, it has been a central goal of theories of the glass transition to

account for the bulk phenomena in terms of the microscopic dynamical motion of

the molecules of the liquids [62]. In this respect, computer simulations have played a

vital role for achieving this goal. The only experimental technique that provides the

same level of detail as in computer simulations is confocal laser scanning microscopy,

where detailed information on the trajectories of individual colloidal particles is

directly accessible. Thus, insight into the detailed nature of the cooperative motion

of particles in supercooled liquids have been especially provided by computational

studies.
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In several computer simulations [135] and also the microscopy studies of col-

loidal suspensions [20, 21], the existence of dynamically heterogeneous regions has

been directly observed and quantified. In these studies, the connection between

dynamical heterogeneity and cooperativity, in which particles move together along

the same path in a correlated fashion, has been further elucidated [75, 21, 136, 137].

For example, in Ref. [74, 75, 76, 77], it was shown in a binary LJ mixture that

at any given moment, most particles can be found trapped in “cages” formed by

their neighbors, while roughly 5-6% constitute a highly mobile subset that is break-

ing out of these cages. They showed that these mobile, “escaping” particles move

cooperatively in string-like paths, forming clusters of strings which grow in size

with decreasing temperature on approaching the mode-coupling crossover tempera-

ture TMCT. The experiments on suspensions of hard sphere colloids confirmed the

clustering of highly mobile subset of particles at densities below the colloidal glass

transition density, where the tendency for the increase in the cluster size is also

confirmed on approaching the glass transition.

In this chapter we quantify the characteristic length of the spatially heteroge-

neous dynamics of monomers in a model polymer melt by examining the dynamical

clusters formed by the mobile monomers. In this way we investigate the cooper-

ative nature of molecular motion in a polymeric system upon approaching TMCT.

The primary purpose of this study is to explore the nature of dynamical cluster-

ing, observed in the simulation of a binary LJ mixture, in a different, structurally

homogeneous system. In doing so, we especially investigate the transient nature

of this clustering that was not shown in earlier works. In other words, we study
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how the dynamic length scale associated with mobile domains changes during the

relaxation of the system. This is vital information for understanding the nature of

relaxation in glass-forming supercooled liquids. For example, some insight into the

two-step, non-exponential relaxation of the density-density correlation function may

be obtained by examining the transient nature and temperature dependence of these

clusters. Therefore, the present chapter is dedicated to examining this property.

4.2 Non-Gaussian parameter

As mentioned in Chapter 3, the dynamic properties of a system of particles can be

understood by studying the self part of the van Hove correlation function Gs(r, t),

which is the probability for finding a particle at a distance r at time t. In the short

and long time limits this quantity can be described by the Gaussian distribution

function G0(r, t). For the polymer melt we realize that in the limit t → 0, the

monomers move ballistically, and hence Gs(r, t) is proportional to the Maxwell-

Boltzmann distribution [125], which has a Gaussian form. In the opposite limit

t → ∞, the polymers behave as if they were isolated Brownian particles subjected

to a heat bath, and hence diffuse freely. Due to chain connectivity the monomers

must follow the diffusive motion of the center of mass, and Gs(r, t) is again Gaussian.

At intermediate times, however, there may be deviations from Gaussian be-

havior. A possible means to measure these deviations is the non-Gaussian parameter

α2(t) [125]

α2(t) =
3 〈[ri(t)− ri(0)]4〉
5 〈[ri(t)− ri(0)]2〉2 − 1 , (4.1)
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where ri(t) is the position of monomer i at time t. Similar to α2(t), which quantifies

deviations of the monomer dynamics from Gaussian behavior, one can also measure

these deviations for the chain motion by calculating a non-Gaussian parameter αp
2(t)

for the polymers as

αp
2(t) =

3 〈[Rc(t)−Rc(0)]4〉
5 〈[Rc(t)−Rc(0)]2〉2 − 1 , (4.2)

where Rc(t) is the position of the center of mass of chain c at time t.

Figure 4.1 shows α2(t) and αp
2(t) for various T . As expected, these quantities

are zero at short times (t → 0), then become positive, exhibit a maximum, and

finally go to zero at long times (t → ∞). As T decreases, the positions of the

maxima, t∗α2
for α2(t) and t∗

αp
2

for αp
2(t), shifts towards longer times, and the height

of the maxima increase. Furthermore, for all T , we find that t∗α2
corresponds to

times in the late-β/early-α relaxation regime. Such behavior is often observed in

computer simulations [86, 138, 139, 140, 141, 142] and experiments [20, 21, 143] on

glass-forming liquids. Notice that the peak height is larger for α2(t) than for αp
2(t)

and that t∗α2
and t∗

αp
2

are different. t∗
αp

2
is shifted by about half a decade to longer

times for T ≤ 0.52.

The small amplitude of αp
2(t) may be attributed to the difference in packing

of the monomers and of the chains. The monomers of our model exhibit an oscil-

latory pair-distribution function g(r) [144] whose shape and range are very similar

to those found in simple dense liquids (see Fig. 3.2(a)). In contrast to that, the

pair-distribution function gcm(r) for the centers of mass is fairly structureless, and

resembles the g(r) of a gas (see Ref. [145, 146]). This reflects the fact that polymers
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Figure 4.1: Non-Gaussian parameter of the monomers α2(t) (upper panel) and of

the center of mass of the polymers αp
2(t) (lower panel) versus time for different

temperatures. α2(t) and αp
2(t) are defined in Eqs. (4.1) and (4.2). The temperature

ranges from the high-T , normal liquid state above onset of caging (T = 1; thick

dashed lines in both panels), to the supercooled state of the melt slightly above

TMCT ' 0.45 (T = 0.46; thick dash-dotted lines). Temperature decreases from the

bottom curve to the top curve in both panels. The dashed horizontal line (= 0.043)

in the upper panel indicates a possible intermediate plateau toward which all α2(t)-

curves could converge. This line is also included in the lower panel. The two vertical

lines in the upper panel indicate the times tmax
clu (to be discusses) where clusters are

maximum for T = 0.46 at tmax
clu = 65.85 (dashed line) and for T = 0.55 at tmax

clu = 7.22

(straight line).
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are soft, strongly interpenetrating objects and that the effective interaction between

the centers of mass is weak. If this interaction were zero, there would be no resulting

force on the center of mass, and the chain would diffuse freely (outside the ballistic

regime). The small, non-zero value of αp
2(t) at T = 1 may thus be related to a weak

force arising from the presence of other chains in the volume occupied by a polymer

[147].

On cooling the melt toward TMCT a pronounced maximum in time occurs for

both non-Gaussian parameters. Since gcm(r) is (nearly) temperature independent

[145], the maximum of αp
2 cannot be attributed to enhanced inter-chain interactions

at low T . The similarity between α2 and αp
2 rather suggests that the coupling

between monomer and chain dynamics [148] drives the behavior of αp
2(t). If the

monomers of a chain are trapped in their cages and prevented from moving, the

center of mass cannot move either. On the other hand, if a sufficient number of

monomers move far during the time t, a large displacement of the center of mass

results. As many monomers of the same chain are involved in this motion, a large

displacement of the center of mass should take a longer time than for a single

monomer. This explains why t∗
αp

2
is larger than t∗α2

.

In addition to the maximum, α2 shows two conspicuous features. First, there is

a small, temperature independent step (bump) at t ≈ 0.1. This time corresponds to

the crossover of the monomer mean square displacement 〈r2
m(t)〉 from the ballistic

to the plateau regime. The step can be more or less pronounced, depending on

the microscopic properties studied [86, 138, 139, 149], and it may be thought of

as a signature of a small correlation present as the dynamics changes from the
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ballistic region to the plateau where the free motion of the particles is hindered

as a result of caging. Second, α2(t) relaxes toward a plateau at long times before

decaying to zero. This behavior is clearly visible for T = 1.0, while lower T are

only indicative of a similar trend. Figure 4.1 suggests that the plateau value is

the same for all T , but that the time when it is reached increases on cooling. For

T = 1 the plateau is attained when the MSD of all monomers is about 1, and this

occurs at t ≈ 10. For T = 0.46, the plateau is only reached if t & 105. This

time corresponds to displacements of the order of the chain size for T = 0.46, i.e.,

R2
g < 〈r2

m(t)〉 < R2
e (Rg and Re refer to the radius of gyration and the end-to-end

distance of a polymer chain, respectively). Because the motion of the monomers

becomes diffusive for 〈r2
m(t)〉 > R2

e , one can speculate that the length of the plateau

decreases with increasing T .

For all T the plateau occurs if 〈r2
m(t)〉 & 1. This corresponds to times where

the Rouse model [150] is believed to describe the dynamics of non-entangled chains

in the melt [151]. In this model the displacements of the monomers and of the chains

follow a Gaussian distribution, in which case, α2(t) and αp
2(t) should vanish at all

times. The finite value of the plateau points to small but systematic deviations

from Rouse behavior. This value is approximately the same for both α2 and αp
2 ,

and roughly agrees with the maximum of αp
2 found at T = 1. The latter observation

could imply that the occurrence of the plateau is related to the weak interactions

between the centers of mass alluded to above.

In summary, the interpretation of Fig. 4.1 suggests that deviations from Gaus-

sian behavior in our model might have two origins: The weak, temperature indepen-
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dent interaction between the centers of mass leads to small deviations in the long-

time sub-diffusive regime. Preceding the sub-diffusive regime strong, T -dependent

deviations occur due to the caging and subsequent correlated motion of monomers

as observed in dense simple atomic liquids and colloids. This drives the sluggish

glass-like relaxation of the monomer and, as a consequence, also that of the cen-

ter of mass. Our subsequent analysis will focus on this correlated nature of the

monomer dynamics.

4.3 Clusters of mobile monomers

4.3.1 Definition of mobility

In order to study the clusters formed by mobile monomers, a criterion must be set

to define “mobility”. One common practice is calculating the scalar displacement

ri(t) of individual particles in the system, and then ranking the particles according

to their displacement, where a certain fraction φ of them with the largest scalar dis-

placements are finally selected to be mobile. The challenge is, however, in choosing

φ that can best signify the nature of cooperativity, and ensure reproducibility.

In the system we studied, it is known from, e.g., calculations of the mean square

displacement 〈r2
m(t)〉 of the monomers, that on intermediate times, monomers on

average are trapped or localized in cages formed by their neighbors (Fig. 3.4, Chapter

3). In a glass-forming binary LJ mixture, it was demonstrated that, on these time

scales, most of the particles can be found oscillating inside their cages, with only
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Figure 4.2: The radially averaged van Hove correlation function Gs(r, t), at t = t∗α2

for T = 0.46, plotted with the Gaussian distribution G0(r, t
∗
α2

). Mobile monomers

are defined as those monomers that moved a distance greater than r∗.

approximately 5-6% of the particles undergoing significant displacement. At a later

time, of course, a different subset of particles can be found moving beyond their

cage. In the range of T studied in that work, however, as in the present study,

the distribution of particle (or monomer) displacements as measured by the self

van Hove distribution function is continuous and unimodal, exhibiting at most a

long tail to large displacements (in some liquids, this tail becomes a secondary

peak at sufficiently low T [129]). This makes the identification of mobile particles

substantially more difficult than if the distribution of particle displacements were,

say, bimodal, in which case there would be an obvious criterion for identifying mobile

particles.

Here we describe the method we used in identifying mobile monomers following
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the work of Ref. [74, 76, 77] (Later we check if this method captures the dynamic

signature.) These studies identify the mobile subset as those particles which, in a

time interval t∗α2
, move further than some distance r∗, where t∗α2

is the time interval

when the non-Gaussian parameter α2(t) is maximum [152], as discussed in the last

section. They define r∗ as the distance where the self part of the van Hove correlation

function Gs(r, t
∗
α2

) and the Gaussian distribution G0(r, t
∗
α2

), calculated with the

measured value of
〈
r2(t∗α2

)
〉
, cross each other as depicted in Fig. 4.2. The plot shows

Gs(r, t
∗
α2

) together with G0(r, t
∗
α2

) to identify r∗. The fraction φ of the monomers

that are mobile is defined by integrating Gs(r, t
∗
α2

) for r ≥ r∗, i.e.

φ ≡
∫ ∞

r∗
4πr2Gs(r, t

∗
α2

)dr. (4.3)

By using this method on a binary LJ mixture, φ was found to constitute approxi-

mately 5.5% of the total number of particles, independent of T and ρ [74, 75, 76, 77].

Following the same procedure, we find 6.2% ≤ φ ≤ 6.8% (Table 4.1). Thus for con-

venience we will fix the fraction at an intermediate value of φ = 6.5% for all analysis.

Once φ is selected, the subset of monomers that is considered mobile in each

time interval t is identified by ranking the scalar displacement of all monomers in

t, and choosing the 6.5% with the largest value. In any given t, the number of

mobile monomers defined in this way is necessarily the same, but the membership

will generally be different since a monomer that is mobile in one time interval may

be caged in the next, and vice versa.
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T 0.46 0.47 0.48 0.5

φI 6.4± 0.5% 6.2± 0.4% 6.8± 0.5% 6.5± 0.3%

φII 5± 1% 5.5± 0.5% 5.5± 0.5% 6± 1%

SI
0 2.66± 0.05 2.58± 0.02 2.7± 0.03 2.55± 0.02

SII
0 2.06± 0.06 2.22± 0.16 2.26± 0.2 2.36± 0.04

T 0.52 0.55 0.6 0.7

φI 6.7± 0.6% 6.7± 0.6% 6.5± 0.7% 6.3± 0.7%

φII 6.5± 0.5% 7± 1% 7.5± 0.5% 8± 1%

SI
0 2.64± 0.01 2.61± 0.01 2.76± 0.03 2.62± 0.02

SII
0 2.64± 0.24 2.81± 0.53 3.27± 0.26 3.31± 0.03

Table 4.1: φI refers to the fraction φ of highly mobile monomers at a time t∗α2

when α2 is maximum (Sec. 4.3.1), and φII refers to the fraction that maximizes the

normalized weight-averaged cluster size for each T (Sec. 4.3.3). The normalization

factor S0 is the initial (or correspondingly, the random) value of the weight-averaged

cluster size of the fraction considered. SI
0 refers to the value of S0 at each T for

φ = 6.5%, used to evaluate S(t) using the procedure outlined in Sec. 4.3.1. SII
0

refers to the value of S0 at each T for a fraction corresponding to φII . Note that

SI
0 is nearly constant: SI

0 = 2.65 ± 0.1 for all T , while SII
0 varies considerably

because φ is different for each state point. The error bars in calculating φI reflect

the uncertainty in estimating r∗ for the evaluation of φ from Eq. 4.3. The error bars

in estimating φII reflect the range of φ over which the fraction that maximizes S

could be identified with confidence.
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4.3.2 Mean cluster size

To estimate the typical distance over which mobile monomers are correlated, we

define clusters [76, 77] as groups of highly mobile monomers that are within the

first neighbor shell of each other [153], where the first neighbor shell is defined by

the distance of the first minimum (r = 1.5) of the pair correlation function g(r).

An example of the clusters formed by the 6.5% most mobile monomers is shown in

Fig. 4.3 for T = 0.46 at early, and at intermediate time intervals. We see that the

typical cluster size depends upon the time window of observation t; smaller clusters

appear at early t, and larger clusters appear at intermediate t, when 〈r2
m(t)〉 of the

monomers crosses over from the plateau regime to the sub-diffusive regime. Such

transient clustering of mobile particles has also been observed experimentally in

dense collodial suspensions using a confocal microscope [21], by looking at the 5%

most mobile particles as in Refs. [76, 77].

To quantify the clustering of mobile monomers, we calculate the weight-

averaged mean cluster size Sw defined as [156],

Sw(t) =
〈n2(t)〉
〈n(t)〉 =

∑
n2(t)P (n(t))∑
n(t)P (n(t))

. (4.4)

Here P (n) is the probability of finding a cluster of size n, and nP (n) is the probability

that a randomly chosen mobile monomer belongs to a cluster of size n. Sw(t) defined

in this way is the average size of a cluster to which a randomly chosen mobile

monomer belongs.
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Figure 4.3: Clusters formed by the 6.5% most mobile monomers at early time t =

0.002 (left panel), and at intermediate time t = 45.4 (right panel), for T = 0.46.

Each monomer is represented as a sphere, and connectivity information has been

suppressed. Monomers belonging to the same cluster are colored the same shade of

gray. Note that only the most mobile monomers out of the 1200 total monomers

are shown in the figure.

We normalize Sw by the average size S0 of clusters formed by mobile particles

at the initial t (i.e., one MD time step), and find that, at each T , S0 (reported

in Table 4.1) coincides with the average cluster size found by selecting monomers

randomly [155]. This demonstrates that short-time monomer motion is uncorrelated,

as found previously for this system using an alternative (non cluster-based) analysis

approach [79], and as found in both the LJ liquid referred to previously [78] and a

colloidal suspension [20, 21]. Following convention [76, 156], any spanning clusters

present in a given snapshot are omitted from the calculation to minimize finite
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Figure 4.4: Normalized weight-averaged mean cluster size S(t) for φ = 6.5% for all

T . The inset shows Smax ≡ S(tmax
clu ) versus T , where tmax

clu is the time at which S is

maximal.

size effects. In Fig. 4.4, we show the normalized mean cluster size S ≡ Sw/S0

for several T . We find that the clusters formed by the most mobile monomers

“grow” and “shrink” as the window of observation increases. Furthermore, the

maximum amplitude of S(t) shown in the inset of Fig. 4.4 increases with decreasing

T , indicating that the monomer motion becomes increasingly spatially correlated as

the melt becomes colder and more dense.

The behavior of S(t) can be interpreted by comparing it with 〈r2
m(t)〉 (Fig. 3.4(b)).

Consider, for example, the behavior of S at T = 0.46. For small t (t . 2 × 10−1),

the monomers’ motion is ballistic, and so the probability of finding large clusters

is negligibly small, since we are simply choosing the most highly mobile monomers

from the tail of the Maxwell-Boltzmann velocity distribution, and these monomers
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are randomly distributed in space; at these short times Gs(r, t) is well-approximated

by a Gaussian. At slightly longer t (2× 10−1 . t . 10, the plateau regime) the mo-

tion of monomers is restricted to “rattling” within the cage formed by neighboring

monomers. Thus, big clusters are less likely to be formed since the particles do not

move large distances, and are consequently less likely to affect the motion of others.

Between the plateau and sub-diffusive regimes (10 . t . 103), when the monomers

begin to escape from their cages [82], the motion of one monomer becomes highly

influenced by the motion of others around it; a monomer cannot move unless its

neighbors also move, causing large clusters to be formed.

At the longest time scale we probe (t & 103), the monomers’ displacement is

sub-diffusive (characterized by 〈r2
m(t)〉 ∼ t0.62±0.03)[114, 157]. At this time scale, the

probability of finding large clusters again decreases, indicating an increased tendency

towards uncorrelated motion. Nevertheless, Sw(t) is still greater than the random

value S0. This may be due to the presence of some correlation since the monomers

are not yet completely diffusive, or possibly to polymer specific effects, or both.

The behavior of S(t) is qualitatively similar to that of a generalized suscepti-

bility κU(t) calculated for this same system in Ref. [79]. κU is related to the volume

integral of the displacement-displacement correlation function (essentially a density-

density correlation function, but with every particle’s contribution weighted by its

scalar displacement in t) in the same way as the isothermal compressibility κT in

a fluid is related to the volume integral of the density-density correlation function.

Accordingly, κU(t) is proportional to the fluctuations in the total system displace-

ment at time t, in the same way as κT is proportional to the fluctuations in the
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number of particles in the fluid.

The similarity between S and κU is not surprising, since the scalar displace-

ments of the most highly mobile monomers in t are included in κU . However, the

peak time of S(t), which coincides with the crossover between the plateau and sub-

diffusive regimes, precedes that of κU(t) (by less than a factor of 10 at T = 0.46).

This suggests that the cooperative motion of monomers, which requires clustering

and allows the monomers to escape from their cages, is a precursor to the more

global dynamical heterogeneity measured by κU .

4.3.3 Variable fraction

The method outlined in the last section for selecting a fraction of mobile monomers

ensures a clearly defined and reproducible subset of the most mobile monomers in a

given time window, and can be easily applied to any system. However, there is no a

priori reason why this should be the definition of choice, and in particular whether

this fraction is more spatially correlated than some other fraction. The “ideal”

fraction is the one that most clearly and naturally captures dynamical correlation.

To search for this “natural” fraction, and to check if it is substantially different

from the fraction used in the previous section, we select a subset of highly mobile

monomers by varying φ, and then choosing that fraction which maximizes S(t) for

all t.

We find that S(t) is maximum for φ in the range 5%−8% for all T considered,

e.g., S is maximum at φ = 5% for T = 0.46 and at 8% for T = 0.7 . Table 4.1 shows
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Figure 4.5: Normalized weight-averaged cluster size S(t) as a function of time win-

dow for selected φ for (a) T = 0.7, and (b) T = 0.46. For these two state points, S(t)

is maximized by φ = 8% and φ = 5%, respectively. Only a few selected fractions

are shown for the clarity of the graph.

a complete list of fractions that maximize S at each T . In Fig. 4.5 we show S(t) for

T = 0.46 and T = 0.7 for four values of φ. We have checked S at 1% intervals of φ

to determine the fraction φ that maximizes S(t). However, for the sake of clarity,

we show only a few representative φ, including the φ that yields a maximal value of
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Figure 4.6: Normalized weight-averaged cluster size as a function of time for different

temperatures using the fraction φ of mobile monomers that provides the largest

average cluster for the given temperature. The inset shows Smax ≡ S(tmax
clu ) versus

T , where tmax
clu is the time at which S is maximal.

S.

Using those fractions φII reported in Table 4.1 that maximize the cluster size

for each T , we calculate S(t) for each T , as shown in Fig. 4.6. We find that this

second method does not alter the qualitative features of the time and temperature

dependence of S found by the first method. However, there are slight quantitative

differences in the values of S. The peak values of S obtained from the variable

fraction method are slightly larger (at most by ≈ 13%) than the method that at

each T uses fixed φ = 6.5%. Since this difference in S from the two methods is not

dramatic, we perform all subsequent analysis using a fixed fraction φ = 6.5% for all

T .
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4.3.4 Temperature dependence of peak average cluster size

We next focus on the temperature dependence of the maximum value Smax of S(t),

and the time tmax
clu at which S(t) is maximum. Examination of Fig. 3.4(b) shows that

tmax
clu is in the time window when monomers escape from their cages, as characterized

by the increase of 〈r2
m(t)〉 from the plateau towards the sub-diffusive regime. This

time also corresponds to the late-β/early-α relaxation regime [17]. The shift in

tmax
clu to longer t as T decreases reflects the increase in the time scale necessary for

a monomer to break free from its cage, which requires the participation of larger

groups of monomers on increased cooling towards Tg. At each T , this peak time is

close to, but slightly earlier than, the time scale where α2(t) is maximum.

The T dependence of tmax
clu can be studied by fitting the data by various func-

tional forms. One choice is to fit the data by a power law. In the temperature

regime we study, other characteristic times, such as τα, follow power law behavior,

as predicted by the mode-coupling theory [17]. Additionally, the time t∗α2
when

the non-Gaussian parameter is maximum has been found to follow a power law in

(T −TMCT) [141]. Also, Ref. [79] found that the time when the correlations as mea-

sured by a displacement-displacement correlation function are maximum, can be fit

by a power law in (T − TMCT) [79]. Motivated by these findings, we fit the data by

tmax
clu ∼ (T − TMCT)−x. (4.5)

Fig. 4.7(a) shows the best fit obtained by fixing TMCT = 0.45. tmax
clu shows a rea-

sonable power-law behavior with x = 1.47 ± 0.16 in the temperature regime where

MCT holds. The deviation from power law at the lowest T , which is commonly
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Figure 4.7: Temperature dependence of tmax
clu , using the top 6.5% mobile monomers,

fitted to (a) a power law (Eq. 4.5), with TMCT = 0.45, yielding γ = 1.47 ± 0.16,

and (b) a VTF expression (Eq. 4.6), yielding E = 0.54± 0.07, and T0 = 0.35± 0.02

plotted on linear-log axis.

observed for dynamical quantities, is expected due to the breakdown of MCT near

TMCT [158, 159].

Another functional form for the T -dependence of dynamical quantities that of-

ten holds in supercooled liquids is given by the well known Vogel-Tammann-Fulcher

(VTF) equation [29],
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tmax
clu ∼ exp

(
E

T − T0

)
, (4.6)

The fit of this expression to our data is shown in Fig. 4.7(b). We find a reasonable

agreement with the VTF form with T0 = 0.35±0.02; this value agrees with the value

T0 = 0.34 ± 0.02 found by fitting τα, defined as the time at which the incoherent

(self) part of the intermediate scattering function F inc
q (τα) = 0.3 [114]. Note that

τα occurs at a later time than tmax
clu .

MCT predicts the β-time scale tε satisfies the relation tε ∼ (T − TMCT)−1/2a

where a is uniquely determined by fixing any other exponent used by MCT. However,

unambigious identification of tε with the appropriate scaling has been notoriously

difficult in simulations of supercooled liquids. Within an MCT analysis of the simu-

lation data of the same system, it was found that γ = 1.95, and hence MCT predicts

a = 0.352 [100, 114], and thus 1/2a = 1.42, which is within numerical uncertainity

of the exponent x determined from tmax
clu . Thus, for the polymer melt studied, tmax

clu

follows the predicted scaling law for the β time scale, and signifies a connection

between dynamic heterogeneity and MCT. The correspondence of tmax
clu with tε, and

the fact that tmax
clu and τα would appear to diverge at the same temperature if the

functional forms continued to hold to lower T , suggests that the two time scales

represent a hierarchy of events in the relaxation process, consistent with the MCT

prediction of two time scale relaxation process.

The observation of a growing cluster size shown in the inset of Fig. 4.4 and
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4.6 is consistent with the results of Ref. [76], and with earlier hypotheses that dy-

namics in supercooled fluids involves the motion of molecules within “cooperatively

rearranging regions” [12, 13, 160, 161], whose size grows as the glass transition is

approached on cooling. In the Adam-Gibbs theory [12], the smallest possible size

z∗ that can give rise to a cooperative rearrangement is inversely proportional to

the configurational entropy of the system [5], which is a measure of the number of

mechanically stable states sampled by the system. The direct connection between

z∗ and the mean cluster size of mobile monomers in our analysis is not trivially

obvious for the polymer melt studied, although there are some indications for other

systems, as will be described in Chapter 7. However, we can discuss the implications

of growing cluster sizes in the spirit of the Adam-Gibbs theory, which has proved

to be useful for the interpretation of transport and relaxation in supercooled liquids

[96, 162, 163, 164, 165].

The Adam-Gibbs theory predicts that a thermodynamic glass transition occurs

at a finite T as the configurational entropy vanishes. As a consequence, the theory

also predicts z∗ diverges at non-zero temperature. However, our result for Smax ≡

S(tmax
clu ) showing Arrhenius T (i.e. VTF with T0 = 0, Fig. 4.8) dependence over

the (admittedly narrow) range of temperatures we have simulated implies that the

mean cluster size does not diverge at non-zero temperature [166]. This may indicate

that the T range studied is too far from Tg to reliably estimate the T at which S

might diverge. Alternatively, Smax may not be an appropriate measure of z∗ for the

polymer melt, which needs to be proven.
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Figure 4.8: Temperature dependence of Smax fitted to the Arrhenius form Smax ∼

exp
(

E
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)
, with E = 0.98± 0.02, with Smax plotted logarithmically

4.3.5 Cluster size distribution

In the previous section, we examined the average cluster size S. Here we investigate

the cluster size distribution P (n), and study both the time and temperature depen-

dence of this quantity. We first consider P (n) at the lowest temperature (T = 0.46)

for several t (Figs. 4.9 (a) and (b)). At early times, we find that P (n) is dominated

by smaller clusters, as expected from the fact that S(t) is small at early t. As t

increases through the plateau regime of 〈r2
m(t)〉 (Fig. 3.4), larger clusters contribute

significantly to P (n). As t continues to increase into the sub-diffusive regime, P (n)

again becomes dominated by small clusters.

We now compare P (n) for different T at the time tmax
clu . Fig. 4.10 shows that as

T decreases, P (n, tmax
clu ) becomes dominated by larger clusters. This is a consequence

of correlated motion of monomers as T approaches TMCT, which is expected from
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Figure 4.9: Probability distribution P (n) of cluster sizes at T = 0.46 for different

times as time progresses (a) from early time (t = 0.02) to the peak time (t = 65.9),

and (b) from the peak time (t = 65.9) to the sub-diffusive regime (t = 11939.5).

the behavior of S(t) presented earlier. We find that P (n, tmax
clu ) can be fit by a power

law with exponential cutoff [156],

P (n) ∼ n−τ exp (−n/n0(T )) (4.7)

where n0(T ) is a characteristic cluster size for the given T . The corresponding data

collapse is shown in the inset of Fig. 4.10. The collapse is not nearly as good as

for the larger system studied in Ref. [76], which may be due to finite size effects.

We find τ = 1.62 ± 0.12 for all T . This value is smaller than the value obtained
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clu ) for the 6.5% most mobile monomers as a function of cluster

size n for different T . The dashed line is a simple power law fit P (n) ∼ nτ with

τ = 1.62 for T = 0.46. The inset shows the same data scaled as indicated to show

data collapse.

for a binary mixture of LJ particles (τ ≈ 1.9) [76], and for colloids (τ = 2.2 ± 0.2)

[21], suggesting that the exponent value may be non-universal. Fig. 4.11 shows that

n0(T ) increases as T decreases, causing the probability distribution to approach a

simple power law with decreasing T .

4.3.6 Dynamic correlation length

It is straightforward to calculate the correlation (or connectivity) length ξ of the

clusters analyzed in the previous section. In lattice percolation theory, the correla-

tion or connectivity length ξ, given by

ξ2 =

∑
r2g(r)∑
g(r)

, (4.8)
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TMCT = 0.45. The value of γ obtained from the fit is γ = 0.45± 0.08.

is defined as the root-mean-square distance between two sites belonging to the same

cluster [156], where r is the distance between two sites and g(r) is the pair correlation

or pair connectivity function, defined as the probability that a site a distance r from

an occupied site belongs to the same cluster. To map this definition onto the off-

lattice system we consider, we define ξ as the root-mean-square distance between

two monomers in a cluster, where g(r) is the probability that a monomer a distance

r from another monomer belongs to the same cluster. The sum in Eq. 4.8 runs over

all monomers in the cluster.

Eq. 4.8 may be rewritten in terms of the cluster size n and the radius of
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gyration Rn as [156]

ξ2 =
2
∑

R2
nn2P (n)∑

n2P (n)
. (4.9)

Rn is defined by

Rn =

∑
i

∑
j |ri − rj|2
2n2

, (4.10)

where ri and rj refer to the position of monomers i and j, where i and j are within

the same cluster.

Fig. 4.12(a) shows the dynamic correlation length ξ(t) for several T . We
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find that ξ(t) exhibits a time and temperature dependence similar to that of S(t)

(Fig. 4.12(b)), i.e. it grows and shrinks with t, and indicates a dynamic correlation

length that increases on cooling. This similarity is not surprising since ξ is related

to the average radius of the clusters that contribute significantly to S [156]. At the

largest t accessible to our simulations, ξ(t) does not decay to the initial value, also

observed for S. The maximum value of ξ(t) appears to saturate to the same value

of approximately ξmax ≈ 3.1 for T . 0.5. This saturation is likely due to the small

system size of the simulation, since the maximum value of ξ for these temperatures

approaches half the system length (L
2
≈ 5.25) in our simulation. Indeed, finite size

effects have been reported for simulation studies of dynamical heterogeneity, and

in many of the configurations examined in the present work, clusters were found

that spanned the entirety of the simulation box. In Fig. 4.13 we plot ξ(tmax
clu ) as a

function of T . It is clear from Fig. 4.13 that we do not detect a tendency toward

divergence of ξ in the temperature range studied. In Chapter 6 we investigate

spatially heterogeneous dynamics in a substantially larger system, where finite size

effects are minimized in the range of temperatures studied.

It is interesting to note that a number of other studies [81, 88, 91, 83] have

also calculated a dynamic correlation length. It is thus instructive to compare the

behavior of the correlation length found in our system of polymer melt with those.

Ref. [88] calculates the static structure factor for particle pairs whose “bond” has

been broken, with a dynamic bond criterion based on particle separation. Using the

Ornstein-Zernike formalism [124], they extract a correlation length for particle pairs

with broken bonds. This correlation length is not unlike ours, since for particles
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to have broken a “bond”, they must have moved apart from each other. The main

difference is the absence of a well-defined time scale on which this motion occurs.

Ref. [88] finds that the correlation length defined in that way grows with decreasing

T , but saturates at low T because the correlation length approaches the system size,

very similar to what we observe for the polymer melts.

Refs. [78, 81] and [91] calculate pair correlation functions based on the devia-

tion of the displacement of each particle from the average value as a function of t.

Ref. [91] finds that the tail of the spatial correlation function may be fit by an ex-

ponential, and from this extract a correlation length. Unlike the length calculated

in our system of polymer melt, and that calculated in Ref. [81], this correlation

length was found to saturate at a (roughly) constant value at times much longer

than the α relaxation time. The behavior observed in Ref. [91] is surprising, since it

implies that there exist persistent spatial correlations in the particle motion on time
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scales that exceed all other relaxation times, unexpected for an ergodic liquid. We

note that although we do find some “saturation” of the correlation length around the

peak time at low T (possibly due to finite-size effects as discussed above), the length

decreases at long times (and must decrease to its “random” value at sufficiently long

times when the liquid is diffusive).
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Chapter 5

Spatially heterogeneous dynamics in a polymer

melt: String-like motion

The second part of the study of dynamical heterogeneity in the polymer melt is

presented in this chapter where we focus on the transient nature and temperature

dependence of the string-like motion in this system. In the LJ system, the nature

of cooperative motion was further investigated, and it was discovered that mobile

particles follow each other in quasi one-dimensional paths, forming strings. Prior to

our study, this analysis has not been performed for a polymer system. In particular,

it is interesting to ask whether, if strings exist, chain connectivity plays any role.

Therefore the goals of this work were two-fold: (i) to ascertain the tendency (or lack

thereof) for monomers in the supercooled melt to follow each other in string-like
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paths, and (ii) to study the influence of chain connectivity on dynamical hetero-

geneity and strings. A study of the transient nature of the strings, which was also

lacking in earlier studies, was also performed. The work presented in this chapter,

and published in Ref. [126] was carried out in collaboration with M. Aichele, a PhD

student at Johannes Gutenberg Universität, Mainz, Germany under the guidance

of our advisors S. C. Glotzer and J. Baschnagel.

5.1 Mobile monomers and the role of chain con-

nectivity

Thus far, we have discussed the motion of mobile monomers without distinguishing

whether or not they are connected to each other. The interplay of connectivity

and mobility is one of the main issues we wish to address. Intuitively, one may

expect that the bonds in a chain provide a preferred direction along which mobility

can be “transmitted”. To investigate this polymer-specific effect we calculate the

mean contiguous segment length Nc,m(t), which is defined as the average number of

mobile monomers that are consecutively bonded to each other on a given polymer

chain, averaged over all chains that contain at least one mobile monomer. Figure 5.1

illustrates this definition and shows that there can be multiple contiguous segments

on a single chain. One can simply imagine this quantity as a cluster of bonded

mobile particles, since by definition if any two monomers are mobile and bonded

then they will definitely be within the first neighbor distance of each other, and
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Figure 5.1: A schematic diagram showing how the average length of contiguous

segments of mobile monomers, Nc,m(t), is defined. Assume that, at time t, only the

shaded monomers are considered to be mobile. The first two monomers constitute

a contiguous segment of length 2, followed by five non-mobile monomers, followed

by another contiguous segment of length 3. So, the average length of contiguous

mobile segments is Nc,m(tµ) = 2.5.

hence belong to the same cluster. This definition is thus a special subset of the

clusters defined above, where here all mobile monomers in a cluster that are not

bonded to each other are excluded. In this way we can gain some insight into the

contribution of connectivity on cooperativity.

5.1.1 Correlations of mobile monomers in a chain

Figure 5.2 shows Nc,m(t) for all temperatures studied. In the ballistic regime we

expect no correlations [79, 134], and find Nc,m ≈ 1.06. The value Nc,m ≈ 1.06 could

also be obtained by calculating Nc,m after selecting 6.5% of monomers at random and

labeling them as “mobile”. Therefore, no significant dynamic correlations between

bonded nearest neighbors exist in the ballistic regime.

Beyond the ballistic regime Nc,m(t) increases, but never exceeds ∼ 1.5 as long
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as t is not significantly larger than t∗α2
. Thus, in the studied temperature interval, the

relaxation mechanism does not correspond to the sliding motion of many consecutive

monomers along the backbone of the chain, since that would require Nc,m to be of

order N . The small value of Nc,m rather suggests that the relaxation in the β-regime

is predominantly determined by the dense local packing of the melt and not by chain

connectivity. This is consistent with the degree to which the ideal MCT for simple

liquids is successful at describing the dynamics of polymer melts. However, this does

not imply that chain connectivity is completely irrelevant. For T ≤ 0.7 (below the

onset of caging), Nc,m(t) exhibits a maximum at tmax
seg (slightly larger than t∗α2

) in the

time window of the late-β/early-α process, before it first decreases and eventually

increases as specifically shown for T = 0.46 and T = 1.0. This maximum increases,

and also shifts to longer t, upon cooling toward TMCT. Thus, in a relative sense, the

colder the melt, the larger the tendency for finding bonded mobile monomers along

the chain.

For times significantly larger than tmax
seg the spatial correlations between mobile

monomers first diminish, where the length of the contiguous segments relaxes back

to a minimum. The minimum occurs at tmin
seg which roughly corresponds to the time

where 〈r2
m(t)〉 = 1 (subdiffusive regime). For t > tmin

seg , the crossover to free diffusion

takes place and Nc,m continuously increases, possibly converging to its upper limit

N , because the displacement of the center of mass is predicated upon a concomitant

motion of many monomers in the chain.

The occurrence of the maximum and the minimum suggests that there are

two relaxation mechanisms at low temperatures: One, occurring when Nc,m(t) is
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Figure 5.2: Mean contiguous segment length Nc,m(t) versus time for all tempera-

tures. Besides T = 1 (dashed curve) and T = 0.46 (dash-dotted curve) the following

temperatures are shown (solid curves from left to right): T = 0.7, 0.65, 0.6, 0.55,

0.52, 0.5, 0.48, 0.47. For T = 1 and T = 0.46, the open squares indicate t∗α2
and the

arrows indicate the time when 〈r2
m(t)〉 = R2

e .

a maximum, corresponds to the cage-breaking process. Here, clustering of highly

mobile monomers is most pronounced, irrespective of whether they are bonded to

each other or not. Cluster formation related to cage breaking is also observed in

other non-polymeric systems, e.g., in the simulations of binary LJ-mixture [76] and

water [167] close to TMCT, as well as in experiments on colloidal suspensions close

to the glass transition [21]. Thus, chain connectivity is not necessary for clustering.

As in the non-polymeric liquids, the clustering is rather a consequence of the self-

generated cooperativity between the local motion of the caged monomers in the

cold melt. To a large extent, this cooperativity is lost as Nc,m crosses over to

the minimum. The minimum and the subsequent steep rise, which correspond to
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the second relaxation mechanism, are a signature of Rouse-like, polymer-specific

dynamics because they are, at least as precursors, already present at T = 1 where

no caging occurs.

5.1.2 Mobile end monomers

In addition to Nc,m we also analyzed the mobility of end monomers as compared

to central monomers in polymer chains by calculating the fraction fe,m of mobile

monomers that are end monomers. Figure 5.3(a) shows the time evolution of

Nfe,m/2 for all temperatures. The factor N/2 takes into account that the a pri-

ori probability of finding an end monomer among the N monomers of a chain is

2/N . If the mobility of the ends cannot be distinguished from the average, Nfe,m/2

should be 1. This is the case in the ballistic regime, where the monomers are in-

dependent of each other, and in the diffusive regime, where they follow the motion

of the center of mass. At intermediate times, however, we find Nfe,m/2 > 1, and

hence chain ends are more mobile than inner monomers.

We compare Nfe,m/2 with the ratio
〈
r2
e, m(t)

〉
/ 〈r2

m(t)〉, where
〈
r2
e, m(t)

〉
is the

MSD of the end monomers [Fig. 5.3(b)]. The time dependence of Nfe,m/2 closely

resembles that of
〈
r2
e, m(t)

〉
/ 〈r2

m(t)〉. This similarity is not unexpected, since both

quantities measure the mobility of the end mobiles with respect to the average.

Therefore, to understand the behavior of Nfe,m/2 better, we turn our attention to

〈
r2
e, m(t)

〉
/ 〈r2

m(t)〉.

When leaving the ballistic regime
〈
r2
e, m(t)

〉
/ 〈r2

m(t)〉 first increases. This in-
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Figure 5.3: Panel (a): Fraction of mobile end monomers fe,m versus t. fe,m is

multiplied by N/2 (= 5) to account for the fact that there are only two ends per

chain. Besides T = 1 (dashed curve) and T = 0.46 (dash-dotted curve) the following

temperatures are shown (solid curves from left to right): T = 0.7, 0.65, 0.6, 0.55,

0.52, 0.5, 0.48, 0.47. For T = 1 and T = 0.46, the open squares indicate t∗α2
, the

filled squares the time when 〈r2
m(t)〉 = R2

e . Panel (b): Same as in panel (a), but for

〈
r2
e, m(t)

〉
/ 〈r2

m(t)〉. 〈
r2
e, m(t)

〉
is the MSD of the end monomers.

crease can be understood by the short-time expansion of the MSD of monomer i

[125]

〈
[ri(t)−ri(0)]2

〉
= 2t

∫ t

0

dt′
(
1− t′

t

)〈
vi(t) ·vi(0)

〉 ≈ 3Tt2
[
1− 〈|Fi|2〉

36T
t2

]
(t small) ,

where 〈vi(t) · vi(0)〉 is the velocity auto-correlation function and Fi the total force

on monomer i. Since an end is only bonded to one monomer, Fi is smaller than for

inner monomers. Thus, one expects
〈
r2
e, m(t)

〉
/ 〈r2

m(t)〉 > 1 (and hence Nfe,m/2 > 1)

for times just outside the ballistic regime. In our model the ratio continues to

increase up to a maximum that occurs around t ≈ 0.13 for all T . This is close

to the time where the velocity auto-correlation function becomes negative [100].
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Notice that if the microscopic “collision” time τcollison is defined as the time when

the velocity autocorrelation function first changes sign, as was done in Ref [76], this

time corresponds to τcollison. The inversion of the initial direction of the velocity is

caused by rebounding collisions between a monomer and its neighbors. It is typical

of dense liquids and must occur in the same way for end and inner monomers.

Therefore, the difference in mobility should diminish and
〈
r2
e, m(t)

〉
/ 〈r2

m(t)〉 should

decrease. In fact, the simulation shows that, for longer times,
〈
r2
e, m(t)

〉
/ 〈r2

m(t)〉

first decreases toward a plateau and then, at about t ≈ t∗α2
, crosses over to a steep

rise. The rise reaches a maximum close to the time where the MSD of the center of

mass equals R2
g. This roughly corresponds to the Rouse time τR [150] of our model.

Thereafter, the transition to free diffusion takes place.

The enhanced mobility of the end monomers for t > t∗α2
is not unexpected.

The Rouse theory predicts
〈
r2
e, m(t)

〉
/ 〈r2

m(t)〉 = 2 in the time regime where the

monomer displacement follows a t1/2 behavior (i.e., for t ≤ τR) [150]. In the present

simulation, the maximum of
〈
r2
e, m(t)

〉
/ 〈r2

m(t)〉 is smaller than 2, partially due to

short chain effects. Longer chains may attain the Rouse prediction more closely if

entanglements can be neglected [148].

5.2 String-like motion

In this section we present the transient nature and temperature dependence of the

strings formed by mobile monomers. To identify these strings we compare snapshots

of the monomers configurations at two different times, say at some reference time
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t= t0 and at a later time t= t0+t, and then search for mobile monomers that have

replaced neighboring mobile monomers within a radius δ [75]. More precisely, we

construct strings by connecting any two mobile monomers i and j if

min
[|ri(t0 + t)− rj(t0)|, |ri(t0)− rj(t0 + t)|] < δ . (5.1)

This equation means that monomer i moved from ri(t0) to ri(t0 + t) in time t, while

the other monomer j simultaneously approached the initial position of i within a

sphere of radius δ. δ must be sufficiently smaller than the Lennard-Jones diameter

σ (= 1) to guarantee that j unambiguously replaces i. For the binary LJ-mixture, a

good choice was δ = 0.6 [75]. For the polymer model studied δ = 0.55 was selected

based on the consideration that the replacement can be unambiguosly identified in

that only 0.2% of the replacements result in branching strings. This type of strings

arise when more than one monomer j “replace” i simultaneously.

Once strings are identified at any time t, their transient nature and T -

dependence may be studied by calculating the mean string length. In principle,

there are two different approaches for defining the mean string length that may

have relevance here. One definition is provided by the weight averaged string length

Lw(t), given by [168]

Lw(t) =
〈l2〉
〈l〉 =

∑∞
l=1 l2P (l)∑∞
l=1 lP (l)

, (5.2)
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where l ≡ l(t) and P (l) are the string length and the probability of finding a string

of length l, respectively. This definition is relevant in the context of percolation

theory and, as shown in the last section, has been used to analyze the mean size of

clusters formed by mobile monomers. A second definition is the number averaged

string length L(t), defined by [168]

L(t) = 〈l〉 =

∑∞
l=1 lP (l)∑∞
l=1 P (l)

, (5.3)

where
∑∞

l=1 P (l) = 1. This definition arises in the context of equilibrium poly-

mers [169], which we discuss later in this chapter as it appears to be relevant to

the present study. Thus it is this definition on which we focus in this chapter. For

completeness, however, we present the results for Lw(t) at the end of this chapter.

In order to investigate whether or not chain connectivity favors the formation of

strings, and to understand the interplay of connectivity and mobility, we addition-

ally calculate the number averaged string length Lseg(t) of contiguous segments of

mobile monomers in a chain. The comparison of the two quantities should reveal

the contribution of chain connectivity to the formation of strings.

Figure 5.4 shows the time evolution of L(t) and Lseg(t). Qualitatively, both

quantities behave in the same way. At short times, L(t) and Lseg(t) are equal to

one. A string length of one means that the mobile monomers are separated from

each other, and do not replace other mobile monomers when they move [170]. For

a replacement to occur the shortest distance a monomer must travel is the nearest-
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Figure 5.4: Average string length L(t) of all mobile monomers and average string

length in contiguous segments of mobile monomers Lseg(t) versus t with replacement

parameter δ = 0.55. The temperatures shown are (from left to right): T = 1,

0.7, 0.65, 0.6, 0.55, 0.52, 0.5, 0.48, 0.47, 0.46. The dotted vertical lines in the

lower panel indicate the time when α2 is maximum for T = 1 (t∗α2
= 0.766) and

T = 0.46 (t∗α2
= 100.894), whereas the dashed vertical line indicates the time tmax

clu

when the cluster size is maximum for T = 0.46 (tmax
clu = 65.85). A string length of

one corresponds to an isolated mobile monomer, i.e., no “bond” could be formed

between two mobile monomers via the replacement criterion of Eqs. (5.1). Fig. 5.7

shows that despite the small average string length, large strings containing up to 12

monomers occur with significant probability.

neighbor distance (≈ 1) minus δ, which is roughly 0.45.

A string length larger than one implies that mobile monomers tend to replace

each other. This trend is present at all temperatures, but becomes more pronounced

on cooling. With respect to the MSD of the bulk, the time tmax
str when L(t) is
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maximum corresponds to the time when there is a crossover from a caging regime

to a subdiffusive regime, similar to what is observed for other dynamical quantities

as discussed in earlier sections. However, the actual times are slightly different. For

example, tmax
str occurs at a slightly later time than tmax

clu .

In principle, one would expect the clusters of mobile monomers and the strings

they are comprised of to be maximum at roughly the same time. In the present

system, finite size effects may occur at low T , where the clusters become larger

than the simulation cell. This could give an estimate of tmax
clu different from the

asymptotic value. It is also possible that in the present systems, tmax
str is larger than

tmax
clu because there may be a time delay for mobile particles to rearrange themselves

in a special one-dimensional path. In any case, despite this small difference in the

peak times, both tmax
str and tmax

clu occur in the late-β/early-α relaxation regime when

particles begin to break out of their cage.

To understand the role of chain connectivity on strings, we compare Lseg(t
max
str )

and L(tmax
str ) in Fig. 5.5 by taking the ratio of the two quantities. A ratio near one

(unless both the numerator and denominator are equal to one) implies that the

strings are the result of consecutively bonded pairs, i.e., that monomers moving in

strings actually move along the backbone of the chain to which they belong, indicat-

ing an important contribution from connectivity to the formation of strings. On the

other hand, a ratio close to zero implies that string-like motion occurs among non-

bonded monomers and that chain connectivity is insignificant. As indicated in the

figure, Lseg/L decreases as T approaches TMCT, suggesting that chain connectivity

becomes less important for string-like motion at low T .
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max
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the peak time of Lseg and L at different temperatures. TMCT = 0.45.

The previous analysis was performed with δ = 0.55. When introducing the

criterion for defining strings we argued that the precise choice of δ is not crucial,

as long as its value is sufficiently small. To illustrate this point, Fig. 5.6 shows the

temperature dependence of the maximum average string length, L(tmax
str ), for various

δ. We find that the strings become longer if δ increases. This is expected, since more

particles satisfy the condition given in Eq. 5.1. However, the qualitative features are

independent of δ. To support this point further we invoke an analogy, first proposed

in Ref. [75], between the strings and equilibrium polymers [169, 171, 172] (see also

[173] and references therein).

Equilibrium polymers are systems in which the bonds between monomers are

not permanent. They can constantly break and recombine at various points along

the backbone or ends of a chain. In chemical equilibrium, a melt of these self-

assembling polymers is characterized by an exponential distribution of chain lengths,
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Figure 5.6: Left panel: Average string length L versus T for various δ [see Eqs. (5.1)].

The string length is calculated at tmax
str , where it is maximum. Right panel: Rescaling

of L as suggested by the analogy with equilibrium polymers (see text for details).

A satisfactory collapse of the data for all T and δ is obtained except for T = 1, the

temperature below which supercooled liquid dynamics occurs in this model. At this

temperature, strings larger than 1 occur very seldomly (see Fig. 5.7). The dashed

straight line is a fit through the data for T ≤ 0.7, yielding ln L = −0.23 + 0.73 δ/T .

P (l) ∼ exp(−l/L) (if l is large), and by a mean chain length that increases expo-

nentially with the energy E gained by bond formation, L ∝ exp(E/T ).

In our context, the mobile monomers also self-assemble into chains, driven by

the sluggish dynamics of the cold melt. The dynamically created bonds can break

and recombine at any instant. They are more likely to form, and thus “stronger”,

the larger the choice of δ. This suggests a correspondence between δ and E, the

simplest assumption being E ∝ δ. Figure 5.6 shows that this assumption is not

unrealistic. Despite the disparity between the theoretical premise of long chains
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and the relative shortness of our strings, a reasonable superposition of string lengths,

found for various δ and T , is obtained. This implies that any of the values for δ

presented could have been chosen for the present analysis.

From the analogy with equilibrium polymers one expects that the strings have

an exponential distribution. Figure 5.7 shows the distribution of the string length

l found at tmax
str . At the highest temperature, T = 1, P (l) is an exponential and

decreases rapidly with increasing l. The most frequent string lengths are l = 1, 2.

Their probability remains essentially unchanged on cooling, whereas longer strings

occur much more frequently for T < 1. The tail of the distribution appears to

remain exponential, further supporting the possible interpretation of strings in the

same context as equilibrium polymers. Similar observations of exponential distribu-

tions were also made in the simulations of the binary LJ mixture [75], and also the

Dzugutov liquid as will be shown in the next chapter.

The weight averaged string length Lw(t) is presented in Sec. 5.3. We find

that Lw(t) and the number average L(t) behave qualitatively in the same way, but

are quantitatively different. This difference characterizes the variance of the string

length distribution because

〈(l − 〈l〉)2〉
〈l〉2 =

Lw

L
− 1 , (5.4)

where 〈·〉 denotes the number average [see Eq. (5.3)]. The ratio Lw/L, shown in

Fig. 5.8, is referred to as the “polydispersity index” in the context of polymerization.

We find that the strings are most polydisperse for times of the late-β/early-α process

and that this maximum of polydispersity increases with decreasing T .
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Figure 5.7: Semi-log plot of the probability distribution P (l) of the string length l

for various T . P (l) is calculated at t = tmax
str where L is maximum. All data sets

exhibit (roughly) exponential behavior. Inset: P (l) rescaled by the mean value L

versus l/L. In addition to the temperatures T = 0.46, 0.47, 0.48, 0.50, 0.52, 0.55

for δ = 0.55 the graph also includes T = 0.46 and 0.55 for both δ = 0.4 and δ = 0.6.

The scaling deteriorates if data at higher T is included.

In carrying out this analysis, the question arises as to whether a string of

length one should be included or not in the calculation of mean string lengths. One

may argue that l = 1 should be excluded from the calculation since by definition

string-like motion requires one mobile monomer to replace another, and hence is

not really defined for l < 2. In other words, a “string” of length one indicates a

mobile monomer not moving in a string based on the criterion used. To address this

issue, we calculate the time evolution of L(t) by excluding strings of size one (see
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Figure 5.8: The “polydispersity index” given by the ratio of the weight averaged

string length Lw and the number averaged string length L plotted as a function of

time for all temperatures. The temperatures shown are (from left to right): T = 1,

0.7, 0.65, 0.6, 0.55, 0.52, 0.5, 0.48, 0.47, 0.46. The vertical dotted lines indicate

t∗α2
= 0.766 and t∗α2

= 100.894 for T = 1 and T = 0.46, respectively. For T = 0.46

the vertical dashed line shows tmax
clu (= 65.85), the vertical solid tmax

str (= 236.26).

section 5.3), for comparison. We find no qualitative difference between the two cases,

but in the absence of l = 1 the mean string length is accordingly larger. Therefore,

to maintain the analogy of strings to equilibrium polymerization, in which polymers

of length one are included, we restricted our discussion to the mean values that

include l = 1 and are calculated using the number average.
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Figure 5.9: (a) Weight averaged string length Lw of all mobile monomers versus t.

(b) Number averaged string length L of all mobile monomers versus t calculated by

excluding strings of size 1. In both figures, the temperatures shown are (from left

to right): T = 1, 0.7, 0.65, 0.6, 0.55, 0.52, 0.5, 0.48, 0.47, 0.46. The dotted vertical

lines in both panels indicate the time when α2 is maximum for T = 1 (t∗α2
= 0.766)

and T = 0.46 (t∗α2
= 100.894). The dashed vertical line indicates the time tmax

clu when

the weight averaged cluster size, calculated in Ref. [134], is maximum for T = 0.46

(tmax
clu = 65.85).
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5.3 Weight and number averaged string lengths

To compare the weight averaged string length Lw(t) with the number averaged string

length L(t), discussed in Fig. 5.4, we show here the time evolution of Lw, which is

calculated using Eq. (5.2), for different T . It is apparent from the figure [Fig. 5.9(a)]

that Lw is qualitatively the same as L.

To address the issue of including or excluding strings of size l = 1, in Fig. 5.9(b)

we show the number averaged string length L(t) for several T calculated by excluding

l = 1. This calculation yields a similar result to that obtained by including strings

with size l = 1, but the number average and the weight average (not shown) take

larger values when l = 1 is excluded [compare Figs. 5.4 and 5.9(b)].
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Chapter 6

The formation of clusters and the development of

string-like motion in the Dzugutov liquid

The increasing complexity in the dynamics of liquids cooled towards their glass

transition has been demonstrated in the last chapters through the study of the

average properties of clusters and strings of mobile particles. The purpose of this

chapter is to investigate the behavior of these dynamically correlated motions beyond

what is known in terms of the average properties. For this reason we investigate the

mechanisms involved in the formation of clusters and strings at a finer level. The

results presented in this chapter have been published in Refs. [174, 175].
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6.1 Relevance of string-like motion

It has been shown in the last chapters that mobile particles aggregate together into

clusters that grow in size with decreasing temperature. This observation has been

supported through a number of computational [76, 167], and also experimental [21]

studies. Within any cluster of mobile particles, smaller subsets move together in a

correlated fashion where several particles replace each other along one-dimensional,

“string-like” paths [75]. These dynamically correlated structures have been observed

in the simulations of a LJ binary mixture [75] and, in the last chapter, we have

shown that they are also present in the polymer melt. Similar dynamical objects

are also observed in the simulation of 2D binary mixture of soft discs [89] and in the

simulation of a nonrandomly frustrated model of spin glasses that are perceived as

a model for glass formers [92].

Experimentally, a number of studies find direct and indirect evidence for dy-

namically correlated groups of particles. Using an approach that corrects multiple

scattering noise in inelastic coherent neutron scattering experiments, Russina, Mezei

and collaborators [176] explored the microscopic dynamics of a supercooled liquid

at small wave numbers and found evidence for collective fast atomic motion on the

scale of the intermediate range order found in the static structure. In view of the

spatially extended character of the collective excitations, they argued that they may

be evidence for strings. A direct experimental observation of string-like motion was

made by Marcus et al. [137] and Cui et al. [177] in concentrated quasi-two dimen-

sional colloidal liquids. Using 3D confocal microscopy, Weeks et al. [178] showed
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uni-directional motion of neighboring particles in colloidal systems and attributed

these motions in part to string-like particle rearrangements.

The concept of string-like motion plays an important role in the development of

new emerging theories, as well as in more traditional theories of the glass transition.

For example, Garrahan, Chandler and co-workers [60, 61] have recently provided

a “non-topographic” description of dynamics in supercooled liquids. Central to the

theory is the notion of dynamic facilitation, originally introduced by Fredrickson and

Andersen [179]. Dynamic facilitation corresponds to the idea that when particles in

a microscopic region of space are mobile, they influence the dynamics of particles

in neighboring regions, enabling them to become mobile, thereby allowing mobility

to propagate through the system [61]. It has been argued that the observation that

highly mobile particles in a supercooled liquid move along correlated strings is a

confirmation of this central idea [61]. Our own analysis [175] that will be described

below indeed suggests that clusters of highly mobile particles are formed as a result

of mobility propagation initiated within a nanoscopic local structure and facilitated

through quasi-one dimensional string-like rearrangements [175].

String-like rearrangement of particles has also been recognized in the poten-

tial energy landscape or “topographic” view point of dynamics in supercooled liq-

uids [2, 38, 45, 48]. In this picture, the structural relaxation of particles at suffi-

ciently low temperatures is attributed to transitions between local energy minima,

or inherent structures (IS), of the multidimensional potential energy hypersurface.

In fragile liquids, similar to the scenario described in terms of multifunnel struc-

tures [180], basins in configuration space are organized into “metabasins” [38, 48].
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Heuer and co-workers [181] recently showed that, upon deep supercooling, a liquid

becomes trapped in a single metabasin for an extended period of time, making fre-

quent hops within the metabasin, and infrequent excursions from one metabasin to

another. Schrøder et al. [130] showed that transitions between inherent structures

involve string-like motion. Further, Denny et al. [58] observed that transitions be-

tween metabasins involve cooperative rearrangement of particles. The relevance of

string-like motion during inherent structure and metabasin transitions was recently

investigated in detail by Vogel et al. [182]. It was demonstrated that although string-

like motion facilitates both types of transitions, it is of particular importance for

metabasin transitions. All these studies suggest that the concept of string-like mo-

tion is essential for understanding how particle rearrangements lead to exploration

of configuration space.

Perhaps the most well-known theory that connects dynamical properties of su-

percooled liquids to their thermodynamic properties is the Adam-Gibbs theory [12].

The main prediction of the theory (see Eq. 2.5) has been tested in simulations and

appears to be valid across a wide spectrum of liquids [96, 164, 183, 184]. Despite the

validity of the theory, the cooperatively rearranging regions (CRR) have not been

definitively identified. It is reasonable to propose [67] that the CRR are associ-

ated with the mobile regions of the supercooled liquid. Indeed, a recent study [167]

demonstrated a connection between the Adam-Gibbs theory and spatially heteroge-

neous dynamics in simulations of water. In particular, they showed that the average

size of clusters of mobile particles, defined as in Ref. [76], is related to the size of the

CRR [167]. Since we know that clusters are also comprised of strings [75], a funda-
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mental connection between strings and the CRR of Adam and Gibbs is expected.

The validity of this hypothesis will be examined in the following chapter.

The above examples clearly demonstrate the relevance of string-like rearrange-

ments both in new and well-established theories of the glass transition. Nevertheless,

little is known about the microscopic details of this dynamical pattern. For exam-

ple, it is still elusive as to how the short time rattling motion of particles within

their temporary cages evolves into structured correlated motion that is manifested

as string-like motion along a one-dimensional path. In particular, it is important for

the further development of these theories to understand the mechanisms involved

in the formation of these local excitations, e.g., how these motions occur, how large

strings develop, and to what extent the motion is coherent and cooperative. To

investigate these questions, we performed a detailed microscopic analysis of string-

like motion in the Dzugutov liquid at temperatures above TMCT [174]. Our analysis

answers several of the above questions and provides insight into the most probable

mechanism for the formation of strings.

6.2 Average properties of cooperativity

Next we briefly examine the average properties of the quantities that characterize

cooperativity in order to test their universality. We first examine the non-Gaussian

parameter α2 calculated for the Dzugutov liquid. As described in the last chapter, α2

measures the degree to which a system deviates from a Gaussian or random behavior,

and hence it quantifies the degree of cooperativity in a system. In Fig. 6.1 we show
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Figure 6.1: Non-Gaussian parameter α2 as a function of time for different T .

the plot of α2(t) for various T . As expected, α2(t) is zero at short times. It then

becomes positive with progress in time, and shows a maximum at intermediate time

before decreasing towards zero at the late time. The time at which α2 is maximum

corresponds to the late-β/early-α relaxation regime of the MCT. In terms of the

MSD of the Dzugutov liquid, this corresponds to the time when the particles break

out of their cages and become diffusive. This is similar to the observation in the

polymer melt, except that in the polymer melt the crossover regime is between

the plateau and sub-diffusive regime. The temperature dependence of α2(t) for the

Dzugutov liquid is also similar to what is observed in other glass-forming liquids [20,

76, 126], where α2 is found to increase on approaching to TMCT.

Note that, at any time interval t, the fact that we are able to identify particles

that have moved a much farther distance than expected from a Gaussian distribu-

tion, signifies that the system is dynamically heterogeneous. This is measured in

terms of the non-Gaussian parameter, and the plot for α2 shows that dynamical het-
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erogeneity becomes more pronounced at the late-β/early-α relaxation regime, and

increases with a decrease in T . To study the spatial extent of dynamic heterogeneity

in the physical regions of high mobility, we measure the size of clusters formed by

the mobile particles. As described in Chapter 4, a fraction φ for defining mobility

can be selected by integrating the van Hove correlation function Gs(r, t) at the time

t∗α2
when α2 is maximum. For the Dzugutov liquid, this calculation yields φ = 6.4%

for T = 0.42. Nevertheless, since the choice for φ does not signify any qualitative

difference in the behavior of clusters or strings, we use a fraction φ = 5% for the

present study, as is traditionally done for several other systems [21, 76, 167].

Next we show the mean cluster size formed by mobile particles for the Dzugutov

liquid. At any time interval t, we identify highly mobile particles by monitoring

the displacements of all particles within t, and then selecting 5% of the particles

with the largest displacements, as in Ref. [21, 74, 75, 76, 167]. Following previous

works [76, 134], we define a cluster as a group of highly mobile particles that are

within the first neighbor shell of each other, where the first neighbor shell is defined

by the distance of the first minimum of g(r), cf. Fig. 3.2(b). In Fig. 6.2 we show ex-

amples of typical clusters found in the Dzugutov liquid at T =0.42, where particles

in distinct clusters are colored differently. Similar to other systems [21, 76, 134, 167],

clusters of different sizes and shapes are observed for the Dzugutov liquid. Thus, a

statistical analysis is necessary to determine the transient nature and T dependence

of the clusters. We calculate P (n(t)), the probability of finding a cluster of size n

at a time interval t, and from this, we compute the weight-averaged mean cluster

size S(t) using the relation defined in Eq. 4.4 [156].
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Figure 6.2: Example of typical clusters formed by the 5% most mobile particles that

are found at T = 0.42 at the time t = 102.4. Particles belonging to the same cluster

are colored the same. Note that in the simulation all particles have the same size,

but for the purpose of visualization all particles not in the subset studied are shown

as dots.

In Fig. 6.4, we show S(t) for various T . It can be seen clearly that the mean

cluster size increases rapidly upon cooling towards TMCT . Moreover, S(t) shows a

peak at an intermediate time tmax
clu that coincides with the time of the MSD crossover

from the caging regime to the diffusive regime, cf. Fig. 3.4(b). We extract tmax
clu for

each T , and fit the data by a power law tmax
clu ∝ (T −TMCT )−x as was done for

the polymer melt. It is evident from Fig. 6.3 that a power-law, with an exponent

x=1.39±0.17, yields a reasonable fit for the Dzugutov liquid. Within the estimated
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Figure 6.3: Temperature dependence of the peak times tmax
clu and tmax

str characterizing

the times when the mean cluster size and the mean string size, respectively, are

maximum. For completeness, the time t∗α2
when the non-Gaussian parameter (not

shown) of this system is maximum is also plotted. In the figure, the lines show

results from non-linear curve fitting of each data to a power law ∼ (T − TMCT)−γ,

where TMCT and γ are used as free fit parameters. In all cases TMCT is close to

T = 0.4.

numerical error, this is consistent with x=1.47± 0.16 observed in simulations of a

polymer melt [134]. Thus, the transient nature of S(t) is similar to that found in

previous studies including experimental work on colloids [21]. In all studied cases,

the peak of S(t) lies in the late-β/early-α relaxation regime of the MCT and, hence,

the dynamical process which manifests itself in the formation of the clusters precedes

the long-time structural relaxation.

Another interesting similarity between different systems becomes obvious when

inspecting the probability distribution of the cluster size. In accordance with pre-
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vious works [21, 76, 134], Fig. 6.4 shows that P (n) at the characteristic time tmax
clu is

well described by a power-law P (n)∝n−τ (multiplied by an exponential cutoff for

T > TMCT [156]). The exponent τ =1.69± 0.16 for the Dzugutov liquid at T =0.42

is similar to that found for a polymer melt (τ =1.62±0.12) close to TMCT [134], but

it is different from the values obtained for a binary LJ mixture (τ =1.9) [76] and a

colloidal system (τ = 2.2 ± 0.2) [21]. Though the value of the exponent τ may be

non-universal, it is noteworthy that, for all systems studied so far, the distribution

P (n) at the characteristic time tmax
clu exhibits a power-law behavior when T → TMCT .

As will be shown in more detail in the following section, the clusters, espe-

cially the larger ones, contain several strings. An example for the decomposition

of a cluster into several strings is shown in Fig. 6.5 where the different colors indi-

cate distinct strings. The strings are found by comparing snapshots of the particle

configurations at two different times, and then identifying those mobile particles

that have replaced each other within a radius δ. Again, since the choice of δ does

not affect the qualitative features of the strings, provided δ is chosen smaller than

the hard-core radius σ, we simply used δ = 0.6 following Donati et al. [75]. In our

analysis, however, we took the issue discussed for the polymer model on whether

strings of size one should be considered as strings or not a step further, and decided

to focus our attention on the non-trivial strings, i.e., strings with size l ≥ 3. This

will simply give us a more stringent criteria on which to base our prediction on the

nature of string-like motion, but it does not alter the average property of the strings.

The average property of the strings is studied for the Dzugutov liquid. In

analogy to the mean cluster size, the weight-averaged mean string length, Lw, can
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Figure 6.4: The mean cluster size S as a function of time t for temperatures, from

left to right, T = 1.0, 0.75, 0.65, 0.55, 0.52, 0.49, 0.46, 0.43, 0.42. Inset: probability

distribution, P (n), at the time tmax
clu for T = 0.42. The solid line is a power law fit

P (n) ∼ n−τ . τ is found to be τ = 1.69± 0.16. Note that here the mean cluster sizes

are plotted without normalizing them with the random values. The estimates for

the random values of the mean cluster sizes are in the range 1.91 − 1.97 for all T .

Therefore, for each T , the normalized mean cluster size will be nearly half the size

shown here.

be calculated using Eq. 5.2, described in the last chapter. In Fig. 6.6, Lw(t) is

displayed for different T . The time and the temperature dependence of the mean

string length are essentially similar to that of the mean cluster size. In particular,

Lw(t) peaks at a time tmax
str which is within the numerical error of tmax

clu , and the

maximum value of Lw(t) increases with decreasing T . Thus, long strings are mainly

formed in the late-β/early-α relaxation regime where the mean length increases upon

cooling. This time regime also corresponds to the time t∗α2
when the non-Gaussian
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Figure 6.5: Large cluster identified at T = 0.42 at a time t = 102.4. For the purpose

of visualization all particles in the cluster are represented by a sphere of radius 1.0,

while all other particles in the system are represented by a sphere of radius 0.1.

Particles moving in the same string are given the same color. Those particles in the

cluster that are not involved in string-like motion are colored gray.

parameter α2(t) is maximum. An important difference between strings and clusters

exists for the respective size distributions. At the respective peak times for T =0.42,

P (n) is well described by a power-law (cf. Fig. 6.4) while P (l) shows an exponential

decay. Such behavior was also found in simulations for a binary LJ mixture [75] and

the polymer melt we studied [126].
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Figure 6.6: The weight-averaged mean string size Lw as a function of time t for

temperatures, from left to right, T = 1.0, 0.75, 0.65, 0.55, 0.52, 0.49, 0.46, 0.43, 0.42.

Inset: probability distribution, P (l), at the time tmax
str for T = 0.42. The solid

line represents an exponential fit, P (l) ∼ exp(−l/lo), where lo is found to be lo =

2.38± 0.24

6.3 Formation of clusters and mobility propaga-

tion

In this section we examine the development of clusters. In Fig. 6.2, we showed

examples of several clusters found at tmax
clu . But, it is not immidiately apparent how

each of these clusters are formed. Here we seek to understand the formation of these

clusters by monitoring individual particle trajectories for the clusters identified at

tmax
clu . As an example, we single out one of the clusters and monitor the trajectories

of the constituting particles. First, we demonstrate that the enhanced mobility of

the particles in this cluster is transient in nature. To quantify the time scale on
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which the information about the initial mobility is lost, we monitor the MSD of the

selected subset of particles during successive time intervals of tmax
clu , i.e., we compute

the quantities

〈
r2
n(t)

〉
=

〈
[ rj (ntmax

clu +t)− rj (ntmax
clu )] 2

〉
, (6.1)

where rj(t) denotes the position of the j-th particle of the cluster and the brackets

represent the average over the selected subensemble. The results depicted in Fig. 6.7

indicate that a significantly higher mobility than the average exists during the time

interval when the particles are identified as mobile (n = 0). On the other hand,

the curves for 1 ≤ n < 5 lie only slightly above the one representing the ensemble

average, and for even larger n, there is no evidence for systematic deviation from

the average. Comparing the time scale of this re-equilibration with the α-relaxation

time τα ≈ 30tmax
clu , it becomes clear that the clusters of highly mobile particles lose

their mobilities on time scales much less than τα, and therefore do not “dissolve”

due to the structural relaxation of the bulk. Instead, the dynamical process which

leads to the formation and decay of the clusters takes place on a time scale much

shorter than the structural relaxation. This conclusion is consistent with the finding

that the peak time of the mean cluster size tmax
clu lies at intermediate times less than

τα, in the late-β/early-α relaxation regime of the MCT.

To gain further insights into the formation of the clusters, we show snapshots

of the selected cluster for different times t<tmax
clu in Fig. 6.8. In this figure, the mobile
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Figure 6.7: Mean square displacement 〈r2
n(t)〉 for different time windows between

ntmax and(n+1)tmax
clu , where (n = 0, 1, 2, 3, 4, 5, 6, 7, 9, 42), averaged over all particles

in one of the largest clusters (containing 94 particles) identified at tmax
clu . The dashed-

dotted line shows the mean square displacement 〈r2(t)〉 averaged over all particles

in the system.

particles at each time are colored red. Inspection of the snapshots for early times

indicates a few mobile particles that are randomly distributed within the cluster. As

time progresses, the mobile particles become organized in small groups which grow

with time. Thus, one may speculate that the particles in these groups assist each

other to become mobile, e.g., by moving cooperatively, and in this way mobility

propagates through out the cluster. This will be investigated further below.

We now focus on the mobile particles identified during the formation of the

cluster. In particular, we demonstrate that many of these particles are indeed in-

volved in string-like motion, thereby establishing a relation between strings and

clusters. In Fig. 6.9, we display the configurations of the selected cluster at two

128



Figure 6.8: Snapshots of one of the largest clusters identified for times t =

0.0078tmax
clu , 0.188tmax

clu , 0.438tmax
clu , and 0.75tmax

clu , as indicated on the figures. Particles

belonging to the studied cluster are shown as spheres of radius 1.0. The mobility of

all particles in this cluster is monitored for times t < tmax
clu , and at any t the most

mobile particles are colored red. Note that all 17576 particles in the simulation box

are identical. Here only particles within the cluster are magnified for visualization,

and all other particles are shown at reduced size.
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different times t<tmax
clu , marking for each time two different subsets of particles. On

the left hand side, all mobile particles at the respective times are colored, while,

on the right hand side, only the mobile particles involved in string-like motion are

marked where different colors indicate distinct strings. Note that the panels on the

left hand side have already been shown in Fig. 6.8. Comparing the correspond-

ing snapshots it can be immediately realized that many of the mobile particles are

actually replacing each other and moving in strings. Moreover, it is evident that

the lengths of the strings increase with time. What we learn from this analysis is

that the selected cluster is formed as a result of mobility propagation starting from

distributed points within the cluster. The propagation of this mobility is facilitated

through the development of quasi-one dimensional string-like dynamical processes

where groups of particles within the cluster move along a single path. The number

of particles involved in this string-like rearrangement increases with time.

These findings suggest that string-like motion is an important channel for

relaxation within the highly mobile domains of a dynamically heterogeneous system.

To corroborate this fact, we compute the fraction f(t) of mobile particles that are

involved in non-trivial string-like motion, which means strings consisting of three

or more particles. Fig. 6.10 shows that the fraction grows significantly when T is

decreased. For example, at tmax
clu , roughly 70% of the mobile particles are involved

in string-like motion for T =0.42. Further, f(t) has a maximum at a temperature-

dependent time tf≈ tmax
clu , cf. Fig. 6.4. These results indicate that string-like motion is

an important channel for the relaxation of mobile particles and becomes increasingly

significant with decreasing T .
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Figure 6.9: Snapshots of configurations at t = 0.438tmax
clu and 0.75tmax

clu . Particles

belonging to the studied cluster are shown as spheres. On the left hand side all

mobile particles at the respective time are colored. On the right side, only mobile

particles involved in string-like motion are marked, where distinct strings are colored

differently.

6.4 Mechanism of string-like motion

Thus far, we have explored the average properties of strings, and have shown that

string-like motion is an important channel for relaxation in the domains of mobile
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Figure 6.10: The fraction f(t), expressed in percentage, of mo-

bile particles that move in non-trivial strings for temperatures T =

1.0, 0.75, 0.65, 0.55, 0.52, 0.49, 0.46, 0.43, 0.42.

particles in this model liquid. In this section we investigate further the details

of string-like motion beyond what the length distribution and mean length reveal.

What we intend to accomplish is to trace the string-like motion with an increasing

amount of microscopic detail, in order to understand precisely how particles move

in strings. In doing so, we study a number of issues relevant for cage rearrangement,

cooperative motion and dynamical heterogeneity.

As we have seen, strings are largest at times in the late-β/early-α relaxation

regime of the MCT, indicating that the motion of mobile particles is highly coop-

erative on this time scale. However, the mechanism by which this cooperativity is

realized is not apparent, i.e., the strings found at tmax
str may result from a series of lo-

cal rearrangements at shorter times. For example, one can imagine that the strings

are formed as a result of: (i) a “coherent” type of motion where all particles in a
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string move simultaneously in a single event, or in a time interval shorter than the

dephasing time of the rattling motions within the local cages. (ii) a sequential type

of motion where the particles in a string follow each other in a strictly ordered man-

ner along the “backbone” of the string, i.e., the head of the string moves first and

the tail last, but at relatively widespread time intervals. Or, (iii) a non-sequential,

temporally random type of motion where single events in which the individual par-

ticles move into available empty space dominate on short time scales before some

structured path emerges. Of course, the actual mechanism may also be a combi-

nation of all these processes where the prevailing mechanism depends on both the

temperature and the length of the string. This is what we aim to determine in this

section.

To investigate these processes, we first examine the individual motion of par-

ticles in strings, where we assess the squared displacement of each particle in the

strings. Then, we investigate the relative motion of pairs of particles in strings that

replace each other, where the relative motion is either with respect to their current

positions or the original position of the replaced particle in the pair. In all cases

we begin our analysis by inspecting several representative strings. Then, we calcu-

late various ensemble averaged quantities to obtain information about the typical

behavior. To do this, we first identify strings found in the lowest T studied, i.e.,

T = 0.42, in the time interval tmax
str from some reference time t0. Then, starting from

the origin of this time interval we monitor the trajectories of the particles during

the formation of the strings.
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6.4.1 Analysis of typical examples

Single particle motion

First, we assess the individual motion of particles in strings during the formation of

the strings by showing the square displacements of the constituting particles, r2
i (t),

for two typical examples, see Fig. 6.11. For the string considered in Fig. 6.11(a),

all particles move together within a short period of time by about one inter-particle

distance along a single path to replace the neighboring particle, suggesting a nearly

coherent type of motion. In contrast, for the string studied in Fig. 6.11(b), two

particles move forward as a pair, whereas the jumps of the other particles occur

individually at later times. In particular, the delay between the individual jumps is

much larger than the dephasing time due to the cage-rattling motions for which an

estimate, based on the onset of the plateau regime of the MSD, yields tph ≈ 5, cf.

Fig. 3.4(a). Thus, the motion of particles in this string is not coherent.

As can be seen in Fig. 6.12, the situation becomes even more complicated

for large strings. In this figure, the square displacements r2
i (t) of the individual

particles constituting one large string are organized in three panels to emphasize

that sub-units of the string, which we call “microstrings”, can be identified within

which the particles move nearly simultaneously. For example, the particles labeled

6, 7, 8, 9, and 10 jump together as a unit nearly at the same time, while the motions

of the other sub-units occur at different times. All these examples show that the

string-like motion realized at some time tmax
str is a consequence of diverse processes

at shorter times, some of which are coherent and some of which are not. To unveil
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Figure 6.11: Square displacement r2
i (t) of particles in strings that represent typical

examples of (a) coherent motion, and (b) non-coherent motion. Note that here,

and in all other figures in this section depicting displacements of particles, the data

has been smoothed using running averaging scheme in which several successive data

points are replaced by their average to remove vibrational motion. Each data point

is an average of 40 successive data points (equivalent to 200 MD steps) or a time

range of t = 2.

these complicated processes we next inspect the motion of pairs of particles within

strings in which one is replaced by the other (“replacing pairs”).

Replacing pairs

According to their definition, strings consist of pairs of mobile particles in which one

particle replaces the other in a time interval t. Valuable insights into the mechanism

of string-like motion can be derived by inspecting the relative motions of these pairs.

Suppose particles i and j constitute such a pair in a string k that has been identified

in a time interval tmax
str , and let us further assume that j replaces i, i.e., the condition
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Figure 6.12: The square displacement r2
i (t) of particles in a large string. Those

particles that are moving together are grouped in the same panel. We refer to these

sub-units as microstrings. The position of particles in the string at the times t0 and

t0 + tmax
str are shown by spheres, where the numbered spheres represent positions at

tmax
str and the remaining gray spheres represent the positions of the corresponding

particles at the reference time t0.

drij(t
max
str ) < δ ≡ 0.6 is satisfied, where drij(t

max
str ) ≡ |rj(t0 + tmax

str )− ri(t0)|. Then, the

calculation of drij(t < tmax
str ) for all pairs in a string and identification of the times

when each pair first satisfies the criterion drij(t) < δ shows when the individual

replacements in the string take place. Therefore, in this section we show drij(t) for all
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pairs in a typical string found at tL, and then inspect the replacement mechanisms.

Fig. 6.13 depicts the plot of drij(t) in the time window between t0 and t0 + tL.

A number of issues can be understood from the figure. Apparently, the replacements

occur as sudden jumps, where for this string some of the jumps take place in groups

(e.g. pairs 2, 3, and 4) at about the same time, while others (e.g. 5, 6 and 7)

are well separated in time. Occassionally, we also observe unsuccessful replacement

attempts (e.g., pair 7), where the replacing particle returns to its initial position prior

to the jump, before the successful replacement eventually takes place at a later time

t < t0 + tmax
str . When this happens, we select the time of the final successful jump

as the replacement time in the following analysis. By inspecting the duration ∆τ

(cf. Fig. 6.13) required for all pairs in a string to undergo successful replacement

jumps, we can ascertain if the motion is coherent or not. If these jumps occur at

once or within a short period of time, then we conclude that the motion is coherent,

or simultaneous. Clearly, for the string analyzed, the motion is non-coherent since

the replacements occur at widely separated times, and ∆τ ≈ 62 is much longer than

the dephasing time. Nevertheless, the string contains a sub-unit or microstring in

which particles move simultaneously, as was recognized in the last subsection using

a different approach.

When the motion within a string is non-coherent, we can further investigate

whether or not the string-like motion involves sequential jumps of the constituting

particles along the “backbone” of the string. This can be achieved by observing the

time sequence of the replacement jumps in comparison to the pairs’ order along the

backbone of the string. However, due to partial coherent motion, as seen in pairs
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Figure 6.13: A plot of drij(t) ≡ |rj(t0+t)−ri(t0)|, which characterizes the time when

the condition drij(t
max
str ) < δ ≡ 0.6 is first satisfied for any pair i, j in a particular

string, i.e., the time when particle i is replaced by particle j. The pairs are labelled

with a number describing their positions in the string from head to tail, where the

pair at the head is labeled 1 and the pair at the tail is 8.

2, 3 and 4 of Fig. 6.13, the identification of sequential motion becomes complicated,

since for these pairs the sequence becomes indistinguishable or the order irrelevant

because the pairs jump together almost at once. In any case, to gain some insight, we

define sequential motion for strictly ordered jumps. That means only those strings

that show replacement jumps in a strict order from head to tail are considered as

displaying sequential motion. Thus, the string analyzed in Fig. 6.13 has a sequence in

which 4, 3, and 2 move before 1, and hence the motion in this string is not considered

sequential. However, we observe other examples that exhibit sequential motion. In
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the next section we perform a statistical analysis to quantify this and the other

mechanisms.

In the above considerations, we based our analysis at the level of strings to

determine the rearrangement mechanisms. For example, by measuring the time span

∆τ of the replacement jumps in the whole string, we were able to examine whether

the motion is coherent or not. However, with this approach we cannot distinguish

those cases where the majority of the particles move simultaneously from those

where all jumps are well separated in time. Consider, for example, a string that

consists of n particles. If one of the n particles jumps at a much later time while all

the others jump simultaneously, ∆τ will be large simply because of the one particle

with a delayed jump time. Hence, the motion will be interpreted as non-coherent

although most involved particles move simultaneously. To capture this behavior,

we re-examine the relative motion of particles in replacing pairs, but this time with

respect to their current positions, i.e., we calculate drc
ij(t) ≡ |rj(t0 + t)− ri(t0 + t)|

for any pair i and j in any given string for which j replaces i. Notice that in our

previous analysis the current position rj(t0 + t) of particle j is compared to the

original position ri(t0) of particle i, but not to the current position. With this

approach we will be able to determine the probability of coherent motion at a level

of replacing pairs.

In Fig. 6.14 we show examples of drc
ij(t) for representative pairs in two strings.

This figure also includes the plots of drij(t) for the corresponding pairs, to mark

the jump times described above. If the jump for a given pair occurs simultaneously,

the plot of drc
ij(t) remains flat, as shown in Fig. 6.14(a), since the particles do
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not separate significantly during their motion. On the other hand, if the replacing

particle waits some time before it jumps into the position vacated by a replaced

particle, i.e., if the replacement process is delayed, this plot shows, immediately

preceding the jump time of the replacing particle, a bump in the plot of drc
ij(t) (cf.

Fig. 6.14(b) as an example). Then, the height (∆rsep) and the width (tsep) of this

bump (cf. Fig. 6.14(b)) characterize how far and how long the particles separate

during the replacement process. From the time tsep we can infer if a pair undergoes

a coherent motion or not, while ∆rsep gives us additional information on the overall

cage rearrangement. Clearly, the pair depicted by Fig. 6.14(a) exhibits a coherent

jump, while the motion illustrated in Fig. 6.14(b) is non-coherent, since the jump

of the replacing particle exhibits a significant delay.

6.4.2 Analysis of ensemble averaged quantities

Thus far, we have studied string-like motion by inspecting several representative ex-

amples. In this analysis, it has been demonstrated that the particle rearrangements

involved in string-like motion result from a complex procedure involving different

mechanisms. In order to determine the dominant mechanism, it is necessary to

perform a statistical analysis. Therefore, we now calculate different probability

distributions that quantify the average behavior.

We first show the probability distribution P (∆τ) of the time interval ∆τ be-

tween the first and the last replacement jumps in a given string. In Fig. 6.15 we

plot P (∆τ) obtained by averaging over all strings found in a time interval tmax
str , for
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Figure 6.14: The relative motion drc
ij(t) (solid lines) of replacing pairs that are mov-

ing (a) coherently and (b) non-coherently. The separation time and the separation

distance between the replacing pairs are indicated by tsep and ∆rsep, respectively.

To mark the time when the replacement jumps took place, we plot drij(t) (dashed

line) for each pair. The horizontal dotted lines mark the distance drij = 0.6.

T = 0.42. This distribution quantifies the extent of coherent motion at a string

level. As can be seen in the figure, P (∆τ) is a monotonically decreasing function of

the time ∆τ .

To determine quantitatively the extent of coherent motion, we must assign a

cutoff time interval below which the motion can be regarded as coherent. Ideally,

we wish to define coherent motion as a process where the jumps occur at precisely

the same time, but because this is an unlikely process we must choose a reasonably

small time that captures this event. In particular, this choice must be larger than the

vibrational time scale, since we are interested only in rearrangements that contribute

to string-like motion, and these are beyond the individual vibrations. Therefore, by
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Figure 6.15: Probability distribution P (∆τ), where ∆τ is the time between the

first and the last replacement jumps in a string (cf. Fig. 6.13). The filled circles

show P (∆τ) for all strings, while the shaded and unshaded bars represent P (∆τ)

for strings of length l < 7 and l ≥ 7, respectively. The x-axis of the two bars have

been shifted from each other by ∆τ = 1.0 for clarity. In the inset we show the

extent of coherent motion when we analyze different string lengths separately. For

those strings in which particles that are not moving simultaneously, we calculate

the probability of strings that exhibit sequential type of motion.

inspecting the MSD or intermediate scattering function of the bulk (cf. Fig. 3.4(a)),

we define coherent or simultaneous motion as a process where all particles in a string

undergo replacement jumps in a period ∆τ < 5. Based on this definition, we find

that about 21% of the strings involve the simultaneous motion of all the particles

in those strings.

If we study small (l < 7) and large (l ≥ 7) strings separately, we find different
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probability distributions. For the small strings, P (∆τ) is large for short time scales

(∆τ < 5), while for the large strings no monotonic decay, but instead a broad

distribution of P (∆τ), is observed. In particular, in terms of the criterion used to

quantify the coherent motion, we find that none of the large strings (l ≥ 7) moves

coherently when considering the motion of all particles in the string, whereas roughly

26% of the small strings (l < 7) do. This probability grows to roughly 45% for the

smallest string size, l = 3 (See the inset of Fig. 6.15 for more details). These findings

show that only small strings can move coherently as a unit whereas in large strings

distinct sub-units of the strings move at different times, resulting in an overall large

time interval ∆τ for the entire string, and hence implying a non-coherent type of

motion at the level of strings. Nevertheless, we will show later in this chapter that

at the level of the individual sub-units, or microstrings, the motion is coherent.

For those strings that do not move coherently, i.e., 79% of the strings, we

quantify the relevance of sequential type of motion by counting those strings in

which particles undergo strictly ordered jumps along the backbone of the string

during a rearrangement process. We find that 35% of these strings exhibit sequential

motion (cf. inset of Fig. 6.15), while 65% of the strings that are found to be non-

coherent exhibit a non-sequential, temporally random motion in which one or more

particles disrupt the ordered sequence of the replacement jumps. In fact, out of all

strings, coherent as well as non-coherent, this amounts to nearly 51%. Therefore,

non-sequential type of motion appears to be an important element of the string-

like motion. If we further break down our analysis for different sizes, we find that

sequential motion is more prevalent than non-sequential motion for smaller strings.
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For example, we find that about 63% of non-coherent strings of size l = 3 undergo

ordered jumps along the backbone of the strings, while only 9.2% of strings with

size l = 7 show strictly ordered jumps. Hence, as may be expected, strictly ordered

replacements occur prevailingly for small non-coherent strings.

To gain further insight into the rearrangement mechanisms and to further es-

tablish the concept of microstrings, we will next discuss the statistical analysis done

at the level of replacing pairs in strings. We first calculate the probability distribu-

tion P (tsep) that characterizes the separation times tsep between replacing particles.

Fig. 6.16(a) displays the probability distribution obtained by averaging over all re-

placing pairs in strings found at a time interval tmax
str for T =0.42. Similar to what

we find from P (∆τ), P (tsep) decays monotonically. If we integrate the probability

distribution up to a cutoff time tsep ≈ 5 for estimating the probability of coherent

jumps in pairs, we find a value of 0.56. Therefore, about 56% of the replacing pairs

move simultaneously in the replacement process. This number is significantly larger

than that obtained by analyzing P (∆τ) (21%). The difference shows the presence

of a substantial number of strings that have been counted as non-coherent, while

the majority of the particles in these strings actually move simultaneously in mi-

crostrings. Therefore, the two probability distributions complement each other and,

only in combination, give us complete information on the extent of coherent motion

in strings.

Additional information about the rearrangement of particles in strings can

be extracted by examining Fig. 6.16(b), which shows the probability distribution

P (∆rsep) of an excess separation distance ∆rsep between replacing pairs in a string
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during the replacement process. Questions such as, “By how much do particles

separate from each other during the replacement process as compared to the size

of the cage radius rc?” can be studied. Clearly, high probability is attained for

small separations, with the tail of the probability extending to ∆rsep ≈ 1, i.e.,

one inter-particle distance. In fact, most pairs have ∆rsep < rc, where rc can be

estimated using three-time correlation functions [185]. As shown in the section

below, this analysis yields rc ≈ 0.45 for the Dzugutov liquid at T = 0.42, i.e., the

cage radius is slightly smaller than the half inter-particle distance, which is consistent

with previous findings for supercooled liquids [178, 185]. Based on this estimate, an

integration of P (∆rsep) in the range ∆rsep≤rc yields 0.81, suggesting that only 19%

of the pairs separate by a distance larger than the cage radius during the replacement

process. Since coherent motion leads to small pair separations, e.g. ∆rsep≤ rc, the

high probability in this region is again consistent with the previous finding that

large strings typically consist of several microstrings in which the particles move

simultaneously.

6.5 Estimate of the cage radius, rc

Following Refs. [178, 185], we calculate three-time correlation function characterizing

the motion of individual particles in two time intervals in order to estimate the cage

size. Specifically, we measure the displacements r01 and r12 of the particles during

successive time intervals t01 and t12, and then calculate the projection of r12 on the

direction of r01, i.e.,
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Figure 6.16: Probability distributions of (a) the separation time tsep and (b) the

separation distance ∆rsep of replacing pairs during the replacement process.

x12 =
r01

r01

· r12, (6.2)

where r01 ≡ |r01|. Based on these data, we compute the conditional probability

function P (x12|r01), which measures the probability to find a specific value x12 pro-

vided the particle has moved a distance r01 in the first time interval t01. Information

about the direction of subsequent steps of the motion can be extracted from the first
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Figure 6.17: Three-time correlation function x12(r01) characterizing the motion of

individual particles in two successive time intervals.

moment of this distribution x12(r01) [178, 185]. Specifically, x12(r01) ≡ 0 will result

if the directions of the motions during t01 and t12 are uncorrelated. In contrast, if

the subsequent motion for a given r01 is backward (forward) correlated, a negative

(positive) value of x12(r01) will be found. In particular, it has been shown that

x12(r01) = −1
2
r01 results from stochastic dynamics in a harmonic potential [186].

Choosing the intervals t01 and t12 in the caging regime, these effects can be used to

estimate the cage size for supercooled liquids [178, 185]. Fig. 6.17 shows x12(r01) for

t01 = 10, 100, and t12 = 102.4 at T = 0.42. Obviously, x12 is negative for all values

of r01. Thus, as a signature of the cage effect, on average a particle moves opposite

to the direction it has moved before. For r01 < rc ≈ 0.45, the curves nicely follow

x12(r01) = −1
2
r01 indicating that the particle is dragged back by a constant fraction

of its previous displacement. On the other hand, the back dragging effect decreases

for r01 > rc. Therefore the cage radius can be estimated to be rc ≈ 0.45.
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Chapter 7

Configurational entropy and the inherent

structure properties of the Dzugutov liquid

So far we have studied the dynamics of supercooled liquids by investigating the na-

ture of correlated motion at a microscopic level. Our observations from these studies

open up several questions as to why the particles undergo the kind of rearrangement

observed in the last chapters: Are there local forces or stresses that drive the par-

ticles to rearrange in a certain way? Are there local structures that facilitate these

motions? How does the string-like motion take place in relative to local icosahedral

arrangement? In the conclusion chapter, we will briefly assess our observations in

terms of the theoretical and computational results found in the literature, and leave

the above issues for future investigations. Some of these issues are currently under
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investigation by other members of the group. In this chapter, we investigate the

Dzugutov liquid at a macroscopic level in terms of the thermodynamic approach of

the potential energy landscape formalism [46, 47, 48]. This formalism has become

highly useful in describing the properties of glass-forming liquids at sufficiently low

T .

Our main interest is to make a connection between the dynamical clusters

or strings we have investigated and the cooperatively rearranging regions (CRR)

of the Adam-Gibbs (AG) theory. Despite the wide applicability of the AG theory,

the CRR are not well defined. Our interest is further inspired by recent results of

Giovambattista et al. [167] who found a connection between the CRR and the dy-

namical clusters in the SPC/E model of water, providing a connection between the

AG approach and spatially heterogeneous dynamics. Here we would like to assess

the validity of their findings for the Dzugutov liquid, testing their observation for

a different system. Furthermore, since we have found that strings are the elemen-

tary unit of cooperativity, we investigate the extent to which the strings represent

the CRR. In order to accomplish our goal we need to calculate the configurational

entropy of the system using the inherent structure (IS) formalism. This calculation

will provide us with an opportunity to analyze the thermodynamic properties of the

Dzugutov liquid. Therefore, the purpose of this chapter is twofold: (i) to study the

thermodynamic properties of a glass-forming Dzugutov liquid through the IS for-

malism, and (ii) to explore the connection between the dynamic and thermodynamic

properties through the phenomenological Adam-Gibbs theory.

The calculation of the configurational entropy involves the diagonalization of a
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large Hessian matrix, to be described below. To accomplish this task in a reasonable

amount of time, we have reduced our system size to N = 2197. Unfortunately,

small systems have a notorious tendency of nucleation in simulations [5], counter

to what is generally expected. To avoid including nucleating configurations in our

analysis, we first simulate several independent samples at each T , and then remove

those simulations that show a tendency towards nucleation before beginning our

analysis. This has been done by carefully inspecting the thermodynamic as well

as the dynamic properties of each simulation, where we compare these behaviors

with the large system (N = 17576) and discard those configurations that have

significantly different behavior from the large system. As a result, apart from its

size, the properties of the system studied is within statistical error of the large

system. Nevertheless, as T decreases the number of configurations that need to be

discarded increases and our statistics becomes somehow affected. For example, the

analysis for the T = 0.43 data may have some limitations with regard to statistics.

As a result, we take extra care in drawing certain conclusions at this stage. We

indicate any statistically questionable results as we proceed.

7.1 Potential energy landscape

The notion of the potential energy landscape (PEL) was first proposed by Gold-

stein [45] in his topographic view of the glass transition phenomenon. For an N -

body system, the PEL refers to the system’s potential energy U plotted as a function

of 3N particle coordinates in 3N + 1 dimensional space [45]. The dynamics of an
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N -body system can thus be viewed as the motion of a point on the multidimensional

potential energy surface. This surface consists of a large number of local minima, of

varying depths, surrounded by potential barriers. At sufficiently low temperatures,

the system resides near these local minima executing mostly vibrations around the

minima, with infrequent transitions from one minimum to another [181].

The qualitative description of the potential energy landscape formulated by

Goldstein was later formalized by Stillinger and Weber [46] using the concept of in-

herent structures (IS), defined as the local minimum configurations of the potential

energy hypersurface. Each of these inherent structures is surrounded by a basin of

attraction that is defined as the set of points that map to the same inherent struc-

ture upon a local minimization of the potential energy. Based on this operational

definition, Stillinger and Weber proposed a mathematical formalism referred to as

the inherent structure formalism to quantify the thermodynamic properties of the

PEL. Since then, this approach has become an essential tool for understanding the

dynamic and thermodynamic properties of systems that show glassy behavior, like

glass-forming supercooled liquids [96, 97, 128, 130, 164, 182, 187], proteins [10] and

disordered spin systems [188]. In the following section we present the mathematical

formalism that describes the thermodynamics of the IS, which can also be found in

Refs. [46, 95, 164, 184, 187]
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7.2 Inherent structure thermodynamic formalism

The central idea to the IS formalism is the notion that, at sufficiently low T , the

dynamics of a liquid can be separated into vibrations within a single basin and

infrequent transitions between basins. This partitioning is motivated by the con-

cept that at these temperatures the time scales corresponding to the intrabasin and

interbasin motions that involve vibrations and structural relaxation by thermally

activated crossing of potential energy barriers, respectively, differ by several orders

of magnitude. Direct numerical evidence for the separation of the dynamics of a liq-

uid into vibrations around and transitions between IS was provided by Schrøder et

al. [130], where such separation become possible in the vicinity of the mode-coupling

temperature TMCT. The consequence of this partitioning is that the canonical parti-

tion function can be conveniently re-written as a sum over all local potential energy

minima [46].

Generally, the canonical partition function of a system of N interacting parti-

cles is given by [125]

QN(V, T ) =
h3N

N !

∫∫
exp

[−βHN(rN ,pN)
]
drNdpN . (7.1)

where HN(rN ,pN) is the Hamiltonian of the system that is expressed as

HN(rN ,pN) =
1

2m

N∑
i=1

|pi|2 + UN(rN). (7.2)

Here rN and pN are shorthand representations for the positions and momenta of the

N particles, and UN(rN) is the total potential energy of the system. For the above

Hamiltonian, the integration over momenta can be can be carried out explicitly, and
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QN(V, T ) can be reduced to

QN(V, T ) =
Λ−3N

N !
ZN(V, T ), (7.3)

where Λ = (2πβ~2/m)1/2 is the de Broglie thermal wave length, and

ZN(V, T ) =

∫
exp

[−βUN(rN)
]
drN (7.4)

is the configuration integral. In the IS formalism, the partitioning of the configura-

tion space into an ensemble of nonoverlapping basins allows the partition function

expressed above to be re-written as [46]

QN(V, T ) = Λ−3N
∑

basins

exp(−βeIS)

∫

Rbasin

exp[−β(UN − eIS)]drN , (7.5)

where Rbasin is the set of points associated to a specific basin, and eIS is the potential

energy of the inherent structure corresponding to the basin. This last equation shows

that the contribution to the partition function QN(V, T ) can be separated into two

parts: the IS energy of all distinct basins, and the thermal excitation within the

basins. If we introduce Ω(eIS)deIS as the number density of states with IS energy

between eIS and eIS + deIS, then the above equation can be written as

QN(V, T ) =

∫
deISΩ(eIS) exp[−βeIS − βfbasin(β, eIS)], (7.6)

where

−βfbasin(β, eIS) = ln

(∫

R(eIS)

exp[−β(UN − eIS)]
drN

Λ3N

)
. (7.7)

fbasin(β, eIS) is interpreted as the basin free energy with IS energy eIS. Eq. 7.6 is

further simplified if we define the configurational entropy Sconf(eIS) as

Sconf(eIS) = kBlnΩ(eIS). (7.8)
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Then, Eq. 7.6 becomes

QN(V, T ) =

∫
deIS exp[−β(eIS + fbasin(β, eIS)− TSconf(eIS))]. (7.9)

In the thermodynamic limit the free energy A of the system can be obtained from

this equation by employing a maximum integrand evaluation, which yields

A = ēIS − TSconf(ēIS) + fbasin(β, ēIS). (7.10)

Here ēIS is the average IS energy for a given T that maximizes the integrand, and

is the solution of the equation

1 +
∂

∂eIS

fbasin(β, ēIS)− T
∂

∂eIS

Sconf(ēIS) = 0. (7.11)

The expression for the free energy (Eq. 7.10) can be interpreted as follows.

The first two terms on the right hand side of Eq. 7.10 account for the average

energy of the PEL minima visited and the degeneracy of the average IS energy ēIS,

respectively. The vibrational and the kinetic contributions are captured in the last

term. Eq. 7.10 thus provides a formal expression for the separation of configurational

and vibrational contributions.

7.3 Methods for the evaluation of configurational

entropy

The configurational entropy can be evaluated using two different methods, referred

to as the potential energy landscape (PEL) method and the thermodynamic integra-

tion (TI) method [164]. The PEL method is based on constructing the probability
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distribution P (eIS, T ) of the IS potential energy eIS sampled at a temperature T .

Examining Eq. 7.9, it can be easily recognized that the probability P (eIS, T ) that the

liquid populates a given inherent structure eIS at temperature T can be expressed

as

P (eIS, T ) =
exp[−β(eIS + fbasin(β, eIS)− TSconf(eIS))]

QN(V, T )
(7.12)

If P (eIS, T ) and the free energy of the basin fbasin(β, eIS) can be obtained

from simulation, then Eq. 7.12 can be inverted to yield Sconf(eIS) up to an unknown

T -dependent constant C(T ) = kBlnQN(V, T ) as [164, 181, 187]

Sconf(eIS) = kBlnP (eIS, T ) +
eIS

T
+

fbasin

T
+ C(T ). (7.13)

In practice, if the basin free energy has a weak dependence on eIS, the unknown

T -dependent constant C(T ) is estimated by superimposing the P (eIS, T ) curves at

different temperatures and selecting the constant that provides a maximum overlap

between curves with different T (see Ref. [164, 187] for more details).

The temperature dependence of Sconf is obtained by taking the equilibrium

average of Sconf(eIS) for each T , i.e., integrating Sconf(eIS) for each T using the

relation [164]

Sconf(T ) =

∫
deISSconf(eIS)P (eIS, T ). (7.14)

The TI method, on the other hand, uses the fact that, upon deep supercooling,

the motion of particles in configuration space is separable into vibrations within a
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basin and infrequent transitions between basins. As a result, the total entropy S(T )

can be expressed as the sum of the configurational entropy Sconf(T ) that results

from the multiplicity of local potential energy minima sampled by the liquid, and

the vibrational entropy Svib(T ) of typical basins sampled at T . Thus,

Sconf(T ) = S(T )− Svib(T ). (7.15)

As will be described below in detail, the total entropy at a selected reference

state point is obtained by integrating the pressure obtained from simulation along an

isothermal path from the ideal gas limit value to the reference point. Once the total

entropy is obtained at the reference T , the total entropy at any other T is determined

by integrating the potential energy along an isochoric path. Our analysis is made

using the thermodynamic integration method that will be described below in more

detail. We first discuss the properties of the inherent structure.

7.4 Properties of the inherent structure

As a first step towards the evaluation of the configurational entropy we search for

the inherent structures. This is accomplished by carrying out a conjugate gradient

minimization [189] of the potential energy to find the inherent configuration from

the configuration of the equilibrium liquid, which is obtained during the molecular

dynamics simulation. This process is often referred to as “quenching”. For a given

temperature, several equilibrium configurations are then mapped onto the inherent

configurations.
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Once the inherent structures are identified a number of features can be ana-

lyzed. For example, in order to classify the spatial distribution of particles in a given

potential energy minimum one measures quantities like the pair correlation function

g(r) or the static structure factor S(q). Here we show the pair correlation functions

of the inherent configuration for two different temperatures, T = 0.43 and T = 1.0

(see Fig. 7.1). As first recognized by Stillinger and Weber [46] the hidden struc-

ture obscured by the influence of vibration in the equilibrium liquid becomes more

apparent in the inherent structure. This is also the case for our system where the

quenching of the vibrations causes splitting of the second peak in the pair correla-

tion that arise from icosahedral ordering to become sharper than for the equilibrium

liquid. In fact, for our system the splitting of the second peak is already obvious for

the equilibrium liquid at low T , but the difference is quite significant for T = 1.0

(see inset of Fig. 7.1 for g(r) of the equilibrium liquid).

Another important property obtained from the inherent structure is its po-

tential energy value, eIS. As mentioned above briefly, eIS has a central role in

the determination of the configurational entropy Sconf using the PEL method.

This is also true in the TI method (see below). The temperature dependence

of the average energy of the local minima ēIS has been studied by several au-

thors [95, 97, 98, 128, 165, 184, 190, 191]. For sufficiently high temperatures, ēIS is

observed to be essentially constant. On cooling below the onset of caging, the IS

average energy decreases, suggesting that the system populates deeper and deeper

basins upon supercooling. Moreover, the T dependence of ēIS is often found to

follow a 1/T law for fragile liquids [95, 128, 165, 184, 190]. This has been shown to
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Figure 7.1: Inherent structure pair correlation function g(r) for T = 0.43 (solid line)

and T = 1.0 (dashed line). Inset: pair correlation function g(r) for the equilibrium

liquid for T = 0.43 (solid line) and T = 1.0 (dashed line).

be true provided P (eIS, β) is a Gaussian [162, 165, 192].

Motivated by these studies, we evaluate ēIS for the Dzugutov liquid. Fig. 7.2

shows the plot of ēIS as a function of T . As found in other systems [95, 97, 98,

128, 165, 184, 190, 191], ēIS is essentially temperature independent at high T , and

then decreases to lower values with decreasing T . Notice that, similar to what is

observed for these systems, the T at which ēIS starts to decrease is near the onset

of caging (T ∼ 1). At sufficiently low T , ēIS shows the expected 1/T temperature

dependence, cf. inset of Fig. 7.2. For the lowest T studied (T = 0.43), we observe

a slight deviation from the expected 1/T behavior, showing a tendency towards a

constant value. Although this is an interesting phenomenon that was also observed
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Figure 7.2: Average inherent structure energy per particle ēIS/N as a function of

T . Inset: ēIS/N (circle) as a function of the inverse temperature for T ≤ 0.75. The

solid straight line is a guide to an eye.

for the strong liquid silica [97, 98], where ēIS appears to approach a constant value on

cooling, we must point out that the deviation in our system may be due to insufficient

statistics for the lowest T . Further exploration is required to conclusively determine

this issue.

The shape of a basin can be studied by investigating the properties of the den-

sity of states, which is the histogram of the square root of the eigenvalues obtained

from the diagonalization of the Hessian matrix H. The latter is calculated for the

configurations of the inherent structures. Near a local minimum, the potential en-

ergy of a system of 3N particles can be approximated as a Taylor series expansion

around the minimum, i.e.,
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U(rN) = U(rN
α ) +

N∑
i=1

(ri−rαi)
∂U

∂ri

+
N∑

i,j=1

(ri−rαi)
∂2U

∂ri∂rj

∣∣∣∣∣
rN

α

(rj−rαj) + higher order terms.

(7.16)

where rN
α is the 3N -dimensional inherent configuration at the local minimum α.

At the local minimum, which is the basin minimu, the first derivative vanishes and

U(rN
α ) = eIS. The above expression can thus be reduced to

U(rN) = eIS +
N∑

i,j=1

(ri − rαi)
∂2U

∂ri∂rj

∣∣∣∣∣
rN

α

(rj − rαj) + higher order terms. (7.17)

The 3Nx3N mass-weighted Hessian matrix elements Hij are then defined as

Hij =
1√

mimj

∂2U

∂ridrj

∣∣∣∣∣
rN

α

(7.18)

where mi and mj are the masses of particle i and j. These values are unity for our

system.

The diagonalization of this matrix yields 3N−3 positive eigenvalues {hi}, with

the remaining three eigenvalues being zeros. The three zero eigenvalues account for

the three independent translations of the entire system, one in each direction. The

density of states N(ω) of the resulting eigenfrequencies ωi (=
√

hi

)
are plotted for

our system in Fig. 7.3, where data for different T are shown. As seen in the figure,

the spectrum of wi changes weakly with T . But one can clearly see that the position
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Figure 7.3: Density of states N(w) at different temperatures. This quantity is the

histogram of the square root of the eigenvalues of the Hessian matrix evaluated at

the basin minimum. Inset: γ as a function of T .

of the maximum slightly shifts to smaller values of w with decreasing T . To closely

inspect this change we calculate a quantity γ, which is the ensemble average of the

sum of the logarithms of the frequencies of normal modes,

γ =

〈
1

3N − 3

3N−3∑
i=1

lnwi

〉
(7.19)

This quantity can be considered as the first moment of the eigenfrequencies,

and captures the average quadratic shape of a basin. The temperature dependence

of γ is shown in the inset of Fig. 7.3. Albeit small, the value of γ decreases with

decreasing T . A similar decrease is observed in the Lewis-Wahnström model of

supercooled orthoterphenyl (OTP) [184]. But, it is in contrast to the observation
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made for the SPC/E model of water [95] where γ increases with decreasing T . The

fact that the average basin frequency becomes larger upon cooling (equivalently

in deeper basins) in the water model implies that the basins become increasingly

“sharp” with decreasing T or eIS [95]. The basins for our system, on the other hand,

become slightly broader upon cooling, since γ decreases with T .

7.5 Calculation of the configurational entropy

We calculate the configurational entropy using the thermodynamic integration method,

as mentioned above. In this section we present the methods we used and the re-

sults we found in the calculation of Sconf(T ). In the TI method, the total entropy

(or free energy) at any temperature T is evaluated by performing thermodynamic

integration first along an isothermal path, starting from an ideal gas limit where

interactions are far less important, and then along an isochoric path. These pro-

cedures, together with the methods for calculating the vibrational entropy, will be

described below.

7.5.1 Total entropy S(R) at a reference state point R

For a system of N particles in equilibrium at constant V and T , the Helmholtz free

energy A can be expressed as

A = −kBT lnQN(V, T ), (7.20)

where QN(V, T ) is the canonical partition function given by Eq. 7.1. For an ideal
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gas, UN(rN) = 0, and hence ZN(V, T ) = V N . As a result, the partition function of

an ideal gas can be expressed as

Qid
N(V, T ) =

Λ−3N

N !
V N . (7.21)

Then the partition function of a system of interacting particles is conveniently writ-

ten as

QN(V, T ) =
Qid

N(V, T )

V N
ZN(V, T ). (7.22)

From this last equation, it can be seen that the free energy A can be split into the

ideal term Aid and the excess term Aex as

A = Aid + Aex (7.23)

where

Aid = −kBT lnQid
N(V, T ). (7.24)

and

Aex = −kBT ln
ZN(V, T )

V N
. (7.25)

From Eq. 7.21 and 7.24, we can find an expression for the ideal free energy Aid as

βAid = 3N lnΛ + N lnρ−N. (7.26)

The excess free energy Aex contains all the contributions to A that arise from the

interaction between particles. Since the free energy can be split into the ideal and

excess terms, all thermodynamic properties that can be derived from the free energy

can be split in the same manner. For example, the total entropy S can be written

as S = Sid + Sex, where Sid and Sex are the ideal and excess terms of the entropy,

respectively.
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In order to determine the total entropy at a reference state point R ≡ (TR, VR),

where TR and VR are the reference temperature and volume, respectively, a thermo-

dynamic integration is performed at TR starting from a volume V → ∞ (ideal gas

limit) to the reference volume VR. In particular, we integrate the excess pressure Pex

to obtain Aex, from which the entropy S can be specified. Noting that A = E−TS,

where E is the internal energy and S is entropy, it can be easily shown that

S(R) = Sid(R) +
U(R)

T
+

∫ VR

∞

Pex

T
dV. (7.27)

where Sid = −∂Aid/∂T is expressed as

Sid

kB

=
3

2
N ln

(
emV 2/3

2π~2β

)
−N ln

(
N

e

)
. (7.28)

Here e is the Neper number. To evaluate this last equation, we use ~ = 0.063507 kJ ps mol−1,

and assume the unit of energy to be ε = 1 kJ mol−1, the unit of length to be σ = 1 nm,

and the unit of time to be τ = 1 ps. Additionally, we choose the reference state point

R ≡ (kBTR = 5.0 ε, VR = (2197/0.85) σ3) such that the temperature of the system

is high enough to be a gas. Using these values, Sid(R)/kB becomes

Sid

kB

= 23265.517. (7.29)

Notice that Sid(R)/kB is dimensionless. If we divide Eq. 7.27 by kB, all the

other terms can also be written in dimesionless units as

S(R∗)
kB

=
Sid(R∗)

kB

+
U(R∗)

T ∗ +

∫ V ∗R

∞

P ∗
ex

T ∗ dV ∗. (7.30)

where we made use of the fact that kBT = εT ∗, U(T ) = U(T ∗)ε, V = V ∗σ3 and

Pex = P ∗
exε/σ

3. Here R∗ ≡ (T ∗
R = 5.0, V ∗

R = 2197/0.85) is the reference point in

reduced units. In what follows we drop the symbol ‘∗′.
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Figure 7.4: The potential energy per particle U/N (circles) of the equilibrium liquid

plotted as a function of T . The temperature range T ≤ 0.75 is fitted (solid line)

using the functional form a + bT 3/5 with a = −7225.63 and b = 6294.06. The

dotted line is a fitting to the data for the range T ≥ 0.75 using the functional form

a′ + b′T 3/5 + c′T , with a′ = −6771.84, b′ = 6492.36, and c′ = −785.32. Inset:

The data for T ≤ 0.75 is separately plotted on T 3/5 axis to demonstrate that the

Rosenfeld-Tarazona law [193] holds for low T .

The potential energy U(R) at the reference point R is obtained from the

simulation data plotted in Fig. 7.4, i.e., U(TR = 5.0, VR = 2197/0.85)/N = 2.90872.

Therefore,

U(R)

T
= 6390.4578/5.0. (7.31)

The values of the excess pressure Pex = P −Pid, where P is the total pressure

obtained from the simulation at T = 5.0 and Pid = ρkBT , is plotted in Fig. 7.5 as a
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function of V . Pex has been fit using the virial expansion, i.e.,

Pex =
4∑

i=1

aiV
−(i+1). (7.32)

The ai values that best fit the data are reported in the figure. To decrease the

numerical integration error in Eq. 7.30, the integration over the excess pressure

Pex from the ideal gas limit to the reference state point is carried out as follows:

we first subtract the virial term B2(T )T (N/V )2 from Pex, and then integrate the

difference over volume. The contribution arising from the first virial correction is

then integrated analytically and added to the remaining calculation. The resulting

expression is

∫ VR

∞

Pex

T
dV =

∫ VR

∞

1

T

[
Pex −B2(T )T

(
N

V

)2
]

dV −B2(T )
N2

VR

. (7.33)

Here B2(T ) is the virial coffecient in reduced units. The same exercise described

above can convert B2(T )kBT (N/V )2 to an expression in reduced units noting that

B2(T ) = B2(T
∗)σ3 [125]. As a result B2(T )kBT (N/V )2 = B2(T

∗)T ∗(N/V ∗)2ε/σ3,

and hence the expression utilized in Eq. 7.33 is in reduced units, where we dropped

the symbol ‘∗′ as usual.

B2(T ) can be determined from the fit of the Pex vs V curve (Fig. 7.5), at

the region where Pex approximates the second term of the virial expansion, i.e., as

V →∞, Pex is expressed as,

Pex = B2(T )T

(
N

V

)2

=
a1

V 2
. (7.34)
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Figure 7.5: The excess pressure Pex as a function of volume at T = 5.0. The open

circles are the MD result. The dashed line is the fitting to the pressure using the

first virial correction to the ideal gas law. The solid line is a polynomial fit

The best fit of Pex to a1/V
2 for V → ∞ yields a1 = 4713.33 X 104. Noting that

a1 = B2(T ) T N2, we find that B2(T ) = 1.95298. Using this value of B2(T ), the

first and the second terms in the right hand side of Eq. 7.33 yield −12696.7/5 and

3647.093, respectively. Therefore,

∫ VR

∞

Pex

T
dV = −6186.293. (7.35)

The total entropy at the reference state point is thus determined by combining

the values obtained in Eq. 7.29, 7.31, and 7.35. As a result, we obtain

S(R)

kB

= 23265.517 + 6390.4578/5.0 − 6186.293 = 18357.32 (7.36)
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7.5.2 Entropy S(T ) at different temperatures

Noting that dE = TdS − PdV for a constant number of particles N , where E is

the internal energy of the system, the entropy at any T along the isochoric path we

studied can be obtained by integrating the internal energy as

S(T, VR) = S(TR, VR) +

∫ T

TR

dE

T ′ (7.37)

The above equation may be re-written interms of the heat capacity CV as

S(T, VR) = S(TR, VR) +

∫ T

TR

CV (T ′)
dT ′

T ′ (7.38)

where

CV (T ) =
3

2
NkB +

(
∂U

∂T

)

V

. (7.39)

CV (T ) is thus calculated by evaluating the derivative of the system’s potential energy

obtained from the simulation with respect to T . To perform this numerically, we

first express U as a function of T . An equation that expresses the temperature

dependence of U can be obtained by fitting the simulation data to a functional form

that best describes the data.

Based on the free energy functional calculation for hard spheres, Rosenfeld and

Tarazona [193] showed that the temperature dependence of the potential energy of

liquids can be described by U(T ) ∼ T 3/5. In a number of simulations [164, 184, 187,

194, 195], this theoretical prediction has been found to hold for sufficiently low T .

The potential energy for our system is also well represented by the form
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U(T ) = a + bT 3/5 (7.40)

for T < 1.0, see inset of Fig. 7.4. The best fit for the equation yields a = −7225.63,

and b = 6294.06, in the temperature range T ≤ 0.75, where the splitting of the

dynamics into intra-basin and inter-basin motions is assumed to hold. However, the

Rosenfeld-Tarazona law fails to hold for T ≥ 1.0. For this region, motivated by the

functional form suggested in Ref. [184], we fitted the simulation data using the form

U(T ) = a′ + b′T 3/5 + c′T (7.41)

As shown in Fig. 7.4, we find a good interpolation in this region. The best

fit for the data is found for a′ = −6771.84, b′ = 6492.36, and c′ = −785.32. It

is interesting to note that with a different set of fitting parameters, this functional

form fits well for the entire range of the simulation data. But, to be able to use the

theoretically predicted functional form, we apply the latter form (Eq. 7.41) only for

the T range where the T 3/5 law fails to hold. Therefore, in order to determine S(T )

for T ≤ 0.75, we first carry out an isochoric thermodynamic integration in the range

TR ≤ T ≤ T ∗, where T ∗ = 0.75, using the CV derived from the potential energy

expressed by Eq. 7.41. This procedure links the entropy of the system S(TR) at the

reference temperature TR = 5.0 to that at T ∗ = 0.75. Then, we use CV derived

from the potential energy expressed by Eq. 7.40 together with the value of S at T ∗

to calculate S(T ) at any T < 0.75.
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The total entropy at T ∗ is thus obtained using an expression given by

S(T ∗, VR)

kB

=
S(TR, VR)

kB

+

(
3

2
N + c′

)
ln

(
T ∗

TR

)
− 3

2
b′

(
T ∗−2/5 − T

−2/5
R

)
. (7.42)

Substituting the known values, the above equation becomes

S(T ∗, VR)

kB

= 18357.32 + 2510.18 ln

(
T ∗

TR

)
− 9738.54

(
T ∗−2/5 − T

−2/5
R

)
. (7.43)

from which we find that, setting T ∗ = 0.75 and TR = 5.0,

S(T ∗, VR)

kB

= 7784.6643 (7.44)

The total entropy at any T ≤ T ∗, a region where the T 3/5 law for potential

energy holds, is found using the expression

S(T, VR)

kB

=
S(T ∗, VR)

kB

+
3

2
N ln

(
T

T ∗

)
− 3

2
b
(
T−2/5 − T ∗−2/5

)
, (7.45)

which is obtained using Eq. 7.40 to express U(T ). With the known values, S(T, VR)

becomes

S(T, VR)

kB

= 7784.6643 + 3295.5 ln

(
T

T ∗

)
− 9441.05

(
T−2/5 − T ∗−2/5

)
. (7.46)

This last equation is used to evaluate the total entropy at any T ≤ 0.75,

i.e., a T region below the onset of caging where the splitting of the dynamics into
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Figure 7.6: The total S, the harmonic Sharm and the anharmonic Sanh entropies as

a function of T . S and Sanh are extended below T < 0.43, the lowest T simulated,

using Eq. 7.46 and 7.52, respectively. On the other hand, Sharm is extended below

T < 0.43 using a fit aharm + bharmln(T/T ∗), where aharm and bharm are free fitting

parameters found to be 2.86227 and 2.89232, respectively, and T ∗ = 0.75.

vibrations within basins and transitions between basins is assumed to hold. Fig. 7.6

shows the plot of the total entropy S(T ) as a function of T .

7.5.3 Vibrational entropy Svib

The vibrational entropy Svib is the sum of the harmonic Sharm and the anharmonic

Sanh terms, i.e.,

Svib = Sharm + Sanh (7.47)

In some systems, e.g., LJ [164], where the harmonic approximation holds, the vi-

brational entropy is approximated by a harmonic entropy, i.e., Svib ≈ Sharm. But
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Figure 7.7: A harmonicity test. The difference between the average potential en-

ergy per particle U/N of the equilibrium liquid and the inherent structure ēIS/N

are plotted as a function of T (open square). The dashed line is the harmonic

approximation U − ēIS = 3
2
(N − 1)kBT .

for our system, as in systems like the SPC/E model of water [96], silica [97], and

OTP [184], the harmonic approximation does not hold, cf. Fig. 7.7. If the harmonic

approximation were to hold, U − ēIS would be equivalent to 3
2
(N −1)kBT . But, this

is not the case for our system. Therefore, to obtain Svib we need to calculate both

the harmonic and the anharmonic contributions.

The harmonic contribution to the vibrational entropy resulting from the mo-

tion of particles within the basins is calculated using the relation given by

Sharm

kB

=
1

N

3N−3∑
i=1

[
1− ln

(
~ωi

kBT

)]
, (7.48)

where {wi} are the square root of the eigenvalues of the Hessian matrix. As dis-

cussed above, we calculate {wi} from the normal mode spectrum of the liquid after

quenching to the inherent structure from the equilibrium liquid at each T studied.
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Sharm(T )/kB is shown in Fig. 7.6.

The anharmonic contribution to Svib is calculated by first evaluating the an-

harmonic contribution to the potential energy, Uanh. Recalling the expression for the

Taylor expansion of U about a local minimum, the anharmonic term corresponds to

the higher order term in the expansion. Thus, Uanh can be approximated as

Uanh(T ) = U(T )− ēIS(T )− Uharm(T ). (7.49)

U(T ) and ēIS(T ) are found from the simulation, while Uharm(T ) = 3
2
(N − 1)kBT .

Then Sanh can be numerically calculated using the relation

Sanh(T ) =

∫ T

0

1

T ′
∂Uharm(T ′)

∂T ′ dT ′. (7.50)

To perform the above numerical integration, the value of Uanh(T ) found from

the simulation is further fitted to a polynomial in T . The fit to Uanh is constrained

so that Uanh and its derivative vanish at T = 0. This is consistent with the fact that

Uanh is a correction to the harmonic approximation. We find that the functional

form expressed as

Uanh(T ) =
5∑

k=2

ckT
k (7.51)

fits our data very well, with the fitting parameters ck given by c2 = −0.175197,

c3 = 1.2112, c4 = −1.57974, and c5 = 0.705082. Using Eq. 7.51, Sanh can be

expressed as
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Sanh(T ) =
5∑

k=2

kck

k − 1
T k−1. (7.52)

In Fig. 7.8 we show the plot of Uanh and Sanh obtained from these calculations.

Additionally, Sanh is plotted together with S and Sharm in Fig. 7.6 to emphasize the

extent of its contribution in the calculation of Sconf . In general, as already mentioned

earlier, Sconf(T ) is obtained from the relation

Sconf(T ) = S(T )− Sharm(T )− Sanh. (7.53)

Fig. 7.9 shows the plot of Sconf as a function of temperature.

7.6 Cooperatively rearranging regions and dynam-

ical clusters

One of the goals of this work is to relate dynamic and thermodynamic properties

of the Dzugutov supercooled liquid through the use of the Adam-Gibbs relation.

The Adam-Gibbs theory predicts the temperature dependence of viscosity η (also

diffusion coefficient D or relaxation time τ) to be expressed as [12]

η = ηo exp

[
A

TSconf

]
. (7.54)

We have shown above that Sconf can be calculated from the thermodynamic prop-

erties of the PEL of the system. On the other hand, quantities like D, η, or τ can
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Figure 7.8: The anharmonic potential Uanh and entropy Sanh as a function of T . The

filled circles represent the values of Uanh obtained from the simulation data through

the relation given by Eq. 7.49. This data is fitted using Eq. 7.51, and extrapolated

below the lowest T simulated, i.e., below T = 0.43 (solid line). The dashed line

represents Sanh that is evaluated using Eq. 7.52. This equation is further used to

extend Sanh below T = 0.43 .
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Figure 7.9: Temperature dependence of configurational entropy Sconf calculated as

the difference between the total and vibrational entropy.
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be calculated from dynamic studies. The Adam-Gibbs relation proposes a connec-

tion between the dynamic and thermodynamic properties. Here we are particularly

interested in the connection between the cooperatively rearranging regions (CRR)

envisaged by the Adam-Gibbs theory and the dynamical strings and clusters of

mobile particles that we have investigated in the previous chapters.

By calculating the number average of the clusters Sn formed by the mobile

particles, which is defined as

Sn =

∑
n nP (n)∑
n P (n)

(7.55)

where n is the number of particles in a cluster, and P (n) is the probability of finding

a cluster of size n, Giovambattista et al. found a linear relationship between S∗n and

1/Sconf in the SPC/E model of water. In particular, they found that

S∗n − 1 ∝ 1

Sconf

(7.56)

Here S∗n ≡ Sn(tmax
clu ) is the average cluster Sn at the time tmax

clu when Sn is maximum.

Recalling that the minimum size z∗ of the CRR is inversely proportional to Sconf ,

their finding implies that S∗ can be interpreted as the size of the CRR. In our work

we would like to investigate the above result for the Dzugutov liquid, to examine the

universality of the observation. Additionally, since strings are the elementary units

of cooperativity, we wish to explore the extent to which the string size represents

the CRR.

To facilitate comparison with previous work, we use the number average to

define clusters or strings. The number averaged cluster size Sn and string size Ln

for the Dzugutov liquid are plotted in Fig. 7.10. Ln is defined in the same way
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Figure 7.10: (a) The number averaged cluster size Sn and (b) the number averaged

string size Ln plotted as a function of time. Note the strings are averaged over all

strings including l = 1.

as Sn, where the cluster size is replaced by the string size. For each T , S∗n and

L∗n are extracted from these plots, and plotted against 1/Sconf , cf. Fig. 7.11. As

shown in the figure the linear relationship between S∗n and 1/Sconf reasonably holds,

supporting the observation in simulated water [167]. Nevertheless, a similar analysis

for the strings reveals that a linear relationship can also be found between L∗n and

1/Sconf , making strings another candidate for the CRR. The implication of this will

be explored in future work.

Another important point that we want to explore is the validity of the Adam-

Gibbs theory for the Dzugutov liquid. The validity of this theory is usually tested

by plotting log(D) against 1/TSconf . Implicit in this relation is that D ∝ 1/η. The

Adam-Gibbs relation is then considered to be obeyed by data that follows a straight

line on such a plot. A wide range of systems have been documented to obey this

form of the Adam-Gibbs relation (see, e.g., Ref. [96, 164, 184]). To test the validity
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Figure 7.11: A plot of S∗n − 1 and L∗n − 1 against 1/Sconf . S∗n is the number averaged

cluster Sn at the time tmax
clu when Sn is maximum. L∗n is the number averaged string

Ln at the time tmax
str when Ln is maximum.

of this relation for our system we plot log(D) against 1/TSconf in Fig. 7.12(a). As

indicated by the error bars, except for the lowest T , the expression does hold within

statistical error. However, a careful look at the data points, even excluding the lowest

T which clearly deviates from the line, indicates that there is systematic curvature.

A significant curvature has also been observed for the BKS model of silica [98] when

log(D) is plotted against 1/TSconf , implying that the relation D ∝ exp[−A/TSconf ],

where A is a constant, fails for silica.

However, it is not clear that this is the proper expression relating D to

Sconf . From the Stokes-Einstein (SE) relation, D ∝ T/η, so that η ∝ T/D. Sub-

stituting this expression for η into the original AG expression (Eq. 7.54) yields

D/T ∝ exp(−A/TSconf). Thus if the so-called AG relation for D holds, D/T , and
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not D, is the relevant quantity to consider. This test was performed for BKS sil-

ica [98], and this revised expression was found to be a significantly better fit than

the previous expression over a range of densities. Performing the same test on our

system, we observed little to no improvement, as illusrtated in Fig. 7.12.

On the other hand, the SE relation does not necessarily hold for low T when

SHD is present [32], leaving us without an obvious connection between D and Sconf .

In fact, all experiments on the decoupling of D and η (or the rotational diffusion

coefficient DR, which is related to η through the Stokes-Einstein-Debye expression

at all T , even in the glass [196]), shows D to be enhanced over the value predicted

from SE for a given viscosity. This enhancement of diffusion is consistent with the

deviation at low T of the diffusion constants we calculate, which are also enhanced

over the values expected if both SE and AG were to hold. Thus when SE fails

to hold, as it should when SHD is prominent, we have no reason to expect either

log(D/T ) or log(D) to be linearly proportional to 1/TSconf .

In fact, the Dzugutov system has more pronounced dynamical heterogeneity

than other systems studied for which the AG relation is found to hold. For example,

the stretching exponent β found from the KWW fit (Eq. 2.4) for our system is

β ∼ 0.5 as T → TMCT, indicating fragility and strong heterogeneity. Other systems

that satisfy the AG relation (e.g. water [96], silica [97], LJ [164]), either in terms of D

or D/T , have substantially larger values of β (i.e., closer to one). Also, the average

cluster size is larger for the same distance from TMCT as compared with systems

like the polymer melt, binary LJ, and BKS silica. Consequently, these other studies

of the AG relation may all have been conducted in temperature regimes where

179



SHD was not sufficiently pronounced to cause a breakdown of SE. In contrast, the

strong SHD in our system at our lowest temperatures would be consistent with

a breakdown in SE, and consequently with a breakdown in the expressions for D

vs Sconf traditionally used. To clearly understand this issue beyond what we have

argued above, it is necessary to independently calculate η. Further work is thus

underway to calculate η for our system to obtain a direct relationship between η

and D for a rigorous test of the AG theory.
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Figure 7.12: Test of the validity of the Adam-Gibbs theory for the Dzugutov liquid.

(a) The diffusion coefficient D plotted against 1/Sconf on a semi-logarithmic axis.

(b) D/T plotted against 1/Sconf on a semi-logarithmic axis.
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Chapter 8

Conclusion

In this study we found that highly mobile particles aggregate together to form

clusters of different sizes and shapes. The temperature dependence of the mean

cluster size S is found to show a similar behavior as in the LJ system in that S is

found to increase upon cooling towards TMCT. We found that the mean cluster size

“grows” and “shrinks” with time. The time tmax
clu at which S is maximum is found to

be in the late-β/early-α relaxation regime, which corresponds to the time when the

mean square displacement crosses over from the plateau or “caging” regime to the

subdiffusive regime, in the case of the polymer melt, or to the diffusive regime, in

the case of the Dzugutov liquid. Because this crossover marks the time scale when

the particles are most likely to escape their cages, this correspondence strongly

suggests that clustering is required for the cage-breaking process. On the other
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hand, since tmax
clu is much smaller than the α-relaxation time τα, which marks the

time scale for the structural relaxation of the system, our studies suggest that a

collection of cooperative molecular rearrangements give rise to the eventual primary

relaxation of the system consistent with the prediction of MCT. Our results of the

clustering phenomena are also consistent with confocal microscopy experiments on

dense colloidal suspensions, which confirmed the dynamic nature of the clustering

of mobile particles [21].

In all the systems we studied, as well as the LJ system [76] studied before,

the cluster size distribution P (n) at the peak times, and for the lowest T studied, is

found to follow a power law behavior P (n) ∼ n−τ with an exponent τ < 2, whereas

classical percolation theory implies τ > 2 [156]. This discrepancy was thought to

be partly due to the finite system size of the polymer melts, which has relatively

smaller size that may restrict n to only small clusters, and hence skew the estimated

exponent in an uncontrolled way. But after finding a similar exponent for the large

system of the Dzugutov liquid, we now believe that the value of τ may simply be

different for that expected from percolation theory for static clusters of randomly

distributed particles, since the clusters we study are intrinsically dynamic (i.e. a

dynamic criterion is used to define the particles that make up the clusters, although

a static “snapshot” is used to analyze the clusters). However, we would like to point

out that even for static clusters there is experimental evidence for τ = 1.4±0.15 [197].

A closer inspection of the clusters revealed that groups of mobile particles

within a cluster follow one another in quasi one-dimensional paths, forming strings

of different sizes, suggesting that strings are the elementary unit of cooperativity.
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The analysis of these strings showed that the transient nature and temperature

dependence of the mean string length L is similar to that of S. The time tmax
clu where

L(t) is maximum occurs at a time close to tmax
clu , and L increases with decreasing T .

However, in contrast to what was found for the clusters, the probability distribution

of the string length decays exponentially. This was found to be the case for both

the polymer melt and the Dzugutov liquid, as is found in the LJ system.

To gain insight on the nature of cooperativity at the microscopic level, we

investigated the detailed motion of particles in strings. Understanding the detailed

nature of the string-like motion has relevance in new, emerging as well as established

theories. Thus, we conducted a detailed analysis of the formation of strings in the

Dzugutov liquid by investigating the mechanisms that lead to the emergence of these

dynamical objects. For this purpose, we identified strings at a time when the string-

like motion is most pronounced as measured by their mean value, and traced the

trajectories of the particles in the strings during this period of time. By inspecting

the rearrangement of particles within strings we found that the formationof strings

is a complex process that involves several mechanisms at the time scale shorter

than the late-β/early-α relaxation regimes. They are formed as a result of coherent

motion, where several particles move together as a unit, and non-coherent motion,

where individual particles or segments of the string known as microstrings move

at different times, but along the same path. Statistically, we found that coherent

motion is prevalent in small strings, and over all roughly only less than a quarter of

the strings move coherently. The non-coherent strings are found to exhibit particle

motion that is both sequential, i.e., motion in which particles move in a strict order

184



of head to tail along the backbone of the strings, but at widespread time intervals,

and non-sequential or random motion. Thus, for most non-coherent strings, we

find that individual particles or microstrings move in a non-sequential manner. In

particular, sequential motion is usually not observed for long strings. However,

simultaneous (coherent) motion is observed within small sub-units of the strings,

referred to as microstrings.

The present findings for the mechanism of string-like motion are consistent

with the outcome of a study on the particle rearrangements resulting from the tran-

sitions between successively visited inherent structures of a binary LJ liquid [182].

There, it was observed that long strings identified after sequences of transitions do

not result from a coherent motion of all particles during a single transition, but

instead the particles replace each other at different times either in single-particle

type motion or in small coherent microstrings.

Altogether, the following picture appears to emerge: On very short time scales,

small groups of particles (microstrings) move together and, hence, the length scale

of cooperative motion is small. At longer times, the interplay of these individual

motions leads to the formation of larger and larger strings, which in turn aggregate

into clusters. Within these dynamical objects, particles assist each other to escape

from their respective cages and the length scale of cooperative motion becomes

maximum at times in the late-β/early-α relaxation regime. At even later times, the

cooperativity diminishes due to the independent diffusion of the particles. Along

these lines, it may be suggested that – in analogy to the formation of the strings

due to the concerted motion of smaller sub-units – the growth of the clusters may
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be a consequence of the interplay of various strings. In other words, cooperativity

on various time scales and length scales may be the basis of spatially heterogenous

dynamics.

One may ask why the small length scale associated with the cooperativity of

particle motion observed at short time scales increases and become organized into

larger, quasi-one dimensional objects in the late-β/early-α relaxation regime. Very

recently Chandler, Garrahan and co-workers [60, 61] proposed that dynamics in a su-

percooled liquid can be understood via two simple ingredients, namely, the existence

of spatially heterogeneous dynamics and the facilitation of dynamics in the vicinity

of regions exhibiting high particle mobility. The mechanism for the formation of

large strings resembles the concept of dynamic facilitation. In particular, one may

speculate that the local excitations envisaged by Garrahan and Chandler are associ-

ated with the coherent motion of particles within microstrings, thereby facilitating

the creation of neighboring excitations that extend throughout the string.

Another possible reason for string-like motion lies in the local static structure

of a supercooled liquid. In a numerical study of a 2D monodisperse system of parti-

cles, Reichardt and Reichardt [198] found fluctuating topological defects that form a

string-like structure. Although this observation has to be further investigated for a

3D system such as ours, weak one-dimensional fissures may possibly develop in the

liquid, providing a path for string-like motion. Dzugutov et al. [103] established a

relation between dynamical heterogeneity and structural heterogeneity for the stud-

ied model liquid. In particular, it was demonstrated that clusters of icosahedrally

coordinated particles exist in the Dzugutov liquid where, on average, the particles
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inside and outside of an icosahedral environment show reduced and enhanced mo-

bilities, respectively. Hence, one may speculate that string-like motion, at least in

the Dzugutov liquid, is most pronounced in non-icosahedral environments, e.g., in

channels between clusters of icosahedrally coordinated particles. Indeed, prelimi-

nary results [199] suggest that string-like motion occurs primarily along the edges

of such clusters. Further work along these lines is in progress.

In general, several theories attempt to explain the slowing down of dynamics.

So far a comprehensive theory that explains all the salient features of glass-forming

liquids is not yet available. Some theories, however, have been highly useful in ex-

plaining certain aspects of the glass transition. For example, the initial slowing down

of dynamics at T well above Tg can be described to a large extent via MCT, which

predicts diverging relaxation time at TMCT. The phenomenological view point of the

Adam-Gibbs theory, which predicts the increasing range of cooperatively rearrang-

ing regions as a cause for slowing dynamics, is another example. The topological

view point of Stillinger and Weber based on the inherent structure formalism is also

a very useful tool for understanding the thermodynamic properties of glass-forming

liquids, while the new emerging non-topographic view point of Chandler and Garra-

han that is based on the concept of dynamic facilitation is emerging to explain some

aspects of the correlated motion. We thus believe that our detailed analysis in this

thesis, where the nature of correlated motion has been investigated in detail, may

contribute to the development of new theories that are more comprehensive, or to

the reworking of for the well-established theories like the AG theory. In this regard,

our own ongoing effort to connect the dynamic and thermodynamic properties of
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glass-forming liquids through the AG theory is one good example.
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Appendix A

Molecular dynamics simulation code

This section documents the molecular dynamics code used to simulate the Dzugutov

system. The program consists of several c-files and h-files that should be compiled

together. It is a force-decomposition parallel code using MPI and is designed to

simulate the system using linked list cells with embedded neighbor list. The program

is modified from a simulation code prepared for a LJ system, originally written by

Francis Starr.

/*
* lj.c:
*
* This part contains the "main" of the program.
*
*
*/

#include <time.h>
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#include <stdio.h>
#include <math.h>
#include "lj.h"

#include "mpi.h"

void main(int argc, char **argv)
{

double **x, **v, **f, *floc, *ftot;
cell *cells;
list *nlist;
double mass;
double temperature, T, pressure, P, density;
double potential, kinetic, virial;
double potlocal, virlocal;
double L, volume, dt;
double cutoff, cutoff2, minCutoff, skin, permit;
int t, tmax, write_time, restart, Tconstant;
char inputfile[50], datafile[50], restartfile[50], configfile[50];
int *timeList;
int simu;
char timefile[50];
unsigned short seed[3];
int ncell, ncell3;
int rank, np;
int i, j, k;
int time_index = 0, block = 0, latest_time, output_time;
int Number_of_times, ascii_flag;
double time;

MPI_Init(&argc, &argv);
time = MPI_Wtime();
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &np);

/* get input file name or set default */
/*
if (argc>1)
strcpy(inputfile, argv[1]);

else
*/

for (simu=100; simu<200; simu++){ /* for producing independent
configurations*/

sprintf(inputfile, "simu2197_%d/lj.inp",simu);
printf(inputfile);

/*strcpy(inputfile, "lj.inp");*/

read_input(&restart, &tmax, &write_time, &Number_of_times,
&Tconstant, &T, &pressure, &density, &dt, seed,
&ascii_flag, inputfile, timefile, datafile,
restartfile, configfile);
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timeList = (int *) calloc(Number_of_times, sizeof(int));

read_timefile(timeList, Number_of_times, timefile);

/* allocate memory */
x = (double**) calloc(N, sizeof(double *));
v = (double**) calloc(N, sizeof(double *));
f = (double**) calloc(N, sizeof(double *));
floc = (double*) calloc(N*NDIM, sizeof(double));
ftot = (double*) calloc(N*NDIM, sizeof(double));
for (i=0; i<N; i++) {

x[i] = (double*) calloc(NDIM, sizeof(double));
v[i] = (double*) calloc(NDIM, sizeof(double));
f[i] = (double*) calloc(NDIM, sizeof(double));

}

init_simulation(&mass, &cutoff, &minCutoff, &cutoff2,
&skin, &permit);

volume = ((double)N)*mass/(N_A*density);

if (restart) {
read_restartfile(&t, &temperature, &pressure, &density,

&time_index, &latest_time, &block,
x, v, &L, mass, restartfile);

printf("time_index\t%d\n", time_index);
printf("latest_time\t%d\n", latest_time);
printf("time\t%d\n",t);

/* Task_0: use only for new T restart */

latest_time = 0;
block = 0;
t = 0;
time_index = 0;

/* end of Task_0 */

output_time = timeList[time_index] + latest_time;
printf("output_time\t%d\n", output_time);

kinetic = 0.0;
for (i=0; i<N; i++)

kinetic += mass*(v[i][0]*v[i][0] + v[i][1]*v[i][1]
+ v[i][2]*v[i][2]);

kinetic *= 0.5;
}
else {

init_lattice(x, v, density, mass, T, seed, &kinetic, &L);
t=0;
latest_time = 0;
output_time = timeList[0];

}
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t++;

/* Calculate number of cells and cell size */
ncell = (int) (L/(sqrt(skin)));
printf("\nSplit Computational cell into %d cells

per dimension\n", ncell);
if (ncell < 3) {

printf("\nCell too small! Must split into at
least 3 per dimension\n");

exit(1);
}

ncell3 = ncell*ncell*ncell;

/* allocate cells and give them capacity to hold
many mocecules */

cells = (cell *) calloc(ncell3, sizeof (cell));
for (i=0; i<ncell3; i++) {

cells[i].last = 0;
cells[i].molecules = (int *) calloc(10*N/ncell3,

sizeof(int));
for (j=0; j<10*N/ncell3; j++)

cells[i].molecules[j] = 0;
}

/* allocate neighbor list space */
nlist = (list*) calloc(N, sizeof(list));
for (i=0; i<N; i++) {

nlist[i].last = 0;
/* since memory is cheap, over allocate to avoid

ever overloading */
nlist[i].neighbors = (int*)

calloc((int)(40.0/3.0*PI*skin*sqrt(skin)*density/mass),
sizeof(int));

}

init_cells(cells, ncell, ncell3);
load(x, cells, L, ncell, ncell3);
neighbor_list(nlist, x, cells, L, skin, permit, ncell3,

rank, np);

/* must start with the forces for velocity verlet */

/* begin = time(NULL); */

force(x, floc, cells, nlist, L, ncell3, cutoff, minCutoff,
cutoff2, &potlocal, &virlocal, rank, np);

/* MPI_Barrier(MPI_COMM_WORLD); */
MPI_Reduce(&potlocal, &potential, 1, MPI_DOUBLE, MPI_SUM, 0,

MPI_COMM_WORLD);
MPI_Reduce(&virlocal, &virial, 1, MPI_DOUBLE, MPI_SUM, 0,

MPI_COMM_WORLD);
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for (i=0; i<N*NDIM; i++)
ftot[i] = 0.0;

/* MPI_Barrier(MPI_COMM_WORLD); */
MPI_Allreduce(floc, ftot, N*NDIM, MPI_DOUBLE, MPI_SUM,

MPI_COMM_WORLD);
for (i=0; i<N; i++)

for (k=0; k<NDIM; k++)
f[i][k] = ftot[i*NDIM+k];

for (t; t<=tmax; t++) {

verlet1(x, v, f, mass, L, dt);

load(x, cells, L, ncell, ncell3);

neighbor_list(nlist, x, cells, L, skin, permit, ncell3,
rank, np);

force(x, floc, cells, nlist, L, ncell3, cutoff, minCutoff,
cutoff2, &potlocal, &virlocal, rank, np);

/* elapse_time = (end - begin)/(double)CLOCKS_PER_SEC;
printf("elapsed_time = %lf\n", elapse_time); */

/* MPI_Barrier(MPI_COMM_WORLD);*/
MPI_Reduce(&potlocal, &potential, 1, MPI_DOUBLE, MPI_SUM, 0,

MPI_COMM_WORLD);
MPI_Reduce(&virlocal, &virial, 1, MPI_DOUBLE, MPI_SUM, 0,

MPI_COMM_WORLD);
for (i=0; i<N*NDIM; i++)

ftot[i] = 0.0;
/* MPI_Barrier(MPI_COMM_WORLD); */
MPI_Allreduce(floc, ftot, N*NDIM, MPI_DOUBLE, MPI_SUM,

MPI_COMM_WORLD);
for (i=0; i<N; i++)

for (k=0; k<NDIM; k++)
f[i][k] = ftot[i*NDIM+k];

verlet2(v, f, mass, dt, &kinetic, Tconstant, T);

/* write_restartfile(t, temperature, pressure, density,
time_index, latest_time, x, v, restartfile, restart); */

/* begin = clock();*/
/* if (t >= 2000){ */

if (rank==0) {

if (t%write_time==0) {
write_data(t, dt, kinetic, potential, virial,

&temperature, &pressure, volume, datafile,
restart);
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}

if (t==output_time) {

if(ascii_flag){
/* sprintf(configfile, "xyz_t=%d.%d.dat", block,

output_time); */
sprintf(configfile, "simu2197_%d/xyz_t=%d.%d.dat",

simu, block,timeList[time_index]);
}

/* write_data(t, dt, kinetic, potential, virial,
&temperature,&pressure, volume, datafile,

restart);*/

write_configuration(t, ascii_flag, x, v, configfile);

time_index++;

if(time_index == Number_of_times){
time_index = 0;
latest_time = t;
block++;

}

/* printf("LATESTTIME\t%d\n", latest_time); */

output_time = timeList[time_index] + latest_time;
/* } */

write_restartfile(t, temperature, pressure, density,
time_index, latest_time, block,

x, v, restartfile, restart);

}
}

}

if (rank == 0) {
printf("Time taken per processor: %lf\n",

MPI_Wtime()-time);
printf("\nALL DONE!\n");

}
} /* for (simu=0....)*/
MPI_Finalize();

}

========================================================
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/*
*
* init.c
*
*
*/

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include "define.h"
#include "extern.h"

void init_simulation(double *mass, double *cutoff,
double *minCutoff, double *cutoff2,
double *skin, double *permit)

{
double sigma, epsilon;

/* set masses in amu */
*mass = 1.0;

/* set Lennard-Jones paramaters */
sigma = 1.0;
epsilon = 1.0;

/* *cutoff = 2.5*sigma; */
*cutoff = 1.94*sigma;
*cutoff2 = (*cutoff)*(*cutoff);
*minCutoff = 1.87*sigma;
*skin = 1.1*(*cutoff);
*permit = 0.25*(*skin-*cutoff)*(*skin-*cutoff);
*skin *= *skin;

}

/* Initialization of cubic lattice. */
void init_lattice(double **x, double **v, double density,

double mass, double temperature,
unsigned short seed[3], double *kinetic,

double *L)
{

double spacing, L2;
double v0;
double vavg[NDIM];
int i, j, k, ijk, N3;

double randNorm;

*L = pow((double)(N)*mass/(N_A*density), 1.0/3.0);
N3 = ceil(pow((double)N, 1.0/3.0));
spacing = *L/(double)N3;
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L2 = -(*L+spacing)/2.0;
v0 = sqrt(3.0*k_B*temperature/mass);
*kinetic = 0.0;

randNorm = pow((double)2,(double)31);

printf("System Size L = %f\n", *L);

vavg[0] = vavg[1] = vavg[2] = 0.0;

ijk = 0;
for (i=1; i<=N3; i++)
for (j=1; j<=N3; j++) {

for (k=1; k<=N3; k++) {
/* molecules placed on a cubic lattice */
x[ijk][0] = (double)i*spacing + L2;
x[ijk][1] = (double)j*spacing + L2;
x[ijk][2] = (double)k*spacing + L2;

v[ijk][0] = (2.0*erand48(seed)-1.0)*v0;
v[ijk][1] = (2.0*erand48(seed)-1.0)*v0;
v[ijk][2] = (2.0*erand48(seed)-1.0)*v0;

/* accumulate average velocities to insure no
net momentum */

vavg[0] += v[ijk][0];
vavg[1] += v[ijk][1];
vavg[2] += v[ijk][2];

ijk++;
}

}

for(k=0; k<NDIM; k++)
for(i=0; i<N; i++) {

v[i][k] -= vavg[k]/(double)N;
x[i][k] += v[i][k]*0.001;

}

for (i=0; i<N; i++)
*kinetic += mass*(v[i][0]*v[i][0] + v[i][1]*v[i][1]

+ v[i][2]*v[i][2]);
*kinetic *= 0.5;

printf("inital temp = %lf\n",
*kinetic*2.0/((double)(NDIM*N-NDIM)*k_B));

}

========================================================
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/*
* cell.c
*
*
*/

/*#include <mpi.h>*/
#include <math.h>
#include <stdio.h>
#include "cell.h"
#include "extern.h"

void
init_cells_slow (cell * cells, int ncell, int ncell3)
{

int i, j, k, c, cn, x, y, z, n;
int ncell2;

ncell2 = ncell * ncell;

/* loop over cells */
for (i = 0; i < ncell; i++)
for (j = 0; j < ncell; j++)

for (k = 0; k < ncell; k++)
{

/* identify current cell */
c = i * ncell2 + j * ncell + k;

/* always interact within cell */
cells[c].neighbors[0] = c;

/* collect near neighbors of cell c */
n = 1;
x = 1;
for (y = -1; y <= 1; y++)
for (z = -1; z <= 1; z++)

{
cn = ((i + x + ncell) % ncell) * ncell2

+ ((j + y + ncell) % ncell) * ncell
+ (k + z + ncell) % ncell;

cells[c].neighbors[n] = cn;
n++;

}

x = 0;
y = 1;
for (z = -1; z <= 1; z++)
{

cn = ((i + x + ncell) % ncell) * ncell2
+ ((j + y + ncell) % ncell) * ncell
+ (k + z + ncell) % ncell;

cells[c].neighbors[n] = cn;
n++;
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}

y = 0;
z = 1;
cn = ((i + x + ncell) % ncell) * ncell2

+ ((j + y + ncell) % ncell) * ncell
+ (k + z + ncell) % ncell;

cells[c].neighbors[n] = cn;
n++;

}

}

void
init_cells (cell * cells, int ncell, int ncell3)
{

register int i; /* counters */
register int j;
register int k;
register int c;
register int itemp1; /* temp store */
register int itemp2;
register int itemp3;
register int itemp4;
register int itemp5;
register int itemp6;
register int itemp7;
register int itemp8;
register int itemp9;
register int ncell2;

ncell2 = ncell * ncell;

/* loop over cells */
for (i = 0; i < ncell; i++)
for (j = 0; j < ncell; j++)

for (k = 0; k < ncell; k++)
{

/* identify current cell */
c = i * ncell2 + j * ncell + k;

/* dependent on c */
/* next 6 statements can run simultaneously */
/* always interact within cell */
cells[c].neighbors[0] = c;

/* collect near neighbors of cell c */
itemp1 = ((i + 1 + ncell) % ncell) * ncell2;
itemp2 = ((j - 1 + ncell) % ncell) * ncell;
itemp3 = (k - 1 + ncell) % ncell;
itemp4 = (k + ncell) % ncell;
itemp5 = (k + 1 + ncell) % ncell;
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/* dependency on itemp3, itemp4, itemp5 */
/* itemp1 should have been computed by this point */
itemp7 = itemp1 + itemp3;
itemp8 = itemp1 + itemp4;
itemp9 = itemp1 + itemp5;

/* these 3 statements can run simultaneously */
cells[c].neighbors[1] = itemp7 + itemp2;
cells[c].neighbors[2] = itemp8 + itemp2;
cells[c].neighbors[3] = itemp9 + itemp2;

/* dependency on itemp2 */
itemp2 = ((j + ncell) % ncell) * ncell;
/* next 3 statements can run simultaneously */
cells[c].neighbors[4] = itemp7 + itemp2;
cells[c].neighbors[5] = itemp8 + itemp2;
cells[c].neighbors[6] = itemp9 + itemp2;

/* dependency on itemp6 */
itemp6 = ((j + 1 + ncell) % ncell) * ncell;
/* next 3 statements can run simultaneously */
cells[c].neighbors[7] = itemp7 + itemp6;
cells[c].neighbors[8] = itemp8 + itemp6;
cells[c].neighbors[9] = itemp9 + itemp6;

/* dependency on itemp1 */
itemp1 = ((i + ncell) % ncell) * ncell2;

/* next 3 statements can run simultaneously */
itemp7 = itemp1 + itemp3;
itemp8 = itemp1 + itemp4;
itemp9 = itemp1 + itemp5;

/* next 4 statements can run simultaneously */
cells[c].neighbors[10] = itemp7 + itemp6;
cells[c].neighbors[11] = itemp8 + itemp6;
cells[c].neighbors[12] = itemp9 + itemp6;

cells[c].neighbors[13] = itemp9 + itemp2;
}

}

void
load (double **x, cell * cells, double L, int ncell, int ncell3)
{

register int i; /* counters */
register int j;
register int c;
register int ncell2; /* ncell^2 */
double L2; /* L / 2 */
double size;
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ncell2 = ncell * ncell;
L2 = L / 2.0;
size = L / (double) ncell;

/* first empty the cells */
for (i = 0; i < ncell3; i++)
{

for (j = 0; j < cells[i].last; j++)
cells[i].molecules[j] = 0;

cells[i].last = 0;
}

/* now put particles into cells */
for (i = 0; i < N; i++)
{

c = (int) ((x[i][0] + L2) / size) * ncell2
+ (int) ((x[i][1] + L2) / size) * ncell
+ (int) ((x[i][2] + L2) / size);

cells[c].molecules[cells[c].last] = i;
cells[c].last++;

}

}

=======================================================

/*
*
* nlist.c
*
*
*/

#include <math.h>
#include "nlist.h"
#include "cell.h"
#include "extern.h"

#define anint(x) ((x >= 0.5) ? (1.0) : (x <= -0.5) ? (-1.0) : (0.0))
#define magic 6755399441055744.0

void neighbor_list(list *nlist, double **x, cell *cells, double L,
double skin, double permit, int ncell3, int rank,

int np)
{

int i, j, k, c, ii, jj, n, nbr;
double *ri, *rj, r[NDIM], r2, invL;
static double **xold;
static int firsttime = 1;

if (firsttime) {
firsttime = 0;
xold = (double**) calloc(N, sizeof(double*));
for (i=0; i<N; i++)
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xold[i] = (double*) calloc(NDIM, sizeof(double));
}

invL = 1.0/L;

/* test if we need to build neighbor list */
for (i=0; i<N; i++) {
r2 = 0.0;
for (k=0; k<NDIM; k++) {

r[k] = x[i][k]-xold[i][k];
/*r[k] -= L*(r[k]*invL+magic-magic);*/
r[k] -= L*anint(r[k]*invL);
r2 += r[k]*r[k];

}
if(r2 > permit)

goto L100;
}

return;

/* build neighbor list */
L100:

for (i=0; i<N; i++) {
xold[i][0] = x[i][0];
xold[i][1] = x[i][1];
xold[i][2] = x[i][2];

}

/* empty old list */
for (i=0; i<N; i++)
nlist[i].last = 0;

for (c=rank*ncell3/np; c<(rank+1)*ncell3/np; c++) {
if (c<ncell3) { /* extra careful... */

/* find neighbors within a cell */
for (i=0; i<cells[c].last-1; i++) {

ii = cells[c].molecules[i];
ri = x[ii];

for (j=i+1; j<cells[c].last; j++) {
jj = cells[c].molecules[j];
rj = x[jj];

r2 = 0.0;

for (k=0; k<NDIM; k++) {
r[k] = ri[k] - rj[k];
r[k] -= L*anint(r[k]*invL);
/*r[k] -= L*(r[k]/L+magic-magic);*/
r2 += r[k]*r[k];

}
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if (r2 <= skin) {
nlist[ii].neighbors[nlist[ii].last] = jj;
nlist[ii].last++;

}

}
}

/* now find neighbors in bordering cells */
for(n=1; n<NBRS; n++) {

nbr = cells[c].neighbors[n];

for (i=0; i<cells[c].last; i++) {
ii = cells[c].molecules[i];
ri = x[ii];

for (j=0; j<cells[nbr].last; j++) {
jj = cells[nbr].molecules[j];
rj = x[jj];

r2 = 0.0;
for (k=0; k<NDIM; k++) {

r[k] = ri[k] - rj[k];
r[k] -= L*anint(r[k]*invL);
/*r[k] -= L*(r[k]/L+magic-magic);*/
r2 += r[k]*r[k];

}

if (r2 <= skin) {
nlist[ii].neighbors[nlist[ii].last] = jj;
nlist[ii].last++;

}
}

}
} /* end loops over neighbor cells */

}
} /* end loop over cells */

}

=======================================================

/*
*
* force.c
*
*
*/

#include <math.h>
#include <stdio.h>
#include "cell.h"
#include "nlist.h"
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#include "extern.h"

#define anint(x) ((x >= 0.5) ? (1.0) : (x <= -0.5) ? (-1.0) : (0.0))
#define magic 6755399441055744.0

void pforce(double **x, double *f, cell *cells, list *nlist, double L,
int ncell3, double cutoff, double minCutoff, double cutoff2,

double *potential, double *virial, int c);

void force(double **x, double *f, cell *cells, list *nlist, double L,
int ncell3, double cutoff, double minCutoff, double cutoff2,

double *potential, double *virial, int rank, int np)
{

int i, c;
double *flocal;
double pot, vir;

*potential = *virial = 0.0;
for (i=0; i<N*NDIM; i++)
f[i] = 0.0;

flocal = (double*) calloc(N*NDIM, sizeof(double));
pot = vir = 0.0;

for (c=rank*ncell3/np; c<(rank+1)*ncell3/np; c++) {
if (c<ncell3)

pforce(x, flocal, cells, nlist, L, ncell3, cutoff, minCutoff,
cutoff2, &pot, &vir, c);

}
*potential += pot;
*virial += vir;
for (i=0; i<N*NDIM; i++)
f[i] += flocal[i];

free(flocal);
}

void pforce(double **x, double *f, cell *cells, list *nlist, double L,
int ncell3, double cutoff, double minCutoff,

double cutoff2, double *potential, double *virial, int c)
{

register double *ri, *rj, *fi, *fj, invr, invr2, invr8, invr16, invr17;
double pbc[NDIM], r, r2;
double rij[NDIM], vir[NDIM];
register double pot;
register int i, ii, j, jj, k;
static int firsttime = 1;
static double invL;

register double item0, item1, item2, item3, item4, item5;
register double term0, term1, term2, term3;
double pot_term1, pot_term2;

if (firsttime) {
firsttime = 0;
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invL = 1.0/L;
}

/* first handle interactions within the cell */
for (i=0; i<cells[c].last; i++) {
ii = cells[c].molecules[i];
ri = x[ii];
fi = f+ii*NDIM;

/* loop over neighbor list of ii */
for (j=0; j<nlist[ii].last; j++) {

jj = nlist[ii].neighbors[j];
rj = x[jj];
fj = f+jj*NDIM;

r2 = 0.0;

for (k=0; k<NDIM; k++) {
rij[k] = ri[k] - rj[k];
pbc[k] = L*anint(rij[k]*invL);
/*pbc[k] = L*(rij[k]*invL+magic-magic);*/
rij[k] -= pbc[k];
r2 += rij[k]*rij[k];

}

if (r2 <= cutoff2) {

term2 = 0.;
pot_term1 = 0.;

vir[0] = vir[1] = vir[2] = 0.0;
r = sqrt(r2);

while (r < minCutoff) {
invr = 1.0/r;
invr2 = 1.0/r2;
invr8 = invr2*invr2*invr2*invr2;
invr16 = invr8*invr8;
invr17 = invr*invr16;
invr16 -= 1.28;
invr17 *= 93.12;

item0 = r - 1.87;
item1 = 1.1/item0;
item2 = 6.402/(item0*item0);

term0 = invr17 + invr16*item2;
term1 = exp(item1);
term2 = term1*term0;

pot_term1 = 5.82*invr16*term1;
break;

}

item3 = r - 1.94;
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item4 = 0.27/item3;
item4 = exp(item4);
item5 = 0.3456/(item3*item3);

term3 = item4*item5;

pot_term2 = 1.28*item4;

/* Lennard-Jones contribution
*potential += sigma12p*invr12 - sigma6p*invr6 +

lj_pshift + (r-cutoff)*lj_fshift;
pot = (sigma12f*invr12 - sigma6f*invr6) * invr2 - lj_fshift*invr;

*/

*potential += pot_term1 + pot_term2;

pot = (term2 + term3);

pot = pot/r;

for (k=0; k<NDIM; k++) {
fi[k] += pot * rij[k];
fj[k] -= pot * rij[k];
vir[k] += pot * rij[k];

}

for (k=0; k<NDIM; k++)
*virial += vir[k]*rij[k];

}
}

}

}

============================================================

/*
*
* move.c
*
*
*/

#include <math.h>
#include "define.h"
#include "extern.h"

#define tau 1.0
#define anint(x) ((x >= 0.5) ? (1.0) : (x <= -0.5) ? (-1.0) : (0.0))

/* velocity verlet algorithm */
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void verlet1(double **x, double **v, double **f, double mass,
double L, double dt)

{
int i, k;
double dt1, dt2, invL;

dt1 = 0.5*dt;
dt2 = 0.5*dt*dt;
invL = 1.0/L;

for (i=0; i<N; i++){

for (k=0; k<NDIM; k++) {

x[i][k] += v[i][k]*dt + f[i][k]/mass*dt2;
v[i][k] += dt1*f[i][k]/mass;
x[i][k] -= L*anint(x[i][k]*invL);

}

}
/* printf("sum:\t%lf\n",sqrt(sum/N));//test */

}

void verlet2(double **v, double **f, double mass, double dt,
double *kinetic, int Tconstant, double T)

{
int i, k;
double dt1, lambda, vcm[NDIM];

dt1 = 0.5*dt;

/* compute Berendsen scaling factor for velocities */
if (Tconstant) {
*kinetic *= 2.0/((double)(NDIM*N-NDIM)*k_B);
lambda = sqrt(1.0 + dt/tau*(T/(*kinetic)-1.0));

}
else lambda = 1.0;

*kinetic = 0.0;

for(i=0; i<N; i++)
for (k=0; k<NDIM; k++) {

v[i][k] += f[i][k]/mass*dt1;
v[i][k] *= lambda;
*kinetic += mass*v[i][k]*v[i][k];

}
*kinetic *= 0.5;

/* take out center of mass velocity (because Berendsen
does not conserve) */

vcm[0] = vcm[1] = vcm[2] = 0.0;
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for(i=0; i<N; i++)
for(k=0;k<NDIM; k++)

vcm[k] += v[i][k];
for(i=0; i<N; i++)
for(k=0; k< NDIM; k++)

v[i][k] -= vcm[k]/((double)N);
}

============================================================

/*
*
* io.c
*
*
*/

#include <stdio.h>
#include <math.h>
#include "define.h"
#include "extern.h"

void read_input(int *restart, int *tmax, int *write_time,
int *Number_of_times, int *Tconstant,
double *temperature, double *pressure,

double *density, double *dt, unsigned short seed[3],
int *ascii_flag, char *inputfile, char *timefile,

char *datafile, char *restartfile, char *configfile)
{

FILE *fp;

/* check for inputfile */
if ((fp=fopen(inputfile, "r"))==NULL) {
printf("\nError opening file %s; Program aborted!\n\n", inputfile);
exit(1);

}

/* read input parameters */
else {
printf("\nReading Data from input file %s\n", inputfile);
fscanf(fp, "%d %d %d %d %d %d", restart, tmax, write_time,

Number_of_times, Tconstant, &N);
fscanf(fp, "%lf %lf %lf %lf", temperature, pressure, density, dt);
fscanf(fp, "%hu %hu %hu", &seed[0], &seed[1], &seed[2]);
fscanf(fp, "%d", ascii_flag);
fscanf(fp, "%s %s %s %s", timefile, datafile, restartfile,

configfile);

/* echo back input to confirm */
if (*Tconstant)

printf("\nNVT Ensemble\n");
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else
printf("\nNVE Ensemble\n");

printf("\nRestart: %d\tMax Time: %d\n\nMolecules:\t%d\n",
*restart, *tmax, N);

printf("Temperature:\t%lf\nPressure:\t%lf\nDensity:\t%lf\n",
*temperature, *pressure, *density);

printf("\nseeds:\t%d\t%d\t%d\n", seed[0], seed[1], seed[2]);
printf("\nDataFile:\t%s\nRestartFile:\t%s\nConfigurationFile:\t%s\n\n",

datafile, restartfile, configfile);
}

fclose(fp);
}

void write_data(int t, double dt, double kinetic,
double potential, double virial, double *temperature,
double *pressure, double volume, char *datafile,

int restart)
{

FILE *fp;
static int firsttime = 1;

if (restart || !firsttime) {
if((fp=fopen(datafile, "a"))==NULL) {

printf("\nError opening file %s; Program aborted!\n\n", datafile);
exit(1);

}
}
else if (firsttime) {
if((fp=fopen(datafile, "w"))==NULL) {

printf("\nError opening file %s; Program aborted!\n\n", datafile);
exit(1);

}
firsttime = 0;

}

virial /= 3.0;
*temperature = 2.0*kinetic/((double)(NDIM*N-NDIM)*k_B);
*pressure = ((double)N*k_B*(*temperature) + virial)/volume;

/* write data */

fprintf(fp, "%e\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n", (double)t*dt,
kinetic/(double)N, potential/(double)N,
(kinetic+potential)/(double)N, virial/(double)N, *temperature,
*pressure);

printf("\t%d\t%lf\n", t, *temperature);

fclose(fp);

}
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/* fread/fwrite does not work for writing entire array. why?? */

void read_restartfile(int *t, double *temperature, double *pressure,
double *density, int *time_index, int *latest_time,

int *block, double **x, double **v, double *L,
double mass, char *restartfile)

{
double *xr, *vr;
int i, k;
FILE *fp;

/* check for configuration */
if ((fp=fopen(restartfile, "r"))==NULL) {
printf("\nError opening file %s; Program aborted!\n\n",

restartfile);
exit(1);

}

xr = (double*) calloc(N*NDIM, sizeof(double));
vr = (double*) calloc(N*NDIM, sizeof(double));

fread(t, sizeof(int), 1, fp);
fread(temperature, sizeof(double), 1, fp);
fread(pressure, sizeof(double), 1, fp);
fread(density, sizeof(double), 1, fp);
fread(time_index, sizeof(int), 1, fp);
fread(latest_time, sizeof(int), 1, fp);
fread(block, sizeof(int), 1, fp);
fread(xr, sizeof(double), N*NDIM, fp);
fread(vr, sizeof(double), N*NDIM, fp);
fclose(fp);

*L = pow((double)(N)*mass/(N_A*(*density)), 1.0/3.0);
printf("System Size L = %f\n", *L);

for (i=0; i<N; i++)
for (k=0; k<NDIM; k++) {

x[i][k] = xr[NDIM*i+k];
v[i][k] = vr[NDIM*i+k];

}

free(xr);
free(vr);

}

void write_configuration(int t, int ascii_flag, double **x, double **v,
char *configfile)

{
static double *xw, *vw;
int i, k;
static int firsttime=1;
FILE *fp;
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/*
if((fp=fopen(restartfile, "w"))==NULL) {
printf("\nError opening file %s; Program aborted!\n\n",

restartfile);
exit(1);

}

*/

if((fp=fopen(configfile, "a"))==NULL) {
printf("\nError opening file %s; Program aborted!\n\n",

configfile);
exit(1);

}

if (firsttime) {
firsttime = 0;
xw = (double*) calloc(N*NDIM, sizeof(double));
vw = (double*) calloc(N*NDIM, sizeof(double));

}

if(ascii_flag){
for (i=0; i<N; i++){

for (k=0; k<NDIM; k++)
fprintf(fp, "%lf\t", x[i][k]);

fprintf(fp, "\n");
}

}

else {
for (i=0; i<N; i++)

for (k=0; k<NDIM; k++) {
xw[NDIM*i+k] = x[i][k];
vw[NDIM*i+k] = v[i][k];

}

fwrite(&t, sizeof(int), 1, fp);
fwrite(xw, sizeof(double), N*NDIM, fp);
fwrite(vw, sizeof(double), N*NDIM, fp);
}

fclose(fp);
}

void write_restartfile(int t, double temperature, double pressure,
double density, int time_index, int latest_time,
int block, double **x, double **v,
char *restartfile, int restart)

{
static double *xw, *vw;
int i, k;
static int firsttime=1;

210



FILE *fp;

if((fp=fopen(restartfile, "w"))==NULL) {
printf("\nError opening file %s; Program aborted!\n\n",

restartfile);
exit(1);

}

if (firsttime) {
firsttime = 0;
xw = (double*) calloc(N*NDIM, sizeof(double));
vw = (double*) calloc(N*NDIM, sizeof(double));

}

for (i=0; i<N; i++)
for (k=0; k<NDIM; k++) {

xw[NDIM*i+k] = x[i][k];
vw[NDIM*i+k] = v[i][k];

}

fwrite(&t, sizeof(int), 1, fp);
fwrite(&temperature, sizeof(double), 1, fp);
fwrite(&pressure, sizeof(double), 1, fp);
fwrite(&density, sizeof(double), 1, fp);
fwrite(&time_index, sizeof(int), 1, fp);
fwrite(&latest_time, sizeof(int), 1, fp);
fwrite(&block, sizeof(int), 1, fp);
fwrite(xw, sizeof(double), N*NDIM, fp);
fwrite(vw, sizeof(double), N*NDIM, fp);

fclose(fp);
}

void read_timefile(int *timeList, int N_t, char *timefile) {
int i;
FILE *fp;
if((fp = fopen(timefile, "r"))==NULL) {
printf("\nError opening file %s; Program aborted!\n\n",

timefile);
exit(1);

}

for(i = 0; i < N_t; i++)
fscanf(fp, "%d\n", &timeList[i]);

printf("timeList = %d\n", timeList[10]);
printf("N_t = %d\n", N_t);

fclose(fp);

}
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============================================================

/*
*
* lj.h
*
*
*/

#include "cell.h"
#include "nlist.h"

/* global variables */
int N;

void read_input(int *restart, int *tmax, int *write_time,
int* Number_of_times, int *Tconstant,
double *temperature, double *pressure,

double *density, double *dt, unsigned short seed[3],
int *ascii_flag, char *inputfile, char *timefile,

char *datafile, char *restartfile, char *configfile);

void read_timefile(int *timeList, int N_t, char *timefile);

void init_simulation(double *mass, double *cutoff, double *cutoff2,
double *minCutoff, double *skin, double *permit);

void read_restartfile(int *t, double *temperature, double *pressure,
double *density, int *time_index, int *latest_time,
int *block, double **x, double **v, double *L,
double mass, char *restartfile);

void init_lattice(double **x, double **v, double density, double mass,
double temperature, unsigned short seed[3],
double *kinetic, double *L);

void write_data(int t, double dt, double kinetic,
double potential, double virial, double *temperature,
double *pressure, double volume, char *datafile,

int restart);

void write_configuration(int t, int ascii_flag, double **x, double **v,
char *configfile);

void write_restartfile(int t, double temperature, double pressure,
double density, int time_index, int latest_time,
int block, double **x, double **v,

char *restartfile, int restart);

void init_cells(cell* cells, int ncell, int ncell3);
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void load(double **x, cell *cells, double L, int ncell, int ncell3);

void neighbor_list(list *nlist, double **x, cell *cells, double L,
double skin, double permit, int ncell3, int rank,

int np);

void force(double **x, double *f, cell *cells, list *nlist, double L,
int ncell3, double cutoff, double minCutoff, double cutoff2,

double *potential, double *virial, int rank, int np);

void verlet1(double **x, double **v, double **f, double mass, double L,
double dt);

void verlet2(double **v, double **f, double mass, double dt,
double *kinetic, int Tconstant, double T);

clock_t clock(void);

============================================================

/*
*
* cell.h
*
*
*/

#include "define.h"

typedef struct _cell {
int *molecules; /* array of molecule numbers in the cell */
int last; /* array element containing the last molecule */
int neighbors[NBRS]; /* nearest neighbor identities */

} cell;

============================================================

/*
*
* define.h
*
*
*/

#define ATOMS 1
#define NDIM 3
#define NBRS 14

/* random constants */
#define PI 3.141592653589793238462643
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#define k_B 1.0
#define N_A 1.0

/* for real units (fs, nm, kJ/mol)
#define k_B 0.0083144
#define N_A 602.205
*/

============================================================

/*
*
* extern.h
*
* Global Variables: see lj.h for further explanation
*/

extern int N;

extern double sigma6p;
extern double sigma12p;
extern double sigma6f;
extern double sigma12f;
extern double lj_pshift;
extern double lj_fshift;

============================================================

/*
*
* nlist.h
*
*/

#include "define.h"

typedef struct _list {
int *neighbors; /* array of neighboring atoms/molecules */
int last; /* last molecule on the list */

} list;

============================================================
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Appendix B

Analysis code

B.1 A program for calculating mean string and

cluster sizes

/*
* dzugMeanClusterString.cpp
*
* This program calculates the weight averaged mean cluster
* or mean string sizes. It can be easily modified to
* calculate the number averaged mean cluster or string sizes.
*
*
*/

#include <fstream>
#include <assert.h>
#include <stdio.h>
#include <math.h>

#include <vector>

using namespace std;

#define N 17576
#define DIM 3
#define Temperature 0.43

#define Percentage 0.05

const int tMax = 81;
const int nof_times = 1;

const int blockMax = 10;

const double density = 0.85;

struct Atom{
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double *x;
double *x0;
double *xold;
double *dr;
double rSquare;

};

struct Cluster{
int size;
int *member;

};

struct String{
int size;
int *member;

};

struct Mobile{
int ID;
double *x;
double *x0;
double rSquare;

};

void allocate (Atom*, Cluster*, String*, Mobile*);

void msdFunction(Atom*, double, double&);

void r2Sort(const Atom*,double*, Mobile*, int);
void clusterFunction(Atom*, Cluster*, Mobile*, double,

double*, int *, const int, double**);

void stringofallMobile(const Atom*, String*, Mobile*, const double,
int*, double*, double**, const int);

void allocate (Atom *theAtom, Cluster *theCluster,
String *theString, Mobile *theMobile){

int i, k;
for (i = 0; i < N; i++){

theAtom[i].rSquare = 0.;
theAtom[i].x = new double[DIM];
theAtom[i].x0 = new double[DIM];
theAtom[i].xold = new double[DIM];
theAtom[i].dr = new double[DIM];
for (k = 0; k < DIM; k++){

theAtom[i].x[k] = theAtom[i].x0[k] = 0.;
theAtom[i].dr[k] = theAtom[i].xold[k] = 0.;

}
}

for (i =0; i < N; i++){
theCluster[i].size = 0;
theCluster[i].member = new int[(int)(Percentage*N)];
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}

for (i = 0; i < (int)(Percentage*N); i++){
theString[i].size = 0;
theString[i].member = new int[(int)(Percentage*N)];

}

for (i = 0; i < (int)(Percentage*N); i++){
theMobile[i].ID
theMobile[i].rSquare = 0.;
theMobile[i].x = new double[DIM];
theMobile[i].x0 = new double[DIM];
for (k = 0; k < DIM; k++)

theMobile[i].x[k] = theMobile[i].x0[k] = 0.;

}

return;
}

void msdFunction(Atom *theAtom, double L, double& sum_r2){
int i, k;
double r2, dx, dx2;

sum_r2 = 0.;

for (i = 0; i < N; i++){

r2 = 0.;

for (k = 0; k < DIM; k++){

dx = theAtom[i].x[k] - theAtom[i].xold[k];
dx -= (floor(dx/L + 0.5))*L;
assert(fabs(dx) <= L/2.);

theAtom[i].dr[k] += dx;
dx2 = theAtom[i].dr[k]*theAtom[i].dr[k];

r2 += dx2;
theAtom[i].xold[k] = theAtom[i].x[k];

}

theAtom[i].rSquare = r2;
sum_r2 += r2;

}

return;
}

void r2Sort(const Atom *theAtom, double *temp_rSquare,
Mobile *theMobile, int LowerIndexFast){
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int i, j, k, rMinIndex;
int mobCount = 0;
double rMin, rMinSquare;

for (i = 0; i < N; i++)
temp_rSquare[i] = theAtom[i].rSquare;

for (i = 0; i < N; i++){

rMin = temp_rSquare[i];
rMinIndex = i;

for (j = i+1; j < N; j++){

if (temp_rSquare[j] < rMin){
rMin = temp_rSquare[j];
rMinIndex = j;

}
}

temp_rSquare[rMinIndex] = temp_rSquare[i];
temp_rSquare[i] = rMin;

}

for (i = 0; i < N; i++){
if (theAtom[i].rSquare >= temp_rSquare[LowerIndexFast]){

theMobile[mobCount].ID = i;
theMobile[mobCount].x = theAtom[i].x;
theMobile[mobCount].x0 = theAtom[i].x0;
theMobile[mobCount].rSquare = theAtom[i].rSquare;
mobCount++;

}
}

cout << "Sorting Finished !!!!!!!" <<endl;
return ;

}

void clusterFunction(Atom *theAtom, Cluster *theCluster, Mobile *theMobile,
double L, double *clusterSize, int *bigClusterIndex,
const int t, double **probCluster){

int i, j, k, n;
int newIndex, oldIndex;
double dxij, dxij2, deltaR2;
int nMobile = (int)(Percentage*N);
int index[nMobile];

int probCount[nMobile];
int sum_probCount = 0;
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for (i = 0; i < nMobile; i++){
index[i] = i;
theCluster[i].size = 0;
probCount[i] = 0;

}

for (i = 0; i < nMobile; i++){
for (j = 0; j < nMobile; j++){

dxij2 = 0;

for (k = 0; k < 3; k++){
dxij = theMobile[i].x[k] - theMobile[j].x[k];
dxij -= (floor(dxij/L + 0.5))*L;

assert(fabs(dxij) <= L/2.);

dxij2 += dxij*dxij;
}

deltaR2 = dxij2;

if (deltaR2 <= rof_1stNshellSquare){
if (index[i] <= index[j]){

newIndex = index[i];
oldIndex = index[j];

}
else{

newIndex = index[j];
oldIndex = index[i];

}
} /* end if deltaR2 ...*/

for (k = 0; k < nMobile; k++){
if (index[k] == oldIndex)

index[k] = newIndex;
}

}/* j loop */

} /* i loop*/

for (i = 0; i < nMobile; i++){
k = index[i];
theCluster[k].size++;
theCluster[k].member[theCluster[k].size - 1] = theMobile[i].ID;

}

int infinity = 1000000;
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/*
//================================================================

// A part that searches percolating clusters.

int m;
//int infinity = 1000000;
int NumbZeros = 15;
double binSize = 0.1;
int NoBins = (int)floor(L /binSize);

int max = 2;
int index_maxCluster;
int span[NoBins][DIM];
int pcount[DIM];
int empty_count;

for(m = 0; m < NoBins; m++)
for (k = 0; k < DIM; k++)
span[m][k] = 0;

for (i = 0; i < nMobile; i++){
if (theCluster[i].size > max){

max = theCluster[i].size;
index_maxCluster = i;

}
}

for (int mm = 0; mm < theCluster[index_maxCluster].size; mm++){
m = (int)floor((theAtom[theCluster[index_maxCluster].

member[mm]].x[k] + L/2.)/binSize);
span[m][k] += 1;

}

for (k = 0; k < DIM; k++){
pcount[k] = 0;
empty_count = 0;
for (m = 0; m < NoBins; m++){

if (span[m][k] > 0)
empty_count = 0;
else
empty_count++;
if((empty_count > NumbZeros) &&
(pcount[k] < empty_count))
pcount[k] = empty_count;

}

if (pcount[k] ==0)
theCluster[index_maxCluster].size == infinity;

}
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//=============================================================
*/

int sum_n2 = 0;
int sum_n = 0;

for (i = 0; i < nMobile; i++){
if (theCluster[i].size != infinity){

n = theCluster[i].size;
probCount[n]++;
sum_n2 += n*n;
sum_n += n;

}
}

for (i = 1; i < nMobile; i++)
sum_probCount += probCount[i];

clusterSize[t] += (float)sum_n2/(float)sum_n;
cout << clusterSize[t] << endl;

for (i = 1; i < nMobile; i++)
probCluster[t][i] += (double)probCount[i]/(double)sum_probCount;

/* Task(1): printing members of big cluster

ofstream fout;
fout.open("cMembers");

for (i = 0; i < theCluster[maxIndex].size; i++)
fout << theCluster[maxIndex].member[i]<< endl;

fout.close();

end of Task(1) */

/* Task(2): printing all clusters at time t

char strType[40][3] = {"He", "Li","Mn", "Be", "B", "C",
"ca", "N", "O", "F", "Na","Zn", "Mg",
"Si","P", "S", "I", "K", "Cu","H", "Al",
"ca", "cl","Ni", ’\0’};

int typeCount = 0;

char outputFile[50];
sprintf(outputFile, "theClusters/xyz_t=%d",t);
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fout.open(outputFile);

fout <<totalNumber<<endl;
fout << "clusters with size > "<<theLowerSize<<"at time "<<t<<endl;

for (i = 0; i < nMobile; i++){
if (theCluster[i].size > theLowerSize){

for (int mm = 0; mm < theCluster[i].size; mm++){
fout << "Mg" << "\t";
for (k = 0; k < DIM; k++)

fout << theAtom[theCluster[i].member[mm]].x[k]<<"\t";
fout << endl;

}
typeCount++;

}
}

fout.close();

end of Task(2) */

return;
}

void stringofallMobile(const Atom *theAtom, String *theString,
Mobile *theMobile, const double L,
int *atomsInStrings, double *meanString,
double **probString, const int t){

int i, j, k, n;
int newIndex, oldIndex;
double deltaXij0, deltaXi0j, deltaXij02, deltaXi0j2;
int nMobile = (int)(Percentage*N);
int index[nMobile];
int nStrings_ofSize[nMobile];

int sum_nStrings_ofSize_n = 0;
int sum_nonTrivialStrings_ofSize_n = 0;

for (i = 0; i < nMobile; i++){
index[i] = i;
theString[i].size = 0;

}

for (i = 0; i < nMobile; i++){
for (j = 0; j < nMobile; j++){

deltaXij02 = 0;
deltaXi0j2 = 0;

222



for (k = 0; k < DIM; k++){
deltaXij0 = theMobile[i].x[k] - theMobile[j].x0[k];
deltaXi0j = theMobile[j].x[k] - theMobile[i].x0[k];

deltaXij0 -= (floor(deltaXij0/L + 0.5))*L;
deltaXi0j -= (floor(deltaXi0j/L + 0.5))*L;

assert(fabs(deltaXij0) <= L/2.);
assert(fabs(deltaXi0j) <= L/2.);

deltaXij02 += deltaXij0*deltaXij0;
deltaXi0j2 += deltaXi0j*deltaXi0j;

}

if((deltaXij02 < 0.36) || (deltaXi0j2 < 0.36)){

if (index[i] <= index[j]){
newIndex = index[i];
oldIndex = index[j];

}
else{

newIndex = index[j];
oldIndex = index[i];

}
} /*end if deltaXij2 ...*/

for (k = 0; k < nMobile; k++){
if (index[k] == oldIndex)

index[k] = newIndex;
}

} /* j loop */

} /* i loop */

for (i = 0; i < nMobile; i++){
k = index[i];
theString[k].size++;
theString[k].member[theString[k].size - 1] = theMobile[i].ID;

}

for (i = 0; i < nMobile; i++)
nStrings_ofSize[i] = 0;

int count = 0;
int min = 0; //Note: change this number from 0 to 2

//when calculating mean for non-trivial strings.
int strIndex = -1;
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for (i = 0; i < nMobile; i++){
if (theString[i].size > min){

count += theString[i].size;
nStrings_ofSize[theString[i].size]++;

}
}

*atomsInStrings = count;

/* mean string calculation */
int nNn, sum_nNn = 0;
int n2Nn, sum_n2Nn = 0;

for (n = 0; n < nMobile; n++){
if (nStrings_ofSize[n] > 0){

nNn = n*nStrings_ofSize[n];
n2Nn = n*nNn;
sum_nNn += nNn;
sum_n2Nn += n2Nn;

}
}

if (sum_nNn > 0)
*meanString = (double)sum_n2Nn/(double)sum_nNn;

else
*meanString = 0.;

//int min_for_nonTrivialStrings = 2;
//for (n = min_for_nonTrivialStrings; n < nMobile; n++);
// sum_nonTrivialStrings_ofSize_n += nStrings_ofSize[n];

//*atomsInStrings = sum_nonTrivialStrings_ofSize_n;

for (n = min; n < nMobile; n++)
sum_nStrings_ofSize_n += nStrings_ofSize[n];

for (n = min; n < nMobile; n++){
if (sum_nStrings_ofSize_n > 0)

probString[t][n] +=
(double)nStrings_ofSize[n]/(double)sum_nStrings_ofSize_n;

}

return;

}

void main (int argc, char *argv[])
{

int i, j, k, t;
int startBlock = 0;
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int time, start_time, present_time;
int timeIndex;
int repeatCount = 0, blockCount = 0;
int timeArray[tMax] = {0};
int tInterval[nof_times*tMax];
double L, sum_r2, temp_rSquare[N] = {0.};
double min_rSquareFast;
int bigClusterIndex;

int mobile_atomsInStrings;

double msd[nof_times*tMax] = {0.};
double mean_clusterSize[nof_times*tMax] = {0.};

double meanString, sum_meanString[nof_times*tMax] = {0.};
double sum_mobile_in_strings[nof_times*tMax] = {0.};

double **probCluster;
double **probString;

probCluster = new double*[nof_times*tMax];
probString = new double*[nof_times*tMax];

for (t = 0; t < nof_times*tMax; t++){
probCluster[t] = new double[(int)(2*Percentage*N)];
probString[t] = new double[2*(int)(Percentage*N)];

}

char inputFile[50], outputFile[50];

FILE *fp;

Atom *theAtom = new Atom[N];
Cluster *theCluster = new Cluster[(int)(Percentage*N)];
String *theString = new String[(int)(Percentage*N)];
Mobile *theMobile = new Mobile[(int)(Percentage*N)];

ofstream fout;
ifstream fin;

if (argc !=2){
cerr << "\n Error: output file is not specified \n";
exit(1);

}

fin.open("log_time.dat");

if (fin.fail()){
cerr << "\n Error: Can not open log_time.dat \n";
exit(1);
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}

for (t = 0; t < tMax; t++)
fin >> timeArray[t];

fin.close();

allocate (theAtom, theCluster, theString, theMobile);

L = pow((double)N/density,1.0/3.0);
int LowerIndexFast = N - (int)(Percentage*N);
int upperIndexSlow = (int)(Percentage*N);

cout<<"LowerIndexFast = "<<LowerIndexFast<<endl;
cout << "upperIndexSlow = "<<upperIndexSlow<<endl;

for (int block = startBlock; block < blockMax; block++) {

time = repeatCount*timeArray[tMax - 1];

blockCount++;
repeatCount++;
start_time = -1;

if (block == startBlock)
start_time = timeArray[0];

for (t = 0; t < tMax; t++){

sprintf(inputFile, "gunzip -c T=%.2fprod/xyz_t=%d.%d.dat.gz",
Temperature, block, timeArray[t]);

if ((fp=popen(inputFile, "r"))==NULL) {
printf("\nError opening file %s;

Program aborted!\n\n", inputFile);
exit(1);

}

ifstream fin1(fileno(fp));

cout <<inputFile<<endl;

if (!fin1){
cout <<" couldn’t read the file " << inputFile <<endl;
exit(1);

}

for (i = 0; i < N; i++)
for(k = 0; k < DIM; k++)

fin1 >> theAtom[i].x[k];

fin1.close();
pclose(fp);
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if (timeArray[t] == start_time){
for (i = 0; i < N; i++)

for(k = 0; k < DIM; k++){
theAtom[i].x0[k] = theAtom[i].x[k];
theAtom[i].xold[k] = theAtom[i].x[k];
theAtom[i].dr[k] = 0.;

}
}

msdFunction(theAtom, L, sum_r2);

present_time = time + timeArray[t];
timeIndex = (repeatCount -1)*tMax + t;

tInterval[timeIndex] = present_time - timeArray[0];
msd[timeIndex] += sum_r2/(double)N;

if (present_time != start_time){

r2Sort(theAtom, temp_rSquare, theMobile, LowerIndexFast);

// Mean cluster calculation
clusterFunction(theAtom, theCluster, theMobile, L,

mean_clusterSize, &bigClusterIndex,
timeIndex, probCluster);

// Mean string calculation

//stringofallMobile(theAtom, theString,
// theMobile, L, &mobile_atomsInStrings,
// &meanString, probString, timeIndex);

//sum_mobile_in_strings[timeIndex] += mobile_atomsInStrings;
//sum_meanString[timeIndex] += meanString;

}

} /* time loop */

if (repeatCount == nof_times){
repeatCount = 0;
startBlock += nof_times;

}

} /* block loop */

//fout.open("msd.dat");
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strcpy(outputFile, argv[1]);
fout.open(outputFile);

for (t = 1; t < nof_times*tMax; t++)
fout << tInterval[t]<<"\t"

<<msd[t]/(double)(blockCount/nof_times)<<endl;

fout.close();

fout.open("mean_clusterSize_T=0.43.dat");

for (t = 1; t < nof_times*tMax; t++)
fout << tInterval[t]

<<"\t"<<mean_clusterSize[t]/(double)(blockCount/nof_times)
<<endl;

fout.close();

/*
fout.open("mean_String_n_grOReq_3_T=0.42.dat");

for (t = 1; t < nof_times*tMax; t++)
fout << tInterval[t]

<<"\t"<<sum_meanString[t]/(double)(blockCount/nof_times)
<<endl;

fout.close();

fout.open("theFractions_T=0.42.dat");
for (t = 1; t< nof_times*tMax; t++)

fout <<tInterval[t]<<"\t"
<<sum_mobile_in_strings[t]/(Percentage*(double)N)
/(double)(blockCount/nof_times) <<endl;

fout.close();

fout.open("probString_n_grOReq_3_T=0.42.dat");

for (t = 1; t < nof_times*tMax; t++)
for (int n = 1; n < (int)(Percentage*N); n++)

fout << tInterval[t] <<"\t"<< n <<"\t"
<< probString[t][n]/(double)(blockCount/nof_times)
<<endl;

fout.close();

fout.open("probCluster_T=0.42.dat");

for (t = 1; t < nof_times*tMax; t++)
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for (int n = 1; n < (int)(Percentage*N); n++)
fout << tInterval[t] <<"\t"<< n <<"\t"

<< probCluster[t][n]/(double)(blockCount/nof_times)
<<endl;

fout.close();
*/

return (0);

}

B.2 A program utilized for performing normal

mode analysis

/*
* normalMode.c
*
*
* This program performs normal mode analysis for the inherent structures by
* first calculating the elements of the Hessian matrix for the Dzugutov
* potential, and then diagonalizing the matrix using function calls of the
* standard functions tred2() and tqli() taken from "Numerical Recipes in C,
* Cambridge University Press, Cambridge, 1988."
*
*
*/

#include "nrutil.h"
#include <stdio.h>
#include <math.h>

#include <stdlib.h>

#include <stddef.h>

#include <time.h>

#define NR_END 1
#define FREE_ARG char*
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#define NRANSI

#define DIM 3
#define N 2197
#define density 0.85

#define T 0.55
#define time 10239

#define anint(x) ((x >= 0.5) ? (1.0) : (x <= -0.5) ? (-1.0) : (0.0))

const double minCutoff = 1.87; /* a = 1.87 */
const double cutoffsq = 1.94*1.94; /* b = 1.94 */

/* const double cutoffsq = 2.5*2.5; // LJ */

void derivatives_of_pot_ij(double rij, double rijsq, double *duij,
double *d2uij);

/*void derivatives_of_pot_ij_LJ(double rij, double rijsq, double *duij,
double *d2uij); */

void tred2(double **a, int n, double d[], double e[]);
void tqli(double d[], double e[], int n, double **z);

double *dvector(long nl, long nh);
double **dmatrix(long nrl, long nrh, long ncl, long nch);
void nrerror(char error_text[]);

void free_dvector(double *v, long nl, long nh);
void free_dmatrix(double **m, long nrl, long nrh, long ncl, long nch);

int main(int argc, char **argv)
{

char inputFile[80];
char outputFile[80];
char nucleationTest[80];
int i, j, k, l, ll;
int Ierror;
int NM = (int)DIM*N;
int mm;
int simu;
int isNucleating;
double a;
double L, invL;
double *pbc;
double rij, rijsq;
double *xij, *xijsq;
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double d2uij, duij;
double **x, **uxxii;

double *Omega, *Em;
double **Zeta;

/* double junk; */

FILE *fp0, *fp1, *fp2;

for (simu=100; simu<140; simu++){

clock_t timeElapsed;

sprintf(nucleationTest, "simu2197_%d/nucleating", simu);

printf("\n %s \n", nucleationTest);

if((fp0 = fopen(nucleationTest, "r")) == NULL){
printf("\nError opening file %s;

Program aborted!\n\n", nucleationTest);
exit(1);

}

fscanf(fp0, "%d", &isNucleating);

fclose(fp0);
if (isNucleating)

printf("\n!!!!!! Escape !!!!!!\t%d\t%s", isNucleating,
nucleationTest);

if (!isNucleating){

pbc = dvector(1,3);
xij = dvector(1,3);
xijsq = dvector(1,3);

Omega = dvector(1,NM);
Em = dvector(1,NM);

x = dmatrix(1, NM, 1, 3);
uxxii = dmatrix(1, NM, 1, NM);
Zeta = dmatrix(1, NM, 1, NM);

printf("before\n");

for (i = 1; i <= 5; i++){
for (k = 1; k <= 5; k++)

printf("%lf\t", uxxii[i][k]);
printf("\n");
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}

sprintf(inputFile, "simu2197_%d/T=%.2fmin/IS_xyz_t=0.%d.dat",
simu, T, time);

if((fp1 = fopen(inputFile, "r")) == NULL){
printf("\nError opening file %s;

Program aborted!\n\n", inputFile);
exit(1);

}

printf("\n %s \n", inputFile);

for (i = 1; i <= N; i++)
fscanf(fp1, "%lf %lf %lf", &x[i][1], &x[i][2], &x[i][3]);

for (i = 1; i <= 5; i++){
for (k = 1; k <= 3; k++)

printf("%lf\t",x[i][k]);
printf("\n");

}

fclose(fp1);

L = pow((N/density), 1/3.);
invL = 1/L;

/* case 1 and 2 */
for(i = 1; i <=N; i++){

l = (i-1)*DIM + 1;
for (j = 1; j <= N; j++){

if (j != i){
rijsq = 0.;

for (k = 1; k <= DIM; k++){
xij[k] = x[i][k] - x[j][k];
pbc[k] = L*anint(xij[k]*invL);
xij[k] -= pbc[k];
xijsq[k] = xij[k]*xij[k];
rijsq += xijsq[k];

}

if (rijsq < cutoffsq){
rij = sqrt(rijsq);

derivatives_of_pot_ij(rij, rijsq, &duij, &d2uij);

for (ll = l; ll < l + DIM; ll++){
for (k = ll - l + 1; k <= DIM; k++){

if (((i-1)*DIM+k) == ll){
a = xijsq[k]/rijsq;
uxxii[(i-1)*DIM+k][ll] += d2uij*a +

232



(1/rij)*duij*(1-a);
}
else{

a = xij[ll-l + 1]*xij[k]/rijsq;
uxxii[(i-1)*DIM+k][ll] += d2uij*a

- (1/rij)*duij*a;
uxxii[ll][(i-1)*DIM+k] =

uxxii[(i-1)*DIM+k][ll];
}

} /* k loop */
}/*ll loop */

}/* if (rijsq < cutoff)*/

} /* if (j != 1) */
} /* j loop */

} /*i loop */

for (i = 1; i < N; i++){
for (j = i + 1; j <= N; j++){

rijsq = 0.;

for (k = 1; k <= DIM; k++){

xij[k] = x[i][k] - x[j][k];
pbc[k] = L*anint(xij[k]*invL);
xij[k] -= pbc[k];
xijsq[k] = xij[k]*xij[k];
rijsq += xijsq[k];

}

if (rijsq < cutoffsq){
rij = sqrt(rijsq);

derivatives_of_pot_ij(rij, rijsq, &duij, &d2uij);

for (ll = (i-1)*DIM+1; ll < (i-1)*DIM+1 + DIM; ll++){

for (k = 1; k <= DIM; k++){
if (((ll - ((i-1)*DIM+1)) + 1) == k){ /* case 3 */

a = xijsq[k]/rijsq;
uxxii[(j-1)*DIM + k][ll] = -(d2uij*a

+ (1/rij)*duij*(1-a));
uxxii[ll][(j-1)*DIM + k] = uxxii[(j-1)*DIM

+ k][ll];

}
else { /* case 4 */

mm = (ll - ((i-1)*DIM+1)) + 1;
a = xij[mm]*xij[k]/rijsq;
uxxii[(j-1)*DIM + k][ll] = -d2uij*a

+ (1/rij)*duij*a;
uxxii[ll][(j-1)*DIM + k] = uxxii[(j-1)*DIM

+ k][ll];
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}

} /* k loop */

}/* ll loop */

} /*if (rijsq < cutoff)*/
} /* j loop */

} /* i loop */

printf("after\n");

for (i = 1; i <= 7; i++){
for (j = 1; j <= 5; j++)

printf("%lf\t", uxxii[i][j]);
printf("\n");

}

printf ("\n before starting tred2 \n");
printf("\n%d", NM);
printf("\n%lf\n", uxxii[NM][NM]);

tred2(uxxii, NM, Omega, Em);
printf("\n finished tred2 \n");

tqli(Omega, Em, NM, uxxii);
printf("\n finished tqli \n");

sprintf(outputFile, "simu2197_%d/T=%.2fnorm/Omega_t=0.%d.dat",
simu, T, time);

if((fp2 = fopen(outputFile, "w")) == NULL){
printf("\nError opening file %s;

Program aborted!\n\n", outputFile);
exit(1);

}

for (i = 1; i <= DIM*N; i++)
fprintf(fp2, "%lf\n", Omega[i]);

fclose(fp2);

free_dvector(pbc, 1, 3);
free_dvector(xij, 1, 3);
free_dvector(xijsq, 1, 3);
free_dvector(Omega, 1, NM);
free_dvector(Em, 1, NM);

free_dmatrix(x, 1, NM,1, 3);
free_dmatrix(uxxii, 1, NM,1, NM);
free_dmatrix(Zeta, 1, NM,1, NM);
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} /* if (!isNucleating) */

timeElapsed = clock();
printf("\n time elapsed in seconds: \t%ld\n",

timeElapsed/CLOCKS_PER_SEC);
} /* for (simu ...) */

return(0);

}

void derivatives_of_pot_ij(double r, double r2,
double *first_deriv_pot, double *second_deriv_pot)

{
register double invr, invr2, invr8, invr16, invr17;
register double item0, item1, item2, item3, item4, item5;
register double term0, term1, term2 = 0., term3;
double second_deriv_pot_1 = 0., second_deriv_pot_2;

while (r < minCutoff) {
invr = 1.0/r;
invr2 = 1.0/r2;
invr8 = invr2*invr2*invr2*invr2;
invr16 = invr8*invr8;
invr17 = invr*invr16;
invr16 -= 1.28;
invr17 *= 93.12;

item0 = r - 1.87;
item1 = 1.1/item0;
item2 = 6.402/(item0*item0);

term0 = invr17 + invr16*item2;
term1 = exp(item1);
term2 = term1*term0;

/* Task_0: for second derivative calculation */
second_deriv_pot_1 = term1*(invr17*(17*invr

+ 2.2/(item0*item0))
+ (item2*invr16/item0)*(item1 + 2));

/* end Task_0 */
break;

}

item3 = r - 1.94;
item4 = 0.27/item3;
item4 = exp(item4);
item5 = 0.3456/(item3*item3);
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term3 = item4*item5;

*first_deriv_pot = -(term2 + term3); /* du/dr */

second_deriv_pot_2 = (term3/item3)*(0.27/item3 + 2);
*second_deriv_pot = second_deriv_pot_1 + second_deriv_pot_2;

}

void tred2(double **a, int n, double d[], double e[])
{
int l,k,j,i;

double scale,hh,h,g,f;

for (i=n;i>=2;i--) {
l=i-1;

h=scale=0.0;
if (l > 1) {
for (k=1;k<=l;k++)
scale += fabs(a[i][k]);
if (scale == 0.0)
e[i]=a[i][l];
else {
for (k=1;k<=l;k++) {
a[i][k] /= scale;
h += a[i][k]*a[i][k];
}
f=a[i][l];
g=(f >= 0.0 ? -sqrt(h) : sqrt(h));
e[i]=scale*g;
h -= f*g;
a[i][l]=f-g;
f=0.0;
for (j=1;j<=l;j++) {
a[j][i]=a[i][j]/h;
g=0.0;
for (k=1;k<=j;k++)
g += a[j][k]*a[i][k];
for (k=j+1;k<=l;k++)
g += a[k][j]*a[i][k];
e[j]=g/h;
f += e[j]*a[i][j];
}
hh=f/(h+h);
for (j=1;j<=l;j++) {
f=a[i][j];
e[j]=g=e[j]-hh*f;
for (k=1;k<=j;k++)

a[j][k] -= (f*e[k]+g*a[i][k]);
}
}
} else {
e[i]=a[i][l];
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}
d[i]=h;

}
/* Next statement can be omitted if eigenvectors not wanted */
d[1]=0.0;
e[1]=0.0;

/* Contents of this loop can be omitted if eigenvectors not
wanted except for statement d[i]=a[i][i]; */
for (i=1;i<=n;i++) {
/*

l=i-1;
printf("\ni = %d\n", i);

if (d[i]) {
for (j=1;j<=l;j++) {
g=0.0;
for (k=1;k<=l;k++)
g += a[i][k]*a[k][j];
for (k=1;k<=l;k++)
a[k][j] -= g*a[k][i];
}
}

*/

d[i]=a[i][i];
/*
a[i][i]=1.0;
for (j=1;j<=l;j++) a[j][i]=a[i][j]=0.0;

printf("\nclosing Eigenvectors\n");
*/

}

}

double *dvector(long nl, long nh)
/* allocate a double vector with subscript range v[nl..nh] */
{
double *v;

v=(double *)malloc((size_t) ((nh-nl+1+NR_END)*sizeof(double)));
if (!v) nrerror("allocation failure in dvector()");
return v-nl+NR_END;
}

double **dmatrix(long nrl, long nrh, long ncl, long nch)
/* allocate a double matrix with subscript range m[nrl..nrh][ncl..nch] */
{
long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
double **m;

/* allocate pointers to rows */
m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
if (!m) nrerror("allocation failure 1 in matrix()");
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m += NR_END;
m -= nrl;

/* allocate rows and set pointers to them */
m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
m[nrl] += NR_END;
m[nrl] -= ncl;

for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;

/* return pointer to array of pointers to rows */
return m;
}

void nrerror(char error_text[])
/* Numerical Recipes standard error handler */
{
fprintf(stderr,"Numerical Recipes run-time error...\n");
fprintf(stderr,"%s\n",error_text);
fprintf(stderr,"...now exiting to system...\n");
exit(1);
}

void free_dvector(double *v, long nl, long nh)
/* free a double vector allocated with dvector() */
{

free((FREE_ARG) (v+nl-NR_END));
}

void free_dmatrix(double **m, long nrl, long nrh, long ncl, long nch)
/* free a double matrix allocated by dmatrix() */
{

free((FREE_ARG) (m[nrl]+ncl-NR_END));
free((FREE_ARG) (m+nrl-NR_END));

}

void tqli(double d[], double e[], int n, double **z)
{

double pythag(double a, double b);
int m,l,iter,i,k;

double s,r,p,g,f,dd,c,b;

for (i=2;i<=n;i++) e[i-1]=e[i];
e[n]=0.0;
for (l=1;l<=n;l++) {

/*printf("\n Inside tqli l = %d", l);*/
iter=0;
do {
for (m=l;m<=n-1;m++) {
dd=fabs(d[m])+fabs(d[m+1]);

if ((double)(fabs(e[m])+dd) == dd) break;
}
if (m != l) {
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if (iter++ == 300000)
nrerror("Too many iterations in tqli");

g=(d[l+1]-d[l])/(2.0*e[l]);
r=pythag(g,1.0);
g=d[m]-d[l]+e[l]/(g+SIGN(r,g));
s=c=1.0;
p=0.0;
for (i=m-1;i>=l;i--) {
f=s*e[i];
b=c*e[i];
e[i+1]=(r=pythag(f,g));
if (r == 0.0) {
d[i+1] -= p;
e[m]=0.0;
break;
}
s=f/r;
c=g/r;
g=d[i+1]-p;
r=(d[i]-g)*s+2.0*c*b;
d[i+1]=g+(p=s*r);
g=c*r-b;

/*Next loop can be omitted if
eigenvectors are not wanted*/

/*
for (k=1;k<=n;k++) {
f=z[k][i+1];
z[k][i+1]=s*z[k][i]+c*f;
z[k][i]=c*z[k][i]-s*f;
}

*/
}
if (r == 0.00 && i >= l) continue;
d[l] -= p;
e[l]=g;
e[m]=0.0;
}
} while (m != l);
}
}

#undef NRANSI

double pythag(double a, double b)
{

double absa,absb;
absa=fabs(a);
absb=fabs(b);
if (absa > absb) return absa*sqrt(1.0+SQR(absb/absa));
else return (absb == 0.0 ? 0.0 : absb*sqrt(1.0+SQR(absa/absb)));
}
#undef NRANSI
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